aboutsummaryrefslogtreecommitdiff
path: root/fs
AgeCommit message (Collapse)Author
2016-02-25udf: Check output buffer length when converting name to CS0Andrew Gabbasov
commit bb00c898ad1ce40c4bb422a8207ae562e9aea7ae upstream. If a name contains at least some characters with Unicode values exceeding single byte, the CS0 output should have 2 bytes per character. And if other input characters have single byte Unicode values, then the single input byte is converted to 2 output bytes, and the length of output becomes larger than the length of input. And if the input name is long enough, the output length may exceed the allocated buffer length. All this means that conversion from UTF8 or NLS to CS0 requires checking of output length in order to stop when it exceeds the given output buffer size. [JK: Make code return -ENAMETOOLONG instead of silently truncating the name] Signed-off-by: Andrew Gabbasov <andrew_gabbasov@mentor.com> Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-02-25udf: Prevent buffer overrun with multi-byte charactersAndrew Gabbasov
commit ad402b265ecf6fa22d04043b41444cdfcdf4f52d upstream. udf_CS0toUTF8 function stops the conversion when the output buffer length reaches UDF_NAME_LEN-2, which is correct maximum name length, but, when checking, it leaves the space for a single byte only, while multi-bytes output characters can take more space, causing buffer overflow. Similar error exists in udf_CS0toNLS function, that restricts the output length to UDF_NAME_LEN, while actual maximum allowed length is UDF_NAME_LEN-2. In these cases the output can override not only the current buffer length field, causing corruption of the name buffer itself, but also following allocation structures, causing kernel crash. Adjust the output length checks in both functions to prevent buffer overruns in case of multi-bytes UTF8 or NLS characters. Signed-off-by: Andrew Gabbasov <andrew_gabbasov@mentor.com> Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-02-25udf: limit the maximum number of indirect extents in a rowVegard Nossum
commit b0918d9f476a8434b055e362b83fa4fd1d462c3f upstream. udf_next_aext() just follows extent pointers while extents are marked as indirect. This can loop forever for corrupted filesystem. Limit number the of indirect extents we are willing to follow in a row. [JK: Updated changelog, limit, style] Signed-off-by: Vegard Nossum <vegard.nossum@oracle.com> Cc: Jan Kara <jack@suse.com> Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-02-25pNFS/flexfiles: Fix an XDR encoding bug in layoutreturnTrond Myklebust
commit 082fa37d1351a41afc491d44a1d095cb8d919aa2 upstream. We must not skip encoding the statistics, or the server will see an XDR encoding error. Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-02-25nfs: Fix race in __update_open_stateid()Andrew Elble
commit 361cad3c89070aeb37560860ea8bfc092d545adc upstream. We've seen this in a packet capture - I've intermixed what I think was going on. The fix here is to grab the so_lock sooner. 1964379 -> #1 open (for write) reply seqid=1 1964393 -> #2 open (for read) reply seqid=2 __nfs4_close(), state->n_wronly-- nfs4_state_set_mode_locked(), changes state->state = [R] state->flags is [RW] state->state is [R], state->n_wronly == 0, state->n_rdonly == 1 1964398 -> #3 open (for write) call -> because close is already running 1964399 -> downgrade (to read) call seqid=2 (close of #1) 1964402 -> #3 open (for write) reply seqid=3 __update_open_stateid() nfs_set_open_stateid_locked(), changes state->flags state->flags is [RW] state->state is [R], state->n_wronly == 0, state->n_rdonly == 1 new sequence number is exposed now via nfs4_stateid_copy() next step would be update_open_stateflags(), pending so_lock 1964403 -> downgrade reply seqid=2, fails with OLD_STATEID (close of #1) nfs4_close_prepare() gets so_lock and recalcs flags -> send close 1964405 -> downgrade (to read) call seqid=3 (close of #1 retry) __update_open_stateid() gets so_lock * update_open_stateflags() updates state->n_wronly. nfs4_state_set_mode_locked() updates state->state state->flags is [RW] state->state is [RW], state->n_wronly == 1, state->n_rdonly == 1 * should have suppressed the preceding nfs4_close_prepare() from sending open_downgrade 1964406 -> write call 1964408 -> downgrade (to read) reply seqid=4 (close of #1 retry) nfs_clear_open_stateid_locked() state->flags is [R] state->state is [RW], state->n_wronly == 1, state->n_rdonly == 1 1964409 -> write reply (fails, openmode) Signed-off-by: Andrew Elble <aweits@rit.edu> Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-02-25pNFS/flexfiles: Fix an Oopsable typo in ff_mirror_match_fh()Trond Myklebust
commit 86fb449b07b8215443a30782dca5755d5b8b0577 upstream. Jeff reports seeing an Oops in ff_layout_alloc_lseg. Turns out copy+paste has played cruel tricks on a nested loop. Reported-by: Jeff Layton <jeff.layton@primarydata.com> Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-02-25NFS: Fix attribute cache revalidationTrond Myklebust
commit ade14a7df796d4e86bd9d181193c883a57b13db0 upstream. If a NFSv4 client uses the cache_consistency_bitmask in order to request only information about the change attribute, timestamps and size, then it has not revalidated all attributes, and hence the attribute timeout timestamp should not be updated. Reported-by: Donald Buczek <buczek@molgen.mpg.de> Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-02-25cifs: fix erroneous return valueAnton Protopopov
commit 4b550af519854421dfec9f7732cdddeb057134b2 upstream. The setup_ntlmv2_rsp() function may return positive value ENOMEM instead of -ENOMEM in case of kmalloc failure. Signed-off-by: Anton Protopopov <a.s.protopopov@gmail.com> Signed-off-by: Steve French <smfrench@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-02-25cifs_dbg() outputs an uninitialized buffer in cifs_readdir()Vasily Averin
commit 01b9b0b28626db4a47d7f48744d70abca9914ef1 upstream. In some cases tmp_bug can be not filled in cifs_filldir and stay uninitialized, therefore its printk with "%s" modifier can leak content of kernelspace memory. If old content of this buffer does not contain '\0' access bejond end of allocated object can crash the host. Signed-off-by: Vasily Averin <vvs@virtuozzo.com> Signed-off-by: Steve French <sfrench@localhost.localdomain> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-02-25cifs: fix race between call_async() and reconnect()Rabin Vincent
commit 820962dc700598ffe8cd21b967e30e7520c34748 upstream. cifs_call_async() queues the MID to the pending list and calls smb_send_rqst(). If smb_send_rqst() performs a partial send, it sets the tcpStatus to CifsNeedReconnect and returns an error code to cifs_call_async(). In this case, cifs_call_async() removes the MID from the list and returns to the caller. However, cifs_call_async() releases the server mutex _before_ removing the MID. This means that a cifs_reconnect() can race with this function and manage to remove the MID from the list and delete the entry before cifs_call_async() calls cifs_delete_mid(). This leads to various crashes due to the use after free in cifs_delete_mid(). Task1 Task2 cifs_call_async(): - rc = -EAGAIN - mutex_unlock(srv_mutex) cifs_reconnect(): - mutex_lock(srv_mutex) - mutex_unlock(srv_mutex) - list_delete(mid) - mid->callback() cifs_writev_callback(): - mutex_lock(srv_mutex) - delete(mid) - mutex_unlock(srv_mutex) - cifs_delete_mid(mid) <---- use after free Fix this by removing the MID in cifs_call_async() before releasing the srv_mutex. Also hold the srv_mutex in cifs_reconnect() until the MIDs are moved out of the pending list. Signed-off-by: Rabin Vincent <rabin.vincent@axis.com> Acked-by: Shirish Pargaonkar <shirishpargaonkar@gmail.com> Signed-off-by: Steve French <sfrench@localhost.localdomain> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-02-25cifs: Ratelimit kernel log messagesJamie Bainbridge
commit ec7147a99e33a9e4abad6fc6e1b40d15df045d53 upstream. Under some conditions, CIFS can repeatedly call the cifs_dbg() logging wrapper. If done rapidly enough, the console framebuffer can softlockup or "rcu_sched self-detected stall". Apply the built-in log ratelimiters to prevent such hangs. Signed-off-by: Jamie Bainbridge <jamie.bainbridge@gmail.com> Signed-off-by: Steve French <smfrench@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-02-25ptrace: use fsuid, fsgid, effective creds for fs access checksJann Horn
commit caaee6234d05a58c5b4d05e7bf766131b810a657 upstream. By checking the effective credentials instead of the real UID / permitted capabilities, ensure that the calling process actually intended to use its credentials. To ensure that all ptrace checks use the correct caller credentials (e.g. in case out-of-tree code or newly added code omits the PTRACE_MODE_*CREDS flag), use two new flags and require one of them to be set. The problem was that when a privileged task had temporarily dropped its privileges, e.g. by calling setreuid(0, user_uid), with the intent to perform following syscalls with the credentials of a user, it still passed ptrace access checks that the user would not be able to pass. While an attacker should not be able to convince the privileged task to perform a ptrace() syscall, this is a problem because the ptrace access check is reused for things in procfs. In particular, the following somewhat interesting procfs entries only rely on ptrace access checks: /proc/$pid/stat - uses the check for determining whether pointers should be visible, useful for bypassing ASLR /proc/$pid/maps - also useful for bypassing ASLR /proc/$pid/cwd - useful for gaining access to restricted directories that contain files with lax permissions, e.g. in this scenario: lrwxrwxrwx root root /proc/13020/cwd -> /root/foobar drwx------ root root /root drwxr-xr-x root root /root/foobar -rw-r--r-- root root /root/foobar/secret Therefore, on a system where a root-owned mode 6755 binary changes its effective credentials as described and then dumps a user-specified file, this could be used by an attacker to reveal the memory layout of root's processes or reveal the contents of files he is not allowed to access (through /proc/$pid/cwd). [akpm@linux-foundation.org: fix warning] Signed-off-by: Jann Horn <jann@thejh.net> Acked-by: Kees Cook <keescook@chromium.org> Cc: Casey Schaufler <casey@schaufler-ca.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Morris <james.l.morris@oracle.com> Cc: "Serge E. Hallyn" <serge.hallyn@ubuntu.com> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Willy Tarreau <w@1wt.eu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-02-25Btrfs: fix direct IO requests not reporting IO error to user spaceFilipe Manana
commit 1636d1d77ef4e01e57f706a4cae3371463896136 upstream. If a bio for a direct IO request fails, we were not setting the error in the parent bio (the main DIO bio), making us not return the error to user space in btrfs_direct_IO(), that is, it made __blockdev_direct_IO() return the number of bytes issued for IO and not the error a bio created and submitted by btrfs_submit_direct() got from the block layer. This essentially happens because when we call: dio_end_io(dio_bio, bio->bi_error); It does not set dio_bio->bi_error to the value of the second argument. So just add this missing assignment in endio callbacks, just as we do in the error path at btrfs_submit_direct() when we fail to clone the dio bio or allocate its private object. This follows the convention of what is done with other similar APIs such as bio_endio() where the caller is responsible for setting the bi_error field in the bio it passes as an argument to bio_endio(). This was detected by the new generic test cases in xfstests: 271, 272, 276 and 278. Which essentially setup a dm error target, then load the error table, do a direct IO write and unload the error table. They expect the write to fail with -EIO, which was not getting reported when testing against btrfs. Fixes: 4246a0b63bd8 ("block: add a bi_error field to struct bio") Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-02-25Btrfs: fix hang on extent buffer lock caused by the inode_paths ioctlFilipe Manana
commit 0c0fe3b0fa45082cd752553fdb3a4b42503a118e upstream. While doing some tests I ran into an hang on an extent buffer's rwlock that produced the following trace: [39389.800012] NMI watchdog: BUG: soft lockup - CPU#15 stuck for 22s! [fdm-stress:32166] [39389.800016] NMI watchdog: BUG: soft lockup - CPU#14 stuck for 22s! [fdm-stress:32165] [39389.800016] Modules linked in: btrfs dm_mod ppdev xor sha256_generic hmac raid6_pq drbg ansi_cprng aesni_intel i2c_piix4 acpi_cpufreq aes_x86_64 ablk_helper tpm_tis parport_pc i2c_core sg cryptd evdev psmouse lrw tpm parport gf128mul serio_raw pcspkr glue_helper processor button loop autofs4 ext4 crc16 mbcache jbd2 sd_mod sr_mod cdrom ata_generic virtio_scsi ata_piix libata virtio_pci virtio_ring crc32c_intel scsi_mod e1000 virtio floppy [last unloaded: btrfs] [39389.800016] irq event stamp: 0 [39389.800016] hardirqs last enabled at (0): [< (null)>] (null) [39389.800016] hardirqs last disabled at (0): [<ffffffff8104e58d>] copy_process+0x638/0x1a35 [39389.800016] softirqs last enabled at (0): [<ffffffff8104e58d>] copy_process+0x638/0x1a35 [39389.800016] softirqs last disabled at (0): [< (null)>] (null) [39389.800016] CPU: 14 PID: 32165 Comm: fdm-stress Not tainted 4.4.0-rc6-btrfs-next-18+ #1 [39389.800016] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014 [39389.800016] task: ffff880175b1ca40 ti: ffff8800a185c000 task.ti: ffff8800a185c000 [39389.800016] RIP: 0010:[<ffffffff810902af>] [<ffffffff810902af>] queued_spin_lock_slowpath+0x57/0x158 [39389.800016] RSP: 0018:ffff8800a185fb80 EFLAGS: 00000202 [39389.800016] RAX: 0000000000000101 RBX: ffff8801710c4e9c RCX: 0000000000000101 [39389.800016] RDX: 0000000000000100 RSI: 0000000000000001 RDI: 0000000000000001 [39389.800016] RBP: ffff8800a185fb98 R08: 0000000000000001 R09: 0000000000000000 [39389.800016] R10: ffff8800a185fb68 R11: 6db6db6db6db6db7 R12: ffff8801710c4e98 [39389.800016] R13: ffff880175b1ca40 R14: ffff8800a185fc10 R15: ffff880175b1ca40 [39389.800016] FS: 00007f6d37fff700(0000) GS:ffff8802be9c0000(0000) knlGS:0000000000000000 [39389.800016] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [39389.800016] CR2: 00007f6d300019b8 CR3: 0000000037c93000 CR4: 00000000001406e0 [39389.800016] Stack: [39389.800016] ffff8801710c4e98 ffff8801710c4e98 ffff880175b1ca40 ffff8800a185fbb0 [39389.800016] ffffffff81091e11 ffff8801710c4e98 ffff8800a185fbc8 ffffffff81091895 [39389.800016] ffff8801710c4e98 ffff8800a185fbe8 ffffffff81486c5c ffffffffa067288c [39389.800016] Call Trace: [39389.800016] [<ffffffff81091e11>] queued_read_lock_slowpath+0x46/0x60 [39389.800016] [<ffffffff81091895>] do_raw_read_lock+0x3e/0x41 [39389.800016] [<ffffffff81486c5c>] _raw_read_lock+0x3d/0x44 [39389.800016] [<ffffffffa067288c>] ? btrfs_tree_read_lock+0x54/0x125 [btrfs] [39389.800016] [<ffffffffa067288c>] btrfs_tree_read_lock+0x54/0x125 [btrfs] [39389.800016] [<ffffffffa0622ced>] ? btrfs_find_item+0xa7/0xd2 [btrfs] [39389.800016] [<ffffffffa069363f>] btrfs_ref_to_path+0xd6/0x174 [btrfs] [39389.800016] [<ffffffffa0693730>] inode_to_path+0x53/0xa2 [btrfs] [39389.800016] [<ffffffffa0693e2e>] paths_from_inode+0x117/0x2ec [btrfs] [39389.800016] [<ffffffffa0670cff>] btrfs_ioctl+0xd5b/0x2793 [btrfs] [39389.800016] [<ffffffff8108a8b0>] ? arch_local_irq_save+0x9/0xc [39389.800016] [<ffffffff81276727>] ? __this_cpu_preempt_check+0x13/0x15 [39389.800016] [<ffffffff8108a8b0>] ? arch_local_irq_save+0x9/0xc [39389.800016] [<ffffffff8118b3d4>] ? rcu_read_unlock+0x3e/0x5d [39389.800016] [<ffffffff811822f8>] do_vfs_ioctl+0x42b/0x4ea [39389.800016] [<ffffffff8118b4f3>] ? __fget_light+0x62/0x71 [39389.800016] [<ffffffff8118240e>] SyS_ioctl+0x57/0x79 [39389.800016] [<ffffffff814872d7>] entry_SYSCALL_64_fastpath+0x12/0x6f [39389.800016] Code: b9 01 01 00 00 f7 c6 00 ff ff ff 75 32 83 fe 01 89 ca 89 f0 0f 45 d7 f0 0f b1 13 39 f0 74 04 89 c6 eb e2 ff ca 0f 84 fa 00 00 00 <8b> 03 84 c0 74 04 f3 90 eb f6 66 c7 03 01 00 e9 e6 00 00 00 e8 [39389.800012] Modules linked in: btrfs dm_mod ppdev xor sha256_generic hmac raid6_pq drbg ansi_cprng aesni_intel i2c_piix4 acpi_cpufreq aes_x86_64 ablk_helper tpm_tis parport_pc i2c_core sg cryptd evdev psmouse lrw tpm parport gf128mul serio_raw pcspkr glue_helper processor button loop autofs4 ext4 crc16 mbcache jbd2 sd_mod sr_mod cdrom ata_generic virtio_scsi ata_piix libata virtio_pci virtio_ring crc32c_intel scsi_mod e1000 virtio floppy [last unloaded: btrfs] [39389.800012] irq event stamp: 0 [39389.800012] hardirqs last enabled at (0): [< (null)>] (null) [39389.800012] hardirqs last disabled at (0): [<ffffffff8104e58d>] copy_process+0x638/0x1a35 [39389.800012] softirqs last enabled at (0): [<ffffffff8104e58d>] copy_process+0x638/0x1a35 [39389.800012] softirqs last disabled at (0): [< (null)>] (null) [39389.800012] CPU: 15 PID: 32166 Comm: fdm-stress Tainted: G L 4.4.0-rc6-btrfs-next-18+ #1 [39389.800012] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014 [39389.800012] task: ffff880179294380 ti: ffff880034a60000 task.ti: ffff880034a60000 [39389.800012] RIP: 0010:[<ffffffff81091e8d>] [<ffffffff81091e8d>] queued_write_lock_slowpath+0x62/0x72 [39389.800012] RSP: 0018:ffff880034a639f0 EFLAGS: 00000206 [39389.800012] RAX: 0000000000000101 RBX: ffff8801710c4e98 RCX: 0000000000000000 [39389.800012] RDX: 00000000000000ff RSI: 0000000000000000 RDI: ffff8801710c4e9c [39389.800012] RBP: ffff880034a639f8 R08: 0000000000000001 R09: 0000000000000000 [39389.800012] R10: ffff880034a639b0 R11: 0000000000001000 R12: ffff8801710c4e98 [39389.800012] R13: 0000000000000001 R14: ffff880172cbc000 R15: ffff8801710c4e00 [39389.800012] FS: 00007f6d377fe700(0000) GS:ffff8802be9e0000(0000) knlGS:0000000000000000 [39389.800012] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [39389.800012] CR2: 00007f6d3d3c1000 CR3: 0000000037c93000 CR4: 00000000001406e0 [39389.800012] Stack: [39389.800012] ffff8801710c4e98 ffff880034a63a10 ffffffff81091963 ffff8801710c4e98 [39389.800012] ffff880034a63a30 ffffffff81486f1b ffffffffa0672cb3 ffff8801710c4e00 [39389.800012] ffff880034a63a78 ffffffffa0672cb3 ffff8801710c4e00 ffff880034a63a58 [39389.800012] Call Trace: [39389.800012] [<ffffffff81091963>] do_raw_write_lock+0x72/0x8c [39389.800012] [<ffffffff81486f1b>] _raw_write_lock+0x3a/0x41 [39389.800012] [<ffffffffa0672cb3>] ? btrfs_tree_lock+0x119/0x251 [btrfs] [39389.800012] [<ffffffffa0672cb3>] btrfs_tree_lock+0x119/0x251 [btrfs] [39389.800012] [<ffffffffa061aeba>] ? rcu_read_unlock+0x5b/0x5d [btrfs] [39389.800012] [<ffffffffa061ce13>] ? btrfs_root_node+0xda/0xe6 [btrfs] [39389.800012] [<ffffffffa061ce83>] btrfs_lock_root_node+0x22/0x42 [btrfs] [39389.800012] [<ffffffffa062046b>] btrfs_search_slot+0x1b8/0x758 [btrfs] [39389.800012] [<ffffffff810fc6b0>] ? time_hardirqs_on+0x15/0x28 [39389.800012] [<ffffffffa06365db>] btrfs_lookup_inode+0x31/0x95 [btrfs] [39389.800012] [<ffffffff8108d62f>] ? trace_hardirqs_on+0xd/0xf [39389.800012] [<ffffffff8148482b>] ? mutex_lock_nested+0x397/0x3bc [39389.800012] [<ffffffffa068821b>] __btrfs_update_delayed_inode+0x59/0x1c0 [btrfs] [39389.800012] [<ffffffffa068858e>] __btrfs_commit_inode_delayed_items+0x194/0x5aa [btrfs] [39389.800012] [<ffffffff81486ab7>] ? _raw_spin_unlock+0x31/0x44 [39389.800012] [<ffffffffa0688a48>] __btrfs_run_delayed_items+0xa4/0x15c [btrfs] [39389.800012] [<ffffffffa0688d62>] btrfs_run_delayed_items+0x11/0x13 [btrfs] [39389.800012] [<ffffffffa064048e>] btrfs_commit_transaction+0x234/0x96e [btrfs] [39389.800012] [<ffffffffa0618d10>] btrfs_sync_fs+0x145/0x1ad [btrfs] [39389.800012] [<ffffffffa0671176>] btrfs_ioctl+0x11d2/0x2793 [btrfs] [39389.800012] [<ffffffff8108a8b0>] ? arch_local_irq_save+0x9/0xc [39389.800012] [<ffffffff81140261>] ? __might_fault+0x4c/0xa7 [39389.800012] [<ffffffff81140261>] ? __might_fault+0x4c/0xa7 [39389.800012] [<ffffffff8108a8b0>] ? arch_local_irq_save+0x9/0xc [39389.800012] [<ffffffff8118b3d4>] ? rcu_read_unlock+0x3e/0x5d [39389.800012] [<ffffffff811822f8>] do_vfs_ioctl+0x42b/0x4ea [39389.800012] [<ffffffff8118b4f3>] ? __fget_light+0x62/0x71 [39389.800012] [<ffffffff8118240e>] SyS_ioctl+0x57/0x79 [39389.800012] [<ffffffff814872d7>] entry_SYSCALL_64_fastpath+0x12/0x6f [39389.800012] Code: f0 0f b1 13 85 c0 75 ef eb 2a f3 90 8a 03 84 c0 75 f8 f0 0f b0 13 84 c0 75 f0 ba ff 00 00 00 eb 0a f0 0f b1 13 ff c8 74 0b f3 90 <8b> 03 83 f8 01 75 f7 eb ed c6 43 04 00 5b 5d c3 0f 1f 44 00 00 This happens because in the code path executed by the inode_paths ioctl we end up nesting two calls to read lock a leaf's rwlock when after the first call to read_lock() and before the second call to read_lock(), another task (running the delayed items as part of a transaction commit) has already called write_lock() against the leaf's rwlock. This situation is illustrated by the following diagram: Task A Task B btrfs_ref_to_path() btrfs_commit_transaction() read_lock(&eb->lock); btrfs_run_delayed_items() __btrfs_commit_inode_delayed_items() __btrfs_update_delayed_inode() btrfs_lookup_inode() write_lock(&eb->lock); --> task waits for lock read_lock(&eb->lock); --> makes this task hang forever (and task B too of course) So fix this by avoiding doing the nested read lock, which is easily avoidable. This issue does not happen if task B calls write_lock() after task A does the second call to read_lock(), however there does not seem to exist anything in the documentation that mentions what is the expected behaviour for recursive locking of rwlocks (leaving the idea that doing so is not a good usage of rwlocks). Also, as a side effect necessary for this fix, make sure we do not needlessly read lock extent buffers when the input path has skip_locking set (used when called from send). Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-02-25Btrfs: fix page reading in extent_same ioctl leading to csum errorsFilipe Manana
commit 313140023026ae542ad76e7e268c56a1eaa2c28e upstream. In the extent_same ioctl, we were grabbing the pages (locked) and attempting to read them without bothering about any concurrent IO against them. That is, we were not checking for any ongoing ordered extents nor waiting for them to complete, which leads to a race where the extent_same() code gets a checksum verification error when it reads the pages, producing a message like the following in dmesg and making the operation fail to user space with -ENOMEM: [18990.161265] BTRFS warning (device sdc): csum failed ino 259 off 495616 csum 685204116 expected csum 1515870868 Fix this by using btrfs_readpage() for reading the pages instead of extent_read_full_page_nolock(), which waits for any concurrent ordered extents to complete and locks the io range. Also do better error handling and don't treat all failures as -ENOMEM, as that's clearly misleasing, becoming identical to the checks and operation of prepare_uptodate_page(). The use of extent_read_full_page_nolock() was required before commit f441460202cb ("btrfs: fix deadlock with extent-same and readpage"), as we had the range locked in an inode's io tree before attempting to read the pages. Fixes: f441460202cb ("btrfs: fix deadlock with extent-same and readpage") Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-02-25Btrfs: fix invalid page accesses in extent_same (dedup) ioctlFilipe Manana
commit e0bd70c67bf996b360f706b6c643000f2e384681 upstream. In the extent_same ioctl we are getting the pages for the source and target ranges and unlocking them immediately after, which is incorrect because later we attempt to map them (with kmap_atomic) and access their contents at btrfs_cmp_data(). When we do such access the pages might have been relocated or removed from memory, which leads to an invalid memory access. This issue is detected on a kernel with CONFIG_DEBUG_PAGEALLOC=y which produces a trace like the following: 186736.677437] general protection fault: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC [186736.680382] Modules linked in: btrfs dm_flakey dm_mod ppdev xor raid6_pq sha256_generic hmac drbg ansi_cprng acpi_cpufreq evdev sg aesni_intel aes_x86_64 parport_pc ablk_helper tpm_tis psmouse parport i2c_piix4 tpm cryptd i2c_core lrw processor button serio_raw pcspkr gf128mul glue_helper loop autofs4 ext4 crc16 mbcache jbd2 sd_mod sr_mod cdrom ata_generic virtio_scsi ata_piix libata virtio_pci virtio_ring crc32c_intel scsi_mod e1000 virtio floppy [last unloaded: btrfs] [186736.681319] CPU: 13 PID: 10222 Comm: duperemove Tainted: G W 4.4.0-rc6-btrfs-next-18+ #1 [186736.681319] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014 [186736.681319] task: ffff880132600400 ti: ffff880362284000 task.ti: ffff880362284000 [186736.681319] RIP: 0010:[<ffffffff81264d00>] [<ffffffff81264d00>] memcmp+0xb/0x22 [186736.681319] RSP: 0018:ffff880362287d70 EFLAGS: 00010287 [186736.681319] RAX: 000002c002468acf RBX: 0000000012345678 RCX: 0000000000000000 [186736.681319] RDX: 0000000000001000 RSI: 0005d129c5cf9000 RDI: 0005d129c5cf9000 [186736.681319] RBP: ffff880362287d70 R08: 0000000000000000 R09: 0000000000001000 [186736.681319] R10: ffff880000000000 R11: 0000000000000476 R12: 0000000000001000 [186736.681319] R13: ffff8802f91d4c88 R14: ffff8801f2a77830 R15: ffff880352e83e40 [186736.681319] FS: 00007f27b37fe700(0000) GS:ffff88043dda0000(0000) knlGS:0000000000000000 [186736.681319] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [186736.681319] CR2: 00007f27a406a000 CR3: 0000000217421000 CR4: 00000000001406e0 [186736.681319] Stack: [186736.681319] ffff880362287ea0 ffffffffa048d0bd 000000000009f000 0000000000001000 [186736.681319] 0100000000000000 ffff8801f2a77850 ffff8802f91d49b0 ffff880132600400 [186736.681319] 00000000000004f8 ffff8801c1efbe41 0000000000000000 0000000000000038 [186736.681319] Call Trace: [186736.681319] [<ffffffffa048d0bd>] btrfs_ioctl+0x24cb/0x2731 [btrfs] [186736.681319] [<ffffffff8108a8b0>] ? arch_local_irq_save+0x9/0xc [186736.681319] [<ffffffff8118b3d4>] ? rcu_read_unlock+0x3e/0x5d [186736.681319] [<ffffffff811822f8>] do_vfs_ioctl+0x42b/0x4ea [186736.681319] [<ffffffff8118b4f3>] ? __fget_light+0x62/0x71 [186736.681319] [<ffffffff8118240e>] SyS_ioctl+0x57/0x79 [186736.681319] [<ffffffff814872d7>] entry_SYSCALL_64_fastpath+0x12/0x6f [186736.681319] Code: 0a 3c 6e 74 0d 3c 79 74 04 3c 59 75 0c c6 06 01 eb 03 c6 06 00 31 c0 eb 05 b8 ea ff ff ff 5d c3 55 31 c9 48 89 e5 48 39 d1 74 13 <0f> b6 04 0f 44 0f b6 04 0e 48 ff c1 44 29 c0 74 ea eb 02 31 c0 (gdb) list *(btrfs_ioctl+0x24cb) 0x5e0e1 is in btrfs_ioctl (fs/btrfs/ioctl.c:2972). 2967 dst_addr = kmap_atomic(dst_page); 2968 2969 flush_dcache_page(src_page); 2970 flush_dcache_page(dst_page); 2971 2972 if (memcmp(addr, dst_addr, cmp_len)) 2973 ret = BTRFS_SAME_DATA_DIFFERS; 2974 2975 kunmap_atomic(addr); 2976 kunmap_atomic(dst_addr); So fix this by making sure we keep the pages locked and respect the same locking order as everywhere else: get and lock the pages first and then lock the range in the inode's io tree (like for example at __btrfs_buffered_write() and extent_readpages()). If an ordered extent is found after locking the range in the io tree, unlock the range, unlock the pages, wait for the ordered extent to complete and repeat the entire locking process until no overlapping ordered extents are found. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-02-25btrfs: properly set the termination value of ctx->pos in readdirDavid Sterba
commit bc4ef7592f657ae81b017207a1098817126ad4cb upstream. The value of ctx->pos in the last readdir call is supposed to be set to INT_MAX due to 32bit compatibility, unless 'pos' is intentially set to a larger value, then it's LLONG_MAX. There's a report from PaX SIZE_OVERFLOW plugin that "ctx->pos++" overflows (https://forums.grsecurity.net/viewtopic.php?f=1&t=4284), on a 64bit arch, where the value is 0x7fffffffffffffff ie. LLONG_MAX before the increment. We can get to that situation like that: * emit all regular readdir entries * still in the same call to readdir, bump the last pos to INT_MAX * next call to readdir will not emit any entries, but will reach the bump code again, finds pos to be INT_MAX and sets it to LLONG_MAX Normally this is not a problem, but if we call readdir again, we'll find 'pos' set to LLONG_MAX and the unconditional increment will overflow. The report from Victor at (http://thread.gmane.org/gmane.comp.file-systems.btrfs/49500) with debugging print shows that pattern: Overflow: e Overflow: 7fffffff Overflow: 7fffffffffffffff PAX: size overflow detected in function btrfs_real_readdir fs/btrfs/inode.c:5760 cicus.935_282 max, count: 9, decl: pos; num: 0; context: dir_context; CPU: 0 PID: 2630 Comm: polkitd Not tainted 4.2.3-grsec #1 Hardware name: Gigabyte Technology Co., Ltd. H81ND2H/H81ND2H, BIOS F3 08/11/2015 ffffffff81901608 0000000000000000 ffffffff819015e6 ffffc90004973d48 ffffffff81742f0f 0000000000000007 ffffffff81901608 ffffc90004973d78 ffffffff811cb706 0000000000000000 ffff8800d47359e0 ffffc90004973ed8 Call Trace: [<ffffffff81742f0f>] dump_stack+0x4c/0x7f [<ffffffff811cb706>] report_size_overflow+0x36/0x40 [<ffffffff812ef0bc>] btrfs_real_readdir+0x69c/0x6d0 [<ffffffff811dafc8>] iterate_dir+0xa8/0x150 [<ffffffff811e6d8d>] ? __fget_light+0x2d/0x70 [<ffffffff811dba3a>] SyS_getdents+0xba/0x1c0 Overflow: 1a [<ffffffff811db070>] ? iterate_dir+0x150/0x150 [<ffffffff81749b69>] entry_SYSCALL_64_fastpath+0x12/0x83 The jump from 7fffffff to 7fffffffffffffff happens when new dir entries are not yet synced and are processed from the delayed list. Then the code could go to the bump section again even though it might not emit any new dir entries from the delayed list. The fix avoids entering the "bump" section again once we've finished emitting the entries, both for synced and delayed entries. References: https://forums.grsecurity.net/viewtopic.php?f=1&t=4284 Reported-by: Victor <services@swwu.com> Signed-off-by: David Sterba <dsterba@suse.com> Tested-by: Holger Hoffstätte <holger.hoffstaette@googlemail.com> Signed-off-by: Chris Mason <clm@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-02-25Revert "btrfs: clear PF_NOFREEZE in cleaner_kthread()"David Sterba
commit 80ad623edd2d0ccb47d85357ee31c97e6c684e82 upstream. This reverts commit 696249132158014d594896df3a81390616069c5c. The cleaner thread can block freezing when there's a snapshot cleaning in progress and the other threads get suspended first. From the logs provided by Martin we're waiting for reading extent pages: kernel: PM: Syncing filesystems ... done. kernel: Freezing user space processes ... (elapsed 0.015 seconds) done. kernel: Freezing remaining freezable tasks ... kernel: Freezing of tasks failed after 20.003 seconds (1 tasks refusing to freeze, wq_busy=0): kernel: btrfs-cleaner D ffff88033dd13bc0 0 152 2 0x00000000 kernel: ffff88032ebc2e00 ffff88032e750000 ffff88032e74fa50 7fffffffffffffff kernel: ffffffff814a58df 0000000000000002 ffffea000934d580 ffffffff814a5451 kernel: 7fffffffffffffff ffffffff814a6e8f 0000000000000000 0000000000000020 kernel: Call Trace: kernel: [<ffffffff814a58df>] ? bit_wait+0x2c/0x2c kernel: [<ffffffff814a5451>] ? schedule+0x6f/0x7c kernel: [<ffffffff814a6e8f>] ? schedule_timeout+0x2f/0xd8 kernel: [<ffffffff81076f94>] ? timekeeping_get_ns+0xa/0x2e kernel: [<ffffffff81077603>] ? ktime_get+0x36/0x44 kernel: [<ffffffff814a4f6c>] ? io_schedule_timeout+0x94/0xf2 kernel: [<ffffffff814a4f6c>] ? io_schedule_timeout+0x94/0xf2 kernel: [<ffffffff814a590b>] ? bit_wait_io+0x2c/0x30 kernel: [<ffffffff814a5694>] ? __wait_on_bit+0x41/0x73 kernel: [<ffffffff8109eba8>] ? wait_on_page_bit+0x6d/0x72 kernel: [<ffffffff8105d718>] ? autoremove_wake_function+0x2a/0x2a kernel: [<ffffffff811a02d7>] ? read_extent_buffer_pages+0x1bd/0x203 kernel: [<ffffffff8117d9e9>] ? free_root_pointers+0x4c/0x4c kernel: [<ffffffff8117e831>] ? btree_read_extent_buffer_pages.constprop.57+0x5a/0xe9 kernel: [<ffffffff8117f4f3>] ? read_tree_block+0x2d/0x45 kernel: [<ffffffff8116782a>] ? read_block_for_search.isra.34+0x22a/0x26b kernel: [<ffffffff811656c3>] ? btrfs_set_path_blocking+0x1e/0x4a kernel: [<ffffffff8116919b>] ? btrfs_search_slot+0x648/0x736 kernel: [<ffffffff81170559>] ? btrfs_lookup_extent_info+0xb7/0x2c7 kernel: [<ffffffff81170ee5>] ? walk_down_proc+0x9c/0x1ae kernel: [<ffffffff81171c9d>] ? walk_down_tree+0x40/0xa4 kernel: [<ffffffff8117375f>] ? btrfs_drop_snapshot+0x2da/0x664 kernel: [<ffffffff8104ff21>] ? finish_task_switch+0x126/0x167 kernel: [<ffffffff811850f8>] ? btrfs_clean_one_deleted_snapshot+0xa6/0xb0 kernel: [<ffffffff8117eaba>] ? cleaner_kthread+0x13e/0x17b kernel: [<ffffffff8117e97c>] ? btrfs_item_end+0x33/0x33 kernel: [<ffffffff8104d256>] ? kthread+0x95/0x9d kernel: [<ffffffff8104d1c1>] ? kthread_parkme+0x16/0x16 kernel: [<ffffffff814a7b5f>] ? ret_from_fork+0x3f/0x70 kernel: [<ffffffff8104d1c1>] ? kthread_parkme+0x16/0x16 As this affects a released kernel (4.4) we need a minimal fix for stable kernels. Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=108361 Reported-by: Martin Ziegler <ziegler@uni-freiburg.de> CC: Jiri Kosina <jkosina@suse.cz> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Chris Mason <clm@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-02-25Btrfs: fix fitrim discarding device area reserved for boot loader's useFilipe Manana
commit 8cdc7c5b00d945a3c823fc4277af304abb9cb43d upstream. As of the 4.3 kernel release, the fitrim ioctl can now discard any region of a disk that is not allocated to any chunk/block group, including the first megabyte which is used for our primary superblock and by the boot loader (grub for example). Fix this by not allowing to trim/discard any region in the device starting with an offset not greater than min(alloc_start_mount_option, 1Mb), just as it was not possible before 4.3. A reproducer test case for xfstests follows. seq=`basename $0` seqres=$RESULT_DIR/$seq echo "QA output created by $seq" tmp=/tmp/$$ status=1 # failure is the default! trap "_cleanup; exit \$status" 0 1 2 3 15 _cleanup() { cd / rm -f $tmp.* } # get standard environment, filters and checks . ./common/rc . ./common/filter # real QA test starts here _need_to_be_root _supported_fs btrfs _supported_os Linux _require_scratch rm -f $seqres.full _scratch_mkfs >>$seqres.full 2>&1 # Write to the [0, 64Kb[ and [68Kb, 1Mb[ ranges of the device. These ranges are # reserved for a boot loader to use (GRUB for example) and btrfs should never # use them - neither for allocating metadata/data nor should trim/discard them. # The range [64Kb, 68Kb[ is used for the primary superblock of the filesystem. $XFS_IO_PROG -c "pwrite -S 0xfd 0 64K" $SCRATCH_DEV | _filter_xfs_io $XFS_IO_PROG -c "pwrite -S 0xfd 68K 956K" $SCRATCH_DEV | _filter_xfs_io # Now mount the filesystem and perform a fitrim against it. _scratch_mount _require_batched_discard $SCRATCH_MNT $FSTRIM_PROG $SCRATCH_MNT # Now unmount the filesystem and verify the content of the ranges was not # modified (no trim/discard happened on them). _scratch_unmount echo "Content of the ranges [0, 64Kb] and [68Kb, 1Mb[ after fitrim:" od -t x1 -N $((64 * 1024)) $SCRATCH_DEV od -t x1 -j $((68 * 1024)) -N $((956 * 1024)) $SCRATCH_DEV status=0 exit Reported-by: Vincent Petry <PVince81@yahoo.fr> Reported-by: Andrei Borzenkov <arvidjaar@gmail.com> Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=109341 Fixes: 499f377f49f0 (btrfs: iterate over unused chunk space in FITRIM) Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-02-25btrfs: handle invalid num_stripes in sys_arrayDavid Sterba
commit f5cdedd73fa71b74dcc42f2a11a5735d89ce7c4f upstream. We can handle the special case of num_stripes == 0 directly inside btrfs_read_sys_array. The BUG_ON in btrfs_chunk_item_size is there to catch other unhandled cases where we fail to validate external data. A crafted or corrupted image crashes at mount time: BTRFS: device fsid 9006933e-2a9a-44f0-917f-514252aeec2c devid 1 transid 7 /dev/loop0 BTRFS info (device loop0): disk space caching is enabled BUG: failure at fs/btrfs/ctree.h:337/btrfs_chunk_item_size()! Kernel panic - not syncing: BUG! CPU: 0 PID: 313 Comm: mount Not tainted 4.2.5-00657-ge047887-dirty #25 Stack: 637af890 60062489 602aeb2e 604192ba 60387961 00000011 637af8a0 6038a835 637af9c0 6038776b 634ef32b 00000000 Call Trace: [<6001c86d>] show_stack+0xfe/0x15b [<6038a835>] dump_stack+0x2a/0x2c [<6038776b>] panic+0x13e/0x2b3 [<6020f099>] btrfs_read_sys_array+0x25d/0x2ff [<601cfbbe>] open_ctree+0x192d/0x27af [<6019c2c1>] btrfs_mount+0x8f5/0xb9a [<600bc9a7>] mount_fs+0x11/0xf3 [<600d5167>] vfs_kern_mount+0x75/0x11a [<6019bcb0>] btrfs_mount+0x2e4/0xb9a [<600bc9a7>] mount_fs+0x11/0xf3 [<600d5167>] vfs_kern_mount+0x75/0x11a [<600d710b>] do_mount+0xa35/0xbc9 [<600d7557>] SyS_mount+0x95/0xc8 [<6001e884>] handle_syscall+0x6b/0x8e Reported-by: Jiri Slaby <jslaby@suse.com> Reported-by: Vegard Nossum <vegard.nossum@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-02-25ext4: don't read blocks from disk after extents being swappedEryu Guan
commit bcff24887d00bce102e0857d7b0a8c44a40f53d1 upstream. I notice ext4/307 fails occasionally on ppc64 host, reporting md5 checksum mismatch after moving data from original file to donor file. The reason is that move_extent_per_page() calls __block_write_begin() and block_commit_write() to write saved data from original inode blocks to donor inode blocks, but __block_write_begin() not only maps buffer heads but also reads block content from disk if the size is not block size aligned. At this time the physical block number in mapped buffer head is pointing to the donor file not the original file, and that results in reading wrong data to page, which get written to disk in following block_commit_write call. This also can be reproduced by the following script on 1k block size ext4 on x86_64 host: mnt=/mnt/ext4 donorfile=$mnt/donor testfile=$mnt/testfile e4compact=~/xfstests/src/e4compact rm -f $donorfile $testfile # reserve space for donor file, written by 0xaa and sync to disk to # avoid EBUSY on EXT4_IOC_MOVE_EXT xfs_io -fc "pwrite -S 0xaa 0 1m" -c "fsync" $donorfile # create test file written by 0xbb xfs_io -fc "pwrite -S 0xbb 0 1023" -c "fsync" $testfile # compute initial md5sum md5sum $testfile | tee md5sum.txt # drop cache, force e4compact to read data from disk echo 3 > /proc/sys/vm/drop_caches # test defrag echo "$testfile" | $e4compact -i -v -f $donorfile # check md5sum md5sum -c md5sum.txt Fix it by creating & mapping buffer heads only but not reading blocks from disk, because all the data in page is guaranteed to be up-to-date in mext_page_mkuptodate(). Signed-off-by: Eryu Guan <guaneryu@gmail.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-02-25ext4: fix potential integer overflowInsu Yun
commit 46901760b46064964b41015d00c140c83aa05bcf upstream. Since sizeof(ext_new_group_data) > sizeof(ext_new_flex_group_data), integer overflow could be happened. Therefore, need to fix integer overflow sanitization. Signed-off-by: Insu Yun <wuninsu@gmail.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-02-25ext4: fix scheduling in atomic on group checksum failureJan Kara
commit 05145bd799e498ce4e3b5145894174ee881f02b0 upstream. When block group checksum is wrong, we call ext4_error() while holding group spinlock from ext4_init_block_bitmap() or ext4_init_inode_bitmap() which results in scheduling while in atomic. Fix the issue by calling ext4_error() later after dropping the spinlock. Reported-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Theodore Ts'o <tytso@mit.edu> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-02-25pty: make sure super_block is still valid in final /dev/tty closeHerton R. Krzesinski
commit 1f55c718c290616889c04946864a13ef30f64929 upstream. Considering current pty code and multiple devpts instances, it's possible to umount a devpts file system while a program still has /dev/tty opened pointing to a previosuly closed pty pair in that instance. In the case all ptmx and pts/N files are closed, umount can be done. If the program closes /dev/tty after umount is done, devpts_kill_index will use now an invalid super_block, which was already destroyed in the umount operation after running ->kill_sb. This is another "use after free" type of issue, but now related to the allocated super_block instance. To avoid the problem (warning at ida_remove and potential crashes) for this specific case, I added two functions in devpts which grabs additional references to the super_block, which pty code now uses so it makes sure the super block structure is still valid until pty shutdown is done. I also moved the additional inode references to the same functions, which also covered similar case with inode being freed before /dev/tty final close/shutdown. Signed-off-by: Herton R. Krzesinski <herton@redhat.com> Reviewed-by: Peter Hurley <peter@hurleysoftware.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-02-17ext4 crypto: add missing locking for keyring_key accessTheodore Ts'o
commit db7730e3091a52c2fcd8fcc952b964d88998e675 upstream. Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-02-17ocfs2/dlm: clear refmap bit of recovery lock while doing local recovery cleanupxuejiufei
commit c95a51807b730e4681e2ecbdfd669ca52601959e upstream. When recovery master down, dlm_do_local_recovery_cleanup() only remove the $RECOVERY lock owned by dead node, but do not clear the refmap bit. Which will make umount thread falling in dead loop migrating $RECOVERY to the dead node. Signed-off-by: xuejiufei <xuejiufei@huawei.com> Reviewed-by: Joseph Qi <joseph.qi@huawei.com> Cc: Mark Fasheh <mfasheh@suse.de> Cc: Joel Becker <jlbec@evilplan.org> Cc: Junxiao Bi <junxiao.bi@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-02-17ocfs2/dlm: ignore cleaning the migration mle that is inusexuejiufei
commit bef5502de074b6f6fa647b94b73155d675694420 upstream. We have found that migration source will trigger a BUG that the refcount of mle is already zero before put when the target is down during migration. The situation is as follows: dlm_migrate_lockres dlm_add_migration_mle dlm_mark_lockres_migrating dlm_get_mle_inuse <<<<<< Now the refcount of the mle is 2. dlm_send_one_lockres and wait for the target to become the new master. <<<<<< o2hb detect the target down and clean the migration mle. Now the refcount is 1. dlm_migrate_lockres woken, and put the mle twice when found the target goes down which trigger the BUG with the following message: "ERROR: bad mle: ". Signed-off-by: Jiufei Xue <xuejiufei@huawei.com> Reviewed-by: Joseph Qi <joseph.qi@huawei.com> Cc: Mark Fasheh <mfasheh@suse.de> Cc: Joel Becker <jlbec@evilplan.org> Cc: Junxiao Bi <junxiao.bi@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-02-17ocfs2: NFS hangs in __ocfs2_cluster_lock due to race with ocfs2_unblock_lockTariq Saeed
commit b1b1e15ef6b80facf76d6757649dfd7295eda29f upstream. NFS on a 2 node ocfs2 cluster each node exporting dir. The lock causing the hang is the global bit map inode lock. Node 1 is master, has the lock granted in PR mode; Node 2 is in the converting list (PR -> EX). There are no holders of the lock on the master node so it should downconvert to NL and grant EX to node 2 but that does not happen. BLOCKED + QUEUED in lock res are set and it is on osb blocked list. Threads are waiting in __ocfs2_cluster_lock on BLOCKED. One thread wants EX, rest want PR. So it is as though the downconvert thread needs to be kicked to complete the conv. The hang is caused by an EX req coming into __ocfs2_cluster_lock on the heels of a PR req after it sets BUSY (drops l_lock, releasing EX thread), forcing the incoming EX to wait on BUSY without doing anything. PR has called ocfs2_dlm_lock, which sets the node 1 lock from NL -> PR, queues ast. At this time, upconvert (PR ->EX) arrives from node 2, finds conflict with node 1 lock in PR, so the lock res is put on dlm thread's dirty listt. After ret from ocf2_dlm_lock, PR thread now waits behind EX on BUSY till awoken by ast. Now it is dlm_thread that serially runs dlm_shuffle_lists, ast, bast, in that order. dlm_shuffle_lists ques a bast on behalf of node 2 (which will be run by dlm_thread right after the ast). ast does its part, sets UPCONVERT_FINISHING, clears BUSY and wakes its waiters. Next, dlm_thread runs bast. It sets BLOCKED and kicks dc thread. dc thread runs ocfs2_unblock_lock, but since UPCONVERT_FINISHING set, skips doing anything and reques. Inside of __ocfs2_cluster_lock, since EX has been waiting on BUSY ahead of PR, it wakes up first, finds BLOCKED set and skips doing anything but clearing UPCONVERT_FINISHING (which was actually "meant" for the PR thread), and this time waits on BLOCKED. Next, the PR thread comes out of wait but since UPCONVERT_FINISHING is not set, it skips updating the l_ro_holders and goes straight to wait on BLOCKED. So there, we have a hang! Threads in __ocfs2_cluster_lock wait on BLOCKED, lock res in osb blocked list. Only when dc thread is awoken, it will run ocfs2_unblock_lock and things will unhang. One way to fix this is to wake the dc thread on the flag after clearing UPCONVERT_FINISHING Orabug: 20933419 Signed-off-by: Tariq Saeed <tariq.x.saeed@oracle.com> Signed-off-by: Santosh Shilimkar <santosh.shilimkar@oracle.com> Reviewed-by: Wengang Wang <wen.gang.wang@oracle.com> Reviewed-by: Mark Fasheh <mfasheh@suse.de> Cc: Joel Becker <jlbec@evilplan.org> Cc: Junxiao Bi <junxiao.bi@oracle.com> Reviewed-by: Joseph Qi <joseph.qi@huawei.com> Cc: Eric Ren <zren@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-02-17NFSv4.1/pnfs: Fixup an lo->plh_block_lgets imbalance in layoutreturnTrond Myklebust
commit 1a093ceb053832c25b92f3cf26b957543c7baf9b upstream. Since commit 2d8ae84fbc32, nothing is bumping lo->plh_block_lgets in the layoutreturn path, so it should not be touched in nfs4_layoutreturn_release either. Fixes: 2d8ae84fbc32 ("NFSv4.1/pnfs: Remove redundant lo->plh_block_lgets...") Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-12-29ocfs2/dlm: clear migration_pending when migration target goes downxuejiufei
We have found a BUG on res->migration_pending when migrating lock resources. The situation is as follows. dlm_mark_lockres_migration res->migration_pending = 1; __dlm_lockres_reserve_ast dlm_lockres_release_ast returns with res->migration_pending remains because other threads reserve asts wait dlm_migration_can_proceed returns 1 >>>>>>> o2hb found that target goes down and remove target from domain_map dlm_migration_can_proceed returns 1 dlm_mark_lockres_migrating returns -ESHOTDOWN with res->migration_pending still remains. When reentering dlm_mark_lockres_migrating(), it will trigger the BUG_ON with res->migration_pending. So clear migration_pending when target is down. Signed-off-by: Jiufei Xue <xuejiufei@huawei.com> Reviewed-by: Joseph Qi <joseph.qi@huawei.com> Cc: Mark Fasheh <mfasheh@suse.de> Cc: Joel Becker <jlbec@evilplan.org> Cc: Junxiao Bi <junxiao.bi@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-12-29ocfs2: fix flock panic issueJunxiao Bi
Commit 4f6563677ae8 ("Move locks API users to locks_lock_inode_wait()") move flock/posix lock indentify code to locks_lock_inode_wait(), but missed to set fl_flags to FL_FLOCK which caused the following kernel panic on 4.4.0_rc5. kernel BUG at fs/locks.c:1895! invalid opcode: 0000 [#1] SMP Modules linked in: ocfs2(O) ocfs2_dlmfs(O) ocfs2_stack_o2cb(O) ocfs2_dlm(O) ocfs2_nodemanager(O) ocfs2_stackglue(O) iscsi_tcp libiscsi_tcp libiscsi scsi_transport_iscsi xen_kbdfront xen_netfront xen_fbfront xen_blkfront CPU: 0 PID: 20268 Comm: flock_unit_test Tainted: G O 4.4.0-rc5-next-20151217 #1 Hardware name: Xen HVM domU, BIOS 4.3.1OVM 05/14/2014 task: ffff88007b3672c0 ti: ffff880028b58000 task.ti: ffff880028b58000 RIP: locks_lock_inode_wait+0x2e/0x160 Call Trace: ocfs2_do_flock+0x91/0x160 [ocfs2] ocfs2_flock+0x76/0xd0 [ocfs2] SyS_flock+0x10f/0x1a0 entry_SYSCALL_64_fastpath+0x12/0x71 Code: e5 41 57 41 56 49 89 fe 41 55 41 54 53 48 89 f3 48 81 ec 88 00 00 00 8b 46 40 83 e0 03 83 f8 01 0f 84 ad 00 00 00 83 f8 02 74 04 <0f> 0b eb fe 4c 8d ad 60 ff ff ff 4c 8d 7b 58 e8 0e 8e 73 00 4d RIP locks_lock_inode_wait+0x2e/0x160 RSP <ffff880028b5bce8> ---[ end trace dfca74ec9b5b274c ]--- Fixes: 4f6563677ae8 ("Move locks API users to locks_lock_inode_wait()") Signed-off-by: Junxiao Bi <junxiao.bi@oracle.com> Cc: Mark Fasheh <mfasheh@suse.de> Cc: Joel Becker <jlbec@evilplan.org> Cc: Joseph Qi <joseph.qi@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-12-29ocfs2: fix BUG when calculate new backup superJoseph Qi
When resizing, it firstly extends the last gd. Once it should backup super in the gd, it calculates new backup super and update the corresponding value. But it currently doesn't consider the situation that the backup super is already done. And in this case, it still sets the bit in gd bitmap and then decrease from bg_free_bits_count, which leads to a corrupted gd and trigger the BUG in ocfs2_block_group_set_bits: BUG_ON(le16_to_cpu(bg->bg_free_bits_count) < num_bits); So check whether the backup super is done and then do the updates. Signed-off-by: Joseph Qi <joseph.qi@huawei.com> Reviewed-by: Jiufei Xue <xuejiufei@huawei.com> Reviewed-by: Yiwen Jiang <jiangyiwen@huawei.com> Cc: Mark Fasheh <mfasheh@suse.de> Cc: Joel Becker <jlbec@evilplan.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-12-22Merge tag 'nfsd-4.4-1' of git://linux-nfs.org/~bfields/linuxLinus Torvalds
Pull nfsd fix from Bruce Fields: "Just one fix for a NFSv4 callback bug introduced in 4.4" * tag 'nfsd-4.4-1' of git://linux-nfs.org/~bfields/linux: nfsd: don't hold ls_mutex across a layout recall
2015-12-18Merge branch 'for-linus-4.4' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs Pull btrfs fixes from Chris Mason: "A couple of small fixes" * 'for-linus-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: Btrfs: check prepare_uptodate_page() error code earlier Btrfs: check for empty bitmap list in setup_cluster_bitmaps btrfs: fix misleading warning when space cache failed to load Btrfs: fix transaction handle leak in balance Btrfs: fix unprotected list move from unused_bgs to deleted_bgs list
2015-12-18proc: fix -ESRCH error when writing to /proc/$pid/coredump_filterColin Ian King
Writing to /proc/$pid/coredump_filter always returns -ESRCH because commit 774636e19ed51 ("proc: convert to kstrto*()/kstrto*_from_user()") removed the setting of ret after the get_proc_task call and incorrectly left it as -ESRCH. Instead, return 0 when successful. Example breakage: echo 0 > /proc/self/coredump_filter bash: echo: write error: No such process Fixes: 774636e19ed51 ("proc: convert to kstrto*()/kstrto*_from_user()") Signed-off-by: Colin Ian King <colin.king@canonical.com> Acked-by: Kees Cook <keescook@chromium.org> Cc: <stable@vger.kernel.org> [4.3+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-12-16nfsd: don't hold ls_mutex across a layout recallJeff Layton
We do need to serialize layout stateid morphing operations, but we currently hold the ls_mutex across a layout recall which is pretty ugly. It's also unnecessary -- once we've bumped the seqid and copied it, we don't need to serialize the rest of the CB_LAYOUTRECALL vs. anything else. Just drop the mutex once the copy is done. This was causing a "workqueue leaked lock or atomic" warning and an occasional deadlock. There's more work to be done here but this fixes the immediate regression. Fixes: cc8a55320b5f "nfsd: serialize layout stateid morphing operations" Cc: stable@vger.kernel.org Reported-by: Kinglong Mee <kinglongmee@gmail.com> Signed-off-by: Jeff Layton <jeff.layton@primarydata.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2015-12-15Merge branch 'for-chris-4.4' of ↵Chris Mason
git://git.kernel.org/pub/scm/linux/kernel/git/fdmanana/linux into for-linus-4.4
2015-12-15Btrfs: check prepare_uptodate_page() error code earlierChris Mason
prepare_pages() may end up calling prepare_uptodate_page() twice if our write only spans a single page. But if the first call returns an error, our page will be unlocked and its not safe to call it again. This bug goes all the way back to 2011, and it's not something commonly hit. While we're here, add a more explicit check for the page being truncated away. The bare lock_page() alone is protected only by good thoughts and i_mutex, which we're sure to regret eventually. Reported-by: Dave Jones <dsj@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-12-15Btrfs: check for empty bitmap list in setup_cluster_bitmapsChris Mason
Dave Jones found a warning from kasan in setup_cluster_bitmaps() ================================================================== BUG: KASAN: stack-out-of-bounds in setup_cluster_bitmap+0xc4/0x5a0 at addr ffff88039bef6828 Read of size 8 by task nfsd/1009 page:ffffea000e6fbd80 count:0 mapcount:0 mapping: (null) index:0x0 flags: 0x8000000000000000() page dumped because: kasan: bad access detected CPU: 1 PID: 1009 Comm: nfsd Tainted: G W 4.4.0-rc3-backup-debug+ #1 ffff880065647b50 000000006bb712c2 ffff88039bef6640 ffffffffa680a43e 0000004559c00000 ffff88039bef66c8 ffffffffa62638d1 ffffffffa61121c0 ffff8803a5769de8 0000000000000296 ffff8803a5769df0 0000000000046280 Call Trace: [<ffffffffa680a43e>] dump_stack+0x4b/0x6d [<ffffffffa62638d1>] kasan_report_error+0x501/0x520 [<ffffffffa61121c0>] ? debug_show_all_locks+0x1e0/0x1e0 [<ffffffffa6263948>] kasan_report+0x58/0x60 [<ffffffffa6814b00>] ? rb_last+0x10/0x40 [<ffffffffa66f8af4>] ? setup_cluster_bitmap+0xc4/0x5a0 [<ffffffffa6262ead>] __asan_load8+0x5d/0x70 [<ffffffffa66f8af4>] setup_cluster_bitmap+0xc4/0x5a0 [<ffffffffa66f675a>] ? setup_cluster_no_bitmap+0x6a/0x400 [<ffffffffa66fcd16>] btrfs_find_space_cluster+0x4b6/0x640 [<ffffffffa66fc860>] ? btrfs_alloc_from_cluster+0x4e0/0x4e0 [<ffffffffa66fc36e>] ? btrfs_return_cluster_to_free_space+0x9e/0xb0 [<ffffffffa702dc37>] ? _raw_spin_unlock+0x27/0x40 [<ffffffffa666a1a1>] find_free_extent+0xba1/0x1520 Andrey noticed this was because we were doing list_first_entry on a list that might be empty. Rework the tests a bit so we don't do that. Signed-off-by: Chris Mason <clm@fb.com> Reprorted-by: Andrey Ryabinin <ryabinin.a.a@gmail.com> Reported-by: Dave Jones <dsj@fb.com>
2015-12-13sched/wait: Fix the signal handling fixPeter Zijlstra
Jan Stancek reported that I wrecked things for him by fixing things for Vladimir :/ His report was due to an UNINTERRUPTIBLE wait getting -EINTR, which should not be possible, however my previous patch made this possible by unconditionally checking signal_pending(). We cannot use current->state as was done previously, because the instruction after the store to that variable it can be changed. We must instead pass the initial state along and use that. Fixes: 68985633bccb ("sched/wait: Fix signal handling in bit wait helpers") Reported-by: Jan Stancek <jstancek@redhat.com> Reported-by: Chris Mason <clm@fb.com> Tested-by: Jan Stancek <jstancek@redhat.com> Tested-by: Vladimir Murzin <vladimir.murzin@arm.com> Tested-by: Chris Mason <clm@fb.com> Reviewed-by: Paul Turner <pjt@google.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: tglx@linutronix.de Cc: Oleg Nesterov <oleg@redhat.com> Cc: hpa@zytor.com Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-12-13Merge tag 'nfs-for-4.4-3' of git://git.linux-nfs.org/projects/trondmy/linux-nfsLinus Torvalds
Pull NFS client bugfix from Trond Myklebust: "SUNRPC: Fix a NFSv4.1 callback channel regression" * tag 'nfs-for-4.4-3' of git://git.linux-nfs.org/projects/trondmy/linux-nfs: SUNRPC: Fix callback channel
2015-12-12Merge branch 'akpm' (patches from Andrew)Linus Torvalds
Merge misc fixes from Andrew Morton: "17 fixes" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: MIPS: fix DMA contiguous allocation sh64: fix __NR_fgetxattr ocfs2: fix SGID not inherited issue mm/oom_kill.c: avoid attempting to kill init sharing same memory drivers/base/memory.c: prohibit offlining of memory blocks with missing sections tmpfs: fix shmem_evict_inode() warnings on i_blocks mm/hugetlb.c: fix resv map memory leak for placeholder entries mm: hugetlb: call huge_pte_alloc() only if ptep is null kernel: remove stop_machine() Kconfig dependency mm: kmemleak: mark kmemleak_init prototype as __init mm: fix kerneldoc on mem_cgroup_replace_page osd fs: __r4w_get_page rely on PageUptodate for uptodate MAINTAINERS: make Vladimir co-maintainer of the memory controller mm, vmstat: allow WQ concurrency to discover memory reclaim doesn't make any progress mm: fix swapped Movable and Reclaimable in /proc/pagetypeinfo memcg: fix memory.high target mm: hugetlb: fix hugepage memory leak caused by wrong reserve count
2015-12-12Merge branch 'for-linus' of git://git.kernel.dk/linux-blockLinus Torvalds
Pull block layer fixes from Jens Axboe: "A set of fixes for the current series. This contains: - A bunch of fixes for lightnvm, should be the last round for this series. From Matias and Wenwei. - A writeback detach inode fix from Ilya, also marked for stable. - A block (though it says SCSI) fix for an OOPS in SCSI runtime power management. - Module init error path fixes for null_blk from Minfei" * 'for-linus' of git://git.kernel.dk/linux-block: null_blk: Fix error path in module initialization lightnvm: do not compile in debugging by default lightnvm: prevent gennvm module unload on use lightnvm: fix media mgr registration lightnvm: replace req queue with nvmdev for lld lightnvm: comments on constants lightnvm: check mm before use lightnvm: refactor spin_unlock in gennvm_get_blk lightnvm: put blks when luns configure failed lightnvm: use flags in rrpc_get_blk block: detach bdev inode from its wb in __blkdev_put() SCSI: Fix NULL pointer dereference in runtime PM
2015-12-12ocfs2: fix SGID not inherited issueJunxiao Bi
Commit 8f1eb48758aa ("ocfs2: fix umask ignored issue") introduced an issue, SGID of sub dir was not inherited from its parents dir. It is because SGID is set into "inode->i_mode" in ocfs2_get_init_inode(), but is overwritten by "mode" which don't have SGID set later. Fixes: 8f1eb48758aa ("ocfs2: fix umask ignored issue") Signed-off-by: Junxiao Bi <junxiao.bi@oracle.com> Cc: Mark Fasheh <mfasheh@suse.de> Cc: Joel Becker <jlbec@evilplan.org> Acked-by: Srinivas Eeda <srinivas.eeda@oracle.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-12-12osd fs: __r4w_get_page rely on PageUptodate for uptodateHugh Dickins
Commit 42cb14b110a5 ("mm: migrate dirty page without clear_page_dirty_for_io etc") simplified the migration of a PageDirty pagecache page: one stat needs moving from zone to zone and that's about all. It's convenient and safest for it to shift the PageDirty bit from old page to new, just before updating the zone stats: before copying data and marking the new PageUptodate. This is all done while both pages are isolated and locked, just as before; and just as before, there's a moment when the new page is visible in the radix_tree, but not yet PageUptodate. What's new is that it may now be briefly visible as PageDirty before it is PageUptodate. When I scoured the tree to see if this could cause a problem anywhere, the only places I found were in two similar functions __r4w_get_page(): which look up a page with find_get_page() (not using page lock), then claim it's uptodate if it's PageDirty or PageWriteback or PageUptodate. I'm not sure whether that was right before, but now it might be wrong (on rare occasions): only claim the page is uptodate if PageUptodate. Or perhaps the page in question could never be migratable anyway? Signed-off-by: Hugh Dickins <hughd@google.com> Tested-by: Boaz Harrosh <ooo@electrozaur.com> Cc: Benny Halevy <bhalevy@panasas.com> Cc: Trond Myklebust <trond.myklebust@primarydata.com> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-12-11Merge branch 'for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/fuse Pull fuse fixes from Miklos Szeredi: "Two bugfixes, both bound for -stable" * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/fuse: fuse: break infinite loop in fuse_fill_write_pages() cuse: fix memory leak
2015-12-10btrfs: fix misleading warning when space cache failed to loadHolger Hoffstätte
When an inconsistent space cache is detected during loading we log a warning that users frequently mistake as instruction to invalidate the cache manually, even though this is not required. Fix the message to indicate that the cache will be rebuilt automatically. Signed-off-by: Holger Hoffstätte <holger.hoffstaette@googlemail.com> Acked-by: Filipe Manana <fdmanana@suse.com>
2015-12-10Btrfs: fix transaction handle leak in balanceFilipe Manana
If we fail to allocate a new data chunk, we were jumping to the error path without release the transaction handle we got before. Fix this by always releasing it before doing the jump. Fixes: 2c9fe8355258 ("btrfs: Fix lost-data-profile caused by balance bg") Signed-off-by: Filipe Manana <fdmanana@suse.com>
2015-12-10Btrfs: fix unprotected list move from unused_bgs to deleted_bgs listFilipe Manana
As of my previous change titled "Btrfs: fix scrub preventing unused block groups from being deleted", the following warning at extent-tree.c:btrfs_delete_unused_bgs() can be hit when we mount the a filesysten with "-o discard": 10263 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 10264 { (...) 10405 if (trimming) { 10406 WARN_ON(!list_empty(&block_group->bg_list)); 10407 spin_lock(&trans->transaction->deleted_bgs_lock); 10408 list_move(&block_group->bg_list, 10409 &trans->transaction->deleted_bgs); 10410 spin_unlock(&trans->transaction->deleted_bgs_lock); 10411 btrfs_get_block_group(block_group); 10412 } (...) This happens because scrub can now add back the block group to the list of unused block groups (fs_info->unused_bgs). This is dangerous because we are moving the block group from the unused block groups list to the list of deleted block groups without holding the lock that protects the source list (fs_info->unused_bgs_lock). The following diagram illustrates how this happens: CPU 1 CPU 2 cleaner_kthread() btrfs_delete_unused_bgs() sees bg X in list fs_info->unused_bgs deletes bg X from list fs_info->unused_bgs scrub_enumerate_chunks() searches device tree using its commit root finds device extent for block group X gets block group X from the tree fs_info->block_group_cache_tree (via btrfs_lookup_block_group()) sets bg X to RO (again) scrub_chunk(bg X) sets bg X back to RW mode adds bg X to the list fs_info->unused_bgs again, since it's still unused and currently not in that list sets bg X to RO mode btrfs_remove_chunk(bg X) --> discard is enabled and bg X is in the fs_info->unused_bgs list again so the warning is triggered --> we move it from that list into the transaction's delete_bgs list, but we can have another task currently manipulating the first list (fs_info->unused_bgs) Fix this by using the same lock (fs_info->unused_bgs_lock) to protect both the list of unused block groups and the list of deleted block groups. This makes it safe and there's not much worry for more lock contention, as this lock is seldom used and only the cleaner kthread adds elements to the list of deleted block groups. The warning goes away too, as this was previously an impossible case (and would have been better a BUG_ON/ASSERT) but it's not impossible anymore. Reproduced with fstest btrfs/073 (using MOUNT_OPTIONS="-o discard"). Signed-off-by: Filipe Manana <fdmanana@suse.com>
2015-12-09Merge branch 'for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs Pull vfs fixes from Al Viro: "A couple of fixes, both -stable fodder (9p one all way back to 2.6.32, dio - to all branches where "Fix negative return from dio read beyond eof" will end up it; it's a fixup to commit marked for -stable)" * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: fix the regression from "direct-io: Fix negative return from dio read beyond eof" 9p: ->evict_inode() should kick out ->i_data, not ->i_mapping