summaryrefslogtreecommitdiff
path: root/xen/arch/x86/spec_ctrl.c
blob: b2fd86ebe587a954ff58f6bb6c3d3281c89c7ce4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
/******************************************************************************
 * arch/x86/spec_ctrl.c
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; If not, see <http://www.gnu.org/licenses/>.
 *
 * Copyright (c) 2017-2018 Citrix Systems Ltd.
 */
#include <xen/errno.h>
#include <xen/init.h>
#include <xen/lib.h>
#include <xen/param.h>
#include <xen/warning.h>

#include <asm/microcode.h>
#include <asm/msr.h>
#include <asm/pv/domain.h>
#include <asm/pv/shim.h>
#include <asm/setup.h>
#include <asm/spec_ctrl.h>
#include <asm/spec_ctrl_asm.h>

/* Cmdline controls for Xen's alternative blocks. */
static bool __initdata opt_msr_sc_pv = true;
static bool __initdata opt_msr_sc_hvm = true;
static int8_t __initdata opt_rsb_pv = -1;
static bool __initdata opt_rsb_hvm = true;
static int8_t __initdata opt_md_clear_pv = -1;
static int8_t __initdata opt_md_clear_hvm = -1;

/* Cmdline controls for Xen's speculative settings. */
static enum ind_thunk {
    THUNK_DEFAULT, /* Decide which thunk to use at boot time. */
    THUNK_NONE,    /* Missing compiler support for thunks. */

    THUNK_RETPOLINE,
    THUNK_LFENCE,
    THUNK_JMP,
} opt_thunk __initdata = THUNK_DEFAULT;
static int8_t __initdata opt_ibrs = -1;
bool __read_mostly opt_ibpb = true;
bool __read_mostly opt_ssbd = false;
int8_t __read_mostly opt_eager_fpu = -1;
int8_t __read_mostly opt_l1d_flush = -1;
static bool __initdata opt_branch_harden = true;

bool __initdata bsp_delay_spec_ctrl;
uint8_t __read_mostly default_xen_spec_ctrl;
uint8_t __read_mostly default_spec_ctrl_flags;

paddr_t __read_mostly l1tf_addr_mask, __read_mostly l1tf_safe_maddr;
bool __read_mostly cpu_has_bug_l1tf;
static unsigned int __initdata l1d_maxphysaddr;

static bool __initdata cpu_has_bug_msbds_only; /* => minimal HT impact. */
static bool __initdata cpu_has_bug_mds; /* Any other M{LP,SB,FB}DS combination. */

static int8_t __initdata opt_srb_lock = -1;
uint64_t __read_mostly default_xen_mcu_opt_ctrl;

static int __init parse_spec_ctrl(const char *s)
{
    const char *ss;
    int val, rc = 0;

    do {
        ss = strchr(s, ',');
        if ( !ss )
            ss = strchr(s, '\0');

        /* Global and Xen-wide disable. */
        val = parse_bool(s, ss);
        if ( !val )
        {
            opt_msr_sc_pv = false;
            opt_msr_sc_hvm = false;

            opt_eager_fpu = 0;

            if ( opt_xpti_hwdom < 0 )
                opt_xpti_hwdom = 0;
            if ( opt_xpti_domu < 0 )
                opt_xpti_domu = 0;

            if ( opt_smt < 0 )
                opt_smt = 1;

            if ( opt_pv_l1tf_hwdom < 0 )
                opt_pv_l1tf_hwdom = 0;
            if ( opt_pv_l1tf_domu < 0 )
                opt_pv_l1tf_domu = 0;

            if ( opt_tsx == -1 )
                opt_tsx = -3;

        disable_common:
            opt_rsb_pv = false;
            opt_rsb_hvm = false;
            opt_md_clear_pv = 0;
            opt_md_clear_hvm = 0;

            opt_thunk = THUNK_JMP;
            opt_ibrs = 0;
            opt_ibpb = false;
            opt_ssbd = false;
            opt_l1d_flush = 0;
            opt_branch_harden = false;
            opt_srb_lock = 0;
        }
        else if ( val > 0 )
            rc = -EINVAL;
        else if ( (val = parse_boolean("xen", s, ss)) >= 0 )
        {
            if ( !val )
                goto disable_common;

            rc = -EINVAL;
        }

        /* Xen's alternative blocks. */
        else if ( (val = parse_boolean("pv", s, ss)) >= 0 )
        {
            opt_msr_sc_pv = val;
            opt_rsb_pv = val;
            opt_md_clear_pv = val;
        }
        else if ( (val = parse_boolean("hvm", s, ss)) >= 0 )
        {
            opt_msr_sc_hvm = val;
            opt_rsb_hvm = val;
            opt_md_clear_hvm = val;
        }
        else if ( (val = parse_boolean("msr-sc", s, ss)) >= 0 )
        {
            opt_msr_sc_pv = val;
            opt_msr_sc_hvm = val;
        }
        else if ( (val = parse_boolean("rsb", s, ss)) >= 0 )
        {
            opt_rsb_pv = val;
            opt_rsb_hvm = val;
        }
        else if ( (val = parse_boolean("md-clear", s, ss)) >= 0 )
        {
            opt_md_clear_pv = val;
            opt_md_clear_hvm = val;
        }

        /* Xen's speculative sidechannel mitigation settings. */
        else if ( !strncmp(s, "bti-thunk=", 10) )
        {
            s += 10;

            if ( !cmdline_strcmp(s, "retpoline") )
                opt_thunk = THUNK_RETPOLINE;
            else if ( !cmdline_strcmp(s, "lfence") )
                opt_thunk = THUNK_LFENCE;
            else if ( !cmdline_strcmp(s, "jmp") )
                opt_thunk = THUNK_JMP;
            else
                rc = -EINVAL;
        }
        else if ( (val = parse_boolean("ibrs", s, ss)) >= 0 )
            opt_ibrs = val;
        else if ( (val = parse_boolean("ibpb", s, ss)) >= 0 )
            opt_ibpb = val;
        else if ( (val = parse_boolean("ssbd", s, ss)) >= 0 )
            opt_ssbd = val;
        else if ( (val = parse_boolean("eager-fpu", s, ss)) >= 0 )
            opt_eager_fpu = val;
        else if ( (val = parse_boolean("l1d-flush", s, ss)) >= 0 )
            opt_l1d_flush = val;
        else if ( (val = parse_boolean("branch-harden", s, ss)) >= 0 )
            opt_branch_harden = val;
        else if ( (val = parse_boolean("srb-lock", s, ss)) >= 0 )
            opt_srb_lock = val;
        else
            rc = -EINVAL;

        s = ss + 1;
    } while ( *ss );

    return rc;
}
custom_param("spec-ctrl", parse_spec_ctrl);

int8_t __read_mostly opt_xpti_hwdom = -1;
int8_t __read_mostly opt_xpti_domu = -1;

static __init void xpti_init_default(uint64_t caps)
{
    if ( boot_cpu_data.x86_vendor & (X86_VENDOR_AMD | X86_VENDOR_HYGON) )
        caps = ARCH_CAPS_RDCL_NO;

    if ( caps & ARCH_CAPS_RDCL_NO )
    {
        if ( opt_xpti_hwdom < 0 )
            opt_xpti_hwdom = 0;
        if ( opt_xpti_domu < 0 )
            opt_xpti_domu = 0;
    }
    else
    {
        if ( opt_xpti_hwdom < 0 )
            opt_xpti_hwdom = 1;
        if ( opt_xpti_domu < 0 )
            opt_xpti_domu = 1;
    }
}

static __init int parse_xpti(const char *s)
{
    const char *ss;
    int val, rc = 0;

    /* Interpret 'xpti' alone in its positive boolean form. */
    if ( *s == '\0' )
        opt_xpti_hwdom = opt_xpti_domu = 1;

    do {
        ss = strchr(s, ',');
        if ( !ss )
            ss = strchr(s, '\0');

        switch ( parse_bool(s, ss) )
        {
        case 0:
            opt_xpti_hwdom = opt_xpti_domu = 0;
            break;

        case 1:
            opt_xpti_hwdom = opt_xpti_domu = 1;
            break;

        default:
            if ( !strcmp(s, "default") )
                opt_xpti_hwdom = opt_xpti_domu = -1;
            else if ( (val = parse_boolean("dom0", s, ss)) >= 0 )
                opt_xpti_hwdom = val;
            else if ( (val = parse_boolean("domu", s, ss)) >= 0 )
                opt_xpti_domu = val;
            else if ( *s )
                rc = -EINVAL;
            break;
        }

        s = ss + 1;
    } while ( *ss );

    return rc;
}
custom_param("xpti", parse_xpti);

int8_t __read_mostly opt_pv_l1tf_hwdom = -1;
int8_t __read_mostly opt_pv_l1tf_domu = -1;

static __init int parse_pv_l1tf(const char *s)
{
    const char *ss;
    int val, rc = 0;

    /* Interpret 'pv-l1tf' alone in its positive boolean form. */
    if ( *s == '\0' )
        opt_pv_l1tf_hwdom = opt_pv_l1tf_domu = 1;

    do {
        ss = strchr(s, ',');
        if ( !ss )
            ss = strchr(s, '\0');

        switch ( parse_bool(s, ss) )
        {
        case 0:
            opt_pv_l1tf_hwdom = opt_pv_l1tf_domu = 0;
            break;

        case 1:
            opt_pv_l1tf_hwdom = opt_pv_l1tf_domu = 1;
            break;

        default:
            if ( (val = parse_boolean("dom0", s, ss)) >= 0 )
                opt_pv_l1tf_hwdom = val;
            else if ( (val = parse_boolean("domu", s, ss)) >= 0 )
                opt_pv_l1tf_domu = val;
            else if ( *s )
                rc = -EINVAL;
            break;
        }

        s = ss + 1;
    } while ( *ss );

    return rc;
}
custom_param("pv-l1tf", parse_pv_l1tf);

static void __init print_details(enum ind_thunk thunk, uint64_t caps)
{
    unsigned int _7d0 = 0, e8b = 0, tmp;

    /* Collect diagnostics about available mitigations. */
    if ( boot_cpu_data.cpuid_level >= 7 )
        cpuid_count(7, 0, &tmp, &tmp, &tmp, &_7d0);
    if ( boot_cpu_data.extended_cpuid_level >= 0x80000008 )
        cpuid(0x80000008, &tmp, &e8b, &tmp, &tmp);

    printk("Speculative mitigation facilities:\n");

    /*
     * Hardware read-only information, stating immunity to certain issues, or
     * suggestions of which mitigation to use.
     */
    printk("  Hardware hints:%s%s%s%s%s%s%s%s%s%s%s\n",
           (caps & ARCH_CAPS_RDCL_NO)                        ? " RDCL_NO"        : "",
           (caps & ARCH_CAPS_IBRS_ALL)                       ? " IBRS_ALL"       : "",
           (caps & ARCH_CAPS_RSBA)                           ? " RSBA"           : "",
           (caps & ARCH_CAPS_SKIP_L1DFL)                     ? " SKIP_L1DFL"     : "",
           (e8b  & cpufeat_mask(X86_FEATURE_SSB_NO)) ||
           (caps & ARCH_CAPS_SSB_NO)                         ? " SSB_NO"         : "",
           (caps & ARCH_CAPS_MDS_NO)                         ? " MDS_NO"         : "",
           (caps & ARCH_CAPS_TAA_NO)                         ? " TAA_NO"         : "",
           (e8b  & cpufeat_mask(X86_FEATURE_IBRS_ALWAYS))    ? " IBRS_ALWAYS"    : "",
           (e8b  & cpufeat_mask(X86_FEATURE_STIBP_ALWAYS))   ? " STIBP_ALWAYS"   : "",
           (e8b  & cpufeat_mask(X86_FEATURE_IBRS_FAST))      ? " IBRS_FAST"      : "",
           (e8b  & cpufeat_mask(X86_FEATURE_IBRS_SAME_MODE)) ? " IBRS_SAME_MODE" : "");

    /* Hardware features which need driving to mitigate issues. */
    printk("  Hardware features:%s%s%s%s%s%s%s%s%s%s\n",
           (e8b  & cpufeat_mask(X86_FEATURE_IBPB)) ||
           (_7d0 & cpufeat_mask(X86_FEATURE_IBRSB))          ? " IBPB"           : "",
           (e8b  & cpufeat_mask(X86_FEATURE_IBRS)) ||
           (_7d0 & cpufeat_mask(X86_FEATURE_IBRSB))          ? " IBRS"           : "",
           (e8b  & cpufeat_mask(X86_FEATURE_AMD_STIBP)) ||
           (_7d0 & cpufeat_mask(X86_FEATURE_STIBP))          ? " STIBP"          : "",
           (e8b  & cpufeat_mask(X86_FEATURE_AMD_SSBD)) ||
           (_7d0 & cpufeat_mask(X86_FEATURE_SSBD))           ? " SSBD"           : "",
           (e8b  & cpufeat_mask(X86_FEATURE_PSFD))           ? " PSFD"           : "",
           (_7d0 & cpufeat_mask(X86_FEATURE_L1D_FLUSH))      ? " L1D_FLUSH"      : "",
           (_7d0 & cpufeat_mask(X86_FEATURE_MD_CLEAR))       ? " MD_CLEAR"       : "",
           (_7d0 & cpufeat_mask(X86_FEATURE_SRBDS_CTRL))     ? " SRBDS_CTRL"     : "",
           (e8b  & cpufeat_mask(X86_FEATURE_VIRT_SSBD))      ? " VIRT_SSBD"      : "",
           (caps & ARCH_CAPS_TSX_CTRL)                       ? " TSX_CTRL"       : "");

    /* Compiled-in support which pertains to mitigations. */
    if ( IS_ENABLED(CONFIG_INDIRECT_THUNK) || IS_ENABLED(CONFIG_SHADOW_PAGING) )
        printk("  Compiled-in support:"
#ifdef CONFIG_INDIRECT_THUNK
               " INDIRECT_THUNK"
#endif
#ifdef CONFIG_SHADOW_PAGING
               " SHADOW_PAGING"
#endif
               "\n");

    /* Settings for Xen's protection, irrespective of guests. */
    printk("  Xen settings: BTI-Thunk %s, SPEC_CTRL: %s%s%s, Other:%s%s%s%s%s\n",
           thunk == THUNK_NONE      ? "N/A" :
           thunk == THUNK_RETPOLINE ? "RETPOLINE" :
           thunk == THUNK_LFENCE    ? "LFENCE" :
           thunk == THUNK_JMP       ? "JMP" : "?",
           !boot_cpu_has(X86_FEATURE_IBRSB)          ? "No" :
           (default_xen_spec_ctrl & SPEC_CTRL_IBRS)  ? "IBRS+" :  "IBRS-",
           !boot_cpu_has(X86_FEATURE_SSBD)           ? "" :
           (default_xen_spec_ctrl & SPEC_CTRL_SSBD)  ? " SSBD+" : " SSBD-",
           !(caps & ARCH_CAPS_TSX_CTRL)              ? "" :
           (opt_tsx & 1)                             ? " TSX+" : " TSX-",
           !boot_cpu_has(X86_FEATURE_SRBDS_CTRL)     ? "" :
           opt_srb_lock                              ? " SRB_LOCK+" : " SRB_LOCK-",
           opt_ibpb                                  ? " IBPB"  : "",
           opt_l1d_flush                             ? " L1D_FLUSH" : "",
           opt_md_clear_pv || opt_md_clear_hvm       ? " VERW"  : "",
           opt_branch_harden                         ? " BRANCH_HARDEN" : "");

    /* L1TF diagnostics, printed if vulnerable or PV shadowing is in use. */
    if ( cpu_has_bug_l1tf || opt_pv_l1tf_hwdom || opt_pv_l1tf_domu )
        printk("  L1TF: believed%s vulnerable, maxphysaddr L1D %u, CPUID %u"
               ", Safe address %"PRIx64"\n",
               cpu_has_bug_l1tf ? "" : " not",
               l1d_maxphysaddr, paddr_bits, l1tf_safe_maddr);

    /*
     * Alternatives blocks for protecting against and/or virtualising
     * mitigation support for guests.
     */
#ifdef CONFIG_HVM
    printk("  Support for HVM VMs:%s%s%s%s%s\n",
           (boot_cpu_has(X86_FEATURE_SC_MSR_HVM) ||
            boot_cpu_has(X86_FEATURE_SC_RSB_HVM) ||
            boot_cpu_has(X86_FEATURE_MD_CLEAR)   ||
            opt_eager_fpu)                           ? ""               : " None",
           boot_cpu_has(X86_FEATURE_SC_MSR_HVM)      ? " MSR_SPEC_CTRL" : "",
           boot_cpu_has(X86_FEATURE_SC_RSB_HVM)      ? " RSB"           : "",
           opt_eager_fpu                             ? " EAGER_FPU"     : "",
           boot_cpu_has(X86_FEATURE_MD_CLEAR)        ? " MD_CLEAR"      : "");

#endif
#ifdef CONFIG_PV
    printk("  Support for PV VMs:%s%s%s%s%s\n",
           (boot_cpu_has(X86_FEATURE_SC_MSR_PV) ||
            boot_cpu_has(X86_FEATURE_SC_RSB_PV) ||
            boot_cpu_has(X86_FEATURE_MD_CLEAR)  ||
            opt_eager_fpu)                           ? ""               : " None",
           boot_cpu_has(X86_FEATURE_SC_MSR_PV)       ? " MSR_SPEC_CTRL" : "",
           boot_cpu_has(X86_FEATURE_SC_RSB_PV)       ? " RSB"           : "",
           opt_eager_fpu                             ? " EAGER_FPU"     : "",
           boot_cpu_has(X86_FEATURE_MD_CLEAR)        ? " MD_CLEAR"      : "");

    printk("  XPTI (64-bit PV only): Dom0 %s, DomU %s (with%s PCID)\n",
           opt_xpti_hwdom ? "enabled" : "disabled",
           opt_xpti_domu  ? "enabled" : "disabled",
           xpti_pcid_enabled() ? "" : "out");

    printk("  PV L1TF shadowing: Dom0 %s, DomU %s\n",
           opt_pv_l1tf_hwdom ? "enabled"  : "disabled",
           opt_pv_l1tf_domu  ? "enabled"  : "disabled");
#endif
}

static bool __init check_smt_enabled(void)
{
    uint64_t val;
    unsigned int cpu;

    /*
     * x86_num_siblings defaults to 1 in the absence of other information, and
     * is adjusted based on other topology information found in CPUID leaves.
     *
     * On AMD hardware, it will be the current SMT configuration.  On Intel
     * hardware, it will represent the maximum capability, rather than the
     * current configuration.
     */
    if ( boot_cpu_data.x86_num_siblings < 2 )
        return false;

    /*
     * Intel Nehalem and later hardware does have an MSR which reports the
     * current count of cores/threads in the package.
     *
     * At the time of writing, it is almost completely undocumented, so isn't
     * virtualised reliably.
     */
    if ( boot_cpu_data.x86_vendor == X86_VENDOR_INTEL && !cpu_has_hypervisor &&
         !rdmsr_safe(MSR_INTEL_CORE_THREAD_COUNT, val) )
        return (MASK_EXTR(val, MSR_CTC_CORE_MASK) !=
                MASK_EXTR(val, MSR_CTC_THREAD_MASK));

    /*
     * Search over the CPUs reported in the ACPI tables.  Any whose APIC ID
     * has a non-zero thread id component indicates that SMT is active.
     */
    for_each_present_cpu ( cpu )
        if ( x86_cpu_to_apicid[cpu] & (boot_cpu_data.x86_num_siblings - 1) )
            return true;

    return false;
}

/* Calculate whether Retpoline is known-safe on this CPU. */
static bool __init retpoline_safe(uint64_t caps)
{
    unsigned int ucode_rev = this_cpu(cpu_sig).rev;

    if ( boot_cpu_data.x86_vendor & (X86_VENDOR_AMD | X86_VENDOR_HYGON) )
        return true;

    if ( boot_cpu_data.x86_vendor != X86_VENDOR_INTEL ||
         boot_cpu_data.x86 != 6 )
        return false;

    /*
     * RSBA may be set by a hypervisor to indicate that we may move to a
     * processor which isn't retpoline-safe.
     *
     * Processors offering Enhanced IBRS are not guarenteed to be
     * repoline-safe.
     */
    if ( caps & (ARCH_CAPS_RSBA | ARCH_CAPS_IBRS_ALL) )
        return false;

    switch ( boot_cpu_data.x86_model )
    {
    case 0x17: /* Penryn */
    case 0x1d: /* Dunnington */
    case 0x1e: /* Nehalem */
    case 0x1f: /* Auburndale / Havendale */
    case 0x1a: /* Nehalem EP */
    case 0x2e: /* Nehalem EX */
    case 0x25: /* Westmere */
    case 0x2c: /* Westmere EP */
    case 0x2f: /* Westmere EX */
    case 0x2a: /* SandyBridge */
    case 0x2d: /* SandyBridge EP/EX */
    case 0x3a: /* IvyBridge */
    case 0x3e: /* IvyBridge EP/EX */
    case 0x3c: /* Haswell */
    case 0x3f: /* Haswell EX/EP */
    case 0x45: /* Haswell D */
    case 0x46: /* Haswell H */
        return true;

        /*
         * Broadwell processors are retpoline-safe after specific microcode
         * versions.
         */
    case 0x3d: /* Broadwell */
        return ucode_rev >= 0x2a;
    case 0x47: /* Broadwell H */
        return ucode_rev >= 0x1d;
    case 0x4f: /* Broadwell EP/EX */
        return ucode_rev >= 0xb000021;
    case 0x56: /* Broadwell D */
        switch ( boot_cpu_data.x86_mask )
        {
        case 2:  return ucode_rev >= 0x15;
        case 3:  return ucode_rev >= 0x7000012;
        case 4:  return ucode_rev >= 0xf000011;
        case 5:  return ucode_rev >= 0xe000009;
        default:
            printk("Unrecognised CPU stepping %#x - assuming not reptpoline safe\n",
                   boot_cpu_data.x86_mask);
            return false;
        }
        break;

        /*
         * Skylake, Kabylake and Cannonlake processors are not retpoline-safe.
         */
    case 0x4e: /* Skylake M */
    case 0x55: /* Skylake X */
    case 0x5e: /* Skylake D */
    case 0x66: /* Cannonlake */
    case 0x67: /* Cannonlake? */
    case 0x8e: /* Kabylake M */
    case 0x9e: /* Kabylake D */
        return false;

        /*
         * Atom processors before Goldmont Plus/Gemini Lake are retpoline-safe.
         */
    case 0x1c: /* Pineview */
    case 0x26: /* Lincroft */
    case 0x27: /* Penwell */
    case 0x35: /* Cloverview */
    case 0x36: /* Cedarview */
    case 0x37: /* Baytrail / Valleyview (Silvermont) */
    case 0x4d: /* Avaton / Rangely (Silvermont) */
    case 0x4c: /* Cherrytrail / Brasswell */
    case 0x4a: /* Merrifield */
    case 0x57: /* Knights Landing */
    case 0x5a: /* Moorefield */
    case 0x5c: /* Goldmont */
    case 0x5f: /* Denverton */
    case 0x85: /* Knights Mill */
        return true;

    default:
        printk("Unrecognised CPU model %#x - assuming not reptpoline safe\n",
               boot_cpu_data.x86_model);
        return false;
    }
}

/*
 * https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/technical-documentation/retpoline-branch-target-injection-mitigation.html
 *
 * Silvermont and Airmont based cores are 64bit but only have a 32bit wide
 * RSB, which impacts the safety of using SMEP to avoid RSB-overwriting.
 */
static bool __init rsb_is_full_width(void)
{
    if ( boot_cpu_data.x86_vendor != X86_VENDOR_INTEL ||
         boot_cpu_data.x86 != 6 )
        return true;

    switch ( boot_cpu_data.x86_model )
    {
    case 0x37: /* Baytrail / Valleyview (Silvermont) */
    case 0x4a: /* Merrifield */
    case 0x4c: /* Cherrytrail / Brasswell */
    case 0x4d: /* Avaton / Rangely (Silvermont) */
    case 0x5a: /* Moorefield */
    case 0x5d: /* SoFIA 3G Granite/ES2.1 */
    case 0x65: /* SoFIA LTE AOSP */
    case 0x6e: /* Cougar Mountain */
    case 0x75: /* Lightning Mountain */
        return false;
    }

    return true;
}

/* Calculate whether this CPU speculates past #NM */
static bool __init should_use_eager_fpu(void)
{
    /*
     * Assume all unrecognised processors are ok.  This is only known to
     * affect Intel Family 6 processors.
     */
    if ( boot_cpu_data.x86_vendor != X86_VENDOR_INTEL ||
         boot_cpu_data.x86 != 6 )
        return false;

    switch ( boot_cpu_data.x86_model )
    {
        /*
         * Core processors since at least Nehalem are vulnerable.
         */
    case 0x1e: /* Nehalem */
    case 0x1f: /* Auburndale / Havendale */
    case 0x1a: /* Nehalem EP */
    case 0x2e: /* Nehalem EX */
    case 0x25: /* Westmere */
    case 0x2c: /* Westmere EP */
    case 0x2f: /* Westmere EX */
    case 0x2a: /* SandyBridge */
    case 0x2d: /* SandyBridge EP/EX */
    case 0x3a: /* IvyBridge */
    case 0x3e: /* IvyBridge EP/EX */
    case 0x3c: /* Haswell */
    case 0x3f: /* Haswell EX/EP */
    case 0x45: /* Haswell D */
    case 0x46: /* Haswell H */
    case 0x3d: /* Broadwell */
    case 0x47: /* Broadwell H */
    case 0x4f: /* Broadwell EP/EX */
    case 0x56: /* Broadwell D */
    case 0x4e: /* Skylake M */
    case 0x55: /* Skylake X */
    case 0x5e: /* Skylake D */
    case 0x66: /* Cannonlake */
    case 0x67: /* Cannonlake? */
    case 0x8e: /* Kabylake M */
    case 0x9e: /* Kabylake D */
        return true;

        /*
         * Atom processors are not vulnerable.
         */
    case 0x1c: /* Pineview */
    case 0x26: /* Lincroft */
    case 0x27: /* Penwell */
    case 0x35: /* Cloverview */
    case 0x36: /* Cedarview */
    case 0x37: /* Baytrail / Valleyview (Silvermont) */
    case 0x4d: /* Avaton / Rangely (Silvermont) */
    case 0x4c: /* Cherrytrail / Brasswell */
    case 0x4a: /* Merrifield */
    case 0x5a: /* Moorefield */
    case 0x5c: /* Goldmont */
    case 0x5f: /* Denverton */
    case 0x7a: /* Gemini Lake */
        return false;

        /*
         * Knights processors are not vulnerable.
         */
    case 0x57: /* Knights Landing */
    case 0x85: /* Knights Mill */
        return false;

    default:
        printk("Unrecognised CPU model %#x - assuming vulnerable to LazyFPU\n",
               boot_cpu_data.x86_model);
        return true;
    }
}

/* Calculate whether this CPU is vulnerable to L1TF. */
static __init void l1tf_calculations(uint64_t caps)
{
    bool hit_default = false;

    l1d_maxphysaddr = paddr_bits;

    /* L1TF is only known to affect Intel Family 6 processors at this time. */
    if ( boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
         boot_cpu_data.x86 == 6 )
    {
        switch ( boot_cpu_data.x86_model )
        {
            /*
             * Core processors since at least Penryn are vulnerable.
             */
        case 0x17: /* Penryn */
        case 0x1d: /* Dunnington */
            cpu_has_bug_l1tf = true;
            break;

        case 0x1f: /* Auburndale / Havendale */
        case 0x1e: /* Nehalem */
        case 0x1a: /* Nehalem EP */
        case 0x2e: /* Nehalem EX */
        case 0x25: /* Westmere */
        case 0x2c: /* Westmere EP */
        case 0x2f: /* Westmere EX */
            cpu_has_bug_l1tf = true;
            l1d_maxphysaddr = 44;
            break;

        case 0x2a: /* SandyBridge */
        case 0x2d: /* SandyBridge EP/EX */
        case 0x3a: /* IvyBridge */
        case 0x3e: /* IvyBridge EP/EX */
        case 0x3c: /* Haswell */
        case 0x3f: /* Haswell EX/EP */
        case 0x45: /* Haswell D */
        case 0x46: /* Haswell H */
        case 0x3d: /* Broadwell */
        case 0x47: /* Broadwell H */
        case 0x4f: /* Broadwell EP/EX */
        case 0x56: /* Broadwell D */
        case 0x4e: /* Skylake M */
        case 0x55: /* Skylake X */
        case 0x5e: /* Skylake D */
        case 0x66: /* Cannonlake */
        case 0x67: /* Cannonlake? */
        case 0x8e: /* Kabylake M */
        case 0x9e: /* Kabylake D */
            cpu_has_bug_l1tf = true;
            l1d_maxphysaddr = 46;
            break;

            /*
             * Atom processors are not vulnerable.
             */
        case 0x1c: /* Pineview */
        case 0x26: /* Lincroft */
        case 0x27: /* Penwell */
        case 0x35: /* Cloverview */
        case 0x36: /* Cedarview */
        case 0x37: /* Baytrail / Valleyview (Silvermont) */
        case 0x4d: /* Avaton / Rangely (Silvermont) */
        case 0x4c: /* Cherrytrail / Brasswell */
        case 0x4a: /* Merrifield */
        case 0x5a: /* Moorefield */
        case 0x5c: /* Goldmont */
        case 0x5f: /* Denverton */
        case 0x7a: /* Gemini Lake */
            break;

            /*
             * Knights processors are not vulnerable.
             */
        case 0x57: /* Knights Landing */
        case 0x85: /* Knights Mill */
            break;

        default:
            /* Defer printk() until we've accounted for RDCL_NO. */
            hit_default = true;
            cpu_has_bug_l1tf = true;
            break;
        }
    }

    /* Any processor advertising RDCL_NO should be not vulnerable to L1TF. */
    if ( caps & ARCH_CAPS_RDCL_NO )
        cpu_has_bug_l1tf = false;

    if ( cpu_has_bug_l1tf && hit_default )
        printk("Unrecognised CPU model %#x - assuming vulnerable to L1TF\n",
               boot_cpu_data.x86_model);

    /*
     * L1TF safe address heuristics.  These apply to the real hardware we are
     * running on, and are best-effort-only if Xen is virtualised.
     *
     * The address mask which the L1D cache uses, which might be wider than
     * the CPUID-reported maxphysaddr.
     */
    l1tf_addr_mask = ((1ul << l1d_maxphysaddr) - 1) & PAGE_MASK;

    /*
     * To be safe, l1tf_safe_maddr must be above the highest cacheable entity
     * in system physical address space.  However, to preserve space for
     * paged-out metadata, it should be as low as possible above the highest
     * cacheable address, so as to require fewer high-order bits being set.
     *
     * These heuristics are based on some guesswork to improve the likelihood
     * of safety in the common case, including Linux's L1TF mitigation of
     * inverting all address bits in a non-present PTE.
     *
     * - If L1D is wider than CPUID (Nehalem and later mobile/desktop/low end
     *   server), setting any address bit beyond CPUID maxphysaddr guarantees
     *   to make the PTE safe.  This case doesn't require all the high-order
     *   bits being set, and doesn't require any other source of information
     *   for safety.
     *
     * - If L1D is the same as CPUID (Pre-Nehalem, or high end server), we
     *   must sacrifice high order bits from the real address space for
     *   safety.  Therefore, make a blind guess that there is nothing
     *   cacheable in the top quarter of physical address space.
     *
     *   It is exceedingly unlikely for machines to be populated with this
     *   much RAM (likely 512G on pre-Nehalem, 16T on Nehalem/Westmere, 64T on
     *   Sandybridge and later) due to the sheer volume of DIMMs this would
     *   actually take.
     *
     *   However, it is possible to find machines this large, so the "top
     *   quarter" guess is supplemented to push the limit higher if references
     *   to cacheable mappings (E820/SRAT/EFI/etc) are found above the top
     *   quarter boundary.
     *
     *   Finally, this top quarter guess gives us a good chance of being safe
     *   when running virtualised (and the CPUID maxphysaddr hasn't been
     *   levelled for heterogeneous migration safety), where the safety
     *   consideration is still in terms of host details, but all E820/etc
     *   information is in terms of guest physical layout.
     */
    l1tf_safe_maddr = max(l1tf_safe_maddr, ((l1d_maxphysaddr > paddr_bits)
                                            ? (1ul << paddr_bits)
                                            : (3ul << (paddr_bits - 2))));
}

/* Calculate whether this CPU is vulnerable to MDS. */
static __init void mds_calculations(uint64_t caps)
{
    /* MDS is only known to affect Intel Family 6 processors at this time. */
    if ( boot_cpu_data.x86_vendor != X86_VENDOR_INTEL ||
         boot_cpu_data.x86 != 6 )
        return;

    /* Any processor advertising MDS_NO should be not vulnerable to MDS. */
    if ( caps & ARCH_CAPS_MDS_NO )
        return;

    switch ( boot_cpu_data.x86_model )
    {
        /*
         * Core processors since at least Nehalem are vulnerable.
         */
    case 0x1f: /* Auburndale / Havendale */
    case 0x1e: /* Nehalem */
    case 0x1a: /* Nehalem EP */
    case 0x2e: /* Nehalem EX */
    case 0x25: /* Westmere */
    case 0x2c: /* Westmere EP */
    case 0x2f: /* Westmere EX */
    case 0x2a: /* SandyBridge */
    case 0x2d: /* SandyBridge EP/EX */
    case 0x3a: /* IvyBridge */
    case 0x3e: /* IvyBridge EP/EX */
    case 0x3c: /* Haswell */
    case 0x3f: /* Haswell EX/EP */
    case 0x45: /* Haswell D */
    case 0x46: /* Haswell H */
    case 0x3d: /* Broadwell */
    case 0x47: /* Broadwell H */
    case 0x4f: /* Broadwell EP/EX */
    case 0x56: /* Broadwell D */
    case 0x4e: /* Skylake M */
    case 0x5e: /* Skylake D */
        cpu_has_bug_mds = true;
        break;

        /*
         * Some Core processors have per-stepping vulnerability.
         */
    case 0x55: /* Skylake-X / Cascade Lake */
        if ( boot_cpu_data.x86_mask <= 5 )
            cpu_has_bug_mds = true;
        break;

    case 0x8e: /* Kaby / Coffee / Whiskey Lake M */
        if ( boot_cpu_data.x86_mask <= 0xb )
            cpu_has_bug_mds = true;
        break;

    case 0x9e: /* Kaby / Coffee / Whiskey Lake D */
        if ( boot_cpu_data.x86_mask <= 0xc )
            cpu_has_bug_mds = true;
        break;

        /*
         * Very old and very new Atom processors are not vulnerable.
         */
    case 0x1c: /* Pineview */
    case 0x26: /* Lincroft */
    case 0x27: /* Penwell */
    case 0x35: /* Cloverview */
    case 0x36: /* Cedarview */
    case 0x7a: /* Goldmont */
        break;

        /*
         * Middling Atom processors are vulnerable to just the Store Buffer
         * aspect.
         */
    case 0x37: /* Baytrail / Valleyview (Silvermont) */
    case 0x4a: /* Merrifield */
    case 0x4c: /* Cherrytrail / Brasswell */
    case 0x4d: /* Avaton / Rangely (Silvermont) */
    case 0x5a: /* Moorefield */
    case 0x5d: /* SoFIA 3G Granite/ES2.1 */
    case 0x65: /* SoFIA LTE AOSP */
    case 0x6e: /* Cougar Mountain */
    case 0x75: /* Lightning Mountain */
        /*
         * Knights processors (which are based on the Silvermont/Airmont
         * microarchitecture) are similarly only affected by the Store Buffer
         * aspect.
         */
    case 0x57: /* Knights Landing */
    case 0x85: /* Knights Mill */
        cpu_has_bug_msbds_only = true;
        break;

    default:
        printk("Unrecognised CPU model %#x - assuming vulnerable to MDS\n",
               boot_cpu_data.x86_model);
        cpu_has_bug_mds = true;
        break;
    }
}

void __init init_speculation_mitigations(void)
{
    enum ind_thunk thunk = THUNK_DEFAULT;
    bool has_spec_ctrl, ibrs = false, hw_smt_enabled;
    bool cpu_has_bug_taa;
    uint64_t caps = 0;

    if ( cpu_has_arch_caps )
        rdmsrl(MSR_ARCH_CAPABILITIES, caps);

    hw_smt_enabled = check_smt_enabled();

    has_spec_ctrl = boot_cpu_has(X86_FEATURE_IBRSB);

    /*
     * First, disable the use of retpolines if Xen is using shadow stacks, as
     * they are incompatible.
     */
    if ( cpu_has_xen_shstk &&
         (opt_thunk == THUNK_DEFAULT || opt_thunk == THUNK_RETPOLINE) )
        thunk = THUNK_JMP;

    /*
     * Has the user specified any custom BTI mitigations?  If so, follow their
     * instructions exactly and disable all heuristics.
     */
    if ( opt_thunk != THUNK_DEFAULT || opt_ibrs != -1 )
    {
        thunk = opt_thunk;
        ibrs  = !!opt_ibrs;
    }
    else
    {
        /*
         * Evaluate the safest Branch Target Injection mitigations to use.
         * First, begin with compiler-aided mitigations.
         */
        if ( IS_ENABLED(CONFIG_INDIRECT_THUNK) )
        {
            /*
             * AMD's recommended mitigation is to set lfence as being dispatch
             * serialising, and to use IND_THUNK_LFENCE.
             */
            if ( cpu_has_lfence_dispatch )
                thunk = THUNK_LFENCE;
            /*
             * On Intel hardware, we'd like to use retpoline in preference to
             * IBRS, but only if it is safe on this hardware.
             */
            else if ( retpoline_safe(caps) )
                thunk = THUNK_RETPOLINE;
            else if ( has_spec_ctrl )
                ibrs = true;
        }
        /* Without compiler thunk support, use IBRS if available. */
        else if ( has_spec_ctrl )
            ibrs = true;
    }

    /*
     * Supplimentary minor adjustments.  Without compiler support, there are
     * no thunks.
     */
    if ( !IS_ENABLED(CONFIG_INDIRECT_THUNK) )
        thunk = THUNK_NONE;

    /*
     * If IBRS is in use and thunks are compiled in, there is no point
     * suffering extra overhead.  Switch to the least-overhead thunk.
     */
    if ( ibrs && thunk == THUNK_DEFAULT )
        thunk = THUNK_JMP;

    /*
     * If there are still no thunk preferences, the compiled default is
     * actually retpoline, and it is better than nothing.
     */
    if ( thunk == THUNK_DEFAULT )
        thunk = THUNK_RETPOLINE;

    /* Apply the chosen settings. */
    if ( thunk == THUNK_LFENCE )
        setup_force_cpu_cap(X86_FEATURE_IND_THUNK_LFENCE);
    else if ( thunk == THUNK_JMP )
        setup_force_cpu_cap(X86_FEATURE_IND_THUNK_JMP);

    /* Intel hardware: MSR_SPEC_CTRL alternatives setup. */
    if ( boot_cpu_has(X86_FEATURE_IBRSB) )
    {
        if ( opt_msr_sc_pv )
        {
            default_spec_ctrl_flags |= SCF_ist_wrmsr;
            setup_force_cpu_cap(X86_FEATURE_SC_MSR_PV);
        }

        if ( opt_msr_sc_hvm )
        {
            /*
             * While the guest MSR_SPEC_CTRL value is loaded/saved atomically,
             * Xen's value is not restored atomically.  An early NMI hitting
             * the VMExit path needs to restore Xen's value for safety.
             */
            default_spec_ctrl_flags |= SCF_ist_wrmsr;
            setup_force_cpu_cap(X86_FEATURE_SC_MSR_HVM);
        }
    }

    /* If we have IBRS available, see whether we should use it. */
    if ( has_spec_ctrl && ibrs )
        default_xen_spec_ctrl |= SPEC_CTRL_IBRS;

    /* If we have SSBD available, see whether we should use it. */
    if ( boot_cpu_has(X86_FEATURE_SSBD) && opt_ssbd )
        default_xen_spec_ctrl |= SPEC_CTRL_SSBD;

    /*
     * PV guests can create RSB entries for any linear address they control,
     * which are outside of Xen's mappings.
     *
     * SMEP inhibits speculation to any user mappings, so in principle it is
     * safe to not overwrite the RSB when SMEP is active.
     *
     * However, some caveats apply:
     *
     * 1) CALL instructions push the next sequential linear address into the
     *    RSB, meaning that there is a boundary case at the user=>supervisor
     *    split.  This can be compensated for by having an unmapped or NX
     *    page, or an instruction which halts speculation.
     *
     *    For Xen, the next sequential linear address is the start of M2P
     *    (mapped NX), or a zapped hole (unmapped).
     *
     * 2) 32bit PV kernels execute in Ring 1 and use supervisor mappings.
     *    SMEP offers no protection in this case.
     *
     * 3) Some CPUs have RSBs which are not full width, which allow the
     *    attacker's entries to alias Xen addresses.
     *
     * It is safe to turn off RSB stuffing when Xen is using SMEP itself, and
     * 32bit PV guests are disabled, and when the RSB is full width.
     */
    BUILD_BUG_ON(RO_MPT_VIRT_START != PML4_ADDR(256));
    if ( opt_rsb_pv == -1 && boot_cpu_has(X86_FEATURE_XEN_SMEP) &&
         !opt_pv32 && rsb_is_full_width() )
        opt_rsb_pv = 0;

    if ( opt_rsb_pv )
    {
        setup_force_cpu_cap(X86_FEATURE_SC_RSB_PV);
        default_spec_ctrl_flags |= SCF_ist_rsb;
    }

    /*
     * HVM guests can always poison the RSB to point at Xen supervisor
     * mappings.
     */
    if ( opt_rsb_hvm )
        setup_force_cpu_cap(X86_FEATURE_SC_RSB_HVM);

    /* Check we have hardware IBPB support before using it... */
    if ( !boot_cpu_has(X86_FEATURE_IBRSB) && !boot_cpu_has(X86_FEATURE_IBPB) )
        opt_ibpb = false;

    /* Check whether Eager FPU should be enabled by default. */
    if ( opt_eager_fpu == -1 )
        opt_eager_fpu = should_use_eager_fpu();

    /* (Re)init BSP state now that default_spec_ctrl_flags has been calculated. */
    init_shadow_spec_ctrl_state();

    /* If Xen is using any MSR_SPEC_CTRL settings, adjust the idle path. */
    if ( default_xen_spec_ctrl )
        setup_force_cpu_cap(X86_FEATURE_SC_MSR_IDLE);

    xpti_init_default(caps);

    l1tf_calculations(caps);

    /*
     * By default, enable PV domU L1TF mitigations on all L1TF-vulnerable
     * hardware, except when running in shim mode.
     *
     * In shim mode, SHADOW is expected to be compiled out, and a malicious
     * guest kernel can only attack the shim Xen, not the host Xen.
     */
    if ( opt_pv_l1tf_hwdom == -1 )
        opt_pv_l1tf_hwdom = 0;
    if ( opt_pv_l1tf_domu == -1 )
        opt_pv_l1tf_domu = !pv_shim && cpu_has_bug_l1tf;

    /*
     * By default, enable L1D_FLUSH on L1TF-vulnerable hardware, unless
     * instructed to skip the flush on vmentry by our outer hypervisor.
     */
    if ( !boot_cpu_has(X86_FEATURE_L1D_FLUSH) )
        opt_l1d_flush = 0;
    else if ( opt_l1d_flush == -1 )
        opt_l1d_flush = cpu_has_bug_l1tf && !(caps & ARCH_CAPS_SKIP_L1DFL);

    /* We compile lfence's in by default, and nop them out if requested. */
    if ( !opt_branch_harden )
        setup_force_cpu_cap(X86_FEATURE_SC_NO_BRANCH_HARDEN);

    /*
     * We do not disable HT by default on affected hardware.
     *
     * Firstly, if the user intends to use exclusively PV, or HVM shadow
     * guests, HT isn't a concern and should remain fully enabled.  Secondly,
     * safety for HVM HAP guests can be arranged by the toolstack with core
     * parking, pinning or cpupool configurations, including mixed setups.
     *
     * However, if we are on affected hardware, with HT enabled, and the user
     * hasn't explicitly chosen whether to use HT or not, nag them to do so.
     */
    if ( opt_smt == -1 && cpu_has_bug_l1tf && !pv_shim && hw_smt_enabled )
        warning_add(
            "Booted on L1TF-vulnerable hardware with SMT/Hyperthreading\n"
            "enabled.  Please assess your configuration and choose an\n"
            "explicit 'smt=<bool>' setting.  See XSA-273.\n");

    mds_calculations(caps);

    /*
     * By default, enable PV and HVM mitigations on MDS-vulnerable hardware.
     * This will only be a token effort for MLPDS/MFBDS when HT is enabled,
     * but it is somewhat better than nothing.
     */
    if ( opt_md_clear_pv == -1 )
        opt_md_clear_pv = ((cpu_has_bug_mds || cpu_has_bug_msbds_only) &&
                           boot_cpu_has(X86_FEATURE_MD_CLEAR));
    if ( opt_md_clear_hvm == -1 )
        opt_md_clear_hvm = ((cpu_has_bug_mds || cpu_has_bug_msbds_only) &&
                            boot_cpu_has(X86_FEATURE_MD_CLEAR));

    /*
     * Enable MDS defences as applicable.  The PV blocks need using all the
     * time, and the Idle blocks need using if either PV or HVM defences are
     * used.
     *
     * HVM is more complicated.  The MD_CLEAR microcode extends L1D_FLUSH with
     * equivelent semantics to avoid needing to perform both flushes on the
     * HVM path.  The HVM blocks don't need activating if our hypervisor told
     * us it was handling L1D_FLUSH, or we are using L1D_FLUSH ourselves.
     */
    if ( opt_md_clear_pv )
        setup_force_cpu_cap(X86_FEATURE_SC_VERW_PV);
    if ( opt_md_clear_pv || opt_md_clear_hvm )
        setup_force_cpu_cap(X86_FEATURE_SC_VERW_IDLE);
    if ( opt_md_clear_hvm && !(caps & ARCH_CAPS_SKIP_L1DFL) && !opt_l1d_flush )
        setup_force_cpu_cap(X86_FEATURE_SC_VERW_HVM);

    /*
     * Warn the user if they are on MLPDS/MFBDS-vulnerable hardware with HT
     * active and no explicit SMT choice.
     */
    if ( opt_smt == -1 && cpu_has_bug_mds && hw_smt_enabled )
        warning_add(
            "Booted on MLPDS/MFBDS-vulnerable hardware with SMT/Hyperthreading\n"
            "enabled.  Mitigations will not be fully effective.  Please\n"
            "choose an explicit smt=<bool> setting.  See XSA-297.\n");

    /*
     * Vulnerability to TAA is a little complicated to quantify.
     *
     * In the pipeline, it is just another way to get speculative access to
     * stale load port, store buffer or fill buffer data, and therefore can be
     * considered a superset of MDS (on TSX-capable parts).  On parts which
     * predate MDS_NO, the existing VERW flushing will mitigate this
     * sidechannel as well.
     *
     * On parts which contain MDS_NO, the lack of VERW flushing means that an
     * attacker can still use TSX to target microarchitectural buffers to leak
     * secrets.  Therefore, we consider TAA to be the set of TSX-capable parts
     * which have MDS_NO but lack TAA_NO.
     *
     * Note: cpu_has_rtm (== hle) could already be hidden by `tsx=0` on the
     *       cmdline.  MSR_TSX_CTRL will only appear on TSX-capable parts, so
     *       we check both to spot TSX in a microcode/cmdline independent way.
     */
    cpu_has_bug_taa =
        (cpu_has_rtm || (caps & ARCH_CAPS_TSX_CTRL)) &&
        (caps & (ARCH_CAPS_MDS_NO | ARCH_CAPS_TAA_NO)) == ARCH_CAPS_MDS_NO;

    /*
     * On TAA-affected hardware, disabling TSX is the preferred mitigation, vs
     * the MDS mitigation of disabling HT and using VERW flushing.
     *
     * On CPUs which advertise MDS_NO, VERW has no flushing side effect until
     * the TSX_CTRL microcode is loaded, despite the MD_CLEAR CPUID bit being
     * advertised, and there isn't a MD_CLEAR_2 flag to use...
     *
     * If we're on affected hardware, able to do something about it (which
     * implies that VERW now works), no explicit TSX choice and traditional
     * MDS mitigations (no-SMT, VERW) not obviosuly in use (someone might
     * plausibly value TSX higher than Hyperthreading...), disable TSX to
     * mitigate TAA.
     */
    if ( opt_tsx == -1 && cpu_has_bug_taa && (caps & ARCH_CAPS_TSX_CTRL) &&
         ((hw_smt_enabled && opt_smt) ||
          !boot_cpu_has(X86_FEATURE_SC_VERW_IDLE)) )
    {
        opt_tsx = 0;
        tsx_init();
    }

    /* Calculate suitable defaults for MSR_MCU_OPT_CTRL */
    if ( boot_cpu_has(X86_FEATURE_SRBDS_CTRL) )
    {
        uint64_t val;

        rdmsrl(MSR_MCU_OPT_CTRL, val);

        /*
         * On some SRBDS-affected hardware, it may be safe to relax srb-lock
         * by default.
         *
         * On parts which enumerate MDS_NO and not TAA_NO, TSX is the only way
         * to access the Fill Buffer.  If TSX isn't available (inc. SKU
         * reasons on some models), or TSX is explicitly disabled, then there
         * is no need for the extra overhead to protect RDRAND/RDSEED.
         */
        if ( opt_srb_lock == -1 &&
             (caps & (ARCH_CAPS_MDS_NO|ARCH_CAPS_TAA_NO)) == ARCH_CAPS_MDS_NO &&
             (!cpu_has_hle || ((caps & ARCH_CAPS_TSX_CTRL) && rtm_disabled)) )
            opt_srb_lock = 0;

        val &= ~MCU_OPT_CTRL_RNGDS_MITG_DIS;
        if ( !opt_srb_lock )
            val |= MCU_OPT_CTRL_RNGDS_MITG_DIS;

        default_xen_mcu_opt_ctrl = val;
    }

    print_details(thunk, caps);

    /*
     * If MSR_SPEC_CTRL is available, apply Xen's default setting and discard
     * any firmware settings.  For performance reasons, when safe to do so, we
     * delay applying non-zero settings until after dom0 has been constructed.
     *
     * "when safe to do so" is based on whether we are virtualised.  A native
     * boot won't have any other code running in a position to mount an
     * attack.
     */
    if ( has_spec_ctrl )
    {
        struct cpu_info *info = get_cpu_info();
        unsigned int val;

        bsp_delay_spec_ctrl = !cpu_has_hypervisor && default_xen_spec_ctrl;

        /*
         * If delaying MSR_SPEC_CTRL setup, use the same mechanism as
         * spec_ctrl_enter_idle(), by using a shadow value of zero.
         */
        if ( bsp_delay_spec_ctrl )
        {
            info->shadow_spec_ctrl = 0;
            barrier();
            info->spec_ctrl_flags |= SCF_use_shadow;
            barrier();
        }

        val = bsp_delay_spec_ctrl ? 0 : default_xen_spec_ctrl;

        wrmsrl(MSR_SPEC_CTRL, val);
        info->last_spec_ctrl = val;
    }

    if ( boot_cpu_has(X86_FEATURE_SRBDS_CTRL) )
        wrmsrl(MSR_MCU_OPT_CTRL, default_xen_mcu_opt_ctrl);
}

static void __init __maybe_unused build_assertions(void)
{
    /* The optimised assembly relies on this alias. */
    BUILD_BUG_ON(SCF_use_shadow != 1);
}

/*
 * Local variables:
 * mode: C
 * c-file-style: "BSD"
 * c-basic-offset: 4
 * tab-width: 4
 * indent-tabs-mode: nil
 * End:
 */