aboutsummaryrefslogtreecommitdiff
path: root/gcc/cfganal.c
diff options
context:
space:
mode:
authorbje <bje@138bc75d-0d04-0410-961f-82ee72b054a4>2004-09-28 07:59:54 +0000
committerbje <bje@138bc75d-0d04-0410-961f-82ee72b054a4>2004-09-28 07:59:54 +0000
commitcd665a06e2398f370313e6ec3df029d06e9dfffe (patch)
treebed4a5579487b418bb321141005a316e87e11b34 /gcc/cfganal.c
parent644b3b25055f2e96b6e4d7d028d3fc8eec63eb7f (diff)
2004-09-24 Ben Elliston <bje@au.ibm.com>
Steven Bosscher <stevenb@suse.de> Andrew Pinski <pinskia@physics.uc.edu> Merge from edge-vector-branch: * basic-block.h: Include vec.h, errors.h. Instantiate a VEC(edge). (struct edge_def): Remove pred_next, succ_next members. (struct basic_block_def): Remove pred, succ members. Add preds and succs members of type VEC(edge). (FALLTHRU_EDGE): Redefine using EDGE_SUCC. (BRANCH_EDGE): Likewise. (EDGE_CRITICAL_P): Redefine using EDGE_COUNT. (EDGE_COUNT, EDGE_I, EDGE_PRED, EDGE_SUCC): New. (edge_iterator): New. (ei_start, ei_last, ei_end_p, ei_one_before_end_p): New. (ei_next, ei_prev, ei_edge, ei_safe_edge): Likewise. (FOR_EACH_EDGE): New. * bb-reorder.c (find_traces): Use FOR_EACH_EDGE and EDGE_* macros where applicable. (rotate_loop): Likewise. (find_traces_1_route): Likewise. (bb_to_key): Likewise. (connect_traces): Likewise. (copy_bb_p): Likewise. (find_rarely_executed_basic_blocks_and_crossing_edges): Likewise. (add_labels_and_missing_jumps): Likewise. (fix_up_fall_thru_edges): Likewise. (find_jump_block): Likewise. (fix_crossing_conditional_branches): Likewise. (fix_crossing_unconditional_branches): Likewise. (add_reg_crossing_jump_notes): Likewise. * bt-load.c (augment_live_range): Likewise. * cfg.c (clear_edges): Likewise. (unchecked_make_edge): Likewise. (cached_make_edge): Likewise. (make_single_succ_edge): Likewise. (remove_edge): Likewise. (redirect_edge_succ_nodup): Likewise. (check_bb_profile): Likewise. (dump_flow_info): Likewise. (alloc_aux_for_edges): Likewise. (clear_aux_for_edges): Likewise. (dump_cfg_bb_info): Likewise. * cfganal.c (forwarder_block_p): Likewise. (can_fallthru): Likewise. (could_fall_through): Likewise. (mark_dfs_back_edges): Likewise. (set_edge_can_fallthru_flag): Likewise. (find_unreachable_blocks): Likewise. (create_edge_list): Likewise. (verify_edge_list): Likewise. (add_noreturn_fake_exit_edges): Likewise. (connect_infinite_loops_to_exit): Likewise. (flow_reverse_top_sort_order_compute): Likewise. (flow_depth_first_order_compute): Likewise. (flow_preorder_transversal_compute): Likewise. (flow_dfs_compute_reverse_execute): Likewise. (dfs_enumerate_from): Likewise. (compute_dominance_frontiers_1): Likewise. * cfgbuild.c (make_edges): Likewise. (compute_outgoing_frequencies): Likewise. (find_many_sub_basic_blocks): Likewise. (find_sub_basic_blocks): Likewise. * cfgcleanup.c (try_simplify_condjump): Likewise. (thread_jump): Likewise. (try_forward_edges): Likewise. (merge_blocks_move): Likewise. (outgoing_edges_match): Likewise. (try_crossjump_to_edge): Likewise. (try_crossjump_bb): Likewise. (try_optimize_cfg): Likewise. (merge_seq_blocks): Likewise. * cfgexpand.c (expand_gimple_tailcall): Likewise. (expand_gimple_basic_block): Likewise. (construct_init_block): Likewise. (construct_exit_block): Likewise. * cfghooks.c (verify_flow_info): Likewise. (dump_bb): Likewise. (delete_basic_block): Likewise. (split_edge): Likewise. (merge_blocks): Likewise. (make_forwarder_block): Likewise. (tidy_fallthru_edges): Likewise. (can_duplicate_block_p): Likewise. (duplicate_block): Likewise. * cfglayout.c (fixup_reorder_chain): Likewise. (fixup_fallthru_exit_predecessor): Likewise. (can_copy_bbs_p): Likewise. (copy_bbs): Likewise. * cfgloop.c (flow_loops_cfg_dump): Likewise. (flow_loop_entry_edges_find): Likewise. (flow_loop_exit_edges_find): Likewise. (flow_loop_nodes_find): Likewise. (mark_single_exit_loops): Likewise. (flow_loop_pre_header_scan): Likewise. (flow_loop_pre_header_find): Likewise. (update_latch_info): Likewise. (canonicalize_loop_headers): Likewise. (flow_loops_find): Likewise. (get_loop_body_in_bfs_order): Likewise. (get_loop_exit_edges): Likewise. (num_loop_branches): Likewise. (verify_loop_structure): Likewise. (loop_latch_edge): Likewise. (loop_preheader_edge): Likewise. * cfgloopanal.c (mark_irreducible_loops): Likewise. (expected_loop_iterations): Likewise. * cfgloopmanip.c (remove_bbs): Likewise. (fix_bb_placement): Likewise. (fix_irreducible_loops): Likewise. (remove_path): Likewise. (scale_bbs_frequencies): Likewise. (loopify): Likewise. (unloop): Likewise. (fix_loop_placement): Likewise. (loop_delete_branch_edge): Likewise. (duplicate_loop_to_header_edge): Likewise. (mfb_keep_just): Likewise. (create_preheader): Likewise. (force_single_succ_latches): Likewise. (loop_split_edge_with): Likewise. (create_loop_notes): Likewise. * cfgrtl.c (rtl_split_block): Likewise. (rtl_merge_blocks): Likewise. (rtl_can_merge_blocks): Likewise. (try_redirect_by_replacing_jump): Likewise. (force_nonfallthru_and_redirect): Likewise. (rtl_tidy_fallthru_edge): Likewise. (commit_one_edge_insertion): Likewise. (commit_edge_insertions): Likewise. (commit_edge_insertions_watch_calls): Likewise. (rtl_verify_flow_info_1): Likewise. (rtl_verify_flow_info): Likewise. (purge_dead_edges): Likewise. (cfg_layout_redirect_edge_and_branch): Likewise. (cfg_layout_can_merge_blocks_p): Likewise. (rtl_flow_call_edges_add): Likewise. * cse.c (cse_cc_succs): Likewise. * df.c (hybrid_search): Likewise. * dominance.c (calc_dfs_tree_nonrec): Likewise. (calc_dfs_tree): Likewise. (calc_idoms): Likewise. (recount_dominator): Likewise. * domwalk.c (walk_dominator_tree): Likewise. * except.c (emit_to_new_bb_before): Likewise. (connect_post_landing_pads): Likewise. (sjlj_emit_function_enter): Likewise. (sjlj_emit_function_exit): Likewise. (finish_eh_generation): Likewise. * final.c (compute_alignments): Likewise. * flow.c (calculate_global_regs_live): Likewise. (initialize_uninitialized_subregs): Likewise. (init_propagate_block_info): Likewise. * function.c (thread_prologue_and_epilogue_insns): Likewise. * gcse.c (find_implicit_sets): Likewise. (bypass_block): Likewise. (bypass_conditional_jumps): Likewise. (compute_pre_data): Likewise. (insert_insn_end_bb): Likewise. (insert_store): Likewise. (remove_reachable_equiv_notes): Likewise. * global.c (global_conflicts): Likewise. (calculate_reg_pav): Likewise. * graph.c (print_rtl_graph_with_bb): Likewise. * ifcvt.c (mark_loop_exit_edges): Likewise. (merge_if_block): Likewise. (find_if_header): Likewise. (block_jumps_and_fallthru_p): Likewise. (find_if_block): Likewise. (find_cond_trap): Likewise. (block_has_only_trap): Likewise. (find_if_case1): Likewise. (find_if_case_2): Likewise. * lambda-code.c (lambda_loopnest_to_gcc_loopnest): Likewise. (perfect_nestify): Likewise. * lcm.c (compute_antinout_edge): Likewise. (compute_laterin): Likewise. (compute_available): Likewise. (compute_nearerout): Likewise. * loop-doloop.c (doloop_modify): Likewise. * loop-init.c (loop_optimizer_init): Likewise. * loop-invariant.c (find_exits): Likewise. * loop-iv.c (simplify_using_initial_values): Likewise. (check_simple_exit): Likewise. (find_simple_exit): Likewise. * loop-unroll.c (peel_loop_completely): Likewise. (unroll_loop_constant_iterations): Likewise. (unroll_loop_runtime_iterations): Likewise. * loop-unswitch.c (may_unswitch_on): Likewise. (unswitch_loop): Likewise. * modulo-sched.c (generate_prolog_epilog): Likewise. (sms_schedule): Likewise. * postreload-gcse.c (eliminate_partially_redundant_load): Likewise. * predict.c (can_predict_insn_p): Likewise. (set_even_probabilities): Likewise. (combine_predictions_for_bb): Likewise. (predict_loops): Likewise. (estimate_probability): Likewise. (tree_predict_by_opcode): Likewise. (tree_estimate_probability): Likewise. (last_basic_block_p): Likewise. (propagate_freq): Likewise. (estimate_loops_at_level): Likewise. (estimate_bb_frequencies): Likewise. * profile.c (instrument_edges): Likewise. (get_exec_counts): Likewise. (compute_branch_probabilities): Likewise. (branch_prob): Likewise. * ra-build.c (live_in): Likewise. * ra-rewrite.c (rewrite_program2): Likewise. * ra.c (reg_alloc): Likewise. * reg-stack.c (reg_to_stack): Likewise. (convert_regs_entry): Likewise. (compensate_edge): Likewise. (convert_regs_1): Likewise, (convert_regs_2): Likewise. (convert_regs): Likewise. * regrename.c (copyprop_hardreg_forward): Likewise. * reload1.c (fixup_abnormal_edges): Likewise. * sbitmap.c (sbitmap_intersection_of_succs): Likewise. (sbitmap_insersection_of_preds): Likewise. (sbitmap_union_of_succs): Likewise. (sbitmap_union_of_preds): Likewise. * sched-ebb.c (compute_jump_reg_dependencies): Likewise. (fix_basic_block_boundaries): Likewise. (sched_ebbs): Likewise. * sched-rgn.c (build_control_flow): Likewise. (find_rgns): Likewise. * tracer.c (find_best_successor): Likewise. (find_best_predecessor): Likewise. (tail_duplicate): Likewise. * tree-cfg.c (make_edges): Likewise. (make_ctrl_stmt_edges): Likewise. (make_goto_expr_edges): Likewise. (tree_can_merge_blocks_p): Likewise. (tree_merge_blocks): Likewise. (cfg_remove_useless_stmts_bb): Likewise. (remove_phi_nodes_and_edges_for_unreachable_block): Likewise. (tree_block_forwards_to): Likewise. (cleanup_control_expr_graph): Likewise. (find_taken_edge): Likewise. (dump_cfg_stats): Likewise. (tree_cfg2vcg): Likewise. (disband_implicit_edges): Likewise. (tree_find_edge_insert_loc): Likewise. (bsi_commit_edge_inserts): Likewise. (tree_split_edge): Likewise. (tree_verify_flow_info): Likewise. (tree_make_forwarder_block): Likewise. (tree_forwarder_block_p): Likewise. (thread_jumps): Likewise. (tree_try_redirect_by_replacing_jump): Likewise. (tree_split_block): Likewise. (add_phi_args_after_copy_bb): Likewise. (rewrite_to_new_ssa_names_bb): Likewise. (dump_function_to_file): Likewise. (print_pred_bbs): Likewise. (print_loop): Likewise. (tree_flow_call_edges_add): Likewise. (split_critical_edges): Likewise. (execute_warn_function_return): Likewise. (extract_true_false_edges_from_block): Likewise. * tree-if-conv.c (tree_if_conversion): Likewise. (if_convertable_bb_p): Likewise. (find_phi_replacement_condition): Likewise. (combine_blocks): Likewise. * tree-into-ssa.c (compute_global_livein): Likewise. (ssa_mark_phi_uses): Likewise. (ssa_rewrite_initialize_block): Likewise. (rewrite_add_phi_arguments): Likewise. (ssa_rewrite_phi_arguments): Likewise. (insert_phi_nodes_for): Likewise. (rewrite_into_ssa): Likewise. (rewrite_ssa_into_ssa): Likewise. * tree-mudflap.c (mf_build_check_statement_for): Likewise. * tree-outof-ssa.c (coalesce_abnormal_edges): Likewise. (rewrite_trees): Likewise. * tree-pretty-print.c (dump_bb_header): Likewise. (dump_implicit_edges): Likewise. * tree-sra.c (insert_edge_copies): Likewise. (find_obviously_necessary_stmts): Likewise. (remove_data_stmt): Likewise. * tree-ssa-dom.c (thread_across_edge): Likewise. (dom_opt_finalize_block): Likewise. (single_incoming_edge_ignoring_loop_edges): Likewise. (record_equivalences_from_incoming_edges): Likewise. (cprop_into_successor_phis): Likewise. * tree-ssa-live.c (live_worklist): Likewise. (calculate_live_on_entry): Likewise. (calculate_live_on_exit): Likewise. * tree-ssa-loop-ch.c (should_duplicate_loop_header_p): Likewise. (copy_loop_headers): Likewise. * tree-ssa-loop-im.c (loop_commit_inserts): Likewise. (fill_always_executed_in): Likewise. * tree-ssa-loop-ivcanon.c (create_canonical_iv): Likewise. * tree-ssa-loop-ivopts.c (find_interesting_uses): Likewise. (compute_phi_arg_on_exit): Likewise. * tree-ssa-loop-manip.c (add_exit_phis_edge): Likewise. (get_loops_exit): Likewise. (split_loop_exit_edge): Likewise. (ip_normal_pos): Likewise. * tree-ssa-loop-niter.c (simplify_using_initial_conditions): Likewise. * tree-ssa-phiopt.c (candidate_bb_for_phi_optimization): Likewise. (replace_phi_with_stmt): Likewise. (value_replacement): Likewise. * tree-ssa-pre.c (compute_antic_aux): Likewise. (insert_aux): Likewise. (init_pre): Likewise. * tree-ssa-propagate.c (simulate_stmt): Likewise. (simulate_block): Likewise. (ssa_prop_init): Likewise. * tree-ssa-threadupdate.c (thread_block): Likewise. (create_block_for_threading): Likewise. (remove_last_stmt_and_useless_edges): Likewise. * tree-ssa.c (verify_phi_args): Likewise. (verify_ssa): Likewise. * tree_tailcall.c (independent_of_stmt_p): Likewise. (find_tail_calls): Likewise. (eliminate_tail_call): Likewise. (tree_optimize_tail_calls_1): Likewise. * tree-vectorizer.c (vect_transform_loop): Likewise. * var-tracking.c (prologue_stack_adjust): Likewise. (vt_stack_adjustments): Likewise. (vt_find_locations): Likewise. * config/frv/frv.c (frv_ifcvt_modify_tests): Likewise. * config/i386/i386.c (ix86_pad_returns): Likewise. * config/ia64/ia64.c (ia64_expand_prologue): Likewise. * config/rs6000/rs6000.c (rs6000_emit_prologue): Likewise. git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@88222 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'gcc/cfganal.c')
-rw-r--r--gcc/cfganal.c169
1 files changed, 87 insertions, 82 deletions
diff --git a/gcc/cfganal.c b/gcc/cfganal.c
index 01f5f7d04b6..30aa5c40db3 100644
--- a/gcc/cfganal.c
+++ b/gcc/cfganal.c
@@ -85,7 +85,7 @@ forwarder_block_p (basic_block bb)
rtx insn;
if (bb == EXIT_BLOCK_PTR || bb == ENTRY_BLOCK_PTR
- || !bb->succ || bb->succ->succ_next)
+ || EDGE_COUNT (bb->succs) != 1)
return false;
for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
@@ -105,15 +105,16 @@ can_fallthru (basic_block src, basic_block target)
rtx insn = BB_END (src);
rtx insn2;
edge e;
+ edge_iterator ei;
if (target == EXIT_BLOCK_PTR)
return true;
if (src->next_bb != target)
return 0;
- for (e = src->succ; e; e = e->succ_next)
+ FOR_EACH_EDGE (e, ei, src->succs)
if (e->dest == EXIT_BLOCK_PTR
&& e->flags & EDGE_FALLTHRU)
- return 0;
+ return 0;
insn2 = BB_HEAD (target);
if (insn2 && !active_insn_p (insn2))
@@ -130,13 +131,14 @@ bool
could_fall_through (basic_block src, basic_block target)
{
edge e;
+ edge_iterator ei;
if (target == EXIT_BLOCK_PTR)
return true;
- for (e = src->succ; e; e = e->succ_next)
+ FOR_EACH_EDGE (e, ei, src->succs)
if (e->dest == EXIT_BLOCK_PTR
&& e->flags & EDGE_FALLTHRU)
- return 0;
+ return 0;
return true;
}
@@ -153,7 +155,7 @@ could_fall_through (basic_block src, basic_block target)
bool
mark_dfs_back_edges (void)
{
- edge *stack;
+ edge_iterator *stack;
int *pre;
int *post;
int sp;
@@ -167,7 +169,7 @@ mark_dfs_back_edges (void)
post = xcalloc (last_basic_block, sizeof (int));
/* Allocate stack for back-tracking up CFG. */
- stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge));
+ stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge_iterator));
sp = 0;
/* Allocate bitmap to track nodes that have been visited. */
@@ -177,19 +179,19 @@ mark_dfs_back_edges (void)
sbitmap_zero (visited);
/* Push the first edge on to the stack. */
- stack[sp++] = ENTRY_BLOCK_PTR->succ;
+ stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
while (sp)
{
- edge e;
+ edge_iterator ei;
basic_block src;
basic_block dest;
/* Look at the edge on the top of the stack. */
- e = stack[sp - 1];
- src = e->src;
- dest = e->dest;
- e->flags &= ~EDGE_DFS_BACK;
+ ei = stack[sp - 1];
+ src = ei_edge (ei)->src;
+ dest = ei_edge (ei)->dest;
+ ei_edge (ei)->flags &= ~EDGE_DFS_BACK;
/* Check if the edge destination has been visited yet. */
if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
@@ -198,11 +200,11 @@ mark_dfs_back_edges (void)
SET_BIT (visited, dest->index);
pre[dest->index] = prenum++;
- if (dest->succ)
+ if (EDGE_COUNT (dest->succs) > 0)
{
/* Since the DEST node has been visited for the first
time, check its successors. */
- stack[sp++] = dest->succ;
+ stack[sp++] = ei_start (dest->succs);
}
else
post[dest->index] = postnum++;
@@ -212,13 +214,13 @@ mark_dfs_back_edges (void)
if (dest != EXIT_BLOCK_PTR && src != ENTRY_BLOCK_PTR
&& pre[src->index] >= pre[dest->index]
&& post[dest->index] == 0)
- e->flags |= EDGE_DFS_BACK, found = true;
+ ei_edge (ei)->flags |= EDGE_DFS_BACK, found = true;
- if (! e->succ_next && src != ENTRY_BLOCK_PTR)
+ if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR)
post[src->index] = postnum++;
- if (e->succ_next)
- stack[sp - 1] = e->succ_next;
+ if (!ei_one_before_end_p (ei))
+ ei_next (&stack[sp - 1]);
else
sp--;
}
@@ -242,8 +244,9 @@ set_edge_can_fallthru_flag (void)
FOR_EACH_BB (bb)
{
edge e;
+ edge_iterator ei;
- for (e = bb->succ; e; e = e->succ_next)
+ FOR_EACH_EDGE (e, ei, bb->succs)
{
e->flags &= ~EDGE_CAN_FALLTHRU;
@@ -254,15 +257,15 @@ set_edge_can_fallthru_flag (void)
/* If the BB ends with an invertible condjump all (2) edges are
CAN_FALLTHRU edges. */
- if (!bb->succ || !bb->succ->succ_next || bb->succ->succ_next->succ_next)
+ if (EDGE_COUNT (bb->succs) != 2)
continue;
if (!any_condjump_p (BB_END (bb)))
continue;
if (!invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0))
continue;
invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0);
- bb->succ->flags |= EDGE_CAN_FALLTHRU;
- bb->succ->succ_next->flags |= EDGE_CAN_FALLTHRU;
+ EDGE_SUCC (bb, 0)->flags |= EDGE_CAN_FALLTHRU;
+ EDGE_SUCC (bb, 1)->flags |= EDGE_CAN_FALLTHRU;
}
}
@@ -274,6 +277,7 @@ void
find_unreachable_blocks (void)
{
edge e;
+ edge_iterator ei;
basic_block *tos, *worklist, bb;
tos = worklist = xmalloc (sizeof (basic_block) * n_basic_blocks);
@@ -287,7 +291,7 @@ find_unreachable_blocks (void)
be only one. It isn't inconceivable that we might one day directly
support Fortran alternate entry points. */
- for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
+ FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
{
*tos++ = e->dest;
@@ -301,7 +305,7 @@ find_unreachable_blocks (void)
{
basic_block b = *--tos;
- for (e = b->succ; e; e = e->succ_next)
+ FOR_EACH_EDGE (e, ei, b->succs)
if (!(e->dest->flags & BB_REACHABLE))
{
*tos++ = e->dest;
@@ -333,6 +337,7 @@ create_edge_list (void)
int num_edges;
int block_count;
basic_block bb;
+ edge_iterator ei;
block_count = n_basic_blocks + 2; /* Include the entry and exit blocks. */
@@ -342,8 +347,7 @@ create_edge_list (void)
edges on each basic block. */
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
{
- for (e = bb->succ; e; e = e->succ_next)
- num_edges++;
+ num_edges += EDGE_COUNT (bb->succs);
}
elist = xmalloc (sizeof (struct edge_list));
@@ -355,7 +359,7 @@ create_edge_list (void)
/* Follow successors of blocks, and register these edges. */
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
- for (e = bb->succ; e; e = e->succ_next)
+ FOR_EACH_EDGE (e, ei, bb->succs)
elist->index_to_edge[num_edges++] = e;
return elist;
@@ -408,10 +412,11 @@ verify_edge_list (FILE *f, struct edge_list *elist)
int pred, succ, index;
edge e;
basic_block bb, p, s;
+ edge_iterator ei;
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
{
- for (e = bb->succ; e; e = e->succ_next)
+ FOR_EACH_EDGE (e, ei, bb->succs)
{
pred = e->src->index;
succ = e->dest->index;
@@ -439,14 +444,14 @@ verify_edge_list (FILE *f, struct edge_list *elist)
{
int found_edge = 0;
- for (e = p->succ; e; e = e->succ_next)
+ FOR_EACH_EDGE (e, ei, p->succs)
if (e->dest == s)
{
found_edge = 1;
break;
}
- for (e = s->pred; e; e = e->pred_next)
+ FOR_EACH_EDGE (e, ei, s->preds)
if (e->src == p)
{
found_edge = 1;
@@ -471,8 +476,9 @@ edge
find_edge (basic_block pred, basic_block succ)
{
edge e;
+ edge_iterator ei;
- for (e = pred->succ; e; e = e->succ_next)
+ FOR_EACH_EDGE (e, ei, pred->succs)
if (e->dest == succ)
return e;
@@ -537,14 +543,14 @@ static void
remove_fake_predecessors (basic_block bb)
{
edge e;
+ edge_iterator ei;
- for (e = bb->pred; e;)
+ for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
{
- edge tmp = e;
-
- e = e->pred_next;
- if ((tmp->flags & EDGE_FAKE) == EDGE_FAKE)
- remove_edge (tmp);
+ if ((e->flags & EDGE_FAKE) == EDGE_FAKE)
+ remove_edge (e);
+ else
+ ei_next (&ei);
}
}
@@ -580,7 +586,7 @@ add_noreturn_fake_exit_edges (void)
basic_block bb;
FOR_EACH_BB (bb)
- if (bb->succ == NULL)
+ if (EDGE_COUNT (bb->succs) == 0)
make_single_succ_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
}
@@ -626,13 +632,13 @@ connect_infinite_loops_to_exit (void)
void
flow_reverse_top_sort_order_compute (int *rts_order)
{
- edge *stack;
+ edge_iterator *stack;
int sp;
int postnum = 0;
sbitmap visited;
/* Allocate stack for back-tracking up CFG. */
- stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge));
+ stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge_iterator));
sp = 0;
/* Allocate bitmap to track nodes that have been visited. */
@@ -642,18 +648,18 @@ flow_reverse_top_sort_order_compute (int *rts_order)
sbitmap_zero (visited);
/* Push the first edge on to the stack. */
- stack[sp++] = ENTRY_BLOCK_PTR->succ;
+ stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
while (sp)
{
- edge e;
+ edge_iterator ei;
basic_block src;
basic_block dest;
/* Look at the edge on the top of the stack. */
- e = stack[sp - 1];
- src = e->src;
- dest = e->dest;
+ ei = stack[sp - 1];
+ src = ei_edge (ei)->src;
+ dest = ei_edge (ei)->dest;
/* Check if the edge destination has been visited yet. */
if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
@@ -661,20 +667,20 @@ flow_reverse_top_sort_order_compute (int *rts_order)
/* Mark that we have visited the destination. */
SET_BIT (visited, dest->index);
- if (dest->succ)
+ if (EDGE_COUNT (dest->succs) > 0)
/* Since the DEST node has been visited for the first
time, check its successors. */
- stack[sp++] = dest->succ;
+ stack[sp++] = ei_start (dest->succs);
else
rts_order[postnum++] = dest->index;
}
else
{
- if (! e->succ_next && src != ENTRY_BLOCK_PTR)
+ if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR)
rts_order[postnum++] = src->index;
- if (e->succ_next)
- stack[sp - 1] = e->succ_next;
+ if (!ei_one_before_end_p (ei))
+ ei_next (&stack[sp - 1]);
else
sp--;
}
@@ -694,14 +700,14 @@ flow_reverse_top_sort_order_compute (int *rts_order)
int
flow_depth_first_order_compute (int *dfs_order, int *rc_order)
{
- edge *stack;
+ edge_iterator *stack;
int sp;
int dfsnum = 0;
int rcnum = n_basic_blocks - 1;
sbitmap visited;
/* Allocate stack for back-tracking up CFG. */
- stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge));
+ stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge_iterator));
sp = 0;
/* Allocate bitmap to track nodes that have been visited. */
@@ -711,18 +717,18 @@ flow_depth_first_order_compute (int *dfs_order, int *rc_order)
sbitmap_zero (visited);
/* Push the first edge on to the stack. */
- stack[sp++] = ENTRY_BLOCK_PTR->succ;
+ stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
while (sp)
{
- edge e;
+ edge_iterator ei;
basic_block src;
basic_block dest;
/* Look at the edge on the top of the stack. */
- e = stack[sp - 1];
- src = e->src;
- dest = e->dest;
+ ei = stack[sp - 1];
+ src = ei_edge (ei)->src;
+ dest = ei_edge (ei)->dest;
/* Check if the edge destination has been visited yet. */
if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
@@ -735,10 +741,10 @@ flow_depth_first_order_compute (int *dfs_order, int *rc_order)
dfsnum++;
- if (dest->succ)
+ if (EDGE_COUNT (dest->succs) > 0)
/* Since the DEST node has been visited for the first
time, check its successors. */
- stack[sp++] = dest->succ;
+ stack[sp++] = ei_start (dest->succs);
else if (rc_order)
/* There are no successors for the DEST node so assign
its reverse completion number. */
@@ -746,14 +752,14 @@ flow_depth_first_order_compute (int *dfs_order, int *rc_order)
}
else
{
- if (! e->succ_next && src != ENTRY_BLOCK_PTR
+ if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR
&& rc_order)
/* There are no more successors for the SRC node
so assign its reverse completion number. */
rc_order[rcnum--] = src->index;
- if (e->succ_next)
- stack[sp - 1] = e->succ_next;
+ if (!ei_one_before_end_p (ei))
+ ei_next (&stack[sp - 1]);
else
sp--;
}
@@ -789,8 +795,7 @@ struct dfst_node
void
flow_preorder_transversal_compute (int *pot_order)
{
- edge e;
- edge *stack;
+ edge_iterator *stack, ei;
int i;
int max_successors;
int sp;
@@ -808,10 +813,7 @@ flow_preorder_transversal_compute (int *pot_order)
FOR_EACH_BB (bb)
{
- max_successors = 0;
- for (e = bb->succ; e; e = e->succ_next)
- max_successors++;
-
+ max_successors = EDGE_COUNT (bb->succs);
dfst[bb->index].node
= (max_successors
? xcalloc (max_successors, sizeof (struct dfst_node *)) : NULL);
@@ -824,7 +826,7 @@ flow_preorder_transversal_compute (int *pot_order)
sbitmap_zero (visited);
/* Push the first edge on to the stack. */
- stack[sp++] = ENTRY_BLOCK_PTR->succ;
+ stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
while (sp)
{
@@ -832,9 +834,9 @@ flow_preorder_transversal_compute (int *pot_order)
basic_block dest;
/* Look at the edge on the top of the stack. */
- e = stack[sp - 1];
- src = e->src;
- dest = e->dest;
+ ei = stack[sp - 1];
+ src = ei_edge (ei)->src;
+ dest = ei_edge (ei)->dest;
/* Check if the edge destination has been visited yet. */
if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
@@ -850,14 +852,14 @@ flow_preorder_transversal_compute (int *pot_order)
dfst[dest->index].up = &dfst[src->index];
}
- if (dest->succ)
+ if (EDGE_COUNT (dest->succs) > 0)
/* Since the DEST node has been visited for the first
time, check its successors. */
- stack[sp++] = dest->succ;
+ stack[sp++] = ei_start (dest->succs);
}
- else if (e->succ_next)
- stack[sp - 1] = e->succ_next;
+ else if (! ei_one_before_end_p (ei))
+ ei_next (&stack[sp - 1]);
else
sp--;
}
@@ -960,13 +962,14 @@ flow_dfs_compute_reverse_execute (depth_first_search_ds data)
{
basic_block bb;
edge e;
+ edge_iterator ei;
while (data->sp > 0)
{
bb = data->stack[--data->sp];
/* Perform depth-first search on adjacent vertices. */
- for (e = bb->pred; e; e = e->pred_next)
+ FOR_EACH_EDGE (e, ei, bb->preds)
if (!TEST_BIT (data->visited_blocks,
e->src->index - (INVALID_BLOCK + 1)))
flow_dfs_compute_reverse_add_bb (data, e->src);
@@ -1007,10 +1010,11 @@ dfs_enumerate_from (basic_block bb, int reverse,
while (sp)
{
edge e;
+ edge_iterator ei;
lbb = st[--sp];
if (reverse)
{
- for (e = lbb->pred; e; e = e->pred_next)
+ FOR_EACH_EDGE (e, ei, lbb->preds)
if (!(e->src->flags & BB_VISITED) && predicate (e->src, data))
{
gcc_assert (tv != rslt_max);
@@ -1020,7 +1024,7 @@ dfs_enumerate_from (basic_block bb, int reverse,
}
else
{
- for (e = lbb->succ; e; e = e->succ_next)
+ FOR_EACH_EDGE (e, ei, lbb->succs)
if (!(e->dest->flags & BB_VISITED) && predicate (e->dest, data))
{
gcc_assert (tv != rslt_max);
@@ -1056,6 +1060,7 @@ static void
compute_dominance_frontiers_1 (bitmap *frontiers, basic_block bb, sbitmap done)
{
edge e;
+ edge_iterator ei;
basic_block c;
SET_BIT (done, bb->index);
@@ -1072,7 +1077,7 @@ compute_dominance_frontiers_1 (bitmap *frontiers, basic_block bb, sbitmap done)
}
/* Find blocks conforming to rule (1) above. */
- for (e = bb->succ; e; e = e->succ_next)
+ FOR_EACH_EDGE (e, ei, bb->succs)
{
if (e->dest == EXIT_BLOCK_PTR)
continue;
@@ -1106,7 +1111,7 @@ compute_dominance_frontiers (bitmap *frontiers)
sbitmap_zero (done);
- compute_dominance_frontiers_1 (frontiers, ENTRY_BLOCK_PTR->succ->dest, done);
+ compute_dominance_frontiers_1 (frontiers, EDGE_SUCC (ENTRY_BLOCK_PTR, 0)->dest, done);
sbitmap_free (done);