aboutsummaryrefslogtreecommitdiff
path: root/gcc/config/arm/arm.h
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/config/arm/arm.h')
-rw-r--r--gcc/config/arm/arm.h1652
1 files changed, 0 insertions, 1652 deletions
diff --git a/gcc/config/arm/arm.h b/gcc/config/arm/arm.h
deleted file mode 100644
index 575f5f0ff79..00000000000
--- a/gcc/config/arm/arm.h
+++ /dev/null
@@ -1,1652 +0,0 @@
-/* Definitions of target machine for GNU compiler, for Acorn RISC Machine.
- Copyright (C) 1991, 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
- Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
- and Martin Simmons (@harleqn.co.uk).
- More major hacks by Richard Earnshaw (rwe11@cl.cam.ac.uk)
-
-This file is part of GNU CC.
-
-GNU CC is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2, or (at your option)
-any later version.
-
-GNU CC is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GNU CC; see the file COPYING. If not, write to
-the Free Software Foundation, 59 Temple Place - Suite 330,
-Boston, MA 02111-1307, USA. */
-
-extern void output_func_prologue ();
-extern void output_func_epilogue ();
-extern char *output_add_immediate ();
-extern char *output_call ();
-extern char *output_call_mem ();
-extern char *output_move_double ();
-extern char *output_mov_double_fpu_from_arm ();
-extern char *output_mov_double_arm_from_fpu ();
-extern char *output_mov_long_double_fpu_from_arm ();
-extern char *output_mov_long_double_arm_from_fpu ();
-extern char *output_mov_long_double_arm_from_arm ();
-extern char *output_mov_immediate ();
-extern char *output_multi_immediate ();
-extern char *output_return_instruction ();
-extern char *output_load_symbol ();
-extern char *emit_ldm_seq ();
-extern char *emit_stm_seq ();
-extern char *fp_immediate_constant ();
-extern struct rtx_def *gen_compare_reg ();
-extern struct rtx_def *arm_gen_store_multiple ();
-extern struct rtx_def *arm_gen_load_multiple ();
-extern struct rtx_def *gen_rotated_half_load ();
-
-enum arm_cond_code
-{
- ARM_EQ = 0, ARM_NE, ARM_CS, ARM_CC, ARM_MI, ARM_PL, ARM_VS, ARM_VC,
- ARM_HI, ARM_LS, ARM_GE, ARM_LT, ARM_GT, ARM_LE, ARM_AL, ARM_NV
-};
-extern enum arm_cond_code arm_current_cc;
-extern char *arm_condition_codes[];
-
-#define ARM_INVERSE_CONDITION_CODE(X) ((enum arm_cond_code) (((int)X) ^ 1))
-
-/* This is needed by the tail-calling peepholes */
-extern int frame_pointer_needed;
-
-
-#ifndef CPP_PREDEFINES
-#define CPP_PREDEFINES "-Darm -Acpu(arm) -Amachine(arm)"
-#endif
-
-#ifndef CPP_SPEC
-#define CPP_SPEC "%{m6:-D__arm6__} \
-%{mcpu-*:-D__%*} \
-%{mcpu=*:-D__%*} \
-%{mapcs-32:-D__APCS_32__ -U__APCS_26__} \
-%{mapcs-26:-D__APCS_26__ -U__APCS_32__} \
-%{!mapcs-32: %{!mapcs-26:-D__APCS_26__}} \
-%{msoft-float:-D__SOFTFP__} \
-%{mhard-float:-U__SOFTFP__} \
-%{!mhard-float: %{!msoft-float:-U__SOFTFP__}} \
-%{mbig-endian:-D__ARMEB__ %{mwords-little-endian:-D__ARMWEL__}} \
-%{mbe:-D__ARMEB__ %{mwords-little-endian:-D__ARMWEL__}} \
-%{!mbe: %{!mbig-endian:-D__ARMEL__}} \
-"
-#endif
-
-/* Run-time Target Specification. */
-#ifndef TARGET_VERSION
-#define TARGET_VERSION \
- fputs (" (ARM/generic)", stderr);
-#endif
-
-/* Run-time compilation parameters selecting different hardware subsets. */
-extern int target_flags;
-
-/* These two are used by TARGET_OPTIONS, they are parsed in OVERRIDE_OPTIONS */
-extern char *target_cpu_name;
-extern char *target_fpe_name;
-
-/* Nonzero if the function prologue (and epilogue) should obey
- the ARM Procedure Call Standard. */
-#define ARM_FLAG_APCS_FRAME (0x0001)
-
-/* Nonzero if the function prologue should output the function name to enable
- the post mortem debugger to print a backtrace (very useful on RISCOS,
- unused on RISCiX). Specifying this flag also enables
- -fno-omit-frame-pointer.
- XXX Must still be implemented in the prologue. */
-#define ARM_FLAG_POKE (0x0002)
-
-/* Nonzero if floating point instructions are emulated by the FPE, in which
- case instruction scheduling becomes very uninteresting. */
-#define ARM_FLAG_FPE (0x0004)
-
-/* Nonzero if destined for an ARM6xx. Takes out bits that assume restoration
- of condition flags when returning from a branch & link (ie. a function) */
-/* ********* DEPRECATED ******** */
-#define ARM_FLAG_ARM6 (0x0008)
-
-/* ********* DEPRECATED ******** */
-#define ARM_FLAG_ARM3 (0x0010)
-
-/* Nonzero if destined for a processor in 32-bit program mode. Takes out bit
- that assume restoration of the condition flags when returning from a
- branch and link (ie a function). */
-#define ARM_FLAG_APCS_32 (0x0020)
-
-/* Nonzero if stack checking should be performed on entry to each function
- which allocates temporary variables on the stack. */
-#define ARM_FLAG_APCS_STACK (0x0040)
-
-/* Nonzero if floating point parameters should be passed to functions in
- floating point registers. */
-#define ARM_FLAG_APCS_FLOAT (0x0080)
-
-/* Nonzero if re-entrant, position independent code should be generated.
- This is equivalent to -fpic. */
-#define ARM_FLAG_APCS_REENT (0x0100)
-
-/* Nonzero if the MMU will trap unaligned word accesses, so shorts must be
- loaded byte-at-a-time. */
-#define ARM_FLAG_SHORT_BYTE (0x0200)
-
-/* Nonzero if all floating point instructions are missing (and there is no
- emulator either). Generate function calls for all ops in this case. */
-#define ARM_FLAG_SOFT_FLOAT (0x0400)
-
-/* Nonzero if we should compile with BYTES_BIG_ENDIAN set to 1. */
-#define ARM_FLAG_BIG_END (0x0800)
-
-/* Nonzero if we should compile for Thumb interworking. */
-#define ARM_FLAG_THUMB (0x1000)
-
-/* Nonzero if we should have little-endian words even when compiling for
- big-endian (for backwards compatibility with older versions of GCC). */
-#define ARM_FLAG_LITTLE_WORDS (0x2000)
-
-#define TARGET_APCS (target_flags & ARM_FLAG_APCS_FRAME)
-#define TARGET_POKE_FUNCTION_NAME (target_flags & ARM_FLAG_POKE)
-#define TARGET_FPE (target_flags & ARM_FLAG_FPE)
-#define TARGET_6 (target_flags & ARM_FLAG_ARM6)
-#define TARGET_3 (target_flags & ARM_FLAG_ARM3)
-#define TARGET_APCS_32 (target_flags & ARM_FLAG_APCS_32)
-#define TARGET_APCS_STACK (target_flags & ARM_FLAG_APCS_STACK)
-#define TARGET_APCS_FLOAT (target_flags & ARM_FLAG_APCS_FLOAT)
-#define TARGET_APCS_REENT (target_flags & ARM_FLAG_APCS_REENT)
-#define TARGET_SHORT_BY_BYTES (target_flags & ARM_FLAG_SHORT_BYTE)
-#define TARGET_SOFT_FLOAT (target_flags & ARM_FLAG_SOFT_FLOAT)
-#define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
-#define TARGET_BIG_END (target_flags & ARM_FLAG_BIG_END)
-#define TARGET_THUMB_INTERWORK (target_flags & ARM_FLAG_THUMB)
-#define TARGET_LITTLE_WORDS (target_flags & ARM_FLAG_LITTLE_WORDS)
-
-/* SUBTARGET_SWITCHES is used to add flags on a per-config basis.
- Bit 31 is reserved. See riscix.h. */
-#ifndef SUBTARGET_SWITCHES
-#define SUBTARGET_SWITCHES
-#endif
-
-#define TARGET_SWITCHES \
-{ \
- {"apcs", ARM_FLAG_APCS_FRAME}, \
- {"apcs-frame", ARM_FLAG_APCS_FRAME}, \
- {"no-apcs-frame", -ARM_FLAG_APCS_FRAME}, \
- {"poke-function-name", ARM_FLAG_POKE}, \
- {"fpe", ARM_FLAG_FPE}, \
- {"6", ARM_FLAG_ARM6}, \
- {"2", ARM_FLAG_ARM3}, \
- {"3", ARM_FLAG_ARM3}, \
- {"apcs-32", ARM_FLAG_APCS_32}, \
- {"apcs-26", -ARM_FLAG_APCS_32}, \
- {"apcs-stack-check", ARM_FLAG_APCS_STACK}, \
- {"no-apcs-stack-check", -ARM_FLAG_APCS_STACK}, \
- {"apcs-float", ARM_FLAG_APCS_FLOAT}, \
- {"no-apcs-float", -ARM_FLAG_APCS_FLOAT}, \
- {"apcs-reentrant", ARM_FLAG_APCS_REENT}, \
- {"no-apcs-rentrant", -ARM_FLAG_APCS_REENT}, \
- {"short-load-bytes", ARM_FLAG_SHORT_BYTE}, \
- {"no-short-load-bytes", -ARM_FLAG_SHORT_BYTE}, \
- {"short-load-words", -ARM_FLAG_SHORT_BYTE}, \
- {"no-short-load-words", ARM_FLAG_SHORT_BYTE}, \
- {"soft-float", ARM_FLAG_SOFT_FLOAT}, \
- {"hard-float", -ARM_FLAG_SOFT_FLOAT}, \
- {"big-endian", ARM_FLAG_BIG_END}, \
- {"be", ARM_FLAG_BIG_END}, \
- {"little-endian", -ARM_FLAG_BIG_END}, \
- {"le", -ARM_FLAG_BIG_END}, \
- {"thumb-interwork", ARM_FLAG_THUMB}, \
- {"no-thumb-interwork", -ARM_FLAG_THUMB}, \
- {"words-little-endian", ARM_FLAG_LITTLE_WORDS}, \
- SUBTARGET_SWITCHES \
- {"", TARGET_DEFAULT } \
-}
-
-#define TARGET_OPTIONS \
-{ \
- {"cpu-", &target_cpu_name}, \
- {"cpu=", &target_cpu_name}, \
- {"fpe-", &target_fpe_name}, \
- {"fpe=", &target_fpe_name} \
-}
-
-/* Which processor we are running on. */
-enum processor_type
-{
- PROCESSOR_ARM2,
- PROCESSOR_ARM3,
- PROCESSOR_ARM6,
- PROCESSOR_ARM7
-};
-
-/* Recast the cpu class to be the cpu attribute. */
-
-/* Recast the cpu class to be the cpu attribute. */
-#define arm_cpu_attr ((enum attr_cpu)arm_cpu)
-
-extern enum processor_type arm_cpu;
-
-enum prog_mode_type
-{
- prog_mode26,
- prog_mode32
-};
-
-/* Recast the program mode class to be the prog_mode attribute */
-#define arm_prog_mode ((enum attr_prog_mode) arm_prgmode)
-
-extern enum prog_mode_type arm_prgmode;
-
-/* What sort of floating point unit do we have? Hardware or software.
- If software, is it issue 2 or issue 3? */
-enum floating_point_type
-{
- FP_HARD,
- FP_SOFT2,
- FP_SOFT3
-};
-
-/* Recast the floating point class to be the floating point attribute. */
-#define arm_fpu_attr ((enum attr_fpu) arm_fpu)
-
-extern enum floating_point_type arm_fpu;
-
-/* Nonzero if the processor has a fast multiply insn, and one that does
- a 64-bit multiply of two 32-bit values. */
-extern int arm_fast_multiply;
-
-/* Nonzero if this chip support the ARM Architecture 4 extensions */
-extern int arm_arch4;
-
-#ifndef TARGET_DEFAULT
-#define TARGET_DEFAULT 0
-#endif
-
-/* A particular target can define this to a particular cpu name, eg "arm710dmi"
- and the code generated should then be appropriate for that processor. */
-#ifndef ARM_CPU_NAME
-#define ARM_CPU_NAME NULL
-#endif
-
-/* The frame pointer register used in gcc has nothing to do with debugging;
- that is controlled by the APCS-FRAME option. */
-/* Not fully implemented yet */
-/* #define CAN_DEBUG_WITHOUT_FP 1 */
-
-#define TARGET_MEM_FUNCTIONS 1
-
-#define OVERRIDE_OPTIONS arm_override_options ()
-
-/* Target machine storage Layout. */
-
-
-/* Define this macro if it is advisable to hold scalars in registers
- in a wider mode than that declared by the program. In such cases,
- the value is constrained to be within the bounds of the declared
- type, but kept valid in the wider mode. The signedness of the
- extension may differ from that of the type. */
-
-/* It is far faster to zero extend chars than to sign extend them */
-
-#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
- if (GET_MODE_CLASS (MODE) == MODE_INT \
- && GET_MODE_SIZE (MODE) < 4) \
- { \
- if (MODE == QImode) \
- UNSIGNEDP = 1; \
- else if (MODE == HImode) \
- UNSIGNEDP = TARGET_SHORT_BY_BYTES != 0; \
- (MODE) = SImode; \
- }
-
-/* Define for XFmode extended real floating point support.
- This will automatically cause REAL_ARITHMETIC to be defined. */
-/* For the ARM:
- I think I have added all the code to make this work. Unfortunately,
- early releases of the floating point emulation code on RISCiX used a
- different format for extended precision numbers. On my RISCiX box there
- is a bug somewhere which causes the machine to lock up when running enquire
- with long doubles. There is the additional aspect that Norcroft C
- treats long doubles as doubles and we ought to remain compatible.
- Perhaps someone with an FPA coprocessor and not running RISCiX would like
- to try this someday. */
-/* #define LONG_DOUBLE_TYPE_SIZE 96 */
-
-/* Disable XFmode patterns in md file */
-#define ENABLE_XF_PATTERNS 0
-
-/* Define if you don't want extended real, but do want to use the
- software floating point emulator for REAL_ARITHMETIC and
- decimal <-> binary conversion. */
-/* See comment above */
-#define REAL_ARITHMETIC
-
-/* Define this if most significant bit is lowest numbered
- in instructions that operate on numbered bit-fields. */
-#define BITS_BIG_ENDIAN 0
-
-/* Define this if most significant byte of a word is the lowest numbered.
- Most ARM processors are run in little endian mode, so that is the default.
- If you want to have it run-time selectable, change the definition in a
- cover file to be TARGET_BIG_ENDIAN. */
-#define BYTES_BIG_ENDIAN (TARGET_BIG_END != 0)
-
-/* Define this if most significant word of a multiword number is the lowest
- numbered.
- This is always false, even when in big-endian mode. */
-#define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN && ! TARGET_LITTLE_WORDS)
-
-/* LIBGCC2_WORDS_BIG_ENDIAN has to be a constant, so we define this based
- on processor pre-defineds when compiling libgcc2.c. */
-#if defined(__ARMEB__) && !defined(__ARMWEL__)
-#define LIBGCC2_WORDS_BIG_ENDIAN 1
-#else
-#define LIBGCC2_WORDS_BIG_ENDIAN 0
-#endif
-
-/* Define this if most significant word of doubles is the lowest numbered.
- This is always true, even when in little-endian mode. */
-#define FLOAT_WORDS_BIG_ENDIAN 1
-
-/* Number of bits in an addressable storage unit */
-#define BITS_PER_UNIT 8
-
-#define BITS_PER_WORD 32
-
-#define UNITS_PER_WORD 4
-
-#define POINTER_SIZE 32
-
-#define PARM_BOUNDARY 32
-
-#define STACK_BOUNDARY 32
-
-#define FUNCTION_BOUNDARY 32
-
-#define EMPTY_FIELD_BOUNDARY 32
-
-#define BIGGEST_ALIGNMENT 32
-
-/* Make strings word-aligned so strcpy from constants will be faster. */
-#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
- (TREE_CODE (EXP) == STRING_CST \
- && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
-
-/* Every structures size must be a multiple of 32 bits. */
-#define STRUCTURE_SIZE_BOUNDARY 32
-
-/* Non-zero if move instructions will actually fail to work
- when given unaligned data. */
-#define STRICT_ALIGNMENT 1
-
-#define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
-
-
-/* Standard register usage. */
-
-/* Register allocation in ARM Procedure Call Standard (as used on RISCiX):
- (S - saved over call).
-
- r0 * argument word/integer result
- r1-r3 argument word
-
- r4-r8 S register variable
- r9 S (rfp) register variable (real frame pointer)
-
- r10 F S (sl) stack limit (not currently used)
- r11 F S (fp) argument pointer
- r12 (ip) temp workspace
- r13 F S (sp) lower end of current stack frame
- r14 (lr) link address/workspace
- r15 F (pc) program counter
-
- f0 floating point result
- f1-f3 floating point scratch
-
- f4-f7 S floating point variable
-
- cc This is NOT a real register, but is used internally
- to represent things that use or set the condition
- codes.
- sfp This isn't either. It is used during rtl generation
- since the offset between the frame pointer and the
- auto's isn't known until after register allocation.
- afp Nor this, we only need this because of non-local
- goto. Without it fp appears to be used and the
- elimination code won't get rid of sfp. It tracks
- fp exactly at all times.
-
- *: See CONDITIONAL_REGISTER_USAGE */
-
-/* The stack backtrace structure is as follows:
- fp points to here: | save code pointer | [fp]
- | return link value | [fp, #-4]
- | return sp value | [fp, #-8]
- | return fp value | [fp, #-12]
- [| saved r10 value |]
- [| saved r9 value |]
- [| saved r8 value |]
- [| saved r7 value |]
- [| saved r6 value |]
- [| saved r5 value |]
- [| saved r4 value |]
- [| saved r3 value |]
- [| saved r2 value |]
- [| saved r1 value |]
- [| saved r0 value |]
- [| saved f7 value |] three words
- [| saved f6 value |] three words
- [| saved f5 value |] three words
- [| saved f4 value |] three words
- r0-r3 are not normally saved in a C function. */
-
-/* The number of hard registers is 16 ARM + 8 FPU + 1 CC + 1 SFP. */
-#define FIRST_PSEUDO_REGISTER 27
-
-/* 1 for registers that have pervasive standard uses
- and are not available for the register allocator. */
-#define FIXED_REGISTERS \
-{ \
- 0,0,0,0,0,0,0,0, \
- 0,0,1,1,0,1,0,1, \
- 0,0,0,0,0,0,0,0, \
- 1,1,1 \
-}
-
-/* 1 for registers not available across function calls.
- These must include the FIXED_REGISTERS and also any
- registers that can be used without being saved.
- The latter must include the registers where values are returned
- and the register where structure-value addresses are passed.
- Aside from that, you can include as many other registers as you like.
- The CC is not preserved over function calls on the ARM 6, so it is
- easier to assume this for all. SFP is preserved, since FP is. */
-#define CALL_USED_REGISTERS \
-{ \
- 1,1,1,1,0,0,0,0, \
- 0,0,1,1,1,1,1,1, \
- 1,1,1,1,0,0,0,0, \
- 1,1,1 \
-}
-
-/* If doing stupid life analysis, avoid a bug causing a return value r0 to be
- trampled. This effectively reduces the number of available registers by 1.
- XXX It is a hack, I know.
- XXX Is this still needed? */
-#define CONDITIONAL_REGISTER_USAGE \
-{ \
- if (obey_regdecls) \
- fixed_regs[0] = 1; \
- if (TARGET_SOFT_FLOAT) \
- { \
- int regno; \
- for (regno = 16; regno < 24; ++regno) \
- fixed_regs[regno] = call_used_regs[regno] = 1; \
- } \
-}
-
-/* Return number of consecutive hard regs needed starting at reg REGNO
- to hold something of mode MODE.
- This is ordinarily the length in words of a value of mode MODE
- but can be less for certain modes in special long registers.
-
- On the ARM regs are UNITS_PER_WORD bits wide; FPU regs can hold any FP
- mode. */
-#define HARD_REGNO_NREGS(REGNO, MODE) \
- (((REGNO) >= 16 && REGNO != FRAME_POINTER_REGNUM \
- && (REGNO) != ARG_POINTER_REGNUM) ? 1 \
- : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
-
-/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
- This is TRUE for ARM regs since they can hold anything, and TRUE for FPU
- regs holding FP. */
-#define HARD_REGNO_MODE_OK(REGNO, MODE) \
- ((GET_MODE_CLASS (MODE) == MODE_CC) ? (REGNO == CC_REGNUM) : \
- ((REGNO) < 16 || REGNO == FRAME_POINTER_REGNUM \
- || REGNO == ARG_POINTER_REGNUM \
- || GET_MODE_CLASS (MODE) == MODE_FLOAT))
-
-/* Value is 1 if it is a good idea to tie two pseudo registers
- when one has mode MODE1 and one has mode MODE2.
- If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
- for any hard reg, then this must be 0 for correct output. */
-#define MODES_TIEABLE_P(MODE1, MODE2) \
- (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
-
-/* Specify the registers used for certain standard purposes.
- The values of these macros are register numbers. */
-
-/* Define this if the program counter is overloaded on a register. */
-#define PC_REGNUM 15
-
-/* Register to use for pushing function arguments. */
-#define STACK_POINTER_REGNUM 13
-
-/* Base register for access to local variables of the function. */
-#define FRAME_POINTER_REGNUM 25
-
-/* Define this to be where the real frame pointer is if it is not possible to
- work out the offset between the frame pointer and the automatic variables
- until after register allocation has taken place. FRAME_POINTER_REGNUM
- should point to a special register that we will make sure is eliminated. */
-#define HARD_FRAME_POINTER_REGNUM 11
-
-/* Value should be nonzero if functions must have frame pointers.
- Zero means the frame pointer need not be set up (and parms may be accessed
- via the stack pointer) in functions that seem suitable.
- If we have to have a frame pointer we might as well make use of it.
- APCS says that the frame pointer does not need to be pushed in leaf
- functions. */
-#define FRAME_POINTER_REQUIRED \
- (current_function_has_nonlocal_label || (TARGET_APCS && !leaf_function_p ()))
-
-/* Base register for access to arguments of the function. */
-#define ARG_POINTER_REGNUM 26
-
-/* The native (Norcroft) Pascal compiler for the ARM passes the static chain
- as an invisible last argument (possible since varargs don't exist in
- Pascal), so the following is not true. */
-#define STATIC_CHAIN_REGNUM 8
-
-/* Register in which address to store a structure value
- is passed to a function. */
-#define STRUCT_VALUE_REGNUM 0
-
-/* Internal, so that we don't need to refer to a raw number */
-#define CC_REGNUM 24
-
-/* The order in which register should be allocated. It is good to use ip
- since no saving is required (though calls clobber it) and it never contains
- function parameters. It is quite good to use lr since other calls may
- clobber it anyway. Allocate r0 through r3 in reverse order since r3 is
- least likely to contain a function parameter; in addition results are
- returned in r0.
- */
-#define REG_ALLOC_ORDER \
-{ \
- 3, 2, 1, 0, 12, 14, 4, 5, \
- 6, 7, 8, 10, 9, 11, 13, 15, \
- 16, 17, 18, 19, 20, 21, 22, 23, \
- 24, 25 \
-}
-
-/* Register and constant classes. */
-
-/* Register classes: all ARM regs or all FPU regs---simple! */
-enum reg_class
-{
- NO_REGS,
- FPU_REGS,
- GENERAL_REGS,
- ALL_REGS,
- LIM_REG_CLASSES
-};
-
-#define N_REG_CLASSES (int) LIM_REG_CLASSES
-
-/* Give names of register classes as strings for dump file. */
-#define REG_CLASS_NAMES \
-{ \
- "NO_REGS", \
- "FPU_REGS", \
- "GENERAL_REGS", \
- "ALL_REGS", \
-}
-
-/* Define which registers fit in which classes.
- This is an initializer for a vector of HARD_REG_SET
- of length N_REG_CLASSES. */
-#define REG_CLASS_CONTENTS \
-{ \
- 0x0000000, /* NO_REGS */ \
- 0x0FF0000, /* FPU_REGS */ \
- 0x200FFFF, /* GENERAL_REGS */ \
- 0x2FFFFFF /* ALL_REGS */ \
-}
-
-/* The same information, inverted:
- Return the class number of the smallest class containing
- reg number REGNO. This could be a conditional expression
- or could index an array. */
-#define REGNO_REG_CLASS(REGNO) \
- (((REGNO) < 16 || REGNO == FRAME_POINTER_REGNUM \
- || REGNO == ARG_POINTER_REGNUM) \
- ? GENERAL_REGS : (REGNO) == CC_REGNUM \
- ? NO_REGS : FPU_REGS)
-
-/* The class value for index registers, and the one for base regs. */
-#define INDEX_REG_CLASS GENERAL_REGS
-#define BASE_REG_CLASS GENERAL_REGS
-
-/* Get reg_class from a letter such as appears in the machine description.
- We only need constraint `f' for FPU_REGS (`r' == GENERAL_REGS). */
-#define REG_CLASS_FROM_LETTER(C) \
- ((C)=='f' ? FPU_REGS : NO_REGS)
-
-/* The letters I, J, K, L and M in a register constraint string
- can be used to stand for particular ranges of immediate operands.
- This macro defines what the ranges are.
- C is the letter, and VALUE is a constant value.
- Return 1 if VALUE is in the range specified by C.
- I: immediate arithmetic operand (i.e. 8 bits shifted as required).
- J: valid indexing constants.
- K: ~value ok in rhs argument of data operand.
- L: -value ok in rhs argument of data operand.
- M: 0..32, or a power of 2 (for shifts, or mult done by shift). */
-#define CONST_OK_FOR_LETTER_P(VALUE, C) \
- ((C) == 'I' ? const_ok_for_arm (VALUE) : \
- (C) == 'J' ? ((VALUE) < 4096 && (VALUE) > -4096) : \
- (C) == 'K' ? (const_ok_for_arm (~(VALUE))) : \
- (C) == 'L' ? (const_ok_for_arm (-(VALUE))) : \
- (C) == 'M' ? (((VALUE >= 0 && VALUE <= 32)) \
- || (((VALUE) & ((VALUE) - 1)) == 0)) \
- : 0)
-
-/* For the ARM, `Q' means that this is a memory operand that is just
- an offset from a register.
- `S' means any symbol that has the SYMBOL_REF_FLAG set or a CONSTANT_POOL
- address. This means that the symbol is in the text segment and can be
- accessed without using a load. */
-
-#define EXTRA_CONSTRAINT(OP, C) \
- ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
- : (C) == 'R' ? (GET_CODE (OP) == MEM \
- && GET_CODE (XEXP (OP, 0)) == SYMBOL_REF \
- && CONSTANT_POOL_ADDRESS_P (XEXP (OP, 0))) \
- : (C) == 'S' ? (optimize > 0 && CONSTANT_ADDRESS_P (OP)) : 0)
-
-/* Constant letter 'G' for the FPU immediate constants.
- 'H' means the same constant negated. */
-#define CONST_DOUBLE_OK_FOR_LETTER_P(X,C) \
- ((C) == 'G' ? const_double_rtx_ok_for_fpu (X) \
- : (C) == 'H' ? neg_const_double_rtx_ok_for_fpu (X) : 0)
-
-/* Given an rtx X being reloaded into a reg required to be
- in class CLASS, return the class of reg to actually use.
- In general this is just CLASS; but on some machines
- in some cases it is preferable to use a more restrictive class. */
-#define PREFERRED_RELOAD_CLASS(X, CLASS) (CLASS)
-
-/* Return the register class of a scratch register needed to copy IN into
- or out of a register in CLASS in MODE. If it can be done directly,
- NO_REGS is returned. */
-#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,X) \
- (((MODE) == HImode && ! arm_arch4 && true_regnum (X) == -1) \
- ? GENERAL_REGS : NO_REGS)
-
-/* If we need to load shorts byte-at-a-time, then we need a scratch. */
-#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,X) \
- (((MODE) == HImode && TARGET_SHORT_BY_BYTES && true_regnum (X) == -1) \
- ? GENERAL_REGS : NO_REGS)
-
-/* Return the maximum number of consecutive registers
- needed to represent mode MODE in a register of class CLASS.
- ARM regs are UNITS_PER_WORD bits while FPU regs can hold any FP mode */
-#define CLASS_MAX_NREGS(CLASS, MODE) \
- ((CLASS) == FPU_REGS ? 1 \
- : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
-
-/* Moves between FPU_REGS and GENERAL_REGS are two memory insns. */
-#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
- ((((CLASS1) == FPU_REGS && (CLASS2) != FPU_REGS) \
- || ((CLASS2) == FPU_REGS && (CLASS1) != FPU_REGS)) \
- ? 20 : 2)
-
-/* Stack layout; function entry, exit and calling. */
-
-/* Define this if pushing a word on the stack
- makes the stack pointer a smaller address. */
-#define STACK_GROWS_DOWNWARD 1
-
-/* Define this if the nominal address of the stack frame
- is at the high-address end of the local variables;
- that is, each additional local variable allocated
- goes at a more negative offset in the frame. */
-#define FRAME_GROWS_DOWNWARD 1
-
-/* Offset within stack frame to start allocating local variables at.
- If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
- first local allocated. Otherwise, it is the offset to the BEGINNING
- of the first local allocated. */
-#define STARTING_FRAME_OFFSET 0
-
-/* If we generate an insn to push BYTES bytes,
- this says how many the stack pointer really advances by. */
-#define PUSH_ROUNDING(NPUSHED) (((NPUSHED) + 3) & ~3)
-
-/* Offset of first parameter from the argument pointer register value. */
-#define FIRST_PARM_OFFSET(FNDECL) 4
-
-/* Value is the number of byte of arguments automatically
- popped when returning from a subroutine call.
- FUNDECL is the declaration node of the function (as a tree),
- FUNTYPE is the data type of the function (as a tree),
- or for a library call it is an identifier node for the subroutine name.
- SIZE is the number of bytes of arguments passed on the stack.
-
- On the ARM, the caller does not pop any of its arguments that were passed
- on the stack. */
-#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
-
-/* Define how to find the value returned by a function.
- VALTYPE is the data type of the value (as a tree).
- If the precise function being called is known, FUNC is its FUNCTION_DECL;
- otherwise, FUNC is 0. */
-#define FUNCTION_VALUE(VALTYPE, FUNC) \
- (GET_MODE_CLASS (TYPE_MODE (VALTYPE)) == MODE_FLOAT && TARGET_HARD_FLOAT \
- ? gen_rtx (REG, TYPE_MODE (VALTYPE), 16) \
- : gen_rtx (REG, TYPE_MODE (VALTYPE), 0))
-
-/* Define how to find the value returned by a library function
- assuming the value has mode MODE. */
-#define LIBCALL_VALUE(MODE) \
- (GET_MODE_CLASS (MODE) == MODE_FLOAT && TARGET_HARD_FLOAT \
- ? gen_rtx (REG, MODE, 16) \
- : gen_rtx (REG, MODE, 0))
-
-/* 1 if N is a possible register number for a function value.
- On the ARM, only r0 and f0 can return results. */
-#define FUNCTION_VALUE_REGNO_P(REGNO) \
- ((REGNO) == 0 || ((REGNO) == 16) && TARGET_HARD_FLOAT)
-
-/* How large values are returned */
-/* A C expression which can inhibit the returning of certain function values
- in registers, based on the type of value. */
-#define RETURN_IN_MEMORY(TYPE) \
- (TYPE_MODE ((TYPE)) == BLKmode || \
- (AGGREGATE_TYPE_P ((TYPE)) && arm_return_in_memory ((TYPE))))
-
-/* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return
- values must be in memory. On the ARM, they need only do so if larger
- than a word, or if they contain elements offset from zero in the struct. */
-#define DEFAULT_PCC_STRUCT_RETURN 0
-
-/* Define where to put the arguments to a function.
- Value is zero to push the argument on the stack,
- or a hard register in which to store the argument.
-
- MODE is the argument's machine mode.
- TYPE is the data type of the argument (as a tree).
- This is null for libcalls where that information may
- not be available.
- CUM is a variable of type CUMULATIVE_ARGS which gives info about
- the preceding args and about the function being called.
- NAMED is nonzero if this argument is a named parameter
- (otherwise it is an extra parameter matching an ellipsis).
-
- On the ARM, normally the first 16 bytes are passed in registers r0-r3; all
- other arguments are passed on the stack. If (NAMED == 0) (which happens
- only in assign_parms, since SETUP_INCOMING_VARARGS is defined), say it is
- passed in the stack (function_prologue will indeed make it pass in the
- stack if necessary). */
-#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
- ((NAMED) \
- ? ((CUM) >= 16 ? 0 : gen_rtx (REG, MODE, (CUM) / 4)) \
- : 0)
-
-/* For an arg passed partly in registers and partly in memory,
- this is the number of registers used.
- For args passed entirely in registers or entirely in memory, zero. */
-#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
- ((CUM) < 16 && 16 < (CUM) + ((MODE) != BLKmode \
- ? GET_MODE_SIZE (MODE) \
- : int_size_in_bytes (TYPE)) \
- ? 4 - (CUM) / 4 : 0)
-
-/* A C type for declaring a variable that is used as the first argument of
- `FUNCTION_ARG' and other related values. For some target machines, the
- type `int' suffices and can hold the number of bytes of argument so far.
-
- On the ARM, this is the number of bytes of arguments scanned so far. */
-#define CUMULATIVE_ARGS int
-
-/* Initialize a variable CUM of type CUMULATIVE_ARGS
- for a call to a function whose data type is FNTYPE.
- For a library call, FNTYPE is 0.
- On the ARM, the offset starts at 0. */
-#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME) \
- ((CUM) = (((FNTYPE) && aggregate_value_p (TREE_TYPE ((FNTYPE)))) ? 4 : 0))
-
-/* Update the data in CUM to advance over an argument
- of mode MODE and data type TYPE.
- (TYPE is null for libcalls where that information may not be available.) */
-#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
- (CUM) += ((MODE) != BLKmode \
- ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
- : (int_size_in_bytes (TYPE) + 3) & ~3) \
-
-/* 1 if N is a possible register number for function argument passing.
- On the ARM, r0-r3 are used to pass args. */
-#define FUNCTION_ARG_REGNO_P(REGNO) \
- ((REGNO) >= 0 && (REGNO) <= 3)
-
-/* Perform any actions needed for a function that is receiving a variable
- number of arguments. CUM is as above. MODE and TYPE are the mode and type
- of the current parameter. PRETEND_SIZE is a variable that should be set to
- the amount of stack that must be pushed by the prolog to pretend that our
- caller pushed it.
-
- Normally, this macro will push all remaining incoming registers on the
- stack and set PRETEND_SIZE to the length of the registers pushed.
-
- On the ARM, PRETEND_SIZE is set in order to have the prologue push the last
- named arg and all anonymous args onto the stack.
- XXX I know the prologue shouldn't be pushing registers, but it is faster
- that way. */
-#define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PRETEND_SIZE, NO_RTL) \
-{ \
- extern int current_function_anonymous_args; \
- current_function_anonymous_args = 1; \
- if ((CUM) < 16) \
- (PRETEND_SIZE) = 16 - (CUM); \
-}
-
-/* Generate assembly output for the start of a function. */
-#define FUNCTION_PROLOGUE(STREAM, SIZE) \
- output_func_prologue ((STREAM), (SIZE))
-
-/* Call the function profiler with a given profile label. The Acorn compiler
- puts this BEFORE the prolog but gcc pust it afterwards. The ``mov ip,lr''
- seems like a good idea to stick with cc convention. ``prof'' doesn't seem
- to mind about this! */
-#define FUNCTION_PROFILER(STREAM,LABELNO) \
-{ \
- fprintf(STREAM, "\tmov\t%sip, %slr\n", REGISTER_PREFIX, REGISTER_PREFIX); \
- fprintf(STREAM, "\tbl\tmcount\n"); \
- fprintf(STREAM, "\t.word\tLP%d\n", (LABELNO)); \
-}
-
-/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
- the stack pointer does not matter. The value is tested only in
- functions that have frame pointers.
- No definition is equivalent to always zero.
-
- On the ARM, the function epilogue recovers the stack pointer from the
- frame. */
-#define EXIT_IGNORE_STACK 1
-
-/* Generate the assembly code for function exit. */
-#define FUNCTION_EPILOGUE(STREAM, SIZE) \
- output_func_epilogue ((STREAM), (SIZE))
-
-/* Determine if the epilogue should be output as RTL.
- You should override this if you define FUNCTION_EXTRA_EPILOGUE. */
-#define USE_RETURN_INSN use_return_insn ()
-
-/* Definitions for register eliminations.
-
- This is an array of structures. Each structure initializes one pair
- of eliminable registers. The "from" register number is given first,
- followed by "to". Eliminations of the same "from" register are listed
- in order of preference.
-
- We have two registers that can be eliminated on the ARM. First, the
- arg pointer register can often be eliminated in favor of the stack
- pointer register. Secondly, the pseudo frame pointer register can always
- be eliminated; it is replaced with either the stack or the real frame
- pointer. */
-
-#define ELIMINABLE_REGS \
-{{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
- {ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
- {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
- {FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
-
-/* Given FROM and TO register numbers, say whether this elimination is allowed.
- Frame pointer elimination is automatically handled.
-
- All eliminations are permissible. Note that ARG_POINTER_REGNUM and
- HARD_FRAME_POINTER_REGNUM are in fact the same thing. If we need a frame
- pointer, we must eliminate FRAME_POINTER_REGNUM into
- HARD_FRAME_POINTER_REGNUM and not into STACK_POINTER_REGNUM. */
-#define CAN_ELIMINATE(FROM, TO) \
- (((TO) == STACK_POINTER_REGNUM && frame_pointer_needed) ? 0 : 1)
-
-/* Define the offset between two registers, one to be eliminated, and the other
- its replacement, at the start of a routine. */
-#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
-{ \
- int volatile_func = arm_volatile_func (); \
- if ((FROM) == ARG_POINTER_REGNUM && (TO) == HARD_FRAME_POINTER_REGNUM)\
- (OFFSET) = 0; \
- else if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM)\
- (OFFSET) = (get_frame_size () + 3 & ~3); \
- else \
- { \
- int regno; \
- int offset = 12; \
- int saved_hard_reg = 0; \
- \
- if (! volatile_func) \
- { \
- for (regno = 0; regno <= 10; regno++) \
- if (regs_ever_live[regno] && ! call_used_regs[regno]) \
- saved_hard_reg = 1, offset += 4; \
- for (regno = 16; regno <=23; regno++) \
- if (regs_ever_live[regno] && ! call_used_regs[regno]) \
- offset += 12; \
- } \
- if ((FROM) == FRAME_POINTER_REGNUM) \
- (OFFSET) = -offset; \
- else \
- { \
- if (! frame_pointer_needed) \
- offset -= 16; \
- if (! volatile_func && (regs_ever_live[14] || saved_hard_reg)) \
- offset += 4; \
- (OFFSET) = (get_frame_size () + 3 & ~3) + offset; \
- } \
- } \
-}
-
-/* Output assembler code for a block containing the constant parts
- of a trampoline, leaving space for the variable parts.
-
- On the ARM, (if r8 is the static chain regnum, and remembering that
- referencing pc adds an offset of 8) the trampoline looks like:
- ldr r8, [pc, #0]
- ldr pc, [pc]
- .word static chain value
- .word function's address
- ??? FIXME: When the trampoline returns, r8 will be clobbered. */
-#define TRAMPOLINE_TEMPLATE(FILE) \
-{ \
- fprintf ((FILE), "\tldr\t%sr8, [%spc, #0]\n", \
- REGISTER_PREFIX, REGISTER_PREFIX); \
- fprintf ((FILE), "\tldr\t%spc, [%spc, #0]\n", \
- REGISTER_PREFIX, REGISTER_PREFIX); \
- fprintf ((FILE), "\t.word\t0\n"); \
- fprintf ((FILE), "\t.word\t0\n"); \
-}
-
-/* Length in units of the trampoline for entering a nested function. */
-#define TRAMPOLINE_SIZE 16
-
-/* Alignment required for a trampoline in units. */
-#define TRAMPOLINE_ALIGN 4
-
-/* Emit RTL insns to initialize the variable parts of a trampoline.
- FNADDR is an RTX for the address of the function's pure code.
- CXT is an RTX for the static chain value for the function. */
-#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
-{ \
- emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 8)), \
- (CXT)); \
- emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 12)), \
- (FNADDR)); \
-}
-
-
-/* Addressing modes, and classification of registers for them. */
-
-#define HAVE_POST_INCREMENT 1
-#define HAVE_PRE_INCREMENT 1
-#define HAVE_POST_DECREMENT 1
-#define HAVE_PRE_DECREMENT 1
-
-/* Macros to check register numbers against specific register classes. */
-
-/* These assume that REGNO is a hard or pseudo reg number.
- They give nonzero only if REGNO is a hard reg of the suitable class
- or a pseudo reg currently allocated to a suitable hard reg.
- Since they use reg_renumber, they are safe only once reg_renumber
- has been allocated, which happens in local-alloc.c.
-
- On the ARM, don't allow the pc to be used. */
-#define REGNO_OK_FOR_BASE_P(REGNO) \
- ((REGNO) < 15 || (REGNO) == FRAME_POINTER_REGNUM \
- || (REGNO) == ARG_POINTER_REGNUM \
- || (unsigned) reg_renumber[(REGNO)] < 15 \
- || (unsigned) reg_renumber[(REGNO)] == FRAME_POINTER_REGNUM \
- || (unsigned) reg_renumber[(REGNO)] == ARG_POINTER_REGNUM)
-#define REGNO_OK_FOR_INDEX_P(REGNO) \
- REGNO_OK_FOR_BASE_P(REGNO)
-
-/* Maximum number of registers that can appear in a valid memory address.
- Shifts in addresses can't be by a register. */
-
-#define MAX_REGS_PER_ADDRESS 2
-
-/* Recognize any constant value that is a valid address. */
-/* XXX We can address any constant, eventually... */
-
-#ifdef AOF_ASSEMBLER
-
-#define CONSTANT_ADDRESS_P(X) \
- (GET_CODE (X) == SYMBOL_REF \
- && CONSTANT_POOL_ADDRESS_P (X))
-
-#else
-
-#define CONSTANT_ADDRESS_P(X) \
- (GET_CODE (X) == SYMBOL_REF \
- && (CONSTANT_POOL_ADDRESS_P (X) \
- || (optimize > 0 && SYMBOL_REF_FLAG (X))))
-
-#endif /* AOF_ASSEMBLER */
-
-/* Nonzero if the constant value X is a legitimate general operand.
- It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
-
- On the ARM, allow any integer (invalid ones are removed later by insn
- patterns), nice doubles and symbol_refs which refer to the function's
- constant pool XXX. */
-#define LEGITIMATE_CONSTANT_P(X) (! label_mentioned_p (X))
-
-/* Symbols in the text segment can be accessed without indirecting via the
- constant pool; it may take an extra binary operation, but this is still
- faster than indirecting via memory. Don't do this when not optimizing,
- since we won't be calculating al of the offsets necessary to do this
- simplification. */
-/* This doesn't work with AOF syntax, since the string table may be in
- a different AREA. */
-#ifndef AOF_ASSEMBLER
-#define ENCODE_SECTION_INFO(decl) \
-{ \
- if (optimize > 0 && TREE_CONSTANT (decl) \
- && (!flag_writable_strings || TREE_CODE (decl) != STRING_CST)) \
- { \
- rtx rtl = (TREE_CODE_CLASS (TREE_CODE (decl)) != 'd' \
- ? TREE_CST_RTL (decl) : DECL_RTL (decl)); \
- SYMBOL_REF_FLAG (XEXP (rtl, 0)) = 1; \
- } \
-}
-#endif
-/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
- and check its validity for a certain class.
- We have two alternate definitions for each of them.
- The usual definition accepts all pseudo regs; the other rejects
- them unless they have been allocated suitable hard regs.
- The symbol REG_OK_STRICT causes the latter definition to be used. */
-#ifndef REG_OK_STRICT
-
-/* Nonzero if X is a hard reg that can be used as a base reg
- or if it is a pseudo reg. */
-#define REG_OK_FOR_BASE_P(X) \
- (REGNO (X) < 16 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
- || REGNO (X) == FRAME_POINTER_REGNUM || REGNO (X) == ARG_POINTER_REGNUM)
-
-/* Nonzero if X is a hard reg that can be used as an index
- or if it is a pseudo reg. */
-#define REG_OK_FOR_INDEX_P(X) \
- REG_OK_FOR_BASE_P(X)
-
-#define REG_OK_FOR_PRE_POST_P(X) \
- (REGNO (X) < 16 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
- || REGNO (X) == FRAME_POINTER_REGNUM || REGNO (X) == ARG_POINTER_REGNUM)
-
-#else
-
-/* Nonzero if X is a hard reg that can be used as a base reg. */
-#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
-
-/* Nonzero if X is a hard reg that can be used as an index. */
-#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
-
-#define REG_OK_FOR_PRE_POST_P(X) \
- (REGNO (X) < 16 || (unsigned) reg_renumber[REGNO (X)] < 16 \
- || REGNO (X) == FRAME_POINTER_REGNUM || REGNO (X) == ARG_POINTER_REGNUM \
- || (unsigned) reg_renumber[REGNO (X)] == FRAME_POINTER_REGNUM \
- || (unsigned) reg_renumber[REGNO (X)] == ARG_POINTER_REGNUM)
-
-#endif
-
-/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
- that is a valid memory address for an instruction.
- The MODE argument is the machine mode for the MEM expression
- that wants to use this address.
-
- The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS. */
-#define BASE_REGISTER_RTX_P(X) \
- (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))
-
-#define INDEX_REGISTER_RTX_P(X) \
- (GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X))
-
-/* A C statement (sans semicolon) to jump to LABEL for legitimate index RTXs
- used by the macro GO_IF_LEGITIMATE_ADDRESS. Floating point indices can
- only be small constants. */
-#define GO_IF_LEGITIMATE_INDEX(MODE, BASE_REGNO, INDEX, LABEL) \
-do \
-{ \
- HOST_WIDE_INT range; \
- enum rtx_code code = GET_CODE (INDEX); \
- \
- if (TARGET_HARD_FLOAT && GET_MODE_CLASS (MODE) == MODE_FLOAT) \
- { \
- if (code == CONST_INT && INTVAL (INDEX) < 1024 \
- && INTVAL (INDEX) > -1024 \
- && (INTVAL (INDEX) & 3) == 0) \
- goto LABEL; \
- } \
- else \
- { \
- if (INDEX_REGISTER_RTX_P (INDEX) && GET_MODE_SIZE (MODE) <= 4) \
- goto LABEL; \
- if (GET_MODE_SIZE (MODE) <= 4 && code == MULT \
- && (! arm_arch4 || (MODE) != HImode)) \
- { \
- rtx xiop0 = XEXP (INDEX, 0); \
- rtx xiop1 = XEXP (INDEX, 1); \
- if (INDEX_REGISTER_RTX_P (xiop0) \
- && power_of_two_operand (xiop1, SImode)) \
- goto LABEL; \
- if (INDEX_REGISTER_RTX_P (xiop1) \
- && power_of_two_operand (xiop0, SImode)) \
- goto LABEL; \
- } \
- if (GET_MODE_SIZE (MODE) <= 4 \
- && (code == LSHIFTRT || code == ASHIFTRT \
- || code == ASHIFT || code == ROTATERT) \
- && (! arm_arch4 || (MODE) != HImode)) \
- { \
- rtx op = XEXP (INDEX, 1); \
- if (INDEX_REGISTER_RTX_P (XEXP (INDEX, 0)) \
- && GET_CODE (op) == CONST_INT && INTVAL (op) > 0 \
- && INTVAL (op) <= 31) \
- goto LABEL; \
- } \
- range = (MODE) == HImode ? (arm_arch4 ? 256 : 4095) : 4096; \
- if (code == CONST_INT && INTVAL (INDEX) < range \
- && INTVAL (INDEX) > -range) \
- goto LABEL; \
- } \
-} while (0)
-
-/* Jump to LABEL if X is a valid address RTX. This must also take
- REG_OK_STRICT into account when deciding about valid registers, but it uses
- the above macros so we are in luck. Allow REG, REG+REG, REG+INDEX,
- INDEX+REG, REG-INDEX, and non floating SYMBOL_REF to the constant pool.
- Allow REG-only and AUTINC-REG if handling TImode or HImode. Other symbol
- refs must be forced though a static cell to ensure addressability. */
-#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
-{ \
- if (BASE_REGISTER_RTX_P (X)) \
- goto LABEL; \
- else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == PRE_DEC) \
- && GET_CODE (XEXP (X, 0)) == REG \
- && REG_OK_FOR_PRE_POST_P (XEXP (X, 0))) \
- goto LABEL; \
- else if (GET_MODE_SIZE (MODE) >= 4 && reload_completed \
- && (GET_CODE (X) == LABEL_REF \
- || (GET_CODE (X) == CONST \
- && GET_CODE (XEXP ((X), 0)) == PLUS \
- && GET_CODE (XEXP (XEXP ((X), 0), 0)) == LABEL_REF \
- && GET_CODE (XEXP (XEXP ((X), 0), 1)) == CONST_INT)))\
- goto LABEL; \
- else if ((MODE) == TImode) \
- ; \
- else if ((MODE) == DImode || (TARGET_SOFT_FLOAT && (MODE) == DFmode)) \
- { \
- if (GET_CODE (X) == PLUS && BASE_REGISTER_RTX_P (XEXP (X, 0)) \
- && GET_CODE (XEXP (X, 1)) == CONST_INT) \
- { \
- HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
- if (val == 4 || val == -4 || val == -8) \
- goto LABEL; \
- } \
- } \
- else if (GET_CODE (X) == PLUS) \
- { \
- rtx xop0 = XEXP(X,0); \
- rtx xop1 = XEXP(X,1); \
- \
- if (BASE_REGISTER_RTX_P (xop0)) \
- GO_IF_LEGITIMATE_INDEX (MODE, REGNO (xop0), xop1, LABEL); \
- else if (BASE_REGISTER_RTX_P (xop1)) \
- GO_IF_LEGITIMATE_INDEX (MODE, REGNO (xop1), xop0, LABEL); \
- } \
- else if (GET_CODE (X) == MINUS) \
- { \
- rtx xop0 = XEXP (X,0); \
- rtx xop1 = XEXP (X,1); \
- \
- if (BASE_REGISTER_RTX_P (xop0)) \
- GO_IF_LEGITIMATE_INDEX (MODE, -1, xop1, LABEL); \
- } \
- else if (GET_MODE_CLASS (MODE) != MODE_FLOAT \
- && GET_CODE (X) == SYMBOL_REF \
- && CONSTANT_POOL_ADDRESS_P (X)) \
- goto LABEL; \
- else if ((GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_DEC) \
- && (GET_MODE_SIZE (MODE) <= 4) \
- && GET_CODE (XEXP (X, 0)) == REG \
- && REG_OK_FOR_PRE_POST_P (XEXP (X, 0))) \
- goto LABEL; \
-}
-
-/* Try machine-dependent ways of modifying an illegitimate address
- to be legitimate. If we find one, return the new, valid address.
- This macro is used in only one place: `memory_address' in explow.c.
-
- OLDX is the address as it was before break_out_memory_refs was called.
- In some cases it is useful to look at this to decide what needs to be done.
-
- MODE and WIN are passed so that this macro can use
- GO_IF_LEGITIMATE_ADDRESS.
-
- It is always safe for this macro to do nothing. It exists to recognize
- opportunities to optimize the output.
-
- On the ARM, try to convert [REG, #BIGCONST]
- into ADD BASE, REG, #UPPERCONST and [BASE, #VALIDCONST],
- where VALIDCONST == 0 in case of TImode. */
-#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
-{ \
- if (GET_CODE (X) == PLUS) \
- { \
- rtx xop0 = XEXP (X, 0); \
- rtx xop1 = XEXP (X, 1); \
- \
- if (CONSTANT_P (xop0) && ! symbol_mentioned_p (xop0)) \
- xop0 = force_reg (SImode, xop0); \
- if (CONSTANT_P (xop1) && ! symbol_mentioned_p (xop1)) \
- xop1 = force_reg (SImode, xop1); \
- if (BASE_REGISTER_RTX_P (xop0) && GET_CODE (xop1) == CONST_INT) \
- { \
- HOST_WIDE_INT n, low_n; \
- rtx base_reg, val; \
- n = INTVAL (xop1); \
- \
- if (MODE == DImode || (TARGET_SOFT_FLOAT && MODE == DFmode)) \
- { \
- low_n = n & 0x0f; \
- n &= ~0x0f; \
- if (low_n > 4) \
- { \
- n += 16; \
- low_n -= 16; \
- } \
- } \
- else \
- { \
- low_n = ((MODE) == TImode ? 0 \
- : n >= 0 ? (n & 0xfff) : -((-n) & 0xfff)); \
- n -= low_n; \
- } \
- base_reg = gen_reg_rtx (SImode); \
- val = force_operand (gen_rtx (PLUS, SImode, xop0, \
- GEN_INT (n)), NULL_RTX); \
- emit_move_insn (base_reg, val); \
- (X) = (low_n == 0 ? base_reg \
- : gen_rtx (PLUS, SImode, base_reg, GEN_INT (low_n))); \
- } \
- else if (xop0 != XEXP (X, 0) || xop1 != XEXP (x, 1)) \
- (X) = gen_rtx (PLUS, SImode, xop0, xop1); \
- } \
- else if (GET_CODE (X) == MINUS) \
- { \
- rtx xop0 = XEXP (X, 0); \
- rtx xop1 = XEXP (X, 1); \
- \
- if (CONSTANT_P (xop0)) \
- xop0 = force_reg (SImode, xop0); \
- if (CONSTANT_P (xop1) && ! symbol_mentioned_p (xop1)) \
- xop1 = force_reg (SImode, xop1); \
- if (xop0 != XEXP (X, 0) || xop1 != XEXP (X, 1)) \
- (X) = gen_rtx (MINUS, SImode, xop0, xop1); \
- } \
- if (memory_address_p (MODE, X)) \
- goto WIN; \
-}
-
-/* Go to LABEL if ADDR (a legitimate address expression)
- has an effect that depends on the machine mode it is used for. */
-#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
-{ \
- if (GET_CODE(ADDR) == PRE_DEC || GET_CODE(ADDR) == POST_DEC \
- || GET_CODE(ADDR) == PRE_INC || GET_CODE(ADDR) == POST_INC) \
- goto LABEL; \
-}
-
-/* Specify the machine mode that this machine uses
- for the index in the tablejump instruction. */
-#define CASE_VECTOR_MODE SImode
-
-/* Define this if the tablejump instruction expects the table
- to contain offsets from the address of the table.
- Do not define this if the table should contain absolute addresses. */
-/* #define CASE_VECTOR_PC_RELATIVE */
-
-/* Specify the tree operation to be used to convert reals to integers. */
-#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
-
-/* This is the kind of divide that is easiest to do in the general case. */
-#define EASY_DIV_EXPR TRUNC_DIV_EXPR
-
-/* signed 'char' is most compatible, but RISC OS wants it unsigned.
- unsigned is probably best, but may break some code. */
-#ifndef DEFAULT_SIGNED_CHAR
-#define DEFAULT_SIGNED_CHAR 0
-#endif
-
-/* Don't cse the address of the function being compiled. */
-#define NO_RECURSIVE_FUNCTION_CSE 1
-
-/* Max number of bytes we can move from memory to memory
- in one reasonably fast instruction. */
-#define MOVE_MAX 4
-
-/* Define if operations between registers always perform the operation
- on the full register even if a narrower mode is specified. */
-#define WORD_REGISTER_OPERATIONS
-
-/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
- will either zero-extend or sign-extend. The value of this macro should
- be the code that says which one of the two operations is implicitly
- done, NIL if none. */
-#define LOAD_EXTEND_OP(MODE) \
- ((arm_arch4 || (MODE) == QImode) ? ZERO_EXTEND \
- : ((BYTES_BIG_ENDIAN && (MODE) == HImode) ? SIGN_EXTEND : NIL))
-
-/* Define this if zero-extension is slow (more than one real instruction).
- On the ARM, it is more than one instruction only if not fetching from
- memory. */
-/* #define SLOW_ZERO_EXTEND */
-
-/* Nonzero if access to memory by bytes is slow and undesirable. */
-#define SLOW_BYTE_ACCESS 0
-
-/* Immediate shift counts are truncated by the output routines (or was it
- the assembler?). Shift counts in a register are truncated by ARM. Note
- that the native compiler puts too large (> 32) immediate shift counts
- into a register and shifts by the register, letting the ARM decide what
- to do instead of doing that itself. */
-/* This is all wrong. Defining SHIFT_COUNT_TRUNCATED tells combine that
- code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
- On the arm, Y in a register is used modulo 256 for the shift. Only for
- rotates is modulo 32 used. */
-/* #define SHIFT_COUNT_TRUNCATED 1 */
-
-/* All integers have the same format so truncation is easy. */
-#define TRULY_NOOP_TRUNCATION(OUTPREC,INPREC) 1
-
-/* Calling from registers is a massive pain. */
-#define NO_FUNCTION_CSE 1
-
-/* Chars and shorts should be passed as ints. */
-#define PROMOTE_PROTOTYPES 1
-
-/* The machine modes of pointers and functions */
-#define Pmode SImode
-#define FUNCTION_MODE Pmode
-
-/* The structure type of the machine dependent info field of insns
- No uses for this yet. */
-/* #define INSN_MACHINE_INFO struct machine_info */
-
-/* The relative costs of various types of constants. Note that cse.c defines
- REG = 1, SUBREG = 2, any node = (2 + sum of subnodes). */
-#define CONST_COSTS(RTX, CODE, OUTER_CODE) \
- case CONST_INT: \
- if (const_ok_for_arm (INTVAL (RTX))) \
- return (OUTER_CODE) == SET ? 2 : -1; \
- else if (OUTER_CODE == AND \
- && const_ok_for_arm (~INTVAL (RTX))) \
- return -1; \
- else if ((OUTER_CODE == COMPARE \
- || OUTER_CODE == PLUS || OUTER_CODE == MINUS) \
- && const_ok_for_arm (-INTVAL (RTX))) \
- return -1; \
- else \
- return 5; \
- case CONST: \
- case LABEL_REF: \
- case SYMBOL_REF: \
- return 6; \
- case CONST_DOUBLE: \
- if (const_double_rtx_ok_for_fpu (RTX)) \
- return (OUTER_CODE) == SET ? 2 : -1; \
- else if (((OUTER_CODE) == COMPARE || (OUTER_CODE) == PLUS) \
- && neg_const_double_rtx_ok_for_fpu (RTX)) \
- return -1; \
- return(7);
-
-#define ARM_FRAME_RTX(X) \
- ((X) == frame_pointer_rtx || (X) == stack_pointer_rtx \
- || (X) == arg_pointer_rtx)
-
-#define RTX_COSTS(X,CODE,OUTER_CODE) \
- default: \
- return arm_rtx_costs (X, CODE, OUTER_CODE);
-
-/* Moves to and from memory are quite expensive */
-#define MEMORY_MOVE_COST(MODE) 10
-
-/* All address computations that can be done are free, but rtx cost returns
- the same for practically all of them. So we weight the different types
- of address here in the order (most pref first):
- PRE/POST_INC/DEC, SHIFT or NON-INT sum, INT sum, REG, MEM or LABEL. */
-#define ADDRESS_COST(X) \
- (10 - ((GET_CODE (X) == MEM || GET_CODE (X) == LABEL_REF \
- || GET_CODE (X) == SYMBOL_REF) \
- ? 0 \
- : ((GET_CODE (X) == PRE_INC || GET_CODE (X) == PRE_DEC \
- || GET_CODE (X) == POST_INC || GET_CODE (X) == POST_DEC) \
- ? 10 \
- : (((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS) \
- ? 6 + (GET_CODE (XEXP (X, 1)) == CONST_INT ? 2 \
- : ((GET_RTX_CLASS (GET_CODE (XEXP (X, 0))) == '2' \
- || GET_RTX_CLASS (GET_CODE (XEXP (X, 0))) == 'c' \
- || GET_RTX_CLASS (GET_CODE (XEXP (X, 1))) == '2' \
- || GET_RTX_CLASS (GET_CODE (XEXP (X, 1))) == 'c') \
- ? 1 : 0)) \
- : 4)))))
-
-
-
-/* Try to generate sequences that don't involve branches, we can then use
- conditional instructions */
-#define BRANCH_COST 4
-
-/* Condition code information. */
-/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
- return the mode to be used for the comparison.
- CCFPEmode should be used with floating inequalities,
- CCFPmode should be used with floating equalities.
- CC_NOOVmode should be used with SImode integer equalities.
- CC_Zmode should be used if only the Z flag is set correctly
- CCmode should be used otherwise. */
-
-#define EXTRA_CC_MODES CC_NOOVmode, CC_Zmode, CC_SWPmode, \
- CCFPmode, CCFPEmode, CC_DNEmode, CC_DEQmode, CC_DLEmode, \
- CC_DLTmode, CC_DGEmode, CC_DGTmode, CC_DLEUmode, CC_DLTUmode, \
- CC_DGEUmode, CC_DGTUmode
-
-#define EXTRA_CC_NAMES "CC_NOOV", "CC_Z", "CC_SWP", "CCFP", "CCFPE", \
- "CC_DNE", "CC_DEQ", "CC_DLE", "CC_DLT", "CC_DGE", "CC_DGT", "CC_DLEU", \
- "CC_DLTU", "CC_DGEU", "CC_DGTU"
-
-enum machine_mode arm_select_cc_mode ();
-#define SELECT_CC_MODE(OP,X,Y) arm_select_cc_mode ((OP), (X), (Y))
-
-#define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode)
-
-#define STORE_FLAG_VALUE 1
-
-/* Define the information needed to generate branch insns. This is
- stored from the compare operation. Note that we can't use "rtx" here
- since it hasn't been defined! */
-
-extern struct rtx_def *arm_compare_op0, *arm_compare_op1;
-extern int arm_compare_fp;
-
-/* Define the codes that are matched by predicates in arm.c */
-#define PREDICATE_CODES \
- {"s_register_operand", {SUBREG, REG}}, \
- {"arm_add_operand", {SUBREG, REG, CONST_INT}}, \
- {"fpu_add_operand", {SUBREG, REG, CONST_DOUBLE}}, \
- {"arm_rhs_operand", {SUBREG, REG, CONST_INT}}, \
- {"fpu_rhs_operand", {SUBREG, REG, CONST_DOUBLE}}, \
- {"arm_not_operand", {SUBREG, REG, CONST_INT}}, \
- {"offsettable_memory_operand", {MEM}}, \
- {"alignable_memory_operand", {MEM}}, \
- {"shiftable_operator", {PLUS, MINUS, AND, IOR, XOR}}, \
- {"minmax_operator", {SMIN, SMAX, UMIN, UMAX}}, \
- {"shift_operator", {ASHIFT, ASHIFTRT, LSHIFTRT, ROTATERT, MULT}}, \
- {"di_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE, MEM}}, \
- {"soft_df_operand", {SUBREG, REG, CONST_DOUBLE, MEM}}, \
- {"load_multiple_operation", {PARALLEL}}, \
- {"store_multiple_operation", {PARALLEL}}, \
- {"equality_operator", {EQ, NE}}, \
- {"arm_rhsm_operand", {SUBREG, REG, CONST_INT, MEM}}, \
- {"const_shift_operand", {CONST_INT}}, \
- {"index_operand", {SUBREG, REG, CONST_INT}}, \
- {"reg_or_int_operand", {SUBREG, REG, CONST_INT}}, \
- {"multi_register_push", {PARALLEL}}, \
- {"cc_register", {REG}}, \
- {"dominant_cc_register", {REG}},
-
-
-
-/* Gcc puts the pool in the wrong place for ARM, since we can only
- load addresses a limited distance around the pc. We do some
- special munging to move the constant pool values to the correct
- point in the code. */
-#define MACHINE_DEPENDENT_REORG(INSN) arm_reorg ((INSN))
-
-/* The pool is empty, since we have moved everything into the code. */
-#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE,X,MODE,ALIGN,LABELNO,JUMPTO) \
- goto JUMPTO
-
-/* Output an internal label definition. */
-#define ASM_OUTPUT_INTERNAL_LABEL(STREAM, PREFIX, NUM) \
- do \
- { \
- char *s = (char *) alloca (40 + strlen (PREFIX)); \
- extern int arm_target_label, arm_ccfsm_state; \
- extern rtx arm_target_insn; \
- \
- if (arm_ccfsm_state == 3 && arm_target_label == (NUM) \
- && !strcmp (PREFIX, "L")) \
- { \
- arm_ccfsm_state = 0; \
- arm_target_insn = NULL; \
- } \
- ASM_GENERATE_INTERNAL_LABEL (s, (PREFIX), (NUM)); \
- arm_asm_output_label (STREAM, s); \
- } while (0)
-
-/* Output a label definition. */
-#define ASM_OUTPUT_LABEL(STREAM,NAME) \
- arm_asm_output_label ((STREAM), (NAME))
-
-/* Output a push or a pop instruction (only used when profiling). */
-#define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
- fprintf(STREAM,"\tstmfd\t%ssp!,{%s%s}\n", \
- REGISTER_PREFIX, REGISTER_PREFIX, reg_names[REGNO])
-
-#define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
- fprintf(STREAM,"\tldmfd\t%ssp!,{%s%s}\n", \
- REGISTER_PREFIX, REGISTER_PREFIX, reg_names[REGNO])
-
-/* Target characters. */
-#define TARGET_BELL 007
-#define TARGET_BS 010
-#define TARGET_TAB 011
-#define TARGET_NEWLINE 012
-#define TARGET_VT 013
-#define TARGET_FF 014
-#define TARGET_CR 015
-
-/* Only perform branch elimination (by making instructions conditional) if
- we're optimising. Otherwise it's of no use anyway. */
-#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
- if (optimize) \
- final_prescan_insn (INSN, OPVEC, NOPERANDS)
-
-#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
- ((CODE) == '?' || (CODE) == '|' || (CODE) == '@')
-/* Output an operand of an instruction. */
-#define PRINT_OPERAND(STREAM, X, CODE) \
- arm_print_operand (STREAM, X, CODE)
-
-#define ARM_SIGN_EXTEND(x) ((HOST_WIDE_INT) \
- (HOST_BITS_PER_WIDE_INT <= 32 ? (x) \
- : (((x) & (unsigned HOST_WIDE_INT) 0xffffffff) | \
- (((x) & (unsigned HOST_WIDE_INT) 0x80000000) \
- ? ((~ (HOST_WIDE_INT) 0) \
- & ~ (unsigned HOST_WIDE_INT) 0xffffffff) \
- : 0))))
-
-/* Output the address of an operand. */
-#define PRINT_OPERAND_ADDRESS(STREAM,X) \
-{ \
- int is_minus = GET_CODE (X) == MINUS; \
- \
- if (GET_CODE (X) == REG) \
- fprintf (STREAM, "[%s%s, #0]", REGISTER_PREFIX, \
- reg_names[REGNO (X)]); \
- else if (GET_CODE (X) == PLUS || is_minus) \
- { \
- rtx base = XEXP (X, 0); \
- rtx index = XEXP (X, 1); \
- char *base_reg_name; \
- HOST_WIDE_INT offset = 0; \
- if (GET_CODE (base) != REG) \
- { \
- /* Ensure that BASE is a register (one of them must be). */ \
- rtx temp = base; \
- base = index; \
- index = temp; \
- } \
- base_reg_name = reg_names[REGNO (base)]; \
- switch (GET_CODE (index)) \
- { \
- case CONST_INT: \
- offset = INTVAL (index); \
- if (is_minus) \
- offset = -offset; \
- fprintf (STREAM, "[%s%s, #%d]", REGISTER_PREFIX, \
- base_reg_name, offset); \
- break; \
- \
- case REG: \
- fprintf (STREAM, "[%s%s, %s%s%s]", REGISTER_PREFIX, \
- base_reg_name, is_minus ? "-" : "", \
- REGISTER_PREFIX, reg_names[REGNO (index)] ); \
- break; \
- \
- case MULT: \
- case ASHIFTRT: \
- case LSHIFTRT: \
- case ASHIFT: \
- case ROTATERT: \
- { \
- fprintf (STREAM, "[%s%s, %s%s%s", REGISTER_PREFIX, \
- base_reg_name, is_minus ? "-" : "", REGISTER_PREFIX,\
- reg_names[REGNO (XEXP (index, 0))]); \
- arm_print_operand (STREAM, index, 'S'); \
- fputs ("]", STREAM); \
- break; \
- } \
- \
- default: \
- abort(); \
- } \
- } \
- else if (GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC \
- || GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC) \
- { \
- extern int output_memory_reference_mode; \
- \
- if (GET_CODE (XEXP (X, 0)) != REG) \
- abort (); \
- \
- if (GET_CODE (X) == PRE_DEC || GET_CODE (X) == PRE_INC) \
- fprintf (STREAM, "[%s%s, #%s%d]!", REGISTER_PREFIX, \
- reg_names[REGNO (XEXP (X, 0))], \
- GET_CODE (X) == PRE_DEC ? "-" : "", \
- GET_MODE_SIZE (output_memory_reference_mode)); \
- else \
- fprintf (STREAM, "[%s%s], #%s%d", REGISTER_PREFIX, \
- reg_names[REGNO (XEXP (X, 0))], \
- GET_CODE (X) == POST_DEC ? "-" : "", \
- GET_MODE_SIZE (output_memory_reference_mode)); \
- } \
- else output_addr_const(STREAM, X); \
-}