aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorMorten Rasmussen <morten.rasmussen@arm.com>2015-05-09 16:49:57 +0100
committerPunit Agrawal <punit.agrawal@arm.com>2016-03-21 12:34:30 +0000
commita172e650694734ea2ae277bc414779e0b6fe1044 (patch)
tree48e0cf6ae945722948c507cf702ca9169b7be025
parent9aaa5bace5bb94b0d0c0d0a0f6ee031e74b87245 (diff)
sched: Add over-utilization/tipping point indicator
Energy-aware scheduling is only meant to be active while the system is _not_ over-utilized. That is, there are spare cycles available to shift tasks around based on their actual utilization to get a more energy-efficient task distribution without depriving any tasks. When above the tipping point task placement is done the traditional way based on load_avg, spreading the tasks across as many cpus as possible based on priority scaled load to preserve smp_nice. Below the tipping point we want to use util_avg instead. We need to define a criteria for when we make the switch. The util_avg for each cpu converges towards 100% (1024) regardless of how many task additional task we may put on it. If we define over-utilized as: sum_{cpus}(rq.cfs.avg.util_avg) + margin > sum_{cpus}(rq.capacity) some individual cpus may be over-utilized running multiple tasks even when the above condition is false. That should be okay as long as we try to spread the tasks out to avoid per-cpu over-utilization as much as possible and if all tasks have the _same_ priority. If the latter isn't true, we have to consider priority to preserve smp_nice. For example, we could have n_cpus nice=-10 util_avg=55% tasks and n_cpus/2 nice=0 util_avg=60% tasks. Balancing based on util_avg we are likely to end up with nice=-10 tasks sharing cpus and nice=0 tasks getting their own as we 1.5*n_cpus tasks in total and 55%+55% is less over-utilized than 55%+60% for those cpus that have to be shared. The system utilization is only 85% of the system capacity, but we are breaking smp_nice. To be sure not to break smp_nice, we have defined over-utilization conservatively as when any cpu in the system is fully utilized at it's highest frequency instead: cpu_rq(any).cfs.avg.util_avg + margin > cpu_rq(any).capacity IOW, as soon as one cpu is (nearly) 100% utilized, we switch to load_avg to factor in priority to preserve smp_nice. With this definition, we can skip periodic load-balance as no cpu has an always-running task when the system is not over-utilized. All tasks will be periodic and we can balance them at wake-up. This conservative condition does however mean that some scenarios that could benefit from energy-aware decisions even if one cpu is fully utilized would not get those benefits. For system where some cpus might have reduced capacity on some cpus (RT-pressure and/or big.LITTLE), we want periodic load-balance checks as soon a just a single cpu is fully utilized as it might one of those with reduced capacity and in that case we want to migrate it. cc: Ingo Molnar <mingo@redhat.com> cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
-rw-r--r--kernel/sched/fair.c31
-rw-r--r--kernel/sched/sched.h3
2 files changed, 28 insertions, 6 deletions
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index 043715612227..3cfb4be3d88f 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -4144,6 +4144,8 @@ static inline void hrtick_update(struct rq *rq)
}
#endif
+static bool cpu_overutilized(int cpu);
+
/*
* The enqueue_task method is called before nr_running is
* increased. Here we update the fair scheduling stats and
@@ -4154,6 +4156,7 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
{
struct cfs_rq *cfs_rq;
struct sched_entity *se = &p->se;
+ int task_new = !(flags & ENQUEUE_WAKEUP);
for_each_sched_entity(se) {
if (se->on_rq)
@@ -4185,9 +4188,12 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
update_cfs_shares(cfs_rq);
}
- if (!se)
+ if (!se) {
add_nr_running(rq, 1);
-
+ if (!task_new && !rq->rd->overutilized &&
+ cpu_overutilized(rq->cpu))
+ rq->rd->overutilized = true;
+ }
hrtick_update(rq);
}
@@ -6651,11 +6657,12 @@ group_type group_classify(struct sched_group *group,
* @local_group: Does group contain this_cpu.
* @sgs: variable to hold the statistics for this group.
* @overload: Indicate more than one runnable task for any CPU.
+ * @overutilized: Indicate overutilization for any CPU.
*/
static inline void update_sg_lb_stats(struct lb_env *env,
struct sched_group *group, int load_idx,
int local_group, struct sg_lb_stats *sgs,
- bool *overload)
+ bool *overload, bool *overutilized)
{
unsigned long load;
int i;
@@ -6685,6 +6692,9 @@ static inline void update_sg_lb_stats(struct lb_env *env,
sgs->sum_weighted_load += weighted_cpuload(i);
if (idle_cpu(i))
sgs->idle_cpus++;
+
+ if (cpu_overutilized(i))
+ *overutilized = true;
}
/* Adjust by relative CPU capacity of the group */
@@ -6790,7 +6800,7 @@ static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sd
struct sched_group *sg = env->sd->groups;
struct sg_lb_stats tmp_sgs;
int load_idx, prefer_sibling = 0;
- bool overload = false;
+ bool overload = false, overutilized = false;
if (child && child->flags & SD_PREFER_SIBLING)
prefer_sibling = 1;
@@ -6812,7 +6822,7 @@ static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sd
}
update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
- &overload);
+ &overload, &overutilized);
if (local_group)
goto next_group;
@@ -6856,8 +6866,14 @@ next_group:
/* update overload indicator if we are at root domain */
if (env->dst_rq->rd->overload != overload)
env->dst_rq->rd->overload = overload;
- }
+ /* Update over-utilization (tipping point, U >= 0) indicator */
+ if (env->dst_rq->rd->overutilized != overutilized)
+ env->dst_rq->rd->overutilized = overutilized;
+ } else {
+ if (!env->dst_rq->rd->overutilized && overutilized)
+ env->dst_rq->rd->overutilized = true;
+ }
}
/**
@@ -8250,6 +8266,9 @@ static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
if (static_branch_unlikely(&sched_numa_balancing))
task_tick_numa(rq, curr);
+
+ if (!rq->rd->overutilized && cpu_overutilized(task_cpu(curr)))
+ rq->rd->overutilized = true;
}
/*
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
index a618db2936d4..5323d4fc1109 100644
--- a/kernel/sched/sched.h
+++ b/kernel/sched/sched.h
@@ -528,6 +528,9 @@ struct root_domain {
/* Indicate more than one runnable task for any CPU */
bool overload;
+ /* Indicate one or more cpus over-utilized (tipping point) */
+ bool overutilized;
+
/*
* The bit corresponding to a CPU gets set here if such CPU has more
* than one runnable -deadline task (as it is below for RT tasks).