aboutsummaryrefslogtreecommitdiff
path: root/src/jdk/nashorn/internal/codegen/CodeGeneratorLexicalContext.java
blob: dcf1b1ba5cde46f6eb4970bde25ec85b44bc6080 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
/*
 * Copyright (c) 2010, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package jdk.nashorn.internal.codegen;

import java.util.ArrayDeque;
import java.util.Collection;
import java.util.Collections;
import java.util.Deque;
import java.util.HashMap;
import java.util.Map;

import jdk.nashorn.internal.codegen.types.Type;
import jdk.nashorn.internal.ir.Block;
import jdk.nashorn.internal.ir.FunctionNode;
import jdk.nashorn.internal.ir.LexicalContext;
import jdk.nashorn.internal.ir.LexicalContextNode;
import jdk.nashorn.internal.ir.Node;
import jdk.nashorn.internal.ir.Symbol;
import jdk.nashorn.internal.ir.WithNode;

/**
 * A lexical context that also tracks if we have any dynamic scopes in the context. Such scopes can have new
 * variables introduced into them at run time - a with block or a function directly containing an eval call.
 * Furthermore, this class keeps track of current discard state, which the current method emitter being used is,
 * the current compile unit, and local variable indexes
 */
final class CodeGeneratorLexicalContext extends LexicalContext {
    private int dynamicScopeCount;

    /** Map of shared scope call sites */
    private final Map<SharedScopeCall, SharedScopeCall> scopeCalls = new HashMap<>();

    /** Compile unit stack - every time we start a sub method (e.g. a split) we push one */
    private final Deque<CompileUnit> compileUnits = new ArrayDeque<>();

    /** Method emitter stack - every time we start a sub method (e.g. a split) we push one */
    private final Deque<MethodEmitter> methodEmitters = new ArrayDeque<>();

    /** The discard stack - whenever we enter a discard node we keep track of its return value status -
     *  i.e. should we keep it or throw it away */
    private final Deque<Node> discard = new ArrayDeque<>();

    /** A stack tracking the next free local variable slot in the blocks. There's one entry for every block
     *  currently on the lexical context stack. */
    private int[] nextFreeSlots = new int[16];

    /** size of next free slot vector */
    private int nextFreeSlotsSize;

    @Override
    public <T extends LexicalContextNode> T push(final T node) {
        if (isDynamicScopeBoundary(node)) {
            ++dynamicScopeCount;
        }
        return super.push(node);
    }

    @Override
    public <T extends LexicalContextNode> T pop(final T node) {
        final T popped = super.pop(node);
        if (isDynamicScopeBoundary(popped)) {
            --dynamicScopeCount;
        }
        if (node instanceof Block) {
            --nextFreeSlotsSize;
        }
        return popped;
    }

    private boolean isDynamicScopeBoundary(final LexicalContextNode node) {
        if (node instanceof Block) {
            // Block's immediate parent is a with node. Note we aren't testing for a WithNode, as that'd capture
            // processing of WithNode.expression too, but it should be unaffected.
            return !isEmpty() && peek() instanceof WithNode;
        } else if (node instanceof FunctionNode) {
            // Function has a direct eval in it (so a top-level "var ..." in the eval code can introduce a new
            // variable into the function's scope), and it isn't strict (as evals in strict functions get an
            // isolated scope).
            return isFunctionDynamicScope((FunctionNode)node);
        }
        return false;
    }

    boolean inDynamicScope() {
        return dynamicScopeCount > 0;
    }

    static boolean isFunctionDynamicScope(FunctionNode fn) {
        return fn.hasEval() && !fn.isStrict();
    }

    MethodEmitter pushMethodEmitter(final MethodEmitter newMethod) {
        methodEmitters.push(newMethod);
        return newMethod;
    }

    MethodEmitter popMethodEmitter(final MethodEmitter oldMethod) {
        assert methodEmitters.peek() == oldMethod;
        methodEmitters.pop();
        return methodEmitters.isEmpty() ? null : methodEmitters.peek();
    }

    CompileUnit pushCompileUnit(final CompileUnit newUnit) {
        compileUnits.push(newUnit);
        return newUnit;
    }

    CompileUnit popCompileUnit(final CompileUnit oldUnit) {
        assert compileUnits.peek() == oldUnit;
        compileUnits.pop();
        return compileUnits.isEmpty() ? null : compileUnits.peek();
    }

    boolean hasCompileUnits() {
        return !compileUnits.isEmpty();
    }

    Collection<SharedScopeCall> getScopeCalls() {
        return Collections.unmodifiableCollection(scopeCalls.values());
    }

    /**
     * Get a shared static method representing a dynamic scope callsite.
     *
     * @param unit current compile unit
     * @param symbol the symbol
     * @param valueType the value type of the symbol
     * @param returnType the return type
     * @param paramTypes the parameter types
     * @param flags the callsite flags
     * @return an object representing a shared scope call
     */
    SharedScopeCall getScopeCall(final CompileUnit unit, final Symbol symbol, final Type valueType, final Type returnType, final Type[] paramTypes, final int flags) {
        final SharedScopeCall scopeCall = new SharedScopeCall(symbol, valueType, returnType, paramTypes, flags);
        if (scopeCalls.containsKey(scopeCall)) {
            return scopeCalls.get(scopeCall);
        }
        scopeCall.setClassAndName(unit, getCurrentFunction().uniqueName(":scopeCall"));
        scopeCalls.put(scopeCall, scopeCall);
        return scopeCall;
    }

    /**
     * Get a shared static method representing a dynamic scope get access.
     *
     * @param unit current compile unit
     * @param type the type of the variable
     * @param symbol the symbol
     * @param flags the callsite flags
     * @return an object representing a shared scope call
     */
    SharedScopeCall getScopeGet(final CompileUnit unit, final Type type, final Symbol symbol, final int flags) {
        final SharedScopeCall scopeCall = new SharedScopeCall(symbol, type, type, null, flags);
        if (scopeCalls.containsKey(scopeCall)) {
            return scopeCalls.get(scopeCall);
        }
        scopeCall.setClassAndName(unit, getCurrentFunction().uniqueName(":scopeCall"));
        scopeCalls.put(scopeCall, scopeCall);
        return scopeCall;
    }


    void nextFreeSlot(final Block block) {
        final boolean isFunctionBody = isFunctionBody();

        final int nextFreeSlot;
        if (isFunctionBody) {
            // On entry to function, start with slot 0
            nextFreeSlot = 0;
        } else {
            // Otherwise, continue from previous block's first free slot
            nextFreeSlot = nextFreeSlots[nextFreeSlotsSize - 1];
        }
        if (nextFreeSlotsSize == nextFreeSlots.length) {
            final int[] newNextFreeSlots = new int[nextFreeSlotsSize * 2];
            System.arraycopy(nextFreeSlots, 0, newNextFreeSlots, 0, nextFreeSlotsSize);
            nextFreeSlots = newNextFreeSlots;
        }
        nextFreeSlots[nextFreeSlotsSize++] = assignSlots(block, nextFreeSlot);
    }

    private static int assignSlots(final Block block, final int firstSlot) {
        int nextSlot = firstSlot;
        for (final Symbol symbol : block.getSymbols()) {
            if (symbol.hasSlot()) {
                symbol.setSlot(nextSlot);
                nextSlot += symbol.slotCount();
            }
        }
        return nextSlot;
    }

    void pushDiscard(final Node node) {
        discard.push(node);
    }

    Node popDiscard() {
        return discard.pop();
    }

    Node getCurrentDiscard() {
        return discard.peek();
    }

    int quickSlot(final Symbol symbol) {
        final int quickSlot = nextFreeSlots[nextFreeSlotsSize - 1];
        nextFreeSlots[nextFreeSlotsSize - 1] = quickSlot + symbol.slotCount();
        return quickSlot;
    }

}