aboutsummaryrefslogtreecommitdiff
path: root/gcc/config/frv
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/config/frv')
-rw-r--r--gcc/config/frv/cmovd.c47
-rw-r--r--gcc/config/frv/cmovh.c43
-rw-r--r--gcc/config/frv/cmovw.c47
-rw-r--r--gcc/config/frv/frv-abi.h181
-rw-r--r--gcc/config/frv/frv-asm.h49
-rw-r--r--gcc/config/frv/frv-modes.def30
-rw-r--r--gcc/config/frv/frv-protos.h253
-rw-r--r--gcc/config/frv/frv.c9776
-rw-r--r--gcc/config/frv/frv.h3660
-rw-r--r--gcc/config/frv/frv.md7441
-rw-r--r--gcc/config/frv/frvbegin.c150
-rw-r--r--gcc/config/frv/frvend.c63
-rw-r--r--gcc/config/frv/lib1funcs.asm275
-rw-r--r--gcc/config/frv/modi.c4
-rw-r--r--gcc/config/frv/t-frv93
-rw-r--r--gcc/config/frv/uitod.c4
-rw-r--r--gcc/config/frv/uitof.c4
-rw-r--r--gcc/config/frv/ulltod.c4
-rw-r--r--gcc/config/frv/ulltof.c4
-rw-r--r--gcc/config/frv/umodi.c4
-rw-r--r--gcc/config/frv/xm-frv.h38
21 files changed, 0 insertions, 22170 deletions
diff --git a/gcc/config/frv/cmovd.c b/gcc/config/frv/cmovd.c
deleted file mode 100644
index 11b50ba0dcc..00000000000
--- a/gcc/config/frv/cmovd.c
+++ /dev/null
@@ -1,47 +0,0 @@
-/* Move double-word library function.
- Copyright (C) 2000 Free Software Foundation, Inc.
- Contributed by Red Hat, Inc.
-
- This file is part of GNU CC.
-
- GNU CC is free software ; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation * either version 2, or (at your option)
- any later version.
-
- GNU CC is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY ; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with GNU CC; see the file COPYING. If not, write to
- the Free Software Foundation, 59 Temple Place - Suite 330,
- Boston, MA 02111-1307, USA. */
-
-void
-__cmovd (long long *dest, const long long *src, unsigned len)
-{
- unsigned i;
- unsigned num = len >> 3;
- unsigned xlen = len & ~7;
- char *dest_byte = (char *)dest;
- const char *src_byte = (const char *)src;
-
- if (dest_byte < src_byte || dest_byte > src_byte+len)
- {
- for (i = 0; i < num; i++)
- dest[i] = src[i];
-
- while (len > xlen)
- {
- dest_byte[xlen] = src_byte[xlen];
- xlen++;
- }
- }
- else
- {
- while (len-- > 0)
- dest_byte[len] = src_byte[len];
- }
-}
diff --git a/gcc/config/frv/cmovh.c b/gcc/config/frv/cmovh.c
deleted file mode 100644
index 018a0b448ac..00000000000
--- a/gcc/config/frv/cmovh.c
+++ /dev/null
@@ -1,43 +0,0 @@
-/* Move half-word library function.
- Copyright (C) 2000 Free Software Foundation, Inc.
- Contributed by Red Hat, Inc.
-
- This file is part of GNU CC.
-
- GNU CC is free software ; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation * either version 2, or (at your option)
- any later version.
-
- GNU CC is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY ; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with GNU CC; see the file COPYING. If not, write to
- the Free Software Foundation, 59 Temple Place - Suite 330,
- Boston, MA 02111-1307, USA. */
-
-void
-__cmovh (short *dest, const short *src, unsigned len)
-{
- unsigned i;
- unsigned num = len >> 1;
- char *dest_byte = (char *)dest;
- const char *src_byte = (const char *)src;
-
- if (dest_byte < src_byte || dest_byte > src_byte+len)
- {
- for (i = 0; i < num; i++)
- dest[i] = src[i];
-
- if ((len & 1) != 0)
- dest_byte[len-1] = src_byte[len-1];
- }
- else
- {
- while (len-- > 0)
- dest_byte[len] = src_byte[len];
- }
-}
diff --git a/gcc/config/frv/cmovw.c b/gcc/config/frv/cmovw.c
deleted file mode 100644
index 5509e068e41..00000000000
--- a/gcc/config/frv/cmovw.c
+++ /dev/null
@@ -1,47 +0,0 @@
-/* Move word library function.
- Copyright (C) 2000 Free Software Foundation, Inc.
- Contributed by Red Hat, Inc.
-
- This file is part of GNU CC.
-
- GNU CC is free software ; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation * either version 2, or (at your option)
- any later version.
-
- GNU CC is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY ; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with GNU CC; see the file COPYING. If not, write to
- the Free Software Foundation, 59 Temple Place - Suite 330,
- Boston, MA 02111-1307, USA. */
-
-void
-__cmovw (int *dest, const int *src, unsigned len)
-{
- unsigned i;
- unsigned num = len >> 2;
- unsigned xlen = len & ~3;
- char *dest_byte = (char *)dest;
- const char *src_byte = (const char *)src;
-
- if (dest_byte < src_byte || dest_byte > src_byte+len)
- {
- for (i = 0; i < num; i++)
- dest[i] = src[i];
-
- while (len > xlen)
- {
- dest_byte[xlen] = src_byte[xlen];
- xlen++;
- }
- }
- else
- {
- while (len-- > 0)
- dest_byte[len] = src_byte[len];
- }
-}
diff --git a/gcc/config/frv/frv-abi.h b/gcc/config/frv/frv-abi.h
deleted file mode 100644
index 68fd32fb128..00000000000
--- a/gcc/config/frv/frv-abi.h
+++ /dev/null
@@ -1,181 +0,0 @@
-/* Frv map GCC names to FR-V ABI.
- Copyright (C) 2000 Free Software Foundation, Inc.
- Contributed by Red Hat, Inc.
-
-This file is part of GNU CC.
-
-GNU CC is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2, or (at your option)
-any later version.
-
-GNU CC is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GNU CC; see the file COPYING. If not, write to
-the Free Software Foundation, 59 Temple Place - Suite 330,
-Boston, MA 02111-1307, USA. */
-
-/* For each of the functions in the library that has a corresponding name in
- the ABI, add an equivalence between the GCC name and the ABI name. This is
- in a separate file from frv.h so that fp-bit.c can be made to include it. */
-
-#ifdef __GNUC__
-#ifdef __FRV_UNDERSCORE__
-#define RENAME_LIBRARY(OLD,NEW) \
-__asm__ (".globl\t_" #NEW "\n" \
- "_" #NEW "=_" #OLD "\n" \
- "\t.type\t_" #NEW ",@function\n");
-
-#else
-#define RENAME_LIBRARY(OLD,NEW) \
-__asm__ (".globl\t" #NEW "\n" \
- #NEW "=" #OLD "\n" \
- "\t.type\t" #NEW ",@function\n");
-#endif
-
-#define CREATE_DOUBLE_SHIFT(OLD,NEW) \
-__asm__ (".text\n" \
- "\t.globl\t" #NEW "\n" \
- "\t.type\t" #NEW ",@function\n" \
- #NEW ":\n" \
- "\tor\tgr11, gr0, gr10\n" \
- "\tbra\t" #OLD "\n");
-
-#ifdef L_sf_to_df
-#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__extendsfdf2,__ftod)
-#endif
-
-#ifdef L_sf_to_si
-#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__fixsfsi,__ftoi)
-#endif
-
-#ifdef L_sf_to_usi
-#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__fixunssfsi,__ftoui)
-#endif
-
-#ifdef L_df_to_si
-#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__fixdfsi,__dtoi)
-#endif
-
-#ifdef L_fixunssfsi
-#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__fixunssfsi,__ftoui)
-#endif
-
-#ifdef L_fixunsdfsi
-#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__fixunsdfsi,__dtoui)
-#endif
-
-#ifdef L_fixsfdi
-#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__fixsfdi,__ftoll)
-#endif
-
-#ifdef L_fixdfdi
-#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__fixdfdi,__dtoll)
-#endif
-
-#ifdef L_fixunssfdi
-#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__fixunssfdi,__ftoull)
-#endif
-
-#ifdef L_fixunsdfdi
-#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__fixunsdfdi,__dtoull)
-#endif
-
-#ifdef L_si_to_sf
-#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__floatsisf,__itof)
-#endif
-
-#ifdef L_di_to_sf
-#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__floatdisf,__lltof)
-#endif
-
-#ifdef L_df_to_sf
-#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__truncdfsf2,__dtof)
-#endif
-
-#ifdef L_si_to_df
-#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__floatsidf,__itod)
-#endif
-
-#ifdef L_floatdisf
-#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__floatdisf,__lltof)
-#endif
-
-#ifdef L_floatdidf
-#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__floatdidf,__lltod)
-#endif
-
-#ifdef L_addsub_df
-#define DECLARE_LIBRARY_RENAMES \
- RENAME_LIBRARY(__adddf3,__addd)
- RENAME_LIBRARY(__subdf3,__subd)
-#endif
-
-#ifdef L_mul_df
-#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__muldf3,__muld)
-#endif
-
-#ifdef L_div_df
-#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__divdf3,__divd)
-#endif
-
-#ifdef L_addsub_sf
-#define DECLARE_LIBRARY_RENAMES \
- RENAME_LIBRARY(__addsf3,__addf) \
- RENAME_LIBRARY(__subsf3,__subf)
-#endif
-
-#ifdef L_mul_sf
-#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__mulsf3,__mulf)
-#endif
-
-#ifdef L_div_sf
-#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__divsf3,__divf)
-#endif
-
-#ifdef L_ashldi3
-#define DECLARE_LIBRARY_RENAMES CREATE_DOUBLE_SHIFT (__ashldi3,__sllll)
-#endif
-
-#ifdef L_lshrdi3
-#define DECLARE_LIBRARY_RENAMES CREATE_DOUBLE_SHIFT (__lshrdi3,__srlll)
-#endif
-
-#ifdef L_ashrdi3
-#define DECLARE_LIBRARY_RENAMES CREATE_DOUBLE_SHIFT (__ashrdi3,__srall)
-#endif
-
-#ifdef L_adddi3
-#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__adddi3,__addll)
-#endif
-
-#ifdef L_subdi3
-#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__subdi3,__subll)
-#endif
-
-#ifdef L_muldi3
-#define DECLARE_LIBRARY_RENAMES \
- RENAME_LIBRARY(__muldi3,__mulll)
- RENAME_LIBRARY(__muldi3,__umulll)
-#endif
-
-#ifdef L_divdi3
-#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__divdi3,__divll)
-#endif
-
-#ifdef L_udivdi3
-#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__udivdi3,__udivll)
-#endif
-
-#ifdef L_moddi3
-#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__moddi3,__modll)
-#endif
-
-#ifdef L_umoddi3
-#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY(__umoddi3,__umodll)
-#endif
-#endif /* __GNUC__ */
diff --git a/gcc/config/frv/frv-asm.h b/gcc/config/frv/frv-asm.h
deleted file mode 100644
index e8447a6093d..00000000000
--- a/gcc/config/frv/frv-asm.h
+++ /dev/null
@@ -1,49 +0,0 @@
-/* Assembler Support.
- Copyright (C) 2000 Free Software Foundation, Inc.
- Contributed by Red Hat, Inc.
-
- This file is part of GNU CC.
-
- GNU CC is free software ; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation * either version 2, or (at your option)
- any later version.
-
- GNU CC is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY ; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with GNU CC; see the file COPYING. If not, write to
- the Free Software Foundation, 59 Temple Place - Suite 330,
- Boston, MA 02111-1307, USA. */
-
-/* P(INSN): Emit INSN.P for VLIW machines, otherwise emit plain INSN.
- P2(INSN): Emit INSN.P on the FR500 and above, otherwise emit plain INSN. */
-#ifdef __FRV_VLIW__
-#ifdef __STDC__
-#define P(A) A##.p
-#else
-#define P(A) A/**/.p
-#endif
-#if __FRV_VLIW__ > 2
-#define P2(A) P(A)
-#else
-#define P2(A) A
-#endif
-#else
-#define P(A) A
-#define P2(A) A
-#endif
-
-/* Add underscore if necessary to external name. */
-#ifdef __FRV_UNDERSCORE__
-#ifdef __STDC__
-#define EXT(NAME) _##NAME
-#else
-#define EXT(NAME) _/**/NAME
-#endif
-#else
-#define EXT(NAME) NAME
-#endif
diff --git a/gcc/config/frv/frv-modes.def b/gcc/config/frv/frv-modes.def
deleted file mode 100644
index ca7818c1d60..00000000000
--- a/gcc/config/frv/frv-modes.def
+++ /dev/null
@@ -1,30 +0,0 @@
-/* Definitions of target machine for GNU compiler for FRV.
- Copyright (C) 2002 Free Software Foundation, Inc.
-
-This file is part of GNU CC.
-
-GNU CC is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2, or (at your option)
-any later version.
-
-GNU CC is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GNU CC; see the file COPYING. If not, write to
-the Free Software Foundation, 59 Temple Place - Suite 330,
-Boston, MA 02111-1307, USA. */
-
-/* On the FRV, the CC modes used are:
-
- CCmode set ICC's from comparing signed integers
- CC_UNSmode set ICC's from comparing unsigned integers
- CC_FPmode set FCC's from comparing floating point
- CC_CCRmode set CCR's to do conditional execution */
-
-CC (CC_UNS)
-CC (CC_FP)
-CC (CC_CCR)
diff --git a/gcc/config/frv/frv-protos.h b/gcc/config/frv/frv-protos.h
deleted file mode 100644
index c3f13f5772d..00000000000
--- a/gcc/config/frv/frv-protos.h
+++ /dev/null
@@ -1,253 +0,0 @@
-/* Frv prototypes.
- Copyright (C) 1999, 2000, 2001 Free Software Foundation, Inc.
- Contributed by Red Hat, Inc.
-
-This file is part of GNU CC.
-
-GNU CC is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2, or (at your option)
-any later version.
-
-GNU CC is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GNU CC; see the file COPYING. If not, write to
-the Free Software Foundation, 59 Temple Place - Suite 330,
-Boston, MA 02111-1307, USA. */
-
-/* Define the information needed to generate branch and scc insns. This is
- stored from the compare operation. Note that we can't use "rtx" here
- since it hasn't been defined! */
-
-/* Define global data defined in frv.c */
-extern const char *frv_branch_cost_string; /* -mbranch-cost option */
-extern int frv_branch_cost_int; /* value of -mbranch_cost */
-
-extern const char *frv_cpu_string; /* -mcpu= option */
-
-extern const char *frv_condexec_insns_str; /* -mcond-exec-insns= option */
-extern int frv_condexec_insns; /* value of -mcond-exec-insns */
-
-extern const char *frv_condexec_temps_str; /* -mcond-exec-temps= option */
-extern int frv_condexec_temps; /* value of -mcond-exec-temps */
-
-extern const char *frv_sched_lookahead_str; /* -msched-lookahead= option */
-extern int frv_sched_lookahead; /* value -msched-lookahead= */
-
-/* CPU type. This must be identical to the cpu enumeration in frv.md. */
-typedef enum frv_cpu
-{
- FRV_CPU_GENERIC,
- FRV_CPU_FR500,
- FRV_CPU_FR400,
- FRV_CPU_FR300,
- FRV_CPU_SIMPLE,
- FRV_CPU_TOMCAT
-} frv_cpu_t;
-
-extern frv_cpu_t frv_cpu_type; /* value of -mcpu= */
-
-/* Define functions defined in frv.c */
-extern void frv_expand_prologue PARAMS ((void));
-extern void frv_expand_epilogue PARAMS ((int));
-extern void frv_override_options PARAMS ((void));
-extern void frv_optimization_options PARAMS ((int, int));
-extern void frv_conditional_register_usage PARAMS ((void));
-extern frv_stack_t *frv_stack_info PARAMS ((void));
-extern void frv_debug_stack PARAMS ((frv_stack_t *));
-extern int frv_frame_pointer_required PARAMS ((void));
-extern int frv_initial_elimination_offset PARAMS ((int, int));
-
-#ifdef RTX_CODE
-extern int frv_legitimate_address_p PARAMS ((enum machine_mode, rtx,
- int, int));
-extern rtx frv_legitimize_address PARAMS ((rtx, rtx,
- enum machine_mode));
-
-#ifdef TREE_CODE
-extern void frv_init_cumulative_args PARAMS ((CUMULATIVE_ARGS *, tree,
- rtx, int, int));
-
-extern int frv_function_arg_boundary PARAMS ((enum machine_mode, tree));
-extern rtx frv_function_arg PARAMS ((CUMULATIVE_ARGS *,
- enum machine_mode,
- tree, int, int));
-
-extern void frv_function_arg_advance PARAMS ((CUMULATIVE_ARGS *,
- enum machine_mode,
- tree, int));
-
-extern int frv_function_arg_partial_nregs PARAMS ((CUMULATIVE_ARGS *,
- enum machine_mode,
- tree, int));
-
-extern int frv_function_arg_pass_by_reference PARAMS ((CUMULATIVE_ARGS *,
- enum machine_mode,
- tree, int));
-
-extern int frv_function_arg_callee_copies PARAMS ((CUMULATIVE_ARGS *,
- enum machine_mode,
- tree, int));
-
-extern int frv_function_arg_keep_as_reference PARAMS ((CUMULATIVE_ARGS *,
- enum machine_mode,
- tree, int));
-
-extern rtx frv_expand_builtin_saveregs PARAMS ((void));
-extern void frv_setup_incoming_varargs PARAMS ((CUMULATIVE_ARGS *,
- enum machine_mode,
- tree, int *, int));
-
-extern void frv_expand_builtin_va_start PARAMS ((tree, rtx));
-extern rtx frv_expand_builtin_va_arg PARAMS ((tree, tree));
-#endif /* TREE_CODE */
-
-extern int frv_expand_block_move PARAMS ((rtx *));
-extern int frv_expand_block_clear PARAMS ((rtx *));
-extern rtx frv_dynamic_chain_address PARAMS ((rtx));
-extern rtx frv_return_addr_rtx PARAMS ((int, rtx));
-extern rtx frv_index_memory PARAMS ((rtx,
- enum machine_mode,
- int));
-
-#ifdef TREE_CODE
-extern void frv_asm_output_mi_thunk PARAMS ((FILE *, tree, long,
- tree));
-#endif /* TREE_CODE */
-
-extern const char *frv_asm_output_opcode
- PARAMS ((FILE *, const char *));
-extern void frv_final_prescan_insn PARAMS ((rtx, rtx *, int));
-extern void frv_print_operand PARAMS ((FILE *, rtx, int));
-extern void frv_print_operand_address PARAMS ((FILE *, rtx));
-extern int frv_emit_movsi PARAMS ((rtx, rtx));
-extern const char *output_move_single PARAMS ((rtx *, rtx));
-extern const char *output_move_double PARAMS ((rtx *, rtx));
-extern const char *output_condmove_single
- PARAMS ((rtx *, rtx));
-extern int frv_emit_cond_branch PARAMS ((enum rtx_code, rtx));
-extern int frv_emit_scc PARAMS ((enum rtx_code, rtx));
-extern rtx frv_split_scc PARAMS ((rtx, rtx, rtx, rtx,
- HOST_WIDE_INT));
-extern int frv_emit_cond_move PARAMS ((rtx, rtx, rtx, rtx));
-extern rtx frv_split_cond_move PARAMS ((rtx *));
-extern rtx frv_split_minmax PARAMS ((rtx *));
-extern rtx frv_split_abs PARAMS ((rtx *));
-extern void frv_split_double_load PARAMS ((rtx, rtx));
-extern void frv_split_double_store PARAMS ((rtx, rtx));
-#ifdef BLOCK_HEAD
-extern void frv_ifcvt_init_extra_fields PARAMS ((ce_if_block_t *));
-extern void frv_ifcvt_modify_tests PARAMS ((ce_if_block_t *,
- rtx *, rtx *));
-extern void frv_ifcvt_modify_multiple_tests
- PARAMS ((ce_if_block_t *,
- basic_block,
- rtx *, rtx *));
-extern rtx frv_ifcvt_modify_insn PARAMS ((ce_if_block_t *,
- rtx, rtx));
-extern void frv_ifcvt_modify_final PARAMS ((ce_if_block_t *));
-extern void frv_ifcvt_modify_cancel PARAMS ((ce_if_block_t *));
-#endif
-extern int frv_trampoline_size PARAMS ((void));
-extern void frv_initialize_trampoline PARAMS ((rtx, rtx, rtx));
-extern enum reg_class frv_secondary_reload_class
- PARAMS ((enum reg_class class,
- enum machine_mode mode,
- rtx x, int));
-extern int frv_class_likely_spilled_p PARAMS ((enum reg_class class));
-extern int frv_hard_regno_mode_ok PARAMS ((int, enum machine_mode));
-extern int frv_hard_regno_nregs PARAMS ((int, enum machine_mode));
-extern int frv_class_max_nregs PARAMS ((enum reg_class class,
- enum machine_mode mode));
-extern int frv_legitimate_constant_p PARAMS ((rtx));
-#endif /* RTX_CODE */
-
-extern int direct_return_p PARAMS ((void));
-extern int frv_register_move_cost PARAMS ((enum reg_class, enum reg_class));
-
-#ifdef TREE_CODE
-extern int frv_adjust_field_align PARAMS ((tree, int));
-#endif
-
-extern void fixup_section PARAMS ((void));
-extern void sdata_section PARAMS ((void));
-extern void sbss_section PARAMS ((void));
-extern void const_section PARAMS ((void));
-extern void data_section PARAMS ((void));
-
-#ifdef RTX_CODE
-extern int integer_register_operand PARAMS ((rtx, enum machine_mode));
-extern int frv_load_operand PARAMS ((rtx, enum machine_mode));
-extern int gpr_or_fpr_operand PARAMS ((rtx, enum machine_mode));
-extern int gpr_no_subreg_operand PARAMS ((rtx, enum machine_mode));
-extern int gpr_or_int6_operand PARAMS ((rtx, enum machine_mode));
-extern int fpr_or_int6_operand PARAMS ((rtx, enum machine_mode));
-extern int gpr_or_int_operand PARAMS ((rtx, enum machine_mode));
-extern int gpr_or_int12_operand PARAMS ((rtx, enum machine_mode));
-extern int gpr_fpr_or_int12_operand PARAMS ((rtx, enum machine_mode));
-extern int gpr_or_int10_operand PARAMS ((rtx, enum machine_mode));
-extern int move_source_operand PARAMS ((rtx, enum machine_mode));
-extern int move_destination_operand PARAMS ((rtx, enum machine_mode));
-extern int condexec_source_operand PARAMS ((rtx, enum machine_mode));
-extern int condexec_dest_operand PARAMS ((rtx, enum machine_mode));
-extern int lr_operand PARAMS ((rtx, enum machine_mode));
-extern int gpr_or_memory_operand PARAMS ((rtx, enum machine_mode));
-extern int fpr_or_memory_operand PARAMS ((rtx, enum machine_mode));
-extern int reg_or_0_operand PARAMS ((rtx, enum machine_mode));
-extern int fcc_operand PARAMS ((rtx, enum machine_mode));
-extern int icc_operand PARAMS ((rtx, enum machine_mode));
-extern int cc_operand PARAMS ((rtx, enum machine_mode));
-extern int fcr_operand PARAMS ((rtx, enum machine_mode));
-extern int icr_operand PARAMS ((rtx, enum machine_mode));
-extern int cr_operand PARAMS ((rtx, enum machine_mode));
-extern int call_operand PARAMS ((rtx, enum machine_mode));
-extern int fpr_operand PARAMS ((rtx, enum machine_mode));
-extern int even_reg_operand PARAMS ((rtx, enum machine_mode));
-extern int odd_reg_operand PARAMS ((rtx, enum machine_mode));
-extern int even_gpr_operand PARAMS ((rtx, enum machine_mode));
-extern int odd_gpr_operand PARAMS ((rtx, enum machine_mode));
-extern int quad_fpr_operand PARAMS ((rtx, enum machine_mode));
-extern int even_fpr_operand PARAMS ((rtx, enum machine_mode));
-extern int odd_fpr_operand PARAMS ((rtx, enum machine_mode));
-extern int dbl_memory_one_insn_operand PARAMS ((rtx, enum machine_mode));
-extern int dbl_memory_two_insn_operand PARAMS ((rtx, enum machine_mode));
-extern int int12_operand PARAMS ((rtx, enum machine_mode));
-extern int int6_operand PARAMS ((rtx, enum machine_mode));
-extern int int5_operand PARAMS ((rtx, enum machine_mode));
-extern int uint5_operand PARAMS ((rtx, enum machine_mode));
-extern int uint4_operand PARAMS ((rtx, enum machine_mode));
-extern int uint1_operand PARAMS ((rtx, enum machine_mode));
-extern int int_2word_operand PARAMS ((rtx, enum machine_mode));
-extern int pic_register_operand PARAMS ((rtx, enum machine_mode));
-extern int pic_symbolic_operand PARAMS ((rtx, enum machine_mode));
-extern int small_data_register_operand PARAMS ((rtx, enum machine_mode));
-extern int small_data_symbolic_operand PARAMS ((rtx, enum machine_mode));
-extern int upper_int16_operand PARAMS ((rtx, enum machine_mode));
-extern int uint16_operand PARAMS ((rtx, enum machine_mode));
-extern int relational_operator PARAMS ((rtx, enum machine_mode));
-extern int signed_relational_operator PARAMS ((rtx, enum machine_mode));
-extern int unsigned_relational_operator PARAMS ((rtx, enum machine_mode));
-extern int float_relational_operator PARAMS ((rtx, enum machine_mode));
-extern int ccr_eqne_operator PARAMS ((rtx, enum machine_mode));
-extern int minmax_operator PARAMS ((rtx, enum machine_mode));
-extern int condexec_si_binary_operator PARAMS ((rtx, enum machine_mode));
-extern int condexec_si_media_operator PARAMS ((rtx, enum machine_mode));
-extern int condexec_si_divide_operator PARAMS ((rtx, enum machine_mode));
-extern int condexec_si_unary_operator PARAMS ((rtx, enum machine_mode));
-extern int condexec_sf_conv_operator PARAMS ((rtx, enum machine_mode));
-extern int condexec_sf_add_operator PARAMS ((rtx, enum machine_mode));
-extern int condexec_memory_operand PARAMS ((rtx, enum machine_mode));
-extern int intop_compare_operator PARAMS ((rtx, enum machine_mode));
-extern int condexec_intop_cmp_operator PARAMS ((rtx, enum machine_mode));
-extern int acc_operand PARAMS ((rtx, enum machine_mode));
-extern int even_acc_operand PARAMS ((rtx, enum machine_mode));
-extern int quad_acc_operand PARAMS ((rtx, enum machine_mode));
-extern int accg_operand PARAMS ((rtx, enum machine_mode));
-extern rtx frv_matching_accg_for_acc PARAMS ((rtx));
-extern void frv_machine_dependent_reorg PARAMS ((rtx));
-#endif
-
diff --git a/gcc/config/frv/frv.c b/gcc/config/frv/frv.c
deleted file mode 100644
index 4ef94e4ab50..00000000000
--- a/gcc/config/frv/frv.c
+++ /dev/null
@@ -1,9776 +0,0 @@
-/* Copyright (C) 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
- Contributed by Red Hat, Inc.
-
-This file is part of GNU CC.
-
-GNU CC is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2, or (at your option)
-any later version.
-
-GNU CC is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GNU CC; see the file COPYING. If not, write to
-the Free Software Foundation, 59 Temple Place - Suite 330,
-Boston, MA 02111-1307, USA. */
-
-#include "config.h"
-#include "system.h"
-#include "rtl.h"
-#include "tree.h"
-#include "regs.h"
-#include "hard-reg-set.h"
-#include "real.h"
-#include "insn-config.h"
-#include "conditions.h"
-#include "insn-flags.h"
-#include "output.h"
-#include "insn-attr.h"
-#include "flags.h"
-#include "recog.h"
-#include "reload.h"
-#include "expr.h"
-#include "obstack.h"
-#include "except.h"
-#include "function.h"
-#include "optabs.h"
-#include "toplev.h"
-#include "basic-block.h"
-#include "tm_p.h"
-#include "ggc.h"
-#include <ctype.h>
-#include "target.h"
-#include "target-def.h"
-
-#ifndef FRV_INLINE
-#define FRV_INLINE inline
-#endif
-
-/* Temporary register allocation support structure. */
-typedef struct frv_tmp_reg_struct
- {
- HARD_REG_SET regs; /* possible registers to allocate */
- int next_reg[N_REG_CLASSES]; /* next register to allocate per class */
- }
-frv_tmp_reg_t;
-
-/* Register state information for VLIW re-packing phase. These values must fit
- within an unsigned char. */
-#define REGSTATE_DEAD 0x00 /* register is currently dead */
-#define REGSTATE_CC_MASK 0x07 /* Mask to isolate CCn for cond exec */
-#define REGSTATE_LIVE 0x08 /* register is live */
-#define REGSTATE_MODIFIED 0x10 /* reg modified in current VLIW insn */
-#define REGSTATE_IF_TRUE 0x20 /* reg modified in cond exec true */
-#define REGSTATE_IF_FALSE 0x40 /* reg modified in cond exec false */
-#define REGSTATE_UNUSED 0x80 /* bit for hire */
-#define REGSTATE_MASK 0xff /* mask for the bits to set */
-
- /* conditional expression used */
-#define REGSTATE_IF_EITHER (REGSTATE_IF_TRUE | REGSTATE_IF_FALSE)
-
-/* the following is not sure in the reg_state bytes, so can have a larger value
- than 0xff. */
-#define REGSTATE_CONDJUMP 0x100 /* conditional jump done in VLIW insn */
-
-/* Used in frv_frame_accessor_t to indicate the direction of a register-to-
- memory move. */
-enum frv_stack_op
-{
- FRV_LOAD,
- FRV_STORE
-};
-
-/* Information required by frv_frame_access. */
-typedef struct
-{
- /* This field is FRV_LOAD if registers are to be loaded from the stack and
- FRV_STORE if they should be stored onto the stack. FRV_STORE implies
- the move is being done by the prologue code while FRV_LOAD implies it
- is being done by the epilogue. */
- enum frv_stack_op op;
-
- /* The base register to use when accessing the stack. This may be the
- frame pointer, stack pointer, or a temporary. The choice of register
- depends on which part of the frame is being accessed and how big the
- frame is. */
- rtx base;
-
- /* The offset of BASE from the bottom of the current frame, in bytes. */
- int base_offset;
-} frv_frame_accessor_t;
-
-/* Define the information needed to generate branch and scc insns. This is
- stored from the compare operation. */
-rtx frv_compare_op0;
-rtx frv_compare_op1;
-
-/* Conditional execution support gathered together in one structure */
-typedef struct
- {
- /* Linked list of insns to add if the conditional execution conversion was
- successful. Each link points to an EXPR_LIST which points to the pattern
- of the insn to add, and the insn to be inserted before. */
- rtx added_insns_list;
-
- /* Identify which registers are safe to allocate for if conversions to
- conditional execution. We keep the last allocated register in the
- register classes between COND_EXEC statements. This will mean we allocate
- different registers for each different COND_EXEC group if we can. This
- might allow the scheduler to intermix two different COND_EXEC sections. */
- frv_tmp_reg_t tmp_reg;
-
- /* For nested IFs, identify which CC registers are used outside of setting
- via a compare isnsn, and using via a check insn. This will allow us to
- know if we can rewrite the register to use a different register that will
- be paired with the CR register controlling the nested IF-THEN blocks. */
- HARD_REG_SET nested_cc_ok_rewrite;
-
- /* Temporary registers allocated to hold constants during conditional
- execution. */
- rtx scratch_regs[FIRST_PSEUDO_REGISTER];
-
- /* Current number of temp registers available. */
- int cur_scratch_regs;
-
- /* Number of nested conditional execution blocks */
- int num_nested_cond_exec;
-
- /* Map of insns that set up constants in scratch registers. */
- bitmap scratch_insns_bitmap;
-
- /* Conditional execution test register (CC0..CC7) */
- rtx cr_reg;
-
- /* Conditional execution compare register that is paired with cr_reg, so that
- nested compares can be done. The csubcc and caddcc instructions don't
- have enough bits to specify both a CC register to be set and a CR register
- to do the test on, so the same bit number is used for both. Needless to
- say, this is rather inconvient for GCC. */
- rtx nested_cc_reg;
-
- /* Extra CR registers used for &&, ||. */
- rtx extra_int_cr;
- rtx extra_fp_cr;
-
- /* Previous CR used in nested if, to make sure we are dealing with the same
- nested if as the previous statement. */
- rtx last_nested_if_cr;
- }
-frv_ifcvt_t;
-
-static /* GTY(()) */ frv_ifcvt_t frv_ifcvt;
-
-/* Map register number to smallest register class. */
-enum reg_class regno_reg_class[FIRST_PSEUDO_REGISTER];
-
-/* Map class letter into register class */
-enum reg_class reg_class_from_letter[256];
-
-/* Cached value of frv_stack_info */
-static frv_stack_t *frv_stack_cache = (frv_stack_t *)0;
-
-/* -mbranch-cost= support */
-const char *frv_branch_cost_string;
-int frv_branch_cost_int = DEFAULT_BRANCH_COST;
-
-/* -mcpu= support */
-const char *frv_cpu_string; /* -mcpu= option */
-frv_cpu_t frv_cpu_type = CPU_TYPE; /* value of -mcpu= */
-
-/* -mcond-exec-insns= support */
-const char *frv_condexec_insns_str; /* -mcond-exec-insns= option */
-int frv_condexec_insns = DEFAULT_CONDEXEC_INSNS; /* value of -mcond-exec-insns*/
-
-/* -mcond-exec-temps= support */
-const char *frv_condexec_temps_str; /* -mcond-exec-temps= option */
-int frv_condexec_temps = DEFAULT_CONDEXEC_TEMPS; /* value of -mcond-exec-temps*/
-
-/* -msched-lookahead=n */
-const char *frv_sched_lookahead_str; /* -msched-lookahead=n */
-int frv_sched_lookahead = 4; /* -msched-lookahead=n */
-
-/* Forward references */
-static int frv_default_flags_for_cpu PARAMS ((void));
-static int frv_string_begins_with PARAMS ((tree, const char *));
-static FRV_INLINE int symbol_ref_small_data_p PARAMS ((rtx));
-static FRV_INLINE int const_small_data_p PARAMS ((rtx));
-static FRV_INLINE int plus_small_data_p PARAMS ((rtx, rtx));
-static void frv_print_operand_memory_reference_reg
- PARAMS ((FILE *, rtx));
-static void frv_print_operand_memory_reference PARAMS ((FILE *, rtx, int));
-static int frv_print_operand_jump_hint PARAMS ((rtx));
-static FRV_INLINE int frv_regno_ok_for_base_p PARAMS ((int, int));
-static rtx single_set_pattern PARAMS ((rtx));
-static int frv_function_contains_far_jump PARAMS ((void));
-static rtx frv_alloc_temp_reg PARAMS ((frv_tmp_reg_t *,
- enum reg_class,
- enum machine_mode,
- int, int));
-static rtx frv_frame_offset_rtx PARAMS ((int));
-static rtx frv_frame_mem PARAMS ((enum machine_mode,
- rtx, int));
-static rtx frv_dwarf_store PARAMS ((rtx, int));
-static void frv_frame_insn PARAMS ((rtx, rtx));
-static void frv_frame_access PARAMS ((frv_frame_accessor_t*,
- rtx, int));
-static void frv_frame_access_multi PARAMS ((frv_frame_accessor_t*,
- frv_stack_t *, int));
-static void frv_frame_access_standard_regs PARAMS ((enum frv_stack_op,
- frv_stack_t *));
-static struct machine_function *frv_init_machine_status PARAMS ((void));
-static int frv_legitimate_memory_operand PARAMS ((rtx,
- enum machine_mode,
- int));
-static rtx frv_int_to_acc PARAMS ((enum insn_code,
- int, rtx));
-static enum machine_mode frv_matching_accg_mode PARAMS ((enum machine_mode));
-static rtx frv_read_argument PARAMS ((tree *));
-static int frv_check_constant_argument PARAMS ((enum insn_code,
- int, rtx));
-static rtx frv_legitimize_target PARAMS ((enum insn_code, rtx));
-static rtx frv_legitimize_argument PARAMS ((enum insn_code,
- int, rtx));
-static rtx frv_expand_set_builtin PARAMS ((enum insn_code,
- tree, rtx));
-static rtx frv_expand_unop_builtin PARAMS ((enum insn_code,
- tree, rtx));
-static rtx frv_expand_binop_builtin PARAMS ((enum insn_code,
- tree, rtx));
-static rtx frv_expand_cut_builtin PARAMS ((enum insn_code,
- tree, rtx));
-static rtx frv_expand_binopimm_builtin PARAMS ((enum insn_code,
- tree, rtx));
-static rtx frv_expand_voidbinop_builtin PARAMS ((enum insn_code,
- tree));
-static rtx frv_expand_voidtriop_builtin PARAMS ((enum insn_code,
- tree));
-static rtx frv_expand_voidaccop_builtin PARAMS ((enum insn_code,
- tree));
-static rtx frv_expand_mclracc_builtin PARAMS ((tree));
-static rtx frv_expand_mrdacc_builtin PARAMS ((enum insn_code,
- tree));
-static rtx frv_expand_mwtacc_builtin PARAMS ((enum insn_code,
- tree));
-static rtx frv_expand_noargs_builtin PARAMS ((enum insn_code));
-static rtx frv_emit_comparison PARAMS ((enum rtx_code, rtx,
- rtx));
-static int frv_clear_registers_used PARAMS ((rtx *, void *));
-static void frv_ifcvt_add_insn PARAMS ((rtx, rtx, int));
-static rtx frv_ifcvt_rewrite_mem PARAMS ((rtx,
- enum machine_mode,
- rtx));
-static rtx frv_ifcvt_load_value PARAMS ((rtx, rtx));
-static void frv_registers_update PARAMS ((rtx, unsigned char [],
- int [], int *, int));
-static int frv_registers_used_p PARAMS ((rtx, unsigned char [],
- int));
-static int frv_registers_set_p PARAMS ((rtx, unsigned char [],
- int));
-static void frv_pack_insns PARAMS ((void));
-static void frv_function_prologue PARAMS ((FILE *, HOST_WIDE_INT));
-static void frv_function_epilogue PARAMS ((FILE *, HOST_WIDE_INT));
-static bool frv_assemble_integer PARAMS ((rtx, unsigned, int));
-static const char * frv_strip_name_encoding PARAMS ((const char *));
-static void frv_encode_section_info PARAMS ((tree, int));
-static void frv_init_builtins PARAMS ((void));
-static rtx frv_expand_builtin PARAMS ((tree, rtx, rtx, enum machine_mode, int));
-static bool frv_in_small_data_p PARAMS ((tree));
-
-/* Initialize the GCC target structure. */
-#undef TARGET_ASM_FUNCTION_PROLOGUE
-#define TARGET_ASM_FUNCTION_PROLOGUE frv_function_prologue
-#undef TARGET_ASM_FUNCTION_EPILOGUE
-#define TARGET_ASM_FUNCTION_EPILOGUE frv_function_epilogue
-#undef TARGET_ASM_INTEGER
-#define TARGET_ASM_INTEGER frv_assemble_integer
-#undef TARGET_STRIP_NAME_ENCODING
-#define TARGET_STRIP_NAME_ENCODING frv_strip_name_encoding
-#undef TARGET_ENCODE_SECTION_INFO
-#define TARGET_ENCODE_SECTION_INFO frv_encode_section_info
-#undef TARGET_INIT_BUILTINS
-#define TARGET_INIT_BUILTINS frv_init_builtins
-#undef TARGET_EXPAND_BUILTIN
-#define TARGET_EXPAND_BUILTIN frv_expand_builtin
-#undef TARGET_IN_SMALL_DATA_P
-#define TARGET_IN_SMALL_DATA_P frv_in_small_data_p
-
-struct gcc_target targetm = TARGET_INITIALIZER;
-
-/* Given a SYMBOL_REF, return true if it points to small data. */
-
-static FRV_INLINE int
-symbol_ref_small_data_p (x)
- rtx x;
-{
- return SDATA_NAME_P (XSTR (x, 0));
-}
-
-/* Given a CONST, return true if the symbol_ref points to small data. */
-
-static FRV_INLINE int
-const_small_data_p (x)
- rtx x;
-{
- rtx x0, x1;
-
- if (GET_CODE (XEXP (x, 0)) != PLUS)
- return FALSE;
-
- x0 = XEXP (XEXP (x, 0), 0);
- if (GET_CODE (x0) != SYMBOL_REF || !SDATA_NAME_P (XSTR (x0, 0)))
- return FALSE;
-
- x1 = XEXP (XEXP (x, 0), 1);
- if (GET_CODE (x1) != CONST_INT
- || !IN_RANGE_P (INTVAL (x1), -2048, 2047))
- return FALSE;
-
- return TRUE;
-}
-
-/* Given a PLUS, return true if this is a small data reference. */
-
-static FRV_INLINE int
-plus_small_data_p (op0, op1)
- rtx op0;
- rtx op1;
-{
- if (GET_MODE (op0) == SImode
- && GET_CODE (op0) == REG
- && REGNO (op0) == SDA_BASE_REG)
- {
- if (GET_CODE (op1) == SYMBOL_REF)
- return symbol_ref_small_data_p (op1);
-
- if (GET_CODE (op1) == CONST)
- return const_small_data_p (op1);
- }
-
- return FALSE;
-}
-
-
-static int
-frv_default_flags_for_cpu ()
-{
- switch (frv_cpu_type)
- {
- case FRV_CPU_GENERIC:
- return MASK_DEFAULT_FRV;
-
- case FRV_CPU_FR500:
- case FRV_CPU_TOMCAT:
- return MASK_DEFAULT_FR500;
-
- case FRV_CPU_FR400:
- return MASK_DEFAULT_FR400;
-
- case FRV_CPU_FR300:
- case FRV_CPU_SIMPLE:
- return MASK_DEFAULT_SIMPLE;
- }
- abort ();
-}
-
-/* Sometimes certain combinations of command options do not make
- sense on a particular target machine. You can define a macro
- `OVERRIDE_OPTIONS' to take account of this. This macro, if
- defined, is executed once just after all the command options have
- been parsed.
-
- Don't use this macro to turn on various extra optimizations for
- `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
-
-void
-frv_override_options ()
-{
- int regno, i;
-
- /* Set the cpu type */
- if (frv_cpu_string)
- {
- if (strcmp (frv_cpu_string, "simple") == 0)
- frv_cpu_type = FRV_CPU_SIMPLE;
-
- else if (strcmp (frv_cpu_string, "tomcat") == 0)
- frv_cpu_type = FRV_CPU_TOMCAT;
-
- else if (strncmp (frv_cpu_string, "fr", sizeof ("fr")-1) != 0)
- error ("Unknown cpu: -mcpu=%s", frv_cpu_string);
-
- else
- {
- const char *p = frv_cpu_string + sizeof ("fr") - 1;
- if (strcmp (p, "500") == 0)
- frv_cpu_type = FRV_CPU_FR500;
-
- else if (strcmp (p, "400") == 0)
- frv_cpu_type = FRV_CPU_FR400;
-
- else if (strcmp (p, "300") == 0)
- frv_cpu_type = FRV_CPU_FR300;
-
- else if (strcmp (p, "v") == 0)
- frv_cpu_type = FRV_CPU_GENERIC;
-
- else
- error ("Unknown cpu: -mcpu=%s", frv_cpu_string);
- }
- }
-
- target_flags |= (frv_default_flags_for_cpu () & ~target_flags_explicit);
-
- /* -mlibrary-pic sets -fPIC and -G0 and also suppresses warnings from the
- linker about linking pic and non-pic code. */
- if (TARGET_LIBPIC)
- {
- if (!flag_pic) /* -fPIC */
- flag_pic = 2;
-
- if (! g_switch_set) /* -G0 */
- {
- g_switch_set = 1;
- g_switch_value = 0;
- }
- }
-
- /* Both -fpic and -gdwarf want to use .previous and the assembler only keeps
- one level. */
- if (write_symbols == DWARF_DEBUG && flag_pic)
- error ("-fpic and -gdwarf are incompatible (-fpic and -g/-gdwarf-2 are fine)");
-
- /* Change the branch cost value */
- if (frv_branch_cost_string)
- frv_branch_cost_int = atoi (frv_branch_cost_string);
-
- /* Change the # of insns to be converted to conditional execution */
- if (frv_condexec_insns_str)
- frv_condexec_insns = atoi (frv_condexec_insns_str);
-
- /* Change # of temporary registers used to hold integer constants */
- if (frv_condexec_temps_str)
- frv_condexec_temps = atoi (frv_condexec_temps_str);
-
- /* Change scheduling look ahead. */
- if (frv_sched_lookahead_str)
- frv_sched_lookahead = atoi (frv_sched_lookahead_str);
-
- /* A C expression whose value is a register class containing hard
- register REGNO. In general there is more than one such class;
- choose a class which is "minimal", meaning that no smaller class
- also contains the register. */
-
- for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
- {
- enum reg_class class;
-
- if (GPR_P (regno))
- {
- int gpr_reg = regno - GPR_FIRST;
- if ((gpr_reg & 3) == 0)
- class = QUAD_REGS;
-
- else if ((gpr_reg & 1) == 0)
- class = EVEN_REGS;
-
- else
- class = GPR_REGS;
- }
-
- else if (FPR_P (regno))
- {
- int fpr_reg = regno - GPR_FIRST;
- if ((fpr_reg & 3) == 0)
- class = QUAD_FPR_REGS;
-
- else if ((fpr_reg & 1) == 0)
- class = FEVEN_REGS;
-
- else
- class = FPR_REGS;
- }
-
- else if (regno == LR_REGNO)
- class = LR_REG;
-
- else if (regno == LCR_REGNO)
- class = LCR_REG;
-
- else if (ICC_P (regno))
- class = ICC_REGS;
-
- else if (FCC_P (regno))
- class = FCC_REGS;
-
- else if (ICR_P (regno))
- class = ICR_REGS;
-
- else if (FCR_P (regno))
- class = FCR_REGS;
-
- else if (ACC_P (regno))
- {
- int r = regno - ACC_FIRST;
- if ((r & 3) == 0)
- class = QUAD_ACC_REGS;
- else if ((r & 1) == 0)
- class = EVEN_ACC_REGS;
- else
- class = ACC_REGS;
- }
-
- else if (ACCG_P (regno))
- class = ACCG_REGS;
-
- else
- class = NO_REGS;
-
- regno_reg_class[regno] = class;
- }
-
- /* Check for small data option */
- if (!g_switch_set)
- g_switch_value = SDATA_DEFAULT_SIZE;
-
- /* A C expression which defines the machine-dependent operand
- constraint letters for register classes. If CHAR is such a
- letter, the value should be the register class corresponding to
- it. Otherwise, the value should be `NO_REGS'. The register
- letter `r', corresponding to class `GENERAL_REGS', will not be
- passed to this macro; you do not need to handle it.
-
- The following letters are unavailable, due to being used as
- constraints:
- '0'..'9'
- '<', '>'
- 'E', 'F', 'G', 'H'
- 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P'
- 'Q', 'R', 'S', 'T', 'U'
- 'V', 'X'
- 'g', 'i', 'm', 'n', 'o', 'p', 'r', 's' */
-
- for (i = 0; i < 256; i++)
- reg_class_from_letter[i] = NO_REGS;
-
- reg_class_from_letter['a'] = ACC_REGS;
- reg_class_from_letter['b'] = EVEN_ACC_REGS;
- reg_class_from_letter['c'] = CC_REGS;
- reg_class_from_letter['d'] = GPR_REGS;
- reg_class_from_letter['e'] = EVEN_REGS;
- reg_class_from_letter['f'] = FPR_REGS;
- reg_class_from_letter['h'] = FEVEN_REGS;
- reg_class_from_letter['l'] = LR_REG;
- reg_class_from_letter['q'] = QUAD_REGS;
- reg_class_from_letter['t'] = ICC_REGS;
- reg_class_from_letter['u'] = FCC_REGS;
- reg_class_from_letter['v'] = ICR_REGS;
- reg_class_from_letter['w'] = FCR_REGS;
- reg_class_from_letter['x'] = QUAD_FPR_REGS;
- reg_class_from_letter['y'] = LCR_REG;
- reg_class_from_letter['z'] = SPR_REGS;
- reg_class_from_letter['A'] = QUAD_ACC_REGS;
- reg_class_from_letter['B'] = ACCG_REGS;
- reg_class_from_letter['C'] = CR_REGS;
-
- /* There is no single unaligned SI op for PIC code. Sometimes we
- need to use ".4byte" and sometimes we need to use ".picptr".
- See frv_assemble_integer for details. */
- if (flag_pic)
- targetm.asm_out.unaligned_op.si = 0;
-
- init_machine_status = frv_init_machine_status;
-}
-
-
-/* Some machines may desire to change what optimizations are performed for
- various optimization levels. This macro, if defined, is executed once just
- after the optimization level is determined and before the remainder of the
- command options have been parsed. Values set in this macro are used as the
- default values for the other command line options.
-
- LEVEL is the optimization level specified; 2 if `-O2' is specified, 1 if
- `-O' is specified, and 0 if neither is specified.
-
- SIZE is non-zero if `-Os' is specified, 0 otherwise.
-
- You should not use this macro to change options that are not
- machine-specific. These should uniformly selected by the same optimization
- level on all supported machines. Use this macro to enable machbine-specific
- optimizations.
-
- *Do not examine `write_symbols' in this macro!* The debugging options are
- *not supposed to alter the generated code. */
-
-/* On the FRV, possibly disable VLIW packing which is done by the 2nd
- scheduling pass at the current time. */
-void
-frv_optimization_options (level, size)
- int level;
- int size ATTRIBUTE_UNUSED;
-{
- if (level >= 2)
- {
-#ifdef DISABLE_SCHED2
- flag_schedule_insns_after_reload = 0;
-#endif
-#ifdef ENABLE_RCSP
- flag_rcsp = 1;
-#endif
- }
-}
-
-
-/* Return true if NAME (a STRING_CST node) begins with PREFIX. */
-
-static int
-frv_string_begins_with (name, prefix)
- tree name;
- const char *prefix;
-{
- int prefix_len = strlen (prefix);
-
- /* Remember: NAME's length includes the null terminator. */
- return (TREE_STRING_LENGTH (name) > prefix_len
- && strncmp (TREE_STRING_POINTER (name), prefix, prefix_len) == 0);
-}
-
-/* Encode section information of DECL, which is either a VAR_DECL,
- FUNCTION_DECL, STRING_CST, CONSTRUCTOR, or ???.
-
- For the FRV we want to record:
-
- - whether the object lives in .sdata/.sbss.
- objects living in .sdata/.sbss are prefixed with SDATA_FLAG_CHAR
-
-*/
-
-static void
-frv_encode_section_info (decl, first)
- tree decl;
- int first;
-{
- if (! first)
- return;
- if (TREE_CODE (decl) == VAR_DECL)
- {
- int size = int_size_in_bytes (TREE_TYPE (decl));
- tree section_name = DECL_SECTION_NAME (decl);
- int is_small = 0;
-
- /* Don't apply the -G flag to internal compiler structures. We
- should leave such structures in the main data section, partly
- for efficiency and partly because the size of some of them
- (such as C++ typeinfos) is not known until later. */
- if (!DECL_ARTIFICIAL (decl) && size > 0 && size <= g_switch_value)
- is_small = 1;
-
- /* If we already know which section the decl should be in, see if
- it's a small data section. */
- if (section_name)
- {
- if (TREE_CODE (section_name) == STRING_CST)
- {
- if (frv_string_begins_with (section_name, ".sdata"))
- is_small = 1;
- if (frv_string_begins_with (section_name, ".sbss"))
- is_small = 1;
- }
- else
- abort ();
- }
-
- if (is_small)
- {
- rtx sym_ref = XEXP (DECL_RTL (decl), 0);
- char * str = xmalloc (2 + strlen (XSTR (sym_ref, 0)));
-
- str[0] = SDATA_FLAG_CHAR;
- strcpy (&str[1], XSTR (sym_ref, 0));
- XSTR (sym_ref, 0) = str;
- }
- }
-}
-
-
-/* Zero or more C statements that may conditionally modify two variables
- `fixed_regs' and `call_used_regs' (both of type `char []') after they have
- been initialized from the two preceding macros.
-
- This is necessary in case the fixed or call-clobbered registers depend on
- target flags.
-
- You need not define this macro if it has no work to do.
-
- If the usage of an entire class of registers depends on the target flags,
- you may indicate this to GCC by using this macro to modify `fixed_regs' and
- `call_used_regs' to 1 for each of the registers in the classes which should
- not be used by GCC. Also define the macro `REG_CLASS_FROM_LETTER' to return
- `NO_REGS' if it is called with a letter for a class that shouldn't be used.
-
- (However, if this class is not included in `GENERAL_REGS' and all of the
- insn patterns whose constraints permit this class are controlled by target
- switches, then GCC will automatically avoid using these registers when the
- target switches are opposed to them.) */
-
-void
-frv_conditional_register_usage ()
-{
- int i;
-
- for (i = GPR_FIRST + NUM_GPRS; i <= GPR_LAST; i++)
- fixed_regs[i] = call_used_regs[i] = 1;
-
- for (i = FPR_FIRST + NUM_FPRS; i <= FPR_LAST; i++)
- fixed_regs[i] = call_used_regs[i] = 1;
-
- for (i = ACC_FIRST + NUM_ACCS; i <= ACC_LAST; i++)
- fixed_regs[i] = call_used_regs[i] = 1;
-
- for (i = ACCG_FIRST + NUM_ACCS; i <= ACCG_LAST; i++)
- fixed_regs[i] = call_used_regs[i] = 1;
-
- /* Reserve the registers used for conditional execution. At present, we need
- 1 ICC and 1 ICR register. */
- fixed_regs[ICC_TEMP] = call_used_regs[ICC_TEMP] = 1;
- fixed_regs[ICR_TEMP] = call_used_regs[ICR_TEMP] = 1;
-
- if (TARGET_FIXED_CC)
- {
- fixed_regs[ICC_FIRST] = call_used_regs[ICC_FIRST] = 1;
- fixed_regs[FCC_FIRST] = call_used_regs[FCC_FIRST] = 1;
- fixed_regs[ICR_FIRST] = call_used_regs[ICR_FIRST] = 1;
- fixed_regs[FCR_FIRST] = call_used_regs[FCR_FIRST] = 1;
- }
-
-#if 0
- /* If -fpic, SDA_BASE_REG is the PIC register. */
- if (g_switch_value == 0 && !flag_pic)
- fixed_regs[SDA_BASE_REG] = call_used_regs[SDA_BASE_REG] = 0;
-
- if (!flag_pic)
- fixed_regs[PIC_REGNO] = call_used_regs[PIC_REGNO] = 0;
-#endif
-}
-
-
-/*
- * Compute the stack frame layout
- *
- * Register setup:
- * +---------------+-----------------------+-----------------------+
- * |Register |type |caller-save/callee-save|
- * +---------------+-----------------------+-----------------------+
- * |GR0 |Zero register | - |
- * |GR1 |Stack pointer(SP) | - |
- * |GR2 |Frame pointer(FP) | - |
- * |GR3 |Hidden parameter | caller save |
- * |GR4-GR7 | - | caller save |
- * |GR8-GR13 |Argument register | caller save |
- * |GR14-GR15 | - | caller save |
- * |GR16-GR31 | - | callee save |
- * |GR32-GR47 | - | caller save |
- * |GR48-GR63 | - | callee save |
- * |FR0-FR15 | - | caller save |
- * |FR16-FR31 | - | callee save |
- * |FR32-FR47 | - | caller save |
- * |FR48-FR63 | - | callee save |
- * +---------------+-----------------------+-----------------------+
- *
- * Stack frame setup:
- * Low
- * SP-> |-----------------------------------|
- * | Argument area |
- * |-----------------------------------|
- * | Register save area |
- * |-----------------------------------|
- * | Local variable save area |
- * FP-> |-----------------------------------|
- * | Old FP |
- * |-----------------------------------|
- * | Hidden parameter save area |
- * |-----------------------------------|
- * | Return address(LR) storage area |
- * |-----------------------------------|
- * | Padding for alignment |
- * |-----------------------------------|
- * | Register argument area |
- * OLD SP-> |-----------------------------------|
- * | Parameter area |
- * |-----------------------------------|
- * High
- *
- * Argument area/Parameter area:
- *
- * When a function is called, this area is used for argument transfer. When
- * the argument is set up by the caller function, this area is referred to as
- * the argument area. When the argument is referenced by the callee function,
- * this area is referred to as the parameter area. The area is allocated when
- * all arguments cannot be placed on the argument register at the time of
- * argument transfer.
- *
- * Register save area:
- *
- * This is a register save area that must be guaranteed for the caller
- * function. This area is not secured when the register save operation is not
- * needed.
- *
- * Local variable save area:
- *
- * This is the area for local variables and temporary variables.
- *
- * Old FP:
- *
- * This area stores the FP value of the caller function.
- *
- * Hidden parameter save area:
- *
- * This area stores the start address of the return value storage
- * area for a struct/union return function.
- * When a struct/union is used as the return value, the caller
- * function stores the return value storage area start address in
- * register GR3 and passes it to the caller function.
- * The callee function interprets the address stored in the GR3
- * as the return value storage area start address.
- * When register GR3 needs to be saved into memory, the callee
- * function saves it in the hidden parameter save area. This
- * area is not secured when the save operation is not needed.
- *
- * Return address(LR) storage area:
- *
- * This area saves the LR. The LR stores the address of a return to the caller
- * function for the purpose of function calling.
- *
- * Argument register area:
- *
- * This area saves the argument register. This area is not secured when the
- * save operation is not needed.
- *
- * Argument:
- *
- * Arguments, the count of which equals the count of argument registers (6
- * words), are positioned in registers GR8 to GR13 and delivered to the callee
- * function. When a struct/union return function is called, the return value
- * area address is stored in register GR3. Arguments not placed in the
- * argument registers will be stored in the stack argument area for transfer
- * purposes. When an 8-byte type argument is to be delivered using registers,
- * it is divided into two and placed in two registers for transfer. When
- * argument registers must be saved to memory, the callee function secures an
- * argument register save area in the stack. In this case, a continuous
- * argument register save area must be established in the parameter area. The
- * argument register save area must be allocated as needed to cover the size of
- * the argument register to be saved. If the function has a variable count of
- * arguments, it saves all argument registers in the argument register save
- * area.
- *
- * Argument Extension Format:
- *
- * When an argument is to be stored in the stack, its type is converted to an
- * extended type in accordance with the individual argument type. The argument
- * is freed by the caller function after the return from the callee function is
- * made.
- *
- * +-----------------------+---------------+------------------------+
- * | Argument Type |Extended Type |Stack Storage Size(byte)|
- * +-----------------------+---------------+------------------------+
- * |char |int | 4 |
- * |signed char |int | 4 |
- * |unsigned char |int | 4 |
- * |[signed] short int |int | 4 |
- * |unsigned short int |int | 4 |
- * |[signed] int |No extension | 4 |
- * |unsigned int |No extension | 4 |
- * |[signed] long int |No extension | 4 |
- * |unsigned long int |No extension | 4 |
- * |[signed] long long int |No extension | 8 |
- * |unsigned long long int |No extension | 8 |
- * |float |double | 8 |
- * |double |No extension | 8 |
- * |long double |No extension | 8 |
- * |pointer |No extension | 4 |
- * |struct/union |- | 4 (*1) |
- * +-----------------------+---------------+------------------------+
- *
- * When a struct/union is to be delivered as an argument, the caller copies it
- * to the local variable area and delivers the address of that area.
- *
- * Return Value:
- *
- * +-------------------------------+----------------------+
- * |Return Value Type |Return Value Interface|
- * +-------------------------------+----------------------+
- * |void |None |
- * |[signed|unsigned] char |GR8 |
- * |[signed|unsigned] short int |GR8 |
- * |[signed|unsigned] int |GR8 |
- * |[signed|unsigned] long int |GR8 |
- * |pointer |GR8 |
- * |[signed|unsigned] long long int|GR8 & GR9 |
- * |float |GR8 |
- * |double |GR8 & GR9 |
- * |long double |GR8 & GR9 |
- * |struct/union |(*1) |
- * +-------------------------------+----------------------+
- *
- * When a struct/union is used as the return value, the caller function stores
- * the start address of the return value storage area into GR3 and then passes
- * it to the callee function. The callee function interprets GR3 as the start
- * address of the return value storage area. When this address needs to be
- * saved in memory, the callee function secures the hidden parameter save area
- * and saves the address in that area.
- */
-
-frv_stack_t *
-frv_stack_info ()
-{
- static frv_stack_t info, zero_info;
- frv_stack_t *info_ptr = &info;
- tree fndecl = current_function_decl;
- int varargs_p = 0;
- tree cur_arg;
- tree next_arg;
- int range;
- int alignment;
- int offset;
-
- /* If we've already calculated the values and reload is complete, just return now */
- if (frv_stack_cache)
- return frv_stack_cache;
-
- /* Zero all fields */
- info = zero_info;
-
- /* Set up the register range information */
- info_ptr->regs[STACK_REGS_GPR].name = "gpr";
- info_ptr->regs[STACK_REGS_GPR].first = LAST_ARG_REGNUM + 1;
- info_ptr->regs[STACK_REGS_GPR].last = GPR_LAST;
- info_ptr->regs[STACK_REGS_GPR].dword_p = TRUE;
-
- info_ptr->regs[STACK_REGS_FPR].name = "fpr";
- info_ptr->regs[STACK_REGS_FPR].first = FPR_FIRST;
- info_ptr->regs[STACK_REGS_FPR].last = FPR_LAST;
- info_ptr->regs[STACK_REGS_FPR].dword_p = TRUE;
-
- info_ptr->regs[STACK_REGS_LR].name = "lr";
- info_ptr->regs[STACK_REGS_LR].first = LR_REGNO;
- info_ptr->regs[STACK_REGS_LR].last = LR_REGNO;
- info_ptr->regs[STACK_REGS_LR].special_p = 1;
-
- info_ptr->regs[STACK_REGS_CC].name = "cc";
- info_ptr->regs[STACK_REGS_CC].first = CC_FIRST;
- info_ptr->regs[STACK_REGS_CC].last = CC_LAST;
- info_ptr->regs[STACK_REGS_CC].field_p = TRUE;
-
- info_ptr->regs[STACK_REGS_LCR].name = "lcr";
- info_ptr->regs[STACK_REGS_LCR].first = LCR_REGNO;
- info_ptr->regs[STACK_REGS_LCR].last = LCR_REGNO;
-
- info_ptr->regs[STACK_REGS_STDARG].name = "stdarg";
- info_ptr->regs[STACK_REGS_STDARG].first = FIRST_ARG_REGNUM;
- info_ptr->regs[STACK_REGS_STDARG].last = LAST_ARG_REGNUM;
- info_ptr->regs[STACK_REGS_STDARG].dword_p = 1;
- info_ptr->regs[STACK_REGS_STDARG].special_p = 1;
-
- info_ptr->regs[STACK_REGS_STRUCT].name = "struct";
- info_ptr->regs[STACK_REGS_STRUCT].first = STRUCT_VALUE_REGNUM;
- info_ptr->regs[STACK_REGS_STRUCT].last = STRUCT_VALUE_REGNUM;
- info_ptr->regs[STACK_REGS_STRUCT].special_p = 1;
-
- info_ptr->regs[STACK_REGS_FP].name = "fp";
- info_ptr->regs[STACK_REGS_FP].first = FRAME_POINTER_REGNUM;
- info_ptr->regs[STACK_REGS_FP].last = FRAME_POINTER_REGNUM;
- info_ptr->regs[STACK_REGS_FP].special_p = 1;
-
- /* Determine if this is a stdarg function. If so, allocate space to store
- the 6 arguments. */
- if (cfun->stdarg)
- varargs_p = 1;
-
- else
- {
- /* Find the last argument, and see if it is __builtin_va_alist. */
- for (cur_arg = DECL_ARGUMENTS (fndecl); cur_arg != (tree)0; cur_arg = next_arg)
- {
- next_arg = TREE_CHAIN (cur_arg);
- if (next_arg == (tree)0)
- {
- if (DECL_NAME (cur_arg)
- && !strcmp (IDENTIFIER_POINTER (DECL_NAME (cur_arg)), "__builtin_va_alist"))
- varargs_p = 1;
-
- break;
- }
- }
- }
-
- /* Iterate over all of the register ranges */
- for (range = 0; range < STACK_REGS_MAX; range++)
- {
- frv_stack_regs_t *reg_ptr = &(info_ptr->regs[range]);
- int first = reg_ptr->first;
- int last = reg_ptr->last;
- int size_1word = 0;
- int size_2words = 0;
- int regno;
-
- /* Calculate which registers need to be saved & save area size */
- switch (range)
- {
- default:
- for (regno = first; regno <= last; regno++)
- {
- if ((regs_ever_live[regno] && !call_used_regs[regno])
- || (current_function_calls_eh_return
- && (regno >= FIRST_EH_REGNUM && regno <= LAST_EH_REGNUM))
- || (flag_pic && cfun->uses_pic_offset_table && regno == PIC_REGNO))
- {
- info_ptr->save_p[regno] = REG_SAVE_1WORD;
- size_1word += UNITS_PER_WORD;
- }
- }
- break;
-
- /* Calculate whether we need to create a frame after everything else
- has been processed. */
- case STACK_REGS_FP:
- break;
-
- case STACK_REGS_LR:
- if (regs_ever_live[LR_REGNO]
- || profile_flag
- || frame_pointer_needed
- || (flag_pic && cfun->uses_pic_offset_table))
- {
- info_ptr->save_p[LR_REGNO] = REG_SAVE_1WORD;
- size_1word += UNITS_PER_WORD;
- }
- break;
-
- case STACK_REGS_STDARG:
- if (varargs_p)
- {
- /* If this is a stdarg function with an non varardic argument split
- between registers and the stack, adjust the saved registers
- downward */
- last -= (ADDR_ALIGN (cfun->pretend_args_size, UNITS_PER_WORD)
- / UNITS_PER_WORD);
-
- for (regno = first; regno <= last; regno++)
- {
- info_ptr->save_p[regno] = REG_SAVE_1WORD;
- size_1word += UNITS_PER_WORD;
- }
-
- info_ptr->stdarg_size = size_1word;
- }
- break;
-
- case STACK_REGS_STRUCT:
- if (cfun->returns_struct)
- {
- info_ptr->save_p[STRUCT_VALUE_REGNUM] = REG_SAVE_1WORD;
- size_1word += UNITS_PER_WORD;
- }
- break;
- }
-
-
- if (size_1word)
- {
- /* If this is a field, it only takes one word */
- if (reg_ptr->field_p)
- size_1word = UNITS_PER_WORD;
-
- /* Determine which register pairs can be saved together */
- else if (reg_ptr->dword_p && TARGET_DWORD)
- {
- for (regno = first; regno < last; regno += 2)
- {
- if (info_ptr->save_p[regno] && info_ptr->save_p[regno+1])
- {
- size_2words += 2 * UNITS_PER_WORD;
- size_1word -= 2 * UNITS_PER_WORD;
- info_ptr->save_p[regno] = REG_SAVE_2WORDS;
- info_ptr->save_p[regno+1] = REG_SAVE_NO_SAVE;
- }
- }
- }
-
- reg_ptr->size_1word = size_1word;
- reg_ptr->size_2words = size_2words;
-
- if (! reg_ptr->special_p)
- {
- info_ptr->regs_size_1word += size_1word;
- info_ptr->regs_size_2words += size_2words;
- }
- }
- }
-
- /* Set up the sizes of each each field in the frame body, making the sizes
- of each be divisible by the size of a dword if dword operations might
- be used, or the size of a word otherwise. */
- alignment = (TARGET_DWORD? 2 * UNITS_PER_WORD : UNITS_PER_WORD);
-
- info_ptr->parameter_size = ADDR_ALIGN (cfun->outgoing_args_size, alignment);
- info_ptr->regs_size = ADDR_ALIGN (info_ptr->regs_size_2words
- + info_ptr->regs_size_1word,
- alignment);
- info_ptr->vars_size = ADDR_ALIGN (get_frame_size (), alignment);
-
- info_ptr->pretend_size = cfun->pretend_args_size;
-
- /* Work out the size of the frame, excluding the header. Both the frame
- body and register parameter area will be dword-aligned. */
- info_ptr->total_size
- = (ADDR_ALIGN (info_ptr->parameter_size
- + info_ptr->regs_size
- + info_ptr->vars_size,
- 2 * UNITS_PER_WORD)
- + ADDR_ALIGN (info_ptr->pretend_size
- + info_ptr->stdarg_size,
- 2 * UNITS_PER_WORD));
-
- /* See if we need to create a frame at all, if so add header area. */
- if (info_ptr->total_size > 0
- || info_ptr->regs[STACK_REGS_LR].size_1word > 0
- || info_ptr->regs[STACK_REGS_STRUCT].size_1word > 0)
- {
- offset = info_ptr->parameter_size;
- info_ptr->header_size = 4 * UNITS_PER_WORD;
- info_ptr->total_size += 4 * UNITS_PER_WORD;
-
- /* Calculate the offsets to save normal register pairs */
- for (range = 0; range < STACK_REGS_MAX; range++)
- {
- frv_stack_regs_t *reg_ptr = &(info_ptr->regs[range]);
- if (! reg_ptr->special_p)
- {
- int first = reg_ptr->first;
- int last = reg_ptr->last;
- int regno;
-
- for (regno = first; regno <= last; regno++)
- if (info_ptr->save_p[regno] == REG_SAVE_2WORDS
- && regno != FRAME_POINTER_REGNUM
- && (regno < FIRST_ARG_REGNUM
- || regno > LAST_ARG_REGNUM))
- {
- info_ptr->reg_offset[regno] = offset;
- offset += 2 * UNITS_PER_WORD;
- }
- }
- }
-
- /* Calculate the offsets to save normal single registers */
- for (range = 0; range < STACK_REGS_MAX; range++)
- {
- frv_stack_regs_t *reg_ptr = &(info_ptr->regs[range]);
- if (! reg_ptr->special_p)
- {
- int first = reg_ptr->first;
- int last = reg_ptr->last;
- int regno;
-
- for (regno = first; regno <= last; regno++)
- if (info_ptr->save_p[regno] == REG_SAVE_1WORD
- && regno != FRAME_POINTER_REGNUM
- && (regno < FIRST_ARG_REGNUM
- || regno > LAST_ARG_REGNUM))
- {
- info_ptr->reg_offset[regno] = offset;
- offset += UNITS_PER_WORD;
- }
- }
- }
-
- /* Calculate the offset to save the local variables at. */
- offset = ADDR_ALIGN (offset, alignment);
- if (info_ptr->vars_size)
- {
- info_ptr->vars_offset = offset;
- offset += info_ptr->vars_size;
- }
-
- /* Align header to a dword-boundary. */
- offset = ADDR_ALIGN (offset, 2 * UNITS_PER_WORD);
-
- /* Calculate the offsets in the fixed frame. */
- info_ptr->save_p[FRAME_POINTER_REGNUM] = REG_SAVE_1WORD;
- info_ptr->reg_offset[FRAME_POINTER_REGNUM] = offset;
- info_ptr->regs[STACK_REGS_FP].size_1word = UNITS_PER_WORD;
-
- info_ptr->save_p[LR_REGNO] = REG_SAVE_1WORD;
- info_ptr->reg_offset[LR_REGNO] = offset + 2*UNITS_PER_WORD;
- info_ptr->regs[STACK_REGS_LR].size_1word = UNITS_PER_WORD;
-
- if (cfun->returns_struct)
- {
- info_ptr->save_p[STRUCT_VALUE_REGNUM] = REG_SAVE_1WORD;
- info_ptr->reg_offset[STRUCT_VALUE_REGNUM] = offset + UNITS_PER_WORD;
- info_ptr->regs[STACK_REGS_STRUCT].size_1word = UNITS_PER_WORD;
- }
-
- /* Calculate the offsets to store the arguments passed in registers
- for stdarg functions. The register pairs are first and the single
- register if any is last. The register save area starts on a
- dword-boundary. */
- if (info_ptr->stdarg_size)
- {
- int first = info_ptr->regs[STACK_REGS_STDARG].first;
- int last = info_ptr->regs[STACK_REGS_STDARG].last;
- int regno;
-
- /* Skip the header. */
- offset += 4 * UNITS_PER_WORD;
- for (regno = first; regno <= last; regno++)
- {
- if (info_ptr->save_p[regno] == REG_SAVE_2WORDS)
- {
- info_ptr->reg_offset[regno] = offset;
- offset += 2 * UNITS_PER_WORD;
- }
- else if (info_ptr->save_p[regno] == REG_SAVE_1WORD)
- {
- info_ptr->reg_offset[regno] = offset;
- offset += UNITS_PER_WORD;
- }
- }
- }
- }
-
- if (reload_completed)
- frv_stack_cache = info_ptr;
-
- return info_ptr;
-}
-
-
-/* Print the information about the frv stack offsets, etc. when debugging. */
-
-void
-frv_debug_stack (info)
- frv_stack_t *info;
-{
- int range;
-
- if (!info)
- info = frv_stack_info ();
-
- fprintf (stderr, "\nStack information for function %s:\n",
- ((current_function_decl && DECL_NAME (current_function_decl))
- ? IDENTIFIER_POINTER (DECL_NAME (current_function_decl))
- : "<unknown>"));
-
- fprintf (stderr, "\ttotal_size\t= %6d\n", info->total_size);
- fprintf (stderr, "\tvars_size\t= %6d\n", info->vars_size);
- fprintf (stderr, "\tparam_size\t= %6d\n", info->parameter_size);
- fprintf (stderr, "\tregs_size\t= %6d, 1w = %3d, 2w = %3d\n",
- info->regs_size, info->regs_size_1word, info->regs_size_2words);
-
- fprintf (stderr, "\theader_size\t= %6d\n", info->header_size);
- fprintf (stderr, "\tpretend_size\t= %6d\n", info->pretend_size);
- fprintf (stderr, "\tvars_offset\t= %6d\n", info->vars_offset);
- fprintf (stderr, "\tregs_offset\t= %6d\n", info->regs_offset);
-
- for (range = 0; range < STACK_REGS_MAX; range++)
- {
- frv_stack_regs_t *regs = &(info->regs[range]);
- if ((regs->size_1word + regs->size_2words) > 0)
- {
- int first = regs->first;
- int last = regs->last;
- int regno;
-
- fprintf (stderr, "\t%s\tsize\t= %6d, 1w = %3d, 2w = %3d, save =",
- regs->name, regs->size_1word + regs->size_2words,
- regs->size_1word, regs->size_2words);
-
- for (regno = first; regno <= last; regno++)
- {
- if (info->save_p[regno] == REG_SAVE_1WORD)
- fprintf (stderr, " %s (%d)", reg_names[regno],
- info->reg_offset[regno]);
-
- else if (info->save_p[regno] == REG_SAVE_2WORDS)
- fprintf (stderr, " %s-%s (%d)", reg_names[regno],
- reg_names[regno+1], info->reg_offset[regno]);
- }
-
- fputc ('\n', stderr);
- }
- }
-
- fflush (stderr);
-}
-
-
-
-
-/* The following variable value is TRUE if the next output insn should
- finish cpu cycle. In order words the insn will have packing bit
- (which means absence of asm code suffix `.p' on assembler. */
-
-static int frv_insn_packing_flag;
-
-/* True if the current function contains a far jump. */
-
-static int
-frv_function_contains_far_jump ()
-{
- rtx insn = get_insns ();
- while (insn != NULL
- && !(GET_CODE (insn) == JUMP_INSN
- /* Ignore tablejump patterns. */
- && GET_CODE (PATTERN (insn)) != ADDR_VEC
- && GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC
- && get_attr_far_jump (insn) == FAR_JUMP_YES))
- insn = NEXT_INSN (insn);
- return (insn != NULL);
-}
-
-/* For the FRV, this function makes sure that a function with far jumps
- will return correctly. It also does the VLIW packing. */
-
-static void
-frv_function_prologue (file, size)
- FILE *file;
- HOST_WIDE_INT size ATTRIBUTE_UNUSED;
-{
- /* If no frame was created, check whether the function uses a call
- instruction to implement a far jump. If so, save the link in gr3 and
- replace all returns to LR with returns to GR3. GR3 is used because it
- is call-clobbered, because is not available to the register allocator,
- and because all functions that take a hidden argument pointer will have
- a stack frame. */
- if (frv_stack_info ()->total_size == 0 && frv_function_contains_far_jump ())
- {
- rtx insn;
-
- /* Just to check that the above comment is true. */
- if (regs_ever_live[GPR_FIRST + 3])
- abort ();
-
- /* Generate the instruction that saves the link register. */
- fprintf (file, "\tmovsg lr,gr3\n");
-
- /* Replace the LR with GR3 in *return_internal patterns. The insn
- will now return using jmpl @(gr3,0) rather than bralr. We cannot
- simply emit a different assembly directive because bralr and jmpl
- execute in different units. */
- for (insn = get_insns(); insn != NULL; insn = NEXT_INSN (insn))
- if (GET_CODE (insn) == JUMP_INSN)
- {
- rtx pattern = PATTERN (insn);
- if (GET_CODE (pattern) == PARALLEL
- && XVECLEN (pattern, 0) >= 2
- && GET_CODE (XVECEXP (pattern, 0, 0)) == RETURN
- && GET_CODE (XVECEXP (pattern, 0, 1)) == USE)
- {
- rtx address = XEXP (XVECEXP (pattern, 0, 1), 0);
- if (GET_CODE (address) == REG && REGNO (address) == LR_REGNO)
- REGNO (address) = GPR_FIRST + 3;
- }
- }
- }
-
- frv_pack_insns ();
- frv_insn_packing_flag = TRUE;
-}
-
-
-/* Return the next available temporary register in a given class. */
-
-static rtx
-frv_alloc_temp_reg (info, class, mode, mark_as_used, no_abort)
- frv_tmp_reg_t *info; /* which registers are available */
- enum reg_class class; /* register class desired */
- enum machine_mode mode; /* mode to allocate register with */
- int mark_as_used; /* register not available after allocation */
- int no_abort; /* return NULL instead of aborting */
-{
- int regno = info->next_reg[ (int)class ];
- int orig_regno = regno;
- HARD_REG_SET *reg_in_class = &reg_class_contents[ (int)class ];
- int i, nr;
-
- for (;;)
- {
- if (TEST_HARD_REG_BIT (*reg_in_class, regno)
- && TEST_HARD_REG_BIT (info->regs, regno))
- break;
-
- if (++regno >= FIRST_PSEUDO_REGISTER)
- regno = 0;
- if (regno == orig_regno)
- {
- if (no_abort)
- return NULL_RTX;
- else
- abort ();
- }
- }
-
- nr = HARD_REGNO_NREGS (regno, mode);
- info->next_reg[ (int)class ] = regno + nr;
-
- if (mark_as_used)
- for (i = 0; i < nr; i++)
- CLEAR_HARD_REG_BIT (info->regs, regno+i);
-
- return gen_rtx_REG (mode, regno);
-}
-
-
-/* Return an rtx with the value OFFSET, which will either be a register or a
- signed 12-bit integer. It can be used as the second operand in an "add"
- instruction, or as the index in a load or store.
-
- The function returns a constant rtx if OFFSET is small enough, otherwise
- it loads the constant into register OFFSET_REGNO and returns that. */
-static rtx
-frv_frame_offset_rtx (offset)
- int offset;
-{
- rtx offset_rtx = GEN_INT (offset);
- if (IN_RANGE_P (offset, -2048, 2047))
- return offset_rtx;
- else
- {
- rtx reg_rtx = gen_rtx_REG (SImode, OFFSET_REGNO);
- if (IN_RANGE_P (offset, -32768, 32767))
- emit_insn (gen_movsi (reg_rtx, offset_rtx));
- else
- {
- emit_insn (gen_movsi_high (reg_rtx, offset_rtx));
- emit_insn (gen_movsi_lo_sum (reg_rtx, offset_rtx));
- }
- return reg_rtx;
- }
-}
-
-/* Generate (mem:MODE (plus:Pmode BASE (frv_frame_offset OFFSET)))). The
- prologue and epilogue uses such expressions to access the stack. */
-static rtx
-frv_frame_mem (mode, base, offset)
- enum machine_mode mode;
- rtx base;
- int offset;
-{
- return gen_rtx_MEM (mode, gen_rtx_PLUS (Pmode,
- base,
- frv_frame_offset_rtx (offset)));
-}
-
-/* Generate a frame-related expression:
-
- (set REG (mem (plus (sp) (const_int OFFSET)))).
-
- Such expressions are used in FRAME_RELATED_EXPR notes for more complex
- instructions. Marking the expressions as frame-related is superfluous if
- the note contains just a single set. But if the note contains a PARALLEL
- or SEQUENCE that has several sets, each set must be individually marked
- as frame-related. */
-static rtx
-frv_dwarf_store (reg, offset)
- rtx reg;
- int offset;
-{
- rtx set = gen_rtx_SET (VOIDmode,
- gen_rtx_MEM (GET_MODE (reg),
- plus_constant (stack_pointer_rtx,
- offset)),
- reg);
- RTX_FRAME_RELATED_P (set) = 1;
- return set;
-}
-
-/* Emit a frame-related instruction whose pattern is PATTERN. The
- instruction is the last in a sequence that cumulatively performs the
- operation described by DWARF_PATTERN. The instruction is marked as
- frame-related and has a REG_FRAME_RELATED_EXPR note containing
- DWARF_PATTERN. */
-static void
-frv_frame_insn (pattern, dwarf_pattern)
- rtx pattern;
- rtx dwarf_pattern;
-{
- rtx insn = emit_insn (pattern);
- RTX_FRAME_RELATED_P (insn) = 1;
- REG_NOTES (insn) = alloc_EXPR_LIST (REG_FRAME_RELATED_EXPR,
- dwarf_pattern,
- REG_NOTES (insn));
-}
-
-/* Emit instructions that transfer REG to or from the memory location (sp +
- STACK_OFFSET). The register is stored in memory if ACCESSOR->OP is
- FRV_STORE and loaded if it is FRV_LOAD. Only the prologue uses this
- function to store registers and only the epilogue uses it to load them.
-
- The caller sets up ACCESSOR so that BASE is equal to (sp + BASE_OFFSET).
- The generated instruction will use BASE as its base register. BASE may
- simply be the stack pointer, but if several accesses are being made to a
- region far away from the stack pointer, it may be more efficient to set
- up a temporary instead.
-
- Store instructions will be frame-related and will be annotated with the
- overall effect of the store. Load instructions will be followed by a
- (use) to prevent later optimizations from zapping them.
-
- The function takes care of the moves to and from SPRs, using TEMP_REGNO
- as a temporary in such cases. */
-static void
-frv_frame_access (accessor, reg, stack_offset)
- frv_frame_accessor_t *accessor;
- rtx reg;
- int stack_offset;
-{
- enum machine_mode mode = GET_MODE (reg);
- rtx mem = frv_frame_mem (mode,
- accessor->base,
- stack_offset - accessor->base_offset);
-
- if (accessor->op == FRV_LOAD)
- {
- if (SPR_P (REGNO (reg)))
- {
- rtx temp = gen_rtx_REG (mode, TEMP_REGNO);
- emit_insn (gen_rtx_SET (VOIDmode, temp, mem));
- emit_insn (gen_rtx_SET (VOIDmode, reg, temp));
- }
- else
- emit_insn (gen_rtx_SET (VOIDmode, reg, mem));
- emit_insn (gen_rtx_USE (VOIDmode, reg));
- }
- else
- {
- if (SPR_P (REGNO (reg)))
- {
- rtx temp = gen_rtx_REG (mode, TEMP_REGNO);
- emit_insn (gen_rtx_SET (VOIDmode, temp, reg));
- frv_frame_insn (gen_rtx_SET (Pmode, mem, temp),
- frv_dwarf_store (reg, stack_offset));
- }
- else if (GET_MODE (reg) == DImode)
- {
- /* For DImode saves, the dwarf2 version needs to be a SEQUENCE
- with a separate save for each register. */
- rtx reg1 = gen_rtx_REG (SImode, REGNO (reg));
- rtx reg2 = gen_rtx_REG (SImode, REGNO (reg) + 1);
- rtx set1 = frv_dwarf_store (reg1, stack_offset);
- rtx set2 = frv_dwarf_store (reg2, stack_offset + 4);
- frv_frame_insn (gen_rtx_SET (Pmode, mem, reg),
- gen_rtx_PARALLEL (VOIDmode,
- gen_rtvec (2, set1, set2)));
- }
- else
- frv_frame_insn (gen_rtx_SET (Pmode, mem, reg),
- frv_dwarf_store (reg, stack_offset));
- }
-}
-
-/* A function that uses frv_frame_access to transfer a group of registers to
- or from the stack. ACCESSOR is passed directly to frv_frame_access, INFO
- is the stack information generated by frv_stack_info, and REG_SET is the
- number of the register set to transfer. */
-static void
-frv_frame_access_multi (accessor, info, reg_set)
- frv_frame_accessor_t *accessor;
- frv_stack_t *info;
- int reg_set;
-{
- frv_stack_regs_t *regs_info;
- int regno;
-
- regs_info = &info->regs[reg_set];
- for (regno = regs_info->first; regno <= regs_info->last; regno++)
- if (info->save_p[regno])
- frv_frame_access (accessor,
- info->save_p[regno] == REG_SAVE_2WORDS
- ? gen_rtx_REG (DImode, regno)
- : gen_rtx_REG (SImode, regno),
- info->reg_offset[regno]);
-}
-
-/* Save or restore callee-saved registers that are kept outside the frame
- header. The function saves the registers if OP is FRV_STORE and restores
- them if OP is FRV_LOAD. INFO is the stack information generated by
- frv_stack_info. */
-static void
-frv_frame_access_standard_regs (op, info)
- enum frv_stack_op op;
- frv_stack_t *info;
-{
- frv_frame_accessor_t accessor;
-
- accessor.op = op;
- accessor.base = stack_pointer_rtx;
- accessor.base_offset = 0;
- frv_frame_access_multi (&accessor, info, STACK_REGS_GPR);
- frv_frame_access_multi (&accessor, info, STACK_REGS_FPR);
- frv_frame_access_multi (&accessor, info, STACK_REGS_LCR);
-}
-
-
-/* Called after register allocation to add any instructions needed for the
- prologue. Using a prologue insn is favored compared to putting all of the
- instructions in the FUNCTION_PROLOGUE macro, since it allows the scheduler
- to intermix instructions with the saves of the caller saved registers. In
- some cases, it might be necessary to emit a barrier instruction as the last
- insn to prevent such scheduling.
-
- Also any insns generated here should have RTX_FRAME_RELATED_P(insn) = 1
- so that the debug info generation code can handle them properly. */
-void
-frv_expand_prologue ()
-{
- frv_stack_t *info = frv_stack_info ();
- rtx sp = stack_pointer_rtx;
- rtx fp = frame_pointer_rtx;
- frv_frame_accessor_t accessor;
-
- if (TARGET_DEBUG_STACK)
- frv_debug_stack (info);
-
- if (info->total_size == 0)
- return;
-
- /* We're interested in three areas of the frame here:
-
- A: the register save area
- B: the old FP
- C: the header after B
-
- If the frame pointer isn't used, we'll have to set up A, B and C
- using the stack pointer. If the frame pointer is used, we'll access
- them as follows:
-
- A: set up using sp
- B: set up using sp or a temporary (see below)
- C: set up using fp
-
- We set up B using the stack pointer if the frame is small enough.
- Otherwise, it's more efficient to copy the old stack pointer into a
- temporary and use that.
-
- Note that it's important to make sure the prologue and epilogue use the
- same registers to access A and C, since doing otherwise will confuse
- the aliasing code. */
-
- /* Set up ACCESSOR for accessing region B above. If the frame pointer
- isn't used, the same method will serve for C. */
- accessor.op = FRV_STORE;
- if (frame_pointer_needed && info->total_size > 2048)
- {
- rtx insn;
-
- accessor.base = gen_rtx_REG (Pmode, OLD_SP_REGNO);
- accessor.base_offset = info->total_size;
- insn = emit_insn (gen_movsi (accessor.base, sp));
- }
- else
- {
- accessor.base = stack_pointer_rtx;
- accessor.base_offset = 0;
- }
-
- /* Allocate the stack space. */
- {
- rtx asm_offset = frv_frame_offset_rtx (-info->total_size);
- rtx dwarf_offset = GEN_INT (-info->total_size);
-
- frv_frame_insn (gen_stack_adjust (sp, sp, asm_offset),
- gen_rtx_SET (Pmode,
- sp,
- gen_rtx_PLUS (Pmode, sp, dwarf_offset)));
- }
-
- /* If the frame pointer is needed, store the old one at (sp + FP_OFFSET)
- and point the new one to that location. */
- if (frame_pointer_needed)
- {
- int fp_offset = info->reg_offset[FRAME_POINTER_REGNUM];
-
- /* ASM_SRC and DWARF_SRC both point to the frame header. ASM_SRC is
- based on ACCESSOR.BASE but DWARF_SRC is always based on the stack
- pointer. */
- rtx asm_src = plus_constant (accessor.base,
- fp_offset - accessor.base_offset);
- rtx dwarf_src = plus_constant (sp, fp_offset);
-
- /* Store the old frame pointer at (sp + FP_OFFSET). */
- frv_frame_access (&accessor, fp, fp_offset);
-
- /* Set up the new frame pointer. */
- frv_frame_insn (gen_rtx_SET (VOIDmode, fp, asm_src),
- gen_rtx_SET (VOIDmode, fp, dwarf_src));
-
- /* Access region C from the frame pointer. */
- accessor.base = fp;
- accessor.base_offset = fp_offset;
- }
-
- /* Set up region C. */
- frv_frame_access_multi (&accessor, info, STACK_REGS_STRUCT);
- frv_frame_access_multi (&accessor, info, STACK_REGS_LR);
- frv_frame_access_multi (&accessor, info, STACK_REGS_STDARG);
-
- /* Set up region A. */
- frv_frame_access_standard_regs (FRV_STORE, info);
-
- /* If this is a varargs/stdarg function, issue a blockage to prevent the
- scheduler from moving loads before the stores saving the registers. */
- if (info->stdarg_size > 0)
- emit_insn (gen_blockage ());
-
- /* Set up pic register/small data register for this function. */
- if (flag_pic && cfun->uses_pic_offset_table)
- emit_insn (gen_pic_prologue (gen_rtx_REG (Pmode, PIC_REGNO),
- gen_rtx_REG (Pmode, LR_REGNO),
- gen_rtx_REG (SImode, OFFSET_REGNO)));
-}
-
-
-/* Under frv, all of the work is done via frv_expand_epilogue, but
- this function provides a convient place to do cleanup. */
-
-static void
-frv_function_epilogue (file, size)
- FILE *file ATTRIBUTE_UNUSED;
- HOST_WIDE_INT size ATTRIBUTE_UNUSED;
-{
- frv_stack_cache = (frv_stack_t *)0;
-
- /* zap last used registers for conditional execution. */
- memset ((PTR) &frv_ifcvt.tmp_reg, 0, sizeof (frv_ifcvt.tmp_reg));
-
- /* release the bitmap of created insns. */
- BITMAP_XFREE (frv_ifcvt.scratch_insns_bitmap);
-}
-
-
-/* Called after register allocation to add any instructions needed for the
- epilogue. Using a epilogue insn is favored compared to putting all of the
- instructions in the FUNCTION_PROLOGUE macro, since it allows the scheduler
- to intermix instructions with the saves of the caller saved registers. In
- some cases, it might be necessary to emit a barrier instruction as the last
- insn to prevent such scheduling.
-
- If SIBCALL_P is true, the final branch back to the calling function is
- omitted, and is used for sibling call (aka tail call) sites. For sibcalls,
- we must not clobber any arguments used for parameter passing or any stack
- slots for arguments passed to the current function. */
-
-void
-frv_expand_epilogue (sibcall_p)
- int sibcall_p;
-{
- frv_stack_t *info = frv_stack_info ();
- rtx fp = frame_pointer_rtx;
- rtx sp = stack_pointer_rtx;
- rtx return_addr;
- int fp_offset;
-
- fp_offset = info->reg_offset[FRAME_POINTER_REGNUM];
-
- /* Restore the stack pointer to its original value if alloca or the like
- is used. */
- if (! current_function_sp_is_unchanging)
- emit_insn (gen_addsi3 (sp, fp, frv_frame_offset_rtx (-fp_offset)));
-
- /* Restore the callee-saved registers that were used in this function. */
- frv_frame_access_standard_regs (FRV_LOAD, info);
-
- /* Set RETURN_ADDR to the address we should return to. Set it to NULL if
- no return instruction should be emitted. */
- if (sibcall_p)
- return_addr = 0;
- else if (info->save_p[LR_REGNO])
- {
- int lr_offset;
- rtx mem;
-
- /* Use the same method to access the link register's slot as we did in
- the prologue. In other words, use the frame pointer if available,
- otherwise use the stack pointer.
-
- LR_OFFSET is the offset of the link register's slot from the start
- of the frame and MEM is a memory rtx for it. */
- lr_offset = info->reg_offset[LR_REGNO];
- if (frame_pointer_needed)
- mem = frv_frame_mem (Pmode, fp, lr_offset - fp_offset);
- else
- mem = frv_frame_mem (Pmode, sp, lr_offset);
-
- /* Load the old link register into a GPR. */
- return_addr = gen_rtx_REG (Pmode, TEMP_REGNO);
- emit_insn (gen_rtx_SET (VOIDmode, return_addr, mem));
- }
- else
- return_addr = gen_rtx_REG (Pmode, LR_REGNO);
-
- /* Restore the old frame pointer. Emit a USE afterwards to make sure
- the load is preserved. */
- if (frame_pointer_needed)
- {
- emit_insn (gen_rtx_SET (VOIDmode, fp, gen_rtx_MEM (Pmode, fp)));
- emit_insn (gen_rtx_USE (VOIDmode, fp));
- }
-
- /* Deallocate the stack frame. */
- if (info->total_size != 0)
- {
- rtx offset = frv_frame_offset_rtx (info->total_size);
- emit_insn (gen_stack_adjust (sp, sp, offset));
- }
-
- /* If this function uses eh_return, add the final stack adjustment now. */
- if (current_function_calls_eh_return)
- emit_insn (gen_stack_adjust (sp, sp, EH_RETURN_STACKADJ_RTX));
-
- if (return_addr)
- emit_jump_insn (gen_epilogue_return (return_addr));
-}
-
-
-/* A C compound statement that outputs the assembler code for a thunk function,
- used to implement C++ virtual function calls with multiple inheritance. The
- thunk acts as a wrapper around a virtual function, adjusting the implicit
- object parameter before handing control off to the real function.
-
- First, emit code to add the integer DELTA to the location that contains the
- incoming first argument. Assume that this argument contains a pointer, and
- is the one used to pass the `this' pointer in C++. This is the incoming
- argument *before* the function prologue, e.g. `%o0' on a sparc. The
- addition must preserve the values of all other incoming arguments.
-
- After the addition, emit code to jump to FUNCTION, which is a
- `FUNCTION_DECL'. This is a direct pure jump, not a call, and does not touch
- the return address. Hence returning from FUNCTION will return to whoever
- called the current `thunk'.
-
- The effect must be as if FUNCTION had been called directly with the adjusted
- first argument. This macro is responsible for emitting all of the code for
- a thunk function; `FUNCTION_PROLOGUE' and `FUNCTION_EPILOGUE' are not
- invoked.
-
- The THUNK_FNDECL is redundant. (DELTA and FUNCTION have already been
- extracted from it.) It might possibly be useful on some targets, but
- probably not.
-
- If you do not define this macro, the target-independent code in the C++
- frontend will generate a less efficient heavyweight thunk that calls
- FUNCTION instead of jumping to it. The generic approach does not support
- varargs. */
-
-void
-frv_asm_output_mi_thunk (file, thunk_fndecl, delta, function)
- FILE *file;
- tree thunk_fndecl ATTRIBUTE_UNUSED;
- long delta;
- tree function;
-{
- const char *name_func = XSTR (XEXP (DECL_RTL (function), 0), 0);
- const char *name_arg0 = reg_names[FIRST_ARG_REGNUM];
- const char *name_jmp = reg_names[JUMP_REGNO];
- const char *parallel = ((PACKING_FLAG_USED_P ()) ? ".p" : "");
-
- /* Do the add using an addi if possible */
- if (IN_RANGE_P (delta, -2048, 2047))
- fprintf (file, "\taddi %s,#%ld,%s\n", name_arg0, delta, name_arg0);
- else
- {
- const char *name_add = reg_names[TEMP_REGNO];
- fprintf (file, "\tsethi%s #hi(%ld),%s\n", parallel, delta, name_add);
- fprintf (file, "\tsetlo #lo(%ld),%s\n", delta, name_add);
- fprintf (file, "\tadd %s,%s,%s\n", name_add, name_arg0, name_arg0);
- }
-
- if (!flag_pic)
- {
- fprintf (file, "\tsethi%s #hi(", parallel);
- assemble_name (file, name_func);
- fprintf (file, "),%s\n", name_jmp);
-
- fprintf (file, "\tsetlo #lo(");
- assemble_name (file, name_func);
- fprintf (file, "),%s\n", name_jmp);
- }
- else
- {
- /* Use JUMP_REGNO as a temporary PIC register. */
- const char *name_lr = reg_names[LR_REGNO];
- const char *name_gppic = name_jmp;
- const char *name_tmp = reg_names[TEMP_REGNO];
-
- fprintf (file, "\tmovsg %s,%s\n", name_lr, name_tmp);
- fprintf (file, "\tcall 1f\n");
- fprintf (file, "1:\tmovsg %s,%s\n", name_lr, name_gppic);
- fprintf (file, "\tmovgs %s,%s\n", name_tmp, name_lr);
- fprintf (file, "\tsethi%s #gprelhi(1b),%s\n", parallel, name_tmp);
- fprintf (file, "\tsetlo #gprello(1b),%s\n", name_tmp);
- fprintf (file, "\tsub %s,%s,%s\n", name_gppic, name_tmp, name_gppic);
-
- fprintf (file, "\tsethi%s #gprelhi(", parallel);
- assemble_name (file, name_func);
- fprintf (file, "),%s\n", name_tmp);
-
- fprintf (file, "\tsetlo #gprello(");
- assemble_name (file, name_func);
- fprintf (file, "),%s\n", name_tmp);
-
- fprintf (file, "\tadd %s,%s,%s\n", name_gppic, name_tmp, name_jmp);
- }
-
- /* Jump to the function address */
- fprintf (file, "\tjmpl @(%s,%s)\n", name_jmp, reg_names[GPR_FIRST+0]);
-}
-
-
-/* A C expression which is nonzero if a function must have and use a frame
- pointer. This expression is evaluated in the reload pass. If its value is
- nonzero the function will have a frame pointer.
-
- The expression can in principle examine the current function and decide
- according to the facts, but on most machines the constant 0 or the constant
- 1 suffices. Use 0 when the machine allows code to be generated with no
- frame pointer, and doing so saves some time or space. Use 1 when there is
- no possible advantage to avoiding a frame pointer.
-
- In certain cases, the compiler does not know how to produce valid code
- without a frame pointer. The compiler recognizes those cases and
- automatically gives the function a frame pointer regardless of what
- `FRAME_POINTER_REQUIRED' says. You don't need to worry about them.
-
- In a function that does not require a frame pointer, the frame pointer
- register can be allocated for ordinary usage, unless you mark it as a fixed
- register. See `FIXED_REGISTERS' for more information. */
-
-/* On frv, create a frame whenever we need to create stack */
-
-int
-frv_frame_pointer_required ()
-{
- if (! current_function_is_leaf)
- return TRUE;
-
- if (get_frame_size () != 0)
- return TRUE;
-
- if (cfun->stdarg)
- return TRUE;
-
- if (!current_function_sp_is_unchanging)
- return TRUE;
-
- if (flag_pic && cfun->uses_pic_offset_table)
- return TRUE;
-
- if (profile_flag)
- return TRUE;
-
- if (cfun->machine->frame_needed)
- return TRUE;
-
- return FALSE;
-}
-
-
-/* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It specifies the
- initial difference between the specified pair of registers. This macro must
- be defined if `ELIMINABLE_REGS' is defined. */
-
-/* See frv_stack_info for more details on the frv stack frame. */
-
-int
-frv_initial_elimination_offset (from, to)
- int from;
- int to;
-{
- frv_stack_t *info = frv_stack_info ();
- int ret = 0;
-
- if (to == STACK_POINTER_REGNUM && from == ARG_POINTER_REGNUM)
- ret = info->total_size - info->pretend_size;
-
- else if (to == STACK_POINTER_REGNUM && from == FRAME_POINTER_REGNUM)
- ret = - info->reg_offset[FRAME_POINTER_REGNUM];
-
- else if (to == FRAME_POINTER_REGNUM && from == ARG_POINTER_REGNUM)
- ret = (info->total_size
- - info->reg_offset[FRAME_POINTER_REGNUM]
- - info->pretend_size);
-
- else
- abort ();
-
- if (TARGET_DEBUG_STACK)
- fprintf (stderr, "Eliminate %s to %s by adding %d\n",
- reg_names [from], reg_names[to], ret);
-
- return ret;
-}
-
-
-/* This macro offers an alternative to using `__builtin_saveregs' and defining
- the macro `EXPAND_BUILTIN_SAVEREGS'. Use it to store the anonymous register
- arguments into the stack so that all the arguments appear to have been
- passed consecutively on the stack. Once this is done, you can use the
- standard implementation of varargs that works for machines that pass all
- their arguments on the stack.
-
- The argument ARGS_SO_FAR is the `CUMULATIVE_ARGS' data structure, containing
- the values that obtain after processing of the named arguments. The
- arguments MODE and TYPE describe the last named argument--its machine mode
- and its data type as a tree node.
-
- The macro implementation should do two things: first, push onto the stack
- all the argument registers *not* used for the named arguments, and second,
- store the size of the data thus pushed into the `int'-valued variable whose
- name is supplied as the argument PRETEND_ARGS_SIZE. The value that you
- store here will serve as additional offset for setting up the stack frame.
-
- Because you must generate code to push the anonymous arguments at compile
- time without knowing their data types, `SETUP_INCOMING_VARARGS' is only
- useful on machines that have just a single category of argument register and
- use it uniformly for all data types.
-
- If the argument SECOND_TIME is nonzero, it means that the arguments of the
- function are being analyzed for the second time. This happens for an inline
- function, which is not actually compiled until the end of the source file.
- The macro `SETUP_INCOMING_VARARGS' should not generate any instructions in
- this case. */
-
-void
-frv_setup_incoming_varargs (cum, mode, type, pretend_size, second_time)
- CUMULATIVE_ARGS *cum;
- enum machine_mode mode;
- tree type ATTRIBUTE_UNUSED;
- int *pretend_size;
- int second_time;
-{
- if (TARGET_DEBUG_ARG)
- fprintf (stderr,
- "setup_vararg: words = %2d, mode = %4s, pretend_size = %d, second_time = %d\n",
- *cum, GET_MODE_NAME (mode), *pretend_size, second_time);
-}
-
-
-/* If defined, is a C expression that produces the machine-specific code for a
- call to `__builtin_saveregs'. This code will be moved to the very beginning
- of the function, before any parameter access are made. The return value of
- this function should be an RTX that contains the value to use as the return
- of `__builtin_saveregs'.
-
- If this macro is not defined, the compiler will output an ordinary call to
- the library function `__builtin_saveregs'. */
-
-rtx
-frv_expand_builtin_saveregs ()
-{
- int offset = UNITS_PER_WORD * FRV_NUM_ARG_REGS;
-
- if (TARGET_DEBUG_ARG)
- fprintf (stderr, "expand_builtin_saveregs: offset from ap = %d\n",
- offset);
-
- return gen_rtx (PLUS, Pmode, virtual_incoming_args_rtx, GEN_INT (- offset));
-}
-
-
-/* Expand __builtin_va_start to do the va_start macro. */
-
-void
-frv_expand_builtin_va_start (valist, nextarg)
- tree valist;
- rtx nextarg;
-{
- tree t;
- int num = cfun->args_info - FIRST_ARG_REGNUM - FRV_NUM_ARG_REGS;
-
- nextarg = gen_rtx_PLUS (Pmode, virtual_incoming_args_rtx,
- GEN_INT (UNITS_PER_WORD * num));
-
- if (TARGET_DEBUG_ARG)
- {
- fprintf (stderr, "va_start: args_info = %d, num = %d\n",
- cfun->args_info, num);
-
- debug_rtx (nextarg);
- }
-
- t = build (MODIFY_EXPR, TREE_TYPE (valist), valist,
- make_tree (ptr_type_node, nextarg));
- TREE_SIDE_EFFECTS (t) = 1;
-
- expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
-}
-
-
-/* Expand __builtin_va_arg to do the va_arg macro. */
-
-rtx
-frv_expand_builtin_va_arg(valist, type)
- tree valist;
- tree type;
-{
- rtx addr;
- rtx mem;
- rtx reg;
-
- if (TARGET_DEBUG_ARG)
- {
- fprintf (stderr, "va_arg:\n");
- debug_tree (type);
- }
-
- if (! AGGREGATE_TYPE_P (type))
- return std_expand_builtin_va_arg (valist, type);
-
- addr = std_expand_builtin_va_arg (valist, ptr_type_node);
- mem = gen_rtx_MEM (Pmode, addr);
- reg = gen_reg_rtx (Pmode);
-
- set_mem_alias_set (mem, get_varargs_alias_set ());
- emit_move_insn (reg, mem);
-
- return reg;
-}
-
-
-/* Expand a block move operation, and return 1 if successful. Return 0
- if we should let the compiler generate normal code.
-
- operands[0] is the destination
- operands[1] is the source
- operands[2] is the length
- operands[3] is the alignment */
-
-/* Maximum number of loads to do before doing the stores */
-#ifndef MAX_MOVE_REG
-#define MAX_MOVE_REG 4
-#endif
-
-/* Maximum number of total loads to do. */
-#ifndef TOTAL_MOVE_REG
-#define TOTAL_MOVE_REG 8
-#endif
-
-int
-frv_expand_block_move (operands)
- rtx operands[];
-{
- rtx orig_dest = operands[0];
- rtx orig_src = operands[1];
- rtx bytes_rtx = operands[2];
- rtx align_rtx = operands[3];
- int constp = (GET_CODE (bytes_rtx) == CONST_INT);
- int align;
- int bytes;
- int offset;
- int num_reg;
- int i;
- rtx src_reg;
- rtx dest_reg;
- rtx src_addr;
- rtx dest_addr;
- rtx src_mem;
- rtx dest_mem;
- rtx tmp_reg;
- rtx stores[MAX_MOVE_REG];
- int move_bytes;
- enum machine_mode mode;
-
- /* If this is not a fixed size move, just call memcpy */
- if (! constp)
- return FALSE;
-
- /* If this is not a fixed size alignment, abort */
- if (GET_CODE (align_rtx) != CONST_INT)
- abort ();
-
- align = INTVAL (align_rtx);
-
- /* Anything to move? */
- bytes = INTVAL (bytes_rtx);
- if (bytes <= 0)
- return TRUE;
-
- /* Don't support real large moves. */
- if (bytes > TOTAL_MOVE_REG*align)
- return FALSE;
-
- /* Move the address into scratch registers. */
- dest_reg = copy_addr_to_reg (XEXP (orig_dest, 0));
- src_reg = copy_addr_to_reg (XEXP (orig_src, 0));
-
- num_reg = offset = 0;
- for ( ; bytes > 0; (bytes -= move_bytes), (offset += move_bytes))
- {
- /* Calculate the correct offset for src/dest */
- if (offset == 0)
- {
- src_addr = src_reg;
- dest_addr = dest_reg;
- }
- else
- {
- src_addr = plus_constant (src_reg, offset);
- dest_addr = plus_constant (dest_reg, offset);
- }
-
- /* Generate the appropriate load and store, saving the stores
- for later. */
- if (bytes >= 4 && align >= 4)
- mode = SImode;
- else if (bytes >= 2 && align >= 2)
- mode = HImode;
- else
- mode = QImode;
-
- move_bytes = GET_MODE_SIZE (mode);
- tmp_reg = gen_reg_rtx (mode);
- src_mem = change_address (orig_src, mode, src_addr);
- dest_mem = change_address (orig_dest, mode, dest_addr);
- emit_insn (gen_rtx_SET (VOIDmode, tmp_reg, src_mem));
- stores[num_reg++] = gen_rtx_SET (VOIDmode, dest_mem, tmp_reg);
-
- if (num_reg >= MAX_MOVE_REG)
- {
- for (i = 0; i < num_reg; i++)
- emit_insn (stores[i]);
- num_reg = 0;
- }
- }
-
- for (i = 0; i < num_reg; i++)
- emit_insn (stores[i]);
-
- return TRUE;
-}
-
-
-/* Expand a block clear operation, and return 1 if successful. Return 0
- if we should let the compiler generate normal code.
-
- operands[0] is the destination
- operands[1] is the length
- operands[2] is the alignment */
-
-int
-frv_expand_block_clear (operands)
- rtx operands[];
-{
- rtx orig_dest = operands[0];
- rtx bytes_rtx = operands[1];
- rtx align_rtx = operands[2];
- int constp = (GET_CODE (bytes_rtx) == CONST_INT);
- int align;
- int bytes;
- int offset;
- int num_reg;
- rtx dest_reg;
- rtx dest_addr;
- rtx dest_mem;
- int clear_bytes;
- enum machine_mode mode;
-
- /* If this is not a fixed size move, just call memcpy */
- if (! constp)
- return FALSE;
-
- /* If this is not a fixed size alignment, abort */
- if (GET_CODE (align_rtx) != CONST_INT)
- abort ();
-
- align = INTVAL (align_rtx);
-
- /* Anything to move? */
- bytes = INTVAL (bytes_rtx);
- if (bytes <= 0)
- return TRUE;
-
- /* Don't support real large clears. */
- if (bytes > TOTAL_MOVE_REG*align)
- return FALSE;
-
- /* Move the address into a scratch register. */
- dest_reg = copy_addr_to_reg (XEXP (orig_dest, 0));
-
- num_reg = offset = 0;
- for ( ; bytes > 0; (bytes -= clear_bytes), (offset += clear_bytes))
- {
- /* Calculate the correct offset for src/dest */
- dest_addr = ((offset == 0)
- ? dest_reg
- : plus_constant (dest_reg, offset));
-
- /* Generate the appropriate store of gr0 */
- if (bytes >= 4 && align >= 4)
- mode = SImode;
- else if (bytes >= 2 && align >= 2)
- mode = HImode;
- else
- mode = QImode;
-
- clear_bytes = GET_MODE_SIZE (mode);
- dest_mem = change_address (orig_dest, mode, dest_addr);
- emit_insn (gen_rtx_SET (VOIDmode, dest_mem, const0_rtx));
- }
-
- return TRUE;
-}
-
-
-/* The following variable is used to output modifiers of assembler
- code of the current output insn.. */
-
-static rtx *frv_insn_operands;
-
-/* The following function is used to add assembler insn code suffix .p
- if it is necessary. */
-
-const char *
-frv_asm_output_opcode (f, ptr)
- FILE *f;
- const char *ptr;
-{
- int c;
-
- if (! PACKING_FLAG_USED_P())
- return ptr;
-
- for (; *ptr && *ptr != ' ' && *ptr != '\t';)
- {
- c = *ptr++;
- if (c == '%' && ((*ptr >= 'a' && *ptr <= 'z')
- || (*ptr >= 'A' && *ptr <= 'Z')))
- {
- int letter = *ptr++;
-
- c = atoi (ptr);
- frv_print_operand (f, frv_insn_operands [c], letter);
- while ((c = *ptr) >= '0' && c <= '9')
- ptr++;
- }
- else
- fputc (c, f);
- }
-
- if (!frv_insn_packing_flag)
- fprintf (f, ".p");
-
- return ptr;
-}
-
-/* The following function sets up the packing bit for the current
- output insn. Remember that the function is not called for asm
- insns. */
-
-void
-frv_final_prescan_insn (insn, opvec, noperands)
- rtx insn;
- rtx *opvec;
- int noperands ATTRIBUTE_UNUSED;
-{
- if (! PACKING_FLAG_USED_P())
- return;
-
- if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
- return;
-
- frv_insn_operands = opvec;
-
- /* Look for the next printable instruction. frv_pack_insns () has set
- things up so that any printable instruction will have TImode if it
- starts a new packet and VOIDmode if it should be packed with the
- previous instruction.
-
- Printable instructions will be asm_operands or match one of the .md
- patterns. Since asm instructions cannot be packed -- and will
- therefore have TImode -- this loop terminates on any recognisable
- instruction, and on any unrecognisable instruction with TImode. */
- for (insn = NEXT_INSN (insn); insn; insn = NEXT_INSN (insn))
- {
- if (NOTE_P (insn))
- continue;
- else if (!INSN_P (insn))
- break;
- else if (GET_MODE (insn) == TImode || INSN_CODE (insn) != -1)
- break;
- }
-
- /* Set frv_insn_packing_flag to FALSE if the next instruction should
- be packed with this one. Set it to TRUE otherwise. If the next
- instruction is an asm insntruction, this statement will set the
- flag to TRUE, and that value will still hold when the asm operands
- themselves are printed. */
- frv_insn_packing_flag = ! (insn && INSN_P (insn)
- && GET_MODE (insn) != TImode);
-}
-
-
-
-/* A C expression whose value is RTL representing the address in a stack frame
- where the pointer to the caller's frame is stored. Assume that FRAMEADDR is
- an RTL expression for the address of the stack frame itself.
-
- If you don't define this macro, the default is to return the value of
- FRAMEADDR--that is, the stack frame address is also the address of the stack
- word that points to the previous frame. */
-
-/* The default is correct, but we need to make sure the frame gets created. */
-rtx
-frv_dynamic_chain_address (frame)
- rtx frame;
-{
- cfun->machine->frame_needed = 1;
- return frame;
-}
-
-
-/* A C expression whose value is RTL representing the value of the return
- address for the frame COUNT steps up from the current frame, after the
- prologue. FRAMEADDR is the frame pointer of the COUNT frame, or the frame
- pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME' is
- defined.
-
- The value of the expression must always be the correct address when COUNT is
- zero, but may be `NULL_RTX' if there is not way to determine the return
- address of other frames. */
-
-rtx
-frv_return_addr_rtx (count, frame)
- int count ATTRIBUTE_UNUSED;
- rtx frame;
-{
- cfun->machine->frame_needed = 1;
- return gen_rtx_MEM (Pmode, plus_constant (frame, 8));
-}
-
-/* Given a memory reference MEMREF, interpret the referenced memory as
- an array of MODE values, and return a reference to the element
- specified by INDEX. Assume that any pre-modification implicit in
- MEMREF has already happened.
-
- MEMREF must be a legitimate operand for modes larger than SImode.
- GO_IF_LEGITIMATE_ADDRESS forbids register+register addresses, which
- this function cannot handle. */
-rtx
-frv_index_memory (memref, mode, index)
- rtx memref;
- enum machine_mode mode;
- int index;
-{
- rtx base = XEXP (memref, 0);
- if (GET_CODE (base) == PRE_MODIFY)
- base = XEXP (base, 0);
- return change_address (memref, mode,
- plus_constant (base, index * GET_MODE_SIZE (mode)));
-}
-
-
-/* Print a memory address as an operand to reference that memory location. */
-void
-frv_print_operand_address (stream, x)
- FILE * stream;
- rtx x;
-{
- if (GET_CODE (x) == MEM)
- x = XEXP (x, 0);
-
- switch (GET_CODE (x))
- {
- case REG:
- fputs (reg_names [ REGNO (x)], stream);
- return;
-
- case CONST_INT:
- fprintf (stream, "%ld", (long) INTVAL (x));
- return;
-
- case SYMBOL_REF:
- assemble_name (stream, XSTR (x, 0));
- return;
-
- case LABEL_REF:
- case CONST:
- output_addr_const (stream, x);
- return;
-
- default:
- break;
- }
-
- fatal_insn ("Bad insn to frv_print_operand_address:", x);
-}
-
-
-static void
-frv_print_operand_memory_reference_reg (stream, x)
- FILE *stream;
- rtx x;
-{
- int regno = true_regnum (x);
- if (GPR_P (regno))
- fputs (reg_names[regno], stream);
- else
- fatal_insn ("Bad register to frv_print_operand_memory_reference_reg:", x);
-}
-
-/* Print a memory reference suitable for the ld/st instructions. */
-
-static void
-frv_print_operand_memory_reference (stream, x, addr_offset)
- FILE *stream;
- rtx x;
- int addr_offset;
-{
- rtx x0 = NULL_RTX;
- rtx x1 = NULL_RTX;
-
- switch (GET_CODE (x))
- {
- case SUBREG:
- case REG:
- x0 = x;
- break;
-
- case PRE_MODIFY: /* (pre_modify (reg) (plus (reg) (reg))) */
- x0 = XEXP (x, 0);
- x1 = XEXP (XEXP (x, 1), 1);
- break;
-
- case CONST_INT:
- x1 = x;
- break;
-
- case PLUS:
- x0 = XEXP (x, 0);
- x1 = XEXP (x, 1);
- if (GET_CODE (x0) == CONST_INT)
- {
- x0 = XEXP (x, 1);
- x1 = XEXP (x, 0);
- }
- break;
-
- default:
- fatal_insn ("Bad insn to frv_print_operand_memory_reference:", x);
- break;
-
- }
-
- if (addr_offset)
- {
- if (!x1)
- x1 = const0_rtx;
- else if (GET_CODE (x1) != CONST_INT)
- fatal_insn ("Bad insn to frv_print_operand_memory_reference:", x);
- }
-
- fputs ("@(", stream);
- if (!x0)
- fputs (reg_names[GPR_R0], stream);
- else if (GET_CODE (x0) == REG || GET_CODE (x0) == SUBREG)
- frv_print_operand_memory_reference_reg (stream, x0);
- else
- fatal_insn ("Bad insn to frv_print_operand_memory_reference:", x);
-
- fputs (",", stream);
- if (!x1)
- fputs (reg_names [GPR_R0], stream);
-
- else
- {
- switch (GET_CODE (x1))
- {
- case SUBREG:
- case REG:
- frv_print_operand_memory_reference_reg (stream, x1);
- break;
-
- case CONST_INT:
- fprintf (stream, "%ld", (long) (INTVAL (x1) + addr_offset));
- break;
-
- case SYMBOL_REF:
- if (x0 && GET_CODE (x0) == REG && REGNO (x0) == SDA_BASE_REG
- && symbol_ref_small_data_p (x1))
- {
- fputs ("#gprel12(", stream);
- assemble_name (stream, XSTR (x1, 0));
- fputs (")", stream);
- }
- else
- fatal_insn ("Bad insn to frv_print_operand_memory_reference:", x);
- break;
-
- case CONST:
- if (x0 && GET_CODE (x0) == REG && REGNO (x0) == SDA_BASE_REG
- && const_small_data_p (x1))
- {
- fputs ("#gprel12(", stream);
- assemble_name (stream, XSTR (XEXP (XEXP (x1, 0), 0), 0));
- fprintf (stream, "+%d)", INTVAL (XEXP (XEXP (x1, 0), 1)));
- }
- else
- fatal_insn ("Bad insn to frv_print_operand_memory_reference:", x);
- break;
-
- default:
- fatal_insn ("Bad insn to frv_print_operand_memory_reference:", x);
- }
- }
-
- fputs (")", stream);
-}
-
-
-/* Return 2 for likely branches and 0 for non-likely branches */
-
-#define FRV_JUMP_LIKELY 2
-#define FRV_JUMP_NOT_LIKELY 0
-
-static int
-frv_print_operand_jump_hint (insn)
- rtx insn;
-{
- rtx note;
- rtx labelref;
- int ret;
- HOST_WIDE_INT prob = -1;
- enum { UNKNOWN, BACKWARD, FORWARD } jump_type = UNKNOWN;
-
- if (GET_CODE (insn) != JUMP_INSN)
- abort ();
-
- /* Assume any non-conditional jump is likely. */
- if (! any_condjump_p (insn))
- ret = FRV_JUMP_LIKELY;
-
- else
- {
- labelref = condjump_label (insn);
- if (labelref)
- {
- rtx label = XEXP (labelref, 0);
- jump_type = (insn_current_address > INSN_ADDRESSES (INSN_UID (label))
- ? BACKWARD
- : FORWARD);
- }
-
- note = find_reg_note (insn, REG_BR_PROB, 0);
- if (!note)
- ret = ((jump_type == BACKWARD) ? FRV_JUMP_LIKELY : FRV_JUMP_NOT_LIKELY);
-
- else
- {
- prob = INTVAL (XEXP (note, 0));
- ret = ((prob >= (REG_BR_PROB_BASE / 2))
- ? FRV_JUMP_LIKELY
- : FRV_JUMP_NOT_LIKELY);
- }
- }
-
-#if 0
- if (TARGET_DEBUG)
- {
- char *direction;
-
- switch (jump_type)
- {
- default:
- case UNKNOWN: direction = "unknown jump direction"; break;
- case BACKWARD: direction = "jump backward"; break;
- case FORWARD: direction = "jump forward"; break;
- }
-
- fprintf (stderr,
- "%s: uid %ld, %s, probability = %ld, max prob. = %ld, hint = %d\n",
- IDENTIFIER_POINTER (DECL_NAME (current_function_decl)),
- (long)INSN_UID (insn), direction, (long)prob,
- (long)REG_BR_PROB_BASE, ret);
- }
-#endif
-
- return ret;
-}
-
-
-/* Print an operand to a assembler instruction.
-
- `%' followed by a letter and a digit says to output an operand in an
- alternate fashion. Four letters have standard, built-in meanings described
- below. The machine description macro `PRINT_OPERAND' can define additional
- letters with nonstandard meanings.
-
- `%cDIGIT' can be used to substitute an operand that is a constant value
- without the syntax that normally indicates an immediate operand.
-
- `%nDIGIT' is like `%cDIGIT' except that the value of the constant is negated
- before printing.
-
- `%aDIGIT' can be used to substitute an operand as if it were a memory
- reference, with the actual operand treated as the address. This may be
- useful when outputting a "load address" instruction, because often the
- assembler syntax for such an instruction requires you to write the operand
- as if it were a memory reference.
-
- `%lDIGIT' is used to substitute a `label_ref' into a jump instruction.
-
- `%=' outputs a number which is unique to each instruction in the entire
- compilation. This is useful for making local labels to be referred to more
- than once in a single template that generates multiple assembler
- instructions.
-
- `%' followed by a punctuation character specifies a substitution that does
- not use an operand. Only one case is standard: `%%' outputs a `%' into the
- assembler code. Other nonstandard cases can be defined in the
- `PRINT_OPERAND' macro. You must also define which punctuation characters
- are valid with the `PRINT_OPERAND_PUNCT_VALID_P' macro. */
-
-void
-frv_print_operand (file, x, code)
- FILE * file;
- rtx x;
- int code;
-{
- HOST_WIDE_INT value;
- int offset;
-
- if (code != 0 && !isalpha (code))
- value = 0;
-
- else if (GET_CODE (x) == CONST_INT)
- value = INTVAL (x);
-
- else if (GET_CODE (x) == CONST_DOUBLE)
- {
- if (GET_MODE (x) == SFmode)
- {
- REAL_VALUE_TYPE rv;
- long l;
-
- REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
- REAL_VALUE_TO_TARGET_SINGLE (rv, l);
- value = l;
- }
-
- else if (GET_MODE (x) == VOIDmode)
- value = CONST_DOUBLE_LOW (x);
-
- else
- fatal_insn ("Bad insn in frv_print_operand, bad const_double", x);
- }
-
- else
- value = 0;
-
- switch (code)
- {
-
- case '.':
- /* Output r0 */
- fputs (reg_names[GPR_R0], file);
- break;
-
- case '#':
- fprintf (file, "%d", frv_print_operand_jump_hint (current_output_insn));
- break;
-
- case SDATA_FLAG_CHAR:
- /* Output small data area base register (gr16). */
- fputs (reg_names[SDA_BASE_REG], file);
- break;
-
- case '~':
- /* Output pic register (gr17). */
- fputs (reg_names[PIC_REGNO], file);
- break;
-
- case '*':
- /* Output the temporary integer CCR register */
- fputs (reg_names[ICR_TEMP], file);
- break;
-
- case '&':
- /* Output the temporary integer CC register */
- fputs (reg_names[ICC_TEMP], file);
- break;
-
- /* case 'a': print an address */
-
- case 'C':
- /* Print appropriate test for integer branch false operation */
- switch (GET_CODE (x))
- {
- default:
- fatal_insn ("Bad insn to frv_print_operand, 'C' modifier:", x);
-
- case EQ: fputs ("ne", file); break;
- case NE: fputs ("eq", file); break;
- case LT: fputs ("ge", file); break;
- case LE: fputs ("gt", file); break;
- case GT: fputs ("le", file); break;
- case GE: fputs ("lt", file); break;
- case LTU: fputs ("nc", file); break;
- case LEU: fputs ("hi", file); break;
- case GTU: fputs ("ls", file); break;
- case GEU: fputs ("c", file); break;
- }
- break;
-
- /* case 'c': print a constant without the constant prefix. If
- CONSTANT_ADDRESS_P(x) is not true, PRINT_OPERAND is called. */
-
- case 'c':
- /* Print appropriate test for integer branch true operation */
- switch (GET_CODE (x))
- {
- default:
- fatal_insn ("Bad insn to frv_print_operand, 'c' modifier:", x);
-
- case EQ: fputs ("eq", file); break;
- case NE: fputs ("ne", file); break;
- case LT: fputs ("lt", file); break;
- case LE: fputs ("le", file); break;
- case GT: fputs ("gt", file); break;
- case GE: fputs ("ge", file); break;
- case LTU: fputs ("c", file); break;
- case LEU: fputs ("ls", file); break;
- case GTU: fputs ("hi", file); break;
- case GEU: fputs ("nc", file); break;
- }
- break;
-
- case 'e':
- /* Print 1 for a NE and 0 for an EQ to give the final argument
- for a conditional instruction. */
- if (GET_CODE (x) == NE)
- fputs ("1", file);
-
- else if (GET_CODE (x) == EQ)
- fputs ("0", file);
-
- else
- fatal_insn ("Bad insn to frv_print_operand, 'e' modifier:", x);
- break;
-
- case 'F':
- /* Print appropriate test for floating point branch false operation */
- switch (GET_CODE (x))
- {
- default:
- fatal_insn ("Bad insn to frv_print_operand, 'F' modifier:", x);
-
- case EQ: fputs ("ne", file); break;
- case NE: fputs ("eq", file); break;
- case LT: fputs ("uge", file); break;
- case LE: fputs ("ug", file); break;
- case GT: fputs ("ule", file); break;
- case GE: fputs ("ul", file); break;
- }
- break;
-
- case 'f':
- /* Print appropriate test for floating point branch true operation */
- switch (GET_CODE (x))
- {
- default:
- fatal_insn ("Bad insn to frv_print_operand, 'f' modifier:", x);
-
- case EQ: fputs ("eq", file); break;
- case NE: fputs ("ne", file); break;
- case LT: fputs ("lt", file); break;
- case LE: fputs ("le", file); break;
- case GT: fputs ("gt", file); break;
- case GE: fputs ("ge", file); break;
- }
- break;
-
- case 'I':
- /* Print 'i' if the operand is a constant, or is a memory reference that
- adds a constant */
- if (GET_CODE (x) == MEM)
- x = ((GET_CODE (XEXP (x, 0)) == PLUS)
- ? XEXP (XEXP (x, 0), 1)
- : XEXP (x, 0));
-
- switch (GET_CODE (x))
- {
- default:
- break;
-
- case CONST_INT:
- case SYMBOL_REF:
- case CONST:
- fputs ("i", file);
- break;
- }
- break;
-
- case 'i':
- /* For jump instructions, print 'i' if the operand is a constant or
- is an expression that adds a constant */
- if (GET_CODE (x) == CONST_INT)
- fputs ("i", file);
-
- else
- {
- if (GET_CODE (x) == CONST_INT
- || (GET_CODE (x) == PLUS
- && (GET_CODE (XEXP (x, 1)) == CONST_INT
- || GET_CODE (XEXP (x, 0)) == CONST_INT)))
- fputs ("i", file);
- }
- break;
-
- case 'L':
- /* Print the lower register of a double word register pair */
- if (GET_CODE (x) == REG)
- fputs (reg_names[ REGNO (x)+1 ], file);
- else
- fatal_insn ("Bad insn to frv_print_operand, 'L' modifier:", x);
- break;
-
- /* case 'l': print a LABEL_REF */
-
- case 'M':
- case 'N':
- /* Print a memory reference for ld/st/jmp, %N prints a memory reference
- for the second word of double memory operations. */
- offset = (code == 'M') ? 0 : UNITS_PER_WORD;
- switch (GET_CODE (x))
- {
- default:
- fatal_insn ("Bad insn to frv_print_operand, 'M/N' modifier:", x);
-
- case MEM:
- frv_print_operand_memory_reference (file, XEXP (x, 0), offset);
- break;
-
- case REG:
- case SUBREG:
- case CONST_INT:
- case PLUS:
- case SYMBOL_REF:
- frv_print_operand_memory_reference (file, x, offset);
- break;
- }
- break;
-
- case 'O':
- /* Print the opcode of a command. */
- switch (GET_CODE (x))
- {
- default:
- fatal_insn ("Bad insn to frv_print_operand, 'O' modifier:", x);
-
- case PLUS: fputs ("add", file); break;
- case MINUS: fputs ("sub", file); break;
- case AND: fputs ("and", file); break;
- case IOR: fputs ("or", file); break;
- case XOR: fputs ("xor", file); break;
- case ASHIFT: fputs ("sll", file); break;
- case ASHIFTRT: fputs ("sra", file); break;
- case LSHIFTRT: fputs ("srl", file); break;
- }
- break;
-
- /* case 'n': negate and print a constant int */
-
- case 'P':
- /* Print PIC label using operand as the number. */
- if (GET_CODE (x) != CONST_INT)
- fatal_insn ("Bad insn to frv_print_operand, P modifier:", x);
-
- fprintf (file, ".LCF%ld", (long)INTVAL (x));
- break;
-
- case 'U':
- /* Print 'u' if the operand is a update load/store */
- if (GET_CODE (x) == MEM && GET_CODE (XEXP (x, 0)) == PRE_MODIFY)
- fputs ("u", file);
- break;
-
- case 'z':
- /* If value is 0, print gr0, otherwise it must be a register */
- if (GET_CODE (x) == CONST_INT && INTVAL (x) == 0)
- fputs (reg_names[GPR_R0], file);
-
- else if (GET_CODE (x) == REG)
- fputs (reg_names [REGNO (x)], file);
-
- else
- fatal_insn ("Bad insn in frv_print_operand, z case", x);
- break;
-
- case 'x':
- /* Print constant in hex */
- if (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
- {
- fprintf (file, "%s0x%.4lx", IMMEDIATE_PREFIX, (long) value);
- break;
- }
-
- /* fall through */
-
- case '\0':
- if (GET_CODE (x) == REG)
- fputs (reg_names [REGNO (x)], file);
-
- else if (GET_CODE (x) == CONST_INT
- || GET_CODE (x) == CONST_DOUBLE)
- fprintf (file, "%s%ld", IMMEDIATE_PREFIX, (long) value);
-
- else if (GET_CODE (x) == MEM)
- frv_print_operand_address (file, XEXP (x, 0));
-
- else if (CONSTANT_ADDRESS_P (x))
- frv_print_operand_address (file, x);
-
- else
- fatal_insn ("Bad insn in frv_print_operand, 0 case", x);
-
- break;
-
- default:
- fatal_insn ("frv_print_operand: unknown code", x);
- break;
- }
-
- return;
-}
-
-
-/* A C statement (sans semicolon) for initializing the variable CUM for the
- state at the beginning of the argument list. The variable has type
- `CUMULATIVE_ARGS'. The value of FNTYPE is the tree node for the data type
- of the function which will receive the args, or 0 if the args are to a
- compiler support library function. The value of INDIRECT is nonzero when
- processing an indirect call, for example a call through a function pointer.
- The value of INDIRECT is zero for a call to an explicitly named function, a
- library function call, or when `INIT_CUMULATIVE_ARGS' is used to find
- arguments for the function being compiled.
-
- When processing a call to a compiler support library function, LIBNAME
- identifies which one. It is a `symbol_ref' rtx which contains the name of
- the function, as a string. LIBNAME is 0 when an ordinary C function call is
- being processed. Thus, each time this macro is called, either LIBNAME or
- FNTYPE is nonzero, but never both of them at once. */
-
-void
-frv_init_cumulative_args (cum, fntype, libname, indirect, incoming)
- CUMULATIVE_ARGS *cum;
- tree fntype;
- rtx libname;
- int indirect;
- int incoming;
-{
- *cum = FIRST_ARG_REGNUM;
-
- if (TARGET_DEBUG_ARG)
- {
- fprintf (stderr, "\ninit_cumulative_args:");
- if (indirect)
- fputs (" indirect", stderr);
-
- if (incoming)
- fputs (" incoming", stderr);
-
- if (fntype)
- {
- tree ret_type = TREE_TYPE (fntype);
- fprintf (stderr, " return=%s,",
- tree_code_name[ (int)TREE_CODE (ret_type) ]);
- }
-
- if (libname && GET_CODE (libname) == SYMBOL_REF)
- fprintf (stderr, " libname=%s", XSTR (libname, 0));
-
- if (cfun->returns_struct)
- fprintf (stderr, " return-struct");
-
- putc ('\n', stderr);
- }
-}
-
-
-/* If defined, a C expression that gives the alignment boundary, in bits, of an
- argument with the specified mode and type. If it is not defined,
- `PARM_BOUNDARY' is used for all arguments. */
-
-int
-frv_function_arg_boundary (mode, type)
- enum machine_mode mode ATTRIBUTE_UNUSED;
- tree type ATTRIBUTE_UNUSED;
-{
- return BITS_PER_WORD;
-}
-
-
-/* A C expression that controls whether a function argument is passed in a
- register, and which register.
-
- The arguments are CUM, of type CUMULATIVE_ARGS, which summarizes (in a way
- defined by INIT_CUMULATIVE_ARGS and FUNCTION_ARG_ADVANCE) all of the previous
- arguments so far passed in registers; MODE, the machine mode of the argument;
- TYPE, the data type of the argument as a tree node or 0 if that is not known
- (which happens for C support library functions); and NAMED, which is 1 for an
- ordinary argument and 0 for nameless arguments that correspond to `...' in the
- called function's prototype.
-
- The value of the expression should either be a `reg' RTX for the hard
- register in which to pass the argument, or zero to pass the argument on the
- stack.
-
- For machines like the Vax and 68000, where normally all arguments are
- pushed, zero suffices as a definition.
-
- The usual way to make the ANSI library `stdarg.h' work on a machine where
- some arguments are usually passed in registers, is to cause nameless
- arguments to be passed on the stack instead. This is done by making
- `FUNCTION_ARG' return 0 whenever NAMED is 0.
-
- You may use the macro `MUST_PASS_IN_STACK (MODE, TYPE)' in the definition of
- this macro to determine if this argument is of a type that must be passed in
- the stack. If `REG_PARM_STACK_SPACE' is not defined and `FUNCTION_ARG'
- returns non-zero for such an argument, the compiler will abort. If
- `REG_PARM_STACK_SPACE' is defined, the argument will be computed in the
- stack and then loaded into a register. */
-
-rtx
-frv_function_arg (cum, mode, type, named, incoming)
- CUMULATIVE_ARGS *cum;
- enum machine_mode mode;
- tree type ATTRIBUTE_UNUSED;
- int named;
- int incoming ATTRIBUTE_UNUSED;
-{
- enum machine_mode xmode = (mode == BLKmode) ? SImode : mode;
- int arg_num = *cum;
- rtx ret;
- const char *debstr;
-
- /* Return a marker for use in the call instruction. */
- if (xmode == VOIDmode)
- {
- ret = const0_rtx;
- debstr = "<0>";
- }
-
- else if (arg_num <= LAST_ARG_REGNUM)
- {
- ret = gen_rtx (REG, xmode, arg_num);
- debstr = reg_names[arg_num];
- }
-
- else
- {
- ret = NULL_RTX;
- debstr = "memory";
- }
-
- if (TARGET_DEBUG_ARG)
- fprintf (stderr,
- "function_arg: words = %2d, mode = %4s, named = %d, size = %3d, arg = %s\n",
- arg_num, GET_MODE_NAME (mode), named, GET_MODE_SIZE (mode), debstr);
-
- return ret;
-}
-
-
-/* A C statement (sans semicolon) to update the summarizer variable CUM to
- advance past an argument in the argument list. The values MODE, TYPE and
- NAMED describe that argument. Once this is done, the variable CUM is
- suitable for analyzing the *following* argument with `FUNCTION_ARG', etc.
-
- This macro need not do anything if the argument in question was passed on
- the stack. The compiler knows how to track the amount of stack space used
- for arguments without any special help. */
-
-void
-frv_function_arg_advance (cum, mode, type, named)
- CUMULATIVE_ARGS *cum;
- enum machine_mode mode;
- tree type ATTRIBUTE_UNUSED;
- int named;
-{
- enum machine_mode xmode = (mode == BLKmode) ? SImode : mode;
- int bytes = GET_MODE_SIZE (xmode);
- int words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
- int arg_num = *cum;
-
- *cum = arg_num + words;
-
- if (TARGET_DEBUG_ARG)
- fprintf (stderr,
- "function_adv: words = %2d, mode = %4s, named = %d, size = %3d\n",
- arg_num, GET_MODE_NAME (mode), named, words * UNITS_PER_WORD);
-}
-
-
-/* A C expression for the number of words, at the beginning of an argument,
- must be put in registers. The value must be zero for arguments that are
- passed entirely in registers or that are entirely pushed on the stack.
-
- On some machines, certain arguments must be passed partially in registers
- and partially in memory. On these machines, typically the first N words of
- arguments are passed in registers, and the rest on the stack. If a
- multi-word argument (a `double' or a structure) crosses that boundary, its
- first few words must be passed in registers and the rest must be pushed.
- This macro tells the compiler when this occurs, and how many of the words
- should go in registers.
-
- `FUNCTION_ARG' for these arguments should return the first register to be
- used by the caller for this argument; likewise `FUNCTION_INCOMING_ARG', for
- the called function. */
-
-int
-frv_function_arg_partial_nregs (cum, mode, type, named)
- CUMULATIVE_ARGS *cum;
- enum machine_mode mode;
- tree type ATTRIBUTE_UNUSED;
- int named ATTRIBUTE_UNUSED;
-{
- enum machine_mode xmode = (mode == BLKmode) ? SImode : mode;
- int bytes = GET_MODE_SIZE (xmode);
- int words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
- int arg_num = *cum;
- int ret;
-
- ret = ((arg_num <= LAST_ARG_REGNUM && arg_num + words > LAST_ARG_REGNUM+1)
- ? LAST_ARG_REGNUM - arg_num + 1
- : 0);
-
- if (TARGET_DEBUG_ARG && ret)
- fprintf (stderr, "function_arg_partial_nregs: %d\n", ret);
-
- return ret;
-
-}
-
-
-
-/* A C expression that indicates when an argument must be passed by reference.
- If nonzero for an argument, a copy of that argument is made in memory and a
- pointer to the argument is passed instead of the argument itself. The
- pointer is passed in whatever way is appropriate for passing a pointer to
- that type.
-
- On machines where `REG_PARM_STACK_SPACE' is not defined, a suitable
- definition of this macro might be
- #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
- MUST_PASS_IN_STACK (MODE, TYPE) */
-
-int
-frv_function_arg_pass_by_reference (cum, mode, type, named)
- CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED;
- enum machine_mode mode;
- tree type;
- int named ATTRIBUTE_UNUSED;
-{
- return MUST_PASS_IN_STACK (mode, type);
-}
-
-/* If defined, a C expression that indicates when it is the called function's
- responsibility to make a copy of arguments passed by invisible reference.
- Normally, the caller makes a copy and passes the address of the copy to the
- routine being called. When FUNCTION_ARG_CALLEE_COPIES is defined and is
- nonzero, the caller does not make a copy. Instead, it passes a pointer to
- the "live" value. The called function must not modify this value. If it
- can be determined that the value won't be modified, it need not make a copy;
- otherwise a copy must be made. */
-
-int
-frv_function_arg_callee_copies (cum, mode, type, named)
- CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED;
- enum machine_mode mode ATTRIBUTE_UNUSED;
- tree type ATTRIBUTE_UNUSED;
- int named ATTRIBUTE_UNUSED;
-{
- return 0;
-}
-
-/* If defined, a C expression that indicates when it is more desirable to keep
- an argument passed by invisible reference as a reference, rather than
- copying it to a pseudo register. */
-
-int
-frv_function_arg_keep_as_reference (cum, mode, type, named)
- CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED;
- enum machine_mode mode ATTRIBUTE_UNUSED;
- tree type ATTRIBUTE_UNUSED;
- int named ATTRIBUTE_UNUSED;
-{
- return 0;
-}
-
-
-/* Return true if a register is ok to use as a base or index register. */
-
-static FRV_INLINE int
-frv_regno_ok_for_base_p (regno, strict_p)
- int regno;
- int strict_p;
-{
- if (GPR_P (regno))
- return TRUE;
-
- if (strict_p)
- return (reg_renumber[regno] >= 0 && GPR_P (reg_renumber[regno]));
-
- if (regno == ARG_POINTER_REGNUM)
- return TRUE;
-
- return (regno >= FIRST_PSEUDO_REGISTER);
-}
-
-
-/* A C compound statement with a conditional `goto LABEL;' executed if X (an
- RTX) is a legitimate memory address on the target machine for a memory
- operand of mode MODE.
-
- It usually pays to define several simpler macros to serve as subroutines for
- this one. Otherwise it may be too complicated to understand.
-
- This macro must exist in two variants: a strict variant and a non-strict
- one. The strict variant is used in the reload pass. It must be defined so
- that any pseudo-register that has not been allocated a hard register is
- considered a memory reference. In contexts where some kind of register is
- required, a pseudo-register with no hard register must be rejected.
-
- The non-strict variant is used in other passes. It must be defined to
- accept all pseudo-registers in every context where some kind of register is
- required.
-
- Compiler source files that want to use the strict variant of this macro
- define the macro `REG_OK_STRICT'. You should use an `#ifdef REG_OK_STRICT'
- conditional to define the strict variant in that case and the non-strict
- variant otherwise.
-
- Subroutines to check for acceptable registers for various purposes (one for
- base registers, one for index registers, and so on) are typically among the
- subroutines used to define `GO_IF_LEGITIMATE_ADDRESS'. Then only these
- subroutine macros need have two variants; the higher levels of macros may be
- the same whether strict or not.
-
- Normally, constant addresses which are the sum of a `symbol_ref' and an
- integer are stored inside a `const' RTX to mark them as constant.
- Therefore, there is no need to recognize such sums specifically as
- legitimate addresses. Normally you would simply recognize any `const' as
- legitimate.
-
- Usually `PRINT_OPERAND_ADDRESS' is not prepared to handle constant sums that
- are not marked with `const'. It assumes that a naked `plus' indicates
- indexing. If so, then you *must* reject such naked constant sums as
- illegitimate addresses, so that none of them will be given to
- `PRINT_OPERAND_ADDRESS'.
-
- On some machines, whether a symbolic address is legitimate depends on the
- section that the address refers to. On these machines, define the macro
- `ENCODE_SECTION_INFO' to store the information into the `symbol_ref', and
- then check for it here. When you see a `const', you will have to look
- inside it to find the `symbol_ref' in order to determine the section.
-
- The best way to modify the name string is by adding text to the beginning,
- with suitable punctuation to prevent any ambiguity. Allocate the new name
- in `saveable_obstack'. You will have to modify `ASM_OUTPUT_LABELREF' to
- remove and decode the added text and output the name accordingly, and define
- `(* targetm.strip_name_encoding)' to access the original name string.
-
- You can check the information stored here into the `symbol_ref' in the
- definitions of the macros `GO_IF_LEGITIMATE_ADDRESS' and
- `PRINT_OPERAND_ADDRESS'. */
-
-int
-frv_legitimate_address_p (mode, x, strict_p, condexec_p)
- enum machine_mode mode;
- rtx x;
- int strict_p;
- int condexec_p;
-{
- rtx x0, x1;
- int ret = 0;
- HOST_WIDE_INT value;
- unsigned regno0;
-
- switch (GET_CODE (x))
- {
- default:
- break;
-
- case SUBREG:
- x = SUBREG_REG (x);
- if (GET_CODE (x) != REG)
- break;
-
- /* fall through */
-
- case REG:
- ret = frv_regno_ok_for_base_p (REGNO (x), strict_p);
- break;
-
- case PRE_MODIFY:
- x0 = XEXP (x, 0);
- x1 = XEXP (x, 1);
- if (GET_CODE (x0) != REG
- || ! frv_regno_ok_for_base_p (REGNO (x0), strict_p)
- || GET_CODE (x1) != PLUS
- || ! rtx_equal_p (x0, XEXP (x1, 0))
- || GET_CODE (XEXP (x1, 1)) != REG
- || ! frv_regno_ok_for_base_p (REGNO (XEXP (x1, 1)), strict_p))
- break;
-
- ret = 1;
- break;
-
- case CONST_INT:
- /* 12 bit immediate */
- if (condexec_p)
- ret = FALSE;
- else
- {
- ret = IN_RANGE_P (INTVAL (x), -2048, 2047);
-
- /* If we can't use load/store double operations, make sure we can
- address the second word. */
- if (ret && GET_MODE_SIZE (mode) > UNITS_PER_WORD)
- ret = IN_RANGE_P (INTVAL (x) + GET_MODE_SIZE (mode) - 1,
- -2048, 2047);
- }
- break;
-
- case PLUS:
- x0 = XEXP (x, 0);
- x1 = XEXP (x, 1);
-
- if (GET_CODE (x0) == SUBREG)
- x0 = SUBREG_REG (x0);
-
- if (GET_CODE (x0) != REG)
- break;
-
- regno0 = REGNO (x0);
- if (!frv_regno_ok_for_base_p (regno0, strict_p))
- break;
-
- switch (GET_CODE (x1))
- {
- default:
- break;
-
- case SUBREG:
- x1 = SUBREG_REG (x1);
- if (GET_CODE (x1) != REG)
- break;
-
- /* fall through */
-
- case REG:
- /* Do not allow reg+reg addressing for modes > 1 word if we can't depend
- on having move double instructions */
- if (GET_MODE_SIZE (mode) > UNITS_PER_WORD)
- ret = FALSE;
- else
- ret = frv_regno_ok_for_base_p (REGNO (x1), strict_p);
- break;
-
- case CONST_INT:
- /* 12 bit immediate */
- if (condexec_p)
- ret = FALSE;
- else
- {
- value = INTVAL (x1);
- ret = IN_RANGE_P (value, -2048, 2047);
-
- /* If we can't use load/store double operations, make sure we can
- address the second word. */
- if (ret && GET_MODE_SIZE (mode) > UNITS_PER_WORD)
- ret = IN_RANGE_P (value + GET_MODE_SIZE (mode) - 1, -2048, 2047);
- }
- break;
-
- case SYMBOL_REF:
- if (!condexec_p
- && regno0 == SDA_BASE_REG
- && symbol_ref_small_data_p (x1))
- ret = TRUE;
- break;
-
- case CONST:
- if (!condexec_p && regno0 == SDA_BASE_REG && const_small_data_p (x1))
- ret = TRUE;
- break;
-
- }
- break;
- }
-
- if (TARGET_DEBUG_ADDR)
- {
- fprintf (stderr, "\n========== GO_IF_LEGITIMATE_ADDRESS, mode = %s, result = %d, addresses are %sstrict%s\n",
- GET_MODE_NAME (mode), ret, (strict_p) ? "" : "not ",
- (condexec_p) ? ", inside conditional code" : "");
- debug_rtx (x);
- }
-
- return ret;
-}
-
-
-/* A C compound statement that attempts to replace X with a valid memory
- address for an operand of mode MODE. WIN will be a C statement label
- elsewhere in the code; the macro definition may use
-
- GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN);
-
- to avoid further processing if the address has become legitimate.
-
- X will always be the result of a call to `break_out_memory_refs', and OLDX
- will be the operand that was given to that function to produce X.
-
- The code generated by this macro should not alter the substructure of X. If
- it transforms X into a more legitimate form, it should assign X (which will
- always be a C variable) a new value.
-
- It is not necessary for this macro to come up with a legitimate address.
- The compiler has standard ways of doing so in all cases. In fact, it is
- safe for this macro to do nothing. But often a machine-dependent strategy
- can generate better code. */
-
-rtx
-frv_legitimize_address (x, oldx, mode)
- rtx x;
- rtx oldx ATTRIBUTE_UNUSED;
- enum machine_mode mode ATTRIBUTE_UNUSED;
-{
- rtx ret = NULL_RTX;
-
- /* Don't try to legitimize addreses if we are not optimizing, since the
- address we generate is not a general operand, and will horribly mess
- things up when force_reg is called to try and put it in a register because
- we aren't optimizing. */
- if (optimize
- && ((GET_CODE (x) == SYMBOL_REF && symbol_ref_small_data_p (x))
- || (GET_CODE (x) == CONST && const_small_data_p (x))))
- {
- ret = gen_rtx_PLUS (Pmode, gen_rtx_REG (Pmode, SDA_BASE_REG), x);
- if (flag_pic)
- cfun->uses_pic_offset_table = TRUE;
- }
-
- if (TARGET_DEBUG_ADDR && ret != NULL_RTX)
- {
- fprintf (stderr, "\n========== LEGITIMIZE_ADDRESS, mode = %s, modified address\n",
- GET_MODE_NAME (mode));
- debug_rtx (ret);
- }
-
- return ret;
-}
-
-/* Return 1 if operand is a valid FRV address. CONDEXEC_P is true if
- the operand is used by a predicated instruction. */
-
-static int
-frv_legitimate_memory_operand (op, mode, condexec_p)
- rtx op;
- enum machine_mode mode;
- int condexec_p;
-{
- return ((GET_MODE (op) == mode || mode == VOIDmode)
- && GET_CODE (op) == MEM
- && frv_legitimate_address_p (mode, XEXP (op, 0),
- reload_completed, condexec_p));
-}
-
-
-/* Return 1 is OP is a memory operand, or will be turned into one by
- reload. */
-
-int frv_load_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- if (GET_MODE (op) != mode && mode != VOIDmode)
- return FALSE;
-
- if (reload_in_progress)
- {
- rtx tmp = op;
- if (GET_CODE (tmp) == SUBREG)
- tmp = SUBREG_REG (tmp);
- if (GET_CODE (tmp) == REG
- && REGNO (tmp) >= FIRST_PSEUDO_REGISTER)
- op = reg_equiv_memory_loc[REGNO (tmp)];
- }
-
- return op && memory_operand (op, mode);
-}
-
-
-/* Return 1 if operand is a GPR register or a FPR register. */
-
-int gpr_or_fpr_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- int regno;
-
- if (GET_MODE (op) != mode && mode != VOIDmode)
- return FALSE;
-
- if (GET_CODE (op) == SUBREG)
- {
- if (GET_CODE (SUBREG_REG (op)) != REG)
- return register_operand (op, mode);
-
- op = SUBREG_REG (op);
- }
-
- if (GET_CODE (op) != REG)
- return FALSE;
-
- regno = REGNO (op);
- if (GPR_P (regno) || FPR_P (regno) || regno >= FIRST_PSEUDO_REGISTER)
- return TRUE;
-
- return FALSE;
-}
-
-/* Return 1 if operand is a GPR register or 12 bit signed immediate. */
-
-int gpr_or_int12_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- if (GET_CODE (op) == CONST_INT)
- return IN_RANGE_P (INTVAL (op), -2048, 2047);
-
- if (GET_MODE (op) != mode && mode != VOIDmode)
- return FALSE;
-
- if (GET_CODE (op) == SUBREG)
- {
- if (GET_CODE (SUBREG_REG (op)) != REG)
- return register_operand (op, mode);
-
- op = SUBREG_REG (op);
- }
-
- if (GET_CODE (op) != REG)
- return FALSE;
-
- return GPR_OR_PSEUDO_P (REGNO (op));
-}
-
-/* Return 1 if operand is a GPR register, or a FPR register, or a 12 bit
- signed immediate. */
-
-int gpr_fpr_or_int12_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- int regno;
-
- if (GET_CODE (op) == CONST_INT)
- return IN_RANGE_P (INTVAL (op), -2048, 2047);
-
- if (GET_MODE (op) != mode && mode != VOIDmode)
- return FALSE;
-
- if (GET_CODE (op) == SUBREG)
- {
- if (GET_CODE (SUBREG_REG (op)) != REG)
- return register_operand (op, mode);
-
- op = SUBREG_REG (op);
- }
-
- if (GET_CODE (op) != REG)
- return FALSE;
-
- regno = REGNO (op);
- if (GPR_P (regno) || FPR_P (regno) || regno >= FIRST_PSEUDO_REGISTER)
- return TRUE;
-
- return FALSE;
-}
-
-/* Return 1 if operand is a register or 6 bit signed immediate. */
-
-int fpr_or_int6_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- if (GET_CODE (op) == CONST_INT)
- return IN_RANGE_P (INTVAL (op), -32, 31);
-
- if (GET_MODE (op) != mode && mode != VOIDmode)
- return FALSE;
-
- if (GET_CODE (op) == SUBREG)
- {
- if (GET_CODE (SUBREG_REG (op)) != REG)
- return register_operand (op, mode);
-
- op = SUBREG_REG (op);
- }
-
- if (GET_CODE (op) != REG)
- return FALSE;
-
- return FPR_OR_PSEUDO_P (REGNO (op));
-}
-
-/* Return 1 if operand is a register or 10 bit signed immediate. */
-
-int gpr_or_int10_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- if (GET_CODE (op) == CONST_INT)
- return IN_RANGE_P (INTVAL (op), -512, 511);
-
- if (GET_MODE (op) != mode && mode != VOIDmode)
- return FALSE;
-
- if (GET_CODE (op) == SUBREG)
- {
- if (GET_CODE (SUBREG_REG (op)) != REG)
- return register_operand (op, mode);
-
- op = SUBREG_REG (op);
- }
-
- if (GET_CODE (op) != REG)
- return FALSE;
-
- return GPR_OR_PSEUDO_P (REGNO (op));
-}
-
-/* Return 1 if operand is a register or an integer immediate. */
-
-int gpr_or_int_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- if (GET_CODE (op) == CONST_INT)
- return TRUE;
-
- if (GET_MODE (op) != mode && mode != VOIDmode)
- return FALSE;
-
- if (GET_CODE (op) == SUBREG)
- {
- if (GET_CODE (SUBREG_REG (op)) != REG)
- return register_operand (op, mode);
-
- op = SUBREG_REG (op);
- }
-
- if (GET_CODE (op) != REG)
- return FALSE;
-
- return GPR_OR_PSEUDO_P (REGNO (op));
-}
-
-/* Return 1 if operand is a 12 bit signed immediate. */
-
-int int12_operand (op, mode)
- rtx op;
- enum machine_mode mode ATTRIBUTE_UNUSED;
-{
- if (GET_CODE (op) != CONST_INT)
- return FALSE;
-
- return IN_RANGE_P (INTVAL (op), -2048, 2047);
-}
-
-/* Return 1 if operand is a 6 bit signed immediate. */
-
-int int6_operand (op, mode)
- rtx op;
- enum machine_mode mode ATTRIBUTE_UNUSED;
-{
- if (GET_CODE (op) != CONST_INT)
- return FALSE;
-
- return IN_RANGE_P (INTVAL (op), -32, 31);
-}
-
-/* Return 1 if operand is a 5 bit signed immediate. */
-
-int int5_operand (op, mode)
- rtx op;
- enum machine_mode mode ATTRIBUTE_UNUSED;
-{
- return GET_CODE (op) == CONST_INT && IN_RANGE_P (INTVAL (op), -16, 15);
-}
-
-/* Return 1 if operand is a 5 bit unsigned immediate. */
-
-int uint5_operand (op, mode)
- rtx op;
- enum machine_mode mode ATTRIBUTE_UNUSED;
-{
- return GET_CODE (op) == CONST_INT && IN_RANGE_P (INTVAL (op), 0, 31);
-}
-
-/* Return 1 if operand is a 4 bit unsigned immediate. */
-
-int uint4_operand (op, mode)
- rtx op;
- enum machine_mode mode ATTRIBUTE_UNUSED;
-{
- return GET_CODE (op) == CONST_INT && IN_RANGE_P (INTVAL (op), 0, 15);
-}
-
-/* Return 1 if operand is a 1 bit unsigned immediate (0 or 1). */
-
-int uint1_operand (op, mode)
- rtx op;
- enum machine_mode mode ATTRIBUTE_UNUSED;
-{
- return GET_CODE (op) == CONST_INT && IN_RANGE_P (INTVAL (op), 0, 1);
-}
-
-/* Return 1 if operand is an integer constant that takes 2 instructions
- to load up and can be split into sethi/setlo instructions.. */
-
-int int_2word_operand (op, mode)
- rtx op;
- enum machine_mode mode ATTRIBUTE_UNUSED;
-{
- HOST_WIDE_INT value;
- REAL_VALUE_TYPE rv;
- long l;
-
- switch (GET_CODE (op))
- {
- default:
- break;
-
- case LABEL_REF:
- return (flag_pic == 0);
-
- case CONST:
- /* small data references are already 1 word */
- return (flag_pic == 0) && (! const_small_data_p (op));
-
- case SYMBOL_REF:
- /* small data references are already 1 word */
- return (flag_pic == 0) && (! symbol_ref_small_data_p (op));
-
- case CONST_INT:
- return ! IN_RANGE_P (INTVAL (op), -32768, 32767);
-
- case CONST_DOUBLE:
- if (GET_MODE (op) == SFmode)
- {
- REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
- REAL_VALUE_TO_TARGET_SINGLE (rv, l);
- value = l;
- return ! IN_RANGE_P (value, -32768, 32767);
- }
- else if (GET_MODE (op) == VOIDmode)
- {
- value = CONST_DOUBLE_LOW (op);
- return ! IN_RANGE_P (value, -32768, 32767);
- }
- break;
- }
-
- return FALSE;
-}
-
-/* Return 1 if operand is the pic address register. */
-int
-pic_register_operand (op, mode)
- rtx op;
- enum machine_mode mode ATTRIBUTE_UNUSED;
-{
- if (! flag_pic)
- return FALSE;
-
- if (GET_CODE (op) != REG)
- return FALSE;
-
- if (REGNO (op) != PIC_REGNO)
- return FALSE;
-
- return TRUE;
-}
-
-/* Return 1 if operand is a symbolic reference when a PIC option is specified
- that takes 3 seperate instructions to form. */
-
-int pic_symbolic_operand (op, mode)
- rtx op;
- enum machine_mode mode ATTRIBUTE_UNUSED;
-{
- if (! flag_pic)
- return FALSE;
-
- switch (GET_CODE (op))
- {
- default:
- break;
-
- case LABEL_REF:
- return TRUE;
-
- case SYMBOL_REF:
- /* small data references are already 1 word */
- return ! symbol_ref_small_data_p (op);
-
- case CONST:
- /* small data references are already 1 word */
- return ! const_small_data_p (op);
- }
-
- return FALSE;
-}
-
-/* Return 1 if operand is the small data register. */
-int
-small_data_register_operand (op, mode)
- rtx op;
- enum machine_mode mode ATTRIBUTE_UNUSED;
-{
- if (GET_CODE (op) != REG)
- return FALSE;
-
- if (REGNO (op) != SDA_BASE_REG)
- return FALSE;
-
- return TRUE;
-}
-
-/* Return 1 if operand is a symbolic reference to a small data area static or
- global object. */
-
-int small_data_symbolic_operand (op, mode)
- rtx op;
- enum machine_mode mode ATTRIBUTE_UNUSED;
-{
- switch (GET_CODE (op))
- {
- default:
- break;
-
- case CONST:
- return const_small_data_p (op);
-
- case SYMBOL_REF:
- return symbol_ref_small_data_p (op);
- }
-
- return FALSE;
-}
-
-/* Return 1 if operand is a 16 bit unsigned immediate */
-
-int uint16_operand (op, mode)
- rtx op;
- enum machine_mode mode ATTRIBUTE_UNUSED;
-{
- if (GET_CODE (op) != CONST_INT)
- return FALSE;
-
- return IN_RANGE_P (INTVAL (op), 0, 0xffff);
-}
-
-/* Return 1 if operand is an integer constant with the bottom 16 bits clear */
-
-int upper_int16_operand (op, mode)
- rtx op;
- enum machine_mode mode ATTRIBUTE_UNUSED;
-{
- if (GET_CODE (op) != CONST_INT)
- return FALSE;
-
- return ((INTVAL (op) & 0xffff) == 0);
-}
-
-/* Return true if operand is a GPR register. */
-
-int
-integer_register_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- if (GET_MODE (op) != mode && mode != VOIDmode)
- return FALSE;
-
- if (GET_CODE (op) == SUBREG)
- {
- if (GET_CODE (SUBREG_REG (op)) != REG)
- return register_operand (op, mode);
-
- op = SUBREG_REG (op);
- }
-
- if (GET_CODE (op) != REG)
- return FALSE;
-
- return GPR_OR_PSEUDO_P (REGNO (op));
-}
-
-/* Return true if operand is a GPR register. Do not allow SUBREG's
- here, in order to prevent a combine bug. */
-
-int
-gpr_no_subreg_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- if (GET_MODE (op) != mode && mode != VOIDmode)
- return FALSE;
-
- if (GET_CODE (op) != REG)
- return FALSE;
-
- return GPR_OR_PSEUDO_P (REGNO (op));
-}
-
-/* Return true if operand is a FPR register. */
-
-int
-fpr_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- if (GET_MODE (op) != mode && mode != VOIDmode)
- return FALSE;
-
- if (GET_CODE (op) == SUBREG)
- {
- if (GET_CODE (SUBREG_REG (op)) != REG)
- return register_operand (op, mode);
-
- op = SUBREG_REG (op);
- }
-
- if (GET_CODE (op) != REG)
- return FALSE;
-
- return FPR_OR_PSEUDO_P (REGNO (op));
-}
-
-/* Return true if operand is an even GPR or FPR register. */
-
-int
-even_reg_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- int regno;
-
- if (GET_MODE (op) != mode && mode != VOIDmode)
- return FALSE;
-
- if (GET_CODE (op) == SUBREG)
- {
- if (GET_CODE (SUBREG_REG (op)) != REG)
- return register_operand (op, mode);
-
- op = SUBREG_REG (op);
- }
-
- if (GET_CODE (op) != REG)
- return FALSE;
-
- regno = REGNO (op);
- if (regno >= FIRST_PSEUDO_REGISTER)
- return TRUE;
-
- if (GPR_P (regno))
- return (((regno - GPR_FIRST) & 1) == 0);
-
- if (FPR_P (regno))
- return (((regno - FPR_FIRST) & 1) == 0);
-
- return FALSE;
-}
-
-/* Return true if operand is an odd GPR register. */
-
-int
-odd_reg_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- int regno;
-
- if (GET_MODE (op) != mode && mode != VOIDmode)
- return FALSE;
-
- if (GET_CODE (op) == SUBREG)
- {
- if (GET_CODE (SUBREG_REG (op)) != REG)
- return register_operand (op, mode);
-
- op = SUBREG_REG (op);
- }
-
- if (GET_CODE (op) != REG)
- return FALSE;
-
- regno = REGNO (op);
- /* assume that reload will give us an even register */
- if (regno >= FIRST_PSEUDO_REGISTER)
- return FALSE;
-
- if (GPR_P (regno))
- return (((regno - GPR_FIRST) & 1) != 0);
-
- if (FPR_P (regno))
- return (((regno - FPR_FIRST) & 1) != 0);
-
- return FALSE;
-}
-
-/* Return true if operand is an even GPR register. */
-
-int
-even_gpr_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- int regno;
-
- if (GET_MODE (op) != mode && mode != VOIDmode)
- return FALSE;
-
- if (GET_CODE (op) == SUBREG)
- {
- if (GET_CODE (SUBREG_REG (op)) != REG)
- return register_operand (op, mode);
-
- op = SUBREG_REG (op);
- }
-
- if (GET_CODE (op) != REG)
- return FALSE;
-
- regno = REGNO (op);
- if (regno >= FIRST_PSEUDO_REGISTER)
- return TRUE;
-
- if (! GPR_P (regno))
- return FALSE;
-
- return (((regno - GPR_FIRST) & 1) == 0);
-}
-
-/* Return true if operand is an odd GPR register. */
-
-int
-odd_gpr_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- int regno;
-
- if (GET_MODE (op) != mode && mode != VOIDmode)
- return FALSE;
-
- if (GET_CODE (op) == SUBREG)
- {
- if (GET_CODE (SUBREG_REG (op)) != REG)
- return register_operand (op, mode);
-
- op = SUBREG_REG (op);
- }
-
- if (GET_CODE (op) != REG)
- return FALSE;
-
- regno = REGNO (op);
- /* assume that reload will give us an even register */
- if (regno >= FIRST_PSEUDO_REGISTER)
- return FALSE;
-
- if (! GPR_P (regno))
- return FALSE;
-
- return (((regno - GPR_FIRST) & 1) != 0);
-}
-
-/* Return true if operand is a quad aligned FPR register. */
-
-int
-quad_fpr_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- int regno;
-
- if (GET_MODE (op) != mode && mode != VOIDmode)
- return FALSE;
-
- if (GET_CODE (op) == SUBREG)
- {
- if (GET_CODE (SUBREG_REG (op)) != REG)
- return register_operand (op, mode);
-
- op = SUBREG_REG (op);
- }
-
- if (GET_CODE (op) != REG)
- return FALSE;
-
- regno = REGNO (op);
- if (regno >= FIRST_PSEUDO_REGISTER)
- return TRUE;
-
- if (! FPR_P (regno))
- return FALSE;
-
- return (((regno - FPR_FIRST) & 3) == 0);
-}
-
-/* Return true if operand is an even FPR register. */
-
-int
-even_fpr_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- int regno;
-
- if (GET_MODE (op) != mode && mode != VOIDmode)
- return FALSE;
-
- if (GET_CODE (op) == SUBREG)
- {
- if (GET_CODE (SUBREG_REG (op)) != REG)
- return register_operand (op, mode);
-
- op = SUBREG_REG (op);
- }
-
- if (GET_CODE (op) != REG)
- return FALSE;
-
- regno = REGNO (op);
- if (regno >= FIRST_PSEUDO_REGISTER)
- return TRUE;
-
- if (! FPR_P (regno))
- return FALSE;
-
- return (((regno - FPR_FIRST) & 1) == 0);
-}
-
-/* Return true if operand is an odd FPR register. */
-
-int
-odd_fpr_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- int regno;
-
- if (GET_MODE (op) != mode && mode != VOIDmode)
- return FALSE;
-
- if (GET_CODE (op) == SUBREG)
- {
- if (GET_CODE (SUBREG_REG (op)) != REG)
- return register_operand (op, mode);
-
- op = SUBREG_REG (op);
- }
-
- if (GET_CODE (op) != REG)
- return FALSE;
-
- regno = REGNO (op);
- /* assume that reload will give us an even register */
- if (regno >= FIRST_PSEUDO_REGISTER)
- return FALSE;
-
- if (! FPR_P (regno))
- return FALSE;
-
- return (((regno - FPR_FIRST) & 1) != 0);
-}
-
-/* Return true if operand is a 2 word memory address that can be loaded in one
- instruction to load or store. We assume the stack and frame pointers are
- suitably aligned, and variables in the small data area. FIXME -- at some we
- should recognize other globals and statics. We can't assume that any old
- pointer is aligned, given that arguments could be passed on an odd word on
- the stack and the address taken and passed through to another function. */
-
-int
-dbl_memory_one_insn_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- rtx addr;
- rtx addr_reg;
-
- if (! TARGET_DWORD)
- return FALSE;
-
- if (GET_CODE (op) != MEM)
- return FALSE;
-
- if (mode != VOIDmode && GET_MODE_SIZE (mode) != 2*UNITS_PER_WORD)
- return FALSE;
-
- addr = XEXP (op, 0);
- if (GET_CODE (addr) == REG)
- addr_reg = addr;
-
- else if (GET_CODE (addr) == PLUS)
- {
- rtx addr0 = XEXP (addr, 0);
- rtx addr1 = XEXP (addr, 1);
-
- if (GET_CODE (addr0) != REG)
- return FALSE;
-
- if (plus_small_data_p (addr0, addr1))
- return TRUE;
-
- if (GET_CODE (addr1) != CONST_INT)
- return FALSE;
-
- if ((INTVAL (addr1) & 7) != 0)
- return FALSE;
-
- addr_reg = addr0;
- }
-
- else
- return FALSE;
-
- if (addr_reg == frame_pointer_rtx || addr_reg == stack_pointer_rtx)
- return TRUE;
-
- return FALSE;
-}
-
-/* Return true if operand is a 2 word memory address that needs to
- use two instructions to load or store. */
-
-int
-dbl_memory_two_insn_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- if (GET_CODE (op) != MEM)
- return FALSE;
-
- if (mode != VOIDmode && GET_MODE_SIZE (mode) != 2*UNITS_PER_WORD)
- return FALSE;
-
- if (! TARGET_DWORD)
- return TRUE;
-
- return ! dbl_memory_one_insn_operand (op, mode);
-}
-
-/* Return true if operand is something that can be an output for a move
- operation. */
-
-int
-move_destination_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- rtx subreg;
- enum rtx_code code;
-
- switch (GET_CODE (op))
- {
- default:
- break;
-
- case SUBREG:
- if (GET_MODE (op) != mode && mode != VOIDmode)
- return FALSE;
-
- subreg = SUBREG_REG (op);
- code = GET_CODE (subreg);
- if (code == MEM)
- return frv_legitimate_address_p (mode, XEXP (subreg, 0),
- reload_completed, FALSE);
-
- return (code == REG);
-
- case REG:
- if (GET_MODE (op) != mode && mode != VOIDmode)
- return FALSE;
-
- return TRUE;
-
- case MEM:
- if (GET_CODE (XEXP (op, 0)) == ADDRESSOF)
- return TRUE;
-
- return frv_legitimate_memory_operand (op, mode, FALSE);
- }
-
- return FALSE;
-}
-
-/* Return true if operand is something that can be an input for a move
- operation. */
-
-int
-move_source_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- rtx subreg;
- enum rtx_code code;
-
- switch (GET_CODE (op))
- {
- default:
- break;
-
- case CONST_INT:
- case CONST_DOUBLE:
- case SYMBOL_REF:
- case LABEL_REF:
- case CONST:
- return immediate_operand (op, mode);
-
- case SUBREG:
- if (GET_MODE (op) != mode && mode != VOIDmode)
- return FALSE;
-
- subreg = SUBREG_REG (op);
- code = GET_CODE (subreg);
- if (code == MEM)
- return frv_legitimate_address_p (mode, XEXP (subreg, 0),
- reload_completed, FALSE);
-
- return (code == REG);
-
- case REG:
- if (GET_MODE (op) != mode && mode != VOIDmode)
- return FALSE;
-
- return TRUE;
-
- case MEM:
- if (GET_CODE (XEXP (op, 0)) == ADDRESSOF)
- return TRUE;
-
- return frv_legitimate_memory_operand (op, mode, FALSE);
- }
-
- return FALSE;
-}
-
-/* Return true if operand is something that can be an output for a conditional
- move operation. */
-
-int
-condexec_dest_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- rtx subreg;
- enum rtx_code code;
-
- switch (GET_CODE (op))
- {
- default:
- break;
-
- case SUBREG:
- if (GET_MODE (op) != mode && mode != VOIDmode)
- return FALSE;
-
- subreg = SUBREG_REG (op);
- code = GET_CODE (subreg);
- if (code == MEM)
- return frv_legitimate_address_p (mode, XEXP (subreg, 0),
- reload_completed, TRUE);
-
- return (code == REG);
-
- case REG:
- if (GET_MODE (op) != mode && mode != VOIDmode)
- return FALSE;
-
- return TRUE;
-
- case MEM:
- if (GET_CODE (XEXP (op, 0)) == ADDRESSOF)
- return TRUE;
-
- return frv_legitimate_memory_operand (op, mode, TRUE);
- }
-
- return FALSE;
-}
-
-/* Return true if operand is something that can be an input for a conditional
- move operation. */
-
-int
-condexec_source_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- rtx subreg;
- enum rtx_code code;
-
- switch (GET_CODE (op))
- {
- default:
- break;
-
- case CONST_INT:
- case CONST_DOUBLE:
- return ZERO_P (op);
-
- case SUBREG:
- if (GET_MODE (op) != mode && mode != VOIDmode)
- return FALSE;
-
- subreg = SUBREG_REG (op);
- code = GET_CODE (subreg);
- if (code == MEM)
- return frv_legitimate_address_p (mode, XEXP (subreg, 0),
- reload_completed, TRUE);
-
- return (code == REG);
-
- case REG:
- if (GET_MODE (op) != mode && mode != VOIDmode)
- return FALSE;
-
- return TRUE;
-
- case MEM:
- if (GET_CODE (XEXP (op, 0)) == ADDRESSOF)
- return TRUE;
-
- return frv_legitimate_memory_operand (op, mode, TRUE);
- }
-
- return FALSE;
-}
-
-/* Return true if operand is a register of any flavor or a 0 of the
- appropriate type. */
-
-int
-reg_or_0_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- switch (GET_CODE (op))
- {
- default:
- break;
-
- case REG:
- case SUBREG:
- if (GET_MODE (op) != mode && mode != VOIDmode)
- return FALSE;
-
- return register_operand (op, mode);
-
- case CONST_INT:
- case CONST_DOUBLE:
- return ZERO_P (op);
- }
-
- return FALSE;
-}
-
-/* Return true if operand is the link register */
-
-int
-lr_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- if (GET_CODE (op) != REG)
- return FALSE;
-
- if (GET_MODE (op) != mode && mode != VOIDmode)
- return FALSE;
-
- if (REGNO (op) != LR_REGNO && REGNO (op) < FIRST_PSEUDO_REGISTER)
- return FALSE;
-
- return TRUE;
-}
-
-/* Return true if operand is a gpr register or a valid memory operation. */
-
-int
-gpr_or_memory_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- return (integer_register_operand (op, mode)
- || frv_legitimate_memory_operand (op, mode, FALSE));
-}
-
-/* Return true if operand is a fpr register or a valid memory operation. */
-
-int
-fpr_or_memory_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- return (fpr_operand (op, mode)
- || frv_legitimate_memory_operand (op, mode, FALSE));
-}
-
-/* Return true if operand is an icc register */
-
-int
-icc_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- int regno;
-
- if (GET_MODE (op) != mode && mode != VOIDmode)
- return FALSE;
-
- if (GET_CODE (op) != REG)
- return FALSE;
-
- regno = REGNO (op);
- return ICC_OR_PSEUDO_P (regno);
-}
-
-/* Return true if operand is an fcc register */
-
-int
-fcc_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- int regno;
-
- if (GET_MODE (op) != mode && mode != VOIDmode)
- return FALSE;
-
- if (GET_CODE (op) != REG)
- return FALSE;
-
- regno = REGNO (op);
- return FCC_OR_PSEUDO_P (regno);
-}
-
-/* Return true if operand is either an fcc or icc register */
-
-int
-cc_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- int regno;
-
- if (GET_MODE (op) != mode && mode != VOIDmode)
- return FALSE;
-
- if (GET_CODE (op) != REG)
- return FALSE;
-
- regno = REGNO (op);
- if (CC_OR_PSEUDO_P (regno))
- return TRUE;
-
- return FALSE;
-}
-
-/* Return true if operand is an integer CCR register */
-
-int
-icr_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- int regno;
-
- if (GET_MODE (op) != mode && mode != VOIDmode)
- return FALSE;
-
- if (GET_CODE (op) != REG)
- return FALSE;
-
- regno = REGNO (op);
- return ICR_OR_PSEUDO_P (regno);
-}
-
-/* Return true if operand is an fcc register */
-
-int
-fcr_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- int regno;
-
- if (GET_MODE (op) != mode && mode != VOIDmode)
- return FALSE;
-
- if (GET_CODE (op) != REG)
- return FALSE;
-
- regno = REGNO (op);
- return FCR_OR_PSEUDO_P (regno);
-}
-
-/* Return true if operand is either an fcc or icc register */
-
-int
-cr_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- int regno;
-
- if (GET_MODE (op) != mode && mode != VOIDmode)
- return FALSE;
-
- if (GET_CODE (op) != REG)
- return FALSE;
-
- regno = REGNO (op);
- if (CR_OR_PSEUDO_P (regno))
- return TRUE;
-
- return FALSE;
-}
-
-/* Return true if operand is a memory reference suitable for a call. */
-
-int
-call_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- if (GET_MODE (op) != mode && mode != VOIDmode && GET_CODE (op) != CONST_INT)
- return FALSE;
-
- if (GET_CODE (op) == SYMBOL_REF)
- return TRUE;
-
- /* Note this doesn't allow reg+reg or reg+imm12 addressing (which should
- never occur anyway), but prevents reload from not handling the case
- properly of a call through a pointer on a function that calls
- vfork/setjmp, etc. due to the need to flush all of the registers to stack. */
- return gpr_or_int12_operand (op, mode);
-}
-
-/* Return true if operator is an kind of relational operator */
-
-int
-relational_operator (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- rtx op0;
- rtx op1;
- int regno;
-
- if (mode != VOIDmode && mode != GET_MODE (op))
- return FALSE;
-
- switch (GET_CODE (op))
- {
- default:
- return FALSE;
-
- case EQ:
- case NE:
- case LE:
- case LT:
- case GE:
- case GT:
- case LEU:
- case LTU:
- case GEU:
- case GTU:
- break;
- }
-
- op1 = XEXP (op, 1);
- if (op1 != const0_rtx)
- return FALSE;
-
- op0 = XEXP (op, 0);
- if (GET_CODE (op0) != REG)
- return FALSE;
-
- regno = REGNO (op0);
- switch (GET_MODE (op0))
- {
- default:
- break;
-
- case CCmode:
- case CC_UNSmode:
- return ICC_OR_PSEUDO_P (regno);
-
- case CC_FPmode:
- return FCC_OR_PSEUDO_P (regno);
-
- case CC_CCRmode:
- return CR_OR_PSEUDO_P (regno);
- }
-
- return FALSE;
-}
-
-/* Return true if operator is a signed integer relational operator */
-
-int
-signed_relational_operator (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- rtx op0;
- rtx op1;
- int regno;
-
- if (mode != VOIDmode && mode != GET_MODE (op))
- return FALSE;
-
- switch (GET_CODE (op))
- {
- default:
- return FALSE;
-
- case EQ:
- case NE:
- case LE:
- case LT:
- case GE:
- case GT:
- break;
- }
-
- op1 = XEXP (op, 1);
- if (op1 != const0_rtx)
- return FALSE;
-
- op0 = XEXP (op, 0);
- if (GET_CODE (op0) != REG)
- return FALSE;
-
- regno = REGNO (op0);
- if (GET_MODE (op0) == CCmode && ICC_OR_PSEUDO_P (regno))
- return TRUE;
-
- if (GET_MODE (op0) == CC_CCRmode && CR_OR_PSEUDO_P (regno))
- return TRUE;
-
- return FALSE;
-}
-
-/* Return true if operator is a signed integer relational operator */
-
-int
-unsigned_relational_operator (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- rtx op0;
- rtx op1;
- int regno;
-
- if (mode != VOIDmode && mode != GET_MODE (op))
- return FALSE;
-
- switch (GET_CODE (op))
- {
- default:
- return FALSE;
-
- case LEU:
- case LTU:
- case GEU:
- case GTU:
- break;
- }
-
- op1 = XEXP (op, 1);
- if (op1 != const0_rtx)
- return FALSE;
-
- op0 = XEXP (op, 0);
- if (GET_CODE (op0) != REG)
- return FALSE;
-
- regno = REGNO (op0);
- if (GET_MODE (op0) == CC_UNSmode && ICC_OR_PSEUDO_P (regno))
- return TRUE;
-
- if (GET_MODE (op0) == CC_CCRmode && CR_OR_PSEUDO_P (regno))
- return TRUE;
-
- return FALSE;
-}
-
-/* Return true if operator is a floating point relational operator */
-
-int
-float_relational_operator (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- rtx op0;
- rtx op1;
- int regno;
-
- if (mode != VOIDmode && mode != GET_MODE (op))
- return FALSE;
-
- switch (GET_CODE (op))
- {
- default:
- return FALSE;
-
- case EQ: case NE:
- case LE: case LT:
- case GE: case GT:
-#if 0
- case UEQ: case UNE:
- case ULE: case ULT:
- case UGE: case UGT:
- case ORDERED:
- case UNORDERED:
-#endif
- break;
- }
-
- op1 = XEXP (op, 1);
- if (op1 != const0_rtx)
- return FALSE;
-
- op0 = XEXP (op, 0);
- if (GET_CODE (op0) != REG)
- return FALSE;
-
- regno = REGNO (op0);
- if (GET_MODE (op0) == CC_FPmode && FCC_OR_PSEUDO_P (regno))
- return TRUE;
-
- if (GET_MODE (op0) == CC_CCRmode && CR_OR_PSEUDO_P (regno))
- return TRUE;
-
- return FALSE;
-}
-
-/* Return true if operator is EQ/NE of a conditional execution register. */
-
-int
-ccr_eqne_operator (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- enum machine_mode op_mode = GET_MODE (op);
- rtx op0;
- rtx op1;
- int regno;
-
- if (mode != VOIDmode && op_mode != mode)
- return FALSE;
-
- switch (GET_CODE (op))
- {
- default:
- return FALSE;
-
- case EQ:
- case NE:
- break;
- }
-
- op1 = XEXP (op, 1);
- if (op1 != const0_rtx)
- return FALSE;
-
- op0 = XEXP (op, 0);
- if (GET_CODE (op0) != REG)
- return FALSE;
-
- regno = REGNO (op0);
- if (op_mode == CC_CCRmode && CR_OR_PSEUDO_P (regno))
- return TRUE;
-
- return FALSE;
-}
-
-/* Return true if operator is a minimum or maximum operator (both signed and
- unsigned). */
-
-int
-minmax_operator (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- if (mode != VOIDmode && mode != GET_MODE (op))
- return FALSE;
-
- switch (GET_CODE (op))
- {
- default:
- return FALSE;
-
- case SMIN:
- case SMAX:
- case UMIN:
- case UMAX:
- break;
- }
-
- if (! integer_register_operand (XEXP (op, 0), mode))
- return FALSE;
-
- if (! gpr_or_int10_operand (XEXP (op, 1), mode))
- return FALSE;
-
- return TRUE;
-}
-
-/* Return true if operator is an integer binary operator that can executed
- conditionally and takes 1 cycle. */
-
-int
-condexec_si_binary_operator (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- enum machine_mode op_mode = GET_MODE (op);
-
- if (mode != VOIDmode && op_mode != mode)
- return FALSE;
-
- switch (GET_CODE (op))
- {
- default:
- return FALSE;
-
- case PLUS:
- case MINUS:
- case AND:
- case IOR:
- case XOR:
- case ASHIFT:
- case ASHIFTRT:
- case LSHIFTRT:
- return TRUE;
- }
-}
-
-/* Return true if operator is an integer binary operator that can be
- executed conditionally by a media instruction. */
-
-int
-condexec_si_media_operator (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- enum machine_mode op_mode = GET_MODE (op);
-
- if (mode != VOIDmode && op_mode != mode)
- return FALSE;
-
- switch (GET_CODE (op))
- {
- default:
- return FALSE;
-
- case AND:
- case IOR:
- case XOR:
- return TRUE;
- }
-}
-
-/* Return true if operator is an integer division operator that can executed
- conditionally. */
-
-int
-condexec_si_divide_operator (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- enum machine_mode op_mode = GET_MODE (op);
-
- if (mode != VOIDmode && op_mode != mode)
- return FALSE;
-
- switch (GET_CODE (op))
- {
- default:
- return FALSE;
-
- case DIV:
- case UDIV:
- return TRUE;
- }
-}
-
-/* Return true if operator is an integer unary operator that can executed
- conditionally. */
-
-int
-condexec_si_unary_operator (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- enum machine_mode op_mode = GET_MODE (op);
-
- if (mode != VOIDmode && op_mode != mode)
- return FALSE;
-
- switch (GET_CODE (op))
- {
- default:
- return FALSE;
-
- case NEG:
- case NOT:
- return TRUE;
- }
-}
-
-/* Return true if operator is a conversion-type expression that can be
- evaluated conditionally by floating-point instructions. */
-
-int
-condexec_sf_conv_operator (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- enum machine_mode op_mode = GET_MODE (op);
-
- if (mode != VOIDmode && op_mode != mode)
- return FALSE;
-
- switch (GET_CODE (op))
- {
- default:
- return FALSE;
-
- case NEG:
- case ABS:
- return TRUE;
- }
-}
-
-/* Return true if operator is an addition or subtraction expression.
- Such expressions can be evaluated conditionally by floating-point
- instructions. */
-
-int
-condexec_sf_add_operator (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- enum machine_mode op_mode = GET_MODE (op);
-
- if (mode != VOIDmode && op_mode != mode)
- return FALSE;
-
- switch (GET_CODE (op))
- {
- default:
- return FALSE;
-
- case PLUS:
- case MINUS:
- return TRUE;
- }
-}
-
-/* Return true if the memory operand is one that can be conditionally
- executed. */
-
-int
-condexec_memory_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- enum machine_mode op_mode = GET_MODE (op);
- rtx addr;
-
- if (mode != VOIDmode && op_mode != mode)
- return FALSE;
-
- switch (op_mode)
- {
- default:
- return FALSE;
-
- case QImode:
- case HImode:
- case SImode:
- case SFmode:
- break;
- }
-
- if (GET_CODE (op) != MEM)
- return FALSE;
-
- addr = XEXP (op, 0);
- if (GET_CODE (addr) == ADDRESSOF)
- return TRUE;
-
- return frv_legitimate_address_p (mode, addr, reload_completed, TRUE);
-}
-
-/* Return true if operator is an integer binary operator that can be combined
- with a setcc operation. Do not allow the arithmetic operations that could
- potentially overflow since the FR-V sets the condition code based on the
- "true" value of the result, not the result after truncating to a 32-bit
- register. */
-
-int
-intop_compare_operator (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- enum machine_mode op_mode = GET_MODE (op);
-
- if (mode != VOIDmode && op_mode != mode)
- return FALSE;
-
- switch (GET_CODE (op))
- {
- default:
- return FALSE;
-
- case AND:
- case IOR:
- case XOR:
- case ASHIFTRT:
- case LSHIFTRT:
- break;
- }
-
- if (! integer_register_operand (XEXP (op, 0), SImode))
- return FALSE;
-
- if (! gpr_or_int10_operand (XEXP (op, 1), SImode))
- return FALSE;
-
- return TRUE;
-}
-
-/* Return true if operator is an integer binary operator that can be combined
- with a setcc operation inside of a conditional execution. */
-
-int
-condexec_intop_cmp_operator (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- enum machine_mode op_mode = GET_MODE (op);
-
- if (mode != VOIDmode && op_mode != mode)
- return FALSE;
-
- switch (GET_CODE (op))
- {
- default:
- return FALSE;
-
- case AND:
- case IOR:
- case XOR:
- case ASHIFTRT:
- case LSHIFTRT:
- break;
- }
-
- if (! integer_register_operand (XEXP (op, 0), SImode))
- return FALSE;
-
- if (! integer_register_operand (XEXP (op, 1), SImode))
- return FALSE;
-
- return TRUE;
-}
-
-/* Return 1 if operand is a valid ACC register number */
-
-int
-acc_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- int regno;
-
- if (GET_MODE (op) != mode && mode != VOIDmode)
- return FALSE;
-
- if (GET_CODE (op) == SUBREG)
- {
- if (GET_CODE (SUBREG_REG (op)) != REG)
- return register_operand (op, mode);
-
- op = SUBREG_REG (op);
- }
-
- if (GET_CODE (op) != REG)
- return FALSE;
-
- regno = REGNO (op);
- return ACC_OR_PSEUDO_P (regno);
-}
-
-/* Return 1 if operand is a valid even ACC register number */
-
-int
-even_acc_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- int regno;
-
- if (GET_MODE (op) != mode && mode != VOIDmode)
- return FALSE;
-
- if (GET_CODE (op) == SUBREG)
- {
- if (GET_CODE (SUBREG_REG (op)) != REG)
- return register_operand (op, mode);
-
- op = SUBREG_REG (op);
- }
-
- if (GET_CODE (op) != REG)
- return FALSE;
-
- regno = REGNO (op);
- return (ACC_OR_PSEUDO_P (regno) && ((regno - ACC_FIRST) & 1) == 0);
-}
-
-/* Return 1 if operand is zero or four */
-
-int
-quad_acc_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- int regno;
-
- if (GET_MODE (op) != mode && mode != VOIDmode)
- return FALSE;
-
- if (GET_CODE (op) == SUBREG)
- {
- if (GET_CODE (SUBREG_REG (op)) != REG)
- return register_operand (op, mode);
-
- op = SUBREG_REG (op);
- }
-
- if (GET_CODE (op) != REG)
- return FALSE;
-
- regno = REGNO (op);
- return (ACC_OR_PSEUDO_P (regno) && ((regno - ACC_FIRST) & 3) == 0);
-}
-
-/* Return 1 if operand is a valid ACCG register number */
-
-int
-accg_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- if (GET_MODE (op) != mode && mode != VOIDmode)
- return FALSE;
-
- if (GET_CODE (op) == SUBREG)
- {
- if (GET_CODE (SUBREG_REG (op)) != REG)
- return register_operand (op, mode);
-
- op = SUBREG_REG (op);
- }
-
- if (GET_CODE (op) != REG)
- return FALSE;
-
- return ACCG_OR_PSEUDO_P (REGNO (op));
-}
-
-
-/* Return true if the bare return instruction can be used outside of the
- epilog code. For frv, we only do it if there was no stack allocation. */
-
-int
-direct_return_p ()
-{
- frv_stack_t *info;
-
- if (!reload_completed)
- return FALSE;
-
- info = frv_stack_info ();
- return (info->total_size == 0);
-}
-
-
-/* Emit code to handle a MOVSI, adding in the small data register or pic
- register if needed to load up addresses. Return TRUE if the appropriate
- instructions are emitted. */
-
-int
-frv_emit_movsi (dest, src)
- rtx dest;
- rtx src;
-{
- int base_regno = -1;
-
- if (!reload_in_progress
- && !reload_completed
- && !register_operand (dest, SImode)
- && (!reg_or_0_operand (src, SImode)
- /* Virtual registers will almost always be replaced by an
- add instruction, so expose this to CSE by copying to
- an intermediate register */
- || (GET_CODE (src) == REG
- && IN_RANGE_P (REGNO (src),
- FIRST_VIRTUAL_REGISTER,
- LAST_VIRTUAL_REGISTER))))
- {
- emit_insn (gen_rtx_SET (VOIDmode, dest, copy_to_mode_reg (SImode, src)));
- return TRUE;
- }
-
- /* Explicitly add in the PIC or small data register if needed. */
- switch (GET_CODE (src))
- {
- default:
- break;
-
- case LABEL_REF:
- if (flag_pic)
- base_regno = PIC_REGNO;
-
- break;
-
- case CONST:
- if (const_small_data_p (src))
- base_regno = SDA_BASE_REG;
-
- else if (flag_pic)
- base_regno = PIC_REGNO;
-
- break;
-
- case SYMBOL_REF:
- if (symbol_ref_small_data_p (src))
- base_regno = SDA_BASE_REG;
-
- else if (flag_pic)
- base_regno = PIC_REGNO;
-
- break;
- }
-
- if (base_regno >= 0)
- {
- emit_insn (gen_rtx_SET (VOIDmode, dest,
- gen_rtx_PLUS (Pmode,
- gen_rtx_REG (Pmode, base_regno),
- src)));
-
- if (base_regno == PIC_REGNO)
- cfun->uses_pic_offset_table = TRUE;
-
- return TRUE;
- }
-
- return FALSE;
-}
-
-
-/* Return a string to output a single word move. */
-
-const char *
-output_move_single (operands, insn)
- rtx operands[];
- rtx insn;
-{
- rtx dest = operands[0];
- rtx src = operands[1];
-
- if (GET_CODE (dest) == REG)
- {
- int dest_regno = REGNO (dest);
- enum machine_mode mode = GET_MODE (dest);
-
- if (GPR_P (dest_regno))
- {
- if (GET_CODE (src) == REG)
- {
- /* gpr <- some sort of register */
- int src_regno = REGNO (src);
-
- if (GPR_P (src_regno))
- return "mov %1, %0";
-
- else if (FPR_P (src_regno))
- return "movfg %1, %0";
-
- else if (SPR_P (src_regno))
- return "movsg %1, %0";
- }
-
- else if (GET_CODE (src) == MEM)
- {
- /* gpr <- memory */
- switch (mode)
- {
- default:
- break;
-
- case QImode:
- return "ldsb%I1%U1 %M1,%0";
-
- case HImode:
- return "ldsh%I1%U1 %M1,%0";
-
- case SImode:
- case SFmode:
- return "ld%I1%U1 %M1, %0";
- }
- }
-
- else if (GET_CODE (src) == CONST_INT
- || GET_CODE (src) == CONST_DOUBLE)
- {
- /* gpr <- integer/floating constant */
- HOST_WIDE_INT value;
-
- if (GET_CODE (src) == CONST_INT)
- value = INTVAL (src);
-
- else if (mode == SFmode)
- {
- REAL_VALUE_TYPE rv;
- long l;
-
- REAL_VALUE_FROM_CONST_DOUBLE (rv, src);
- REAL_VALUE_TO_TARGET_SINGLE (rv, l);
- value = l;
- }
-
- else
- value = CONST_DOUBLE_LOW (src);
-
- if (IN_RANGE_P (value, -32768, 32767))
- return "setlos %1, %0";
-
- return "#";
- }
-
- else if (GET_CODE (src) == SYMBOL_REF
- || GET_CODE (src) == LABEL_REF
- || GET_CODE (src) == CONST)
- {
- /* Silently fix up instances where the small data pointer is not
- used in the address. */
- if (small_data_symbolic_operand (src, GET_MODE (src)))
- return "addi %@, #gprel12(%1), %0";
-
- return "#";
- }
- }
-
- else if (FPR_P (dest_regno))
- {
- if (GET_CODE (src) == REG)
- {
- /* fpr <- some sort of register */
- int src_regno = REGNO (src);
-
- if (GPR_P (src_regno))
- return "movgf %1, %0";
-
- else if (FPR_P (src_regno))
- {
- if (TARGET_HARD_FLOAT)
- return "fmovs %1, %0";
- else
- return "mor %1, %1, %0";
- }
- }
-
- else if (GET_CODE (src) == MEM)
- {
- /* fpr <- memory */
- switch (mode)
- {
- default:
- break;
-
- case QImode:
- return "ldbf%I1%U1 %M1,%0";
-
- case HImode:
- return "ldhf%I1%U1 %M1,%0";
-
- case SImode:
- case SFmode:
- return "ldf%I1%U1 %M1, %0";
- }
- }
-
- else if (ZERO_P (src))
- return "movgf %., %0";
- }
-
- else if (SPR_P (dest_regno))
- {
- if (GET_CODE (src) == REG)
- {
- /* spr <- some sort of register */
- int src_regno = REGNO (src);
-
- if (GPR_P (src_regno))
- return "movgs %1, %0";
- }
- }
- }
-
- else if (GET_CODE (dest) == MEM)
- {
- if (GET_CODE (src) == REG)
- {
- int src_regno = REGNO (src);
- enum machine_mode mode = GET_MODE (dest);
-
- if (GPR_P (src_regno))
- {
- switch (mode)
- {
- default:
- break;
-
- case QImode:
- return "stb%I0%U0 %1, %M0";
-
- case HImode:
- return "sth%I0%U0 %1, %M0";
-
- case SImode:
- case SFmode:
- return "st%I0%U0 %1, %M0";
- }
- }
-
- else if (FPR_P (src_regno))
- {
- switch (mode)
- {
- default:
- break;
-
- case QImode:
- return "stbf%I0%U0 %1, %M0";
-
- case HImode:
- return "sthf%I0%U0 %1, %M0";
-
- case SImode:
- case SFmode:
- return "stf%I0%U0 %1, %M0";
- }
- }
- }
-
- else if (ZERO_P (src))
- {
- switch (GET_MODE (dest))
- {
- default:
- break;
-
- case QImode:
- return "stb%I0%U0 %., %M0";
-
- case HImode:
- return "sth%I0%U0 %., %M0";
-
- case SImode:
- case SFmode:
- return "st%I0%U0 %., %M0";
- }
- }
- }
-
- fatal_insn ("Bad output_move_single operand", insn);
- return "";
-}
-
-
-/* Return a string to output a double word move. */
-
-const char *
-output_move_double (operands, insn)
- rtx operands[];
- rtx insn;
-{
- rtx dest = operands[0];
- rtx src = operands[1];
- enum machine_mode mode = GET_MODE (dest);
-
- if (GET_CODE (dest) == REG)
- {
- int dest_regno = REGNO (dest);
-
- if (GPR_P (dest_regno))
- {
- if (GET_CODE (src) == REG)
- {
- /* gpr <- some sort of register */
- int src_regno = REGNO (src);
-
- if (GPR_P (src_regno))
- return "#";
-
- else if (FPR_P (src_regno))
- {
- if (((dest_regno - GPR_FIRST) & 1) == 0
- && ((src_regno - FPR_FIRST) & 1) == 0)
- return "movfgd %1, %0";
-
- return "#";
- }
- }
-
- else if (GET_CODE (src) == MEM)
- {
- /* gpr <- memory */
- if (dbl_memory_one_insn_operand (src, mode))
- return "ldd%I1%U1 %M1, %0";
-
- return "#";
- }
-
- else if (GET_CODE (src) == CONST_INT
- || GET_CODE (src) == CONST_DOUBLE)
- return "#";
- }
-
- else if (FPR_P (dest_regno))
- {
- if (GET_CODE (src) == REG)
- {
- /* fpr <- some sort of register */
- int src_regno = REGNO (src);
-
- if (GPR_P (src_regno))
- {
- if (((dest_regno - FPR_FIRST) & 1) == 0
- && ((src_regno - GPR_FIRST) & 1) == 0)
- return "movgfd %1, %0";
-
- return "#";
- }
-
- else if (FPR_P (src_regno))
- {
- if (TARGET_DOUBLE
- && ((dest_regno - FPR_FIRST) & 1) == 0
- && ((src_regno - FPR_FIRST) & 1) == 0)
- return "fmovd %1, %0";
-
- return "#";
- }
- }
-
- else if (GET_CODE (src) == MEM)
- {
- /* fpr <- memory */
- if (dbl_memory_one_insn_operand (src, mode))
- return "lddf%I1%U1 %M1, %0";
-
- return "#";
- }
-
- else if (ZERO_P (src))
- return "#";
- }
- }
-
- else if (GET_CODE (dest) == MEM)
- {
- if (GET_CODE (src) == REG)
- {
- int src_regno = REGNO (src);
-
- if (GPR_P (src_regno))
- {
- if (((src_regno - GPR_FIRST) & 1) == 0
- && dbl_memory_one_insn_operand (dest, mode))
- return "std%I0%U0 %1, %M0";
-
- return "#";
- }
-
- if (FPR_P (src_regno))
- {
- if (((src_regno - FPR_FIRST) & 1) == 0
- && dbl_memory_one_insn_operand (dest, mode))
- return "stdf%I0%U0 %1, %M0";
-
- return "#";
- }
- }
-
- else if (ZERO_P (src))
- {
- if (dbl_memory_one_insn_operand (dest, mode))
- return "std%I0%U0 %., %M0";
-
- return "#";
- }
- }
-
- fatal_insn ("Bad output_move_double operand", insn);
- return "";
-}
-
-
-/* Return a string to output a single word conditional move.
- Operand0 -- EQ/NE of ccr register and 0
- Operand1 -- CCR register
- Operand2 -- destination
- Operand3 -- source */
-
-const char *
-output_condmove_single (operands, insn)
- rtx operands[];
- rtx insn;
-{
- rtx dest = operands[2];
- rtx src = operands[3];
-
- if (GET_CODE (dest) == REG)
- {
- int dest_regno = REGNO (dest);
- enum machine_mode mode = GET_MODE (dest);
-
- if (GPR_P (dest_regno))
- {
- if (GET_CODE (src) == REG)
- {
- /* gpr <- some sort of register */
- int src_regno = REGNO (src);
-
- if (GPR_P (src_regno))
- return "cmov %z3, %2, %1, %e0";
-
- else if (FPR_P (src_regno))
- return "cmovfg %3, %2, %1, %e0";
- }
-
- else if (GET_CODE (src) == MEM)
- {
- /* gpr <- memory */
- switch (mode)
- {
- default:
- break;
-
- case QImode:
- return "cldsb%I3%U3 %M3, %2, %1, %e0";
-
- case HImode:
- return "cldsh%I3%U3 %M3, %2, %1, %e0";
-
- case SImode:
- case SFmode:
- return "cld%I3%U3 %M3, %2, %1, %e0";
- }
- }
-
- else if (ZERO_P (src))
- return "cmov %., %2, %1, %e0";
- }
-
- else if (FPR_P (dest_regno))
- {
- if (GET_CODE (src) == REG)
- {
- /* fpr <- some sort of register */
- int src_regno = REGNO (src);
-
- if (GPR_P (src_regno))
- return "cmovgf %3, %2, %1, %e0";
-
- else if (FPR_P (src_regno))
- {
- if (TARGET_HARD_FLOAT)
- return "cfmovs %3,%2,%1,%e0";
- else
- return "cmor %3, %3, %2, %1, %e0";
- }
- }
-
- else if (GET_CODE (src) == MEM)
- {
- /* fpr <- memory */
- if (mode == SImode || mode == SFmode)
- return "cldf%I3%U3 %M3, %2, %1, %e0";
- }
-
- else if (ZERO_P (src))
- return "cmovgf %., %2, %1, %e0";
- }
- }
-
- else if (GET_CODE (dest) == MEM)
- {
- if (GET_CODE (src) == REG)
- {
- int src_regno = REGNO (src);
- enum machine_mode mode = GET_MODE (dest);
-
- if (GPR_P (src_regno))
- {
- switch (mode)
- {
- default:
- break;
-
- case QImode:
- return "cstb%I2%U2 %3, %M2, %1, %e0";
-
- case HImode:
- return "csth%I2%U2 %3, %M2, %1, %e0";
-
- case SImode:
- case SFmode:
- return "cst%I2%U2 %3, %M2, %1, %e0";
- }
- }
-
- else if (FPR_P (src_regno) && (mode == SImode || mode == SFmode))
- return "cstf%I2%U2 %3, %M2, %1, %e0";
- }
-
- else if (ZERO_P (src))
- {
- enum machine_mode mode = GET_MODE (dest);
- switch (mode)
- {
- default:
- break;
-
- case QImode:
- return "cstb%I2%U2 %., %M2, %1, %e0";
-
- case HImode:
- return "csth%I2%U2 %., %M2, %1, %e0";
-
- case SImode:
- case SFmode:
- return "cst%I2%U2 %., %M2, %1, %e0";
- }
- }
- }
-
- fatal_insn ("Bad output_condmove_single operand", insn);
- return "";
-}
-
-
-/* Emit the appropriate code to do a comparison, returning the register the
- comparison was done it. */
-
-static rtx
-frv_emit_comparison (test, op0, op1)
- enum rtx_code test;
- rtx op0;
- rtx op1;
-{
- enum machine_mode cc_mode;
- rtx cc_reg;
-
- /* Floating point doesn't have comparison against a constant */
- if (GET_MODE (op0) == CC_FPmode && GET_CODE (op1) != REG)
- op1 = force_reg (GET_MODE (op0), op1);
-
- /* Possibly disable using anything but a fixed register in order to work
- around cse moving comparisons past function calls. */
- cc_mode = SELECT_CC_MODE (test, op0, op1);
- cc_reg = ((TARGET_ALLOC_CC)
- ? gen_reg_rtx (cc_mode)
- : gen_rtx_REG (cc_mode,
- (cc_mode == CC_FPmode) ? FCC_FIRST : ICC_FIRST));
-
- emit_insn (gen_rtx_SET (VOIDmode, cc_reg,
- gen_rtx_COMPARE (cc_mode, op0, op1)));
-
- return cc_reg;
-}
-
-
-/* Emit code for a conditional branch. The comparison operands were previously
- stored in frv_compare_op0 and frv_compare_op1.
-
- XXX: I originally wanted to add a clobber of a CCR register to use in
- conditional execution, but that confuses the rest of the compiler. */
-
-int
-frv_emit_cond_branch (test, label)
- enum rtx_code test;
- rtx label;
-{
- rtx test_rtx;
- rtx label_ref;
- rtx if_else;
- rtx cc_reg = frv_emit_comparison (test, frv_compare_op0, frv_compare_op1);
- enum machine_mode cc_mode = GET_MODE (cc_reg);
-
- /* Branches generate:
- (set (pc)
- (if_then_else (<test>, <cc_reg>, (const_int 0))
- (label_ref <branch_label>)
- (pc))) */
- label_ref = gen_rtx_LABEL_REF (VOIDmode, label);
- test_rtx = gen_rtx (test, cc_mode, cc_reg, const0_rtx);
- if_else = gen_rtx_IF_THEN_ELSE (cc_mode, test_rtx, label_ref, pc_rtx);
- emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, if_else));
- return TRUE;
-}
-
-
-/* Emit code to set a gpr to 1/0 based on a comparison. The comparison
- operands were previously stored in frv_compare_op0 and frv_compare_op1. */
-
-int
-frv_emit_scc (test, target)
- enum rtx_code test;
- rtx target;
-{
- rtx set;
- rtx test_rtx;
- rtx clobber;
- rtx cr_reg;
- rtx cc_reg = frv_emit_comparison (test, frv_compare_op0, frv_compare_op1);
-
- /* SCC instructions generate:
- (parallel [(set <target> (<test>, <cc_reg>, (const_int 0))
- (clobber (<ccr_reg>))]) */
- test_rtx = gen_rtx_fmt_ee (test, SImode, cc_reg, const0_rtx);
- set = gen_rtx_SET (VOIDmode, target, test_rtx);
-
- cr_reg = ((TARGET_ALLOC_CC)
- ? gen_reg_rtx (CC_CCRmode)
- : gen_rtx_REG (CC_CCRmode,
- ((GET_MODE (cc_reg) == CC_FPmode)
- ? FCR_FIRST
- : ICR_FIRST)));
-
- clobber = gen_rtx_CLOBBER (VOIDmode, cr_reg);
- emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, set, clobber)));
- return TRUE;
-}
-
-
-/* Split a SCC instruction into component parts, returning a SEQUENCE to hold
- the seperate insns. */
-
-rtx
-frv_split_scc (dest, test, cc_reg, cr_reg, value)
- rtx dest;
- rtx test;
- rtx cc_reg;
- rtx cr_reg;
- HOST_WIDE_INT value;
-{
- rtx ret;
-
- start_sequence ();
-
- /* Set the appropriate CCR bit. */
- emit_insn (gen_rtx_SET (VOIDmode,
- cr_reg,
- gen_rtx_fmt_ee (GET_CODE (test),
- GET_MODE (cr_reg),
- cc_reg,
- const0_rtx)));
-
- /* Move the value into the destination. */
- emit_move_insn (dest, GEN_INT (value));
-
- /* Move 0 into the destination if the test failed */
- emit_insn (gen_rtx_COND_EXEC (VOIDmode,
- gen_rtx_EQ (GET_MODE (cr_reg),
- cr_reg,
- const0_rtx),
- gen_rtx_SET (VOIDmode, dest, const0_rtx)));
-
- /* Finish up, return sequence. */
- ret = get_insns ();
- end_sequence ();
- return ret;
-}
-
-
-/* Emit the code for a conditional move, return TRUE if we could do the
- move. */
-
-int
-frv_emit_cond_move (dest, test_rtx, src1, src2)
- rtx dest;
- rtx test_rtx;
- rtx src1;
- rtx src2;
-{
- rtx set;
- rtx clobber_cc;
- rtx test2;
- rtx cr_reg;
- rtx if_rtx;
- enum rtx_code test = GET_CODE (test_rtx);
- rtx cc_reg = frv_emit_comparison (test, frv_compare_op0, frv_compare_op1);
- enum machine_mode cc_mode = GET_MODE (cc_reg);
-
- /* Conditional move instructions generate:
- (parallel [(set <target>
- (if_then_else (<test> <cc_reg> (const_int 0))
- <src1>
- <src2>))
- (clobber (<ccr_reg>))]) */
-
- /* Handle various cases of conditional move involving two constants. */
- if (GET_CODE (src1) == CONST_INT && GET_CODE (src2) == CONST_INT)
- {
- HOST_WIDE_INT value1 = INTVAL (src1);
- HOST_WIDE_INT value2 = INTVAL (src2);
-
- /* having 0 as one of the constants can be done by loading the other
- constant, and optionally moving in gr0. */
- if (value1 == 0 || value2 == 0)
- ;
-
- /* If the first value is within an addi range and also the difference
- between the two fits in an addi's range, load up the difference, then
- conditionally move in 0, and then unconditionally add the first
- value. */
- else if (IN_RANGE_P (value1, -2048, 2047)
- && IN_RANGE_P (value2 - value1, -2048, 2047))
- ;
-
- /* If neither condition holds, just force the constant into a
- register. */
- else
- {
- src1 = force_reg (GET_MODE (dest), src1);
- src2 = force_reg (GET_MODE (dest), src2);
- }
- }
-
- /* If one value is a register, insure the other value is either 0 or a
- register. */
- else
- {
- if (GET_CODE (src1) == CONST_INT && INTVAL (src1) != 0)
- src1 = force_reg (GET_MODE (dest), src1);
-
- if (GET_CODE (src2) == CONST_INT && INTVAL (src2) != 0)
- src2 = force_reg (GET_MODE (dest), src2);
- }
-
- test2 = gen_rtx_fmt_ee (test, cc_mode, cc_reg, const0_rtx);
- if_rtx = gen_rtx_IF_THEN_ELSE (GET_MODE (dest), test2, src1, src2);
-
- set = gen_rtx_SET (VOIDmode, dest, if_rtx);
-
- cr_reg = ((TARGET_ALLOC_CC)
- ? gen_reg_rtx (CC_CCRmode)
- : gen_rtx_REG (CC_CCRmode,
- (cc_mode == CC_FPmode) ? FCR_FIRST : ICR_FIRST));
-
- clobber_cc = gen_rtx_CLOBBER (VOIDmode, cr_reg);
- emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, set, clobber_cc)));
- return TRUE;
-}
-
-
-/* Split a conditonal move into constituent parts, returning a SEQUENCE
- containing all of the insns. */
-
-rtx
-frv_split_cond_move (operands)
- rtx operands[];
-{
- rtx dest = operands[0];
- rtx test = operands[1];
- rtx cc_reg = operands[2];
- rtx src1 = operands[3];
- rtx src2 = operands[4];
- rtx cr_reg = operands[5];
- rtx ret;
- enum machine_mode cr_mode = GET_MODE (cr_reg);
-
- start_sequence ();
-
- /* Set the appropriate CCR bit. */
- emit_insn (gen_rtx_SET (VOIDmode,
- cr_reg,
- gen_rtx_fmt_ee (GET_CODE (test),
- GET_MODE (cr_reg),
- cc_reg,
- const0_rtx)));
-
- /* Handle various cases of conditional move involving two constants. */
- if (GET_CODE (src1) == CONST_INT && GET_CODE (src2) == CONST_INT)
- {
- HOST_WIDE_INT value1 = INTVAL (src1);
- HOST_WIDE_INT value2 = INTVAL (src2);
-
- /* having 0 as one of the constants can be done by loading the other
- constant, and optionally moving in gr0. */
- if (value1 == 0)
- {
- emit_move_insn (dest, src2);
- emit_insn (gen_rtx_COND_EXEC (VOIDmode,
- gen_rtx_NE (cr_mode, cr_reg,
- const0_rtx),
- gen_rtx_SET (VOIDmode, dest, src1)));
- }
-
- else if (value2 == 0)
- {
- emit_move_insn (dest, src1);
- emit_insn (gen_rtx_COND_EXEC (VOIDmode,
- gen_rtx_EQ (cr_mode, cr_reg,
- const0_rtx),
- gen_rtx_SET (VOIDmode, dest, src2)));
- }
-
- /* If the first value is within an addi range and also the difference
- between the two fits in an addi's range, load up the difference, then
- conditionally move in 0, and then unconditionally add the first
- value. */
- else if (IN_RANGE_P (value1, -2048, 2047)
- && IN_RANGE_P (value2 - value1, -2048, 2047))
- {
- rtx dest_si = ((GET_MODE (dest) == SImode)
- ? dest
- : gen_rtx_SUBREG (SImode, dest, 0));
-
- emit_move_insn (dest_si, GEN_INT (value2 - value1));
- emit_insn (gen_rtx_COND_EXEC (VOIDmode,
- gen_rtx_NE (cr_mode, cr_reg,
- const0_rtx),
- gen_rtx_SET (VOIDmode, dest_si,
- const0_rtx)));
- emit_insn (gen_addsi3 (dest_si, dest_si, src1));
- }
-
- else
- abort ();
- }
- else
- {
- /* Emit the conditional move for the test being true if needed. */
- if (! rtx_equal_p (dest, src1))
- emit_insn (gen_rtx_COND_EXEC (VOIDmode,
- gen_rtx_NE (cr_mode, cr_reg, const0_rtx),
- gen_rtx_SET (VOIDmode, dest, src1)));
-
- /* Emit the conditional move for the test being false if needed. */
- if (! rtx_equal_p (dest, src2))
- emit_insn (gen_rtx_COND_EXEC (VOIDmode,
- gen_rtx_EQ (cr_mode, cr_reg, const0_rtx),
- gen_rtx_SET (VOIDmode, dest, src2)));
- }
-
- /* Finish up, return sequence. */
- ret = get_insns ();
- end_sequence ();
- return ret;
-}
-
-
-/* Split (set DEST SOURCE), where DEST is a double register and SOURCE is a
- memory location that is not known to be dword-aligned. */
-void
-frv_split_double_load (dest, source)
- rtx dest;
- rtx source;
-{
- int regno = REGNO (dest);
- rtx dest1 = gen_highpart (SImode, dest);
- rtx dest2 = gen_lowpart (SImode, dest);
- rtx address = XEXP (source, 0);
-
- /* If the address is pre-modified, load the lower-numbered register
- first, then load the other register using an integer offset from
- the modified base register. This order should always be safe,
- since the pre-modification cannot affect the same registers as the
- load does.
-
- The situation for other loads is more complicated. Loading one
- of the registers could affect the value of ADDRESS, so we must
- be careful which order we do them in. */
- if (GET_CODE (address) == PRE_MODIFY
- || ! refers_to_regno_p (regno, regno + 1, address, NULL))
- {
- /* It is safe to load the lower-numbered register first. */
- emit_move_insn (dest1, change_address (source, SImode, NULL));
- emit_move_insn (dest2, frv_index_memory (source, SImode, 1));
- }
- else
- {
- /* ADDRESS is not pre-modified and the address depends on the
- lower-numbered register. Load the higher-numbered register
- first. */
- emit_move_insn (dest2, frv_index_memory (source, SImode, 1));
- emit_move_insn (dest1, change_address (source, SImode, NULL));
- }
-}
-
-/* Split (set DEST SOURCE), where DEST refers to a dword memory location
- and SOURCE is either a double register or the constant zero. */
-void
-frv_split_double_store (dest, source)
- rtx dest;
- rtx source;
-{
- rtx dest1 = change_address (dest, SImode, NULL);
- rtx dest2 = frv_index_memory (dest, SImode, 1);
- if (ZERO_P (source))
- {
- emit_move_insn (dest1, CONST0_RTX (SImode));
- emit_move_insn (dest2, CONST0_RTX (SImode));
- }
- else
- {
- emit_move_insn (dest1, gen_highpart (SImode, source));
- emit_move_insn (dest2, gen_lowpart (SImode, source));
- }
-}
-
-
-/* Split a min/max operation returning a SEQUENCE containing all of the
- insns. */
-
-rtx
-frv_split_minmax (operands)
- rtx operands[];
-{
- rtx dest = operands[0];
- rtx minmax = operands[1];
- rtx src1 = operands[2];
- rtx src2 = operands[3];
- rtx cc_reg = operands[4];
- rtx cr_reg = operands[5];
- rtx ret;
- enum rtx_code test_code;
- enum machine_mode cr_mode = GET_MODE (cr_reg);
-
- start_sequence ();
-
- /* Figure out which test to use */
- switch (GET_CODE (minmax))
- {
- default:
- abort ();
-
- case SMIN: test_code = LT; break;
- case SMAX: test_code = GT; break;
- case UMIN: test_code = LTU; break;
- case UMAX: test_code = GTU; break;
- }
-
- /* Issue the compare instruction. */
- emit_insn (gen_rtx_SET (VOIDmode,
- cc_reg,
- gen_rtx_COMPARE (GET_MODE (cc_reg),
- src1, src2)));
-
- /* Set the appropriate CCR bit. */
- emit_insn (gen_rtx_SET (VOIDmode,
- cr_reg,
- gen_rtx_fmt_ee (test_code,
- GET_MODE (cr_reg),
- cc_reg,
- const0_rtx)));
-
- /* If are taking the min/max of a non-zero constant, load that first, and
- then do a conditional move of the other value. */
- if (GET_CODE (src2) == CONST_INT && INTVAL (src2) != 0)
- {
- if (rtx_equal_p (dest, src1))
- abort ();
-
- emit_move_insn (dest, src2);
- emit_insn (gen_rtx_COND_EXEC (VOIDmode,
- gen_rtx_NE (cr_mode, cr_reg, const0_rtx),
- gen_rtx_SET (VOIDmode, dest, src1)));
- }
-
- /* Otherwise, do each half of the move. */
- else
- {
- /* Emit the conditional move for the test being true if needed. */
- if (! rtx_equal_p (dest, src1))
- emit_insn (gen_rtx_COND_EXEC (VOIDmode,
- gen_rtx_NE (cr_mode, cr_reg, const0_rtx),
- gen_rtx_SET (VOIDmode, dest, src1)));
-
- /* Emit the conditional move for the test being false if needed. */
- if (! rtx_equal_p (dest, src2))
- emit_insn (gen_rtx_COND_EXEC (VOIDmode,
- gen_rtx_EQ (cr_mode, cr_reg, const0_rtx),
- gen_rtx_SET (VOIDmode, dest, src2)));
- }
-
- /* Finish up, return sequence. */
- ret = get_insns ();
- end_sequence ();
- return ret;
-}
-
-
-/* Split an integer abs operation returning a SEQUENCE containing all of the
- insns. */
-
-rtx
-frv_split_abs (operands)
- rtx operands[];
-{
- rtx dest = operands[0];
- rtx src = operands[1];
- rtx cc_reg = operands[2];
- rtx cr_reg = operands[3];
- rtx ret;
-
- start_sequence ();
-
- /* Issue the compare < 0 instruction. */
- emit_insn (gen_rtx_SET (VOIDmode,
- cc_reg,
- gen_rtx_COMPARE (CCmode, src, const0_rtx)));
-
- /* Set the appropriate CCR bit. */
- emit_insn (gen_rtx_SET (VOIDmode,
- cr_reg,
- gen_rtx_fmt_ee (LT, CC_CCRmode, cc_reg, const0_rtx)));
-
- /* Emit the conditional negate if the value is negative */
- emit_insn (gen_rtx_COND_EXEC (VOIDmode,
- gen_rtx_NE (CC_CCRmode, cr_reg, const0_rtx),
- gen_negsi2 (dest, src)));
-
- /* Emit the conditional move for the test being false if needed. */
- if (! rtx_equal_p (dest, src))
- emit_insn (gen_rtx_COND_EXEC (VOIDmode,
- gen_rtx_EQ (CC_CCRmode, cr_reg, const0_rtx),
- gen_rtx_SET (VOIDmode, dest, src)));
-
- /* Finish up, return sequence. */
- ret = get_insns ();
- end_sequence ();
- return ret;
-}
-
-
-/* An internal function called by for_each_rtx to clear in a hard_reg set each
- register used in an insn. */
-
-static int
-frv_clear_registers_used (ptr, data)
- rtx *ptr;
- void *data;
-{
- if (GET_CODE (*ptr) == REG)
- {
- int regno = REGNO (*ptr);
- HARD_REG_SET *p_regs = (HARD_REG_SET *)data;
-
- if (regno < FIRST_PSEUDO_REGISTER)
- {
- int reg_max = regno + HARD_REGNO_NREGS (regno, GET_MODE (*ptr));
-
- while (regno < reg_max)
- {
- CLEAR_HARD_REG_BIT (*p_regs, regno);
- regno++;
- }
- }
- }
-
- return 0;
-}
-
-
-/* Initialize the extra fields provided by IFCVT_EXTRA_FIELDS. */
-
-/* On the FR-V, we don't have any extra fields per se, but it is useful hook to
- initialize the static storage. */
-void
-frv_ifcvt_init_extra_fields (ce_info)
- ce_if_block_t *ce_info ATTRIBUTE_UNUSED;
-{
- frv_ifcvt.added_insns_list = NULL_RTX;
- frv_ifcvt.cur_scratch_regs = 0;
- frv_ifcvt.num_nested_cond_exec = 0;
- frv_ifcvt.cr_reg = NULL_RTX;
- frv_ifcvt.nested_cc_reg = NULL_RTX;
- frv_ifcvt.extra_int_cr = NULL_RTX;
- frv_ifcvt.extra_fp_cr = NULL_RTX;
- frv_ifcvt.last_nested_if_cr = NULL_RTX;
-}
-
-
-/* Internal function to add a potenial insn to the list of insns to be inserted
- if the conditional execution conversion is successful. */
-
-static void
-frv_ifcvt_add_insn (pattern, insn, before_p)
- rtx pattern;
- rtx insn;
- int before_p;
-{
- rtx link = alloc_EXPR_LIST (VOIDmode, pattern, insn);
-
- link->jump = before_p; /* mark to add this before or after insn */
- frv_ifcvt.added_insns_list = alloc_EXPR_LIST (VOIDmode, link,
- frv_ifcvt.added_insns_list);
-
- if (TARGET_DEBUG_COND_EXEC)
- {
- fprintf (stderr,
- "\n:::::::::: frv_ifcvt_add_insn: add the following %s insn %d:\n",
- (before_p) ? "before" : "after",
- (int)INSN_UID (insn));
-
- debug_rtx (pattern);
- }
-}
-
-
-/* A C expression to modify the code described by the conditional if
- information CE_INFO, possibly updating the tests in TRUE_EXPR, and
- FALSE_EXPR for converting if-then and if-then-else code to conditional
- instructions. Set either TRUE_EXPR or FALSE_EXPR to a null pointer if the
- tests cannot be converted. */
-
-void
-frv_ifcvt_modify_tests (ce_info, p_true, p_false)
- ce_if_block_t *ce_info;
- rtx *p_true;
- rtx *p_false;
-{
- basic_block test_bb = ce_info->test_bb; /* test basic block */
- basic_block then_bb = ce_info->then_bb; /* THEN */
- basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
- basic_block join_bb = ce_info->join_bb; /* join block or NULL */
- rtx true_expr = *p_true;
- rtx cr;
- rtx cc;
- rtx nested_cc;
- enum machine_mode mode = GET_MODE (true_expr);
- int j;
- basic_block *bb;
- int num_bb;
- frv_tmp_reg_t *tmp_reg = &frv_ifcvt.tmp_reg;
- rtx check_insn;
- rtx sub_cond_exec_reg;
- enum rtx_code code;
- enum rtx_code code_true;
- enum rtx_code code_false;
- enum reg_class cc_class;
- enum reg_class cr_class;
- int cc_first;
- int cc_last;
-
- /* Make sure we are only dealing with hard registers. Also honor the
- -mno-cond-exec switch, and -mno-nested-cond-exec switches if
- applicable. */
- if (!reload_completed || TARGET_NO_COND_EXEC
- || (TARGET_NO_NESTED_CE && ce_info->pass > 1))
- goto fail;
-
- /* Figure out which registers we can allocate for our own purposes. Only
- consider registers that are not preserved across function calls and are
- not fixed. However, allow the ICC/ICR temporary registers to be allocated
- if we did not need to use them in reloading other registers. */
- memset ((PTR) &tmp_reg->regs, 0, sizeof (tmp_reg->regs));
- COPY_HARD_REG_SET (tmp_reg->regs, call_used_reg_set);
- AND_COMPL_HARD_REG_SET (tmp_reg->regs, fixed_reg_set);
- SET_HARD_REG_BIT (tmp_reg->regs, ICC_TEMP);
- SET_HARD_REG_BIT (tmp_reg->regs, ICR_TEMP);
-
- /* If this is a nested IF, we need to discover whether the CC registers that
- are set/used inside of the block are used anywhere else. If not, we can
- change them to be the CC register that is paired with the CR register that
- controls the outermost IF block. */
- if (ce_info->pass > 1)
- {
- CLEAR_HARD_REG_SET (frv_ifcvt.nested_cc_ok_rewrite);
- for (j = CC_FIRST; j <= CC_LAST; j++)
- if (TEST_HARD_REG_BIT (tmp_reg->regs, j))
- {
- if (REGNO_REG_SET_P (then_bb->global_live_at_start, j))
- continue;
-
- if (else_bb && REGNO_REG_SET_P (else_bb->global_live_at_start, j))
- continue;
-
- if (join_bb && REGNO_REG_SET_P (join_bb->global_live_at_start, j))
- continue;
-
- SET_HARD_REG_BIT (frv_ifcvt.nested_cc_ok_rewrite, j);
- }
- }
-
- for (j = 0; j < frv_ifcvt.cur_scratch_regs; j++)
- frv_ifcvt.scratch_regs[j] = NULL_RTX;
-
- frv_ifcvt.added_insns_list = NULL_RTX;
- frv_ifcvt.cur_scratch_regs = 0;
-
- bb = (basic_block *) alloca ((2 + ce_info->num_multiple_test_blocks)
- * sizeof (basic_block));
-
- if (join_bb)
- {
- int regno;
-
- /* Remove anything live at the beginning of the join block from being
- available for allocation. */
- EXECUTE_IF_SET_IN_REG_SET (join_bb->global_live_at_start, 0, regno,
- {
- if (regno < FIRST_PSEUDO_REGISTER)
- CLEAR_HARD_REG_BIT (tmp_reg->regs, regno);
- });
- }
-
- /* Add in all of the blocks in multiple &&/|| blocks to be scanned. */
- num_bb = 0;
- if (ce_info->num_multiple_test_blocks)
- {
- basic_block multiple_test_bb = ce_info->last_test_bb;
-
- while (multiple_test_bb != test_bb)
- {
- bb[num_bb++] = multiple_test_bb;
- multiple_test_bb = multiple_test_bb->pred->src;
- }
- }
-
- /* Add in the THEN and ELSE blocks to be scanned. */
- bb[num_bb++] = then_bb;
- if (else_bb)
- bb[num_bb++] = else_bb;
-
- sub_cond_exec_reg = NULL_RTX;
- frv_ifcvt.num_nested_cond_exec = 0;
-
- /* Scan all of the blocks for registers that must not be allocated. */
- for (j = 0; j < num_bb; j++)
- {
- rtx last_insn = bb[j]->end;
- rtx insn = bb[j]->head;
- int regno;
-
- if (rtl_dump_file)
- fprintf (rtl_dump_file, "Scanning %s block %d, start %d, end %d\n",
- (bb[j] == else_bb) ? "else" : ((bb[j] == then_bb) ? "then" : "test"),
- (int) bb[j]->index,
- (int) INSN_UID (bb[j]->head),
- (int) INSN_UID (bb[j]->end));
-
- /* Anything live at the beginning of the block is obviously unavailable
- for allocation. */
- EXECUTE_IF_SET_IN_REG_SET (bb[j]->global_live_at_start, 0, regno,
- {
- if (regno < FIRST_PSEUDO_REGISTER)
- CLEAR_HARD_REG_BIT (tmp_reg->regs, regno);
- });
-
- /* loop through the insns in the block. */
- for (;;)
- {
- /* Mark any new registers that are created as being unavailable for
- allocation. Also see if the CC register used in nested IFs can be
- reallocated. */
- if (INSN_P (insn))
- {
- rtx pattern;
- rtx set;
- int skip_nested_if = FALSE;
-
- for_each_rtx (&PATTERN (insn), frv_clear_registers_used,
- (void *)&tmp_reg->regs);
-
- pattern = PATTERN (insn);
- if (GET_CODE (pattern) == COND_EXEC)
- {
- rtx reg = XEXP (COND_EXEC_TEST (pattern), 0);
-
- if (reg != sub_cond_exec_reg)
- {
- sub_cond_exec_reg = reg;
- frv_ifcvt.num_nested_cond_exec++;
- }
- }
-
- set = single_set_pattern (pattern);
- if (set)
- {
- rtx dest = SET_DEST (set);
- rtx src = SET_SRC (set);
-
- if (GET_CODE (dest) == REG)
- {
- int regno = REGNO (dest);
- enum rtx_code src_code = GET_CODE (src);
-
- if (CC_P (regno) && src_code == COMPARE)
- skip_nested_if = TRUE;
-
- else if (CR_P (regno)
- && (src_code == IF_THEN_ELSE
- || GET_RTX_CLASS (src_code) == '<'))
- skip_nested_if = TRUE;
- }
- }
-
- if (! skip_nested_if)
- for_each_rtx (&PATTERN (insn), frv_clear_registers_used,
- (void *)&frv_ifcvt.nested_cc_ok_rewrite);
- }
-
- if (insn == last_insn)
- break;
-
- insn = NEXT_INSN (insn);
- }
- }
-
- /* If this is a nested if, rewrite the CC registers that are available to
- include the ones that can be rewritten, to increase the chance of being
- able to allocate a paired CC/CR register combination. */
- if (ce_info->pass > 1)
- {
- for (j = CC_FIRST; j <= CC_LAST; j++)
- if (TEST_HARD_REG_BIT (frv_ifcvt.nested_cc_ok_rewrite, j))
- SET_HARD_REG_BIT (tmp_reg->regs, j);
- else
- CLEAR_HARD_REG_BIT (tmp_reg->regs, j);
- }
-
- if (rtl_dump_file)
- {
- int num_gprs = 0;
- fprintf (rtl_dump_file, "Available GPRs: ");
-
- for (j = GPR_FIRST; j <= GPR_LAST; j++)
- if (TEST_HARD_REG_BIT (tmp_reg->regs, j))
- {
- fprintf (rtl_dump_file, " %d [%s]", j, reg_names[j]);
- if (++num_gprs > GPR_TEMP_NUM+2)
- break;
- }
-
- fprintf (rtl_dump_file, "%s\nAvailable CRs: ",
- (num_gprs > GPR_TEMP_NUM+2) ? " ..." : "");
-
- for (j = CR_FIRST; j <= CR_LAST; j++)
- if (TEST_HARD_REG_BIT (tmp_reg->regs, j))
- fprintf (rtl_dump_file, " %d [%s]", j, reg_names[j]);
-
- fputs ("\n", rtl_dump_file);
-
- if (ce_info->pass > 1)
- {
- fprintf (rtl_dump_file, "Modifiable CCs: ");
- for (j = CC_FIRST; j <= CC_LAST; j++)
- if (TEST_HARD_REG_BIT (tmp_reg->regs, j))
- fprintf (rtl_dump_file, " %d [%s]", j, reg_names[j]);
-
- fprintf (rtl_dump_file, "\n%d nested COND_EXEC statements\n",
- frv_ifcvt.num_nested_cond_exec);
- }
- }
-
- /* Allocate the appropriate temporary condition code register. Try to
- allocate the ICR/FCR register that corresponds to the ICC/FCC register so
- that conditional cmp's can be done. */
- if (mode == CCmode || mode == CC_UNSmode)
- {
- cr_class = ICR_REGS;
- cc_class = ICC_REGS;
- cc_first = ICC_FIRST;
- cc_last = ICC_LAST;
- }
- else if (mode == CC_FPmode)
- {
- cr_class = FCR_REGS;
- cc_class = FCC_REGS;
- cc_first = FCC_FIRST;
- cc_last = FCC_LAST;
- }
- else
- {
- cc_first = cc_last = 0;
- cr_class = cc_class = NO_REGS;
- }
-
- cc = XEXP (true_expr, 0);
- nested_cc = cr = NULL_RTX;
- if (cc_class != NO_REGS)
- {
- /* For nested IFs and &&/||, see if we can find a CC and CR register pair
- so we can execute a csubcc/caddcc/cfcmps instruction. */
- int cc_regno;
-
- for (cc_regno = cc_first; cc_regno <= cc_last; cc_regno++)
- {
- int cr_regno = cc_regno - CC_FIRST + CR_FIRST;
-
- if (TEST_HARD_REG_BIT (frv_ifcvt.tmp_reg.regs, cc_regno)
- && TEST_HARD_REG_BIT (frv_ifcvt.tmp_reg.regs, cr_regno))
- {
- frv_ifcvt.tmp_reg.next_reg[ (int)cr_class ] = cr_regno;
- cr = frv_alloc_temp_reg (tmp_reg, cr_class, CC_CCRmode, TRUE,
- TRUE);
-
- frv_ifcvt.tmp_reg.next_reg[ (int)cc_class ] = cc_regno;
- nested_cc = frv_alloc_temp_reg (tmp_reg, cc_class, CCmode,
- TRUE, TRUE);
- break;
- }
- }
- }
-
- if (! cr)
- {
- if (rtl_dump_file)
- fprintf (rtl_dump_file, "Could not allocate a CR temporary register\n");
-
- goto fail;
- }
-
- if (rtl_dump_file)
- fprintf (rtl_dump_file,
- "Will use %s for conditional execution, %s for nested comparisons\n",
- reg_names[ REGNO (cr)],
- (nested_cc) ? reg_names[ REGNO (nested_cc) ] : "<none>");
-
- /* Set the CCR bit. Note for integer tests, we reverse the condition so that
- in an IF-THEN-ELSE sequence, we are testing the TRUE case against the CCR
- bit being true. We don't do this for floating point, because of NaNs. */
- code = GET_CODE (true_expr);
- if (GET_MODE (cc) != CC_FPmode)
- {
- code = reverse_condition (code);
- code_true = EQ;
- code_false = NE;
- }
- else
- {
- code_true = NE;
- code_false = EQ;
- }
-
- check_insn = gen_rtx_SET (VOIDmode, cr,
- gen_rtx_fmt_ee (code, CC_CCRmode, cc, const0_rtx));
-
- /* Record the check insn to be inserted later. */
- frv_ifcvt_add_insn (check_insn, test_bb->end, TRUE);
-
- /* Update the tests. */
- frv_ifcvt.cr_reg = cr;
- frv_ifcvt.nested_cc_reg = nested_cc;
- *p_true = gen_rtx_fmt_ee (code_true, CC_CCRmode, cr, const0_rtx);
- *p_false = gen_rtx_fmt_ee (code_false, CC_CCRmode, cr, const0_rtx);
- return;
-
- /* Fail, don't do this conditional execution. */
- fail:
- *p_true = NULL_RTX;
- *p_false = NULL_RTX;
- if (rtl_dump_file)
- fprintf (rtl_dump_file, "Disabling this conditional execution.\n");
-
- return;
-}
-
-
-/* A C expression to modify the code described by the conditional if
- information CE_INFO, for the basic block BB, possibly updating the tests in
- TRUE_EXPR, and FALSE_EXPR for converting the && and || parts of if-then or
- if-then-else code to conditional instructions. Set either TRUE_EXPR or
- FALSE_EXPR to a null pointer if the tests cannot be converted. */
-
-/* p_true and p_false are given expressions of the form:
-
- (and (eq:CC_CCR (reg:CC_CCR)
- (const_int 0))
- (eq:CC (reg:CC)
- (const_int 0))) */
-
-void
-frv_ifcvt_modify_multiple_tests (ce_info, bb, p_true, p_false)
- ce_if_block_t *ce_info;
- basic_block bb;
- rtx *p_true;
- rtx *p_false;
-{
- rtx old_true = XEXP (*p_true, 0);
- rtx old_false = XEXP (*p_false, 0);
- rtx true_expr = XEXP (*p_true, 1);
- rtx false_expr = XEXP (*p_false, 1);
- rtx test_expr;
- rtx old_test;
- rtx cr = XEXP (old_true, 0);
- rtx check_insn;
- rtx new_cr = NULL_RTX;
- rtx *p_new_cr = (rtx *)0;
- rtx if_else;
- rtx compare;
- rtx cc;
- enum reg_class cr_class;
- enum machine_mode mode = GET_MODE (true_expr);
- rtx (*logical_func)(rtx, rtx, rtx);
-
- if (TARGET_DEBUG_COND_EXEC)
- {
- fprintf (stderr,
- "\n:::::::::: frv_ifcvt_modify_multiple_tests, before modification for %s\ntrue insn:\n",
- ce_info->and_and_p ? "&&" : "||");
-
- debug_rtx (*p_true);
-
- fputs ("\nfalse insn:\n", stderr);
- debug_rtx (*p_false);
- }
-
- if (TARGET_NO_MULTI_CE)
- goto fail;
-
- if (GET_CODE (cr) != REG)
- goto fail;
-
- if (mode == CCmode || mode == CC_UNSmode)
- {
- cr_class = ICR_REGS;
- p_new_cr = &frv_ifcvt.extra_int_cr;
- }
- else if (mode == CC_FPmode)
- {
- cr_class = FCR_REGS;
- p_new_cr = &frv_ifcvt.extra_fp_cr;
- }
- else
- goto fail;
-
- /* Allocate a temp CR, reusing a previously allocated temp CR if we have 3 or
- more &&/|| tests. */
- new_cr = *p_new_cr;
- if (! new_cr)
- {
- new_cr = *p_new_cr = frv_alloc_temp_reg (&frv_ifcvt.tmp_reg, cr_class,
- CC_CCRmode, TRUE, TRUE);
- if (! new_cr)
- goto fail;
- }
-
- if (ce_info->and_and_p)
- {
- old_test = old_false;
- test_expr = true_expr;
- logical_func = (GET_CODE (old_true) == EQ) ? gen_andcr : gen_andncr;
- *p_true = gen_rtx_NE (CC_CCRmode, cr, const0_rtx);
- *p_false = gen_rtx_EQ (CC_CCRmode, cr, const0_rtx);
- }
- else
- {
- old_test = old_false;
- test_expr = false_expr;
- logical_func = (GET_CODE (old_false) == EQ) ? gen_orcr : gen_orncr;
- *p_true = gen_rtx_EQ (CC_CCRmode, cr, const0_rtx);
- *p_false = gen_rtx_NE (CC_CCRmode, cr, const0_rtx);
- }
-
- /* First add the andcr/andncr/orcr/orncr, which will be added after the
- conditional check instruction, due to frv_ifcvt_add_insn being a LIFO
- stack. */
- frv_ifcvt_add_insn ((*logical_func) (cr, cr, new_cr), bb->end, TRUE);
-
- /* Now add the conditional check insn. */
- cc = XEXP (test_expr, 0);
- compare = gen_rtx_fmt_ee (GET_CODE (test_expr), CC_CCRmode, cc, const0_rtx);
- if_else = gen_rtx_IF_THEN_ELSE (CC_CCRmode, old_test, compare, const0_rtx);
-
- check_insn = gen_rtx_SET (VOIDmode, new_cr, if_else);
-
- /* add the new check insn to the list of check insns that need to be
- inserted. */
- frv_ifcvt_add_insn (check_insn, bb->end, TRUE);
-
- if (TARGET_DEBUG_COND_EXEC)
- {
- fputs ("\n:::::::::: frv_ifcvt_modify_multiple_tests, after modification\ntrue insn:\n",
- stderr);
-
- debug_rtx (*p_true);
-
- fputs ("\nfalse insn:\n", stderr);
- debug_rtx (*p_false);
- }
-
- return;
-
- fail:
- *p_true = *p_false = NULL_RTX;
-
- /* If we allocated a CR register, release it. */
- if (new_cr)
- {
- CLEAR_HARD_REG_BIT (frv_ifcvt.tmp_reg.regs, REGNO (new_cr));
- *p_new_cr = NULL_RTX;
- }
-
- if (TARGET_DEBUG_COND_EXEC)
- fputs ("\n:::::::::: frv_ifcvt_modify_multiple_tests, failed.\n", stderr);
-
- return;
-}
-
-
-/* Return a register which will be loaded with a value if an IF block is
- converted to conditional execution. This is used to rewrite instructions
- that use constants to ones that just use registers. */
-
-static rtx
-frv_ifcvt_load_value (value, insn)
- rtx value;
- rtx insn ATTRIBUTE_UNUSED;
-{
- int num_alloc = frv_ifcvt.cur_scratch_regs;
- int i;
- rtx reg;
-
- /* We know gr0 == 0, so replace any errant uses. */
- if (value == const0_rtx)
- return gen_rtx_REG (SImode, GPR_FIRST);
-
- /* First search all registers currently loaded to see if we have an
- applicable constant. */
- if (CONSTANT_P (value)
- || (GET_CODE (value) == REG && REGNO (value) == LR_REGNO))
- {
- for (i = 0; i < num_alloc; i++)
- {
- if (rtx_equal_p (SET_SRC (frv_ifcvt.scratch_regs[i]), value))
- return SET_DEST (frv_ifcvt.scratch_regs[i]);
- }
- }
-
- /* Have we exhausted the number of registers available? */
- if (num_alloc >= GPR_TEMP_NUM)
- {
- if (rtl_dump_file)
- fprintf (rtl_dump_file, "Too many temporary registers allocated\n");
-
- return NULL_RTX;
- }
-
- /* Allocate the new register. */
- reg = frv_alloc_temp_reg (&frv_ifcvt.tmp_reg, GPR_REGS, SImode, TRUE, TRUE);
- if (! reg)
- {
- if (rtl_dump_file)
- fputs ("Could not find a scratch register\n", rtl_dump_file);
-
- return NULL_RTX;
- }
-
- frv_ifcvt.cur_scratch_regs++;
- frv_ifcvt.scratch_regs[num_alloc] = gen_rtx_SET (VOIDmode, reg, value);
-
- if (rtl_dump_file)
- {
- if (GET_CODE (value) == CONST_INT)
- fprintf (rtl_dump_file, "Register %s will hold %ld\n",
- reg_names[ REGNO (reg)], (long)INTVAL (value));
-
- else if (GET_CODE (value) == REG && REGNO (value) == LR_REGNO)
- fprintf (rtl_dump_file, "Register %s will hold LR\n",
- reg_names[ REGNO (reg)]);
-
- else
- fprintf (rtl_dump_file, "Register %s will hold a saved value\n",
- reg_names[ REGNO (reg)]);
- }
-
- return reg;
-}
-
-
-/* Update a MEM used in conditional code that might contain an offset to put
- the offset into a scratch register, so that the conditional load/store
- operations can be used. This function returns the original pointer if the
- MEM is valid to use in conditional code, NULL if we can't load up the offset
- into a temporary register, or the new MEM if we were successful. */
-
-static rtx
-frv_ifcvt_rewrite_mem (mem, mode, insn)
- rtx mem;
- enum machine_mode mode;
- rtx insn;
-{
- rtx addr = XEXP (mem, 0);
-
- if (!frv_legitimate_address_p (mode, addr, reload_completed, TRUE))
- {
- if (GET_CODE (addr) == PLUS)
- {
- rtx addr_op0 = XEXP (addr, 0);
- rtx addr_op1 = XEXP (addr, 1);
-
- if (plus_small_data_p (addr_op0, addr_op1))
- addr = frv_ifcvt_load_value (addr, insn);
-
- else if (GET_CODE (addr_op0) == REG && CONSTANT_P (addr_op1))
- {
- rtx reg = frv_ifcvt_load_value (addr_op1, insn);
- if (!reg)
- return NULL_RTX;
-
- addr = gen_rtx_PLUS (Pmode, addr_op0, reg);
- }
-
- else
- return NULL_RTX;
- }
-
- else if (CONSTANT_P (addr))
- addr = frv_ifcvt_load_value (addr, insn);
-
- else
- return NULL_RTX;
-
- if (addr == NULL_RTX)
- return NULL_RTX;
-
- else if (XEXP (mem, 0) != addr)
- return change_address (mem, mode, addr);
- }
-
- return mem;
-}
-
-
-/* Given a PATTERN, return a SET expression if this PATTERN has only a single
- SET, possibly conditionally executed. It may also have CLOBBERs, USEs. */
-
-static rtx
-single_set_pattern (pattern)
- rtx pattern;
-{
- rtx set;
- int i;
-
- if (GET_CODE (pattern) == COND_EXEC)
- pattern = COND_EXEC_CODE (pattern);
-
- if (GET_CODE (pattern) == SET)
- return pattern;
-
- else if (GET_CODE (pattern) == PARALLEL)
- {
- for (i = 0, set = 0; i < XVECLEN (pattern, 0); i++)
- {
- rtx sub = XVECEXP (pattern, 0, i);
-
- switch (GET_CODE (sub))
- {
- case USE:
- case CLOBBER:
- break;
-
- case SET:
- if (set)
- return 0;
- else
- set = sub;
- break;
-
- default:
- return 0;
- }
- }
- return set;
- }
-
- return 0;
-}
-
-
-/* A C expression to modify the code described by the conditional if
- information CE_INFO with the new PATTERN in INSN. If PATTERN is a null
- pointer after the IFCVT_MODIFY_INSN macro executes, it is assumed that that
- insn cannot be converted to be executed conditionally. */
-
-rtx
-frv_ifcvt_modify_insn (ce_info, pattern, insn)
- ce_if_block_t *ce_info ATTRIBUTE_UNUSED;
- rtx pattern;
- rtx insn;
-{
- rtx orig_ce_pattern = pattern;
- rtx set;
- rtx op0;
- rtx op1;
- rtx test;
-
- if (GET_CODE (pattern) != COND_EXEC)
- abort ();
-
- test = COND_EXEC_TEST (pattern);
- if (GET_CODE (test) == AND)
- {
- rtx cr = frv_ifcvt.cr_reg;
- rtx test_reg;
-
- op0 = XEXP (test, 0);
- if (! rtx_equal_p (cr, XEXP (op0, 0)))
- goto fail;
-
- op1 = XEXP (test, 1);
- test_reg = XEXP (op1, 0);
- if (GET_CODE (test_reg) != REG)
- goto fail;
-
- /* Is this the first nested if block in this sequence? If so, generate
- an andcr or andncr. */
- if (! frv_ifcvt.last_nested_if_cr)
- {
- rtx and_op;
-
- frv_ifcvt.last_nested_if_cr = test_reg;
- if (GET_CODE (op0) == NE)
- and_op = gen_andcr (test_reg, cr, test_reg);
- else
- and_op = gen_andncr (test_reg, cr, test_reg);
-
- frv_ifcvt_add_insn (and_op, insn, TRUE);
- }
-
- /* If this isn't the first statement in the nested if sequence, see if we
- are dealing with the same register. */
- else if (! rtx_equal_p (test_reg, frv_ifcvt.last_nested_if_cr))
- goto fail;
-
- COND_EXEC_TEST (pattern) = test = op1;
- }
-
- /* If this isn't a nested if, reset state variables. */
- else
- {
- frv_ifcvt.last_nested_if_cr = NULL_RTX;
- }
-
- set = single_set_pattern (pattern);
- if (set)
- {
- rtx dest = SET_DEST (set);
- rtx src = SET_SRC (set);
- enum machine_mode mode = GET_MODE (dest);
-
- /* Check for normal binary operators */
- if (mode == SImode
- && (GET_RTX_CLASS (GET_CODE (src)) == '2'
- || GET_RTX_CLASS (GET_CODE (src)) == 'c'))
- {
- op0 = XEXP (src, 0);
- op1 = XEXP (src, 1);
-
- /* Special case load of small data address which looks like:
- r16+symbol_ref */
- if (GET_CODE (src) == PLUS && plus_small_data_p (op0, op1))
- {
- src = frv_ifcvt_load_value (src, insn);
- if (src)
- COND_EXEC_CODE (pattern) = gen_rtx_SET (VOIDmode, dest, src);
- else
- goto fail;
- }
-
- else if (integer_register_operand (op0, SImode) && CONSTANT_P (op1))
- {
- op1 = frv_ifcvt_load_value (op1, insn);
- if (op1)
- COND_EXEC_CODE (pattern)
- = gen_rtx_SET (VOIDmode, dest, gen_rtx_fmt_ee (GET_CODE (src),
- GET_MODE (src),
- op0, op1));
- else
- goto fail;
- }
- }
-
- /* For multiply by a constant, we need to handle the sign extending
- correctly. Add a USE of the value after the multiply to prevent flow
- from cratering because only one register out of the two were used. */
- else if (mode == DImode && GET_CODE (src) == MULT)
- {
- op0 = XEXP (src, 0);
- op1 = XEXP (src, 1);
- if (GET_CODE (op0) == SIGN_EXTEND && GET_CODE (op1) == CONST_INT)
- {
- op1 = frv_ifcvt_load_value (op1, insn);
- if (op1)
- {
- op1 = gen_rtx_SIGN_EXTEND (DImode, op1);
- COND_EXEC_CODE (pattern)
- = gen_rtx_SET (VOIDmode, dest,
- gen_rtx_MULT (DImode, op0, op1));
- }
- else
- goto fail;
- }
-
- frv_ifcvt_add_insn (gen_rtx_USE (VOIDmode, dest), insn, FALSE);
- }
-
- /* If we are just loading a constant created for a nested conditional
- execution statement, just load the constant without any conditional
- execution, since we know that the constant will not interfere with any
- other registers. */
- else if (frv_ifcvt.scratch_insns_bitmap
- && bitmap_bit_p (frv_ifcvt.scratch_insns_bitmap,
- INSN_UID (insn)))
- pattern = set;
-
- else if (mode == QImode || mode == HImode || mode == SImode
- || mode == SFmode)
- {
- int changed_p = FALSE;
-
- /* Check for just loading up a constant */
- if (CONSTANT_P (src) && integer_register_operand (dest, mode))
- {
- src = frv_ifcvt_load_value (src, insn);
- if (!src)
- goto fail;
-
- changed_p = TRUE;
- }
-
- /* See if we need to fix up stores */
- if (GET_CODE (dest) == MEM)
- {
- rtx new_mem = frv_ifcvt_rewrite_mem (dest, mode, insn);
-
- if (!new_mem)
- goto fail;
-
- else if (new_mem != dest)
- {
- changed_p = TRUE;
- dest = new_mem;
- }
- }
-
- /* See if we need to fix up loads */
- if (GET_CODE (src) == MEM)
- {
- rtx new_mem = frv_ifcvt_rewrite_mem (src, mode, insn);
-
- if (!new_mem)
- goto fail;
-
- else if (new_mem != src)
- {
- changed_p = TRUE;
- src = new_mem;
- }
- }
-
- /* If either src or destination changed, redo SET. */
- if (changed_p)
- COND_EXEC_CODE (pattern) = gen_rtx_SET (VOIDmode, dest, src);
- }
-
- /* Rewrite a nested set cccr in terms of IF_THEN_ELSE. Also deal with
- rewriting the CC register to be the same as the paired CC/CR register
- for nested ifs. */
- else if (mode == CC_CCRmode && GET_RTX_CLASS (GET_CODE (src)) == '<')
- {
- int regno = REGNO (XEXP (src, 0));
- rtx if_else;
-
- if (ce_info->pass > 1
- && regno != (int)REGNO (frv_ifcvt.nested_cc_reg)
- && TEST_HARD_REG_BIT (frv_ifcvt.nested_cc_ok_rewrite, regno))
- {
- src = gen_rtx_fmt_ee (GET_CODE (src),
- CC_CCRmode,
- frv_ifcvt.nested_cc_reg,
- XEXP (src, 1));
- }
-
- if_else = gen_rtx_IF_THEN_ELSE (CC_CCRmode, test, src, const0_rtx);
- pattern = gen_rtx_SET (VOIDmode, dest, if_else);
- }
-
- /* Remap a nested compare instruction to use the paired CC/CR reg. */
- else if (ce_info->pass > 1
- && GET_CODE (dest) == REG
- && CC_P (REGNO (dest))
- && REGNO (dest) != REGNO (frv_ifcvt.nested_cc_reg)
- && TEST_HARD_REG_BIT (frv_ifcvt.nested_cc_ok_rewrite,
- REGNO (dest))
- && GET_CODE (src) == COMPARE)
- {
- PUT_MODE (frv_ifcvt.nested_cc_reg, GET_MODE (dest));
- COND_EXEC_CODE (pattern)
- = gen_rtx_SET (VOIDmode, frv_ifcvt.nested_cc_reg, copy_rtx (src));
- }
- }
-
- if (TARGET_DEBUG_COND_EXEC)
- {
- rtx orig_pattern = PATTERN (insn);
-
- PATTERN (insn) = pattern;
- fprintf (stderr,
- "\n:::::::::: frv_ifcvt_modify_insn: pass = %d, insn after modification:\n",
- ce_info->pass);
-
- debug_rtx (insn);
- PATTERN (insn) = orig_pattern;
- }
-
- return pattern;
-
- fail:
- if (TARGET_DEBUG_COND_EXEC)
- {
- rtx orig_pattern = PATTERN (insn);
-
- PATTERN (insn) = orig_ce_pattern;
- fprintf (stderr,
- "\n:::::::::: frv_ifcvt_modify_insn: pass = %d, insn could not be modified:\n",
- ce_info->pass);
-
- debug_rtx (insn);
- PATTERN (insn) = orig_pattern;
- }
-
- return NULL_RTX;
-}
-
-
-/* A C expression to perform any final machine dependent modifications in
- converting code to conditional execution in the code described by the
- conditional if information CE_INFO. */
-
-void
-frv_ifcvt_modify_final (ce_info)
- ce_if_block_t *ce_info ATTRIBUTE_UNUSED;
-{
- rtx existing_insn;
- rtx check_insn;
- rtx p = frv_ifcvt.added_insns_list;
- int i;
-
- /* Loop inserting the check insns. The last check insn is the first test,
- and is the appropriate place to insert constants. */
- if (! p)
- abort ();
-
- do
- {
- rtx check_and_insert_insns = XEXP (p, 0);
- rtx old_p = p;
-
- check_insn = XEXP (check_and_insert_insns, 0);
- existing_insn = XEXP (check_and_insert_insns, 1);
- p = XEXP (p, 1);
-
- /* The jump bit is used to say that the new insn is to be inserted BEFORE
- the existing insn, otherwise it is to be inserted AFTER. */
- if (check_and_insert_insns->jump)
- {
- emit_insn_before (check_insn, existing_insn);
- check_and_insert_insns->jump = 0;
- }
- else
- emit_insn_after (check_insn, existing_insn);
-
- free_EXPR_LIST_node (check_and_insert_insns);
- free_EXPR_LIST_node (old_p);
- }
- while (p != NULL_RTX);
-
- /* Load up any constants needed into temp gprs */
- for (i = 0; i < frv_ifcvt.cur_scratch_regs; i++)
- {
- rtx insn = emit_insn_before (frv_ifcvt.scratch_regs[i], existing_insn);
- if (! frv_ifcvt.scratch_insns_bitmap)
- frv_ifcvt.scratch_insns_bitmap = BITMAP_XMALLOC ();
- bitmap_set_bit (frv_ifcvt.scratch_insns_bitmap, INSN_UID (insn));
- frv_ifcvt.scratch_regs[i] = NULL_RTX;
- }
-
- frv_ifcvt.added_insns_list = NULL_RTX;
- frv_ifcvt.cur_scratch_regs = 0;
-}
-
-
-/* A C expression to cancel any machine dependent modifications in converting
- code to conditional execution in the code described by the conditional if
- information CE_INFO. */
-
-void
-frv_ifcvt_modify_cancel (ce_info)
- ce_if_block_t *ce_info ATTRIBUTE_UNUSED;
-{
- int i;
- rtx p = frv_ifcvt.added_insns_list;
-
- /* Loop freeing up the EXPR_LIST's allocated. */
- while (p != NULL_RTX)
- {
- rtx check_and_jump = XEXP (p, 0);
- rtx old_p = p;
-
- p = XEXP (p, 1);
- free_EXPR_LIST_node (check_and_jump);
- free_EXPR_LIST_node (old_p);
- }
-
- /* Release any temporary gprs allocated. */
- for (i = 0; i < frv_ifcvt.cur_scratch_regs; i++)
- frv_ifcvt.scratch_regs[i] = NULL_RTX;
-
- frv_ifcvt.added_insns_list = NULL_RTX;
- frv_ifcvt.cur_scratch_regs = 0;
- return;
-}
-
-/* A C expression for the size in bytes of the trampoline, as an integer.
- The template is:
-
- setlo #0, <jmp_reg>
- setlo #0, <static_chain>
- sethi #0, <jmp_reg>
- sethi #0, <static_chain>
- jmpl @(gr0,<jmp_reg>) */
-
-int
-frv_trampoline_size ()
-{
- return 5 /* instructions */ * 4 /* instruction size */;
-}
-
-
-/* A C statement to initialize the variable parts of a trampoline. ADDR is an
- RTX for the address of the trampoline; FNADDR is an RTX for the address of
- the nested function; STATIC_CHAIN is an RTX for the static chain value that
- should be passed to the function when it is called.
-
- The template is:
-
- setlo #0, <jmp_reg>
- setlo #0, <static_chain>
- sethi #0, <jmp_reg>
- sethi #0, <static_chain>
- jmpl @(gr0,<jmp_reg>) */
-
-void
-frv_initialize_trampoline (addr, fnaddr, static_chain)
- rtx addr;
- rtx fnaddr;
- rtx static_chain;
-{
- rtx sc_reg = force_reg (Pmode, static_chain);
-
- emit_library_call (gen_rtx_SYMBOL_REF (SImode, "__trampoline_setup"),
- FALSE, VOIDmode, 4,
- addr, Pmode,
- GEN_INT (frv_trampoline_size ()), SImode,
- fnaddr, Pmode,
- sc_reg, Pmode);
-}
-
-
-/* Many machines have some registers that cannot be copied directly to or from
- memory or even from other types of registers. An example is the `MQ'
- register, which on most machines, can only be copied to or from general
- registers, but not memory. Some machines allow copying all registers to and
- from memory, but require a scratch register for stores to some memory
- locations (e.g., those with symbolic address on the RT, and those with
- certain symbolic address on the Sparc when compiling PIC). In some cases,
- both an intermediate and a scratch register are required.
-
- You should define these macros to indicate to the reload phase that it may
- need to allocate at least one register for a reload in addition to the
- register to contain the data. Specifically, if copying X to a register
- CLASS in MODE requires an intermediate register, you should define
- `SECONDARY_INPUT_RELOAD_CLASS' to return the largest register class all of
- whose registers can be used as intermediate registers or scratch registers.
-
- If copying a register CLASS in MODE to X requires an intermediate or scratch
- register, `SECONDARY_OUTPUT_RELOAD_CLASS' should be defined to return the
- largest register class required. If the requirements for input and output
- reloads are the same, the macro `SECONDARY_RELOAD_CLASS' should be used
- instead of defining both macros identically.
-
- The values returned by these macros are often `GENERAL_REGS'. Return
- `NO_REGS' if no spare register is needed; i.e., if X can be directly copied
- to or from a register of CLASS in MODE without requiring a scratch register.
- Do not define this macro if it would always return `NO_REGS'.
-
- If a scratch register is required (either with or without an intermediate
- register), you should define patterns for `reload_inM' or `reload_outM', as
- required.. These patterns, which will normally be implemented with a
- `define_expand', should be similar to the `movM' patterns, except that
- operand 2 is the scratch register.
-
- Define constraints for the reload register and scratch register that contain
- a single register class. If the original reload register (whose class is
- CLASS) can meet the constraint given in the pattern, the value returned by
- these macros is used for the class of the scratch register. Otherwise, two
- additional reload registers are required. Their classes are obtained from
- the constraints in the insn pattern.
-
- X might be a pseudo-register or a `subreg' of a pseudo-register, which could
- either be in a hard register or in memory. Use `true_regnum' to find out;
- it will return -1 if the pseudo is in memory and the hard register number if
- it is in a register.
-
- These macros should not be used in the case where a particular class of
- registers can only be copied to memory and not to another class of
- registers. In that case, secondary reload registers are not needed and
- would not be helpful. Instead, a stack location must be used to perform the
- copy and the `movM' pattern should use memory as a intermediate storage.
- This case often occurs between floating-point and general registers. */
-
-enum reg_class
-frv_secondary_reload_class (class, mode, x, in_p)
- enum reg_class class;
- enum machine_mode mode ATTRIBUTE_UNUSED;
- rtx x;
- int in_p ATTRIBUTE_UNUSED;
-{
- enum reg_class ret;
-
- switch (class)
- {
- default:
- ret = NO_REGS;
- break;
-
- /* Accumulators/Accumulator guard registers need to go through floating
- point registers. */
- case QUAD_REGS:
- case EVEN_REGS:
- case GPR_REGS:
- ret = NO_REGS;
- if (x && GET_CODE (x) == REG)
- {
- int regno = REGNO (x);
-
- if (ACC_P (regno) || ACCG_P (regno))
- ret = FPR_REGS;
- }
- break;
-
- /* Non-zero constants should be loaded into an FPR through a GPR. */
- case QUAD_FPR_REGS:
- case FEVEN_REGS:
- case FPR_REGS:
- if (x && CONSTANT_P (x) && !ZERO_P (x))
- ret = GPR_REGS;
- else
- ret = NO_REGS;
- break;
-
- /* All of these types need gpr registers. */
- case ICC_REGS:
- case FCC_REGS:
- case CC_REGS:
- case ICR_REGS:
- case FCR_REGS:
- case CR_REGS:
- case LCR_REG:
- case LR_REG:
- ret = GPR_REGS;
- break;
-
- /* The accumulators need fpr registers */
- case ACC_REGS:
- case EVEN_ACC_REGS:
- case QUAD_ACC_REGS:
- case ACCG_REGS:
- ret = FPR_REGS;
- break;
- }
-
- return ret;
-}
-
-
-/* A C expression whose value is nonzero if pseudos that have been assigned to
- registers of class CLASS would likely be spilled because registers of CLASS
- are needed for spill registers.
-
- The default value of this macro returns 1 if CLASS has exactly one register
- and zero otherwise. On most machines, this default should be used. Only
- define this macro to some other expression if pseudo allocated by
- `local-alloc.c' end up in memory because their hard registers were needed
- for spill registers. If this macro returns nonzero for those classes, those
- pseudos will only be allocated by `global.c', which knows how to reallocate
- the pseudo to another register. If there would not be another register
- available for reallocation, you should not change the definition of this
- macro since the only effect of such a definition would be to slow down
- register allocation. */
-
-int
-frv_class_likely_spilled_p (class)
- enum reg_class class;
-{
- switch (class)
- {
- default:
- break;
-
- case ICC_REGS:
- case FCC_REGS:
- case CC_REGS:
- case ICR_REGS:
- case FCR_REGS:
- case CR_REGS:
- case LCR_REG:
- case LR_REG:
- case SPR_REGS:
- case QUAD_ACC_REGS:
- case EVEN_ACC_REGS:
- case ACC_REGS:
- case ACCG_REGS:
- return TRUE;
- }
-
- return FALSE;
-}
-
-
-/* An expression for the alignment of a structure field FIELD if the
- alignment computed in the usual way is COMPUTED. GNU CC uses this
- value instead of the value in `BIGGEST_ALIGNMENT' or
- `BIGGEST_FIELD_ALIGNMENT', if defined, for structure fields only. */
-
-/* The definition type of the bit field data is either char, short, long or
- long long. The maximum bit size is the number of bits of its own type.
-
- The bit field data is assigned to a storage unit that has an adequate size
- for bit field data retention and is located at the smallest address.
-
- Consecutive bit field data are packed at consecutive bits having the same
- storage unit, with regard to the type, beginning with the MSB and continuing
- toward the LSB.
-
- If a field to be assigned lies over a bit field type boundary, its
- assignment is completed by aligning it with a boundary suitable for the
- type.
-
- When a bit field having a bit length of 0 is declared, it is forcibly
- assigned to the next storage unit.
-
- e.g)
- struct {
- int a:2;
- int b:6;
- char c:4;
- int d:10;
- int :0;
- int f:2;
- } x;
-
- +0 +1 +2 +3
- &x 00000000 00000000 00000000 00000000
- MLM----L
- a b
- &x+4 00000000 00000000 00000000 00000000
- M--L
- c
- &x+8 00000000 00000000 00000000 00000000
- M----------L
- d
- &x+12 00000000 00000000 00000000 00000000
- ML
- f
-*/
-
-int
-frv_adjust_field_align (field, computed)
- tree field;
- int computed;
-{
- /* C++ provides a null DECL_CONTEXT if the bit field is wider than its
- type. */
- if (DECL_BIT_FIELD (field) && DECL_CONTEXT (field))
- {
- tree parent = DECL_CONTEXT (field);
- tree prev = NULL_TREE;
- tree cur;
-
- /* Loop finding the previous field to the current one */
- for (cur = TYPE_FIELDS (parent); cur && cur != field; cur = TREE_CHAIN (cur))
- {
- if (TREE_CODE (cur) != FIELD_DECL)
- continue;
-
- prev = cur;
- }
-
- if (!cur)
- abort ();
-
- /* If this isn't a :0 field and if the previous element is a bitfield
- also, see if the type is different, if so, we will need to align the
- bitfield to the next boundary */
- if (prev
- && ! DECL_PACKED (field)
- && ! integer_zerop (DECL_SIZE (field))
- && DECL_BIT_FIELD_TYPE (field) != DECL_BIT_FIELD_TYPE (prev))
- {
- int prev_align = TYPE_ALIGN (TREE_TYPE (prev));
- int cur_align = TYPE_ALIGN (TREE_TYPE (field));
- computed = (prev_align > cur_align) ? prev_align : cur_align;
- }
- }
-
- return computed;
-}
-
-
-/* A C expression that is nonzero if it is permissible to store a value of mode
- MODE in hard register number REGNO (or in several registers starting with
- that one). For a machine where all registers are equivalent, a suitable
- definition is
-
- #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
-
- It is not necessary for this macro to check for the numbers of fixed
- registers, because the allocation mechanism considers them to be always
- occupied.
-
- On some machines, double-precision values must be kept in even/odd register
- pairs. The way to implement that is to define this macro to reject odd
- register numbers for such modes.
-
- The minimum requirement for a mode to be OK in a register is that the
- `movMODE' instruction pattern support moves between the register and any
- other hard register for which the mode is OK; and that moving a value into
- the register and back out not alter it.
-
- Since the same instruction used to move `SImode' will work for all narrower
- integer modes, it is not necessary on any machine for `HARD_REGNO_MODE_OK'
- to distinguish between these modes, provided you define patterns `movhi',
- etc., to take advantage of this. This is useful because of the interaction
- between `HARD_REGNO_MODE_OK' and `MODES_TIEABLE_P'; it is very desirable for
- all integer modes to be tieable.
-
- Many machines have special registers for floating point arithmetic. Often
- people assume that floating point machine modes are allowed only in floating
- point registers. This is not true. Any registers that can hold integers
- can safely *hold* a floating point machine mode, whether or not floating
- arithmetic can be done on it in those registers. Integer move instructions
- can be used to move the values.
-
- On some machines, though, the converse is true: fixed-point machine modes
- may not go in floating registers. This is true if the floating registers
- normalize any value stored in them, because storing a non-floating value
- there would garble it. In this case, `HARD_REGNO_MODE_OK' should reject
- fixed-point machine modes in floating registers. But if the floating
- registers do not automatically normalize, if you can store any bit pattern
- in one and retrieve it unchanged without a trap, then any machine mode may
- go in a floating register, so you can define this macro to say so.
-
- The primary significance of special floating registers is rather that they
- are the registers acceptable in floating point arithmetic instructions.
- However, this is of no concern to `HARD_REGNO_MODE_OK'. You handle it by
- writing the proper constraints for those instructions.
-
- On some machines, the floating registers are especially slow to access, so
- that it is better to store a value in a stack frame than in such a register
- if floating point arithmetic is not being done. As long as the floating
- registers are not in class `GENERAL_REGS', they will not be used unless some
- pattern's constraint asks for one. */
-
-int
-frv_hard_regno_mode_ok (regno, mode)
- int regno;
- enum machine_mode mode;
-{
- int base;
- int mask;
-
- switch (mode)
- {
- case CCmode:
- case CC_UNSmode:
- return ICC_P (regno) || GPR_P (regno);
-
- case CC_CCRmode:
- return CR_P (regno) || GPR_P (regno);
-
- case CC_FPmode:
- return FCC_P (regno) || GPR_P (regno);
-
- default:
- break;
- }
-
- /* Set BASE to the first register in REGNO's class. Set MASK to the
- bits that must be clear in (REGNO - BASE) for the register to be
- well-aligned. */
- if (INTEGRAL_MODE_P (mode) || FLOAT_MODE_P (mode) || VECTOR_MODE_P (mode))
- {
- if (ACCG_P (regno))
- {
- /* ACCGs store one byte. Two-byte quantities must start in
- even-numbered registers, four-byte ones in registers whose
- numbers are divisible by four, and so on. */
- base = ACCG_FIRST;
- mask = GET_MODE_SIZE (mode) - 1;
- }
- else
- {
- /* The other registers store one word. */
- if (GPR_P (regno))
- base = GPR_FIRST;
-
- else if (FPR_P (regno))
- base = FPR_FIRST;
-
- else if (ACC_P (regno))
- base = ACC_FIRST;
-
- else
- return 0;
-
- /* Anything smaller than an SI is OK in any word-sized register. */
- if (GET_MODE_SIZE (mode) < 4)
- return 1;
-
- mask = (GET_MODE_SIZE (mode) / 4) - 1;
- }
- return (((regno - base) & mask) == 0);
- }
-
- return 0;
-}
-
-
-/* A C expression for the number of consecutive hard registers, starting at
- register number REGNO, required to hold a value of mode MODE.
-
- On a machine where all registers are exactly one word, a suitable definition
- of this macro is
-
- #define HARD_REGNO_NREGS(REGNO, MODE) \
- ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \
- / UNITS_PER_WORD)) */
-
-/* On the FRV, make the CC_FP mode take 3 words in the integer registers, so
- that we can build the appropriate instructions to properly reload the
- values. Also, make the byte-sized accumulator guards use one guard
- for each byte. */
-
-int
-frv_hard_regno_nregs (regno, mode)
- int regno;
- enum machine_mode mode;
-{
- if (ACCG_P (regno))
- return GET_MODE_SIZE (mode);
- else
- return (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
-}
-
-
-/* A C expression for the maximum number of consecutive registers of
- class CLASS needed to hold a value of mode MODE.
-
- This is closely related to the macro `HARD_REGNO_NREGS'. In fact, the value
- of the macro `CLASS_MAX_NREGS (CLASS, MODE)' should be the maximum value of
- `HARD_REGNO_NREGS (REGNO, MODE)' for all REGNO values in the class CLASS.
-
- This macro helps control the handling of multiple-word values in
- the reload pass.
-
- This declaration is required. */
-
-int
-frv_class_max_nregs (class, mode)
- enum reg_class class;
- enum machine_mode mode;
-{
- if (class == ACCG_REGS)
- /* An N-byte value requires N accumulator guards. */
- return GET_MODE_SIZE (mode);
- else
- return (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
-}
-
-
-/* A C expression that is nonzero if X is a legitimate constant for an
- immediate operand on the target machine. You can assume that X satisfies
- `CONSTANT_P', so you need not check this. In fact, `1' is a suitable
- definition for this macro on machines where anything `CONSTANT_P' is valid. */
-
-int
-frv_legitimate_constant_p (x)
- rtx x;
-{
- enum machine_mode mode = GET_MODE (x);
-
- /* All of the integer constants are ok */
- if (GET_CODE (x) != CONST_DOUBLE)
- return TRUE;
-
- /* double integer constants are ok */
- if (mode == VOIDmode || mode == DImode)
- return TRUE;
-
- /* 0 is always ok */
- if (x == CONST0_RTX (mode))
- return TRUE;
-
- /* If floating point is just emulated, allow any constant, since it will be
- constructed in the GPRs */
- if (!TARGET_HAS_FPRS)
- return TRUE;
-
- if (mode == DFmode && !TARGET_DOUBLE)
- return TRUE;
-
- /* Otherwise store the constant away and do a load. */
- return FALSE;
-}
-
-/* A C expression for the cost of moving data from a register in class FROM to
- one in class TO. The classes are expressed using the enumeration values
- such as `GENERAL_REGS'. A value of 4 is the default; other values are
- interpreted relative to that.
-
- It is not required that the cost always equal 2 when FROM is the same as TO;
- on some machines it is expensive to move between registers if they are not
- general registers.
-
- If reload sees an insn consisting of a single `set' between two hard
- registers, and if `REGISTER_MOVE_COST' applied to their classes returns a
- value of 2, reload does not check to ensure that the constraints of the insn
- are met. Setting a cost of other than 2 will allow reload to verify that
- the constraints are met. You should do this if the `movM' pattern's
- constraints do not allow such copying. */
-
-#define HIGH_COST 40
-#define MEDIUM_COST 3
-#define LOW_COST 1
-
-int
-frv_register_move_cost (from, to)
- enum reg_class from;
- enum reg_class to;
-{
- switch (from)
- {
- default:
- break;
-
- case QUAD_REGS:
- case EVEN_REGS:
- case GPR_REGS:
- switch (to)
- {
- default:
- break;
-
- case QUAD_REGS:
- case EVEN_REGS:
- case GPR_REGS:
- return LOW_COST;
-
- case FEVEN_REGS:
- case FPR_REGS:
- return LOW_COST;
-
- case LCR_REG:
- case LR_REG:
- case SPR_REGS:
- return LOW_COST;
- }
-
- case FEVEN_REGS:
- case FPR_REGS:
- switch (to)
- {
- default:
- break;
-
- case QUAD_REGS:
- case EVEN_REGS:
- case GPR_REGS:
- case ACC_REGS:
- case EVEN_ACC_REGS:
- case QUAD_ACC_REGS:
- case ACCG_REGS:
- return MEDIUM_COST;
-
- case FEVEN_REGS:
- case FPR_REGS:
- return LOW_COST;
- }
-
- case LCR_REG:
- case LR_REG:
- case SPR_REGS:
- switch (to)
- {
- default:
- break;
-
- case QUAD_REGS:
- case EVEN_REGS:
- case GPR_REGS:
- return MEDIUM_COST;
- }
-
- case ACC_REGS:
- case EVEN_ACC_REGS:
- case QUAD_ACC_REGS:
- case ACCG_REGS:
- switch (to)
- {
- default:
- break;
-
- case FEVEN_REGS:
- case FPR_REGS:
- return MEDIUM_COST;
-
- }
- }
-
- return HIGH_COST;
-}
-
-/* Implementation of TARGET_ASM_INTEGER. In the FRV case we need to
- use ".picptr" to generate safe relocations for PIC code. We also
- need a fixup entry for aligned (non-debugging) code. */
-
-static bool
-frv_assemble_integer (value, size, aligned_p)
- rtx value;
- unsigned int size;
- int aligned_p;
-{
- if (flag_pic && size == UNITS_PER_WORD)
- {
- if (GET_CODE (value) == CONST
- || GET_CODE (value) == SYMBOL_REF
- || GET_CODE (value) == LABEL_REF)
- {
- if (aligned_p)
- {
- static int label_num = 0;
- char buf[256];
- const char *p;
-
- ASM_GENERATE_INTERNAL_LABEL (buf, "LCP", label_num++);
- p = (* targetm.strip_name_encoding) (buf);
-
- fprintf (asm_out_file, "%s:\n", p);
- fprintf (asm_out_file, "%s\n", FIXUP_SECTION_ASM_OP);
- fprintf (asm_out_file, "\t.picptr\t%s\n", p);
- fprintf (asm_out_file, "\t.previous\n");
- }
- assemble_integer_with_op ("\t.picptr\t", value);
- return true;
- }
- if (!aligned_p)
- {
- /* We've set the unaligned SI op to NULL, so we always have to
- handle the unaligned case here. */
- assemble_integer_with_op ("\t.4byte\t", value);
- return true;
- }
- }
- return default_assemble_integer (value, size, aligned_p);
-}
-
-/* Function to set up the backend function structure. */
-
-static struct machine_function *
-frv_init_machine_status ()
-{
- return ggc_alloc_cleared (sizeof (struct machine_function));
-}
-
-
-/* Update the register state information, to know about which registers are set
- or clobbered. */
-
-static void
-frv_registers_update (x, reg_state, modified, p_num_mod, flag)
- rtx x;
- unsigned char reg_state[];
- int modified[];
- int *p_num_mod;
- int flag;
-{
- int regno, reg_max;
- rtx reg;
- rtx cond;
- const char *format;
- int length;
- int j;
-
- switch (GET_CODE (x))
- {
- default:
- break;
-
- /* Clobber just modifies a register, it doesn't make it live. */
- case CLOBBER:
- frv_registers_update (XEXP (x, 0), reg_state, modified, p_num_mod,
- flag | REGSTATE_MODIFIED);
- return;
-
- /* Pre modify updates the first argument, just references the second. */
- case PRE_MODIFY:
- case SET:
- frv_registers_update (XEXP (x, 0), reg_state, modified, p_num_mod,
- flag | REGSTATE_MODIFIED | REGSTATE_LIVE);
- frv_registers_update (XEXP (x, 1), reg_state, modified, p_num_mod, flag);
- return;
-
- /* For COND_EXEC, pass the appropriate flag to evaluate the conditional
- statement, but just to be sure, make sure it is the type of cond_exec
- we expect. */
- case COND_EXEC:
- cond = XEXP (x, 0);
- if ((GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
- && GET_CODE (XEXP (cond, 0)) == REG
- && CR_P (REGNO (XEXP (cond, 0)))
- && GET_CODE (XEXP (cond, 1)) == CONST_INT
- && INTVAL (XEXP (cond, 1)) == 0
- && (flag & (REGSTATE_MODIFIED | REGSTATE_IF_EITHER)) == 0)
- {
- frv_registers_update (cond, reg_state, modified, p_num_mod, flag);
- flag |= ((REGNO (XEXP (cond, 0)) - CR_FIRST)
- | ((GET_CODE (cond) == NE)
- ? REGSTATE_IF_TRUE
- : REGSTATE_IF_FALSE));
-
- frv_registers_update (XEXP (x, 1), reg_state, modified, p_num_mod,
- flag);
- return;
- }
- else
- fatal_insn ("frv_registers_update", x);
-
- /* MEM resets the modification bits. */
- case MEM:
- flag &= ~REGSTATE_MODIFIED;
- break;
-
- /* See if we need to set the modified flag. */
- case SUBREG:
- reg = SUBREG_REG (x);
- if (GET_CODE (reg) == REG)
- {
- regno = subreg_regno (x);
- reg_max = REGNO (reg) + HARD_REGNO_NREGS (regno, GET_MODE (reg));
- goto reg_common;
- }
- break;
-
- case REG:
- regno = REGNO (x);
- reg_max = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
- /* fall through */
-
- reg_common:
- if (flag & REGSTATE_MODIFIED)
- {
- flag &= REGSTATE_MASK;
- while (regno < reg_max)
- {
- int rs = reg_state[regno];
-
- if (flag != rs)
- {
- if ((rs & REGSTATE_MODIFIED) == 0)
- {
- modified[ *p_num_mod ] = regno;
- (*p_num_mod)++;
- }
-
- /* If the previous register state had the register as
- modified, possibly in some conditional execution context,
- and the current insn modifies in some other context, or
- outside of conditional execution, just mark the variable
- as modified. */
- else
- flag &= ~(REGSTATE_IF_EITHER | REGSTATE_CC_MASK);
-
- reg_state[regno] = (rs | flag);
- }
- regno++;
- }
- }
- return;
- }
-
-
- length = GET_RTX_LENGTH (GET_CODE (x));
- format = GET_RTX_FORMAT (GET_CODE (x));
-
- for (j = 0; j < length; ++j)
- {
- switch (format[j])
- {
- case 'e':
- frv_registers_update (XEXP (x, j), reg_state, modified, p_num_mod,
- flag);
- break;
-
- case 'V':
- case 'E':
- if (XVEC (x, j) != 0)
- {
- int k;
- for (k = 0; k < XVECLEN (x, j); ++k)
- frv_registers_update (XVECEXP (x, j, k), reg_state, modified,
- p_num_mod, flag);
- }
- break;
-
- default:
- /* Nothing to do. */
- break;
- }
- }
-
- return;
-}
-
-
-/* Return if any registers in a hard register set were used an insn. */
-
-static int
-frv_registers_used_p (x, reg_state, flag)
- rtx x;
- unsigned char reg_state[];
- int flag;
-{
- int regno, reg_max;
- rtx reg;
- rtx cond;
- rtx dest;
- const char *format;
- int result;
- int length;
- int j;
-
- switch (GET_CODE (x))
- {
- default:
- break;
-
- /* Skip clobber, that doesn't use the previous value */
- case CLOBBER:
- return FALSE;
-
- /* For SET, if a conditional jump has occurred in the same insn, only
- allow a set of a CR register if that register is not currently live.
- This is because on the FR-V, B0/B1 instructions are always last.
- Otherwise, don't look at the result, except within a MEM, but do look
- at the source. */
- case SET:
- dest = SET_DEST (x);
- if (flag & REGSTATE_CONDJUMP
- && GET_CODE (dest) == REG && CR_P (REGNO (dest))
- && (reg_state[ REGNO (dest) ] & REGSTATE_LIVE) != 0)
- return TRUE;
-
- if (GET_CODE (dest) == MEM)
- {
- result = frv_registers_used_p (XEXP (dest, 0), reg_state, flag);
- if (result)
- return result;
- }
-
- return frv_registers_used_p (SET_SRC (x), reg_state, flag);
-
- /* For COND_EXEC, pass the appropriate flag to evaluate the conditional
- statement, but just to be sure, make sure it is the type of cond_exec
- we expect. */
- case COND_EXEC:
- cond = XEXP (x, 0);
- if ((GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
- && GET_CODE (XEXP (cond, 0)) == REG
- && CR_P (REGNO (XEXP (cond, 0)))
- && GET_CODE (XEXP (cond, 1)) == CONST_INT
- && INTVAL (XEXP (cond, 1)) == 0
- && (flag & (REGSTATE_MODIFIED | REGSTATE_IF_EITHER)) == 0)
- {
- result = frv_registers_used_p (cond, reg_state, flag);
- if (result)
- return result;
-
- flag |= ((REGNO (XEXP (cond, 0)) - CR_FIRST)
- | ((GET_CODE (cond) == NE)
- ? REGSTATE_IF_TRUE
- : REGSTATE_IF_FALSE));
-
- return frv_registers_used_p (XEXP (x, 1), reg_state, flag);
- }
- else
- fatal_insn ("frv_registers_used_p", x);
-
- /* See if a register or subreg was modified in the same VLIW insn. */
- case SUBREG:
- reg = SUBREG_REG (x);
- if (GET_CODE (reg) == REG)
- {
- regno = subreg_regno (x);
- reg_max = REGNO (reg) + HARD_REGNO_NREGS (regno, GET_MODE (reg));
- goto reg_common;
- }
- break;
-
- case REG:
- regno = REGNO (x);
- reg_max = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
- /* fall through */
-
- reg_common:
- while (regno < reg_max)
- {
- int rs = reg_state[regno];
-
- if (rs & REGSTATE_MODIFIED)
- {
- int rs_if = rs & REGSTATE_IF_EITHER;
- int flag_if = flag & REGSTATE_IF_EITHER;
-
- /* Simple modification, no conditional execution */
- if ((rs & REGSTATE_IF_EITHER) == 0)
- return TRUE;
-
- /* See if the variable is only modified in a conditional
- execution expression opposite to the conditional execution
- expression that governs this expression (ie, true vs. false
- for the same CC register). If this isn't two halves of the
- same conditional expression, consider the register
- modified. */
- if (((rs_if == REGSTATE_IF_TRUE && flag_if == REGSTATE_IF_FALSE)
- || (rs_if == REGSTATE_IF_FALSE && flag_if == REGSTATE_IF_TRUE))
- && ((rs & REGSTATE_CC_MASK) == (flag & REGSTATE_CC_MASK)))
- ;
- else
- return TRUE;
- }
-
- regno++;
- }
- return FALSE;
- }
-
-
- length = GET_RTX_LENGTH (GET_CODE (x));
- format = GET_RTX_FORMAT (GET_CODE (x));
-
- for (j = 0; j < length; ++j)
- {
- switch (format[j])
- {
- case 'e':
- result = frv_registers_used_p (XEXP (x, j), reg_state, flag);
- if (result != 0)
- return result;
- break;
-
- case 'V':
- case 'E':
- if (XVEC (x, j) != 0)
- {
- int k;
- for (k = 0; k < XVECLEN (x, j); ++k)
- {
- result = frv_registers_used_p (XVECEXP (x, j, k), reg_state,
- flag);
- if (result != 0)
- return result;
- }
- }
- break;
-
- default:
- /* Nothing to do. */
- break;
- }
- }
-
- return 0;
-}
-
-/* Return if any registers in a hard register set were set in an insn. */
-
-static int
-frv_registers_set_p (x, reg_state, modify_p)
- rtx x;
- unsigned char reg_state[];
- int modify_p;
-{
- int regno, reg_max;
- rtx reg;
- rtx cond;
- const char *format;
- int length;
- int j;
-
- switch (GET_CODE (x))
- {
- default:
- break;
-
- case CLOBBER:
- return frv_registers_set_p (XEXP (x, 0), reg_state, TRUE);
-
- case PRE_MODIFY:
- case SET:
- return (frv_registers_set_p (XEXP (x, 0), reg_state, TRUE)
- || frv_registers_set_p (XEXP (x, 1), reg_state, FALSE));
-
- case COND_EXEC:
- cond = XEXP (x, 0);
- /* just to be sure, make sure it is the type of cond_exec we
- expect. */
- if ((GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
- && GET_CODE (XEXP (cond, 0)) == REG
- && CR_P (REGNO (XEXP (cond, 0)))
- && GET_CODE (XEXP (cond, 1)) == CONST_INT
- && INTVAL (XEXP (cond, 1)) == 0
- && !modify_p)
- return frv_registers_set_p (XEXP (x, 1), reg_state, modify_p);
- else
- fatal_insn ("frv_registers_set_p", x);
-
- /* MEM resets the modification bits. */
- case MEM:
- modify_p = FALSE;
- break;
-
- /* See if we need to set the modified modify_p. */
- case SUBREG:
- reg = SUBREG_REG (x);
- if (GET_CODE (reg) == REG)
- {
- regno = subreg_regno (x);
- reg_max = REGNO (reg) + HARD_REGNO_NREGS (regno, GET_MODE (reg));
- goto reg_common;
- }
- break;
-
- case REG:
- regno = REGNO (x);
- reg_max = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
- /* fall through */
-
- reg_common:
- if (modify_p)
- while (regno < reg_max)
- {
- int rs = reg_state[regno];
-
- if (rs & REGSTATE_MODIFIED)
- return TRUE;
- regno++;
- }
- return FALSE;
- }
-
-
- length = GET_RTX_LENGTH (GET_CODE (x));
- format = GET_RTX_FORMAT (GET_CODE (x));
-
- for (j = 0; j < length; ++j)
- {
- switch (format[j])
- {
- case 'e':
- if (frv_registers_set_p (XEXP (x, j), reg_state, modify_p))
- return TRUE;
- break;
-
- case 'V':
- case 'E':
- if (XVEC (x, j) != 0)
- {
- int k;
- for (k = 0; k < XVECLEN (x, j); ++k)
- if (frv_registers_set_p (XVECEXP (x, j, k), reg_state,
- modify_p))
- return TRUE;
- }
- break;
-
- default:
- /* Nothing to do. */
- break;
- }
- }
-
- return FALSE;
-}
-
-
-/* In rare cases, correct code generation requires extra machine dependent
- processing between the second jump optimization pass and delayed branch
- scheduling. On those machines, define this macro as a C statement to act on
- the code starting at INSN. */
-
-/* On the FR-V, this pass is used to rescan the insn chain, and pack
- conditional branches/calls/jumps, etc. with previous insns where it can. It
- does not reorder the instructions. We assume the scheduler left the flow
- information in a reasonable state. */
-
-static void
-frv_pack_insns ()
-{
- state_t frv_state; /* frv state machine */
- int cur_start_vliw_p; /* current insn starts a VLIW insn */
- int next_start_vliw_p; /* next insn starts a VLIW insn */
- int cur_condjump_p; /* flag if current insn is a cond jump*/
- int next_condjump_p; /* flag if next insn is a cond jump */
- rtx insn;
- rtx link;
- int j;
- int num_mod = 0; /* # of modified registers */
- int modified[FIRST_PSEUDO_REGISTER]; /* registers modified in current VLIW */
- /* register state information */
- unsigned char reg_state[FIRST_PSEUDO_REGISTER];
-
- /* If we weren't going to pack the insns, don't bother with this pass. */
- if (!optimize || !flag_schedule_insns_after_reload || TARGET_NO_VLIW_BRANCH)
- return;
-
- switch (frv_cpu_type)
- {
- default:
- case FRV_CPU_FR300: /* FR300/simple are single issue */
- case FRV_CPU_SIMPLE:
- return;
-
- case FRV_CPU_GENERIC: /* FR-V and FR500 are multi-issue */
- case FRV_CPU_FR400:
- case FRV_CPU_FR500:
- case FRV_CPU_TOMCAT:
- break;
- }
-
- /* Set up the instruction and register states. */
- dfa_start ();
- frv_state = (state_t) xmalloc (state_size ());
- memset ((PTR) reg_state, REGSTATE_DEAD, sizeof (reg_state));
-
- /* Go through the insns, and repack the insns. */
- state_reset (frv_state);
- cur_start_vliw_p = FALSE;
- next_start_vliw_p = TRUE;
- cur_condjump_p = 0;
- next_condjump_p = 0;
-
- for (insn = get_insns (); insn != NULL_RTX; insn = NEXT_INSN (insn))
- {
- enum rtx_code code = GET_CODE (insn);
- enum rtx_code pattern_code;
-
- /* For basic block begin notes redo the live information, and skip other
- notes. */
- if (code == NOTE)
- {
- if (NOTE_LINE_NUMBER (insn) == (int)NOTE_INSN_BASIC_BLOCK)
- {
- regset live;
-
- for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
- reg_state[j] &= ~ REGSTATE_LIVE;
-
- live = NOTE_BASIC_BLOCK (insn)->global_live_at_start;
- EXECUTE_IF_SET_IN_REG_SET(live, 0, j,
- {
- reg_state[j] |= REGSTATE_LIVE;
- });
- }
-
- continue;
- }
-
- /* things like labels reset everything. */
- if (GET_RTX_CLASS (code) != 'i')
- {
- next_start_vliw_p = TRUE;
- continue;
- }
-
- /* Clear the VLIW start flag on random USE and CLOBBER insns, which is
- set on the USE insn that preceeds the return, and potentially on
- CLOBBERs for setting multiword variables. Also skip the ADDR_VEC
- holding the case table labels. */
- pattern_code = GET_CODE (PATTERN (insn));
- if (pattern_code == USE || pattern_code == CLOBBER
- || pattern_code == ADDR_VEC || pattern_code == ADDR_DIFF_VEC)
- {
- CLEAR_VLIW_START (insn);
- continue;
- }
-
- cur_start_vliw_p = next_start_vliw_p;
- next_start_vliw_p = FALSE;
-
- cur_condjump_p |= next_condjump_p;
- next_condjump_p = 0;
-
- /* Unconditional branches and calls end the current VLIW insn. */
- if (code == CALL_INSN)
- {
- next_start_vliw_p = TRUE;
-
- /* On a TOMCAT, calls must be alone in the VLIW insns. */
- if (frv_cpu_type == FRV_CPU_TOMCAT)
- cur_start_vliw_p = TRUE;
- }
- else if (code == JUMP_INSN)
- {
- if (any_condjump_p (insn))
- next_condjump_p = REGSTATE_CONDJUMP;
- else
- next_start_vliw_p = TRUE;
- }
-
- /* Only allow setting a CCR register after a conditional branch. */
- else if (((cur_condjump_p & REGSTATE_CONDJUMP) != 0)
- && get_attr_type (insn) != TYPE_CCR)
- cur_start_vliw_p = TRUE;
-
- /* Determine if we need to start a new VLIW instruction. */
- if (cur_start_vliw_p
- /* Do not check for register conflicts in a setlo instruction
- because any output or true dependencies will be with the
- partnering sethi instruction, with which it can be packed.
-
- Although output dependencies are rare they are still
- possible. So check output dependencies in VLIW insn. */
- || (get_attr_type (insn) != TYPE_SETLO
- && (frv_registers_used_p (PATTERN (insn),
- reg_state,
- cur_condjump_p)
- || frv_registers_set_p (PATTERN (insn), reg_state, FALSE)))
- || state_transition (frv_state, insn) >= 0)
- {
- SET_VLIW_START (insn);
- state_reset (frv_state);
- state_transition (frv_state, insn);
- cur_condjump_p = 0;
-
- /* Update the modified registers. */
- for (j = 0; j < num_mod; j++)
- reg_state[ modified[j] ] &= ~(REGSTATE_CC_MASK
- | REGSTATE_IF_EITHER
- | REGSTATE_MODIFIED);
-
- num_mod = 0;
- }
- else
- CLEAR_VLIW_START (insn);
-
- /* Record which registers are modified. */
- frv_registers_update (PATTERN (insn), reg_state, modified, &num_mod, 0);
-
- /* Process the death notices */
- for (link = REG_NOTES (insn);
- link != NULL_RTX;
- link = XEXP (link, 1))
- {
- rtx reg = XEXP (link, 0);
-
- if (REG_NOTE_KIND (link) == REG_DEAD && GET_CODE (reg) == REG)
- {
- int regno = REGNO (reg);
- int n = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
- for (; regno < n; regno++)
- reg_state[regno] &= ~REGSTATE_LIVE;
- }
- }
- }
-
- free ((PTR) frv_state);
- dfa_finish ();
- return;
-}
-
-
-#define def_builtin(name, type, code) \
- builtin_function ((name), (type), (code), BUILT_IN_MD, NULL, NULL)
-
-struct builtin_description
-{
- enum insn_code icode;
- const char *name;
- enum frv_builtins code;
- enum rtx_code comparison;
- unsigned int flag;
-};
-
-/* Media intrinsics that take a single, constant argument. */
-
-static struct builtin_description bdesc_set[] =
-{
- { CODE_FOR_mhdsets, "__MHDSETS", FRV_BUILTIN_MHDSETS, 0, 0 }
-};
-
-/* Media intrinsics that take just one argument. */
-
-static struct builtin_description bdesc_1arg[] =
-{
- { CODE_FOR_mnot, "__MNOT", FRV_BUILTIN_MNOT, 0, 0 },
- { CODE_FOR_munpackh, "__MUNPACKH", FRV_BUILTIN_MUNPACKH, 0, 0 },
- { CODE_FOR_mbtoh, "__MBTOH", FRV_BUILTIN_MBTOH, 0, 0 },
- { CODE_FOR_mhtob, "__MHTOB", FRV_BUILTIN_MHTOB, 0, 0 },
- { CODE_FOR_mabshs, "__MABSHS", FRV_BUILTIN_MABSHS, 0, 0 }
-};
-
-/* Media intrinsics that take two arguments. */
-
-static struct builtin_description bdesc_2arg[] =
-{
- { CODE_FOR_mand, "__MAND", FRV_BUILTIN_MAND, 0, 0 },
- { CODE_FOR_mor, "__MOR", FRV_BUILTIN_MOR, 0, 0 },
- { CODE_FOR_mxor, "__MXOR", FRV_BUILTIN_MXOR, 0, 0 },
- { CODE_FOR_maveh, "__MAVEH", FRV_BUILTIN_MAVEH, 0, 0 },
- { CODE_FOR_msaths, "__MSATHS", FRV_BUILTIN_MSATHS, 0, 0 },
- { CODE_FOR_msathu, "__MSATHU", FRV_BUILTIN_MSATHU, 0, 0 },
- { CODE_FOR_maddhss, "__MADDHSS", FRV_BUILTIN_MADDHSS, 0, 0 },
- { CODE_FOR_maddhus, "__MADDHUS", FRV_BUILTIN_MADDHUS, 0, 0 },
- { CODE_FOR_msubhss, "__MSUBHSS", FRV_BUILTIN_MSUBHSS, 0, 0 },
- { CODE_FOR_msubhus, "__MSUBHUS", FRV_BUILTIN_MSUBHUS, 0, 0 },
- { CODE_FOR_mqaddhss, "__MQADDHSS", FRV_BUILTIN_MQADDHSS, 0, 0 },
- { CODE_FOR_mqaddhus, "__MQADDHUS", FRV_BUILTIN_MQADDHUS, 0, 0 },
- { CODE_FOR_mqsubhss, "__MQSUBHSS", FRV_BUILTIN_MQSUBHSS, 0, 0 },
- { CODE_FOR_mqsubhus, "__MQSUBHUS", FRV_BUILTIN_MQSUBHUS, 0, 0 },
- { CODE_FOR_mpackh, "__MPACKH", FRV_BUILTIN_MPACKH, 0, 0 },
- { CODE_FOR_mdpackh, "__MDPACKH", FRV_BUILTIN_MDPACKH, 0, 0 },
- { CODE_FOR_mcop1, "__Mcop1", FRV_BUILTIN_MCOP1, 0, 0 },
- { CODE_FOR_mcop2, "__Mcop2", FRV_BUILTIN_MCOP2, 0, 0 },
- { CODE_FOR_mwcut, "__MWCUT", FRV_BUILTIN_MWCUT, 0, 0 },
- { CODE_FOR_mqsaths, "__MQSATHS", FRV_BUILTIN_MQSATHS, 0, 0 }
-};
-
-/* Media intrinsics that take two arguments, the first being an ACC number. */
-
-static struct builtin_description bdesc_cut[] =
-{
- { CODE_FOR_mcut, "__MCUT", FRV_BUILTIN_MCUT, 0, 0 },
- { CODE_FOR_mcutss, "__MCUTSS", FRV_BUILTIN_MCUTSS, 0, 0 },
- { CODE_FOR_mdcutssi, "__MDCUTSSI", FRV_BUILTIN_MDCUTSSI, 0, 0 }
-};
-
-/* Two-argument media intrinsics with an immediate second argument. */
-
-static struct builtin_description bdesc_2argimm[] =
-{
- { CODE_FOR_mrotli, "__MROTLI", FRV_BUILTIN_MROTLI, 0, 0 },
- { CODE_FOR_mrotri, "__MROTRI", FRV_BUILTIN_MROTRI, 0, 0 },
- { CODE_FOR_msllhi, "__MSLLHI", FRV_BUILTIN_MSLLHI, 0, 0 },
- { CODE_FOR_msrlhi, "__MSRLHI", FRV_BUILTIN_MSRLHI, 0, 0 },
- { CODE_FOR_msrahi, "__MSRAHI", FRV_BUILTIN_MSRAHI, 0, 0 },
- { CODE_FOR_mexpdhw, "__MEXPDHW", FRV_BUILTIN_MEXPDHW, 0, 0 },
- { CODE_FOR_mexpdhd, "__MEXPDHD", FRV_BUILTIN_MEXPDHD, 0, 0 },
- { CODE_FOR_mdrotli, "__MDROTLI", FRV_BUILTIN_MDROTLI, 0, 0 },
- { CODE_FOR_mcplhi, "__MCPLHI", FRV_BUILTIN_MCPLHI, 0, 0 },
- { CODE_FOR_mcpli, "__MCPLI", FRV_BUILTIN_MCPLI, 0, 0 },
- { CODE_FOR_mhsetlos, "__MHSETLOS", FRV_BUILTIN_MHSETLOS, 0, 0 },
- { CODE_FOR_mhsetloh, "__MHSETLOH", FRV_BUILTIN_MHSETLOH, 0, 0 },
- { CODE_FOR_mhsethis, "__MHSETHIS", FRV_BUILTIN_MHSETHIS, 0, 0 },
- { CODE_FOR_mhsethih, "__MHSETHIH", FRV_BUILTIN_MHSETHIH, 0, 0 },
- { CODE_FOR_mhdseth, "__MHDSETH", FRV_BUILTIN_MHDSETH, 0, 0 }
-};
-
-/* Media intrinsics that take two arguments and return void, the first argument
- being a pointer to 4 words in memory. */
-
-static struct builtin_description bdesc_void2arg[] =
-{
- { CODE_FOR_mdunpackh, "__MDUNPACKH", FRV_BUILTIN_MDUNPACKH, 0, 0 },
- { CODE_FOR_mbtohe, "__MBTOHE", FRV_BUILTIN_MBTOHE, 0, 0 },
-};
-
-/* Media intrinsics that take three arguments, the first being a const_int that
- denotes an accumulator, and that return void. */
-
-static struct builtin_description bdesc_void3arg[] =
-{
- { CODE_FOR_mcpxrs, "__MCPXRS", FRV_BUILTIN_MCPXRS, 0, 0 },
- { CODE_FOR_mcpxru, "__MCPXRU", FRV_BUILTIN_MCPXRU, 0, 0 },
- { CODE_FOR_mcpxis, "__MCPXIS", FRV_BUILTIN_MCPXIS, 0, 0 },
- { CODE_FOR_mcpxiu, "__MCPXIU", FRV_BUILTIN_MCPXIU, 0, 0 },
- { CODE_FOR_mmulhs, "__MMULHS", FRV_BUILTIN_MMULHS, 0, 0 },
- { CODE_FOR_mmulhu, "__MMULHU", FRV_BUILTIN_MMULHU, 0, 0 },
- { CODE_FOR_mmulxhs, "__MMULXHS", FRV_BUILTIN_MMULXHS, 0, 0 },
- { CODE_FOR_mmulxhu, "__MMULXHU", FRV_BUILTIN_MMULXHU, 0, 0 },
- { CODE_FOR_mmachs, "__MMACHS", FRV_BUILTIN_MMACHS, 0, 0 },
- { CODE_FOR_mmachu, "__MMACHU", FRV_BUILTIN_MMACHU, 0, 0 },
- { CODE_FOR_mmrdhs, "__MMRDHS", FRV_BUILTIN_MMRDHS, 0, 0 },
- { CODE_FOR_mmrdhu, "__MMRDHU", FRV_BUILTIN_MMRDHU, 0, 0 },
- { CODE_FOR_mqcpxrs, "__MQCPXRS", FRV_BUILTIN_MQCPXRS, 0, 0 },
- { CODE_FOR_mqcpxru, "__MQCPXRU", FRV_BUILTIN_MQCPXRU, 0, 0 },
- { CODE_FOR_mqcpxis, "__MQCPXIS", FRV_BUILTIN_MQCPXIS, 0, 0 },
- { CODE_FOR_mqcpxiu, "__MQCPXIU", FRV_BUILTIN_MQCPXIU, 0, 0 },
- { CODE_FOR_mqmulhs, "__MQMULHS", FRV_BUILTIN_MQMULHS, 0, 0 },
- { CODE_FOR_mqmulhu, "__MQMULHU", FRV_BUILTIN_MQMULHU, 0, 0 },
- { CODE_FOR_mqmulxhs, "__MQMULXHS", FRV_BUILTIN_MQMULXHS, 0, 0 },
- { CODE_FOR_mqmulxhu, "__MQMULXHU", FRV_BUILTIN_MQMULXHU, 0, 0 },
- { CODE_FOR_mqmachs, "__MQMACHS", FRV_BUILTIN_MQMACHS, 0, 0 },
- { CODE_FOR_mqmachu, "__MQMACHU", FRV_BUILTIN_MQMACHU, 0, 0 },
- { CODE_FOR_mqxmachs, "__MQXMACHS", FRV_BUILTIN_MQXMACHS, 0, 0 },
- { CODE_FOR_mqxmacxhs, "__MQXMACXHS", FRV_BUILTIN_MQXMACXHS, 0, 0 },
- { CODE_FOR_mqmacxhs, "__MQMACXHS", FRV_BUILTIN_MQMACXHS, 0, 0 }
-};
-
-/* Media intrinsics that take two accumulator numbers as argument and
- return void. */
-
-static struct builtin_description bdesc_voidacc[] =
-{
- { CODE_FOR_maddaccs, "__MADDACCS", FRV_BUILTIN_MADDACCS, 0, 0 },
- { CODE_FOR_msubaccs, "__MSUBACCS", FRV_BUILTIN_MSUBACCS, 0, 0 },
- { CODE_FOR_masaccs, "__MASACCS", FRV_BUILTIN_MASACCS, 0, 0 },
- { CODE_FOR_mdaddaccs, "__MDADDACCS", FRV_BUILTIN_MDADDACCS, 0, 0 },
- { CODE_FOR_mdsubaccs, "__MDSUBACCS", FRV_BUILTIN_MDSUBACCS, 0, 0 },
- { CODE_FOR_mdasaccs, "__MDASACCS", FRV_BUILTIN_MDASACCS, 0, 0 }
-};
-
-/* Initialize media builtins. */
-
-static void
-frv_init_builtins ()
-{
- tree endlink = void_list_node;
- tree accumulator = integer_type_node;
- tree integer = integer_type_node;
- tree voidt = void_type_node;
- tree uhalf = short_unsigned_type_node;
- tree sword1 = long_integer_type_node;
- tree uword1 = long_unsigned_type_node;
- tree sword2 = long_long_integer_type_node;
- tree uword2 = long_long_unsigned_type_node;
- tree uword4 = build_pointer_type (uword1);
-
-#define UNARY(RET, T1) \
- build_function_type (RET, tree_cons (NULL_TREE, T1, endlink))
-
-#define BINARY(RET, T1, T2) \
- build_function_type (RET, tree_cons (NULL_TREE, T1, \
- tree_cons (NULL_TREE, T2, endlink)))
-
-#define TRINARY(RET, T1, T2, T3) \
- build_function_type (RET, tree_cons (NULL_TREE, T1, \
- tree_cons (NULL_TREE, T2, \
- tree_cons (NULL_TREE, T3, endlink))))
-
- tree void_ftype_void = build_function_type (voidt, endlink);
-
- tree void_ftype_acc = UNARY (voidt, accumulator);
- tree void_ftype_uw4_uw1 = BINARY (voidt, uword4, uword1);
- tree void_ftype_uw4_uw2 = BINARY (voidt, uword4, uword2);
- tree void_ftype_acc_uw1 = BINARY (voidt, accumulator, uword1);
- tree void_ftype_acc_acc = BINARY (voidt, accumulator, accumulator);
- tree void_ftype_acc_uw1_uw1 = TRINARY (voidt, accumulator, uword1, uword1);
- tree void_ftype_acc_sw1_sw1 = TRINARY (voidt, accumulator, sword1, sword1);
- tree void_ftype_acc_uw2_uw2 = TRINARY (voidt, accumulator, uword2, uword2);
- tree void_ftype_acc_sw2_sw2 = TRINARY (voidt, accumulator, sword2, sword2);
-
- tree uw1_ftype_uw1 = UNARY (uword1, uword1);
- tree uw1_ftype_sw1 = UNARY (uword1, sword1);
- tree uw1_ftype_uw2 = UNARY (uword1, uword2);
- tree uw1_ftype_acc = UNARY (uword1, accumulator);
- tree uw1_ftype_uh_uh = BINARY (uword1, uhalf, uhalf);
- tree uw1_ftype_uw1_uw1 = BINARY (uword1, uword1, uword1);
- tree uw1_ftype_uw1_int = BINARY (uword1, uword1, integer);
- tree uw1_ftype_acc_uw1 = BINARY (uword1, accumulator, uword1);
- tree uw1_ftype_acc_sw1 = BINARY (uword1, accumulator, sword1);
- tree uw1_ftype_uw2_uw1 = BINARY (uword1, uword2, uword1);
- tree uw1_ftype_uw2_int = BINARY (uword1, uword2, integer);
-
- tree sw1_ftype_int = UNARY (sword1, integer);
- tree sw1_ftype_sw1_sw1 = BINARY (sword1, sword1, sword1);
- tree sw1_ftype_sw1_int = BINARY (sword1, sword1, integer);
-
- tree uw2_ftype_uw1 = UNARY (uword2, uword1);
- tree uw2_ftype_uw1_int = BINARY (uword2, uword1, integer);
- tree uw2_ftype_uw2_uw2 = BINARY (uword2, uword2, uword2);
- tree uw2_ftype_uw2_int = BINARY (uword2, uword2, integer);
- tree uw2_ftype_acc_int = BINARY (uword2, accumulator, integer);
-
- tree sw2_ftype_sw2_sw2 = BINARY (sword2, sword2, sword2);
-
- def_builtin ("__MAND", uw1_ftype_uw1_uw1, FRV_BUILTIN_MAND);
- def_builtin ("__MOR", uw1_ftype_uw1_uw1, FRV_BUILTIN_MOR);
- def_builtin ("__MXOR", uw1_ftype_uw1_uw1, FRV_BUILTIN_MXOR);
- def_builtin ("__MNOT", uw1_ftype_uw1, FRV_BUILTIN_MNOT);
- def_builtin ("__MROTLI", uw1_ftype_uw1_int, FRV_BUILTIN_MROTLI);
- def_builtin ("__MROTRI", uw1_ftype_uw1_int, FRV_BUILTIN_MROTRI);
- def_builtin ("__MWCUT", uw1_ftype_uw2_uw1, FRV_BUILTIN_MWCUT);
- def_builtin ("__MAVEH", uw1_ftype_uw1_uw1, FRV_BUILTIN_MAVEH);
- def_builtin ("__MSLLHI", uw1_ftype_uw1_int, FRV_BUILTIN_MSLLHI);
- def_builtin ("__MSRLHI", uw1_ftype_uw1_int, FRV_BUILTIN_MSRLHI);
- def_builtin ("__MSRAHI", sw1_ftype_sw1_int, FRV_BUILTIN_MSRAHI);
- def_builtin ("__MSATHS", sw1_ftype_sw1_sw1, FRV_BUILTIN_MSATHS);
- def_builtin ("__MSATHU", uw1_ftype_uw1_uw1, FRV_BUILTIN_MSATHU);
- def_builtin ("__MADDHSS", sw1_ftype_sw1_sw1, FRV_BUILTIN_MADDHSS);
- def_builtin ("__MADDHUS", uw1_ftype_uw1_uw1, FRV_BUILTIN_MADDHUS);
- def_builtin ("__MSUBHSS", sw1_ftype_sw1_sw1, FRV_BUILTIN_MSUBHSS);
- def_builtin ("__MSUBHUS", uw1_ftype_uw1_uw1, FRV_BUILTIN_MSUBHUS);
- def_builtin ("__MMULHS", void_ftype_acc_sw1_sw1, FRV_BUILTIN_MMULHS);
- def_builtin ("__MMULHU", void_ftype_acc_uw1_uw1, FRV_BUILTIN_MMULHU);
- def_builtin ("__MMULXHS", void_ftype_acc_sw1_sw1, FRV_BUILTIN_MMULXHS);
- def_builtin ("__MMULXHU", void_ftype_acc_uw1_uw1, FRV_BUILTIN_MMULXHU);
- def_builtin ("__MMACHS", void_ftype_acc_sw1_sw1, FRV_BUILTIN_MMACHS);
- def_builtin ("__MMACHU", void_ftype_acc_uw1_uw1, FRV_BUILTIN_MMACHU);
- def_builtin ("__MMRDHS", void_ftype_acc_sw1_sw1, FRV_BUILTIN_MMRDHS);
- def_builtin ("__MMRDHU", void_ftype_acc_uw1_uw1, FRV_BUILTIN_MMRDHU);
- def_builtin ("__MQADDHSS", sw2_ftype_sw2_sw2, FRV_BUILTIN_MQADDHSS);
- def_builtin ("__MQADDHUS", uw2_ftype_uw2_uw2, FRV_BUILTIN_MQADDHUS);
- def_builtin ("__MQSUBHSS", sw2_ftype_sw2_sw2, FRV_BUILTIN_MQSUBHSS);
- def_builtin ("__MQSUBHUS", uw2_ftype_uw2_uw2, FRV_BUILTIN_MQSUBHUS);
- def_builtin ("__MQMULHS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQMULHS);
- def_builtin ("__MQMULHU", void_ftype_acc_uw2_uw2, FRV_BUILTIN_MQMULHU);
- def_builtin ("__MQMULXHS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQMULXHS);
- def_builtin ("__MQMULXHU", void_ftype_acc_uw2_uw2, FRV_BUILTIN_MQMULXHU);
- def_builtin ("__MQMACHS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQMACHS);
- def_builtin ("__MQMACHU", void_ftype_acc_uw2_uw2, FRV_BUILTIN_MQMACHU);
- def_builtin ("__MCPXRS", void_ftype_acc_sw1_sw1, FRV_BUILTIN_MCPXRS);
- def_builtin ("__MCPXRU", void_ftype_acc_uw1_uw1, FRV_BUILTIN_MCPXRU);
- def_builtin ("__MCPXIS", void_ftype_acc_sw1_sw1, FRV_BUILTIN_MCPXIS);
- def_builtin ("__MCPXIU", void_ftype_acc_uw1_uw1, FRV_BUILTIN_MCPXIU);
- def_builtin ("__MQCPXRS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQCPXRS);
- def_builtin ("__MQCPXRU", void_ftype_acc_uw2_uw2, FRV_BUILTIN_MQCPXRU);
- def_builtin ("__MQCPXIS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQCPXIS);
- def_builtin ("__MQCPXIU", void_ftype_acc_uw2_uw2, FRV_BUILTIN_MQCPXIU);
- def_builtin ("__MCUT", uw1_ftype_acc_uw1, FRV_BUILTIN_MCUT);
- def_builtin ("__MCUTSS", uw1_ftype_acc_sw1, FRV_BUILTIN_MCUTSS);
- def_builtin ("__MEXPDHW", uw1_ftype_uw1_int, FRV_BUILTIN_MEXPDHW);
- def_builtin ("__MEXPDHD", uw2_ftype_uw1_int, FRV_BUILTIN_MEXPDHD);
- def_builtin ("__MPACKH", uw1_ftype_uh_uh, FRV_BUILTIN_MPACKH);
- def_builtin ("__MUNPACKH", uw2_ftype_uw1, FRV_BUILTIN_MUNPACKH);
- def_builtin ("__MDPACKH", uw2_ftype_uw2_uw2, FRV_BUILTIN_MDPACKH);
- def_builtin ("__MDUNPACKH", void_ftype_uw4_uw2, FRV_BUILTIN_MDUNPACKH);
- def_builtin ("__MBTOH", uw2_ftype_uw1, FRV_BUILTIN_MBTOH);
- def_builtin ("__MHTOB", uw1_ftype_uw2, FRV_BUILTIN_MHTOB);
- def_builtin ("__MBTOHE", void_ftype_uw4_uw1, FRV_BUILTIN_MBTOHE);
- def_builtin ("__MCLRACC", void_ftype_acc, FRV_BUILTIN_MCLRACC);
- def_builtin ("__MCLRACCA", void_ftype_void, FRV_BUILTIN_MCLRACCA);
- def_builtin ("__MRDACC", uw1_ftype_acc, FRV_BUILTIN_MRDACC);
- def_builtin ("__MRDACCG", uw1_ftype_acc, FRV_BUILTIN_MRDACCG);
- def_builtin ("__MWTACC", void_ftype_acc_uw1, FRV_BUILTIN_MWTACC);
- def_builtin ("__MWTACCG", void_ftype_acc_uw1, FRV_BUILTIN_MWTACCG);
- def_builtin ("__Mcop1", uw1_ftype_uw1_uw1, FRV_BUILTIN_MCOP1);
- def_builtin ("__Mcop2", uw1_ftype_uw1_uw1, FRV_BUILTIN_MCOP2);
- def_builtin ("__MTRAP", void_ftype_void, FRV_BUILTIN_MTRAP);
- def_builtin ("__MQXMACHS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQXMACHS);
- def_builtin ("__MQXMACXHS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQXMACXHS);
- def_builtin ("__MQMACXHS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQMACXHS);
- def_builtin ("__MADDACCS", void_ftype_acc_acc, FRV_BUILTIN_MADDACCS);
- def_builtin ("__MSUBACCS", void_ftype_acc_acc, FRV_BUILTIN_MSUBACCS);
- def_builtin ("__MASACCS", void_ftype_acc_acc, FRV_BUILTIN_MASACCS);
- def_builtin ("__MDADDACCS", void_ftype_acc_acc, FRV_BUILTIN_MDADDACCS);
- def_builtin ("__MDSUBACCS", void_ftype_acc_acc, FRV_BUILTIN_MDSUBACCS);
- def_builtin ("__MDASACCS", void_ftype_acc_acc, FRV_BUILTIN_MDASACCS);
- def_builtin ("__MABSHS", uw1_ftype_sw1, FRV_BUILTIN_MABSHS);
- def_builtin ("__MDROTLI", uw2_ftype_uw2_int, FRV_BUILTIN_MDROTLI);
- def_builtin ("__MCPLHI", uw1_ftype_uw2_int, FRV_BUILTIN_MCPLHI);
- def_builtin ("__MCPLI", uw1_ftype_uw2_int, FRV_BUILTIN_MCPLI);
- def_builtin ("__MDCUTSSI", uw2_ftype_acc_int, FRV_BUILTIN_MDCUTSSI);
- def_builtin ("__MQSATHS", sw2_ftype_sw2_sw2, FRV_BUILTIN_MQSATHS);
- def_builtin ("__MHSETLOS", sw1_ftype_sw1_int, FRV_BUILTIN_MHSETLOS);
- def_builtin ("__MHSETHIS", sw1_ftype_sw1_int, FRV_BUILTIN_MHSETHIS);
- def_builtin ("__MHDSETS", sw1_ftype_int, FRV_BUILTIN_MHDSETS);
- def_builtin ("__MHSETLOH", uw1_ftype_uw1_int, FRV_BUILTIN_MHSETLOH);
- def_builtin ("__MHSETHIH", uw1_ftype_uw1_int, FRV_BUILTIN_MHSETHIH);
- def_builtin ("__MHDSETH", uw1_ftype_uw1_int, FRV_BUILTIN_MHDSETH);
-
-#undef UNARY
-#undef BINARY
-#undef TRINARY
-}
-
-/* Convert an integer constant to an accumulator register. ICODE is the
- code of the target instruction, OPNUM is the number of the
- accumulator operand and OPVAL is the constant integer. Try both
- ACC and ACCG registers; only report an error if neither fit the
- instruction. */
-
-static rtx
-frv_int_to_acc (icode, opnum, opval)
- enum insn_code icode;
- int opnum;
- rtx opval;
-{
- rtx reg;
-
- if (GET_CODE (opval) != CONST_INT)
- {
- error ("accumulator is not a constant integer");
- return NULL_RTX;
- }
- if (! IN_RANGE_P (INTVAL (opval), 0, NUM_ACCS - 1))
- {
- error ("accumulator number is out of bounds");
- return NULL_RTX;
- }
-
- reg = gen_rtx_REG (insn_data[icode].operand[opnum].mode,
- ACC_FIRST + INTVAL (opval));
- if (! (*insn_data[icode].operand[opnum].predicate) (reg, VOIDmode))
- REGNO (reg) = ACCG_FIRST + INTVAL (opval);
-
- if (! (*insn_data[icode].operand[opnum].predicate) (reg, VOIDmode))
- {
- error ("inappropriate accumulator for `%s'", insn_data[icode].name);
- return NULL_RTX;
- }
- return reg;
-}
-
-/* If an ACC rtx has mode MODE, return the mode that the matching ACCG
- should have. */
-
-static enum machine_mode
-frv_matching_accg_mode (mode)
- enum machine_mode mode;
-{
- switch (mode)
- {
- case V4SImode:
- return V4QImode;
-
- case DImode:
- return HImode;
-
- case SImode:
- return QImode;
-
- default:
- abort ();
- }
-}
-
-/* Return the accumulator guard that should be paired with accumulator
- register ACC. The mode of the returned register is in the same
- class as ACC, but is four times smaller. */
-
-rtx
-frv_matching_accg_for_acc (acc)
- rtx acc;
-{
- return gen_rtx_REG (frv_matching_accg_mode (GET_MODE (acc)),
- REGNO (acc) - ACC_FIRST + ACCG_FIRST);
-}
-
-/* Read a value from the head of the tree list pointed to by ARGLISTPTR.
- Return the value as an rtx and replace *ARGLISTPTR with the tail of the
- list. */
-
-static rtx
-frv_read_argument (arglistptr)
- tree *arglistptr;
-{
- tree next = TREE_VALUE (*arglistptr);
- *arglistptr = TREE_CHAIN (*arglistptr);
- return expand_expr (next, NULL_RTX, VOIDmode, 0);
-}
-
-/* Return true if OPVAL can be used for operand OPNUM of instruction ICODE.
- The instruction should require a constant operand of some sort. The
- function prints an error if OPVAL is not valid. */
-
-static int
-frv_check_constant_argument (icode, opnum, opval)
- enum insn_code icode;
- int opnum;
- rtx opval;
-{
- if (GET_CODE (opval) != CONST_INT)
- {
- error ("`%s' expects a constant argument", insn_data[icode].name);
- return FALSE;
- }
- if (! (*insn_data[icode].operand[opnum].predicate) (opval, VOIDmode))
- {
- error ("constant argument out of range for `%s'", insn_data[icode].name);
- return FALSE;
- }
- return TRUE;
-}
-
-/* Return a legitimate rtx for instruction ICODE's return value. Use TARGET
- if it's not null, has the right mode, and satisfies operand 0's
- predicate. */
-
-static rtx
-frv_legitimize_target (icode, target)
- enum insn_code icode;
- rtx target;
-{
- enum machine_mode mode = insn_data[icode].operand[0].mode;
-
- if (! target
- || GET_MODE (target) != mode
- || ! (*insn_data[icode].operand[0].predicate) (target, mode))
- return gen_reg_rtx (mode);
- else
- return target;
-}
-
-/* Given that ARG is being passed as operand OPNUM to instruction ICODE,
- check whether ARG satisfies the operand's contraints. If it doesn't,
- copy ARG to a temporary register and return that. Otherwise return ARG
- itself. */
-
-static rtx
-frv_legitimize_argument (icode, opnum, arg)
- enum insn_code icode;
- int opnum;
- rtx arg;
-{
- enum machine_mode mode = insn_data[icode].operand[opnum].mode;
-
- if ((*insn_data[icode].operand[opnum].predicate) (arg, mode))
- return arg;
- else
- return copy_to_mode_reg (mode, arg);
-}
-
-/* Expand builtins that take a single, constant argument. At the moment,
- only MHDSETS falls into this category. */
-
-static rtx
-frv_expand_set_builtin (icode, arglist, target)
- enum insn_code icode;
- tree arglist;
- rtx target;
-{
- rtx pat;
- rtx op0 = frv_read_argument (&arglist);
-
- if (! frv_check_constant_argument (icode, 1, op0))
- return NULL_RTX;
-
- target = frv_legitimize_target (icode, target);
- pat = GEN_FCN (icode) (target, op0);
- if (! pat)
- return NULL_RTX;
-
- emit_insn (pat);
- return target;
-}
-
-/* Expand builtins that take one operand. */
-
-static rtx
-frv_expand_unop_builtin (icode, arglist, target)
- enum insn_code icode;
- tree arglist;
- rtx target;
-{
- rtx pat;
- rtx op0 = frv_read_argument (&arglist);
-
- target = frv_legitimize_target (icode, target);
- op0 = frv_legitimize_argument (icode, 1, op0);
- pat = GEN_FCN (icode) (target, op0);
- if (! pat)
- return NULL_RTX;
-
- emit_insn (pat);
- return target;
-}
-
-/* Expand builtins that take two operands. */
-
-static rtx
-frv_expand_binop_builtin (icode, arglist, target)
- enum insn_code icode;
- tree arglist;
- rtx target;
-{
- rtx pat;
- rtx op0 = frv_read_argument (&arglist);
- rtx op1 = frv_read_argument (&arglist);
-
- target = frv_legitimize_target (icode, target);
- op0 = frv_legitimize_argument (icode, 1, op0);
- op1 = frv_legitimize_argument (icode, 2, op1);
- pat = GEN_FCN (icode) (target, op0, op1);
- if (! pat)
- return NULL_RTX;
-
- emit_insn (pat);
- return target;
-}
-
-/* Expand cut-style builtins, which take two operands and an implicit ACCG
- one. */
-
-static rtx
-frv_expand_cut_builtin (icode, arglist, target)
- enum insn_code icode;
- tree arglist;
- rtx target;
-{
- rtx pat;
- rtx op0 = frv_read_argument (&arglist);
- rtx op1 = frv_read_argument (&arglist);
- rtx op2;
-
- target = frv_legitimize_target (icode, target);
- op0 = frv_int_to_acc (icode, 1, op0);
- if (! op0)
- return NULL_RTX;
-
- if (icode == CODE_FOR_mdcutssi || GET_CODE (op1) == CONST_INT)
- {
- if (! frv_check_constant_argument (icode, 2, op1))
- return NULL_RTX;
- }
- else
- op1 = frv_legitimize_argument (icode, 2, op1);
-
- op2 = frv_matching_accg_for_acc (op0);
- pat = GEN_FCN (icode) (target, op0, op1, op2);
- if (! pat)
- return NULL_RTX;
-
- emit_insn (pat);
- return target;
-}
-
-/* Expand builtins that take two operands and the second is immediate. */
-
-static rtx
-frv_expand_binopimm_builtin (icode, arglist, target)
- enum insn_code icode;
- tree arglist;
- rtx target;
-{
- rtx pat;
- rtx op0 = frv_read_argument (&arglist);
- rtx op1 = frv_read_argument (&arglist);
-
- if (! frv_check_constant_argument (icode, 2, op1))
- return NULL_RTX;
-
- target = frv_legitimize_target (icode, target);
- op0 = frv_legitimize_argument (icode, 1, op0);
- pat = GEN_FCN (icode) (target, op0, op1);
- if (! pat)
- return NULL_RTX;
-
- emit_insn (pat);
- return target;
-}
-
-/* Expand builtins that take two operands, the first operand being a pointer to
- ints and return void. */
-
-static rtx
-frv_expand_voidbinop_builtin (icode, arglist)
- enum insn_code icode;
- tree arglist;
-{
- rtx pat;
- rtx op0 = frv_read_argument (&arglist);
- rtx op1 = frv_read_argument (&arglist);
- enum machine_mode mode0 = insn_data[icode].operand[0].mode;
- rtx addr;
-
- if (GET_CODE (op0) != MEM)
- {
- rtx reg = op0;
-
- if (! offsettable_address_p (0, mode0, op0))
- {
- reg = gen_reg_rtx (Pmode);
- emit_insn (gen_rtx_SET (VOIDmode, reg, op0));
- }
-
- op0 = gen_rtx_MEM (SImode, reg);
- }
-
- addr = XEXP (op0, 0);
- if (! offsettable_address_p (0, mode0, addr))
- addr = copy_to_mode_reg (Pmode, op0);
-
- op0 = change_address (op0, V4SImode, addr);
- op1 = frv_legitimize_argument (icode, 1, op1);
- pat = GEN_FCN (icode) (op0, op1);
- if (! pat)
- return 0;
-
- emit_insn (pat);
- return 0;
-}
-
-/* Expand builtins that take three operands and return void. The first
- argument must be a constant that describes a pair or quad accumulators. A
- fourth argument is created that is the accumulator guard register that
- corresponds to the accumulator. */
-
-static rtx
-frv_expand_voidtriop_builtin (icode, arglist)
- enum insn_code icode;
- tree arglist;
-{
- rtx pat;
- rtx op0 = frv_read_argument (&arglist);
- rtx op1 = frv_read_argument (&arglist);
- rtx op2 = frv_read_argument (&arglist);
- rtx op3;
-
- op0 = frv_int_to_acc (icode, 0, op0);
- if (! op0)
- return NULL_RTX;
-
- op1 = frv_legitimize_argument (icode, 1, op1);
- op2 = frv_legitimize_argument (icode, 2, op2);
- op3 = frv_matching_accg_for_acc (op0);
- pat = GEN_FCN (icode) (op0, op1, op2, op3);
- if (! pat)
- return NULL_RTX;
-
- emit_insn (pat);
- return NULL_RTX;
-}
-
-/* Expand builtins that perform accumulator-to-accumulator operations.
- These builtins take two accumulator numbers as argument and return
- void. */
-
-static rtx
-frv_expand_voidaccop_builtin (icode, arglist)
- enum insn_code icode;
- tree arglist;
-{
- rtx pat;
- rtx op0 = frv_read_argument (&arglist);
- rtx op1 = frv_read_argument (&arglist);
- rtx op2;
- rtx op3;
-
- op0 = frv_int_to_acc (icode, 0, op0);
- if (! op0)
- return NULL_RTX;
-
- op1 = frv_int_to_acc (icode, 1, op1);
- if (! op1)
- return NULL_RTX;
-
- op2 = frv_matching_accg_for_acc (op0);
- op3 = frv_matching_accg_for_acc (op1);
- pat = GEN_FCN (icode) (op0, op1, op2, op3);
- if (! pat)
- return NULL_RTX;
-
- emit_insn (pat);
- return NULL_RTX;
-}
-
-/* Expand the MCLRACC builtin. This builtin takes a single accumulator
- number as argument. */
-
-static rtx
-frv_expand_mclracc_builtin (arglist)
- tree arglist;
-{
- enum insn_code icode = CODE_FOR_mclracc;
- rtx pat;
- rtx op0 = frv_read_argument (&arglist);
-
- op0 = frv_int_to_acc (icode, 0, op0);
- if (! op0)
- return NULL_RTX;
-
- pat = GEN_FCN (icode) (op0);
- if (pat)
- emit_insn (pat);
-
- return NULL_RTX;
-}
-
-/* Expand builtins that take no arguments. */
-
-static rtx
-frv_expand_noargs_builtin (icode)
- enum insn_code icode;
-{
- rtx pat = GEN_FCN (icode) (GEN_INT (0));
- if (pat)
- emit_insn (pat);
-
- return NULL_RTX;
-}
-
-/* Expand MRDACC and MRDACCG. These builtins take a single accumulator
- number or accumulator guard number as argument and return an SI integer. */
-
-static rtx
-frv_expand_mrdacc_builtin (icode, arglist)
- enum insn_code icode;
- tree arglist;
-{
- rtx pat;
- rtx target = gen_reg_rtx (SImode);
- rtx op0 = frv_read_argument (&arglist);
-
- op0 = frv_int_to_acc (icode, 1, op0);
- if (! op0)
- return NULL_RTX;
-
- pat = GEN_FCN (icode) (target, op0);
- if (! pat)
- return NULL_RTX;
-
- emit_insn (pat);
- return target;
-}
-
-/* Expand MWTACC and MWTACCG. These builtins take an accumulator or
- accumulator guard as their first argument and an SImode value as their
- second. */
-
-static rtx
-frv_expand_mwtacc_builtin (icode, arglist)
- enum insn_code icode;
- tree arglist;
-{
- rtx pat;
- rtx op0 = frv_read_argument (&arglist);
- rtx op1 = frv_read_argument (&arglist);
-
- op0 = frv_int_to_acc (icode, 0, op0);
- if (! op0)
- return NULL_RTX;
-
- op1 = frv_legitimize_argument (icode, 1, op1);
- pat = GEN_FCN (icode) (op0, op1);
- if (pat)
- emit_insn (pat);
-
- return NULL_RTX;
-}
-
-/* Expand builtins. */
-
-static rtx
-frv_expand_builtin (exp, target, subtarget, mode, ignore)
- tree exp;
- rtx target;
- rtx subtarget ATTRIBUTE_UNUSED;
- enum machine_mode mode ATTRIBUTE_UNUSED;
- int ignore ATTRIBUTE_UNUSED;
-{
- tree arglist = TREE_OPERAND (exp, 1);
- tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
- unsigned fcode = (unsigned)DECL_FUNCTION_CODE (fndecl);
- unsigned i;
- struct builtin_description *d;
-
- if (! TARGET_MEDIA)
- {
- error ("media functions are not available unless -mmedia is used");
- return NULL_RTX;
- }
-
- switch (fcode)
- {
- case FRV_BUILTIN_MCOP1:
- case FRV_BUILTIN_MCOP2:
- case FRV_BUILTIN_MDUNPACKH:
- case FRV_BUILTIN_MBTOHE:
- if (! TARGET_MEDIA_REV1)
- {
- error ("this media function is only available on the fr500");
- return NULL_RTX;
- }
- break;
-
- case FRV_BUILTIN_MQXMACHS:
- case FRV_BUILTIN_MQXMACXHS:
- case FRV_BUILTIN_MQMACXHS:
- case FRV_BUILTIN_MADDACCS:
- case FRV_BUILTIN_MSUBACCS:
- case FRV_BUILTIN_MASACCS:
- case FRV_BUILTIN_MDADDACCS:
- case FRV_BUILTIN_MDSUBACCS:
- case FRV_BUILTIN_MDASACCS:
- case FRV_BUILTIN_MABSHS:
- case FRV_BUILTIN_MDROTLI:
- case FRV_BUILTIN_MCPLHI:
- case FRV_BUILTIN_MCPLI:
- case FRV_BUILTIN_MDCUTSSI:
- case FRV_BUILTIN_MQSATHS:
- case FRV_BUILTIN_MHSETLOS:
- case FRV_BUILTIN_MHSETLOH:
- case FRV_BUILTIN_MHSETHIS:
- case FRV_BUILTIN_MHSETHIH:
- case FRV_BUILTIN_MHDSETS:
- case FRV_BUILTIN_MHDSETH:
- if (! TARGET_MEDIA_REV2)
- {
- error ("this media function is only available on the fr400");
- return NULL_RTX;
- }
- break;
-
- default:
- break;
- }
-
- /* Expand unique builtins. */
-
- switch (fcode)
- {
- case FRV_BUILTIN_MTRAP:
- return frv_expand_noargs_builtin (CODE_FOR_mtrap);
-
- case FRV_BUILTIN_MCLRACC:
- return frv_expand_mclracc_builtin (arglist);
-
- case FRV_BUILTIN_MCLRACCA:
- if (TARGET_ACC_8)
- return frv_expand_noargs_builtin (CODE_FOR_mclracca8);
- else
- return frv_expand_noargs_builtin (CODE_FOR_mclracca4);
-
- case FRV_BUILTIN_MRDACC:
- return frv_expand_mrdacc_builtin (CODE_FOR_mrdacc, arglist);
-
- case FRV_BUILTIN_MRDACCG:
- return frv_expand_mrdacc_builtin (CODE_FOR_mrdaccg, arglist);
-
- case FRV_BUILTIN_MWTACC:
- return frv_expand_mwtacc_builtin (CODE_FOR_mwtacc, arglist);
-
- case FRV_BUILTIN_MWTACCG:
- return frv_expand_mwtacc_builtin (CODE_FOR_mwtaccg, arglist);
-
- default:
- break;
- }
-
- /* Expand groups of builtins. */
-
- for (i = 0, d = bdesc_set; i < sizeof (bdesc_set) / sizeof *d; i++, d++)
- if (d->code == fcode)
- return frv_expand_set_builtin (d->icode, arglist, target);
-
- for (i = 0, d = bdesc_1arg; i < sizeof (bdesc_1arg) / sizeof *d; i++, d++)
- if (d->code == fcode)
- return frv_expand_unop_builtin (d->icode, arglist, target);
-
- for (i = 0, d = bdesc_2arg; i < sizeof (bdesc_2arg) / sizeof *d; i++, d++)
- if (d->code == fcode)
- return frv_expand_binop_builtin (d->icode, arglist, target);
-
- for (i = 0, d = bdesc_cut; i < sizeof (bdesc_cut) / sizeof *d; i++, d++)
- if (d->code == fcode)
- return frv_expand_cut_builtin (d->icode, arglist, target);
-
- for (i = 0, d = bdesc_2argimm;
- i < sizeof (bdesc_2argimm) / sizeof *d;
- i++, d++)
- {
- if (d->code == fcode)
- return frv_expand_binopimm_builtin (d->icode, arglist, target);
- }
-
- for (i = 0, d = bdesc_void2arg;
- i < sizeof (bdesc_void2arg) / sizeof *d;
- i++, d++)
- {
- if (d->code == fcode)
- return frv_expand_voidbinop_builtin (d->icode, arglist);
- }
-
- for (i = 0, d = bdesc_void3arg;
- i < sizeof (bdesc_void3arg) / sizeof *d;
- i++, d++)
- {
- if (d->code == fcode)
- return frv_expand_voidtriop_builtin (d->icode, arglist);
- }
-
- for (i = 0, d = bdesc_voidacc;
- i < sizeof (bdesc_voidacc) / sizeof *d;
- i++, d++)
- {
- if (d->code == fcode)
- return frv_expand_voidaccop_builtin (d->icode, arglist);
- }
- return 0;
-}
-
-static const char *
-frv_strip_name_encoding (str)
- const char *str;
-{
- while (*str == '*' || *str == SDATA_FLAG_CHAR)
- str++;
- return str;
-}
-
-static bool
-frv_in_small_data_p (decl)
- tree decl;
-{
- HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
-
- return symbol_ref_small_data_p (XEXP (DECL_RTL (decl), 0))
- && size > 0 && size <= g_switch_value;
-}
diff --git a/gcc/config/frv/frv.h b/gcc/config/frv/frv.h
deleted file mode 100644
index a663c03b4d3..00000000000
--- a/gcc/config/frv/frv.h
+++ /dev/null
@@ -1,3660 +0,0 @@
-/* Target macros for the FRV port of GCC.
- Copyright (C) 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
- Contributed by Red Hat Inc.
-
- This file is part of GCC.
-
- GCC is free software; you can redistribute it and/or modify it
- under the terms of the GNU General Public License as published
- by the Free Software Foundation; either version 2, or (at your
- option) any later version.
-
- GCC is distributed in the hope that it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
- License for more details.
-
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING. If not, write to the Free
- Software Foundation, 59 Temple Place - Suite 330, Boston, MA
- 02111-1307, USA. */
-
-#ifndef __FRV_H__
-#define __FRV_H__
-
-/* Set up System V.4 (aka ELF) defaults. */
-#include "svr4.h"
-
-
-/* Frv general purpose macros. */
-/* Align an address. */
-#define ADDR_ALIGN(addr,align) (((addr) + (align) - 1) & ~((align) - 1))
-
-/* Return true if a value is inside a range. */
-#define IN_RANGE_P(VALUE, LOW, HIGH) \
- ( (((HOST_WIDE_INT)(VALUE)) >= (HOST_WIDE_INT)(LOW)) \
- && (((HOST_WIDE_INT)(VALUE)) <= ((HOST_WIDE_INT)(HIGH))))
-
-
-/* Driver configuration. */
-
-/* A C expression which determines whether the option `-CHAR' takes arguments.
- The value should be the number of arguments that option takes-zero, for many
- options.
-
- By default, this macro is defined to handle the standard options properly.
- You need not define it unless you wish to add additional options which take
- arguments.
-
- Defined in svr4.h. */
-#undef SWITCH_TAKES_ARG
-#define SWITCH_TAKES_ARG(CHAR) \
- (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
-
-/* A C expression which determines whether the option `-NAME' takes arguments.
- The value should be the number of arguments that option takes-zero, for many
- options. This macro rather than `SWITCH_TAKES_ARG' is used for
- multi-character option names.
-
- By default, this macro is defined as `DEFAULT_WORD_SWITCH_TAKES_ARG', which
- handles the standard options properly. You need not define
- `WORD_SWITCH_TAKES_ARG' unless you wish to add additional options which take
- arguments. Any redefinition should call `DEFAULT_WORD_SWITCH_TAKES_ARG' and
- then check for additional options.
-
- Defined in svr4.h. */
-#undef WORD_SWITCH_TAKES_ARG
-
-/* A C string constant that tells the GNU CC driver program options to pass to
- the assembler. It can also specify how to translate options you give to GNU
- CC into options for GNU CC to pass to the assembler. See the file `sun3.h'
- for an example of this.
-
- Do not define this macro if it does not need to do anything.
-
- Defined in svr4.h. */
-#undef ASM_SPEC
-#define ASM_SPEC "\
-%{G*} %{v} %{n} %{T} %{Ym,*} %{Yd,*} %{Wa,*:%*} \
-%{mtomcat-stats} \
-%{!mno-eflags: \
- %{mcpu=*} \
- %{mgpr-*} %{mfpr-*} \
- %{msoft-float} %{mhard-float} \
- %{mdword} %{mno-dword} \
- %{mdouble} %{mno-double} \
- %{mmedia} %{mno-media} \
- %{mmuladd} %{mno-muladd} \
- %{mpack} %{mno-pack} \
- %{fpic: -mpic} %{fPIC: -mPIC} %{mlibrary-pic}}"
-
-/* Another C string constant used much like `LINK_SPEC'. The difference
- between the two is that `STARTFILE_SPEC' is used at the very beginning of
- the command given to the linker.
-
- If this macro is not defined, a default is provided that loads the standard
- C startup file from the usual place. See `gcc.c'.
-
- Defined in svr4.h. */
-#undef STARTFILE_SPEC
-#define STARTFILE_SPEC "crt0%O%s frvbegin%O%s"
-
-/* Another C string constant used much like `LINK_SPEC'. The difference
- between the two is that `ENDFILE_SPEC' is used at the very end of the
- command given to the linker.
-
- Do not define this macro if it does not need to do anything.
-
- Defined in svr4.h. */
-#undef ENDFILE_SPEC
-#define ENDFILE_SPEC "frvend%O%s"
-
-/* A C string constant that tells the GNU CC driver program options to pass to
- CPP. It can also specify how to translate options you give to GNU CC into
- options for GNU CC to pass to the CPP.
-
- Do not define this macro if it does not need to do anything. */
-
-/* The idea here is to use the -mcpu option to define macros based on the
- processor's features, using the features of the default processor if
- no -mcpu option is given. These macros can then be overridden by
- other -m options. */
-#define CPP_SPEC "\
-%{mcpu=frv: %(cpp_frv)} \
-%{mcpu=fr500: %(cpp_fr500)} \
-%{mcpu=fr400: %(cpp_fr400)} \
-%{mcpu=fr300: %(cpp_simple)} \
-%{mcpu=tomcat: %(cpp_fr500)} \
-%{mcpu=simple: %(cpp_simple)} \
-%{!mcpu*: %(cpp_cpu_default)} \
-%{mno-media: -D__FRV_ACC__=0 %{msoft-float: -D__FRV_FPR__=0}} \
-%{mhard-float: -D__FRV_HARD_FLOAT__} \
-%{msoft-float: -U__FRV_HARD_FLOAT__} \
-%{mgpr-32: -U__FRV_GPR__ -D__FRV_GPR__=32} \
-%{mgpr-64: -U__FRV_GPR__ -D__FRV_GPR__=64} \
-%{mfpr-32: -U__FRV_FPR__ -D__FRV_FPR__=32} \
-%{mfpr-64: -U__FRV_FPR__ -D__FRV_FPR__=64} \
-%{macc-4: -U__FRV_ACC__ -D__FRV_ACC__=4} \
-%{macc-8: -U__FRV_ACC__ -D__FRV_ACC__=8} \
-%{mdword: -D__FRV_DWORD__} \
-%{mno-dword: -U__FRV_DWORD__} \
-%{mno-pack: -U__FRV_VLIW__} \
-%{fleading-underscore: -D__FRV_UNDERSCORE__}"
-
-/* CPU defaults. Each CPU has its own CPP spec that defines the default
- macros for that CPU. Each CPU also has its own default target mask.
-
- CPU GPRs FPRs ACCs FPU MulAdd ldd/std Issue rate
- --- ---- ---- ---- --- ------ ------- ----------
- FRV 64 64 8 double yes yes 4
- FR500 64 64 8 single no yes 4
- FR400 32 32 4 none no yes 2
- Simple 32 0 0 none no no 1 */
-
-
-#define CPP_FRV_SPEC "\
--D__FRV_GPR__=64 \
--D__FRV_FPR__=64 \
--D__FRV_ACC__=8 \
--D__FRV_HARD_FLOAT__ \
--D__FRV_DWORD__ \
--D__FRV_VLIW__=4"
-
-#define CPP_FR500_SPEC "\
--D__FRV_GPR__=64 \
--D__FRV_FPR__=64 \
--D__FRV_ACC__=8 \
--D__FRV_HARD_FLOAT__ \
--D__FRV_DWORD__ \
--D__FRV_VLIW__=4"
-
-#define CPP_FR400_SPEC "\
--D__FRV_GPR__=32 \
--D__FRV_FPR__=32 \
--D__FRV_ACC__=4 \
--D__FRV_DWORD__ \
--D__FRV_VLIW__=2"
-
-#define CPP_SIMPLE_SPEC "\
--D__FRV_GPR__=32 \
--D__FRV_FPR__=0 \
--D__FRV_ACC__=0 \
-%{mmedia: -D__FRV_ACC__=8} \
-%{mhard-float|mmedia: -D__FRV_FPR__=64}"
-
-#define MASK_DEFAULT_FRV \
- (MASK_MEDIA \
- | MASK_DOUBLE \
- | MASK_MULADD \
- | MASK_DWORD \
- | MASK_PACK)
-
-#define MASK_DEFAULT_FR500 \
- (MASK_MEDIA | MASK_DWORD | MASK_PACK)
-
-#define MASK_DEFAULT_FR400 \
- (MASK_GPR_32 \
- | MASK_FPR_32 \
- | MASK_MEDIA \
- | MASK_ACC_4 \
- | MASK_SOFT_FLOAT \
- | MASK_DWORD \
- | MASK_PACK)
-
-#define MASK_DEFAULT_SIMPLE \
- (MASK_GPR_32 | MASK_SOFT_FLOAT)
-
-/* A C string constant that tells the GNU CC driver program options to pass to
- `cc1'. It can also specify how to translate options you give to GNU CC into
- options for GNU CC to pass to the `cc1'.
-
- Do not define this macro if it does not need to do anything. */
-/* For ABI compliance, we need to put bss data into the normal data section. */
-#define CC1_SPEC "%{G*}"
-
-/* A C string constant that tells the GNU CC driver program options to pass to
- the linker. It can also specify how to translate options you give to GNU CC
- into options for GNU CC to pass to the linker.
-
- Do not define this macro if it does not need to do anything.
-
- Defined in svr4.h. */
-/* Override the svr4.h version with one that dispenses without the svr4
- shared library options, notably -G. */
-#undef LINK_SPEC
-#define LINK_SPEC "\
-%{h*} %{v:-V} \
-%{b} %{Wl,*:%*} \
-%{static:-dn -Bstatic} \
-%{shared:-Bdynamic} \
-%{symbolic:-Bsymbolic} \
-%{G*} \
-%{YP,*} \
-%{Qy:} %{!Qn:-Qy}"
-
-/* Another C string constant used much like `LINK_SPEC'. The difference
- between the two is that `LIB_SPEC' is used at the end of the command given
- to the linker.
-
- If this macro is not defined, a default is provided that loads the standard
- C library from the usual place. See `gcc.c'.
-
- Defined in svr4.h. */
-
-#undef LIB_SPEC
-#define LIB_SPEC "--start-group -lc -lsim --end-group"
-
-/* This macro defines names of additional specifications to put in the specs
- that can be used in various specifications like CC1_SPEC. Its definition
- is an initializer with a subgrouping for each command option.
-
- Each subgrouping contains a string constant, that defines the
- specification name, and a string constant that used by the GNU CC driver
- program.
-
- Do not define this macro if it does not need to do anything. */
-
-#ifndef SUBTARGET_EXTRA_SPECS
-#define SUBTARGET_EXTRA_SPECS
-#endif
-
-#define EXTRA_SPECS \
- { "cpp_frv", CPP_FRV_SPEC }, \
- { "cpp_fr500", CPP_FR500_SPEC }, \
- { "cpp_fr400", CPP_FR400_SPEC }, \
- { "cpp_simple", CPP_SIMPLE_SPEC }, \
- { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
- SUBTARGET_EXTRA_SPECS
-
-#ifndef CPP_CPU_DEFAULT_SPEC
-#define CPP_CPU_DEFAULT_SPEC CPP_FR500_SPEC
-#define CPU_TYPE FRV_CPU_FR500
-#endif
-
-/* Allow us to easily change the default for -malloc-cc. */
-#ifndef DEFAULT_NO_ALLOC_CC
-#define MASK_DEFAULT_ALLOC_CC MASK_ALLOC_CC
-#else
-#define MASK_DEFAULT_ALLOC_CC 0
-#endif
-
-/* Run-time target specifications */
-
-/* Define this to be a string constant containing `-D' options to define the
- predefined macros that identify this machine and system. These macros will
- be predefined unless the `-ansi' option is specified.
-
- In addition, a parallel set of macros are predefined, whose names are made
- by appending `__' at the beginning and at the end. These `__' macros are
- permitted by the ANSI standard, so they are predefined regardless of whether
- `-ansi' is specified. */
-
-#define CPP_PREDEFINES "-D__frv__ -Amachine(frv)"
-
-
-/* This declaration should be present. */
-extern int target_flags;
-
-/* This series of macros is to allow compiler command arguments to enable or
- disable the use of optional features of the target machine. For example,
- one machine description serves both the 68000 and the 68020; a command
- argument tells the compiler whether it should use 68020-only instructions or
- not. This command argument works by means of a macro `TARGET_68020' that
- tests a bit in `target_flags'.
-
- Define a macro `TARGET_FEATURENAME' for each such option. Its definition
- should test a bit in `target_flags'; for example:
-
- #define TARGET_68020 (target_flags & 1)
-
- One place where these macros are used is in the condition-expressions of
- instruction patterns. Note how `TARGET_68020' appears frequently in the
- 68000 machine description file, `m68k.md'. Another place they are used is
- in the definitions of the other macros in the `MACHINE.h' file. */
-
-#define MASK_GPR_32 0x00000001 /* Limit gprs to 32 registers */
-#define MASK_FPR_32 0x00000002 /* Limit fprs to 32 registers */
-#define MASK_SOFT_FLOAT 0x00000004 /* Use software floating point */
-#define MASK_ALLOC_CC 0x00000008 /* Dynamically allocate icc/fcc's */
-#define MASK_DWORD 0x00000010 /* Change ABi to allow dbl word insns*/
-#define MASK_DOUBLE 0x00000020 /* Use double precision instructions */
-#define MASK_MEDIA 0x00000040 /* Use media instructions */
-#define MASK_MULADD 0x00000080 /* Use multiply add/subtract insns */
-#define MASK_LIBPIC 0x00000100 /* -fpic that can be linked w/o pic */
-#define MASK_ACC_4 0x00000200 /* Only use four media accumulators */
-#define MASK_PACK 0x00000400 /* Set to enable packed output */
-
- /* put debug masks up high */
-#define MASK_DEBUG_ARG 0x40000000 /* debug argument handling */
-#define MASK_DEBUG_ADDR 0x20000000 /* debug go_if_legitimate_address */
-#define MASK_DEBUG_STACK 0x10000000 /* debug stack frame */
-#define MASK_DEBUG 0x08000000 /* general debugging switch */
-#define MASK_DEBUG_LOC 0x04000000 /* optimize line # table */
-#define MASK_DEBUG_COND_EXEC 0x02000000 /* debug cond exec code */
-#define MASK_NO_COND_MOVE 0x01000000 /* disable conditional moves */
-#define MASK_NO_SCC 0x00800000 /* disable set conditional codes */
-#define MASK_NO_COND_EXEC 0x00400000 /* disable conditional execution */
-#define MASK_NO_VLIW_BRANCH 0x00200000 /* disable repacking branches */
-#define MASK_NO_MULTI_CE 0x00100000 /* disable multi-level cond exec */
-#define MASK_NO_NESTED_CE 0x00080000 /* disable nested cond exec */
-
-#define MASK_DEFAULT MASK_DEFAULT_ALLOC_CC
-
-#define TARGET_GPR_32 ((target_flags & MASK_GPR_32) != 0)
-#define TARGET_FPR_32 ((target_flags & MASK_FPR_32) != 0)
-#define TARGET_SOFT_FLOAT ((target_flags & MASK_SOFT_FLOAT) != 0)
-#define TARGET_ALLOC_CC ((target_flags & MASK_ALLOC_CC) != 0)
-#define TARGET_DWORD ((target_flags & MASK_DWORD) != 0)
-#define TARGET_DOUBLE ((target_flags & MASK_DOUBLE) != 0)
-#define TARGET_MEDIA ((target_flags & MASK_MEDIA) != 0)
-#define TARGET_MULADD ((target_flags & MASK_MULADD) != 0)
-#define TARGET_LIBPIC ((target_flags & MASK_LIBPIC) != 0)
-#define TARGET_ACC_4 ((target_flags & MASK_ACC_4) != 0)
-#define TARGET_DEBUG_ARG ((target_flags & MASK_DEBUG_ARG) != 0)
-#define TARGET_DEBUG_ADDR ((target_flags & MASK_DEBUG_ADDR) != 0)
-#define TARGET_DEBUG_STACK ((target_flags & MASK_DEBUG_STACK) != 0)
-#define TARGET_DEBUG ((target_flags & MASK_DEBUG) != 0)
-#define TARGET_DEBUG_LOC ((target_flags & MASK_DEBUG_LOC) != 0)
-#define TARGET_DEBUG_COND_EXEC ((target_flags & MASK_DEBUG_COND_EXEC) != 0)
-#define TARGET_NO_COND_MOVE ((target_flags & MASK_NO_COND_MOVE) != 0)
-#define TARGET_NO_SCC ((target_flags & MASK_NO_SCC) != 0)
-#define TARGET_NO_COND_EXEC ((target_flags & MASK_NO_COND_EXEC) != 0)
-#define TARGET_NO_VLIW_BRANCH ((target_flags & MASK_NO_VLIW_BRANCH) != 0)
-#define TARGET_NO_MULTI_CE ((target_flags & MASK_NO_MULTI_CE) != 0)
-#define TARGET_NO_NESTED_CE ((target_flags & MASK_NO_NESTED_CE) != 0)
-#define TARGET_PACK ((target_flags & MASK_PACK) != 0)
-
-#define TARGET_GPR_64 (! TARGET_GPR_32)
-#define TARGET_FPR_64 (! TARGET_FPR_32)
-#define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
-#define TARGET_FIXED_CC (! TARGET_ALLOC_CC)
-#define TARGET_COND_MOVE (! TARGET_NO_COND_MOVE)
-#define TARGET_SCC (! TARGET_NO_SCC)
-#define TARGET_COND_EXEC (! TARGET_NO_COND_EXEC)
-#define TARGET_VLIW_BRANCH (! TARGET_NO_VLIW_BRANCH)
-#define TARGET_MULTI_CE (! TARGET_NO_MULTI_CE)
-#define TARGET_NESTED_CE (! TARGET_NO_NESTED_CE)
-#define TARGET_ACC_8 (! TARGET_ACC_4)
-
-#define TARGET_HAS_FPRS (TARGET_HARD_FLOAT || TARGET_MEDIA)
-
-#define NUM_GPRS (TARGET_GPR_32? 32 : 64)
-#define NUM_FPRS (!TARGET_HAS_FPRS? 0 : TARGET_FPR_32? 32 : 64)
-#define NUM_ACCS (!TARGET_MEDIA? 0 : TARGET_ACC_4? 4 : 8)
-
-/* Macros to identify the blend of media instructions available. Revision 1
- is the one found on the FR500. Revision 2 includes the changes made for
- the FR400.
-
- Treat the generic processor as a revision 1 machine for now, for
- compatibility with earlier releases. */
-
-#define TARGET_MEDIA_REV1 \
- (TARGET_MEDIA \
- && (frv_cpu_type == FRV_CPU_GENERIC \
- || frv_cpu_type == FRV_CPU_FR500))
-
-#define TARGET_MEDIA_REV2 \
- (TARGET_MEDIA && frv_cpu_type == FRV_CPU_FR400)
-
-/* This macro defines names of command options to set and clear bits in
- `target_flags'. Its definition is an initializer with a subgrouping for
- each command option.
-
- Each subgrouping contains a string constant, that defines the option name,
- a number, which contains the bits to set in `target_flags', and an optional
- second string which is the textual description that will be displayed when
- the user passes --help on the command line. If the number entry is negative
- then the specified bits will be cleared instead of being set. If the second
- string entry is present but empty, then no help information will be displayed
- for that option, but it will not count as an undocumented option. The actual
- option name, asseen on the command line is made by appending `-m' to the
- specified name.
-
- One of the subgroupings should have a null string. The number in this
- grouping is the default value for `target_flags'. Any target options act
- starting with that value.
-
- Here is an example which defines `-m68000' and `-m68020' with opposite
- meanings, and picks the latter as the default:
-
- #define TARGET_SWITCHES \
- { { "68020", 1, ""}, \
- { "68000", -1, "Compile for the m68000"}, \
- { "", 1, }}
-
- This declaration must be present. */
-
-#define TARGET_SWITCHES \
-{{ "gpr-32", MASK_GPR_32, "Only use 32 gprs"}, \
- { "gpr-64", -MASK_GPR_32, "Use 64 gprs"}, \
- { "fpr-32", MASK_FPR_32, "Only use 32 fprs"}, \
- { "fpr-64", -MASK_FPR_32, "Use 64 fprs"}, \
- { "hard-float", -MASK_SOFT_FLOAT, "Use hardware floating point" },\
- { "soft-float", MASK_SOFT_FLOAT, "Use software floating point" },\
- { "alloc-cc", MASK_ALLOC_CC, "Dynamically allocate cc's" }, \
- { "fixed-cc", -MASK_ALLOC_CC, "Just use icc0/fcc0" }, \
- { "dword", MASK_DWORD, "Change ABI to allow double word insns" }, \
- { "no-dword", -MASK_DWORD, "Do not use double word insns" }, \
- { "double", MASK_DOUBLE, "Use fp double instructions" }, \
- { "no-double", -MASK_DOUBLE, "Do not use fp double insns" }, \
- { "media", MASK_MEDIA, "Use media instructions" }, \
- { "no-media", -MASK_MEDIA, "Do not use media insns" }, \
- { "muladd", MASK_MULADD, "Use multiply add/subtract instructions" }, \
- { "no-muladd", -MASK_MULADD, "Do not use multiply add/subtract insns" }, \
- { "library-pic", MASK_LIBPIC, "PIC support for building libraries" }, \
- { "acc-4", MASK_ACC_4, "Use 4 media accumulators" }, \
- { "acc-8", -MASK_ACC_4, "Use 8 media accumulators" }, \
- { "pack", MASK_PACK, "Pack VLIW instructions" }, \
- { "no-pack", -MASK_PACK, "Do not pack VLIW instructions" }, \
- { "no-eflags", 0, "Do not mark ABI switches in e_flags" }, \
- { "debug-arg", MASK_DEBUG_ARG, "Internal debug switch" }, \
- { "debug-addr", MASK_DEBUG_ADDR, "Internal debug switch" }, \
- { "debug-stack", MASK_DEBUG_STACK, "Internal debug switch" }, \
- { "debug", MASK_DEBUG, "Internal debug switch" }, \
- { "debug-cond-exec", MASK_DEBUG_COND_EXEC, "Internal debug switch" }, \
- { "debug-loc", MASK_DEBUG_LOC, "Internal debug switch" }, \
- { "cond-move", -MASK_NO_COND_MOVE, "Enable conditional moves" }, \
- { "no-cond-move", MASK_NO_COND_MOVE, "Disable conditional moves" }, \
- { "scc", -MASK_NO_SCC, "Enable setting gprs to the result of comparisons" }, \
- { "no-scc", MASK_NO_SCC, "Disable setting gprs to the result of comparisons" }, \
- { "cond-exec", -MASK_NO_COND_EXEC, "Enable conditional execution other than moves/scc" }, \
- { "no-cond-exec", MASK_NO_COND_EXEC, "Disable conditional execution other than moves/scc" }, \
- { "vliw-branch", -MASK_NO_VLIW_BRANCH, "Run pass to pack branches into VLIW insns" }, \
- { "no-vliw-branch", MASK_NO_VLIW_BRANCH, "Do not run pass to pack branches into VLIW insns" }, \
- { "multi-cond-exec", -MASK_NO_MULTI_CE, "Disable optimizing &&/|| in conditional execution" }, \
- { "no-multi-cond-exec", MASK_NO_MULTI_CE, "Enable optimizing &&/|| in conditional execution" }, \
- { "nested-cond-exec", -MASK_NO_NESTED_CE, "Enable nested conditional execution optimizations" }, \
- { "no-nested-cond-exec" ,MASK_NO_NESTED_CE, "Disable nested conditional execution optimizations" }, \
- { "tomcat-stats", 0, "Cause gas to print tomcat statistics" }, \
- { "", MASK_DEFAULT, "" }} \
-
-/* This macro is similar to `TARGET_SWITCHES' but defines names of command
- options that have values. Its definition is an initializer with a
- subgrouping for each command option.
-
- Each subgrouping contains a string constant, that defines the fixed part of
- the option name, the address of a variable, and an optional description string.
- The variable, of type `char *', is set to the text following the fixed part of
- the option as it is specified on the command line. The actual option name is
- made by appending `-m' to the specified name.
-
- Here is an example which defines `-mshort-data-NUMBER'. If the given option
- is `-mshort-data-512', the variable `m88k_short_data' will be set to the
- string `"512"'.
-
- extern char *m88k_short_data;
- #define TARGET_OPTIONS \
- { { "short-data-", & m88k_short_data, \
- "Specify the size of the short data section" } }
-
- This declaration is optional. */
-#define TARGET_OPTIONS \
-{ \
- { "cpu=", &frv_cpu_string, "Set cpu type" }, \
- { "branch-cost=", &frv_branch_cost_string, "Internal debug switch" }, \
- { "cond-exec-insns=", &frv_condexec_insns_str, "Internal debug switch" }, \
- { "cond-exec-temps=", &frv_condexec_temps_str, "Internal debug switch" }, \
- { "sched-lookahead=", &frv_sched_lookahead_str,"Internal debug switch" }, \
-}
-
-/* This macro is a C statement to print on `stderr' a string describing the
- particular machine description choice. Every machine description should
- define `TARGET_VERSION'. For example:
-
- #ifdef MOTOROLA
- #define TARGET_VERSION \
- fprintf (stderr, " (68k, Motorola syntax)");
- #else
- #define TARGET_VERSION \
- fprintf (stderr, " (68k, MIT syntax)");
- #endif */
-#define TARGET_VERSION fprintf (stderr, _(" (frv)"))
-
-/* Sometimes certain combinations of command options do not make sense on a
- particular target machine. You can define a macro `OVERRIDE_OPTIONS' to
- take account of this. This macro, if defined, is executed once just after
- all the command options have been parsed.
-
- Don't use this macro to turn on various extra optimizations for `-O'. That
- is what `OPTIMIZATION_OPTIONS' is for. */
-
-#define OVERRIDE_OPTIONS frv_override_options ()
-
-/* Some machines may desire to change what optimizations are performed for
- various optimization levels. This macro, if defined, is executed once just
- after the optimization level is determined and before the remainder of the
- command options have been parsed. Values set in this macro are used as the
- default values for the other command line options.
-
- LEVEL is the optimization level specified; 2 if `-O2' is specified, 1 if
- `-O' is specified, and 0 if neither is specified.
-
- SIZE is non-zero if `-Os' is specified, 0 otherwise.
-
- You should not use this macro to change options that are not
- machine-specific. These should uniformly selected by the same optimization
- level on all supported machines. Use this macro to enable machbine-specific
- optimizations.
-
- *Do not examine `write_symbols' in this macro!* The debugging options are
- *not supposed to alter the generated code. */
-#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) frv_optimization_options (LEVEL, SIZE)
-
-
-/* Define this macro if debugging can be performed even without a frame
- pointer. If this macro is defined, GNU CC will turn on the
- `-fomit-frame-pointer' option whenever `-O' is specified. */
-/* Frv needs a specific frame layout that includes the frame pointer */
-
-#define CAN_DEBUG_WITHOUT_FP
-
-
-/* Small Data Area Support. */
-/* Maximum size of variables that go in .sdata/.sbss.
- The -msdata=foo switch also controls how small variables are handled. */
-#ifndef SDATA_DEFAULT_SIZE
-#define SDATA_DEFAULT_SIZE 8
-#endif
-
-extern int g_switch_value; /* value of the -G xx switch */
-extern int g_switch_set; /* whether -G xx was passed. */
-
-
-/* Storage Layout */
-
-/* Define this macro to have the value 1 if the most significant bit in a byte
- has the lowest number; otherwise define it to have the value zero. This
- means that bit-field instructions count from the most significant bit. If
- the machine has no bit-field instructions, then this must still be defined,
- but it doesn't matter which value it is defined to. This macro need not be
- a constant.
-
- This macro does not affect the way structure fields are packed into bytes or
- words; that is controlled by `BYTES_BIG_ENDIAN'. */
-#define BITS_BIG_ENDIAN 1
-
-/* Define this macro to have the value 1 if the most significant byte in a word
- has the lowest number. This macro need not be a constant. */
-#define BYTES_BIG_ENDIAN 1
-
-/* Define this macro to have the value 1 if, in a multiword object, the most
- significant word has the lowest number. This applies to both memory
- locations and registers; GNU CC fundamentally assumes that the order of
- words in memory is the same as the order in registers. This macro need not
- be a constant. */
-#define WORDS_BIG_ENDIAN 1
-
-/* Number of storage units in a word; normally 4. */
-#define UNITS_PER_WORD 4
-
-/* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
- which has the specified mode and signedness is to be stored in a register.
- This macro is only called when TYPE is a scalar type.
-
- On most RISC machines, which only have operations that operate on a full
- register, define this macro to set M to `word_mode' if M is an integer mode
- narrower than `BITS_PER_WORD'. In most cases, only integer modes should be
- widened because wider-precision floating-point operations are usually more
- expensive than their narrower counterparts.
-
- For most machines, the macro definition does not change UNSIGNEDP. However,
- some machines, have instructions that preferentially handle either signed or
- unsigned quantities of certain modes. For example, on the DEC Alpha, 32-bit
- loads from memory and 32-bit add instructions sign-extend the result to 64
- bits. On such machines, set UNSIGNEDP according to which kind of extension
- is more efficient.
-
- Do not define this macro if it would never modify MODE. */
-#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
- do \
- { \
- if (GET_MODE_CLASS (MODE) == MODE_INT \
- && GET_MODE_SIZE (MODE) < 4) \
- (MODE) = SImode; \
- } \
- while (0)
-
-/* Normal alignment required for function parameters on the stack, in bits.
- All stack parameters receive at least this much alignment regardless of data
- type. On most machines, this is the same as the size of an integer. */
-#define PARM_BOUNDARY 32
-
-/* Define this macro if you wish to preserve a certain alignment for the stack
- pointer. The definition is a C expression for the desired alignment
- (measured in bits).
-
- If `PUSH_ROUNDING' is not defined, the stack will always be aligned to the
- specified boundary. If `PUSH_ROUNDING' is defined and specifies a less
- strict alignment than `STACK_BOUNDARY', the stack may be momentarily
- unaligned while pushing arguments. */
-#define STACK_BOUNDARY 64
-
-/* Alignment required for a function entry point, in bits. */
-#define FUNCTION_BOUNDARY 128
-
-/* Biggest alignment that any data type can require on this machine,
- in bits. */
-#define BIGGEST_ALIGNMENT 64
-
-/* @@@ A hack, needed because libobjc wants to use ADJUST_FIELD_ALIGN for
- some reason. */
-#ifdef IN_TARGET_LIBS
-#define BIGGEST_FIELD_ALIGNMENT 64
-#else
-/* An expression for the alignment of a structure field FIELD if the
- alignment computed in the usual way is COMPUTED. GNU CC uses this
- value instead of the value in `BIGGEST_ALIGNMENT' or
- `BIGGEST_FIELD_ALIGNMENT', if defined, for structure fields only. */
-#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
- frv_adjust_field_align (FIELD, COMPUTED)
-#endif
-
-/* If defined, a C expression to compute the alignment for a static variable.
- TYPE is the data type, and ALIGN is the alignment that the object
- would ordinarily have. The value of this macro is used instead of that
- alignment to align the object.
-
- If this macro is not defined, then ALIGN is used.
-
- One use of this macro is to increase alignment of medium-size data to make
- it all fit in fewer cache lines. Another is to cause character arrays to be
- word-aligned so that `strcpy' calls that copy constants to character arrays
- can be done inline. */
-#define DATA_ALIGNMENT(TYPE, ALIGN) \
- (TREE_CODE (TYPE) == ARRAY_TYPE \
- && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
- && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
-
-/* If defined, a C expression to compute the alignment given to a constant that
- is being placed in memory. CONSTANT is the constant and ALIGN is the
- alignment that the object would ordinarily have. The value of this macro is
- used instead of that alignment to align the object.
-
- If this macro is not defined, then ALIGN is used.
-
- The typical use of this macro is to increase alignment for string constants
- to be word aligned so that `strcpy' calls that copy constants can be done
- inline. */
-#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
- (TREE_CODE (EXP) == STRING_CST \
- && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
-
-/* Define this macro to be the value 1 if instructions will fail to work if
- given data not on the nominal alignment. If instructions will merely go
- slower in that case, define this macro as 0. */
-#define STRICT_ALIGNMENT 1
-
-/* Define this if you wish to imitate the way many other C compilers handle
- alignment of bitfields and the structures that contain them.
-
- The behavior is that the type written for a bitfield (`int', `short', or
- other integer type) imposes an alignment for the entire structure, as if the
- structure really did contain an ordinary field of that type. In addition,
- the bitfield is placed within the structure so that it would fit within such
- a field, not crossing a boundary for it.
-
- Thus, on most machines, a bitfield whose type is written as `int' would not
- cross a four-byte boundary, and would force four-byte alignment for the
- whole structure. (The alignment used may not be four bytes; it is
- controlled by the other alignment parameters.)
-
- If the macro is defined, its definition should be a C expression; a nonzero
- value for the expression enables this behavior.
-
- Note that if this macro is not defined, or its value is zero, some bitfields
- may cross more than one alignment boundary. The compiler can support such
- references if there are `insv', `extv', and `extzv' insns that can directly
- reference memory.
-
- The other known way of making bitfields work is to define
- `STRUCTURE_SIZE_BOUNDARY' as large as `BIGGEST_ALIGNMENT'. Then every
- structure can be accessed with fullwords.
-
- Unless the machine has bitfield instructions or you define
- `STRUCTURE_SIZE_BOUNDARY' that way, you must define
- `PCC_BITFIELD_TYPE_MATTERS' to have a nonzero value.
-
- If your aim is to make GNU CC use the same conventions for laying out
- bitfields as are used by another compiler, here is how to investigate what
- the other compiler does. Compile and run this program:
-
- struct foo1
- {
- char x;
- char :0;
- char y;
- };
-
- struct foo2
- {
- char x;
- int :0;
- char y;
- };
-
- main ()
- {
- printf ("Size of foo1 is %d\n",
- sizeof (struct foo1));
- printf ("Size of foo2 is %d\n",
- sizeof (struct foo2));
- exit (0);
- }
-
- If this prints 2 and 5, then the compiler's behavior is what you would get
- from `PCC_BITFIELD_TYPE_MATTERS'.
-
- Defined in svr4.h. */
-#define PCC_BITFIELD_TYPE_MATTERS 1
-
-/* A code distinguishing the floating point format of the target machine.
- There are three defined values:
-
- IEEE_FLOAT_FORMAT'
- This code indicates IEEE floating point. It is the default;
- there is no need to define this macro when the format is IEEE.
-
- VAX_FLOAT_FORMAT'
- This code indicates the peculiar format used on the Vax.
-
- UNKNOWN_FLOAT_FORMAT'
- This code indicates any other format.
-
- The value of this macro is compared with `HOST_FLOAT_FORMAT'
- to determine whether the target machine has the same format as
- the host machine. If any other formats are actually in use on supported
- machines, new codes should be defined for them.
-
- The ordering of the component words of floating point values stored in
- memory is controlled by `FLOAT_WORDS_BIG_ENDIAN' for the target machine and
- `HOST_FLOAT_WORDS_BIG_ENDIAN' for the host. */
-#define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
-
-/* GNU CC supports two ways of implementing C++ vtables: traditional or with
- so-called "thunks". The flag `-fvtable-thunk' chooses between them. Define
- this macro to be a C expression for the default value of that flag. If
- `DEFAULT_VTABLE_THUNKS' is 0, GNU CC uses the traditional implementation by
- default. The "thunk" implementation is more efficient (especially if you
- have provided an implementation of `ASM_OUTPUT_MI_THUNK', but is not binary
- compatible with code compiled using the traditional implementation. If you
- are writing a new ports, define `DEFAULT_VTABLE_THUNKS' to 1.
-
- If you do not define this macro, the default for `-fvtable-thunk' is 0. */
-#define DEFAULT_VTABLE_THUNKS 1
-
-
-/* Layout of Source Language Data Types. */
-
-#define CHAR_TYPE_SIZE 8
-#define SHORT_TYPE_SIZE 16
-#define INT_TYPE_SIZE 32
-#define LONG_TYPE_SIZE 32
-#define LONG_LONG_TYPE_SIZE 64
-#define FLOAT_TYPE_SIZE 32
-#define DOUBLE_TYPE_SIZE 64
-#define LONG_DOUBLE_TYPE_SIZE 64
-
-/* An expression whose value is 1 or 0, according to whether the type `char'
- should be signed or unsigned by default. The user can always override this
- default with the options `-fsigned-char' and `-funsigned-char'. */
-#define DEFAULT_SIGNED_CHAR 1
-
-
-/* General purpose registers. */
-#define GPR_FIRST 0 /* First gpr */
-#define GPR_LAST (GPR_FIRST + 63) /* Last gpr */
-#define GPR_R0 GPR_FIRST /* R0, constant 0 */
-#define GPR_FP (GPR_FIRST + 2) /* Frame pointer */
-#define GPR_SP (GPR_FIRST + 1) /* Stack pointer */
- /* small data register */
-#define SDA_BASE_REG ((unsigned)(flag_pic ? PIC_REGNO : (GPR_FIRST+16)))
-#define PIC_REGNO (GPR_FIRST + 17) /* PIC register */
-
-#define FPR_FIRST 64 /* First FP reg */
-#define FPR_LAST 127 /* Last FP reg */
-
-#define DEFAULT_CONDEXEC_TEMPS 4 /* reserve 4 regs by default */
-#define GPR_TEMP_NUM frv_condexec_temps /* # gprs to reserve for temps */
-
-/* We reserve the last CR and CCR in each category to be used as a reload
- register to reload the CR/CCR registers. This is a kludge. */
-#define CC_FIRST 128 /* First ICC/FCC reg */
-#define CC_LAST 135 /* Last ICC/FCC reg */
-#define ICC_FIRST (CC_FIRST + 4) /* First ICC reg */
-#define ICC_LAST (CC_FIRST + 7) /* Last ICC reg */
-#define ICC_TEMP (CC_FIRST + 7) /* Temporary ICC reg */
-#define FCC_FIRST (CC_FIRST) /* First FCC reg */
-#define FCC_LAST (CC_FIRST + 3) /* Last FCC reg */
-
-/* Amount to shift a value to locate a ICC or FCC register in the CCR
- register and shift it to the bottom 4 bits. */
-#define CC_SHIFT_RIGHT(REGNO) (((REGNO) - CC_FIRST) << 2)
-
-/* Mask to isolate a single ICC/FCC value. */
-#define CC_MASK 0xf
-
-/* Masks to isolate the various bits in an ICC field. */
-#define ICC_MASK_N 0x8 /* negative */
-#define ICC_MASK_Z 0x4 /* zero */
-#define ICC_MASK_V 0x2 /* overflow */
-#define ICC_MASK_C 0x1 /* carry */
-
-/* Mask to isolate the N/Z flags in an ICC. */
-#define ICC_MASK_NZ (ICC_MASK_N | ICC_MASK_Z)
-
-/* Mask to isolate the Z/C flags in an ICC. */
-#define ICC_MASK_ZC (ICC_MASK_Z | ICC_MASK_C)
-
-/* Masks to isolate the various bits in a FCC field. */
-#define FCC_MASK_E 0x8 /* equal */
-#define FCC_MASK_L 0x4 /* less than */
-#define FCC_MASK_G 0x2 /* greater than */
-#define FCC_MASK_U 0x1 /* unordered */
-
-/* For CCR registers, the machine wants CR4..CR7 to be used for integer
- code and CR0..CR3 to be used for floating point. */
-#define CR_FIRST 136 /* First CCR */
-#define CR_LAST 143 /* Last CCR */
-#define CR_NUM (CR_LAST-CR_FIRST+1) /* # of CCRs (8) */
-#define ICR_FIRST (CR_FIRST + 4) /* First integer CCR */
-#define ICR_LAST (CR_FIRST + 7) /* Last integer CCR */
-#define ICR_TEMP ICR_LAST /* Temp integer CCR */
-#define FCR_FIRST (CR_FIRST + 0) /* First float CCR */
-#define FCR_LAST (CR_FIRST + 3) /* Last float CCR */
-
-/* Amount to shift a value to locate a CR register in the CCCR special purpose
- register and shift it to the bottom 2 bits. */
-#define CR_SHIFT_RIGHT(REGNO) (((REGNO) - CR_FIRST) << 1)
-
-/* Mask to isolate a single CR value. */
-#define CR_MASK 0x3
-
-#define ACC_FIRST 144 /* First acc register */
-#define ACC_LAST 151 /* Last acc register */
-
-#define ACCG_FIRST 152 /* First accg register */
-#define ACCG_LAST 159 /* Last accg register */
-
-#define AP_FIRST 160 /* fake argument pointer */
-
-#define SPR_FIRST 161
-#define SPR_LAST 162
-#define LR_REGNO (SPR_FIRST)
-#define LCR_REGNO (SPR_FIRST + 1)
-
-#define GPR_P(R) IN_RANGE_P (R, GPR_FIRST, GPR_LAST)
-#define GPR_OR_AP_P(R) (GPR_P (R) || (R) == ARG_POINTER_REGNUM)
-#define FPR_P(R) IN_RANGE_P (R, FPR_FIRST, FPR_LAST)
-#define CC_P(R) IN_RANGE_P (R, CC_FIRST, CC_LAST)
-#define ICC_P(R) IN_RANGE_P (R, ICC_FIRST, ICC_LAST)
-#define FCC_P(R) IN_RANGE_P (R, FCC_FIRST, FCC_LAST)
-#define CR_P(R) IN_RANGE_P (R, CR_FIRST, CR_LAST)
-#define ICR_P(R) IN_RANGE_P (R, ICR_FIRST, ICR_LAST)
-#define FCR_P(R) IN_RANGE_P (R, FCR_FIRST, FCR_LAST)
-#define ACC_P(R) IN_RANGE_P (R, ACC_FIRST, ACC_LAST)
-#define ACCG_P(R) IN_RANGE_P (R, ACCG_FIRST, ACCG_LAST)
-#define SPR_P(R) IN_RANGE_P (R, SPR_FIRST, SPR_LAST)
-
-#define GPR_OR_PSEUDO_P(R) (GPR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
-#define FPR_OR_PSEUDO_P(R) (FPR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
-#define GPR_AP_OR_PSEUDO_P(R) (GPR_OR_AP_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
-#define CC_OR_PSEUDO_P(R) (CC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
-#define ICC_OR_PSEUDO_P(R) (ICC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
-#define FCC_OR_PSEUDO_P(R) (FCC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
-#define CR_OR_PSEUDO_P(R) (CR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
-#define ICR_OR_PSEUDO_P(R) (ICR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
-#define FCR_OR_PSEUDO_P(R) (FCR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
-#define ACC_OR_PSEUDO_P(R) (ACC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
-#define ACCG_OR_PSEUDO_P(R) (ACCG_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
-
-#define MAX_STACK_IMMEDIATE_OFFSET 2047
-
-
-/* Register Basics. */
-
-/* Number of hardware registers known to the compiler. They receive numbers 0
- through `FIRST_PSEUDO_REGISTER-1'; thus, the first pseudo register's number
- really is assigned the number `FIRST_PSEUDO_REGISTER'. */
-#define FIRST_PSEUDO_REGISTER (SPR_LAST + 1)
-
-/* The first/last register that can contain the arguments to a function. */
-#define FIRST_ARG_REGNUM (GPR_FIRST + 8)
-#define LAST_ARG_REGNUM (FIRST_ARG_REGNUM + FRV_NUM_ARG_REGS - 1)
-
-/* Registers used by the exception handling functions. These should be
- registers that are not otherwised used by the calling sequence. */
-#define FIRST_EH_REGNUM 14
-#define LAST_EH_REGNUM 15
-
-/* Scratch registers used in the prologue, epilogue and thunks.
- OFFSET_REGNO is for loading constant addends that are too big for a
- single instruction. TEMP_REGNO is used for transferring SPRs to and from
- the stack, and various other activities. */
-#define OFFSET_REGNO 4
-#define TEMP_REGNO 5
-
-/* Registers used in the prologue. OLD_SP_REGNO is the old stack pointer,
- which is sometimes used to set up the frame pointer. */
-#define OLD_SP_REGNO 6
-
-/* Registers used in the epilogue. STACKADJ_REGNO stores the exception
- handler's stack adjustment. */
-#define STACKADJ_REGNO 6
-
-/* Registers used in thunks. JMP_REGNO is used for loading the target
- address. */
-#define JUMP_REGNO 6
-
-#define EH_RETURN_DATA_REGNO(N) ((N) <= (LAST_EH_REGNUM - FIRST_EH_REGNUM)? \
- (N) + FIRST_EH_REGNUM : INVALID_REGNUM)
-#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, STACKADJ_REGNO)
-#define EH_RETURN_HANDLER_RTX RETURN_ADDR_RTX (0, frame_pointer_rtx)
-
-/* An initializer that says which registers are used for fixed purposes all
- throughout the compiled code and are therefore not available for general
- allocation. These would include the stack pointer, the frame pointer
- (except on machines where that can be used as a general register when no
- frame pointer is needed), the program counter on machines where that is
- considered one of the addressable registers, and any other numbered register
- with a standard use.
-
- This information is expressed as a sequence of numbers, separated by commas
- and surrounded by braces. The Nth number is 1 if register N is fixed, 0
- otherwise.
-
- The table initialized from this macro, and the table initialized by the
- following one, may be overridden at run time either automatically, by the
- actions of the macro `CONDITIONAL_REGISTER_USAGE', or by the user with the
- command options `-ffixed-REG', `-fcall-used-REG' and `-fcall-saved-REG'. */
-
-/* gr0 -- Hard Zero
- gr1 -- Stack Pointer
- gr2 -- Frame Pointer
- gr3 -- Hidden Parameter
- gr16 -- Small Data reserved
- gr17 -- Pic reserved
- gr28 -- OS reserved
- gr29 -- OS reserved
- gr30 -- OS reserved
- gr31 -- OS reserved
- cr3 -- reserved to reload FCC registers.
- cr7 -- reserved to reload ICC registers. */
-#define FIXED_REGISTERS \
-{ /* Integer Registers */ \
- 1, 1, 1, 1, 0, 0, 0, 0, /* 000-007, gr0 - gr7 */ \
- 0, 0, 0, 0, 0, 0, 0, 0, /* 008-015, gr8 - gr15 */ \
- 1, 1, 0, 0, 0, 0, 0, 0, /* 016-023, gr16 - gr23 */ \
- 0, 0, 0, 0, 1, 1, 1, 1, /* 024-031, gr24 - gr31 */ \
- 0, 0, 0, 0, 0, 0, 0, 0, /* 032-039, gr32 - gr39 */ \
- 0, 0, 0, 0, 0, 0, 0, 0, /* 040-040, gr48 - gr47 */ \
- 0, 0, 0, 0, 0, 0, 0, 0, /* 048-055, gr48 - gr55 */ \
- 0, 0, 0, 0, 0, 0, 0, 0, /* 056-063, gr56 - gr63 */ \
- /* Float Registers */ \
- 0, 0, 0, 0, 0, 0, 0, 0, /* 064-071, fr0 - fr7 */ \
- 0, 0, 0, 0, 0, 0, 0, 0, /* 072-079, fr8 - fr15 */ \
- 0, 0, 0, 0, 0, 0, 0, 0, /* 080-087, fr16 - fr23 */ \
- 0, 0, 0, 0, 0, 0, 0, 0, /* 088-095, fr24 - fr31 */ \
- 0, 0, 0, 0, 0, 0, 0, 0, /* 096-103, fr32 - fr39 */ \
- 0, 0, 0, 0, 0, 0, 0, 0, /* 104-111, fr48 - fr47 */ \
- 0, 0, 0, 0, 0, 0, 0, 0, /* 112-119, fr48 - fr55 */ \
- 0, 0, 0, 0, 0, 0, 0, 0, /* 120-127, fr56 - fr63 */ \
- /* Condition Code Registers */ \
- 0, 0, 0, 0, /* 128-131, fcc0 - fcc3 */ \
- 0, 0, 0, 1, /* 132-135, icc0 - icc3 */ \
- /* Conditional execution Registers (CCR) */ \
- 0, 0, 0, 0, 0, 0, 0, 1, /* 136-143, cr0 - cr7 */ \
- /* Accumulators */ \
- 1, 1, 1, 1, 1, 1, 1, 1, /* 144-151, acc0 - acc7 */ \
- 1, 1, 1, 1, 1, 1, 1, 1, /* 152-159, accg0 - accg7 */ \
- /* Other registers */ \
- 1, /* 160, AP - fake arg ptr */ \
- 0, /* 161, LR - Link register*/ \
- 0, /* 162, LCR - Loop count reg*/ \
-}
-
-/* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered (in
- general) by function calls as well as for fixed registers. This macro
- therefore identifies the registers that are not available for general
- allocation of values that must live across function calls.
-
- If a register has 0 in `CALL_USED_REGISTERS', the compiler automatically
- saves it on function entry and restores it on function exit, if the register
- is used within the function. */
-#define CALL_USED_REGISTERS \
-{ /* Integer Registers */ \
- 1, 1, 1, 1, 1, 1, 1, 1, /* 000-007, gr0 - gr7 */ \
- 1, 1, 1, 1, 1, 1, 1, 1, /* 008-015, gr8 - gr15 */ \
- 1, 1, 0, 0, 0, 0, 0, 0, /* 016-023, gr16 - gr23 */ \
- 0, 0, 0, 0, 1, 1, 1, 1, /* 024-031, gr24 - gr31 */ \
- 1, 1, 1, 1, 1, 1, 1, 1, /* 032-039, gr32 - gr39 */ \
- 1, 1, 1, 1, 1, 1, 1, 1, /* 040-040, gr48 - gr47 */ \
- 0, 0, 0, 0, 0, 0, 0, 0, /* 048-055, gr48 - gr55 */ \
- 0, 0, 0, 0, 0, 0, 0, 0, /* 056-063, gr56 - gr63 */ \
- /* Float Registers */ \
- 1, 1, 1, 1, 1, 1, 1, 1, /* 064-071, fr0 - fr7 */ \
- 1, 1, 1, 1, 1, 1, 1, 1, /* 072-079, fr8 - fr15 */ \
- 0, 0, 0, 0, 0, 0, 0, 0, /* 080-087, fr16 - fr23 */ \
- 0, 0, 0, 0, 0, 0, 0, 0, /* 088-095, fr24 - fr31 */ \
- 1, 1, 1, 1, 1, 1, 1, 1, /* 096-103, fr32 - fr39 */ \
- 1, 1, 1, 1, 1, 1, 1, 1, /* 104-111, fr48 - fr47 */ \
- 0, 0, 0, 0, 0, 0, 0, 0, /* 112-119, fr48 - fr55 */ \
- 0, 0, 0, 0, 0, 0, 0, 0, /* 120-127, fr56 - fr63 */ \
- /* Condition Code Registers */ \
- 1, 1, 1, 1, /* 128-131, fcc0 - fcc3 */ \
- 1, 1, 1, 1, /* 132-135, icc0 - icc3 */ \
- /* Conditional execution Registers (CCR) */ \
- 1, 1, 1, 1, 1, 1, 1, 1, /* 136-143, cr0 - cr7 */ \
- /* Accumulators */ \
- 1, 1, 1, 1, 1, 1, 1, 1, /* 144-151, acc0 - acc7 */ \
- 1, 1, 1, 1, 1, 1, 1, 1, /* 152-159, accg0 - accg7 */ \
- /* Other registers */ \
- 1, /* 160, AP - fake arg ptr */ \
- 1, /* 161, LR - Link register*/ \
- 1, /* 162, LCR - Loop count reg */ \
-}
-
-/* Zero or more C statements that may conditionally modify two variables
- `fixed_regs' and `call_used_regs' (both of type `char []') after they have
- been initialized from the two preceding macros.
-
- This is necessary in case the fixed or call-clobbered registers depend on
- target flags.
-
- You need not define this macro if it has no work to do.
-
- If the usage of an entire class of registers depends on the target flags,
- you may indicate this to GCC by using this macro to modify `fixed_regs' and
- `call_used_regs' to 1 for each of the registers in the classes which should
- not be used by GCC. Also define the macro `REG_CLASS_FROM_LETTER' to return
- `NO_REGS' if it is called with a letter for a class that shouldn't be used.
-
- (However, if this class is not included in `GENERAL_REGS' and all of the
- insn patterns whose constraints permit this class are controlled by target
- switches, then GCC will automatically avoid using these registers when the
- target switches are opposed to them.) */
-
-#define CONDITIONAL_REGISTER_USAGE frv_conditional_register_usage ()
-
-
-/* Order of allocation of registers. */
-
-/* If defined, an initializer for a vector of integers, containing the numbers
- of hard registers in the order in which GNU CC should prefer to use them
- (from most preferred to least).
-
- If this macro is not defined, registers are used lowest numbered first (all
- else being equal).
-
- One use of this macro is on machines where the highest numbered registers
- must always be saved and the save-multiple-registers instruction supports
- only sequences of consecutive registers. On such machines, define
- `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
- allocatable register first. */
-
-/* On the FRV, allocate GR16 and GR17 after other saved registers so that we
- have a better chance of allocating 2 registers at a time and can use the
- double word load/store instructions in the prologue. */
-#define REG_ALLOC_ORDER \
-{ \
- /* volatile registers */ \
- GPR_FIRST + 4, GPR_FIRST + 5, GPR_FIRST + 6, GPR_FIRST + 7, \
- GPR_FIRST + 8, GPR_FIRST + 9, GPR_FIRST + 10, GPR_FIRST + 11, \
- GPR_FIRST + 12, GPR_FIRST + 13, GPR_FIRST + 14, GPR_FIRST + 15, \
- GPR_FIRST + 32, GPR_FIRST + 33, GPR_FIRST + 34, GPR_FIRST + 35, \
- GPR_FIRST + 36, GPR_FIRST + 37, GPR_FIRST + 38, GPR_FIRST + 39, \
- GPR_FIRST + 40, GPR_FIRST + 41, GPR_FIRST + 42, GPR_FIRST + 43, \
- GPR_FIRST + 44, GPR_FIRST + 45, GPR_FIRST + 46, GPR_FIRST + 47, \
- \
- FPR_FIRST + 0, FPR_FIRST + 1, FPR_FIRST + 2, FPR_FIRST + 3, \
- FPR_FIRST + 4, FPR_FIRST + 5, FPR_FIRST + 6, FPR_FIRST + 7, \
- FPR_FIRST + 8, FPR_FIRST + 9, FPR_FIRST + 10, FPR_FIRST + 11, \
- FPR_FIRST + 12, FPR_FIRST + 13, FPR_FIRST + 14, FPR_FIRST + 15, \
- FPR_FIRST + 32, FPR_FIRST + 33, FPR_FIRST + 34, FPR_FIRST + 35, \
- FPR_FIRST + 36, FPR_FIRST + 37, FPR_FIRST + 38, FPR_FIRST + 39, \
- FPR_FIRST + 40, FPR_FIRST + 41, FPR_FIRST + 42, FPR_FIRST + 43, \
- FPR_FIRST + 44, FPR_FIRST + 45, FPR_FIRST + 46, FPR_FIRST + 47, \
- \
- ICC_FIRST + 0, ICC_FIRST + 1, ICC_FIRST + 2, ICC_FIRST + 3, \
- FCC_FIRST + 0, FCC_FIRST + 1, FCC_FIRST + 2, FCC_FIRST + 3, \
- CR_FIRST + 0, CR_FIRST + 1, CR_FIRST + 2, CR_FIRST + 3, \
- CR_FIRST + 4, CR_FIRST + 5, CR_FIRST + 6, CR_FIRST + 7, \
- \
- /* saved registers */ \
- GPR_FIRST + 18, GPR_FIRST + 19, \
- GPR_FIRST + 20, GPR_FIRST + 21, GPR_FIRST + 22, GPR_FIRST + 23, \
- GPR_FIRST + 24, GPR_FIRST + 25, GPR_FIRST + 26, GPR_FIRST + 27, \
- GPR_FIRST + 48, GPR_FIRST + 49, GPR_FIRST + 50, GPR_FIRST + 51, \
- GPR_FIRST + 52, GPR_FIRST + 53, GPR_FIRST + 54, GPR_FIRST + 55, \
- GPR_FIRST + 56, GPR_FIRST + 57, GPR_FIRST + 58, GPR_FIRST + 59, \
- GPR_FIRST + 60, GPR_FIRST + 61, GPR_FIRST + 62, GPR_FIRST + 63, \
- GPR_FIRST + 16, GPR_FIRST + 17, \
- \
- FPR_FIRST + 16, FPR_FIRST + 17, FPR_FIRST + 18, FPR_FIRST + 19, \
- FPR_FIRST + 20, FPR_FIRST + 21, FPR_FIRST + 22, FPR_FIRST + 23, \
- FPR_FIRST + 24, FPR_FIRST + 25, FPR_FIRST + 26, FPR_FIRST + 27, \
- FPR_FIRST + 28, FPR_FIRST + 29, FPR_FIRST + 30, FPR_FIRST + 31, \
- FPR_FIRST + 48, FPR_FIRST + 49, FPR_FIRST + 50, FPR_FIRST + 51, \
- FPR_FIRST + 52, FPR_FIRST + 53, FPR_FIRST + 54, FPR_FIRST + 55, \
- FPR_FIRST + 56, FPR_FIRST + 57, FPR_FIRST + 58, FPR_FIRST + 59, \
- FPR_FIRST + 60, FPR_FIRST + 61, FPR_FIRST + 62, FPR_FIRST + 63, \
- \
- /* special or fixed registers */ \
- GPR_FIRST + 0, GPR_FIRST + 1, GPR_FIRST + 2, GPR_FIRST + 3, \
- GPR_FIRST + 28, GPR_FIRST + 29, GPR_FIRST + 30, GPR_FIRST + 31, \
- ACC_FIRST + 0, ACC_FIRST + 1, ACC_FIRST + 2, ACC_FIRST + 3, \
- ACC_FIRST + 4, ACC_FIRST + 5, ACC_FIRST + 6, ACC_FIRST + 7, \
- ACCG_FIRST + 0, ACCG_FIRST + 1, ACCG_FIRST + 2, ACCG_FIRST + 3, \
- ACCG_FIRST + 4, ACCG_FIRST + 5, ACCG_FIRST + 6, ACCG_FIRST + 7, \
- AP_FIRST, LR_REGNO, LCR_REGNO \
-}
-
-
-/* How Values Fit in Registers. */
-
-/* A C expression for the number of consecutive hard registers, starting at
- register number REGNO, required to hold a value of mode MODE.
-
- On a machine where all registers are exactly one word, a suitable definition
- of this macro is
-
- #define HARD_REGNO_NREGS(REGNO, MODE) \
- ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \
- / UNITS_PER_WORD)) */
-
-/* On the FRV, make the CC modes take 3 words in the integer registers, so that
- we can build the appropriate instructions to properly reload the values. */
-#define HARD_REGNO_NREGS(REGNO, MODE) frv_hard_regno_nregs (REGNO, MODE)
-
-/* A C expression that is nonzero if it is permissible to store a value of mode
- MODE in hard register number REGNO (or in several registers starting with
- that one). For a machine where all registers are equivalent, a suitable
- definition is
-
- #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
-
- It is not necessary for this macro to check for the numbers of fixed
- registers, because the allocation mechanism considers them to be always
- occupied.
-
- On some machines, double-precision values must be kept in even/odd register
- pairs. The way to implement that is to define this macro to reject odd
- register numbers for such modes.
-
- The minimum requirement for a mode to be OK in a register is that the
- `movMODE' instruction pattern support moves between the register and any
- other hard register for which the mode is OK; and that moving a value into
- the register and back out not alter it.
-
- Since the same instruction used to move `SImode' will work for all narrower
- integer modes, it is not necessary on any machine for `HARD_REGNO_MODE_OK'
- to distinguish between these modes, provided you define patterns `movhi',
- etc., to take advantage of this. This is useful because of the interaction
- between `HARD_REGNO_MODE_OK' and `MODES_TIEABLE_P'; it is very desirable for
- all integer modes to be tieable.
-
- Many machines have special registers for floating point arithmetic. Often
- people assume that floating point machine modes are allowed only in floating
- point registers. This is not true. Any registers that can hold integers
- can safely *hold* a floating point machine mode, whether or not floating
- arithmetic can be done on it in those registers. Integer move instructions
- can be used to move the values.
-
- On some machines, though, the converse is true: fixed-point machine modes
- may not go in floating registers. This is true if the floating registers
- normalize any value stored in them, because storing a non-floating value
- there would garble it. In this case, `HARD_REGNO_MODE_OK' should reject
- fixed-point machine modes in floating registers. But if the floating
- registers do not automatically normalize, if you can store any bit pattern
- in one and retrieve it unchanged without a trap, then any machine mode may
- go in a floating register, so you can define this macro to say so.
-
- The primary significance of special floating registers is rather that they
- are the registers acceptable in floating point arithmetic instructions.
- However, this is of no concern to `HARD_REGNO_MODE_OK'. You handle it by
- writing the proper constraints for those instructions.
-
- On some machines, the floating registers are especially slow to access, so
- that it is better to store a value in a stack frame than in such a register
- if floating point arithmetic is not being done. As long as the floating
- registers are not in class `GENERAL_REGS', they will not be used unless some
- pattern's constraint asks for one. */
-#define HARD_REGNO_MODE_OK(REGNO, MODE) frv_hard_regno_mode_ok (REGNO, MODE)
-
-/* A C expression that is nonzero if it is desirable to choose register
- allocation so as to avoid move instructions between a value of mode MODE1
- and a value of mode MODE2.
-
- If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
- ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
- zero. */
-#define MODES_TIEABLE_P(MODE1, MODE2) (MODE1 == MODE2)
-
-/* Define this macro if the compiler should avoid copies to/from CCmode
- registers. You should only define this macro if support fo copying to/from
- CCmode is incomplete. */
-#define AVOID_CCMODE_COPIES
-
-
-/* Register Classes. */
-
-/* An enumeral type that must be defined with all the register class names as
- enumeral values. `NO_REGS' must be first. `ALL_REGS' must be the last
- register class, followed by one more enumeral value, `LIM_REG_CLASSES',
- which is not a register class but rather tells how many classes there are.
-
- Each register class has a number, which is the value of casting the class
- name to type `int'. The number serves as an index in many of the tables
- described below. */
-enum reg_class
-{
- NO_REGS,
- ICC_REGS,
- FCC_REGS,
- CC_REGS,
- ICR_REGS,
- FCR_REGS,
- CR_REGS,
- LCR_REG,
- LR_REG,
- SPR_REGS,
- QUAD_ACC_REGS,
- EVEN_ACC_REGS,
- ACC_REGS,
- ACCG_REGS,
- QUAD_FPR_REGS,
- FEVEN_REGS,
- FPR_REGS,
- QUAD_REGS,
- EVEN_REGS,
- GPR_REGS,
- ALL_REGS,
- LIM_REG_CLASSES
-};
-
-#define GENERAL_REGS GPR_REGS
-
-/* The number of distinct register classes, defined as follows:
-
- #define N_REG_CLASSES (int) LIM_REG_CLASSES */
-#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
-
-/* An initializer containing the names of the register classes as C string
- constants. These names are used in writing some of the debugging dumps. */
-#define REG_CLASS_NAMES { \
- "NO_REGS", \
- "ICC_REGS", \
- "FCC_REGS", \
- "CC_REGS", \
- "ICR_REGS", \
- "FCR_REGS", \
- "CR_REGS", \
- "LCR_REG", \
- "LR_REG", \
- "SPR_REGS", \
- "QUAD_ACC_REGS", \
- "EVEN_ACC_REGS", \
- "ACC_REGS", \
- "ACCG_REGS", \
- "QUAD_FPR_REGS", \
- "FEVEN_REGS", \
- "FPR_REGS", \
- "QUAD_REGS", \
- "EVEN_REGS", \
- "GPR_REGS", \
- "ALL_REGS" \
-}
-
-/* An initializer containing the contents of the register classes, as integers
- which are bit masks. The Nth integer specifies the contents of class N.
- The way the integer MASK is interpreted is that register R is in the class
- if `MASK & (1 << R)' is 1.
-
- When the machine has more than 32 registers, an integer does not suffice.
- Then the integers are replaced by sub-initializers, braced groupings
- containing several integers. Each sub-initializer must be suitable as an
- initializer for the type `HARD_REG_SET' which is defined in
- `hard-reg-set.h'. */
-#define REG_CLASS_CONTENTS \
-{ /* gr0-gr31 gr32-gr63 fr0-fr31 fr32-fr-63 cc/ccr/acc ap/spr */ \
- { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* NO_REGS */\
- { 0x00000000,0x00000000,0x00000000,0x00000000,0x000000f0,0x0}, /* ICC_REGS */\
- { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000000f,0x0}, /* FCC_REGS */\
- { 0x00000000,0x00000000,0x00000000,0x00000000,0x000000ff,0x0}, /* CC_REGS */\
- { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000f000,0x0}, /* ICR_REGS */\
- { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000f00,0x0}, /* FCR_REGS */\
- { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000ff00,0x0}, /* CR_REGS */\
- { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x4}, /* LCR_REGS */\
- { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x2}, /* LR_REGS */\
- { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x6}, /* SPR_REGS */\
- { 0x00000000,0x00000000,0x00000000,0x00000000,0x00ff0000,0x0}, /* QUAD_ACC */\
- { 0x00000000,0x00000000,0x00000000,0x00000000,0x00ff0000,0x0}, /* EVEN_ACC */\
- { 0x00000000,0x00000000,0x00000000,0x00000000,0x00ff0000,0x0}, /* ACC_REGS */\
- { 0x00000000,0x00000000,0x00000000,0x00000000,0xff000000,0x0}, /* ACCG_REGS*/\
- { 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* QUAD_FPR */\
- { 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* FEVEN_REG*/\
- { 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* FPR_REGS */\
- { 0x0ffffffc,0xffffffff,0x00000000,0x00000000,0x00000000,0x0}, /* QUAD_REGS*/\
- { 0xfffffffc,0xffffffff,0x00000000,0x00000000,0x00000000,0x0}, /* EVEN_REGS*/\
- { 0xffffffff,0xffffffff,0x00000000,0x00000000,0x00000000,0x1}, /* GPR_REGS */\
- { 0xffffffff,0xffffffff,0xffffffff,0xffffffff,0xffffffff,0x7}, /* ALL_REGS */\
-}
-
-/* A C expression whose value is a register class containing hard register
- REGNO. In general there is more than one such class; choose a class which
- is "minimal", meaning that no smaller class also contains the register. */
-
-extern enum reg_class regno_reg_class[];
-#define REGNO_REG_CLASS(REGNO) regno_reg_class [REGNO]
-
-/* A macro whose definition is the name of the class to which a valid base
- register must belong. A base register is one used in an address which is
- the register value plus a displacement. */
-#define BASE_REG_CLASS GPR_REGS
-
-/* A macro whose definition is the name of the class to which a valid index
- register must belong. An index register is one used in an address where its
- value is either multiplied by a scale factor or added to another register
- (as well as added to a displacement). */
-#define INDEX_REG_CLASS GPR_REGS
-
-/* A C expression which defines the machine-dependent operand constraint
- letters for register classes. If CHAR is such a letter, the value should be
- the register class corresponding to it. Otherwise, the value should be
- `NO_REGS'. The register letter `r', corresponding to class `GENERAL_REGS',
- will not be passed to this macro; you do not need to handle it.
-
- The following letters are unavailable, due to being used as
- constraints:
- '0'..'9'
- '<', '>'
- 'E', 'F', 'G', 'H'
- 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P'
- 'Q', 'R', 'S', 'T', 'U'
- 'V', 'X'
- 'g', 'i', 'm', 'n', 'o', 'p', 'r', 's' */
-
-extern enum reg_class reg_class_from_letter[];
-#define REG_CLASS_FROM_LETTER(CHAR) reg_class_from_letter [(unsigned char)(CHAR)]
-
-/* A C expression which is nonzero if register number NUM is suitable for use
- as a base register in operand addresses. It may be either a suitable hard
- register or a pseudo register that has been allocated such a hard register. */
-#define REGNO_OK_FOR_BASE_P(NUM) \
- ((NUM) < FIRST_PSEUDO_REGISTER \
- ? GPR_P (NUM) \
- : (reg_renumber [NUM] >= 0 && GPR_P (reg_renumber [NUM])))
-
-/* A C expression which is nonzero if register number NUM is suitable for use
- as an index register in operand addresses. It may be either a suitable hard
- register or a pseudo register that has been allocated such a hard register.
-
- The difference between an index register and a base register is that the
- index register may be scaled. If an address involves the sum of two
- registers, neither one of them scaled, then either one may be labeled the
- "base" and the other the "index"; but whichever labeling is used must fit
- the machine's constraints of which registers may serve in each capacity.
- The compiler will try both labelings, looking for one that is valid, and
- will reload one or both registers only if neither labeling works. */
-#define REGNO_OK_FOR_INDEX_P(NUM) \
- ((NUM) < FIRST_PSEUDO_REGISTER \
- ? GPR_P (NUM) \
- : (reg_renumber [NUM] >= 0 && GPR_P (reg_renumber [NUM])))
-
-/* A C expression that places additional restrictions on the register class to
- use when it is necessary to copy value X into a register in class CLASS.
- The value is a register class; perhaps CLASS, or perhaps another, smaller
- class. On many machines, the following definition is safe:
-
- #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS
-
- Sometimes returning a more restrictive class makes better code. For
- example, on the 68000, when X is an integer constant that is in range for a
- `moveq' instruction, the value of this macro is always `DATA_REGS' as long
- as CLASS includes the data registers. Requiring a data register guarantees
- that a `moveq' will be used.
-
- If X is a `const_double', by returning `NO_REGS' you can force X into a
- memory constant. This is useful on certain machines where immediate
- floating values cannot be loaded into certain kinds of registers.
-
- This declaration must be present. */
-#define PREFERRED_RELOAD_CLASS(X, CLASS) CLASS
-
-#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
- frv_secondary_reload_class (CLASS, MODE, X, TRUE)
-
-#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
- frv_secondary_reload_class (CLASS, MODE, X, FALSE)
-
-/* A C expression whose value is nonzero if pseudos that have been assigned to
- registers of class CLASS would likely be spilled because registers of CLASS
- are needed for spill registers.
-
- The default value of this macro returns 1 if CLASS has exactly one register
- and zero otherwise. On most machines, this default should be used. Only
- define this macro to some other expression if pseudo allocated by
- `local-alloc.c' end up in memory because their hard registers were needed
- for spill registers. If this macro returns nonzero for those classes, those
- pseudos will only be allocated by `global.c', which knows how to reallocate
- the pseudo to another register. If there would not be another register
- available for reallocation, you should not change the definition of this
- macro since the only effect of such a definition would be to slow down
- register allocation. */
-#define CLASS_LIKELY_SPILLED_P(CLASS) frv_class_likely_spilled_p (CLASS)
-
-/* A C expression for the maximum number of consecutive registers of
- class CLASS needed to hold a value of mode MODE.
-
- This is closely related to the macro `HARD_REGNO_NREGS'. In fact, the value
- of the macro `CLASS_MAX_NREGS (CLASS, MODE)' should be the maximum value of
- `HARD_REGNO_NREGS (REGNO, MODE)' for all REGNO values in the class CLASS.
-
- This macro helps control the handling of multiple-word values in
- the reload pass.
-
- This declaration is required. */
-#define CLASS_MAX_NREGS(CLASS, MODE) frv_class_max_nregs (CLASS, MODE)
-
-#define ZERO_P(x) (x == CONST0_RTX (GET_MODE (x)))
-
-/* 6 bit signed immediate. */
-#define CONST_OK_FOR_I(VALUE) IN_RANGE_P(VALUE, -32, 31)
-/* 10 bit signed immediate. */
-#define CONST_OK_FOR_J(VALUE) IN_RANGE_P(VALUE, -512, 511)
-/* Unused */
-#define CONST_OK_FOR_K(VALUE) 0
-/* 16 bit signed immediate. */
-#define CONST_OK_FOR_L(VALUE) IN_RANGE_P(VALUE, -32768, 32767)
-/* 16 bit unsigned immediate. */
-#define CONST_OK_FOR_M(VALUE) IN_RANGE_P (VALUE, 0, 65535)
-/* 12 bit signed immediate that is negative. */
-#define CONST_OK_FOR_N(VALUE) IN_RANGE_P(VALUE, -2048, -1)
-/* Zero */
-#define CONST_OK_FOR_O(VALUE) ((VALUE) == 0)
-/* 12 bit signed immediate that is negative. */
-#define CONST_OK_FOR_P(VALUE) IN_RANGE_P(VALUE, 1, 2047)
-
-/* A C expression that defines the machine-dependent operand constraint letters
- (`I', `J', `K', .. 'P') that specify particular ranges of integer values.
- If C is one of those letters, the expression should check that VALUE, an
- integer, is in the appropriate range and return 1 if so, 0 otherwise. If C
- is not one of those letters, the value should be 0 regardless of VALUE. */
-#define CONST_OK_FOR_LETTER_P(VALUE, C) \
- ( (C) == 'I' ? CONST_OK_FOR_I (VALUE) \
- : (C) == 'J' ? CONST_OK_FOR_J (VALUE) \
- : (C) == 'K' ? CONST_OK_FOR_K (VALUE) \
- : (C) == 'L' ? CONST_OK_FOR_L (VALUE) \
- : (C) == 'M' ? CONST_OK_FOR_M (VALUE) \
- : (C) == 'N' ? CONST_OK_FOR_N (VALUE) \
- : (C) == 'O' ? CONST_OK_FOR_O (VALUE) \
- : (C) == 'P' ? CONST_OK_FOR_P (VALUE) \
- : 0)
-
-
-/* A C expression that defines the machine-dependent operand constraint letters
- (`G', `H') that specify particular ranges of `const_double' values.
-
- If C is one of those letters, the expression should check that VALUE, an RTX
- of code `const_double', is in the appropriate range and return 1 if so, 0
- otherwise. If C is not one of those letters, the value should be 0
- regardless of VALUE.
-
- `const_double' is used for all floating-point constants and for `DImode'
- fixed-point constants. A given letter can accept either or both kinds of
- values. It can use `GET_MODE' to distinguish between these kinds. */
-
-#define CONST_DOUBLE_OK_FOR_G(VALUE) \
- ((GET_MODE (VALUE) == VOIDmode \
- && CONST_DOUBLE_LOW (VALUE) == 0 \
- && CONST_DOUBLE_HIGH (VALUE) == 0) \
- || ((GET_MODE (VALUE) == SFmode \
- || GET_MODE (VALUE) == DFmode) \
- && (VALUE) == CONST0_RTX (GET_MODE (VALUE))))
-
-#define CONST_DOUBLE_OK_FOR_H(VALUE) 0
-
-#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
- ( (C) == 'G' ? CONST_DOUBLE_OK_FOR_G (VALUE) \
- : (C) == 'H' ? CONST_DOUBLE_OK_FOR_H (VALUE) \
- : 0)
-
-/* A C expression that defines the optional machine-dependent constraint
- letters (`Q', `R', `S', `T', `U') that can be used to segregate specific
- types of operands, usually memory references, for the target machine.
- Normally this macro will not be defined. If it is required for a particular
- target machine, it should return 1 if VALUE corresponds to the operand type
- represented by the constraint letter C. If C is not defined as an extra
- constraint, the value returned should be 0 regardless of VALUE.
-
- For example, on the ROMP, load instructions cannot have their output in r0
- if the memory reference contains a symbolic address. Constraint letter `Q'
- is defined as representing a memory address that does *not* contain a
- symbolic address. An alternative is specified with a `Q' constraint on the
- input and `r' on the output. The next alternative specifies `m' on the
- input and a register class that does not include r0 on the output. */
-
-/* Small data references */
-#define EXTRA_CONSTRAINT_FOR_Q(VALUE) \
- (small_data_symbolic_operand (VALUE, GET_MODE (VALUE)))
-
-/* Double word memory ops that take one instruction. */
-#define EXTRA_CONSTRAINT_FOR_R(VALUE) \
- (dbl_memory_one_insn_operand (VALUE, GET_MODE (VALUE)))
-
-/* SYMBOL_REF */
-#define EXTRA_CONSTRAINT_FOR_S(VALUE) (GET_CODE (VALUE) == SYMBOL_REF)
-
-/* Double word memory ops that take two instructions. */
-#define EXTRA_CONSTRAINT_FOR_T(VALUE) \
- (dbl_memory_two_insn_operand (VALUE, GET_MODE (VALUE)))
-
-/* Memory operand for conditional execution. */
-#define EXTRA_CONSTRAINT_FOR_U(VALUE) \
- (condexec_memory_operand (VALUE, GET_MODE (VALUE)))
-
-#define EXTRA_CONSTRAINT(VALUE, C) \
- ( (C) == 'Q' ? EXTRA_CONSTRAINT_FOR_Q (VALUE) \
- : (C) == 'R' ? EXTRA_CONSTRAINT_FOR_R (VALUE) \
- : (C) == 'S' ? EXTRA_CONSTRAINT_FOR_S (VALUE) \
- : (C) == 'T' ? EXTRA_CONSTRAINT_FOR_T (VALUE) \
- : (C) == 'U' ? EXTRA_CONSTRAINT_FOR_U (VALUE) \
- : 0)
-
-
-/* Basic Stack Layout. */
-
-/* Structure to describe information about a saved range of registers */
-
-typedef struct frv_stack_regs {
- const char * name; /* name of the register ranges */
- int first; /* first register in the range */
- int last; /* last register in the range */
- int size_1word; /* # of bytes to be stored via 1 word stores */
- int size_2words; /* # of bytes to be stored via 2 word stores */
- unsigned char field_p; /* true if the registers are a single SPR */
- unsigned char dword_p; /* true if we can do dword stores */
- unsigned char special_p; /* true if the regs have a fixed save loc. */
-} frv_stack_regs_t;
-
-/* Register ranges to look into saving. */
-#define STACK_REGS_GPR 0 /* Gprs (normally gr16..gr31, gr48..gr63) */
-#define STACK_REGS_FPR 1 /* Fprs (normally fr16..fr31, fr48..fr63) */
-#define STACK_REGS_LR 2 /* LR register */
-#define STACK_REGS_CC 3 /* CCrs (normally not saved) */
-#define STACK_REGS_LCR 5 /* lcr register */
-#define STACK_REGS_STDARG 6 /* stdarg registers */
-#define STACK_REGS_STRUCT 7 /* structure return (gr3) */
-#define STACK_REGS_FP 8 /* FP register */
-#define STACK_REGS_MAX 9 /* # of register ranges */
-
-/* Values for save_p field. */
-#define REG_SAVE_NO_SAVE 0 /* register not saved */
-#define REG_SAVE_1WORD 1 /* save the register */
-#define REG_SAVE_2WORDS 2 /* save register and register+1 */
-
-/* Structure used to define the frv stack. */
-
-typedef struct frv_stack {
- int total_size; /* total bytes allocated for stack */
- int vars_size; /* variable save area size */
- int parameter_size; /* outgoing parameter size */
- int stdarg_size; /* size of regs needed to be saved for stdarg */
- int regs_size; /* size of the saved registers */
- int regs_size_1word; /* # of bytes to be stored via 1 word stores */
- int regs_size_2words; /* # of bytes to be stored via 2 word stores */
- int header_size; /* size of the old FP, struct ret., LR save */
- int pretend_size; /* size of pretend args */
- int vars_offset; /* offset to save local variables from new SP*/
- int regs_offset; /* offset to save registers from new SP */
- /* register range information */
- frv_stack_regs_t regs[STACK_REGS_MAX];
- /* offset to store each register */
- int reg_offset[FIRST_PSEUDO_REGISTER];
- /* whether to save register (& reg+1) */
- unsigned char save_p[FIRST_PSEUDO_REGISTER];
-} frv_stack_t;
-
-/* Define this macro if pushing a word onto the stack moves the stack pointer
- to a smaller address. */
-#define STACK_GROWS_DOWNWARD 1
-
-/* Define this macro if the addresses of local variable slots are at negative
- offsets from the frame pointer. */
-#define FRAME_GROWS_DOWNWARD
-
-/* Offset from the frame pointer to the first local variable slot to be
- allocated.
-
- If `FRAME_GROWS_DOWNWARD', find the next slot's offset by subtracting the
- first slot's length from `STARTING_FRAME_OFFSET'. Otherwise, it is found by
- adding the length of the first slot to the value `STARTING_FRAME_OFFSET'. */
-#define STARTING_FRAME_OFFSET 0
-
-/* Offset from the stack pointer register to the first location at which
- outgoing arguments are placed. If not specified, the default value of zero
- is used. This is the proper value for most machines.
-
- If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
- location at which outgoing arguments are placed. */
-#define STACK_POINTER_OFFSET 0
-
-/* Offset from the argument pointer register to the first argument's address.
- On some machines it may depend on the data type of the function.
-
- If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
- argument's address. */
-#define FIRST_PARM_OFFSET(FUNDECL) 0
-
-/* A C expression whose value is RTL representing the address in a stack frame
- where the pointer to the caller's frame is stored. Assume that FRAMEADDR is
- an RTL expression for the address of the stack frame itself.
-
- If you don't define this macro, the default is to return the value of
- FRAMEADDR--that is, the stack frame address is also the address of the stack
- word that points to the previous frame. */
-#define DYNAMIC_CHAIN_ADDRESS(FRAMEADDR) frv_dynamic_chain_address (FRAMEADDR)
-
-/* A C expression whose value is RTL representing the value of the return
- address for the frame COUNT steps up from the current frame, after the
- prologue. FRAMEADDR is the frame pointer of the COUNT frame, or the frame
- pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME' is
- defined.
-
- The value of the expression must always be the correct address when COUNT is
- zero, but may be `NULL_RTX' if there is not way to determine the return
- address of other frames. */
-#define RETURN_ADDR_RTX(COUNT, FRAMEADDR) frv_return_addr_rtx (COUNT, FRAMEADDR)
-
-/* This function contains machine specific function data. */
-struct machine_function GTY(())
-{
- /* True if we have created an rtx that relies on the stack frame. */
- int frame_needed;
-};
-
-#define RETURN_POINTER_REGNUM LR_REGNO
-
-/* A C expression whose value is RTL representing the location of the incoming
- return address at the beginning of any function, before the prologue. This
- RTL is either a `REG', indicating that the return value is saved in `REG',
- or a `MEM' representing a location in the stack.
-
- You only need to define this macro if you want to support call frame
- debugging information like that provided by DWARF 2. */
-#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (SImode, RETURN_POINTER_REGNUM)
-
-
-/* Register That Address the Stack Frame. */
-
-/* The register number of the stack pointer register, which must also be a
- fixed register according to `FIXED_REGISTERS'. On most machines, the
- hardware determines which register this is. */
-#define STACK_POINTER_REGNUM (GPR_FIRST + 1)
-
-/* The register number of the frame pointer register, which is used to access
- automatic variables in the stack frame. On some machines, the hardware
- determines which register this is. On other machines, you can choose any
- register you wish for this purpose. */
-#define FRAME_POINTER_REGNUM (GPR_FIRST + 2)
-
-/* The register number of the arg pointer register, which is used to access the
- function's argument list. On some machines, this is the same as the frame
- pointer register. On some machines, the hardware determines which register
- this is. On other machines, you can choose any register you wish for this
- purpose. If this is not the same register as the frame pointer register,
- then you must mark it as a fixed register according to `FIXED_REGISTERS', or
- arrange to be able to eliminate it. */
-
-/* On frv this is a fake register that is eliminated in
- terms of either the frame pointer or stack pointer. */
-#define ARG_POINTER_REGNUM AP_FIRST
-
-/* Register numbers used for passing a function's static chain pointer. If
- register windows are used, the register number as seen by the called
- function is `STATIC_CHAIN_INCOMING_REGNUM', while the register number as
- seen by the calling function is `STATIC_CHAIN_REGNUM'. If these registers
- are the same, `STATIC_CHAIN_INCOMING_REGNUM' need not be defined.
-
- The static chain register need not be a fixed register.
-
- If the static chain is passed in memory, these macros should not be defined;
- instead, the next two macros should be defined. */
-#define STATIC_CHAIN_REGNUM (GPR_FIRST + 7)
-#define STATIC_CHAIN_INCOMING_REGNUM (GPR_FIRST + 7)
-
-
-/* Eliminating the Frame Pointer and the Arg Pointer. */
-
-/* A C expression which is nonzero if a function must have and use a frame
- pointer. This expression is evaluated in the reload pass. If its value is
- nonzero the function will have a frame pointer.
-
- The expression can in principle examine the current function and decide
- according to the facts, but on most machines the constant 0 or the constant
- 1 suffices. Use 0 when the machine allows code to be generated with no
- frame pointer, and doing so saves some time or space. Use 1 when there is
- no possible advantage to avoiding a frame pointer.
-
- In certain cases, the compiler does not know how to produce valid code
- without a frame pointer. The compiler recognizes those cases and
- automatically gives the function a frame pointer regardless of what
- `FRAME_POINTER_REQUIRED' says. You don't need to worry about them.
-
- In a function that does not require a frame pointer, the frame pointer
- register can be allocated for ordinary usage, unless you mark it as a fixed
- register. See `FIXED_REGISTERS' for more information. */
-#define FRAME_POINTER_REQUIRED frv_frame_pointer_required ()
-
-/* If defined, this macro specifies a table of register pairs used to eliminate
- unneeded registers that point into the stack frame. If it is not defined,
- the only elimination attempted by the compiler is to replace references to
- the frame pointer with references to the stack pointer.
-
- The definition of this macro is a list of structure initializations, each of
- which specifies an original and replacement register.
-
- On some machines, the position of the argument pointer is not known until
- the compilation is completed. In such a case, a separate hard register must
- be used for the argument pointer. This register can be eliminated by
- replacing it with either the frame pointer or the argument pointer,
- depending on whether or not the frame pointer has been eliminated.
-
- In this case, you might specify:
- #define ELIMINABLE_REGS \
- {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
- {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
- {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
-
- Note that the elimination of the argument pointer with the stack pointer is
- specified first since that is the preferred elimination. */
-
-#define ELIMINABLE_REGS \
-{ \
- {ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
- {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
- {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM} \
-}
-
-/* A C expression that returns non-zero if the compiler is allowed to try to
- replace register number FROM with register number TO. This macro need only
- be defined if `ELIMINABLE_REGS' is defined, and will usually be the constant
- 1, since most of the cases preventing register elimination are things that
- the compiler already knows about. */
-
-#define CAN_ELIMINATE(FROM, TO) \
- ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
- ? ! frame_pointer_needed \
- : 1)
-
-/* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It specifies the
- initial difference between the specified pair of registers. This macro must
- be defined if `ELIMINABLE_REGS' is defined. */
-
-#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
- (OFFSET) = frv_initial_elimination_offset (FROM, TO)
-
-
-/* Passing Function Arguments on the Stack. */
-
-/* If defined, the maximum amount of space required for outgoing arguments will
- be computed and placed into the variable
- `current_function_outgoing_args_size'. No space will be pushed onto the
- stack for each call; instead, the function prologue should increase the
- stack frame size by this amount.
-
- Defining both `PUSH_ROUNDING' and `ACCUMULATE_OUTGOING_ARGS' is not
- proper. */
-#define ACCUMULATE_OUTGOING_ARGS 1
-
-/* A C expression that should indicate the number of bytes of its own arguments
- that a function pops on returning, or 0 if the function pops no arguments
- and the caller must therefore pop them all after the function returns.
-
- FUNDECL is a C variable whose value is a tree node that describes the
- function in question. Normally it is a node of type `FUNCTION_DECL' that
- describes the declaration of the function. From this it is possible to
- obtain the DECL_ATTRIBUTES of the function.
-
- FUNTYPE is a C variable whose value is a tree node that describes the
- function in question. Normally it is a node of type `FUNCTION_TYPE' that
- describes the data type of the function. From this it is possible to obtain
- the data types of the value and arguments (if known).
-
- When a call to a library function is being considered, FUNTYPE will contain
- an identifier node for the library function. Thus, if you need to
- distinguish among various library functions, you can do so by their names.
- Note that "library function" in this context means a function used to
- perform arithmetic, whose name is known specially in the compiler and was
- not mentioned in the C code being compiled.
-
- STACK-SIZE is the number of bytes of arguments passed on the stack. If a
- variable number of bytes is passed, it is zero, and argument popping will
- always be the responsibility of the calling function.
-
- On the Vax, all functions always pop their arguments, so the definition of
- this macro is STACK-SIZE. On the 68000, using the standard calling
- convention, no functions pop their arguments, so the value of the macro is
- always 0 in this case. But an alternative calling convention is available
- in which functions that take a fixed number of arguments pop them but other
- functions (such as `printf') pop nothing (the caller pops all). When this
- convention is in use, FUNTYPE is examined to determine whether a function
- takes a fixed number of arguments. */
-#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
-
-
-/* Function Arguments in Registers. */
-
-/* Nonzero if we do not know how to pass TYPE solely in registers.
- We cannot do so in the following cases:
-
- - if the type has variable size
- - if the type is marked as addressable (it is required to be constructed
- into the stack)
- - if the type is a structure or union. */
-
-#define MUST_PASS_IN_STACK(MODE,TYPE) \
- (((MODE) == BLKmode) \
- || ((TYPE) != 0 \
- && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
- || TREE_CODE (TYPE) == RECORD_TYPE \
- || TREE_CODE (TYPE) == UNION_TYPE \
- || TREE_CODE (TYPE) == QUAL_UNION_TYPE \
- || TREE_ADDRESSABLE (TYPE))))
-
-/* The number of register assigned to holding function arguments. */
-
-#define FRV_NUM_ARG_REGS 6
-
-/* A C expression that controls whether a function argument is passed in a
- register, and which register.
-
- The arguments are CUM, of type CUMULATIVE_ARGS, which summarizes (in a way
- defined by INIT_CUMULATIVE_ARGS and FUNCTION_ARG_ADVANCE) all of the previous
- arguments so far passed in registers; MODE, the machine mode of the argument;
- TYPE, the data type of the argument as a tree node or 0 if that is not known
- (which happens for C support library functions); and NAMED, which is 1 for an
- ordinary argument and 0 for nameless arguments that correspond to `...' in the
- called function's prototype.
-
- The value of the expression should either be a `reg' RTX for the hard
- register in which to pass the argument, or zero to pass the argument on the
- stack.
-
- For machines like the Vax and 68000, where normally all arguments are
- pushed, zero suffices as a definition.
-
- The usual way to make the ANSI library `stdarg.h' work on a machine where
- some arguments are usually passed in registers, is to cause nameless
- arguments to be passed on the stack instead. This is done by making
- `FUNCTION_ARG' return 0 whenever NAMED is 0.
-
- You may use the macro `MUST_PASS_IN_STACK (MODE, TYPE)' in the definition of
- this macro to determine if this argument is of a type that must be passed in
- the stack. If `REG_PARM_STACK_SPACE' is not defined and `FUNCTION_ARG'
- returns non-zero for such an argument, the compiler will abort. If
- `REG_PARM_STACK_SPACE' is defined, the argument will be computed in the
- stack and then loaded into a register. */
-#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
- frv_function_arg (&CUM, MODE, TYPE, NAMED, FALSE)
-
-/* Define this macro if the target machine has "register windows", so that the
- register in which a function sees an arguments is not necessarily the same
- as the one in which the caller passed the argument.
-
- For such machines, `FUNCTION_ARG' computes the register in which the caller
- passes the value, and `FUNCTION_INCOMING_ARG' should be defined in a similar
- fashion to tell the function being called where the arguments will arrive.
-
- If `FUNCTION_INCOMING_ARG' is not defined, `FUNCTION_ARG' serves both
- purposes. */
-
-#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
- frv_function_arg (&CUM, MODE, TYPE, NAMED, TRUE)
-
-/* A C expression for the number of words, at the beginning of an argument,
- must be put in registers. The value must be zero for arguments that are
- passed entirely in registers or that are entirely pushed on the stack.
-
- On some machines, certain arguments must be passed partially in registers
- and partially in memory. On these machines, typically the first N words of
- arguments are passed in registers, and the rest on the stack. If a
- multi-word argument (a `double' or a structure) crosses that boundary, its
- first few words must be passed in registers and the rest must be pushed.
- This macro tells the compiler when this occurs, and how many of the words
- should go in registers.
-
- `FUNCTION_ARG' for these arguments should return the first register to be
- used by the caller for this argument; likewise `FUNCTION_INCOMING_ARG', for
- the called function. */
-#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
- frv_function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
-
-/* extern int frv_function_arg_partial_nregs PARAMS ((CUMULATIVE_ARGS, int, Tree, int)); */
-
-/* A C expression that indicates when an argument must be passed by reference.
- If nonzero for an argument, a copy of that argument is made in memory and a
- pointer to the argument is passed instead of the argument itself. The
- pointer is passed in whatever way is appropriate for passing a pointer to
- that type.
-
- On machines where `REG_PARM_STACK_SPACE' is not defined, a suitable
- definition of this macro might be
- #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
- MUST_PASS_IN_STACK (MODE, TYPE) */
-#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
- frv_function_arg_pass_by_reference (&CUM, MODE, TYPE, NAMED)
-
-/* If defined, a C expression that indicates when it is the called function's
- responsibility to make a copy of arguments passed by invisible reference.
- Normally, the caller makes a copy and passes the address of the copy to the
- routine being called. When FUNCTION_ARG_CALLEE_COPIES is defined and is
- nonzero, the caller does not make a copy. Instead, it passes a pointer to
- the "live" value. The called function must not modify this value. If it
- can be determined that the value won't be modified, it need not make a copy;
- otherwise a copy must be made. */
-#define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
- frv_function_arg_callee_copies (&CUM, MODE, TYPE, NAMED)
-
-/* If defined, a C expression that indicates when it is more desirable to keep
- an argument passed by invisible reference as a reference, rather than
- copying it to a pseudo register. */
-#define FUNCTION_ARG_KEEP_AS_REFERENCE(CUM, MODE, TYPE, NAMED) \
- frv_function_arg_keep_as_reference (&CUM, MODE, TYPE, NAMED)
-
-/* A C type for declaring a variable that is used as the first argument of
- `FUNCTION_ARG' and other related values. For some target machines, the type
- `int' suffices and can hold the number of bytes of argument so far.
-
- There is no need to record in `CUMULATIVE_ARGS' anything about the arguments
- that have been passed on the stack. The compiler has other variables to
- keep track of that. For target machines on which all arguments are passed
- on the stack, there is no need to store anything in `CUMULATIVE_ARGS';
- however, the data structure must exist and should not be empty, so use
- `int'. */
-#define CUMULATIVE_ARGS int
-
-/* A C statement (sans semicolon) for initializing the variable CUM for the
- state at the beginning of the argument list. The variable has type
- `CUMULATIVE_ARGS'. The value of FNTYPE is the tree node for the data type
- of the function which will receive the args, or 0 if the args are to a
- compiler support library function. The value of INDIRECT is nonzero when
- processing an indirect call, for example a call through a function pointer.
- The value of INDIRECT is zero for a call to an explicitly named function, a
- library function call, or when `INIT_CUMULATIVE_ARGS' is used to find
- arguments for the function being compiled.
-
- When processing a call to a compiler support library function, LIBNAME
- identifies which one. It is a `symbol_ref' rtx which contains the name of
- the function, as a string. LIBNAME is 0 when an ordinary C function call is
- being processed. Thus, each time this macro is called, either LIBNAME or
- FNTYPE is nonzero, but never both of them at once. */
-
-#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
- frv_init_cumulative_args (&CUM, FNTYPE, LIBNAME, INDIRECT, FALSE)
-
-/* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
- arguments for the function being compiled. If this macro is undefined,
- `INIT_CUMULATIVE_ARGS' is used instead.
-
- The value passed for LIBNAME is always 0, since library routines with
- special calling conventions are never compiled with GNU CC. The argument
- LIBNAME exists for symmetry with `INIT_CUMULATIVE_ARGS'. */
-
-#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
- frv_init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, TRUE)
-
-/* A C statement (sans semicolon) to update the summarizer variable CUM to
- advance past an argument in the argument list. The values MODE, TYPE and
- NAMED describe that argument. Once this is done, the variable CUM is
- suitable for analyzing the *following* argument with `FUNCTION_ARG', etc.
-
- This macro need not do anything if the argument in question was passed on
- the stack. The compiler knows how to track the amount of stack space used
- for arguments without any special help. */
-#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
- frv_function_arg_advance (&CUM, MODE, TYPE, NAMED)
-
-/* If defined, a C expression that gives the alignment boundary, in bits, of an
- argument with the specified mode and type. If it is not defined,
- `PARM_BOUNDARY' is used for all arguments. */
-
-#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
- frv_function_arg_boundary (MODE, TYPE)
-
-/* A C expression that is nonzero if REGNO is the number of a hard register in
- which function arguments are sometimes passed. This does *not* include
- implicit arguments such as the static chain and the structure-value address.
- On many machines, no registers can be used for this purpose since all
- function arguments are pushed on the stack. */
-#define FUNCTION_ARG_REGNO_P(REGNO) \
- ((REGNO) >= FIRST_ARG_REGNUM && ((REGNO) <= LAST_ARG_REGNUM))
-
-
-/* How Scalar Function Values are Returned. */
-
-/* The number of the hard register that is used to return a scalar value from a
- function call. */
-#define RETURN_VALUE_REGNUM (GPR_FIRST + 8)
-
-/* A C expression to create an RTX representing the place where a function
- returns a value of data type VALTYPE. VALTYPE is a tree node representing a
- data type. Write `TYPE_MODE (VALTYPE)' to get the machine mode used to
- represent that type. On many machines, only the mode is relevant.
- (Actually, on most machines, scalar values are returned in the same place
- regardless of mode).
-
- If `PROMOTE_FUNCTION_RETURN' is defined, you must apply the same promotion
- rules specified in `PROMOTE_MODE' if VALTYPE is a scalar type.
-
- If the precise function being called is known, FUNC is a tree node
- (`FUNCTION_DECL') for it; otherwise, FUNC is a null pointer. This makes it
- possible to use a different value-returning convention for specific
- functions when all their calls are known.
-
- `FUNCTION_VALUE' is not used for return vales with aggregate data types,
- because these are returned in another way. See `STRUCT_VALUE_REGNUM' and
- related macros, below. */
-#define FUNCTION_VALUE(VALTYPE, FUNC) \
- gen_rtx (REG, TYPE_MODE (VALTYPE), RETURN_VALUE_REGNUM)
-
-/* A C expression to create an RTX representing the place where a library
- function returns a value of mode MODE.
-
- Note that "library function" in this context means a compiler support
- routine, used to perform arithmetic, whose name is known specially by the
- compiler and was not mentioned in the C code being compiled.
-
- The definition of `LIBRARY_VALUE' need not be concerned aggregate data
- types, because none of the library functions returns such types. */
-#define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, RETURN_VALUE_REGNUM)
-
-/* A C expression that is nonzero if REGNO is the number of a hard register in
- which the values of called function may come back.
-
- A register whose use for returning values is limited to serving as the
- second of a pair (for a value of type `double', say) need not be recognized
- by this macro. So for most machines, this definition suffices:
-
- #define FUNCTION_VALUE_REGNO_P(N) ((N) == RETURN)
-
- If the machine has register windows, so that the caller and the called
- function use different registers for the return value, this macro should
- recognize only the caller's register numbers. */
-#define FUNCTION_VALUE_REGNO_P(REGNO) ((REGNO) == RETURN_VALUE_REGNUM)
-
-
-/* How Large Values are Returned. */
-
-/* If the structure value address is passed in a register, then
- `STRUCT_VALUE_REGNUM' should be the number of that register. */
-#define STRUCT_VALUE_REGNUM (GPR_FIRST + 3)
-
-
-/* Function Entry and Exit. */
-
-/* Define this macro as a C expression that is nonzero if the return
- instruction or the function epilogue ignores the value of the stack pointer;
- in other words, if it is safe to delete an instruction to adjust the stack
- pointer before a return from the function.
-
- Note that this macro's value is relevant only for functions for which frame
- pointers are maintained. It is never safe to delete a final stack
- adjustment in a function that has no frame pointer, and the compiler knows
- this regardless of `EXIT_IGNORE_STACK'. */
-#define EXIT_IGNORE_STACK 1
-
-/* A C compound statement that outputs the assembler code for a thunk function,
- used to implement C++ virtual function calls with multiple inheritance. The
- thunk acts as a wrapper around a virtual function, adjusting the implicit
- object parameter before handing control off to the real function.
-
- First, emit code to add the integer DELTA to the location that contains the
- incoming first argument. Assume that this argument contains a pointer, and
- is the one used to pass the `this' pointer in C++. This is the incoming
- argument *before* the function prologue, e.g. `%o0' on a sparc. The
- addition must preserve the values of all other incoming arguments.
-
- After the addition, emit code to jump to FUNCTION, which is a
- `FUNCTION_DECL'. This is a direct pure jump, not a call, and does not touch
- the return address. Hence returning from FUNCTION will return to whoever
- called the current `thunk'.
-
- The effect must be as if FUNCTION had been called directly with the adjusted
- first argument. This macro is responsible for emitting all of the code for
- a thunk function; `FUNCTION_PROLOGUE' and `FUNCTION_EPILOGUE' are not
- invoked.
-
- The THUNK_FNDECL is redundant. (DELTA and FUNCTION have already been
- extracted from it.) It might possibly be useful on some targets, but
- probably not.
-
- If you do not define this macro, the target-independent code in the C++
- frontend will generate a less efficient heavyweight thunk that calls
- FUNCTION instead of jumping to it. The generic approach does not support
- varargs. */
-#define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
-frv_asm_output_mi_thunk (FILE, THUNK_FNDECL, (long)DELTA, FUNCTION)
-
-
-/* Generating Code for Profiling. */
-
-/* A C statement or compound statement to output to FILE some assembler code to
- call the profiling subroutine `mcount'. Before calling, the assembler code
- must load the address of a counter variable into a register where `mcount'
- expects to find the address. The name of this variable is `LP' followed by
- the number LABELNO, so you would generate the name using `LP%d' in a
- `fprintf'.
-
- The details of how the address should be passed to `mcount' are determined
- by your operating system environment, not by GNU CC. To figure them out,
- compile a small program for profiling using the system's installed C
- compiler and look at the assembler code that results.
-
- This declaration must be present, but it can be an abort if profiling is
- not implemented. */
-
-#define FUNCTION_PROFILER(FILE, LABELNO) abort ()
-
-
-/* Implementing the Varargs Macros. */
-
-/* If defined, is a C expression that produces the machine-specific code for a
- call to `__builtin_saveregs'. This code will be moved to the very beginning
- of the function, before any parameter access are made. The return value of
- this function should be an RTX that contains the value to use as the return
- of `__builtin_saveregs'.
-
- If this macro is not defined, the compiler will output an ordinary call to
- the library function `__builtin_saveregs'. */
-
-#define EXPAND_BUILTIN_SAVEREGS() frv_expand_builtin_saveregs ()
-
-/* This macro offers an alternative to using `__builtin_saveregs' and defining
- the macro `EXPAND_BUILTIN_SAVEREGS'. Use it to store the anonymous register
- arguments into the stack so that all the arguments appear to have been
- passed consecutively on the stack. Once this is done, you can use the
- standard implementation of varargs that works for machines that pass all
- their arguments on the stack.
-
- The argument ARGS_SO_FAR is the `CUMULATIVE_ARGS' data structure, containing
- the values that obtain after processing of the named arguments. The
- arguments MODE and TYPE describe the last named argument--its machine mode
- and its data type as a tree node.
-
- The macro implementation should do two things: first, push onto the stack
- all the argument registers *not* used for the named arguments, and second,
- store the size of the data thus pushed into the `int'-valued variable whose
- name is supplied as the argument PRETEND_ARGS_SIZE. The value that you
- store here will serve as additional offset for setting up the stack frame.
-
- Because you must generate code to push the anonymous arguments at compile
- time without knowing their data types, `SETUP_INCOMING_VARARGS' is only
- useful on machines that have just a single category of argument register and
- use it uniformly for all data types.
-
- If the argument SECOND_TIME is nonzero, it means that the arguments of the
- function are being analyzed for the second time. This happens for an inline
- function, which is not actually compiled until the end of the source file.
- The macro `SETUP_INCOMING_VARARGS' should not generate any instructions in
- this case. */
-#define SETUP_INCOMING_VARARGS(ARGS_SO_FAR, MODE, TYPE, PRETEND_ARGS_SIZE, SECOND_TIME) \
- frv_setup_incoming_varargs (& ARGS_SO_FAR, (int) MODE, TYPE, \
- & PRETEND_ARGS_SIZE, SECOND_TIME)
-
-/* Implement the stdarg/varargs va_start macro. STDARG_P is non-zero if this
- is stdarg.h instead of varargs.h. VALIST is the tree of the va_list
- variable to initialize. NEXTARG is the machine independent notion of the
- 'next' argument after the variable arguments. If not defined, a standard
- implementation will be defined that works for arguments passed on the stack. */
-
-#define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
- (frv_expand_builtin_va_start(VALIST, NEXTARG))
-
-/* Implement the stdarg/varargs va_arg macro. VALIST is the variable of type
- va_list as a tree, TYPE is the type passed to va_arg. */
-
-#define EXPAND_BUILTIN_VA_ARG(VALIST, TYPE) \
- (frv_expand_builtin_va_arg (VALIST, TYPE))
-
-
-/* Trampolines for Nested Functions. */
-
-/* A C expression for the size in bytes of the trampoline, as an integer. */
-#define TRAMPOLINE_SIZE frv_trampoline_size ()
-
-/* Alignment required for trampolines, in bits.
-
- If you don't define this macro, the value of `BIGGEST_ALIGNMENT' is used for
- aligning trampolines. */
-#define TRAMPOLINE_ALIGNMENT 32
-
-/* A C statement to initialize the variable parts of a trampoline. ADDR is an
- RTX for the address of the trampoline; FNADDR is an RTX for the address of
- the nested function; STATIC_CHAIN is an RTX for the static chain value that
- should be passed to the function when it is called. */
-#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, STATIC_CHAIN) \
- frv_initialize_trampoline (ADDR, FNADDR, STATIC_CHAIN)
-
-/* Define this macro if trampolines need a special subroutine to do their work.
- The macro should expand to a series of `asm' statements which will be
- compiled with GNU CC. They go in a library function named
- `__transfer_from_trampoline'.
-
- If you need to avoid executing the ordinary prologue code of a compiled C
- function when you jump to the subroutine, you can do so by placing a special
- label of your own in the assembler code. Use one `asm' statement to
- generate an assembler label, and another to make the label global. Then
- trampolines can use that label to jump directly to your special assembler
- code. */
-
-#ifdef __FRV_UNDERSCORE__
-#define TRAMPOLINE_TEMPLATE_NAME "___trampoline_template"
-#else
-#define TRAMPOLINE_TEMPLATE_NAME "__trampoline_template"
-#endif
-
-#define TRANSFER_FROM_TRAMPOLINE \
-extern int _write (int, const void *, unsigned); \
- \
-void \
-__trampoline_setup (addr, size, fnaddr, sc) \
- short * addr; \
- int size; \
- int fnaddr; \
- int sc; \
-{ \
- extern short __trampoline_template[]; \
- short * to = addr; \
- short * from = &__trampoline_template[0]; \
- int i; \
- \
- if (size < 20) \
- { \
- _write (2, "__trampoline_setup bad size\n", \
- sizeof ("__trampoline_setup bad size\n") - 1); \
- exit (-1); \
- } \
- \
- to[0] = from[0]; \
- to[1] = (short)(fnaddr); \
- to[2] = from[2]; \
- to[3] = (short)(sc); \
- to[4] = from[4]; \
- to[5] = (short)(fnaddr >> 16); \
- to[6] = from[6]; \
- to[7] = (short)(sc >> 16); \
- to[8] = from[8]; \
- to[9] = from[9]; \
- \
- for (i = 0; i < 20; i++) \
- __asm__ volatile ("dcf @(%0,%1)\n\tici @(%0,%1)" :: "r" (to), "r" (i)); \
-} \
- \
-__asm__("\n" \
- "\t.globl " TRAMPOLINE_TEMPLATE_NAME "\n" \
- "\t.text\n" \
- TRAMPOLINE_TEMPLATE_NAME ":\n" \
- "\tsetlos #0, gr6\n" /* jump register */ \
- "\tsetlos #0, gr7\n" /* static chain */ \
- "\tsethi #0, gr6\n" \
- "\tsethi #0, gr7\n" \
- "\tjmpl @(gr0,gr6)\n");
-
-
-/* Implicit Calls to Library Routines. */
-
-/* A C string constant giving the name of the function to call for the
- remainder in division of one signed full-word by another. If you do not
- define this macro, the default name is used, which is `__modsi3', a function
- defined in `libgcc.a'. */
-#define MODSI3_LIBCALL "__modi"
-
-/* A C string constant giving the name of the function to call for the
- remainder in division of one unsigned full-word by another. If you do not
- define this macro, the default name is used, which is `__umodsi3', a
- function defined in `libgcc.a'. */
-#define UMODSI3_LIBCALL "__umodi"
-
-/* A C string constant giving the name of the function to call for
- multiplication of one signed double-word by another. If you do not define
- this macro, the default name is used, which is `__muldi3', a function
- defined in `libgcc.a'. */
-#define MULDI3_LIBCALL "__mulll"
-
-/* A C string constant giving the name of the function to call for division of
- one signed double-word by another. If you do not define this macro, the
- default name is used, which is `__divdi3', a function defined in `libgcc.a'. */
-#define DIVDI3_LIBCALL "__divll"
-
-/* A C string constant giving the name of the function to call for division of
- one unsigned full-word by another. If you do not define this macro, the
- default name is used, which is `__udivdi3', a function defined in
- `libgcc.a'. */
-#define UDIVDI3_LIBCALL "__udivll"
-
-/* A C string constant giving the name of the function to call for the
- remainder in division of one signed double-word by another. If you do not
- define this macro, the default name is used, which is `__moddi3', a function
- defined in `libgcc.a'. */
-#define MODDI3_LIBCALL "__modll"
-
-/* A C string constant giving the name of the function to call for the
- remainder in division of one unsigned full-word by another. If you do not
- define this macro, the default name is used, which is `__umoddi3', a
- function defined in `libgcc.a'. */
-#define UMODDI3_LIBCALL "__umodll"
-
-/* Define this macro as a C statement that declares additional library routines
- renames existing ones. `init_optabs' calls this macro after initializing all
- the normal library routines. */
-#define INIT_TARGET_OPTABS \
- do \
- { \
- add_optab->handlers [(int) DImode].libfunc \
- = init_one_libfunc ("__addll"); \
- sub_optab->handlers [(int) DImode].libfunc \
- = init_one_libfunc ("__subll"); \
- and_optab->handlers [(int) DImode].libfunc \
- = init_one_libfunc ("__andll"); \
- ior_optab->handlers [(int) DImode].libfunc \
- = init_one_libfunc ("__orll"); \
- xor_optab->handlers [(int) DImode].libfunc \
- = init_one_libfunc ("__xorll"); \
- one_cmpl_optab->handlers [(int) DImode].libfunc \
- = init_one_libfunc ("__notll"); \
- add_optab->handlers [(int) SFmode].libfunc \
- = init_one_libfunc ("__addf"); \
- sub_optab->handlers [(int) SFmode].libfunc \
- = init_one_libfunc ("__subf"); \
- smul_optab->handlers [(int) SFmode].libfunc \
- = init_one_libfunc ("__mulf"); \
- sdiv_optab->handlers [(int) SFmode].libfunc \
- = init_one_libfunc ("__divf"); \
- add_optab->handlers [(int) DFmode].libfunc \
- = init_one_libfunc ("__addd"); \
- sub_optab->handlers [(int) DFmode].libfunc \
- = init_one_libfunc ("__subd"); \
- smul_optab->handlers [(int) DFmode].libfunc \
- = init_one_libfunc ("__muld"); \
- sdiv_optab->handlers [(int) DFmode].libfunc \
- = init_one_libfunc ("__divd"); \
- fixsfsi_libfunc = init_one_libfunc ("__ftoi"); \
- fixunssfsi_libfunc = init_one_libfunc ("__ftoui"); \
- fixsfdi_libfunc = init_one_libfunc ("__ftoll"); \
- fixunssfdi_libfunc = init_one_libfunc ("__ftoull"); \
- fixdfsi_libfunc = init_one_libfunc ("__dtoi"); \
- fixunsdfsi_libfunc = init_one_libfunc ("__dtoui"); \
- fixdfdi_libfunc = init_one_libfunc ("__dtoll"); \
- fixunsdfdi_libfunc = init_one_libfunc ("__dtoull"); \
- floatsisf_libfunc = init_one_libfunc ("__itof"); \
- floatdisf_libfunc = init_one_libfunc ("__lltof"); \
- floatsidf_libfunc = init_one_libfunc ("__itod"); \
- floatdidf_libfunc = init_one_libfunc ("__lltod"); \
- extendsfdf2_libfunc = init_one_libfunc ("__ftod"); \
- truncdfsf2_libfunc = init_one_libfunc ("__dtof"); \
- } \
- while (0)
-
-
-/* Addressing Modes. */
-
-/* A C expression that is 1 if the RTX X is a constant which is a valid
- address. On most machines, this can be defined as `CONSTANT_P (X)', but a
- few machines are more restrictive in which constant addresses are supported.
-
- `CONSTANT_P' accepts integer-values expressions whose values are not
- explicitly known, such as `symbol_ref', `label_ref', and `high' expressions
- and `const' arithmetic expressions, in addition to `const_int' and
- `const_double' expressions. */
-#define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
-
-/* A number, the maximum number of registers that can appear in a valid memory
- address. Note that it is up to you to specify a value equal to the maximum
- number that `GO_IF_LEGITIMATE_ADDRESS' would ever accept. */
-#define MAX_REGS_PER_ADDRESS 2
-
-/* A C compound statement with a conditional `goto LABEL;' executed if X (an
- RTX) is a legitimate memory address on the target machine for a memory
- operand of mode MODE.
-
- It usually pays to define several simpler macros to serve as subroutines for
- this one. Otherwise it may be too complicated to understand.
-
- This macro must exist in two variants: a strict variant and a non-strict
- one. The strict variant is used in the reload pass. It must be defined so
- that any pseudo-register that has not been allocated a hard register is
- considered a memory reference. In contexts where some kind of register is
- required, a pseudo-register with no hard register must be rejected.
-
- The non-strict variant is used in other passes. It must be defined to
- accept all pseudo-registers in every context where some kind of register is
- required.
-
- Compiler source files that want to use the strict variant of this macro
- define the macro `REG_OK_STRICT'. You should use an `#ifdef REG_OK_STRICT'
- conditional to define the strict variant in that case and the non-strict
- variant otherwise.
-
- Subroutines to check for acceptable registers for various purposes (one for
- base registers, one for index registers, and so on) are typically among the
- subroutines used to define `GO_IF_LEGITIMATE_ADDRESS'. Then only these
- subroutine macros need have two variants; the higher levels of macros may be
- the same whether strict or not.
-
- Normally, constant addresses which are the sum of a `symbol_ref' and an
- integer are stored inside a `const' RTX to mark them as constant.
- Therefore, there is no need to recognize such sums specifically as
- legitimate addresses. Normally you would simply recognize any `const' as
- legitimate.
-
- Usually `PRINT_OPERAND_ADDRESS' is not prepared to handle constant sums that
- are not marked with `const'. It assumes that a naked `plus' indicates
- indexing. If so, then you *must* reject such naked constant sums as
- illegitimate addresses, so that none of them will be given to
- `PRINT_OPERAND_ADDRESS'.
-
- On some machines, whether a symbolic address is legitimate depends on the
- section that the address refers to. On these machines, define the macro
- `ENCODE_SECTION_INFO' to store the information into the `symbol_ref', and
- then check for it here. When you see a `const', you will have to look
- inside it to find the `symbol_ref' in order to determine the section.
-
- The best way to modify the name string is by adding text to the beginning,
- with suitable punctuation to prevent any ambiguity. Allocate the new name
- in `saveable_obstack'. You will have to modify `ASM_OUTPUT_LABELREF' to
- remove and decode the added text and output the name accordingly, and define
- `(* targetm.strip_name_encoding)' to access the original name string.
-
- You can check the information stored here into the `symbol_ref' in the
- definitions of the macros `GO_IF_LEGITIMATE_ADDRESS' and
- `PRINT_OPERAND_ADDRESS'. */
-
-#ifdef REG_OK_STRICT
-#define REG_OK_STRICT_P 1
-#else
-#define REG_OK_STRICT_P 0
-#endif
-
-#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
- do \
- { \
- if (frv_legitimate_address_p (MODE, X, REG_OK_STRICT_P, FALSE)) \
- goto LABEL; \
- } \
- while (0)
-
-/* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
- use as a base register. For hard registers, it should always accept those
- which the hardware permits and reject the others. Whether the macro accepts
- or rejects pseudo registers must be controlled by `REG_OK_STRICT' as
- described above. This usually requires two variant definitions, of which
- `REG_OK_STRICT' controls the one actually used. */
-#ifdef REG_OK_STRICT
-#define REG_OK_FOR_BASE_P(X) GPR_P (REGNO (X))
-#else
-#define REG_OK_FOR_BASE_P(X) GPR_AP_OR_PSEUDO_P (REGNO (X))
-#endif
-
-/* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
- use as an index register.
-
- The difference between an index register and a base register is that the
- index register may be scaled. If an address involves the sum of two
- registers, neither one of them scaled, then either one may be labeled the
- "base" and the other the "index"; but whichever labeling is used must fit
- the machine's constraints of which registers may serve in each capacity.
- The compiler will try both labelings, looking for one that is valid, and
- will reload one or both registers only if neither labeling works. */
-#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
-
-/* A C compound statement that attempts to replace X with a valid memory
- address for an operand of mode MODE. WIN will be a C statement label
- elsewhere in the code; the macro definition may use
-
- GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN);
-
- to avoid further processing if the address has become legitimate.
-
- X will always be the result of a call to `break_out_memory_refs', and OLDX
- will be the operand that was given to that function to produce X.
-
- The code generated by this macro should not alter the substructure of X. If
- it transforms X into a more legitimate form, it should assign X (which will
- always be a C variable) a new value.
-
- It is not necessary for this macro to come up with a legitimate address.
- The compiler has standard ways of doing so in all cases. In fact, it is
- safe for this macro to do nothing. But often a machine-dependent strategy
- can generate better code. */
-
-/* On the FRV, we use it to convert small data and pic references into using
- the appropriate pointer in the address. */
-#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
- do \
- { \
- rtx newx = frv_legitimize_address (X, OLDX, MODE); \
- \
- if (newx) \
- { \
- (X) = newx; \
- goto WIN; \
- } \
- } \
- while (0)
-
-/* A C statement or compound statement with a conditional `goto LABEL;'
- executed if memory address X (an RTX) can have different meanings depending
- on the machine mode of the memory reference it is used for or if the address
- is valid for some modes but not others.
-
- Autoincrement and autodecrement addresses typically have mode-dependent
- effects because the amount of the increment or decrement is the size of the
- operand being addressed. Some machines have other mode-dependent addresses.
- Many RISC machines have no mode-dependent addresses.
-
- You may assume that ADDR is a valid address for the machine. */
-#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)
-
-/* A C expression that is nonzero if X is a legitimate constant for an
- immediate operand on the target machine. You can assume that X satisfies
- `CONSTANT_P', so you need not check this. In fact, `1' is a suitable
- definition for this macro on machines where anything `CONSTANT_P' is valid. */
-#define LEGITIMATE_CONSTANT_P(X) frv_legitimate_constant_p (X)
-
-/* The load-and-update commands allow pre-modification in addresses.
- The index has to be in a register. */
-#define HAVE_PRE_MODIFY_REG 1
-
-
-/* Returns a mode from class `MODE_CC' to be used when comparison operation
- code OP is applied to rtx X and Y. For example, on the Sparc,
- `SELECT_CC_MODE' is defined as (see *note Jump Patterns::. for a
- description of the reason for this definition)
-
- #define SELECT_CC_MODE(OP,X,Y) \
- (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
- ? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \
- : ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS \
- || GET_CODE (X) == NEG) \
- ? CC_NOOVmode : CCmode))
-
- You need not define this macro if `EXTRA_CC_MODES' is not defined. */
-#define SELECT_CC_MODE(OP, X, Y) \
- (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
- ? CC_FPmode \
- : (((OP) == LEU || (OP) == GTU || (OP) == LTU || (OP) == GEU) \
- ? CC_UNSmode \
- : CCmode))
-
-/* A C expression whose value is one if it is always safe to reverse a
- comparison whose mode is MODE. If `SELECT_CC_MODE' can ever return MODE for
- a floating-point inequality comparison, then `REVERSIBLE_CC_MODE (MODE)'
- must be zero.
-
- You need not define this macro if it would always returns zero or if the
- floating-point format is anything other than `IEEE_FLOAT_FORMAT'. For
- example, here is the definition used on the Sparc, where floating-point
- inequality comparisons are always given `CCFPEmode':
-
- #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode) */
-
-/* On frv, don't consider floating point comparisons to be reversible. In
- theory, fp equality comparisons can be reversible */
-#define REVERSIBLE_CC_MODE(MODE) ((MODE) == CCmode || (MODE) == CC_UNSmode)
-
-/* Frv CCR_MODE's are not reversible. */
-#define REVERSE_CONDEXEC_PREDICATES_P(x,y) 0
-
-
-/* Describing Relative Costs of Operations. */
-
-/* A part of a C `switch' statement that describes the relative costs of
- constant RTL expressions. It must contain `case' labels for expression
- codes `const_int', `const', `symbol_ref', `label_ref' and `const_double'.
- Each case must ultimately reach a `return' statement to return the relative
- cost of the use of that kind of constant value in an expression. The cost
- may depend on the precise value of the constant, which is available for
- examination in X, and the rtx code of the expression in which it is
- contained, found in OUTER_CODE.
-
- CODE is the expression code--redundant, since it can be obtained with
- `GET_CODE (X)'. */
-#define CONST_COSTS(X, CODE, OUTER_CODE) \
- case CONST: \
- case LABEL_REF: \
- case SYMBOL_REF: \
- case CONST_DOUBLE: \
- return COSTS_N_INSNS (2); \
- \
- case CONST_INT: \
- /* Make 12 bit integers really cheap */ \
- return IN_RANGE_P (INTVAL (X), -2048, 2047) ? 0 : COSTS_N_INSNS (2); \
-
-/* Like `CONST_COSTS' but applies to nonconstant RTL expressions. This can be
- used, for example, to indicate how costly a multiply instruction is. In
- writing this macro, you can use the construct `COSTS_N_INSNS (N)' to specify
- a cost equal to N fast instructions. OUTER_CODE is the code of the
- expression in which X is contained.
-
- This macro is optional; do not define it if the default cost assumptions are
- adequate for the target machine. */
-#define RTX_COSTS(X, CODE, OUTER_CODE) \
- case PLUS: \
- case MINUS: \
- case AND: \
- case IOR: \
- case XOR: \
- case ASHIFT: \
- case ASHIFTRT: \
- case LSHIFTRT: \
- case NOT: \
- case NEG: \
- case COMPARE: \
- if (GET_MODE (X) == SImode) \
- return COSTS_N_INSNS (1); \
- else if (GET_MODE (X) == DImode) \
- return COSTS_N_INSNS (2); \
- else \
- return COSTS_N_INSNS (3); /* guess */ \
- \
- case MULT: \
- if (GET_MODE (X) == SImode) \
- return COSTS_N_INSNS (2); \
- else \
- return COSTS_N_INSNS (6); /* guess */ \
- \
- case DIV: \
- case UDIV: \
- return COSTS_N_INSNS (18);
-
-/* A C expression for the cost of moving data from a register in class FROM to
- one in class TO. The classes are expressed using the enumeration values
- such as `GENERAL_REGS'. A value of 4 is the default; other values are
- interpreted relative to that.
-
- It is not required that the cost always equal 2 when FROM is the same as TO;
- on some machines it is expensive to move between registers if they are not
- general registers.
-
- If reload sees an insn consisting of a single `set' between two hard
- registers, and if `REGISTER_MOVE_COST' applied to their classes returns a
- value of 2, reload does not check to ensure that the constraints of the insn
- are met. Setting a cost of other than 2 will allow reload to verify that
- the constraints are met. You should do this if the `movM' pattern's
- constraints do not allow such copying. */
-#define REGISTER_MOVE_COST(MODE, FROM, TO) frv_register_move_cost (FROM, TO)
-
-/* A C expression for the cost of moving data of mode M between a register and
- memory. A value of 2 is the default; this cost is relative to those in
- `REGISTER_MOVE_COST'.
-
- If moving between registers and memory is more expensive than between two
- registers, you should define this macro to express the relative cost. */
-#define MEMORY_MOVE_COST(M,C,I) 4
-
-/* A C expression for the cost of a branch instruction. A value of 1 is the
- default; other values are interpreted relative to that. */
-
-/* Here are additional macros which do not specify precise relative costs, but
- only that certain actions are more expensive than GNU CC would ordinarily
- expect. */
-
-/* We used to default the branch cost to 2, but I changed it to 1, to avoid
- generating SCC instructions and or/and-ing them together, and then doing the
- branch on the result, which collectively generate much worse code. */
-#ifndef DEFAULT_BRANCH_COST
-#define DEFAULT_BRANCH_COST 1
-#endif
-
-#define BRANCH_COST frv_branch_cost_int
-
-/* Define this macro as a C expression which is nonzero if accessing less than
- a word of memory (i.e. a `char' or a `short') is no faster than accessing a
- word of memory, i.e., if such access require more than one instruction or if
- there is no difference in cost between byte and (aligned) word loads.
-
- When this macro is not defined, the compiler will access a field by finding
- the smallest containing object; when it is defined, a fullword load will be
- used if alignment permits. Unless bytes accesses are faster than word
- accesses, using word accesses is preferable since it may eliminate
- subsequent memory access if subsequent accesses occur to other fields in the
- same word of the structure, but to different bytes. */
-#define SLOW_BYTE_ACCESS 1
-
-/* Define this macro if it is as good or better to call a constant function
- address than to call an address kept in a register. */
-#define NO_FUNCTION_CSE
-
-/* Define this macro if it is as good or better for a function to call itself
- with an explicit address than to call an address kept in a register. */
-#define NO_RECURSIVE_FUNCTION_CSE
-
-
-/* Dividing the output into sections. */
-
-/* A C expression whose value is a string containing the assembler operation
- that should precede instructions and read-only data. Normally `".text"' is
- right. */
-#define TEXT_SECTION_ASM_OP "\t.text"
-
-/* A C expression whose value is a string containing the assembler operation to
- identify the following data as writable initialized data. Normally
- `".data"' is right. */
-#define DATA_SECTION_ASM_OP "\t.data"
-
-/* If defined, a C expression whose value is a string containing the
- assembler operation to identify the following data as
- uninitialized global data. If not defined, and neither
- `ASM_OUTPUT_BSS' nor `ASM_OUTPUT_ALIGNED_BSS' are defined,
- uninitialized global data will be output in the data section if
- `-fno-common' is passed, otherwise `ASM_OUTPUT_COMMON' will be
- used. */
-#define BSS_SECTION_ASM_OP "\t.section .bss,\"aw\""
-
-/* Short Data Support */
-#define SDATA_SECTION_ASM_OP "\t.section .sdata,\"aw\""
-#define SBSS_SECTION_ASM_OP "\t.section .sbss,\"aw\""
-
-/* On svr4, we *do* have support for the .init and .fini sections, and we
- can put stuff in there to be executed before and after `main'. We let
- crtstuff.c and other files know this by defining the following symbols.
- The definitions say how to change sections to the .init and .fini
- sections. This is the same for all known svr4 assemblers.
-
- The standard System V.4 macros will work, but they look ugly in the
- assembly output, so redefine them. */
-
-#undef INIT_SECTION_ASM_OP
-#undef FINI_SECTION_ASM_OP
-#define INIT_SECTION_ASM_OP "\t.section .init,\"ax\""
-#define FINI_SECTION_ASM_OP "\t.section .fini,\"ax\""
-
-/* A C expression whose value is a string containing the assembler operation to
- switch to the fixup section that records all initialized pointers in a -fpic
- program so they can be changed program startup time if the program is loaded
- at a different address than linked for. */
-#define FIXUP_SECTION_ASM_OP "\t.section .rofixup,\"a\""
-
-/* A list of names for sections other than the standard two, which are
- `in_text' and `in_data'. You need not define this macro
- on a system with no other sections (that GCC needs to use). */
-#undef EXTRA_SECTIONS
-#define EXTRA_SECTIONS in_sdata, in_sbss, in_const, in_fixup
-
-/* One or more functions to be defined in "varasm.c". These
- functions should do jobs analogous to those of `text_section' and
- `data_section', for your additional sections. Do not define this
- macro if you do not define `EXTRA_SECTIONS'. */
-#undef EXTRA_SECTION_FUNCTIONS
-#define EXTRA_SECTION_FUNCTIONS \
-SDATA_SECTION_FUNCTION \
-SBSS_SECTION_FUNCTION \
-FIXUP_SECTION_FUNCTION
-
-
-#define SDATA_SECTION_FUNCTION \
-void \
-sdata_section () \
-{ \
- if (in_section != in_sdata) \
- { \
- fprintf (asm_out_file, "%s\n", SDATA_SECTION_ASM_OP); \
- in_section = in_sdata; \
- } \
-} \
-
-#define SBSS_SECTION_FUNCTION \
-void \
-sbss_section () \
-{ \
- if (in_section != in_sbss) \
- { \
- fprintf (asm_out_file, "%s\n", SBSS_SECTION_ASM_OP); \
- in_section = in_sbss; \
- } \
-} \
-
-#define FIXUP_SECTION_FUNCTION \
-void \
-fixup_section () \
-{ \
- if (in_section != in_fixup) \
- { \
- fprintf (asm_out_file, "%s\n", FIXUP_SECTION_ASM_OP); \
- in_section = in_fixup; \
- } \
-} \
-
-#define SDATA_FLAG_CHAR '@'
-
-#define SDATA_NAME_P(NAME) (*(NAME) == SDATA_FLAG_CHAR)
-
-/* Position Independent Code. */
-
-/* A C expression that is nonzero if X is a legitimate immediate operand on the
- target machine when generating position independent code. You can assume
- that X satisfies `CONSTANT_P', so you need not check this. You can also
- assume FLAG_PIC is true, so you need not check it either. You need not
- define this macro if all constants (including `SYMBOL_REF') can be immediate
- operands when generating position independent code. */
-#define LEGITIMATE_PIC_OPERAND_P(X) \
- ( GET_CODE (X) == CONST_INT \
- || GET_CODE (X) == CONST_DOUBLE \
- || (GET_CODE (X) == HIGH && GET_CODE (XEXP (X, 0)) == CONST_INT) \
- || GET_CODE (X) == CONSTANT_P_RTX)
-
-
-/* The Overall Framework of an Assembler File. */
-
-/* A C string constant describing how to begin a comment in the target
- assembler language. The compiler assumes that the comment will end at the
- end of the line. */
-#define ASM_COMMENT_START ";"
-
-/* A C string constant for text to be output before each `asm' statement or
- group of consecutive ones. Normally this is `"#APP"', which is a comment
- that has no effect on most assemblers but tells the GNU assembler that it
- must check the lines that follow for all valid assembler constructs. */
-#define ASM_APP_ON "#APP\n"
-
-/* A C string constant for text to be output after each `asm' statement or
- group of consecutive ones. Normally this is `"#NO_APP"', which tells the
- GNU assembler to resume making the time-saving assumptions that are valid
- for ordinary compiler output. */
-#define ASM_APP_OFF "#NO_APP\n"
-
-
-/* Output of Data. */
-
-/* This is how to output a label to dwarf/dwarf2. */
-#define ASM_OUTPUT_DWARF_ADDR(STREAM, LABEL) \
-do { \
- fprintf (STREAM, "\t.picptr\t"); \
- assemble_name (STREAM, LABEL); \
-} while (0)
-
-/* Whether to emit the gas specific dwarf2 line number support. */
-#define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DEBUG_LOC)
-
-/* Output of Uninitialized Variables. */
-
-/* A C statement (sans semicolon) to output to the stdio stream STREAM the
- assembler definition of a local-common-label named NAME whose size is SIZE
- bytes. The variable ROUNDED is the size rounded up to whatever alignment
- the caller wants.
-
- Use the expression `assemble_name (STREAM, NAME)' to output the name itself;
- before and after that, output the additional assembler syntax for defining
- the name, and a newline.
-
- This macro controls how the assembler definitions of uninitialized static
- variables are output. */
-#undef ASM_OUTPUT_LOCAL
-
-/* Like `ASM_OUTPUT_LOCAL' except takes the required alignment as a separate,
- explicit argument. If you define this macro, it is used in place of
- `ASM_OUTPUT_LOCAL', and gives you more flexibility in handling the required
- alignment of the variable. The alignment is specified as the number of
- bits.
-
- Defined in svr4.h. */
-#undef ASM_OUTPUT_ALIGNED_LOCAL
-
-/* This is for final.c, because it is used by ASM_DECLARE_OBJECT_NAME. */
-extern int size_directive_output;
-
-/* Like `ASM_OUTPUT_ALIGNED_LOCAL' except that it takes an additional
- parameter - the DECL of variable to be output, if there is one.
- This macro can be called with DECL == NULL_TREE. If you define
- this macro, it is used in place of `ASM_OUTPUT_LOCAL' and
- `ASM_OUTPUT_ALIGNED_LOCAL', and gives you more flexibility in
- handling the destination of the variable. */
-#undef ASM_OUTPUT_ALIGNED_DECL_LOCAL
-#define ASM_OUTPUT_ALIGNED_DECL_LOCAL(STREAM, DECL, NAME, SIZE, ALIGN) \
-do { \
- if (SDATA_NAME_P (NAME)) \
- sbss_section (); \
- else \
- bss_section (); \
- ASM_OUTPUT_ALIGN (STREAM, floor_log2 ((ALIGN) / BITS_PER_UNIT)); \
- ASM_DECLARE_OBJECT_NAME (STREAM, NAME, DECL); \
- ASM_OUTPUT_SKIP (STREAM, (SIZE) ? (SIZE) : 1); \
-} while (0)
-
-
-/* Output and Generation of Labels. */
-
-/* A C statement (sans semicolon) to output to the stdio stream STREAM the
- assembler definition of a label named NAME. Use the expression
- `assemble_name (STREAM, NAME)' to output the name itself; before and after
- that, output the additional assembler syntax for defining the name, and a
- newline. */
-#define ASM_OUTPUT_LABEL(STREAM, NAME) \
-do { \
- assemble_name (STREAM, NAME); \
- fputs (":\n", STREAM); \
-} while (0)
-
-/* Globalizing directive for a label. */
-#define GLOBAL_ASM_OP "\t.globl "
-
-/* A C statement (sans semicolon) to output to the stdio stream STREAM a
- reference in assembler syntax to a label named NAME. This should add `_' to
- the front of the name, if that is customary on your operating system, as it
- is in most Berkeley Unix systems. This macro is used in `assemble_name'. */
-#undef ASM_OUTPUT_LABELREF
-#define ASM_OUTPUT_LABELREF(STREAM, NAME) \
-do { \
- const char *_name = (NAME); \
- while (*_name == '*' || *_name == SDATA_FLAG_CHAR) \
- _name++; \
- asm_fprintf (STREAM, "%U%s", _name); \
-} while (0)
-
-/* A C statement to store into the string STRING a label whose name is made
- from the string PREFIX and the number NUM.
-
- This string, when output subsequently by `assemble_name', should produce the
- output that `ASM_OUTPUT_INTERNAL_LABEL' would produce with the same PREFIX
- and NUM.
-
- If the string begins with `*', then `assemble_name' will output the rest of
- the string unchanged. It is often convenient for
- `ASM_GENERATE_INTERNAL_LABEL' to use `*' in this way. If the string doesn't
- start with `*', then `ASM_OUTPUT_LABELREF' gets to output the string, and
- may change it. (Of course, `ASM_OUTPUT_LABELREF' is also part of your
- machine description, so you should know what it does on your machine.)
-
- Defined in svr4.h. */
-#undef ASM_GENERATE_INTERNAL_LABEL
-#define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
-do { \
- sprintf (LABEL, "*.%s%ld", PREFIX, (long)NUM); \
-} while (0)
-
-/* A C expression to assign to OUTVAR (which is a variable of type `char *') a
- newly allocated string made from the string NAME and the number NUMBER, with
- some suitable punctuation added. Use `alloca' to get space for the string.
-
- The string will be used as an argument to `ASM_OUTPUT_LABELREF' to produce
- an assembler label for an internal static variable whose name is NAME.
- Therefore, the string must be such as to result in valid assembler code.
- The argument NUMBER is different each time this macro is executed; it
- prevents conflicts between similarly-named internal static variables in
- different scopes.
-
- Ideally this string should not be a valid C identifier, to prevent any
- conflict with the user's own symbols. Most assemblers allow periods or
- percent signs in assembler symbols; putting at least one of these between
- the name and the number will suffice. */
-#define ASM_FORMAT_PRIVATE_NAME(OUTVAR, NAME, NUMBER) \
-do { \
- (OUTVAR) = (char *) alloca (strlen ((NAME)) + 12); \
- sprintf ((OUTVAR), "%s.%ld", (NAME), (long)(NUMBER)); \
-} while (0)
-
-
-/* Macros Controlling Initialization Routines. */
-
-/* If defined, a C string constant for the assembler operation to identify the
- following data as initialization code. If not defined, GNU CC will assume
- such a section does not exist. When you are using special sections for
- initialization and termination functions, this macro also controls how
- `crtstuff.c' and `libgcc2.c' arrange to run the initialization functions.
-
- Defined in svr4.h. */
-#undef INIT_SECTION_ASM_OP
-
-/* If defined, `main' will call `__main' despite the presence of
- `INIT_SECTION_ASM_OP'. This macro should be defined for systems where the
- init section is not actually run automatically, but is still useful for
- collecting the lists of constructors and destructors. */
-#define INVOKE__main
-
-/* Output appropriate code tp call a static constructor. */
-#undef ASM_OUTPUT_CONSTRUCTOR
-#define ASM_OUTPUT_CONSTRUCTOR(STREAM,NAME) \
-do { \
- ctors_section (); \
- fprintf (STREAM, "\t.picptr\t"); \
- assemble_name (STREAM, NAME); \
- fprintf (STREAM, "\n"); \
-} while (0)
-
-/* Output appropriate code tp call a static destructor. */
-#undef ASM_OUTPUT_DESTRUCTOR
-#define ASM_OUTPUT_DESTRUCTOR(STREAM,NAME) \
-do { \
- dtors_section (); \
- fprintf (STREAM, "\t.picptr\t"); \
- assemble_name (STREAM, NAME); \
- fprintf (STREAM, "\n"); \
-} while (0)
-
-
-/* Output of Assembler Instructions. */
-
-/* A C initializer containing the assembler's names for the machine registers,
- each one as a C string constant. This is what translates register numbers
- in the compiler into assembler language. */
-#define REGISTER_NAMES \
-{ \
- "gr0", "sp", "fp", "gr3", "gr4", "gr5", "gr6", "gr7", \
- "gr8", "gr9", "gr10", "gr11", "gr12", "gr13", "gr14", "gr15", \
- "gr16", "gr17", "gr18", "gr19", "gr20", "gr21", "gr22", "gr23", \
- "gr24", "gr25", "gr26", "gr27", "gr28", "gr29", "gr30", "gr31", \
- "gr32", "gr33", "gr34", "gr35", "gr36", "gr37", "gr38", "gr39", \
- "gr40", "gr41", "gr42", "gr43", "gr44", "gr45", "gr46", "gr47", \
- "gr48", "gr49", "gr50", "gr51", "gr52", "gr53", "gr54", "gr55", \
- "gr56", "gr57", "gr58", "gr59", "gr60", "gr61", "gr62", "gr63", \
- \
- "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7", \
- "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15", \
- "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23", \
- "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31", \
- "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39", \
- "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47", \
- "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55", \
- "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63", \
- \
- "fcc0", "fcc1", "fcc2", "fcc3", "icc0", "icc1", "icc2", "icc3", \
- "cc0", "cc1", "cc2", "cc3", "cc4", "cc5", "cc6", "cc7", \
- "acc0", "acc1", "acc2", "acc3", "acc4", "acc5", "acc6", "acc7", \
- "accg0","accg1","accg2","accg3","accg4","accg5","accg6","accg7", \
- "ap", "lr", "lcr" \
-}
-
-/* Define this macro if you are using an unusual assembler that
- requires different names for the machine instructions.
-
- The definition is a C statement or statements which output an
- assembler instruction opcode to the stdio stream STREAM. The
- macro-operand PTR is a variable of type `char *' which points to
- the opcode name in its "internal" form--the form that is written
- in the machine description. The definition should output the
- opcode name to STREAM, performing any translation you desire, and
- increment the variable PTR to point at the end of the opcode so
- that it will not be output twice.
-
- In fact, your macro definition may process less than the entire
- opcode name, or more than the opcode name; but if you want to
- process text that includes `%'-sequences to substitute operands,
- you must take care of the substitution yourself. Just be sure to
- increment PTR over whatever text should not be output normally.
-
- If you need to look at the operand values, they can be found as the
- elements of `recog_operand'.
-
- If the macro definition does nothing, the instruction is output in
- the usual way. */
-
-#define ASM_OUTPUT_OPCODE(STREAM, PTR)\
- (PTR) = frv_asm_output_opcode (STREAM, PTR)
-
-/* If defined, a C statement to be executed just prior to the output
- of assembler code for INSN, to modify the extracted operands so
- they will be output differently.
-
- Here the argument OPVEC is the vector containing the operands
- extracted from INSN, and NOPERANDS is the number of elements of
- the vector which contain meaningful data for this insn. The
- contents of this vector are what will be used to convert the insn
- template into assembler code, so you can change the assembler
- output by changing the contents of the vector.
-
- This macro is useful when various assembler syntaxes share a single
- file of instruction patterns; by defining this macro differently,
- you can cause a large class of instructions to be output
- differently (such as with rearranged operands). Naturally,
- variations in assembler syntax affecting individual insn patterns
- ought to be handled by writing conditional output routines in
- those patterns.
-
- If this macro is not defined, it is equivalent to a null statement. */
-
-#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS)\
- frv_final_prescan_insn (INSN, OPVEC, NOPERANDS)
-
-
-/* A C compound statement to output to stdio stream STREAM the assembler syntax
- for an instruction operand X. X is an RTL expression.
-
- CODE is a value that can be used to specify one of several ways of printing
- the operand. It is used when identical operands must be printed differently
- depending on the context. CODE comes from the `%' specification that was
- used to request printing of the operand. If the specification was just
- `%DIGIT' then CODE is 0; if the specification was `%LTR DIGIT' then CODE is
- the ASCII code for LTR.
-
- If X is a register, this macro should print the register's name. The names
- can be found in an array `reg_names' whose type is `char *[]'. `reg_names'
- is initialized from `REGISTER_NAMES'.
-
- When the machine description has a specification `%PUNCT' (a `%' followed by
- a punctuation character), this macro is called with a null pointer for X and
- the punctuation character for CODE. */
-#define PRINT_OPERAND(STREAM, X, CODE) frv_print_operand (STREAM, X, CODE)
-
-/* A C expression which evaluates to true if CODE is a valid punctuation
- character for use in the `PRINT_OPERAND' macro. If
- `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no punctuation
- characters (except for the standard one, `%') are used in this way. */
-/* . == gr0
- # == hint operand -- always zero for now
- @ == small data base register (gr16)
- ~ == pic register (gr17)
- * == temporary integer CCR register (cr3)
- & == temporary integer ICC register (icc3) */
-#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
-((CODE) == '.' || (CODE) == '#' || (CODE) == SDATA_FLAG_CHAR || (CODE) == '~' \
- || (CODE) == '*' || (CODE) == '&')
-
-/* A C compound statement to output to stdio stream STREAM the assembler syntax
- for an instruction operand that is a memory reference whose address is X. X
- is an RTL expression.
-
- On some machines, the syntax for a symbolic address depends on the section
- that the address refers to. On these machines, define the macro
- `ENCODE_SECTION_INFO' to store the information into the `symbol_ref', and
- then check for it here.
-
- This declaration must be present. */
-#define PRINT_OPERAND_ADDRESS(STREAM, X) frv_print_operand_address (STREAM, X)
-
-/* If defined, C string expressions to be used for the `%R', `%L', `%U', and
- `%I' options of `asm_fprintf' (see `final.c'). These are useful when a
- single `md' file must support multiple assembler formats. In that case, the
- various `tm.h' files can define these macros differently.
-
- USER_LABEL_PREFIX is defined in svr4.h. */
-#undef USER_LABEL_PREFIX
-#define USER_LABEL_PREFIX ""
-#define REGISTER_PREFIX ""
-#define LOCAL_LABEL_PREFIX "."
-#define IMMEDIATE_PREFIX "#"
-
-
-/* Output of dispatch tables. */
-
-/* This macro should be provided on machines where the addresses in a dispatch
- table are relative to the table's own address.
-
- The definition should be a C statement to output to the stdio stream STREAM
- an assembler pseudo-instruction to generate a difference between two labels.
- VALUE and REL are the numbers of two internal labels. The definitions of
- these labels are output using `ASM_OUTPUT_INTERNAL_LABEL', and they must be
- printed in the same way here. For example,
-
- fprintf (STREAM, "\t.word L%d-L%d\n", VALUE, REL) */
-#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
-fprintf (STREAM, "\t.word .L%d-.L%d\n", VALUE, REL)
-
-/* This macro should be provided on machines where the addresses in a dispatch
- table are absolute.
-
- The definition should be a C statement to output to the stdio stream STREAM
- an assembler pseudo-instruction to generate a reference to a label. VALUE
- is the number of an internal label whose definition is output using
- `ASM_OUTPUT_INTERNAL_LABEL'. For example,
-
- fprintf (STREAM, "\t.word L%d\n", VALUE) */
-#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
-fprintf (STREAM, "\t.word .L%d\n", VALUE)
-
-/* Define this if the label before a jump-table needs to be output specially.
- The first three arguments are the same as for `ASM_OUTPUT_INTERNAL_LABEL';
- the fourth argument is the jump-table which follows (a `jump_insn'
- containing an `addr_vec' or `addr_diff_vec').
-
- This feature is used on system V to output a `swbeg' statement for the
- table.
-
- If this macro is not defined, these labels are output with
- `ASM_OUTPUT_INTERNAL_LABEL'.
-
- Defined in svr4.h. */
-/* When generating embedded PIC or mips16 code we want to put the jump
- table in the .text section. In all other cases, we want to put the
- jump table in the .rdata section. Unfortunately, we can't use
- JUMP_TABLES_IN_TEXT_SECTION, because it is not conditional.
- Instead, we use ASM_OUTPUT_CASE_LABEL to switch back to the .text
- section if appropriate. */
-
-#undef ASM_OUTPUT_CASE_LABEL
-#define ASM_OUTPUT_CASE_LABEL(STREAM, PREFIX, NUM, TABLE) \
-do { \
- if (flag_pic) \
- function_section (current_function_decl); \
- ASM_OUTPUT_INTERNAL_LABEL (STREAM, PREFIX, NUM); \
-} while (0)
-
-/* Define this to determine whether case statement labels are relative to
- the start of the case statement or not. */
-
-#define CASE_VECTOR_PC_RELATIVE (flag_pic)
-
-
-/* Assembler Commands for Exception Regions. */
-
-/* Define this macro to 0 if your target supports DWARF 2 frame unwind
- information, but it does not yet work with exception handling. Otherwise,
- if your target supports this information (if it defines
- `INCOMING_RETURN_ADDR_RTX' and either `UNALIGNED_INT_ASM_OP' or
- `OBJECT_FORMAT_ELF'), GCC will provide a default definition of 1.
-
- If this macro is defined to 1, the DWARF 2 unwinder will be the default
- exception handling mechanism; otherwise, setjmp/longjmp will be used by
- default.
-
- If this macro is defined to anything, the DWARF 2 unwinder will be used
- instead of inline unwinders and __unwind_function in the non-setjmp case. */
-#define DWARF2_UNWIND_INFO 1
-
-#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
-
-/* Assembler Commands for Alignment. */
-
-/* A C statement to output to the stdio stream STREAM an assembler instruction
- to advance the location counter by NBYTES bytes. Those bytes should be zero
- when loaded. NBYTES will be a C expression of type `int'.
-
- Defined in svr4.h. */
-#undef ASM_OUTPUT_SKIP
-#define ASM_OUTPUT_SKIP(STREAM, NBYTES) \
- fprintf (STREAM, "\t.zero\t%u\n", (NBYTES))
-
-/* A C statement to output to the stdio stream STREAM an assembler command to
- advance the location counter to a multiple of 2 to the POWER bytes. POWER
- will be a C expression of type `int'. */
-#define ASM_OUTPUT_ALIGN(STREAM, POWER) \
- fprintf ((STREAM), "\t.p2align %d\n", (POWER))
-
-
-/* Macros Affecting all Debug Formats. */
-
-/* A C expression that returns the DBX register number for the compiler
- register number REGNO. In simple cases, the value of this expression may be
- REGNO itself. But sometimes there are some registers that the compiler
- knows about and DBX does not, or vice versa. In such cases, some register
- may need to have one number in the compiler and another for DBX.
-
- If two registers have consecutive numbers inside GNU CC, and they can be
- used as a pair to hold a multiword value, then they *must* have consecutive
- numbers after renumbering with `DBX_REGISTER_NUMBER'. Otherwise, debuggers
- will be unable to access such a pair, because they expect register pairs to
- be consecutive in their own numbering scheme.
-
- If you find yourself defining `DBX_REGISTER_NUMBER' in way that does not
- preserve register pairs, then what you must do instead is redefine the
- actual register numbering scheme.
-
- This declaration is required. */
-#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
-
-/* A C expression that returns the type of debugging output GNU CC produces
- when the user specifies `-g' or `-ggdb'. Define this if you have arranged
- for GNU CC to support more than one format of debugging output. Currently,
- the allowable values are `DBX_DEBUG', `SDB_DEBUG', `DWARF_DEBUG',
- `DWARF2_DEBUG', and `XCOFF_DEBUG'.
-
- The value of this macro only affects the default debugging output; the user
- can always get a specific type of output by using `-gstabs', `-gcoff',
- `-gdwarf-1', `-gdwarf-2', or `-gxcoff'.
-
- Defined in svr4.h. */
-#undef PREFERRED_DEBUGGING_TYPE
-#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
-
-/* Miscellaneous Parameters. */
-
-/* Define this if you have defined special-purpose predicates in the file
- `MACHINE.c'. This macro is called within an initializer of an array of
- structures. The first field in the structure is the name of a predicate and
- the second field is an array of rtl codes. For each predicate, list all rtl
- codes that can be in expressions matched by the predicate. The list should
- have a trailing comma. Here is an example of two entries in the list for a
- typical RISC machine:
-
- #define PREDICATE_CODES \
- {"gen_reg_rtx_operand", {SUBREG, REG}}, \
- {"reg_or_short_cint_operand", {SUBREG, REG, CONST_INT}},
-
- Defining this macro does not affect the generated code (however, incorrect
- definitions that omit an rtl code that may be matched by the predicate can
- cause the compiler to malfunction). Instead, it allows the table built by
- `genrecog' to be more compact and efficient, thus speeding up the compiler.
- The most important predicates to include in the list specified by this macro
- are thoses used in the most insn patterns. */
-#define PREDICATE_CODES \
- { "integer_register_operand", { REG, SUBREG }}, \
- { "frv_load_operand", { REG, SUBREG, MEM }}, \
- { "gpr_no_subreg_operand", { REG }}, \
- { "gpr_or_fpr_operand", { REG, SUBREG }}, \
- { "gpr_or_int12_operand", { REG, SUBREG, CONST_INT }}, \
- { "gpr_fpr_or_int12_operand", { REG, SUBREG, CONST_INT }}, \
- { "gpr_or_int10_operand", { REG, SUBREG, CONST_INT }}, \
- { "gpr_or_int_operand", { REG, SUBREG, CONST_INT }}, \
- { "move_source_operand", { REG, SUBREG, CONST_INT, MEM, \
- CONST_DOUBLE, CONST, \
- SYMBOL_REF, LABEL_REF }}, \
- { "move_destination_operand", { REG, SUBREG, MEM }}, \
- { "condexec_source_operand", { REG, SUBREG, CONST_INT, MEM, \
- CONST_DOUBLE }}, \
- { "condexec_dest_operand", { REG, SUBREG, MEM }}, \
- { "reg_or_0_operand", { REG, SUBREG, CONST_INT }}, \
- { "lr_operand", { REG }}, \
- { "gpr_or_memory_operand", { REG, SUBREG, MEM }}, \
- { "fpr_or_memory_operand", { REG, SUBREG, MEM }}, \
- { "int12_operand", { CONST_INT }}, \
- { "int_2word_operand", { CONST_INT, CONST_DOUBLE, \
- SYMBOL_REF, LABEL_REF, CONST }}, \
- { "pic_register_operand", { REG }}, \
- { "pic_symbolic_operand", { SYMBOL_REF, LABEL_REF, CONST }}, \
- { "small_data_register_operand", { REG }}, \
- { "small_data_symbolic_operand", { SYMBOL_REF, CONST }}, \
- { "icc_operand", { REG }}, \
- { "fcc_operand", { REG }}, \
- { "cc_operand", { REG }}, \
- { "icr_operand", { REG }}, \
- { "fcr_operand", { REG }}, \
- { "cr_operand", { REG }}, \
- { "fpr_operand", { REG, SUBREG }}, \
- { "even_reg_operand", { REG, SUBREG }}, \
- { "odd_reg_operand", { REG, SUBREG }}, \
- { "even_gpr_operand", { REG, SUBREG }}, \
- { "odd_gpr_operand", { REG, SUBREG }}, \
- { "quad_fpr_operand", { REG, SUBREG }}, \
- { "even_fpr_operand", { REG, SUBREG }}, \
- { "odd_fpr_operand", { REG, SUBREG }}, \
- { "dbl_memory_one_insn_operand", { MEM }}, \
- { "dbl_memory_two_insn_operand", { MEM }}, \
- { "call_operand", { REG, SUBREG, PLUS, CONST_INT, \
- SYMBOL_REF, LABEL_REF, CONST }}, \
- { "upper_int16_operand", { CONST_INT }}, \
- { "uint16_operand", { CONST_INT }}, \
- { "relational_operator", { EQ, NE, LE, LT, GE, GT, \
- LEU, LTU, GEU, GTU }}, \
- { "signed_relational_operator", { EQ, NE, LE, LT, GE, GT }}, \
- { "unsigned_relational_operator", { LEU, LTU, GEU, GTU }}, \
- { "float_relational_operator", { EQ, NE, LE, LT, GE, GT }}, \
- { "ccr_eqne_operator", { EQ, NE }}, \
- { "minmax_operator", { SMIN, SMAX, UMIN, UMAX }}, \
- { "condexec_si_binary_operator", { PLUS, MINUS, AND, IOR, XOR, \
- ASHIFT, ASHIFTRT, LSHIFTRT }}, \
- { "condexec_si_divide_operator", { DIV, UDIV }}, \
- { "condexec_si_unary_operator", { NOT, NEG }}, \
- { "condexec_sf_binary_operator", { PLUS, MINUS, MULT, DIV }}, \
- { "condexec_sf_unary_operator", { ABS, NEG, SQRT }}, \
- { "intop_compare_operator", { PLUS, MINUS, AND, IOR, XOR, \
- ASHIFT, ASHIFTRT, LSHIFTRT }}, \
- { "condexec_intop_cmp_operator", { PLUS, MINUS, AND, IOR, XOR, \
- ASHIFT, ASHIFTRT, LSHIFTRT }}, \
- { "fpr_or_int6_operand", { REG, SUBREG, CONST_INT }}, \
- { "int6_operand", { CONST_INT }}, \
- { "int5_operand", { CONST_INT }}, \
- { "uint5_operand", { CONST_INT }}, \
- { "uint4_operand", { CONST_INT }}, \
- { "uint1_operand", { CONST_INT }}, \
- { "acc_operand", { REG, SUBREG }}, \
- { "even_acc_operand", { REG, SUBREG }}, \
- { "quad_acc_operand", { REG, SUBREG }}, \
- { "accg_operand", { REG, SUBREG }},
-
-/* An alias for a machine mode name. This is the machine mode that elements of
- a jump-table should have. */
-#define CASE_VECTOR_MODE SImode
-
-/* Define this macro if operations between registers with integral mode smaller
- than a word are always performed on the entire register. Most RISC machines
- have this property and most CISC machines do not. */
-#define WORD_REGISTER_OPERATIONS
-
-/* Define this macro to be a C expression indicating when insns that read
- memory in MODE, an integral mode narrower than a word, set the bits outside
- of MODE to be either the sign-extension or the zero-extension of the data
- read. Return `SIGN_EXTEND' for values of MODE for which the insn
- sign-extends, `ZERO_EXTEND' for which it zero-extends, and `NIL' for other
- modes.
-
- This macro is not called with MODE non-integral or with a width greater than
- or equal to `BITS_PER_WORD', so you may return any value in this case. Do
- not define this macro if it would always return `NIL'. On machines where
- this macro is defined, you will normally define it as the constant
- `SIGN_EXTEND' or `ZERO_EXTEND'. */
-#define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
-
-/* Define if loading short immediate values into registers sign extends. */
-#define SHORT_IMMEDIATES_SIGN_EXTEND
-
-/* The maximum number of bytes that a single instruction can move quickly from
- memory to memory. */
-#define MOVE_MAX 8
-
-/* A C expression which is nonzero if on this machine it is safe to "convert"
- an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
- than INPREC) by merely operating on it as if it had only OUTPREC bits.
-
- On many machines, this expression can be 1.
-
- When `TRULY_NOOP_TRUNCATION' returns 1 for a pair of sizes for modes for
- which `MODES_TIEABLE_P' is 0, suboptimal code can result. If this is the
- case, making `TRULY_NOOP_TRUNCATION' return 0 in such cases may improve
- things. */
-#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
-
-/* An alias for the machine mode for pointers. On most machines, define this
- to be the integer mode corresponding to the width of a hardware pointer;
- `SImode' on 32-bit machine or `DImode' on 64-bit machines. On some machines
- you must define this to be one of the partial integer modes, such as
- `PSImode'.
-
- The width of `Pmode' must be at least as large as the value of
- `POINTER_SIZE'. If it is not equal, you must define the macro
- `POINTERS_EXTEND_UNSIGNED' to specify how pointers are extended to `Pmode'. */
-#define Pmode SImode
-
-/* An alias for the machine mode used for memory references to functions being
- called, in `call' RTL expressions. On most machines this should be
- `QImode'. */
-#define FUNCTION_MODE QImode
-
-/* Define this macro to handle System V style pragmas: #pragma pack and
- #pragma weak. Note, #pragma weak will only be supported if SUPPORT_WEAK is
- defined.
-
- Defined in svr4.h. */
-#define HANDLE_SYSV_PRAGMA
-
-/* A C expression for the maximum number of instructions to execute via
- conditional execution instructions instead of a branch. A value of
- BRANCH_COST+1 is the default if the machine does not use
- cc0, and 1 if it does use cc0. */
-#define MAX_CONDITIONAL_EXECUTE frv_condexec_insns
-
-/* Default value of MAX_CONDITIONAL_EXECUTE if no -mcond-exec-insns= */
-#define DEFAULT_CONDEXEC_INSNS 8
-
-/* A C expression to modify the code described by the conditional if
- information CE_INFO, possibly updating the tests in TRUE_EXPR, and
- FALSE_EXPR for converting if-then and if-then-else code to conditional
- instructions. Set either TRUE_EXPR or FALSE_EXPR to a null pointer if the
- tests cannot be converted. */
-#define IFCVT_MODIFY_TESTS(CE_INFO, TRUE_EXPR, FALSE_EXPR) \
-frv_ifcvt_modify_tests (CE_INFO, &TRUE_EXPR, &FALSE_EXPR)
-
-/* A C expression to modify the code described by the conditional if
- information CE_INFO, for the basic block BB, possibly updating the tests in
- TRUE_EXPR, and FALSE_EXPR for converting the && and || parts of if-then or
- if-then-else code to conditional instructions. OLD_TRUE and OLD_FALSE are
- the previous tests. Set either TRUE_EXPR or FALSE_EXPR to a null pointer if
- the tests cannot be converted. */
-#define IFCVT_MODIFY_MULTIPLE_TESTS(CE_INFO, BB, TRUE_EXPR, FALSE_EXPR) \
-frv_ifcvt_modify_multiple_tests (CE_INFO, BB, &TRUE_EXPR, &FALSE_EXPR)
-
-/* A C expression to modify the code described by the conditional if
- information CE_INFO with the new PATTERN in INSN. If PATTERN is a null
- pointer after the IFCVT_MODIFY_INSN macro executes, it is assumed that that
- insn cannot be converted to be executed conditionally. */
-#define IFCVT_MODIFY_INSN(CE_INFO, PATTERN, INSN) \
-(PATTERN) = frv_ifcvt_modify_insn (CE_INFO, PATTERN, INSN)
-
-/* A C expression to perform any final machine dependent modifications in
- converting code to conditional execution in the code described by the
- conditional if information CE_INFO. */
-#define IFCVT_MODIFY_FINAL(CE_INFO) frv_ifcvt_modify_final (CE_INFO)
-
-/* A C expression to cancel any machine dependent modifications in converting
- code to conditional execution in the code described by the conditional if
- information CE_INFO. */
-#define IFCVT_MODIFY_CANCEL(CE_INFO) frv_ifcvt_modify_cancel (CE_INFO)
-
-/* Initialize the extra fields provided by IFCVT_EXTRA_FIELDS. */
-#define IFCVT_INIT_EXTRA_FIELDS(CE_INFO) frv_ifcvt_init_extra_fields (CE_INFO)
-
-/* Indicate how many instructions can be issued at the same time. */
-#define ISSUE_RATE \
-(! TARGET_PACK ? 1 \
- : (frv_cpu_type == FRV_CPU_GENERIC \
- || frv_cpu_type == FRV_CPU_FR500 \
- || frv_cpu_type == FRV_CPU_TOMCAT) ? 4 \
- : frv_cpu_type == FRV_CPU_FR400 ? 2 : 1)
-
-/* Set and clear whether this insn begins a VLIW insn. */
-#define CLEAR_VLIW_START(INSN) PUT_MODE (INSN, VOIDmode)
-#define SET_VLIW_START(INSN) PUT_MODE (INSN, TImode)
-
-/* The definition of the following macro results in that the 2nd jump
- optimization (after the 2nd insn scheduling) is minimal. It is
- necessary to define when start cycle marks of insns (TImode is used
- for this) is used for VLIW insn packing. Some jump optimizations
- make such marks invalid. These marks are corrected for some
- (minimal) optimizations. ??? Probably the macro is temporary.
- Final solution could making the 2nd jump optimizations before the
- 2nd instruction scheduling or corrections of the marks for all jump
- optimizations. Although some jump optimizations are actually
- deoptimizations for VLIW (super-scalar) processors. */
-
-#define MINIMAL_SECOND_JUMP_OPTIMIZATION
-
-/* Return true if parallel operations are expected to be emitted via the
- packing flag. */
-#define PACKING_FLAG_USED_P() \
-(optimize && flag_schedule_insns_after_reload && ISSUE_RATE > 1)
-
-/* If the following macro is defined and non zero and deterministic
- finite state automata are used for pipeline hazard recognition, the
- code making resource-constrained software pipelining is on. */
-#define RCSP_SOFTWARE_PIPELINING 1
-
-/* If the following macro is defined and non zero and deterministic
- finite state automata are used for pipeline hazard recognition, we
- will try to exchange insns in queue ready to improve the schedule.
- The more macro value, the more tries will be made. */
-#define FIRST_CYCLE_MULTIPASS_SCHEDULING 1
-
-/* The following macro is used only when value of
- FIRST_CYCLE_MULTIPASS_SCHEDULING is nonzero. The more macro value,
- the more tries will be made to choose better schedule. If the
- macro value is zero or negative there will be no multi-pass
- scheduling. */
-#define FIRST_CYCLE_MULTIPASS_SCHEDULING_LOOKAHEAD frv_sched_lookahead
-
-/* Return true if a function is ok to be called as a sibcall. */
-#define FUNCTION_OK_FOR_SIBCALL(DECL) 0
-
-enum frv_builtins
-{
- FRV_BUILTIN_MAND,
- FRV_BUILTIN_MOR,
- FRV_BUILTIN_MXOR,
- FRV_BUILTIN_MNOT,
- FRV_BUILTIN_MAVEH,
- FRV_BUILTIN_MSATHS,
- FRV_BUILTIN_MSATHU,
- FRV_BUILTIN_MADDHSS,
- FRV_BUILTIN_MADDHUS,
- FRV_BUILTIN_MSUBHSS,
- FRV_BUILTIN_MSUBHUS,
- FRV_BUILTIN_MPACKH,
- FRV_BUILTIN_MQADDHSS,
- FRV_BUILTIN_MQADDHUS,
- FRV_BUILTIN_MQSUBHSS,
- FRV_BUILTIN_MQSUBHUS,
- FRV_BUILTIN_MUNPACKH,
- FRV_BUILTIN_MDPACKH,
- FRV_BUILTIN_MBTOH,
- FRV_BUILTIN_MHTOB,
- FRV_BUILTIN_MCOP1,
- FRV_BUILTIN_MCOP2,
- FRV_BUILTIN_MROTLI,
- FRV_BUILTIN_MROTRI,
- FRV_BUILTIN_MWCUT,
- FRV_BUILTIN_MSLLHI,
- FRV_BUILTIN_MSRLHI,
- FRV_BUILTIN_MSRAHI,
- FRV_BUILTIN_MEXPDHW,
- FRV_BUILTIN_MEXPDHD,
- FRV_BUILTIN_MMULHS,
- FRV_BUILTIN_MMULHU,
- FRV_BUILTIN_MMULXHS,
- FRV_BUILTIN_MMULXHU,
- FRV_BUILTIN_MMACHS,
- FRV_BUILTIN_MMACHU,
- FRV_BUILTIN_MMRDHS,
- FRV_BUILTIN_MMRDHU,
- FRV_BUILTIN_MQMULHS,
- FRV_BUILTIN_MQMULHU,
- FRV_BUILTIN_MQMULXHU,
- FRV_BUILTIN_MQMULXHS,
- FRV_BUILTIN_MQMACHS,
- FRV_BUILTIN_MQMACHU,
- FRV_BUILTIN_MCPXRS,
- FRV_BUILTIN_MCPXRU,
- FRV_BUILTIN_MCPXIS,
- FRV_BUILTIN_MCPXIU,
- FRV_BUILTIN_MQCPXRS,
- FRV_BUILTIN_MQCPXRU,
- FRV_BUILTIN_MQCPXIS,
- FRV_BUILTIN_MQCPXIU,
- FRV_BUILTIN_MCUT,
- FRV_BUILTIN_MCUTSS,
- FRV_BUILTIN_MWTACC,
- FRV_BUILTIN_MWTACCG,
- FRV_BUILTIN_MRDACC,
- FRV_BUILTIN_MRDACCG,
- FRV_BUILTIN_MTRAP,
- FRV_BUILTIN_MCLRACC,
- FRV_BUILTIN_MCLRACCA,
- FRV_BUILTIN_MDUNPACKH,
- FRV_BUILTIN_MBTOHE,
- FRV_BUILTIN_MQXMACHS,
- FRV_BUILTIN_MQXMACXHS,
- FRV_BUILTIN_MQMACXHS,
- FRV_BUILTIN_MADDACCS,
- FRV_BUILTIN_MSUBACCS,
- FRV_BUILTIN_MASACCS,
- FRV_BUILTIN_MDADDACCS,
- FRV_BUILTIN_MDSUBACCS,
- FRV_BUILTIN_MDASACCS,
- FRV_BUILTIN_MABSHS,
- FRV_BUILTIN_MDROTLI,
- FRV_BUILTIN_MCPLHI,
- FRV_BUILTIN_MCPLI,
- FRV_BUILTIN_MDCUTSSI,
- FRV_BUILTIN_MQSATHS,
- FRV_BUILTIN_MHSETLOS,
- FRV_BUILTIN_MHSETLOH,
- FRV_BUILTIN_MHSETHIS,
- FRV_BUILTIN_MHSETHIH,
- FRV_BUILTIN_MHDSETS,
- FRV_BUILTIN_MHDSETH
-};
-
-/* Enable prototypes on the call rtl functions. */
-#define MD_CALL_PROTOTYPES 1
-
-extern GTY(()) rtx frv_compare_op0; /* operand save for */
-extern GTY(()) rtx frv_compare_op1; /* comparison generation */
-
-#endif /* __FRV_H__ */
diff --git a/gcc/config/frv/frv.md b/gcc/config/frv/frv.md
deleted file mode 100644
index f1668045242..00000000000
--- a/gcc/config/frv/frv.md
+++ /dev/null
@@ -1,7441 +0,0 @@
-;; Frv Machine Description
-;; Copyright (C) 1999, 2000, 2001 Free Software Foundation, Inc.
-;; Contributed by Red Hat, Inc.
-
-;; This file is part of GNU CC.
-
-;; GNU CC is free software; you can redistribute it and/or modify
-;; it under the terms of the GNU General Public License as published by
-;; the Free Software Foundation; either version 2, or (at your option)
-;; any later version.
-
-;; GNU CC is distributed in the hope that it will be useful,
-;; but WITHOUT ANY WARRANTY; without even the implied warranty of
-;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-;; GNU General Public License for more details.
-
-;; You should have received a copy of the GNU General Public License
-;; along with GNU CC; see the file COPYING. If not, write to
-;; the Free Software Foundation, 59 Temple Place - Suite 330,
-;; Boston, MA 02111-1307, USA.
-
-;;- See file "rtl.def" for documentation on define_insn, match_*, et. al.
-
-
-;; ::::::::::::::::::::
-;; ::
-;; :: Unspec's used
-;; ::
-;; ::::::::::::::::::::
-
-(define_constants
- [(UNSPEC_BLOCKAGE 0)
- (UNSPEC_CC_TO_GPR 1)
- (UNSPEC_GPR_TO_CC 2)
- (UNSPEC_PIC_PROLOGUE 3)
- (UNSPEC_CR_LOGIC 4)
- (UNSPEC_STACK_ADJUST 5)
- (UNSPEC_EH_RETURN_EPILOGUE 6)])
-
-
-
-;; ::::::::::::::::::::
-;; ::
-;; :: Constraints
-;; ::
-;; ::::::::::::::::::::
-
-;; Standard Constraints
-;;
-;; `m' A memory operand is allowed, with any kind of address that the
-;; machine supports in general.
-;;
-;; `o' A memory operand is allowed, but only if the address is
-;; "offsettable". This means that adding a small integer (actually, the
-;; width in bytes of the operand, as determined by its machine mode) may be
-;; added to the address and the result is also a valid memory address.
-;;
-;; `V' A memory operand that is not offsettable. In other words,
-;; anything that would fit the `m' constraint but not the `o' constraint.
-;;
-;; `<' A memory operand with autodecrement addressing (either
-;; predecrement or postdecrement) is allowed.
-;;
-;; `>' A memory operand with autoincrement addressing (either
-;; preincrement or postincrement) is allowed.
-;;
-;; `r' A register operand is allowed provided that it is in a general
-;; register.
-;;
-;; `d', `a', `f', ...
-;; Other letters can be defined in machine-dependent fashion to stand for
-;; particular classes of registers. `d', `a' and `f' are defined on the
-;; 68000/68020 to stand for data, address and floating point registers.
-;;
-;; `i' An immediate integer operand (one with constant value) is allowed.
-;; This includes symbolic constants whose values will be known only at
-;; assembly time.
-;;
-;; `n' An immediate integer operand with a known numeric value is allowed.
-;; Many systems cannot support assembly-time constants for operands less
-;; than a word wide. Constraints for these operands should use `n' rather
-;; than `i'.
-;;
-;; 'I' First machine-dependent integer constant (6 bit signed ints).
-;; 'J' Second machine-dependent integer constant (10 bit signed ints).
-;; 'K' Third machine-dependent integer constant (-2048).
-;; 'L' Fourth machine-dependent integer constant (16 bit signed ints).
-;; 'M' Fifth machine-dependent integer constant (16 bit unsigned ints).
-;; 'N' Sixth machine-dependent integer constant (-2047..-1).
-;; 'O' Seventh machine-dependent integer constant (zero).
-;; 'P' Eighth machine-dependent integer constant (1..2047).
-;;
-;; Other letters in the range `I' through `P' may be defined in a
-;; machine-dependent fashion to permit immediate integer operands with
-;; explicit integer values in specified ranges. For example, on the 68000,
-;; `I' is defined to stand for the range of values 1 to 8. This is the
-;; range permitted as a shift count in the shift instructions.
-;;
-;; `E' An immediate floating operand (expression code `const_double') is
-;; allowed, but only if the target floating point format is the same as
-;; that of the host machine (on which the compiler is running).
-;;
-;; `F' An immediate floating operand (expression code `const_double') is
-;; allowed.
-;;
-;; 'G' First machine-dependent const_double.
-;; 'H' Second machine-dependent const_double.
-;;
-;; `s' An immediate integer operand whose value is not an explicit
-;; integer is allowed.
-;;
-;; This might appear strange; if an insn allows a constant operand with a
-;; value not known at compile time, it certainly must allow any known
-;; value. So why use `s' instead of `i'? Sometimes it allows better code
-;; to be generated.
-;;
-;; For example, on the 68000 in a fullword instruction it is possible to
-;; use an immediate operand; but if the immediate value is between -128 and
-;; 127, better code results from loading the value into a register and
-;; using the register. This is because the load into the register can be
-;; done with a `moveq' instruction. We arrange for this to happen by
-;; defining the letter `K' to mean "any integer outside the range -128 to
-;; 127", and then specifying `Ks' in the operand constraints.
-;;
-;; `g' Any register, memory or immediate integer operand is allowed,
-;; except for registers that are not general registers.
-;;
-;; `X' Any operand whatsoever is allowed, even if it does not satisfy
-;; `general_operand'. This is normally used in the constraint of a
-;; `match_scratch' when certain alternatives will not actually require a
-;; scratch register.
-;;
-;; `0' Match operand 0.
-;; `1' Match operand 1.
-;; `2' Match operand 2.
-;; `3' Match operand 3.
-;; `4' Match operand 4.
-;; `5' Match operand 5.
-;; `6' Match operand 6.
-;; `7' Match operand 7.
-;; `8' Match operand 8.
-;; `9' Match operand 9.
-;;
-;; An operand that matches the specified operand number is allowed. If a
-;; digit is used together with letters within the same alternative, the
-;; digit should come last.
-;;
-;; This is called a "matching constraint" and what it really means is that
-;; the assembler has only a single operand that fills two roles considered
-;; separate in the RTL insn. For example, an add insn has two input
-;; operands and one output operand in the RTL, but on most CISC machines an
-;; add instruction really has only two operands, one of them an
-;; input-output operand:
-;;
-;; addl #35,r12
-;;
-;; Matching constraints are used in these circumstances. More precisely,
-;; the two operands that match must include one input-only operand and one
-;; output-only operand. Moreover, the digit must be a smaller number than
-;; the number of the operand that uses it in the constraint.
-;;
-;; For operands to match in a particular case usually means that they are
-;; identical-looking RTL expressions. But in a few special cases specific
-;; kinds of dissimilarity are allowed. For example, `*x' as an input
-;; operand will match `*x++' as an output operand. For proper results in
-;; such cases, the output template should always use the output-operand's
-;; number when printing the operand.
-;;
-;; `p' An operand that is a valid memory address is allowed. This is for
-;; "load address" and "push address" instructions.
-;;
-;; `p' in the constraint must be accompanied by `address_operand' as the
-;; predicate in the `match_operand'. This predicate interprets the mode
-;; specified in the `match_operand' as the mode of the memory reference for
-;; which the address would be valid.
-;;
-;; `Q` First non constant, non register machine-dependent insns
-;; `R` Second non constant, non register machine-dependent insns
-;; `S` Third non constant, non register machine-dependent insns
-;; `T` Fourth non constant, non register machine-dependent insns
-;; `U` Fifth non constant, non register machine-dependent insns
-;;
-;; Letters in the range `Q' through `U' may be defined in a
-;; machine-dependent fashion to stand for arbitrary operand types. The
-;; machine description macro `EXTRA_CONSTRAINT' is passed the operand as
-;; its first argument and the constraint letter as its second operand.
-;;
-;; A typical use for this would be to distinguish certain types of memory
-;; references that affect other insn operands.
-;;
-;; Do not define these constraint letters to accept register references
-;; (`reg'); the reload pass does not expect this and would not handle it
-;; properly.
-
-;; Multiple Alternative Constraints
-;; `?' Disparage slightly the alternative that the `?' appears in, as a
-;; choice when no alternative applies exactly. The compiler regards this
-;; alternative as one unit more costly for each `?' that appears in it.
-;;
-;; `!' Disparage severely the alternative that the `!' appears in. This
-;; alternative can still be used if it fits without reloading, but if
-;; reloading is needed, some other alternative will be used.
-
-;; Constraint modifiers
-;; `=' Means that this operand is write-only for this instruction: the
-;; previous value is discarded and replaced by output data.
-;;
-;; `+' Means that this operand is both read and written by the
-;; instruction.
-;;
-;; When the compiler fixes up the operands to satisfy the constraints, it
-;; needs to know which operands are inputs to the instruction and which are
-;; outputs from it. `=' identifies an output; `+' identifies an operand
-;; that is both input and output; all other operands are assumed to be
-;; input only.
-;;
-;; `&' Means (in a particular alternative) that this operand is written
-;; before the instruction is finished using the input operands. Therefore,
-;; this operand may not lie in a register that is used as an input operand
-;; or as part of any memory address.
-;;
-;; `&' applies only to the alternative in which it is written. In
-;; constraints with multiple alternatives, sometimes one alternative
-;; requires `&' while others do not.
-;;
-;; `&' does not obviate the need to write `='.
-;;
-;; `%' Declares the instruction to be commutative for this operand and the
-;; following operand. This means that the compiler may interchange the two
-;; operands if that is the cheapest way to make all operands fit the
-;; constraints. This is often used in patterns for addition instructions
-;; that really have only two operands: the result must go in one of the
-;; arguments.
-;;
-;; `#' Says that all following characters, up to the next comma, are to be
-;; ignored as a constraint. They are significant only for choosing
-;; register preferences.
-;;
-;; `*' Says that the following character should be ignored when choosing
-;; register preferences. `*' has no effect on the meaning of the
-;; constraint as a constraint, and no effect on reloading.
-
-
-;; ::::::::::::::::::::
-;; ::
-;; :: Attributes
-;; ::
-;; ::::::::::::::::::::
-
-;; The `define_attr' expression is used to define each attribute required by
-;; the target machine. It looks like:
-;;
-;; (define_attr NAME LIST-OF-VALUES DEFAULT)
-
-;; NAME is a string specifying the name of the attribute being defined.
-
-;; LIST-OF-VALUES is either a string that specifies a comma-separated list of
-;; values that can be assigned to the attribute, or a null string to indicate
-;; that the attribute takes numeric values.
-
-;; DEFAULT is an attribute expression that gives the value of this attribute
-;; for insns that match patterns whose definition does not include an explicit
-;; value for this attribute.
-
-;; For each defined attribute, a number of definitions are written to the
-;; `insn-attr.h' file. For cases where an explicit set of values is specified
-;; for an attribute, the following are defined:
-
-;; * A `#define' is written for the symbol `HAVE_ATTR_NAME'.
-;;
-;; * An enumeral class is defined for `attr_NAME' with elements of the
-;; form `UPPER-NAME_UPPER-VALUE' where the attribute name and value are first
-;; converted to upper case.
-;;
-;; * A function `get_attr_NAME' is defined that is passed an insn and
-;; returns the attribute value for that insn.
-
-;; For example, if the following is present in the `md' file:
-;;
-;; (define_attr "type" "branch,fp,load,store,arith" ...)
-;;
-;; the following lines will be written to the file `insn-attr.h'.
-;;
-;; #define HAVE_ATTR_type
-;; enum attr_type {TYPE_BRANCH, TYPE_FP, TYPE_LOAD, TYPE_STORE, TYPE_ARITH};
-;; extern enum attr_type get_attr_type ();
-
-;; If the attribute takes numeric values, no `enum' type will be defined and
-;; the function to obtain the attribute's value will return `int'.
-
-(define_attr "length" "" (const_int 4))
-
-;; Processor type -- this attribute must exactly match the processor_type
-;; enumeration in frv-protos.h.
-
-(define_attr "cpu" "generic,fr500,fr400,fr300,simple,tomcat"
- (const (symbol_ref "frv_cpu_type")))
-
-;; Attribute is "yes" for branches and jumps that span too great a distance
-;; to be implemented in the most natural way. Such instructions will use
-;; a call instruction in some way.
-
-(define_attr "far_jump" "yes,no" (const_string "no"))
-
-;; Instruction type
-
-;; The table below summarises the types of media instruction and their
-;; scheduling classification. Headings are:
-
-;; Type: the name of the define_attr type
-;; Conditions: "yes" if conditional variants are available
-;; FR500: Fujitsu's categorisation for the FR500
-;; FR400: Fujitsu's categorisation for the FR400 (but see below).
-
-;; On the FR400, media instructions are divided into 2 broad categories.
-;; Category 1 instructions can execute in either the M0 or M1 unit and can
-;; execute in parallel with other category 1 instructions. Category 2
-;; instructions must use the M0 unit, and therefore cannot run in parallel
-;; with other media instructions.
-
-;; The FR400 documentation also divides media instructions into one of seven
-;; categories (m1 to m7). m1 to m4 contain both Category 1 and Category 2
-;; instructions, so we use a combination of the categories here.
-
-;; Type Conditional FR500 FR400
-;; ---- ---------- ----- -----
-;; mlogic yes m1 m1:1
-;; mrdacc no m2 m4:1
-;; mwtacc no m3 m5:1
-;; maveh no m1 m1:1
-;; msath no m1 m1:1
-;; maddh yes m1 m1:1
-;; mqaddh yes m1 m1:2
-;; mpackh no m2 m3:1
-;; munpackh no m2 m3:2
-;; mdpackh no m5 m3:2
-;; mbhconv yes m2 m3:2
-;; mrot no m2 m3:1
-;; mshift no m2 m3:1
-;; mexpdhw yes m2 m3:1
-;; mexpdhd yes m2 m3:2
-;; mwcut no m2 m3:2
-;; mmulh yes m4 m2:1
-;; mmulxh no m4 m2:1
-;; mmach yes m4 m2:1
-;; mmrdh no m4 m2:1
-;; mqmulh yes m4 m2:2
-;; mqmulxh no m4 m2:2
-;; mqmach yes m4 m2:2
-;; mcpx yes m4 m2:1
-;; mqcpx yes m4 m2:2
-;; mcut no m2 m4:1
-;; mclracc no m3 m4:1
-;; mclracca no m6 m4:2
-;; mdunpackh no m2 n/a
-;; mbhconve no m2 n/a
-;; maddacc no n/a m2:1
-;; mdaddacc no n/a m2:2
-;; mabsh no n/a m1:1
-;; mdrot no n/a m3:2
-;; mcpl no n/a m3:2
-;; mdcut no n/a m4:2
-;; mqsath no n/a m1:2
-;; mset no n/a m1:1
-
-(define_attr "type"
- "int,sethi,setlo,mul,div,gload,gstore,fload,fstore,movfg,movgf,branch,jump,jumpl,call,spr,trap,fsconv,fsadd,fsmul,fmas,fsdiv,sqrt_single,fdconv,fdadd,fdmul,fddiv,sqrt_double,mlogic,maveh,msath,maddh,mqaddh,mpackh,munpackh,mdpackh,mbhconv,mrot,mshift,mexpdhw,mexpdhd,mwcut,mmulh,mmulxh,mmach,mmrdh,mqmulh,mqmulxh,mqmach,mcpx,mqcpx,mcut,mclracc,mclracca,mdunpackh,mbhconve,mrdacc,mwtacc,maddacc,mdaddacc,mabsh,mdrot,mcpl,mdcut,mqsath,mset,m7,ccr,multi,unknown"
- (const_string "unknown"))
-
-
-
-/* This is description of pipeline hazards based on DFA. The
- following constructions can be used for this:
-
- o define_cpu_unit string [string]) describes a cpu functional unit
- (separated by comma).
-
- 1st operand: Names of cpu function units.
- 2nd operand: Name of automaton (see comments for
- DEFINE_AUTOMATON).
-
- All define_reservations and define_cpu_units should have unique
- names which can not be "nothing".
-
- o (exclusion_set string string) means that each CPU function unit
- in the first string can not be reserved simultaneously with each
- unit whose name is in the second string and vise versa. CPU
- units in the string are separated by commas. For example, it is
- useful for description CPU with fully pipelined floating point
- functional unit which can execute simultaneously only single
- floating point insns or only double floating point insns.
-
- o (presence_set string string) means that each CPU function unit in
- the first string can not be reserved unless at least one of units
- whose names are in the second string is reserved. This is an
- asymmetric relation. CPU units in the string are separated by
- commas. For example, it is useful for description that slot1 is
- reserved after slot0 reservation for a VLIW processor.
-
- o (absence_set string string) means that each CPU function unit in
- the first string can not be reserved only if each unit whose name
- is in the second string is not reserved. This is an asymmetric
- relation (actually exclusion set is analogous to this one but it
- is symmetric). CPU units in the string are separated by commas.
- For example, it is useful for description that slot0 can not be
- reserved after slot1 or slot2 reservation for a VLIW processor.
-
- o (define_bypass number out_insn_names in_insn_names) names bypass with
- given latency (the first number) from insns given by the first
- string (see define_insn_reservation) into insns given by the
- second string. Insn names in the strings are separated by
- commas.
-
- o (define_automaton string) describes names of an automaton
- generated and used for pipeline hazards recognition. The names
- are separated by comma. Actually it is possibly to generate the
- single automaton but unfortunately it can be very large. If we
- use more one automata, the summary size of the automata usually
- is less than the single one. The automaton name is used in
- define_cpu_unit. All automata should have unique names.
-
- o (define_reservation string string) names reservation (the first
- string) of cpu functional units (the 2nd string). Sometimes unit
- reservations for different insns contain common parts. In such
- case, you describe common part and use one its name (the 1st
- parameter) in regular expression in define_insn_reservation. All
- define_reservations, define results and define_cpu_units should
- have unique names which can not be "nothing".
-
- o (define_insn_reservation name default_latency condition regexpr)
- describes reservation of cpu functional units (the 3nd operand)
- for instruction which is selected by the condition (the 2nd
- parameter). The first parameter is used for output of debugging
- information. The reservations are described by a regular
- expression according the following syntax:
-
- regexp = regexp "," oneof
- | oneof
-
- oneof = oneof "|" allof
- | allof
-
- allof = allof "+" repeat
- | repeat
-
- repeat = element "*" number
- | element
-
- element = cpu_function_name
- | reservation_name
- | result_name
- | "nothing"
- | "(" regexp ")"
-
- 1. "," is used for describing start of the next cycle in
- reservation.
-
- 2. "|" is used for describing the reservation described by the
- first regular expression *or* the reservation described by
- the second regular expression *or* etc.
-
- 3. "+" is used for describing the reservation described by the
- first regular expression *and* the reservation described by
- the second regular expression *and* etc.
-
- 4. "*" is used for convinience and simply means sequence in
- which the regular expression are repeated NUMBER times with
- cycle advancing (see ",").
-
- 5. cpu function unit name which means reservation.
-
- 6. reservation name -- see define_reservation.
-
- 7. string "nothing" means no units reservation.
-
-*/
-
-(define_automaton "nodiv, idiv, div")
-
-;; An FR500 packet can contain a single control instruction or a sequence
-;; of up to four operations matching the regular expression:
-
-;; (I FM? I? FM? | FM? FM?) B? B?
-
-;; where I denotes an integer operation, FM a floating-point or media
-;; operation, and B a branch operation. There are two units for each type
-;; of instruction: I0 and I1, FM0 and FM1, and B0 and B1. Units are
-;; allocated left-to-right: the first integer instruction uses I0, the
-;; second uses I1, and so on.
-
-;; The FR400 is similar to the FR500 except that it allows only 2 operations
-;; per packet and has only one branch unit. We can use the FR500 conflict
-;; description for the FR400, but need to define different cpu_units
-;; later.
-
-;; Slot/unit combinations available on the FR400 and above:
-(define_cpu_unit "sl0_i0, sl0_fm0, sl0_b0, sl0_c" "nodiv")
-(define_cpu_unit "sl1_fm0, sl1_i1, sl1_fm1, sl1_b0" "nodiv")
-
-;; These are available on the FR500 and above:
-(define_cpu_unit "sl1_b1" "nodiv")
-(define_cpu_unit "sl2_i1, sl2_fm1, sl2_b0, sl2_b1" "nodiv")
-(define_cpu_unit "sl3_fm1, sl3_b0, sl3_b1" "nodiv")
-
-;; The following describes conlicts by slots
-;; slot0
-(exclusion_set "sl0_i0" "sl0_fm0,sl0_b0,sl0_c")
-(exclusion_set "sl0_fm0" "sl0_b0,sl0_c")
-(exclusion_set "sl0_b0" "sl0_c")
-
-;; slot1
-(exclusion_set "sl1_fm0" "sl1_i1,sl1_fm1,sl1_b0,sl1_b1")
-(exclusion_set "sl1_i1" "sl1_fm1,sl1_b0,sl1_b1")
-(exclusion_set "sl1_fm1" "sl1_b0,sl1_b1")
-(exclusion_set "sl1_b0" "sl1_b1")
-
-;; slot2
-(exclusion_set "sl2_i1" "sl2_fm1,sl2_b0,sl2_b1")
-(exclusion_set "sl2_fm1" "sl2_b0,sl2_b1")
-(exclusion_set "sl2_b0" "sl2_b1")
-
-;; slot3
-(exclusion_set "sl3_fm1" "sl3_b0,sl3_b1")
-(exclusion_set "sl3_b0" "sl3_b1")
-
-;; The following describes conlicts by units
-;; fm0
-(exclusion_set "sl0_fm0" "sl1_fm0")
-
-;; b0
-(exclusion_set "sl0_b0" "sl1_b0,sl2_b0,sl3_b0")
-(exclusion_set "sl1_b0" "sl2_b0,sl3_b0")
-(exclusion_set "sl2_b0" "sl3_b0")
-
-;; i1
-(exclusion_set "sl1_i1" "sl2_i1")
-
-;; fm1
-(exclusion_set "sl1_fm1" "sl2_fm1,sl3_fm1")
-(exclusion_set "sl2_fm1" "sl3_fm1")
-
-;; b1
-(exclusion_set "sl1_b1" "sl2_b1,sl3_b1")
-(exclusion_set "sl2_b1" "sl3_b1")
-
-;; The following describes remaining combinations of conflicts
-;; slot0
-(exclusion_set "sl0_i0" "sl1_fm1,sl1_b1")
-(exclusion_set "sl0_fm0" "sl1_i1,sl1_b1,sl2_i1,sl2_fm1,sl3_fm1,sl3_b0")
-(exclusion_set "sl0_b0" "sl1_fm0,sl1_i1,sl1_fm1,sl2_i1,sl2_fm1,sl2_b1,\
- sl3_fm1,sl3_b1")
-(exclusion_set "sl0_c" "sl1_fm0,sl1_i1,sl1_fm1,sl1_b0,sl1_b1,sl2_i1,sl2_fm1,\
- sl2_b0,sl2_b1,sl3_fm1,sl3_b0,sl3_b1")
-
-
-;; slot1
-(exclusion_set "sl1_fm0" "sl2_b1")
-(exclusion_set "sl1_i1" "sl2_fm1,sl2_b1,sl3_fm1,sl3_b0")
-(exclusion_set "sl1_fm1" "sl2_i1,sl2_b1,sl3_b0")
-(exclusion_set "sl1_b0" "sl2_i1,sl2_fm1,sl3_fm1,sl3_b1")
-(exclusion_set "sl1_b1" "sl2_i1,sl2_fm1,sl2_b0,sl3_fm1,sl3_b0")
-
-;; slot2
-(exclusion_set "sl2_i1" "sl3_b1")
-(exclusion_set "sl2_fm1" "sl3_b1")
-(exclusion_set "sl2_b0" "sl3_fm1")
-(exclusion_set "sl2_b1" "sl3_fm1,sl3_b0")
-
-;; slot3
-(exclusion_set "sl1_fm0" "sl2_i1,sl2_fm1,sl2_b0,sl2_b1,sl3_fm1,sl3_b0,sl3_b1")
-(exclusion_set "sl3_fm1" "sl2_i1,sl2_fm1,sl2_b0,sl2_b1,sl3_b0,sl3_b1")
-
-;; ::::::::::::::::::::
-;; ::
-;; :: Generic/FR500 scheduler description
-;; ::
-;; ::::::::::::::::::::
-
-;; Define reservation in order to describe only in terms of units.
-
-(define_reservation "i0" "sl0_i0")
-(define_reservation "f0" "sl0_fm0|sl1_fm0")
-(define_reservation "m0" "f0")
-(define_reservation "b0" "sl0_b0|sl1_b0|sl2_b0|sl3_b0")
-(define_reservation "c" "sl0_c")
-(define_reservation "i1" "sl1_i1|sl2_i1")
-(define_reservation "f1" "sl1_fm1|sl2_fm1|sl3_fm1")
-(define_reservation "m1" "f1")
-(define_reservation "b1" "sl1_b1|sl2_b1|sl3_b1")
-
-;; Integer insns
-;; It is not possibly to issue load & store in one VLIW insn.
-(define_cpu_unit "idiv1" "idiv")
-(define_cpu_unit "idiv2" "idiv")
-(define_cpu_unit "l0" "nodiv")
-(define_cpu_unit "l1" "nodiv")
-(define_cpu_unit "s0" "nodiv")
-
-(exclusion_set "l1,l0" "s0")
-
-;; We set the default_latency of sethi to be 0 to allow sethi and setlo to be
-;; combined in the same VLIW instruction as allowed by the architecture. This
-;; assumes the only use of sethi is always followed by a setlo of the same
-;; register.
-(define_insn_reservation "i1_sethi" 0
- (and (eq_attr "cpu" "generic,fr500,tomcat")
- (eq_attr "type" "sethi"))
- "i0|i1")
-
-(define_insn_reservation "i1_setlo" 1
- (and (eq_attr "cpu" "generic,fr500,tomcat")
- (eq_attr "type" "setlo"))
- "i0|i1")
-
-(define_insn_reservation "i1_int" 1
- (and (eq_attr "cpu" "generic,fr500,tomcat")
- (eq_attr "type" "int"))
- "i0|i1")
-
-(define_insn_reservation "i1_mul" 3
- (and (eq_attr "cpu" "generic,fr500,tomcat")
- (eq_attr "type" "mul"))
- "i0|i1")
-
-(define_insn_reservation "i1_div" 19
- (and (eq_attr "cpu" "generic,fr500,tomcat")
- (eq_attr "type" "div"))
- "(i0|i1),(idiv1*18|idiv2*18)")
-
-(define_insn_reservation "i2_gload" 4
- (and (eq_attr "cpu" "generic,fr500,tomcat")
- (eq_attr "type" "gload"))
- "(i0|i1)+(l0|l1)")
-
-(define_insn_reservation "i2_fload" 4
- (and (eq_attr "cpu" "generic,fr500,tomcat")
- (eq_attr "type" "fload"))
- "(i0|i1)+(l0|l1)")
-
-(define_insn_reservation "i3_gstore" 0
- (and (eq_attr "cpu" "generic,fr500,tomcat")
- (eq_attr "type" "gstore"))
- "i0+s0")
-
-(define_insn_reservation "i3_fstore" 0
- (and (eq_attr "cpu" "generic,fr500,tomcat")
- (eq_attr "type" "fstore"))
- "i0+s0")
-
-(define_insn_reservation "i4_move_gf" 3
- (and (eq_attr "cpu" "generic,fr500,tomcat")
- (eq_attr "type" "movgf"))
- "i0")
-
-(define_insn_reservation "i4_move_fg" 3
- (and (eq_attr "cpu" "generic,fr500,tomcat")
- (eq_attr "type" "movfg"))
- "i0")
-
-(define_insn_reservation "i5" 0
- (and (eq_attr "cpu" "generic,fr500,tomcat")
- (eq_attr "type" "jumpl"))
- "i0")
-
-;; Clear/commit is not generated now:
-(define_insn_reservation "i6" 0 (const_int 0) "i0|i1")
-
-;;
-;; Branch-instructions
-;;
-(define_insn_reservation "b1/b3" 0
- (and (eq_attr "cpu" "generic,fr500,tomcat")
- (eq_attr "type" "jump,branch,ccr"))
- "b0|b1")
-
-;; The following insn is not generated now.
-
-(define_insn_reservation "b2" 0 (const_int 0) "b0")
-
-(define_insn_reservation "b4" 0
- (and (eq_attr "cpu" "generic,fr500,tomcat")
- (eq_attr "type" "call"))
- "b0")
-
-;; The following insns are not generated now.
-(define_insn_reservation "b5" 0 (const_int 0) "b0|b1")
-(define_insn_reservation "b6" 0 (const_int 0) "b0|b1")
-
-;; Control insns
-(define_insn_reservation "trap" 0
- (and (eq_attr "cpu" "generic,fr500,tomcat")
- (eq_attr "type" "trap"))
- "c")
-
-(define_insn_reservation "control" 0
- (and (eq_attr "cpu" "generic,fr500,tomcat")
- (eq_attr "type" "spr"))
- "c")
-
-;; Floating point insns
-(define_cpu_unit "add0" "nodiv")
-(define_cpu_unit "add1" "nodiv")
-(define_cpu_unit "mul0" "nodiv")
-(define_cpu_unit "mul1" "nodiv")
-(define_cpu_unit "div1" "div")
-(define_cpu_unit "div2" "div")
-(define_cpu_unit "root" "div")
-
-(define_bypass 4 "f1" "m1,m2,m3,m4,m5,m6,m7")
-(define_insn_reservation "f1" 3
- (and (eq_attr "cpu" "generic,fr500,tomcat")
- (eq_attr "type" "fsconv,fdconv"))
- "(f0|f1)")
-
-(define_bypass 4 "f2" "m1,m2,m3,m4,m5,m6,m7")
-(define_insn_reservation "f2" 3
- (and (eq_attr "cpu" "generic,fr500,tomcat")
- (eq_attr "type" "fsadd,fdadd"))
- "(f0|f1)+(add0|add1)")
-
-(define_bypass 4 "f3" "m1,m2,m3,m4,m5,m6,m7")
-(define_insn_reservation "f3" 3
- (and (eq_attr "cpu" "generic,fr500,tomcat")
- (eq_attr "type" "fsmul,fdmul"))
- "(f0|f1)+(mul0|mul1)")
-
-(define_bypass 11 "f4_div" "m1,m2,m3,m4,m5,m6,m7")
-(define_insn_reservation "f4_div" 10
- (and (eq_attr "cpu" "generic,fr500,tomcat")
- (eq_attr "type" "fsdiv,fddiv"))
- "(f0|f1),(div1*9|div2*9)")
-
-(define_bypass 16 "f4_root" "m1,m2,m3,m4,m5,m6,m7")
-(define_insn_reservation "f4_root" 15
- (and (eq_attr "cpu" "generic,fr500,tomcat")
- (eq_attr "type" "sqrt_single,sqrt_double"))
- "(f0|f1)+root*15")
-
-(define_bypass 4 "f5" "m1,m2,m3,m4,m5,m6,m7")
-(define_insn_reservation "f5" 3
- (and (eq_attr "cpu" "generic,fr500,tomcat")
- (eq_attr "type" "fmas"))
- "(f0|f1)+(add0|add1)+(mul0|mul1)")
-
-;; The following insns are not generated by gcc now:
-(define_insn_reservation "f6" 0 (const_int 0) "(f0|f1)+add0+add1")
-(define_insn_reservation "f7" 0 (const_int 0) "(f0|f1)+mul0+mul1")
-
-;; Media insns. Now they are all not generated now.
-(define_cpu_unit "m1_0" "nodiv")
-(define_cpu_unit "m1_1" "nodiv")
-(define_cpu_unit "m2_0" "nodiv")
-(define_cpu_unit "m2_1" "nodiv")
-(define_cpu_unit "m3_0" "nodiv")
-(define_cpu_unit "m3_1" "nodiv")
-(define_cpu_unit "m4_0" "nodiv")
-(define_cpu_unit "m4_1" "nodiv")
-(define_cpu_unit "m5" "nodiv")
-(define_cpu_unit "m6" "nodiv")
-(define_cpu_unit "m7" "nodiv")
-
-(exclusion_set "m5,m6,m7" "m2_0,m2_1,m3_0,m3_1")
-(exclusion_set "m5" "m6,m7")
-(exclusion_set "m6" "m4_0,m4_1,m7")
-(exclusion_set "m7" "m1_0,m1_1,add0,add1,mul0,mul1")
-
-(define_bypass 2 "m1" "m1,m2,m3,m4,m5,m6,m7")
-(define_bypass 4 "m1" "f1,f2,f3,f4_div,f4_root,f5,f6,f7")
-(define_insn_reservation "m1" 3
- (and (eq_attr "cpu" "generic,fr500,tomcat")
- (eq_attr "type" "mlogic,maveh,msath,maddh,mqaddh"))
- "(m0|m1)+(m1_0|m1_1)")
-
-(define_bypass 2 "m2" "m1,m2,m3,m4,m5,m6,m7")
-(define_bypass 4 "m2" "f1,f2,f3,f4_div,f4_root,f5,f6,f7")
-(define_insn_reservation "m2" 3
- (and (eq_attr "cpu" "generic,fr500,tomcat")
- (eq_attr "type" "mrdacc,mpackh,munpackh,mbhconv,mrot,mshift,mexpdhw,mexpdhd,mwcut,mcut,mdunpackh,mbhconve"))
- "(m0|m1)+(m2_0|m2_1)")
-
-(define_bypass 1 "m3" "m4")
-(define_insn_reservation "m3" 2
- (and (eq_attr "cpu" "generic,fr500,tomcat")
- (eq_attr "type" "mclracc,mwtacc"))
- "(m0|m1)+(m3_0|m3_1)")
-
-(define_bypass 1 "m4" "m4")
-(define_insn_reservation "m4" 2
- (and (eq_attr "cpu" "generic,fr500,tomcat")
- (eq_attr "type" "mmulh,mmulxh,mmach,mmrdh,mqmulh,mqmulxh,mqmach,mcpx,mqcpx"))
- "(m0|m1)+(m4_0|m4_1)")
-
-(define_bypass 2 "m5" "m1,m2,m3,m4,m5,m6,m7")
-(define_bypass 4 "m5" "f1,f2,f3,f4_div,f4_root,f5,f6,f7")
-(define_insn_reservation "m5" 3
- (and (eq_attr "cpu" "generic,fr500,tomcat")
- (eq_attr "type" "mdpackh"))
- "(m0|m1)+m5")
-
-(define_bypass 1 "m6" "m4")
-(define_insn_reservation "m6" 2
- (and (eq_attr "cpu" "generic,fr500,tomcat")
- (eq_attr "type" "mclracca"))
- "(m0|m1)+m6")
-
-(define_bypass 2 "m7" "m1,m2,m3,m4,m5,m6,m7")
-(define_bypass 4 "m7" "f1,f2,f3,f4_div,f4_root,f5,f6,f7")
-
-(define_insn_reservation "m7" 3
- (and (eq_attr "cpu" "generic,fr500,tomcat")
- (eq_attr "type" "m7"))
- "(m0|m1)+m7")
-
-;; Unknown & multi insns starts on new cycle and the next insn starts
-;; on new cycle. To describe this we consider as a control insn.
-(define_insn_reservation "unknown" 1
- (and (eq_attr "cpu" "generic,fr500,tomcat")
- (eq_attr "type" "unknown,multi"))
- "c")
-
-;; ::::::::::::::::::::
-;; ::
-;; :: FR400 scheduler description
-;; ::
-;; ::::::::::::::::::::
-
-;; Category 2 media instructions use both media units, but can be packed
-;; with non-media instructions. Use fr400_m1unit to claim the M1 unit
-;; without claiming a slot.
-
-(define_cpu_unit "fr400_m1unit" "nodiv")
-
-(define_reservation "fr400_i0" "sl0_i0")
-(define_reservation "fr400_i1" "sl1_i1")
-(define_reservation "fr400_m0" "sl0_fm0|sl1_fm0")
-(define_reservation "fr400_m1" "sl1_fm1")
-(define_reservation "fr400_meither" "fr400_m0|(fr400_m1+fr400_m1unit)")
-(define_reservation "fr400_mboth" "fr400_m0+fr400_m1unit")
-(define_reservation "fr400_b" "sl0_b0|sl1_b0")
-(define_reservation "fr400_c" "sl0_c")
-
-;; Name Class Units Latency
-;; ==== ===== ===== =======
-;; int I1 I0/I1 1
-;; sethi I1 I0/I1 0 -- does not interfere with setlo
-;; setlo I1 I0/I1 1
-;; mul I1 I0 3 (*)
-;; div I1 I0 20 (*)
-;; gload I2 I0 4 (*)
-;; fload I2 I0 4 -- only 3 if read by a media insn
-;; gstore I3 I0 0 -- provides no result
-;; fstore I3 I0 0 -- provides no result
-;; movfg I4 I0 3 (*)
-;; movgf I4 I0 3 (*)
-;; jumpl I5 I0 0 -- provides no result
-;;
-;; (*) The results of these instructions can be read one cycle earlier
-;; than indicated. The penalty given is for instructions with write-after-
-;; write dependencies.
-
-;; The FR400 can only do loads and stores in I0, so we there's no danger
-;; of memory unit collision in the same packet. There's only one divide
-;; unit too.
-
-(define_insn_reservation "fr400_i1_int" 1
- (and (eq_attr "cpu" "fr400")
- (eq_attr "type" "int"))
- "fr400_i0|fr400_i1")
-
-(define_insn_reservation "fr400_i1_sethi" 0
- (and (eq_attr "cpu" "fr400")
- (eq_attr "type" "sethi"))
- "fr400_i0|fr400_i1")
-
-(define_insn_reservation "fr400_i1_setlo" 1
- (and (eq_attr "cpu" "fr400")
- (eq_attr "type" "setlo"))
- "fr400_i0|fr400_i1")
-
-(define_insn_reservation "fr400_i1_mul" 3
- (and (eq_attr "cpu" "fr400")
- (eq_attr "type" "mul"))
- "fr400_i0")
-
-(define_insn_reservation "fr400_i1_div" 20
- (and (eq_attr "cpu" "fr400")
- (eq_attr "type" "div"))
- "fr400_i0+idiv1*19")
-
-(define_insn_reservation "fr400_i2_gload" 4
- (and (eq_attr "cpu" "fr400")
- (eq_attr "type" "gload"))
- "fr400_i0")
-
-(define_insn_reservation "fr400_i2_fload" 4
- (and (eq_attr "cpu" "fr400")
- (eq_attr "type" "fload"))
- "fr400_i0")
-
-(define_insn_reservation "fr400_i3_gstore" 0
- (and (eq_attr "cpu" "fr400")
- (eq_attr "type" "gstore"))
- "fr400_i0")
-
-(define_insn_reservation "fr400_i3_fstore" 0
- (and (eq_attr "cpu" "fr400")
- (eq_attr "type" "fstore"))
- "fr400_i0")
-
-(define_insn_reservation "fr400_i4_movfg" 3
- (and (eq_attr "cpu" "fr400")
- (eq_attr "type" "movfg"))
- "fr400_i0")
-
-(define_insn_reservation "fr400_i4_movgf" 3
- (and (eq_attr "cpu" "fr400")
- (eq_attr "type" "movgf"))
- "fr400_i0")
-
-(define_insn_reservation "fr400_i5_jumpl" 0
- (and (eq_attr "cpu" "fr400")
- (eq_attr "type" "jumpl"))
- "fr400_i0")
-
-;; The bypass between FPR loads and media instructions, described above.
-
-(define_bypass 3
- "fr400_i2_fload"
- "fr400_m1_1,fr400_m1_2,\
- fr400_m2_1,fr400_m2_2,\
- fr400_m3_1,fr400_m3_2,\
- fr400_m4_1,fr400_m4_2,\
- fr400_m5")
-
-;; The branch instructions all use the B unit and produce no result.
-
-(define_insn_reservation "fr400_b" 0
- (and (eq_attr "cpu" "fr400")
- (eq_attr "type" "jump,branch,ccr,call"))
- "fr400_b")
-
-;; Control instructions use the C unit, which excludes all the others.
-
-(define_insn_reservation "fr400_c" 0
- (and (eq_attr "cpu" "fr400")
- (eq_attr "type" "spr,trap"))
- "fr400_c")
-
-;; Unknown instructions use the C unit, since it requires single-operation
-;; packets.
-
-(define_insn_reservation "fr400_unknown" 1
- (and (eq_attr "cpu" "fr400")
- (eq_attr "type" "unknown,multi"))
- "fr400_c")
-
-;; FP->FP moves are marked as "fsconv" instructions in the define_insns
-;; below, but are implemented on the FR400 using "mlogic" instructions.
-;; It's easier to class "fsconv" as a "m1:1" instruction than provide
-;; separate define_insns for the FR400.
-
-;; M1 instructions store their results in FPRs. Any instruction can read
-;; the result in the following cycle, so no penalty occurs.
-
-(define_insn_reservation "fr400_m1_1" 1
- (and (eq_attr "cpu" "fr400")
- (eq_attr "type" "fsconv,mlogic,maveh,msath,maddh,mabsh,mset"))
- "fr400_meither")
-
-(define_insn_reservation "fr400_m1_2" 1
- (and (eq_attr "cpu" "fr400")
- (eq_attr "type" "mqaddh,mqsath"))
- "fr400_mboth")
-
-;; M2 instructions store their results in accumulators, which are read
-;; by M2 or M4 media commands. M2 instructions can read the results in
-;; the following cycle, but M4 instructions must wait a cycle more.
-
-(define_bypass 1
- "fr400_m2_1,fr400_m2_2"
- "fr400_m2_1,fr400_m2_2")
-
-(define_insn_reservation "fr400_m2_1" 2
- (and (eq_attr "cpu" "fr400")
- (eq_attr "type" "mmulh,mmulxh,mmach,mmrdh,mcpx,maddacc"))
- "fr400_meither")
-
-(define_insn_reservation "fr400_m2_2" 2
- (and (eq_attr "cpu" "fr400")
- (eq_attr "type" "mqmulh,mqmulxh,mqmach,mqcpx,mdaddacc"))
- "fr400_mboth")
-
-;; For our purposes, there seems to be little real difference between
-;; M1 and M3 instructions. Keep them separate anyway in case the distinction
-;; is needed later.
-
-(define_insn_reservation "fr400_m3_1" 1
- (and (eq_attr "cpu" "fr400")
- (eq_attr "type" "mpackh,mrot,mshift,mexpdhw"))
- "fr400_meither")
-
-(define_insn_reservation "fr400_m3_2" 1
- (and (eq_attr "cpu" "fr400")
- (eq_attr "type" "munpackh,mdpackh,mbhconv,mexpdhd,mwcut,mdrot,mcpl"))
- "fr400_mboth")
-
-;; M4 instructions write to accumulators or FPRs. MOVFG and STF
-;; instructions can read an FPR result in the following cycle, but
-;; M-unit instructions must wait a cycle more for either kind of result.
-
-(define_bypass 1
- "fr400_m4_1,fr400_m4_2"
- "fr400_i3_fstore,fr400_i4_movfg")
-
-(define_insn_reservation "fr400_m4_1" 2
- (and (eq_attr "cpu" "fr400")
- (eq_attr "type" "mrdacc,mcut,mclracc"))
- "fr400_meither")
-
-(define_insn_reservation "fr400_m4_2" 2
- (and (eq_attr "cpu" "fr400")
- (eq_attr "type" "mclracca,mdcut"))
- "fr400_mboth")
-
-;; M5 instructions always incur a 1-cycle penalty.
-
-(define_insn_reservation "fr400_m5" 2
- (and (eq_attr "cpu" "fr400")
- (eq_attr "type" "mwtacc"))
- "fr400_mboth")
-
-;; ::::::::::::::::::::
-;; ::
-;; :: Simple/FR300 scheduler description
-;; ::
-;; ::::::::::::::::::::
-
-;; Fr300 or simple processor. To describe it as 1 insn issue
-;; processor, we use control unit.
-
-(define_insn_reservation "fr300_lat1" 1
- (and (eq_attr "cpu" "fr300,simple")
- (eq_attr "type" "!gload,fload,movfg,movgf"))
- "c")
-
-(define_insn_reservation "fr300_lat2" 2
- (and (eq_attr "cpu" "fr300,simple")
- (eq_attr "type" "gload,fload,movfg,movgf"))
- "c")
-
-
-;; ::::::::::::::::::::
-;; ::
-;; :: Delay Slots
-;; ::
-;; ::::::::::::::::::::
-
-;; The insn attribute mechanism can be used to specify the requirements for
-;; delay slots, if any, on a target machine. An instruction is said to require
-;; a "delay slot" if some instructions that are physically after the
-;; instruction are executed as if they were located before it. Classic
-;; examples are branch and call instructions, which often execute the following
-;; instruction before the branch or call is performed.
-
-;; On some machines, conditional branch instructions can optionally "annul"
-;; instructions in the delay slot. This means that the instruction will not be
-;; executed for certain branch outcomes. Both instructions that annul if the
-;; branch is true and instructions that annul if the branch is false are
-;; supported.
-
-;; Delay slot scheduling differs from instruction scheduling in that
-;; determining whether an instruction needs a delay slot is dependent only
-;; on the type of instruction being generated, not on data flow between the
-;; instructions. See the next section for a discussion of data-dependent
-;; instruction scheduling.
-
-;; The requirement of an insn needing one or more delay slots is indicated via
-;; the `define_delay' expression. It has the following form:
-;;
-;; (define_delay TEST
-;; [DELAY-1 ANNUL-TRUE-1 ANNUL-FALSE-1
-;; DELAY-2 ANNUL-TRUE-2 ANNUL-FALSE-2
-;; ...])
-
-;; TEST is an attribute test that indicates whether this `define_delay' applies
-;; to a particular insn. If so, the number of required delay slots is
-;; determined by the length of the vector specified as the second argument. An
-;; insn placed in delay slot N must satisfy attribute test DELAY-N.
-;; ANNUL-TRUE-N is an attribute test that specifies which insns may be annulled
-;; if the branch is true. Similarly, ANNUL-FALSE-N specifies which insns in
-;; the delay slot may be annulled if the branch is false. If annulling is not
-;; supported for that delay slot, `(nil)' should be coded.
-
-;; For example, in the common case where branch and call insns require a single
-;; delay slot, which may contain any insn other than a branch or call, the
-;; following would be placed in the `md' file:
-
-;; (define_delay (eq_attr "type" "branch,call")
-;; [(eq_attr "type" "!branch,call") (nil) (nil)])
-
-;; Multiple `define_delay' expressions may be specified. In this case, each
-;; such expression specifies different delay slot requirements and there must
-;; be no insn for which tests in two `define_delay' expressions are both true.
-
-;; For example, if we have a machine that requires one delay slot for branches
-;; but two for calls, no delay slot can contain a branch or call insn, and any
-;; valid insn in the delay slot for the branch can be annulled if the branch is
-;; true, we might represent this as follows:
-
-;; (define_delay (eq_attr "type" "branch")
-;; [(eq_attr "type" "!branch,call")
-;; (eq_attr "type" "!branch,call")
-;; (nil)])
-;;
-;; (define_delay (eq_attr "type" "call")
-;; [(eq_attr "type" "!branch,call") (nil) (nil)
-;; (eq_attr "type" "!branch,call") (nil) (nil)])
-
-;; Note - it is the backend's responsibility to fill any unfilled delay slots
-;; at assembler generation time. This is usually done by adding a special print
-;; operand to the delayed insrtuction, and then in the PRINT_OPERAND function
-;; calling dbr_sequence_length() to determine how many delay slots were filled.
-;; For example:
-;;
-;; --------------<machine>.md-----------------
-;; (define_insn "call"
-;; [(call (match_operand 0 "memory_operand" "m")
-;; (match_operand 1 "" ""))]
-;; ""
-;; "call_delayed %0,%1,%2%#"
-;; [(set_attr "length" "4")
-;; (set_attr "type" "call")])
-;;
-;; -------------<machine>.h-------------------
-;; #define PRINT_OPERAND_PUNCT_VALID_P(CODE) (CODE == '#')
-;;
-;; ------------<machine>.c------------------
-;; void
-;; machine_print_operand (file, x, code)
-;; FILE * file;
-;; rtx x;
-;; int code;
-;; {
-;; switch (code)
-;; {
-;; case '#':
-;; if (dbr_sequence_length () == 0)
-;; fputs ("\n\tnop", file);
-;; return;
-
-;; ::::::::::::::::::::
-;; ::
-;; :: Notes on Patterns
-;; ::
-;; ::::::::::::::::::::
-
-;; If you need to construct a sequence of assembler instructions in order
-;; to implement a pattern be sure to escape any backslashes and double quotes
-;; that you use, eg:
-;;
-;; (define_insn "an example"
-;; [(some rtl)]
-;; ""
-;; "*
-;; { static char buffer [100];
-;; sprintf (buffer, \"insn \\t %d\", REGNO (operands[1]));
-;; return buffer;
-;; }"
-;; )
-;;
-;; Also if there is more than one instruction, they can be separated by \\;
-;; which is a space saving synonym for \\n\\t:
-;;
-;; (define_insn "another example"
-;; [(some rtl)]
-;; ""
-;; "*
-;; { static char buffer [100];
-;; sprintf (buffer, \"insn1 \\t %d\\;insn2 \\t %%1\",
-;; REGNO (operands[1]));
-;; return buffer;
-;; }"
-;; )
-;;
-
-
-;; ::::::::::::::::::::
-;; ::
-;; :: Moves
-;; ::
-;; ::::::::::::::::::::
-
-;; Wrap moves in define_expand to prevent memory->memory moves from being
-;; generated at the RTL level, which generates better code for most machines
-;; which can't do mem->mem moves.
-
-;; If operand 0 is a `subreg' with mode M of a register whose own mode is wider
-;; than M, the effect of this instruction is to store the specified value in
-;; the part of the register that corresponds to mode M. The effect on the rest
-;; of the register is undefined.
-
-;; This class of patterns is special in several ways. First of all, each of
-;; these names *must* be defined, because there is no other way to copy a datum
-;; from one place to another.
-
-;; Second, these patterns are not used solely in the RTL generation pass. Even
-;; the reload pass can generate move insns to copy values from stack slots into
-;; temporary registers. When it does so, one of the operands is a hard
-;; register and the other is an operand that can need to be reloaded into a
-;; register.
-
-;; Therefore, when given such a pair of operands, the pattern must
-;; generate RTL which needs no reloading and needs no temporary
-;; registers--no registers other than the operands. For example, if
-;; you support the pattern with a `define_expand', then in such a
-;; case the `define_expand' mustn't call `force_reg' or any other such
-;; function which might generate new pseudo registers.
-
-;; This requirement exists even for subword modes on a RISC machine
-;; where fetching those modes from memory normally requires several
-;; insns and some temporary registers. Look in `spur.md' to see how
-;; the requirement can be satisfied.
-
-;; During reload a memory reference with an invalid address may be passed as an
-;; operand. Such an address will be replaced with a valid address later in the
-;; reload pass. In this case, nothing may be done with the address except to
-;; use it as it stands. If it is copied, it will not be replaced with a valid
-;; address. No attempt should be made to make such an address into a valid
-;; address and no routine (such as `change_address') that will do so may be
-;; called. Note that `general_operand' will fail when applied to such an
-;; address.
-;;
-;; The global variable `reload_in_progress' (which must be explicitly declared
-;; if required) can be used to determine whether such special handling is
-;; required.
-;;
-;; The variety of operands that have reloads depends on the rest of
-;; the machine description, but typically on a RISC machine these can
-;; only be pseudo registers that did not get hard registers, while on
-;; other machines explicit memory references will get optional
-;; reloads.
-;;
-;; If a scratch register is required to move an object to or from memory, it
-;; can be allocated using `gen_reg_rtx' prior to reload. But this is
-;; impossible during and after reload. If there are cases needing scratch
-;; registers after reload, you must define `SECONDARY_INPUT_RELOAD_CLASS' and
-;; perhaps also `SECONDARY_OUTPUT_RELOAD_CLASS' to detect them, and provide
-;; patterns `reload_inM' or `reload_outM' to handle them.
-
-;; The constraints on a `moveM' must permit moving any hard register to any
-;; other hard register provided that `HARD_REGNO_MODE_OK' permits mode M in
-;; both registers and `REGISTER_MOVE_COST' applied to their classes returns a
-;; value of 2.
-
-;; It is obligatory to support floating point `moveM' instructions
-;; into and out of any registers that can hold fixed point values,
-;; because unions and structures (which have modes `SImode' or
-;; `DImode') can be in those registers and they may have floating
-;; point members.
-
-;; There may also be a need to support fixed point `moveM' instructions in and
-;; out of floating point registers. Unfortunately, I have forgotten why this
-;; was so, and I don't know whether it is still true. If `HARD_REGNO_MODE_OK'
-;; rejects fixed point values in floating point registers, then the constraints
-;; of the fixed point `moveM' instructions must be designed to avoid ever
-;; trying to reload into a floating point register.
-
-(define_expand "movqi"
- [(set (match_operand:QI 0 "general_operand" "")
- (match_operand:QI 1 "general_operand" ""))]
- ""
- "
-{
- if (!reload_in_progress
- && !reload_completed
- && !register_operand (operands[0], QImode)
- && !reg_or_0_operand (operands[1], QImode))
- operands[1] = copy_to_mode_reg (QImode, operands[1]);
-}")
-
-(define_insn "*movqi_load"
- [(set (match_operand:QI 0 "register_operand" "=d,f")
- (match_operand:QI 1 "frv_load_operand" "m,m"))]
- ""
- "* return output_move_single (operands, insn);"
- [(set_attr "length" "4")
- (set_attr "type" "gload,fload")])
-
-(define_insn "*movqi_internal"
- [(set (match_operand:QI 0 "move_destination_operand" "=d,d,m,m,?f,?f,?d,?m,f")
- (match_operand:QI 1 "move_source_operand" "L,d,d,O, d, f, f, f,GO"))]
- "register_operand(operands[0], QImode) || reg_or_0_operand (operands[1], QImode)"
- "* return output_move_single (operands, insn);"
- [(set_attr "length" "4")
- (set_attr "type" "int,int,gstore,gstore,movgf,fsconv,movfg,fstore,movgf")])
-
-(define_expand "movhi"
- [(set (match_operand:HI 0 "general_operand" "")
- (match_operand:HI 1 "general_operand" ""))]
- ""
- "
-{
- if (!reload_in_progress
- && !reload_completed
- && !register_operand (operands[0], HImode)
- && !reg_or_0_operand (operands[1], HImode))
- operands[1] = copy_to_mode_reg (HImode, operands[1]);
-}")
-
-(define_insn "*movhi_load"
- [(set (match_operand:HI 0 "register_operand" "=d,f")
- (match_operand:HI 1 "frv_load_operand" "m,m"))]
- ""
- "* return output_move_single (operands, insn);"
- [(set_attr "length" "4")
- (set_attr "type" "gload,fload")])
-
-(define_insn "*movhi_internal"
- [(set (match_operand:HI 0 "move_destination_operand" "=d,d,d,m,m,?f,?f,?d,?m,f")
- (match_operand:HI 1 "move_source_operand" "L,i,d,d,O, d, f, f, f,GO"))]
- "register_operand(operands[0], HImode) || reg_or_0_operand (operands[1], HImode)"
- "* return output_move_single (operands, insn);"
- [(set_attr "length" "4,8,4,4,4,4,4,4,4,4")
- (set_attr "type" "int,multi,int,gstore,gstore,movgf,fsconv,movfg,fstore,movgf")])
-
-;; Split 2 word load of constants into sethi/setlo instructions
-(define_split
- [(set (match_operand:HI 0 "integer_register_operand" "")
- (match_operand:HI 1 "int_2word_operand" ""))]
- "reload_completed"
- [(set (match_dup 0)
- (high:HI (match_dup 1)))
- (set (match_dup 0)
- (lo_sum:HI (match_dup 0)
- (match_dup 1)))]
- "")
-
-(define_insn "movhi_high"
- [(set (match_operand:HI 0 "integer_register_operand" "=d")
- (high:HI (match_operand:HI 1 "int_2word_operand" "i")))]
- ""
- "sethi #hi(%1), %0"
- [(set_attr "type" "sethi")
- (set_attr "length" "4")])
-
-(define_insn "movhi_lo_sum"
- [(set (match_operand:HI 0 "integer_register_operand" "+d")
- (lo_sum:HI (match_dup 0)
- (match_operand:HI 1 "int_2word_operand" "i")))]
- ""
- "setlo #lo(%1), %0"
- [(set_attr "type" "setlo")
- (set_attr "length" "4")])
-
-(define_expand "movsi"
- [(set (match_operand:SI 0 "move_destination_operand" "")
- (match_operand:SI 1 "move_source_operand" ""))]
- ""
- "
-{
- if (frv_emit_movsi (operands[0], operands[1]))
- DONE;
-}")
-
-;; Note - it is best to only have one movsi pattern and to handle
-;; all the various contingencies by the use of alternatives. This
-;; allows reload the greatest amount of flexability (since reload will
-;; only choose amoungst alternatives for a selected insn, it will not
-;; replace the insn with another one).
-
-;; Unfortunately, we do have to separate out load-type moves from the rest,
-;; and only allow memory source operands in the former. If we do memory and
-;; constant loads in a single pattern, reload will be tempted to force
-;; constants into memory when the destination is a floating-point register.
-;; That may make a function use a PIC pointer when it didn't before, and we
-;; cannot change PIC usage (and hence stack layout) so late in the game.
-;; The resulting sequences for loading cosntants into FPRs are preferable
-;; even when we're not generating PIC code.
-
-(define_insn "*movsi_load"
- [(set (match_operand:SI 0 "register_operand" "=d,f")
- (match_operand:SI 1 "frv_load_operand" "m,m"))]
- ""
- "* return output_move_single (operands, insn);"
- [(set_attr "length" "4")
- (set_attr "type" "gload,fload")])
-
-(define_insn "*movsi_internal"
- [(set (match_operand:SI 0 "move_destination_operand" "=d,d,d,m,m,z,d,d,f,f,m,?f,?z")
- (match_operand:SI 1 "move_source_operand" "LQ,i,d,d,O,d,z,f,d,f,f,GO,GO"))]
- "register_operand (operands[0], SImode) || reg_or_0_operand (operands[1], SImode)"
- "* return output_move_single (operands, insn);"
- [(set_attr "length" "4,8,4,4,4,4,4,4,4,4,4,4,4")
- (set_attr "type" "int,multi,int,gstore,gstore,spr,spr,movfg,movgf,fsconv,fstore,movgf,spr")])
-
-(define_insn "*movsi_lda_sdata"
- [(set (match_operand:SI 0 "integer_register_operand" "=d")
- (plus:SI (match_operand:SI 1 "small_data_register_operand" "d")
- (match_operand:SI 2 "small_data_symbolic_operand" "Q")))]
- ""
- "addi %1, #gprel12(%2), %0"
- [(set_attr "type" "int")
- (set_attr "length" "4")])
-
-;; Split 2 word load of constants into sethi/setlo instructions
-(define_split
- [(set (match_operand:SI 0 "integer_register_operand" "")
- (match_operand:SI 1 "int_2word_operand" ""))]
- "reload_completed"
- [(set (match_dup 0)
- (high:SI (match_dup 1)))
- (set (match_dup 0)
- (lo_sum:SI (match_dup 0)
- (match_dup 1)))]
- "")
-
-(define_insn "movsi_high"
- [(set (match_operand:SI 0 "integer_register_operand" "=d")
- (high:SI (match_operand:SI 1 "int_2word_operand" "i")))]
- ""
- "sethi #hi(%1), %0"
- [(set_attr "type" "sethi")
- (set_attr "length" "4")])
-
-(define_insn "movsi_lo_sum"
- [(set (match_operand:SI 0 "integer_register_operand" "+d")
- (lo_sum:SI (match_dup 0)
- (match_operand:SI 1 "int_2word_operand" "i")))]
- ""
- "setlo #lo(%1), %0"
- [(set_attr "type" "setlo")
- (set_attr "length" "4")])
-
-;; Split loads of addresses with PIC specified into 3 separate instructions
-(define_insn_and_split "*movsi_pic"
- [(set (match_operand:SI 0 "integer_register_operand" "=d")
- (plus:SI (match_operand:SI 1 "pic_register_operand" "d")
- (match_operand:SI 2 "pic_symbolic_operand" "")))]
- ""
- "#"
- "reload_completed"
- [(set (match_dup 0)
- (high:SI (match_dup 2)))
- (set (match_dup 0)
- (lo_sum:SI (match_dup 0)
- (match_dup 2)))
- (set (match_dup 0)
- (plus:SI (match_dup 0) (match_dup 1)))]
-
- ""
- [(set_attr "type" "multi")
- (set_attr "length" "12")])
-
-(define_insn "movsi_high_pic"
- [(set (match_operand:SI 0 "integer_register_operand" "=d")
- (high:SI (match_operand:SI 1 "pic_symbolic_operand" "")))]
- ""
- "sethi #gprelhi(%1), %0"
- [(set_attr "type" "sethi")
- (set_attr "length" "4")])
-
-(define_insn "movsi_lo_sum_pic"
- [(set (match_operand:SI 0 "integer_register_operand" "+d")
- (lo_sum:SI (match_dup 0)
- (match_operand:SI 1 "pic_symbolic_operand" "")))]
- ""
- "setlo #gprello(%1), %0"
- [(set_attr "type" "setlo")
- (set_attr "length" "4")])
-
-(define_expand "movdi"
- [(set (match_operand:DI 0 "nonimmediate_operand" "")
- (match_operand:DI 1 "general_operand" ""))]
- ""
- "
-{
- if (!reload_in_progress
- && !reload_completed
- && !register_operand (operands[0], DImode)
- && !reg_or_0_operand (operands[1], DImode))
- operands[1] = copy_to_mode_reg (DImode, operands[1]);
-}")
-
-(define_insn "*movdi_double"
- [(set (match_operand:DI 0 "move_destination_operand" "=e,?h,??d,??f,R,?R,??m,??m,e,?h,??d,??f,?e,??d,?h,??f,R,m,e,??d,e,??d,?h,??f")
- (match_operand:DI 1 "move_source_operand" " e,h,d,f,e,h,d,f,R,R,m,m,h,f,e,d,GO,GO,GO,GO,nF,nF,GO,GO"))]
- "TARGET_DOUBLE
- && (register_operand (operands[0], DImode)
- || reg_or_0_operand (operands[1], DImode))"
- "* return output_move_double (operands, insn);"
- [(set_attr "length" "8,4,8,8,4,4,8,8,4,4,8,8,4,8,4,8,4,8,8,8,16,16,8,8")
- (set_attr "type" "multi,fdconv,multi,multi,gstore,fstore,gstore,fstore,gload,fload,gload,fload,movfg,movfg,movgf,movgf,gstore,gstore,multi,multi,multi,multi,movgf,movgf")])
-
-(define_insn "*movdi_nodouble"
- [(set (match_operand:DI 0 "move_destination_operand" "=e,?h,??d,??f,R,?R,??m,??m,e,?h,??d,??f,?e,??d,?h,??f,R,m,e,??d,e,??d,?h,??f")
- (match_operand:DI 1 "move_source_operand" " e,h,d,f,e,h,d,f,R,R,m,m,h,f,e,d,GO,GO,GO,GO,nF,nF,GO,GO"))]
- "!TARGET_DOUBLE
- && (register_operand (operands[0], DImode)
- || reg_or_0_operand (operands[1], DImode))"
- "* return output_move_double (operands, insn);"
- [(set_attr "length" "8,8,8,8,4,4,8,8,4,4,8,8,8,8,8,8,4,8,8,8,16,16,8,8")
- (set_attr "type" "multi,multi,multi,multi,gstore,fstore,gstore,fstore,gload,fload,gload,fload,movfg,movfg,movgf,movgf,gstore,gstore,multi,multi,multi,multi,movgf,movgf")])
-
-(define_split
- [(set (match_operand:DI 0 "register_operand" "")
- (match_operand:DI 1 "dbl_memory_two_insn_operand" ""))]
- "reload_completed"
- [(const_int 0)]
- "frv_split_double_load (operands[0], operands[1]);")
-
-(define_split
- [(set (match_operand:DI 0 "odd_reg_operand" "")
- (match_operand:DI 1 "memory_operand" ""))]
- "reload_completed"
- [(const_int 0)]
- "frv_split_double_load (operands[0], operands[1]);")
-
-(define_split
- [(set (match_operand:DI 0 "dbl_memory_two_insn_operand" "")
- (match_operand:DI 1 "reg_or_0_operand" ""))]
- "reload_completed"
- [(const_int 0)]
- "frv_split_double_store (operands[0], operands[1]);")
-
-(define_split
- [(set (match_operand:DI 0 "memory_operand" "")
- (match_operand:DI 1 "odd_reg_operand" ""))]
- "reload_completed"
- [(const_int 0)]
- "frv_split_double_store (operands[0], operands[1]);")
-
-(define_split
- [(set (match_operand:DI 0 "register_operand" "")
- (match_operand:DI 1 "register_operand" ""))]
- "reload_completed
- && (odd_reg_operand (operands[0], DImode)
- || odd_reg_operand (operands[1], DImode)
- || (integer_register_operand (operands[0], DImode)
- && integer_register_operand (operands[1], DImode))
- || (!TARGET_DOUBLE
- && fpr_operand (operands[0], DImode)
- && fpr_operand (operands[1], DImode)))"
- [(set (match_dup 2) (match_dup 4))
- (set (match_dup 3) (match_dup 5))]
- "
-{
- rtx op0 = operands[0];
- rtx op0_low = gen_lowpart (SImode, op0);
- rtx op0_high = gen_highpart (SImode, op0);
- rtx op1 = operands[1];
- rtx op1_low = gen_lowpart (SImode, op1);
- rtx op1_high = gen_highpart (SImode, op1);
-
- /* We normally copy the low-numbered register first. However, if the first
- register operand 0 is the same as the second register of operand 1, we
- must copy in the opposite order. */
-
- if (REGNO (op0_high) == REGNO (op1_low))
- {
- operands[2] = op0_low;
- operands[3] = op0_high;
- operands[4] = op1_low;
- operands[5] = op1_high;
- }
- else
- {
- operands[2] = op0_high;
- operands[3] = op0_low;
- operands[4] = op1_high;
- operands[5] = op1_low;
- }
-}")
-
-(define_split
- [(set (match_operand:DI 0 "register_operand" "")
- (match_operand:DI 1 "const_int_operand" ""))]
- "reload_completed"
- [(set (match_dup 2) (match_dup 4))
- (set (match_dup 3) (match_dup 1))]
- "
-{
- rtx op0 = operands[0];
- rtx op1 = operands[1];
-
- operands[2] = gen_highpart (SImode, op0);
- operands[3] = gen_lowpart (SImode, op0);
- operands[4] = GEN_INT ((INTVAL (op1) < 0) ? -1 : 0);
-}")
-
-(define_split
- [(set (match_operand:DI 0 "register_operand" "")
- (match_operand:DI 1 "const_double_operand" ""))]
- "reload_completed"
- [(set (match_dup 2) (match_dup 4))
- (set (match_dup 3) (match_dup 5))]
- "
-{
- rtx op0 = operands[0];
- rtx op1 = operands[1];
-
- operands[2] = gen_highpart (SImode, op0);
- operands[3] = gen_lowpart (SImode, op0);
- operands[4] = GEN_INT (CONST_DOUBLE_HIGH (op1));
- operands[5] = GEN_INT (CONST_DOUBLE_LOW (op1));
-}")
-
-;; Floating Point Moves
-;;
-;; Note - Patterns for SF mode moves are compulsory, but
-;; patterns for DF are optional, as GCC can synthesise them.
-
-(define_expand "movsf"
- [(set (match_operand:SF 0 "general_operand" "")
- (match_operand:SF 1 "general_operand" ""))]
- ""
- "
-{
- if (!reload_in_progress
- && !reload_completed
- && !register_operand (operands[0], SFmode)
- && !reg_or_0_operand (operands[1], SFmode))
- operands[1] = copy_to_mode_reg (SFmode, operands[1]);
-}")
-
-(define_split
- [(set (match_operand:SF 0 "integer_register_operand" "")
- (match_operand:SF 1 "int_2word_operand" ""))]
- "reload_completed"
- [(set (match_dup 0)
- (high:SF (match_dup 1)))
- (set (match_dup 0)
- (lo_sum:SF (match_dup 0)
- (match_dup 1)))]
- "")
-
-(define_insn "*movsf_load_has_fprs"
- [(set (match_operand:SF 0 "register_operand" "=f,d")
- (match_operand:SF 1 "frv_load_operand" "m,m"))]
- "TARGET_HAS_FPRS"
- "* return output_move_single (operands, insn);"
- [(set_attr "length" "4")
- (set_attr "type" "fload,gload")])
-
-(define_insn "*movsf_internal_has_fprs"
- [(set (match_operand:SF 0 "move_destination_operand" "=f,f,m,m,?f,?d,?d,m,?d")
- (match_operand:SF 1 "move_source_operand" "f,OG,f,OG,d,f,d,d,F"))]
- "TARGET_HAS_FPRS
- && (register_operand (operands[0], SFmode) || reg_or_0_operand (operands[1], SFmode))"
- "* return output_move_single (operands, insn);"
- [(set_attr "length" "4,4,4,4,4,4,4,4,8")
- (set_attr "type" "fsconv,movgf,fstore,gstore,movgf,movfg,int,gstore,multi")])
-
-;; If we don't support the double instructions, prefer gprs over fprs, since it
-;; will all be emulated
-(define_insn "*movsf_internal_no_fprs"
- [(set (match_operand:SF 0 "move_destination_operand" "=d,d,m,d,d")
- (match_operand:SF 1 "move_source_operand" " d,OG,dOG,m,F"))]
- "!TARGET_HAS_FPRS
- && (register_operand (operands[0], SFmode) || reg_or_0_operand (operands[1], SFmode))"
- "* return output_move_single (operands, insn);"
- [(set_attr "length" "4,4,4,4,8")
- (set_attr "type" "int,int,gstore,gload,multi")])
-
-(define_insn "movsf_high"
- [(set (match_operand:SF 0 "integer_register_operand" "=d")
- (high:SF (match_operand:SF 1 "int_2word_operand" "i")))]
- ""
- "sethi #hi(%1), %0"
- [(set_attr "type" "sethi")
- (set_attr "length" "4")])
-
-(define_insn "movsf_lo_sum"
- [(set (match_operand:SF 0 "integer_register_operand" "+d")
- (lo_sum:SF (match_dup 0)
- (match_operand:SF 1 "int_2word_operand" "i")))]
- ""
- "setlo #lo(%1), %0"
- [(set_attr "type" "setlo")
- (set_attr "length" "4")])
-
-(define_expand "movdf"
- [(set (match_operand:DF 0 "nonimmediate_operand" "")
- (match_operand:DF 1 "general_operand" ""))]
- ""
- "
-{
- if (!reload_in_progress
- && !reload_completed
- && !register_operand (operands[0], DFmode)
- && !reg_or_0_operand (operands[1], DFmode))
- operands[1] = copy_to_mode_reg (DFmode, operands[1]);
-}")
-
-(define_insn "*movdf_double"
- [(set (match_operand:DF 0 "move_destination_operand" "=h,?e,??f,??d,R,?R,??m,??m,h,?e,??f,??d,?h,??f,?e,??d,R,m,h,??f,e,??d")
- (match_operand:DF 1 "move_source_operand" " h,e,f,d,h,e,f,d,R,R,m,m,e,d,h,f,GO,GO,GO,GO,GO,GO"))]
- "TARGET_DOUBLE
- && (register_operand (operands[0], DFmode)
- || reg_or_0_operand (operands[1], DFmode))"
- "* return output_move_double (operands, insn);"
- [(set_attr "length" "4,8,8,8,4,4,8,8,4,4,8,8,4,8,4,8,4,8,8,8,8,8")
- (set_attr "type" "fdconv,multi,multi,multi,fstore,gstore,fstore,gstore,fload,gload,fload,gload,movgf,movgf,movfg,movfg,gstore,gstore,movgf,movgf,multi,multi")])
-
-;; If we don't support the double instructions, prefer gprs over fprs, since it
-;; will all be emulated
-(define_insn "*movdf_nodouble"
- [(set (match_operand:DF 0 "move_destination_operand" "=e,?h,??d,??f,R,?R,??m,??m,e,?h,??d,??f,?e,??d,?h,??f,R,m,e,??d,e,??d,?h,??f")
- (match_operand:DF 1 "move_source_operand" " e,h,d,f,e,h,d,f,R,R,m,m,h,f,e,d,GO,GO,GO,GO,nF,nF,GO,GO"))]
- "!TARGET_DOUBLE
- && (register_operand (operands[0], DFmode)
- || reg_or_0_operand (operands[1], DFmode))"
- "* return output_move_double (operands, insn);"
- [(set_attr "length" "8,8,8,8,4,4,8,8,4,4,8,8,8,8,8,8,4,8,8,8,16,16,8,8")
- (set_attr "type" "multi,multi,multi,multi,gstore,fstore,gstore,fstore,gload,fload,gload,fload,movfg,movfg,movgf,movgf,gstore,gstore,multi,multi,multi,multi,movgf,movgf")])
-
-(define_split
- [(set (match_operand:DF 0 "register_operand" "")
- (match_operand:DF 1 "dbl_memory_two_insn_operand" ""))]
- "reload_completed"
- [(const_int 0)]
- "frv_split_double_load (operands[0], operands[1]);")
-
-(define_split
- [(set (match_operand:DF 0 "odd_reg_operand" "")
- (match_operand:DF 1 "memory_operand" ""))]
- "reload_completed"
- [(const_int 0)]
- "frv_split_double_load (operands[0], operands[1]);")
-
-(define_split
- [(set (match_operand:DF 0 "dbl_memory_two_insn_operand" "")
- (match_operand:DF 1 "reg_or_0_operand" ""))]
- "reload_completed"
- [(const_int 0)]
- "frv_split_double_store (operands[0], operands[1]);")
-
-(define_split
- [(set (match_operand:DF 0 "memory_operand" "")
- (match_operand:DF 1 "odd_reg_operand" ""))]
- "reload_completed"
- [(const_int 0)]
- "frv_split_double_store (operands[0], operands[1]);")
-
-(define_split
- [(set (match_operand:DF 0 "register_operand" "")
- (match_operand:DF 1 "register_operand" ""))]
- "reload_completed
- && (odd_reg_operand (operands[0], DFmode)
- || odd_reg_operand (operands[1], DFmode)
- || (integer_register_operand (operands[0], DFmode)
- && integer_register_operand (operands[1], DFmode))
- || (!TARGET_DOUBLE
- && fpr_operand (operands[0], DFmode)
- && fpr_operand (operands[1], DFmode)))"
- [(set (match_dup 2) (match_dup 4))
- (set (match_dup 3) (match_dup 5))]
- "
-{
- rtx op0 = operands[0];
- rtx op0_low = gen_lowpart (SImode, op0);
- rtx op0_high = gen_highpart (SImode, op0);
- rtx op1 = operands[1];
- rtx op1_low = gen_lowpart (SImode, op1);
- rtx op1_high = gen_highpart (SImode, op1);
-
- /* We normally copy the low-numbered register first. However, if the first
- register operand 0 is the same as the second register of operand 1, we
- must copy in the opposite order. */
-
- if (REGNO (op0_high) == REGNO (op1_low))
- {
- operands[2] = op0_low;
- operands[3] = op0_high;
- operands[4] = op1_low;
- operands[5] = op1_high;
- }
- else
- {
- operands[2] = op0_high;
- operands[3] = op0_low;
- operands[4] = op1_high;
- operands[5] = op1_low;
- }
-}")
-
-(define_split
- [(set (match_operand:DF 0 "register_operand" "")
- (match_operand:DF 1 "const_int_operand" ""))]
- "reload_completed"
- [(set (match_dup 2) (match_dup 4))
- (set (match_dup 3) (match_dup 1))]
- "
-{
- rtx op0 = operands[0];
- rtx op1 = operands[1];
-
- operands[2] = gen_highpart (SImode, op0);
- operands[3] = gen_lowpart (SImode, op0);
- operands[4] = GEN_INT ((INTVAL (op1) < 0) ? -1 : 0);
-}")
-
-(define_split
- [(set (match_operand:DF 0 "register_operand" "")
- (match_operand:DF 1 "const_double_operand" ""))]
- "reload_completed"
- [(set (match_dup 2) (match_dup 4))
- (set (match_dup 3) (match_dup 5))]
- "
-{
- rtx op0 = operands[0];
- rtx op1 = operands[1];
- REAL_VALUE_TYPE rv;
- long l[2];
-
- REAL_VALUE_FROM_CONST_DOUBLE (rv, op1);
- REAL_VALUE_TO_TARGET_DOUBLE (rv, l);
-
- operands[2] = gen_highpart (SImode, op0);
- operands[3] = gen_lowpart (SImode, op0);
- operands[4] = GEN_INT (l[0]);
- operands[5] = GEN_INT (l[1]);
-}")
-
-;; String/block move insn.
-;; Argument 0 is the destination
-;; Argument 1 is the source
-;; Argument 2 is the length
-;; Argument 3 is the alignment
-
-(define_expand "movstrsi"
- [(parallel [(set (match_operand:BLK 0 "" "")
- (match_operand:BLK 1 "" ""))
- (use (match_operand:SI 2 "" ""))
- (use (match_operand:SI 3 "" ""))])]
- ""
- "
-{
- if (frv_expand_block_move (operands))
- DONE;
- else
- FAIL;
-}")
-
-;; String/block clear insn.
-;; Argument 0 is the destination
-;; Argument 1 is the length
-;; Argument 2 is the alignment
-
-(define_expand "clrstrsi"
- [(parallel [(set (match_operand:BLK 0 "" "")
- (const_int 0))
- (use (match_operand:SI 1 "" ""))
- (use (match_operand:SI 2 "" ""))])]
- ""
- "
-{
- if (frv_expand_block_clear (operands))
- DONE;
- else
- FAIL;
-}")
-
-
-;; ::::::::::::::::::::
-;; ::
-;; :: Reload CC registers
-;; ::
-;; ::::::::::::::::::::
-
-;; Use as a define_expand so that cse/gcse/combine can't accidentally
-;; create movcc insns.
-
-(define_expand "movcc"
- [(parallel [(set (match_operand:CC 0 "move_destination_operand" "")
- (match_operand:CC 1 "move_source_operand" ""))
- (clobber (match_dup 2))])]
- ""
- "
-{
- if (! reload_in_progress && ! reload_completed)
- FAIL;
-
- operands[2] = gen_rtx_REG (CC_CCRmode, ICR_TEMP);
-}")
-
-(define_insn "*internal_movcc"
- [(set (match_operand:CC 0 "move_destination_operand" "=t,d,d,m,d")
- (match_operand:CC 1 "move_source_operand" "d,d,m,d,t"))
- (clobber (match_scratch:CC_CCR 2 "=X,X,X,X,&v"))]
- "reload_in_progress || reload_completed"
- "@
- cmpi %1, #0, %0
- mov %1, %0
- ld%I1%U1 %M1, %0
- st%I0%U0 %1, %M0
- #"
- [(set_attr "length" "4,4,4,4,20")
- (set_attr "type" "int,int,gload,gstore,multi")])
-
-;; To move an ICC value to a GPR for a signed comparison, we create a value
-;; that when compared to 0, sets the N and Z flags appropriately (we don't care
-;; about the V and C flags, since these comparisons are signed).
-
-(define_split
- [(set (match_operand:CC 0 "integer_register_operand" "")
- (match_operand:CC 1 "icc_operand" ""))
- (clobber (match_operand:CC_CCR 2 "icr_operand" ""))]
- "reload_in_progress || reload_completed"
- [(match_dup 3)]
- "
-{
- rtx dest = simplify_gen_subreg (SImode, operands[0], CCmode, 0);
- rtx icc = operands[1];
- rtx icr = operands[2];
-
- start_sequence ();
-
- emit_insn (gen_rtx_SET (VOIDmode, icr,
- gen_rtx_LT (CC_CCRmode, icc, const0_rtx)));
-
- emit_insn (gen_movsi (dest, const1_rtx));
-
- emit_insn (gen_rtx_COND_EXEC (VOIDmode,
- gen_rtx_NE (CC_CCRmode, icr, const0_rtx),
- gen_rtx_SET (VOIDmode, dest,
- gen_rtx_NEG (SImode, dest))));
-
- emit_insn (gen_rtx_SET (VOIDmode, icr,
- gen_rtx_EQ (CC_CCRmode, icc, const0_rtx)));
-
- emit_insn (gen_rtx_COND_EXEC (VOIDmode,
- gen_rtx_NE (CC_CCRmode, icr, const0_rtx),
- gen_rtx_SET (VOIDmode, dest, const0_rtx)));
-
- operands[3] = get_insns ();
- end_sequence ();
-}")
-
-(define_expand "reload_incc"
- [(parallel [(set (match_operand:CC 2 "integer_register_operand" "=&d")
- (match_operand:CC 1 "memory_operand" "m"))
- (clobber (match_scratch:CC_CCR 3 ""))])
- (parallel [(set (match_operand:CC 0 "icc_operand" "=t")
- (match_dup 2))
- (clobber (match_scratch:CC_CCR 4 ""))])]
- ""
- "")
-
-(define_expand "reload_outcc"
- [(parallel [(set (match_operand:CC 2 "integer_register_operand" "=&d")
- (match_operand:CC 1 "icc_operand" "t"))
- (clobber (match_dup 3))])
- (parallel [(set (match_operand:CC 0 "memory_operand" "=m")
- (match_dup 2))
- (clobber (match_scratch:CC_CCR 4 ""))])]
- ""
- "operands[3] = gen_rtx_REG (CC_CCRmode, ICR_TEMP);")
-
-;; Reload CC_UNSmode for unsigned integer comparisons
-;; Use define_expand so that cse/gcse/combine can't create movcc_uns insns
-
-(define_expand "movcc_uns"
- [(parallel [(set (match_operand:CC_UNS 0 "move_destination_operand" "")
- (match_operand:CC_UNS 1 "move_source_operand" ""))
- (clobber (match_dup 2))])]
- ""
- "
-{
- if (! reload_in_progress && ! reload_completed)
- FAIL;
- operands[2] = gen_rtx_REG (CC_CCRmode, ICR_TEMP);
-}")
-
-(define_insn "*internal_movcc_uns"
- [(set (match_operand:CC_UNS 0 "move_destination_operand" "=t,d,d,m,d")
- (match_operand:CC_UNS 1 "move_source_operand" "d,d,m,d,t"))
- (clobber (match_scratch:CC_CCR 2 "=X,X,X,X,&v"))]
- "reload_in_progress || reload_completed"
- "@
- cmpi %1, #1, %0
- mov %1, %0
- ld%I1%U1 %M1, %0
- st%I0%U0 %1, %M0
- #"
- [(set_attr "length" "4,4,4,4,20")
- (set_attr "type" "int,int,gload,gstore,multi")])
-
-;; To move an ICC value to a GPR for an unsigned comparison, we create a value
-;; that when compared to 1, sets the Z, V, and C flags appropriately (we don't
-;; care about the N flag, since these comparisons are unsigned).
-
-(define_split
- [(set (match_operand:CC_UNS 0 "integer_register_operand" "")
- (match_operand:CC_UNS 1 "icc_operand" ""))
- (clobber (match_operand:CC_CCR 2 "icr_operand" ""))]
- "reload_in_progress || reload_completed"
- [(match_dup 3)]
- "
-{
- rtx dest = simplify_gen_subreg (SImode, operands[0], CC_UNSmode, 0);
- rtx icc = operands[1];
- rtx icr = operands[2];
-
- start_sequence ();
-
- emit_insn (gen_rtx_SET (VOIDmode, icr,
- gen_rtx_GTU (CC_CCRmode, icc, const0_rtx)));
-
- emit_insn (gen_movsi (dest, const1_rtx));
-
- emit_insn (gen_rtx_COND_EXEC (VOIDmode,
- gen_rtx_NE (CC_CCRmode, icr, const0_rtx),
- gen_addsi3 (dest, dest, dest)));
-
- emit_insn (gen_rtx_SET (VOIDmode, icr,
- gen_rtx_LTU (CC_CCRmode, icc, const0_rtx)));
-
- emit_insn (gen_rtx_COND_EXEC (VOIDmode,
- gen_rtx_NE (CC_CCRmode, icr, const0_rtx),
- gen_rtx_SET (VOIDmode, dest, const0_rtx)));
-
- operands[3] = get_insns ();
- end_sequence ();
-}")
-
-(define_expand "reload_incc_uns"
- [(parallel [(set (match_operand:CC_UNS 2 "integer_register_operand" "=&d")
- (match_operand:CC_UNS 1 "memory_operand" "m"))
- (clobber (match_scratch:CC_CCR 3 ""))])
- (parallel [(set (match_operand:CC_UNS 0 "icc_operand" "=t")
- (match_dup 2))
- (clobber (match_scratch:CC_CCR 4 ""))])]
- ""
- "")
-
-(define_expand "reload_outcc_uns"
- [(parallel [(set (match_operand:CC_UNS 2 "integer_register_operand" "=&d")
- (match_operand:CC_UNS 1 "icc_operand" "t"))
- (clobber (match_dup 3))])
- (parallel [(set (match_operand:CC_UNS 0 "memory_operand" "=m")
- (match_dup 2))
- (clobber (match_scratch:CC_CCR 4 ""))])]
- ""
- "operands[3] = gen_rtx_REG (CC_CCRmode, ICR_TEMP);")
-
-;; Reload CC_FPmode for floating point comparisons
-;; We use a define_expand here so that cse/gcse/combine can't accidentally
-;; create movcc insns. If this was a named define_insn, we would not be able
-;; to make it conditional on reload.
-
-(define_expand "movcc_fp"
- [(set (match_operand:CC_FP 0 "move_destination_operand" "")
- (match_operand:CC_FP 1 "move_source_operand" ""))]
- "TARGET_HAS_FPRS"
- "
-{
- if (! reload_in_progress && ! reload_completed)
- FAIL;
-}")
-
-(define_insn "*movcc_fp_internal"
- [(set (match_operand:CC_FP 0 "move_destination_operand" "=d,d,d,m")
- (match_operand:CC_FP 1 "move_source_operand" "u,d,m,d"))]
- "TARGET_HAS_FPRS && (reload_in_progress || reload_completed)"
- "@
- #
- mov %1, %0
- ld%I1%U1 %M1, %0
- st%I0%U0 %1, %M0"
- [(set_attr "length" "12,4,4,4")
- (set_attr "type" "multi,int,gload,gstore")])
-
-
-(define_expand "reload_incc_fp"
- [(match_operand:CC_FP 0 "fcc_operand" "=u")
- (match_operand:CC_FP 1 "memory_operand" "m")
- (match_operand:TI 2 "integer_register_operand" "=&d")]
- "TARGET_HAS_FPRS"
- "
-{
- rtx cc_op2 = simplify_gen_subreg (CC_FPmode, operands[2], TImode, 0);
- rtx int_op2 = simplify_gen_subreg (SImode, operands[2], TImode, 0);
- rtx temp1 = simplify_gen_subreg (SImode, operands[2], TImode, 4);
- rtx temp2 = simplify_gen_subreg (SImode, operands[2], TImode, 8);
- int shift = CC_SHIFT_RIGHT (REGNO (operands[0]));
- HOST_WIDE_INT mask;
-
- emit_insn (gen_movcc_fp (cc_op2, operands[1]));
- if (shift)
- emit_insn (gen_ashlsi3 (int_op2, int_op2, GEN_INT (shift)));
-
- mask = ~ ((HOST_WIDE_INT)CC_MASK << shift);
- emit_insn (gen_movsi (temp1, GEN_INT (mask)));
- emit_insn (gen_update_fcc (operands[0], int_op2, temp1, temp2));
- DONE;
-}")
-
-(define_expand "reload_outcc_fp"
- [(set (match_operand:CC_FP 2 "integer_register_operand" "=&d")
- (match_operand:CC_FP 1 "fcc_operand" "u"))
- (set (match_operand:CC_FP 0 "memory_operand" "=m")
- (match_dup 2))]
- "TARGET_HAS_FPRS"
- "")
-
-;; Convert a FCC value to gpr
-(define_insn "read_fcc"
- [(set (match_operand:SI 0 "integer_register_operand" "=d")
- (unspec:SI [(match_operand:CC_FP 1 "fcc_operand" "u")]
- UNSPEC_CC_TO_GPR))]
- "TARGET_HAS_FPRS"
- "movsg ccr, %0"
- [(set_attr "type" "spr")
- (set_attr "length" "4")])
-
-(define_split
- [(set (match_operand:CC_FP 0 "integer_register_operand" "")
- (match_operand:CC_FP 1 "fcc_operand" ""))]
- "reload_completed && TARGET_HAS_FPRS"
- [(match_dup 2)]
- "
-{
- rtx int_op0 = simplify_gen_subreg (SImode, operands[0], CC_FPmode, 0);
- int shift = CC_SHIFT_RIGHT (REGNO (operands[1]));
-
- start_sequence ();
-
- emit_insn (gen_read_fcc (int_op0, operands[1]));
- if (shift)
- emit_insn (gen_lshrsi3 (int_op0, int_op0, GEN_INT (shift)));
-
- emit_insn (gen_andsi3 (int_op0, int_op0, GEN_INT (CC_MASK)));
-
- operands[2] = get_insns ();
- end_sequence ();
-}")
-
-;; Move a gpr value to FCC.
-;; Operand0 = FCC
-;; Operand1 = reloaded value shifted appropriately
-;; Operand2 = mask to eliminate current register
-;; Operand3 = temporary to load/store ccr
-(define_insn "update_fcc"
- [(set (match_operand:CC_FP 0 "fcc_operand" "=u")
- (unspec:CC_FP [(match_operand:SI 1 "integer_register_operand" "d")
- (match_operand:SI 2 "integer_register_operand" "d")]
- UNSPEC_GPR_TO_CC))
- (clobber (match_operand:SI 3 "integer_register_operand" "=&d"))]
- "TARGET_HAS_FPRS"
- "movsg ccr, %3\;and %2, %3, %3\;or %1, %3, %3\;movgs %3, ccr"
- [(set_attr "type" "multi")
- (set_attr "length" "16")])
-
-;; Reload CC_CCRmode for conditional execution registers
-(define_insn "movcc_ccr"
- [(set (match_operand:CC_CCR 0 "move_destination_operand" "=d,d,d,m,v,?w,C,d")
- (match_operand:CC_CCR 1 "move_source_operand" "C,d,m,d,n,n,C,L"))]
- ""
- "@
- #
- mov %1, %0
- ld%I1%U1 %M1, %0
- st%I0%U0 %1, %M0
- #
- #
- orcr %1, %1, %0
- setlos #%1, %0"
- [(set_attr "length" "8,4,4,4,8,12,4,4")
- (set_attr "type" "multi,int,gload,gstore,multi,multi,ccr,int")])
-
-(define_expand "reload_incc_ccr"
- [(match_operand:CC_CCR 0 "cr_operand" "=C")
- (match_operand:CC_CCR 1 "memory_operand" "m")
- (match_operand:CC_CCR 2 "integer_register_operand" "=&d")]
- ""
- "
-{
- rtx icc = gen_rtx_REG (CCmode, ICC_TEMP);
- rtx int_op2 = simplify_gen_subreg (SImode, operands[2], CC_CCRmode, 0);
- rtx icr = (ICR_P (REGNO (operands[0]))
- ? operands[0] : gen_rtx_REG (CC_CCRmode, ICR_TEMP));
-
- emit_insn (gen_movcc_ccr (operands[2], operands[1]));
- emit_insn (gen_cmpsi_cc (icc, int_op2, const0_rtx));
- emit_insn (gen_movcc_ccr (icr, gen_rtx_NE (CC_CCRmode, icc, const0_rtx)));
-
- if (! ICR_P (REGNO (operands[0])))
- emit_insn (gen_movcc_ccr (operands[0], icr));
-
- DONE;
-}")
-
-(define_expand "reload_outcc_ccr"
- [(set (match_operand:CC_CCR 2 "integer_register_operand" "=&d")
- (match_operand:CC_CCR 1 "cr_operand" "C"))
- (set (match_operand:CC_CCR 0 "memory_operand" "=m")
- (match_dup 2))]
- ""
- "")
-
-(define_split
- [(set (match_operand:CC_CCR 0 "integer_register_operand" "")
- (match_operand:CC_CCR 1 "cr_operand" ""))]
- "reload_completed"
- [(match_dup 2)]
- "
-{
- rtx int_op0 = simplify_gen_subreg (SImode, operands[0], CC_CCRmode, 0);
-
- start_sequence ();
- emit_move_insn (operands[0], const1_rtx);
- emit_insn (gen_rtx_COND_EXEC (VOIDmode,
- gen_rtx_EQ (CC_CCRmode,
- operands[1],
- const0_rtx),
- gen_rtx_SET (VOIDmode, int_op0,
- const0_rtx)));
-
- operands[2] = get_insns ();
- end_sequence ();
-}")
-
-(define_split
- [(set (match_operand:CC_CCR 0 "cr_operand" "")
- (match_operand:CC_CCR 1 "const_int_operand" ""))]
- "reload_completed"
- [(match_dup 2)]
- "
-{
- rtx icc = gen_rtx_REG (CCmode, ICC_TEMP);
- rtx r0 = gen_rtx_REG (SImode, GPR_FIRST);
- rtx icr = (ICR_P (REGNO (operands[0]))
- ? operands[0] : gen_rtx_REG (CC_CCRmode, ICR_TEMP));
-
- start_sequence ();
-
- emit_insn (gen_cmpsi_cc (icc, r0, const0_rtx));
-
- emit_insn (gen_movcc_ccr (icr,
- gen_rtx_fmt_ee (((INTVAL (operands[1]) == 0)
- ? EQ : NE), CC_CCRmode,
- r0, const0_rtx)));
-
- if (! ICR_P (REGNO (operands[0])))
- emit_insn (gen_movcc_ccr (operands[0], icr));
-
- operands[2] = get_insns ();
- end_sequence ();
-}")
-
-
-;; ::::::::::::::::::::
-;; ::
-;; :: Conversions
-;; ::
-;; ::::::::::::::::::::
-
-;; Signed conversions from a smaller integer to a larger integer
-;;
-;; These operations are optional. If they are not
-;; present GCC will synthesise them for itself
-;; Even though frv does not provide these instructions, we define them
-;; to allow load + sign extend to be collapsed together
-(define_insn "extendqihi2"
- [(set (match_operand:HI 0 "integer_register_operand" "=d,d")
- (sign_extend:HI (match_operand:QI 1 "gpr_or_memory_operand" "d,m")))]
- ""
- "@
- #
- ldsb%I1%U1 %M1,%0"
- [(set_attr "length" "8,4")
- (set_attr "type" "multi,gload")])
-
-(define_split
- [(set (match_operand:HI 0 "integer_register_operand" "")
- (sign_extend:HI (match_operand:QI 1 "integer_register_operand" "")))]
- "reload_completed"
- [(match_dup 2)
- (match_dup 3)]
- "
-{
- rtx op0 = gen_lowpart (SImode, operands[0]);
- rtx op1 = gen_lowpart (SImode, operands[1]);
- rtx shift = GEN_INT (24);
-
- operands[2] = gen_ashlsi3 (op0, op1, shift);
- operands[3] = gen_ashrsi3 (op0, op0, shift);
-}")
-
-(define_insn "extendqisi2"
- [(set (match_operand:SI 0 "integer_register_operand" "=d,d")
- (sign_extend:SI (match_operand:QI 1 "gpr_or_memory_operand" "d,m")))]
- ""
- "@
- #
- ldsb%I1%U1 %M1,%0"
- [(set_attr "length" "8,4")
- (set_attr "type" "multi,gload")])
-
-(define_split
- [(set (match_operand:SI 0 "integer_register_operand" "")
- (sign_extend:SI (match_operand:QI 1 "integer_register_operand" "")))]
- "reload_completed"
- [(match_dup 2)
- (match_dup 3)]
- "
-{
- rtx op0 = gen_lowpart (SImode, operands[0]);
- rtx op1 = gen_lowpart (SImode, operands[1]);
- rtx shift = GEN_INT (24);
-
- operands[2] = gen_ashlsi3 (op0, op1, shift);
- operands[3] = gen_ashrsi3 (op0, op0, shift);
-}")
-
-;;(define_insn "extendqidi2"
-;; [(set (match_operand:DI 0 "register_operand" "=r")
-;; (sign_extend:DI (match_operand:QI 1 "general_operand" "g")))]
-;; ""
-;; "extendqihi2 %0,%1"
-;; [(set_attr "length" "4")])
-
-(define_insn "extendhisi2"
- [(set (match_operand:SI 0 "integer_register_operand" "=d,d")
- (sign_extend:SI (match_operand:HI 1 "gpr_or_memory_operand" "d,m")))]
- ""
- "@
- #
- ldsh%I1%U1 %M1,%0"
- [(set_attr "length" "8,4")
- (set_attr "type" "multi,gload")])
-
-(define_split
- [(set (match_operand:SI 0 "integer_register_operand" "")
- (sign_extend:SI (match_operand:HI 1 "integer_register_operand" "")))]
- "reload_completed"
- [(match_dup 2)
- (match_dup 3)]
- "
-{
- rtx op0 = gen_lowpart (SImode, operands[0]);
- rtx op1 = gen_lowpart (SImode, operands[1]);
- rtx shift = GEN_INT (16);
-
- operands[2] = gen_ashlsi3 (op0, op1, shift);
- operands[3] = gen_ashrsi3 (op0, op0, shift);
-}")
-
-;;(define_insn "extendhidi2"
-;; [(set (match_operand:DI 0 "register_operand" "=r")
-;; (sign_extend:DI (match_operand:HI 1 "general_operand" "g")))]
-;; ""
-;; "extendhihi2 %0,%1"
-;; [(set_attr "length" "4")])
-;;
-;;(define_insn "extendsidi2"
-;; [(set (match_operand:DI 0 "register_operand" "=r")
-;; (sign_extend:DI (match_operand:SI 1 "general_operand" "g")))]
-;; ""
-;; "extendsidi2 %0,%1"
-;; [(set_attr "length" "4")])
-
-;; Unsigned conversions from a smaller integer to a larger integer
-(define_insn "zero_extendqihi2"
- [(set (match_operand:HI 0 "integer_register_operand" "=d,d,d")
- (zero_extend:HI
- (match_operand:QI 1 "gpr_or_memory_operand" "d,L,m")))]
- ""
- "@
- andi %1,#0xff,%0
- setlos %1,%0
- ldub%I1%U1 %M1,%0"
- [(set_attr "length" "4")
- (set_attr "type" "int,int,gload")])
-
-(define_insn "zero_extendqisi2"
- [(set (match_operand:SI 0 "integer_register_operand" "=d,d,d")
- (zero_extend:SI
- (match_operand:QI 1 "gpr_or_memory_operand" "d,L,m")))]
- ""
- "@
- andi %1,#0xff,%0
- setlos %1,%0
- ldub%I1%U1 %M1,%0"
- [(set_attr "length" "4")
- (set_attr "type" "int,int,gload")])
-
-;;(define_insn "zero_extendqidi2"
-;; [(set (match_operand:DI 0 "register_operand" "=r")
-;; (zero_extend:DI (match_operand:QI 1 "general_operand" "g")))]
-;; ""
-;; "zero_extendqihi2 %0,%1"
-;; [(set_attr "length" "4")])
-
-;; Do not set the type for the sethi to "sethi", since the scheduler will think
-;; the sethi takes 0 cycles as part of allowing sethi/setlo to be in the same
-;; VLIW instruction.
-(define_insn "zero_extendhisi2"
- [(set (match_operand:SI 0 "integer_register_operand" "=d,d")
- (zero_extend:SI (match_operand:HI 1 "gpr_or_memory_operand" "0,m")))]
- ""
- "@
- sethi #hi(#0),%0
- lduh%I1%U1 %M1,%0"
- [(set_attr "length" "4")
- (set_attr "type" "int,gload")])
-
-;;(define_insn "zero_extendhidi2"
-;; [(set (match_operand:DI 0 "register_operand" "=r")
-;; (zero_extend:DI (match_operand:HI 1 "general_operand" "g")))]
-;; ""
-;; "zero_extendhihi2 %0,%1"
-;; [(set_attr "length" "4")])
-;;
-;;(define_insn "zero_extendsidi2"
-;; [(set (match_operand:DI 0 "register_operand" "=r")
-;; (zero_extend:DI (match_operand:SI 1 "general_operand" "g")))]
-;; ""
-;; "zero_extendsidi2 %0,%1"
-;; [(set_attr "length" "4")])
-;;
-;;;; Convert between floating point types of different sizes.
-;;
-;;(define_insn "extendsfdf2"
-;; [(set (match_operand:DF 0 "register_operand" "=r")
-;; (float_extend:DF (match_operand:SF 1 "register_operand" "r")))]
-;; ""
-;; "extendsfdf2 %0,%1"
-;; [(set_attr "length" "4")])
-;;
-;;(define_insn "truncdfsf2"
-;; [(set (match_operand:SF 0 "register_operand" "=r")
-;; (float_truncate:SF (match_operand:DF 1 "register_operand" "r")))]
-;; ""
-;; "truncdfsf2 %0,%1"
-;; [(set_attr "length" "4")])
-
-;;;; Convert between signed integer types and floating point.
-(define_insn "floatsisf2"
- [(set (match_operand:SF 0 "fpr_operand" "=f")
- (float:SF (match_operand:SI 1 "fpr_operand" "f")))]
- "TARGET_HARD_FLOAT"
- "fitos %1,%0"
- [(set_attr "length" "4")
- (set_attr "type" "fsconv")])
-
-(define_insn "floatsidf2"
- [(set (match_operand:DF 0 "fpr_operand" "=h")
- (float:DF (match_operand:SI 1 "fpr_operand" "f")))]
- "TARGET_HARD_FLOAT && TARGET_DOUBLE"
- "fitod %1,%0"
- [(set_attr "length" "4")
- (set_attr "type" "fdconv")])
-
-;;(define_insn "floatdisf2"
-;; [(set (match_operand:SF 0 "register_operand" "=r")
-;; (float:SF (match_operand:DI 1 "register_operand" "r")))]
-;; ""
-;; "floatdisf2 %0,%1"
-;; [(set_attr "length" "4")])
-;;
-;;(define_insn "floatdidf2"
-;; [(set (match_operand:DF 0 "register_operand" "=r")
-;; (float:DF (match_operand:DI 1 "register_operand" "r")))]
-;; ""
-;; "floatdidf2 %0,%1"
-;; [(set_attr "length" "4")])
-
-(define_insn "fix_truncsfsi2"
- [(set (match_operand:SI 0 "fpr_operand" "=f")
- (fix:SI (match_operand:SF 1 "fpr_operand" "f")))]
- "TARGET_HARD_FLOAT"
- "fstoi %1,%0"
- [(set_attr "length" "4")
- (set_attr "type" "fsconv")])
-
-(define_insn "fix_truncdfsi2"
- [(set (match_operand:SI 0 "fpr_operand" "=f")
- (fix:SI (match_operand:DF 1 "fpr_operand" "h")))]
- "TARGET_HARD_FLOAT && TARGET_DOUBLE"
- "fdtoi %1,%0"
- [(set_attr "length" "4")
- (set_attr "type" "fdconv")])
-
-;;(define_insn "fix_truncsfdi2"
-;; [(set (match_operand:DI 0 "register_operand" "=r")
-;; (fix:DI (match_operand:SF 1 "register_operand" "r")))]
-;; ""
-;; "fix_truncsfdi2 %0,%1"
-;; [(set_attr "length" "4")])
-;;
-;;(define_insn "fix_truncdfdi2"
-;; [(set (match_operand:DI 0 "register_operand" "=r")
-;; (fix:DI (match_operand:DF 1 "register_operand" "r")))]
-;; ""
-;; "fix_truncdfdi2 %0,%1"
-;; [(set_attr "length" "4")])
-;;
-;;;; Convert between unsigned integer types and floating point.
-;;
-;;(define_insn "floatunssisf2"
-;; [(set (match_operand:SF 0 "register_operand" "=r")
-;; (unsigned_float:SF (match_operand:SI 1 "register_operand" "r")))]
-;; ""
-;; "floatunssisf2 %0,%1"
-;; [(set_attr "length" "4")])
-;;
-;;(define_insn "floatunssidf2"
-;; [(set (match_operand:DF 0 "register_operand" "=r")
-;; (unsigned_float:DF (match_operand:SI 1 "register_operand" "r")))]
-;; ""
-;; "floatunssidf2 %0,%1"
-;; [(set_attr "length" "4")])
-;;
-;;(define_insn "floatunsdisf2"
-;; [(set (match_operand:SF 0 "register_operand" "=r")
-;; (unsigned_float:SF (match_operand:DI 1 "register_operand" "r")))]
-;; ""
-;; "floatunsdisf2 %0,%1"
-;; [(set_attr "length" "4")])
-;;
-;;(define_insn "floatunsdidf2"
-;; [(set (match_operand:DF 0 "register_operand" "=r")
-;; (unsigned_float:DF (match_operand:DI 1 "register_operand" "r")))]
-;; ""
-;; "floatunsdidf2 %0,%1"
-;; [(set_attr "length" "4")])
-;;
-;;(define_insn "fixuns_truncsfsi2"
-;; [(set (match_operand:SI 0 "register_operand" "=r")
-;; (unsigned_fix:SI (match_operand:SF 1 "register_operand" "r")))]
-;; ""
-;; "fixuns_truncsfsi2 %0,%1"
-;; [(set_attr "length" "4")])
-;;
-;;(define_insn "fixuns_truncdfsi2"
-;; [(set (match_operand:SI 0 "register_operand" "=r")
-;; (unsigned_fix:SI (match_operand:DF 1 "register_operand" "r")))]
-;; ""
-;; "fixuns_truncdfsi2 %0,%1"
-;; [(set_attr "length" "4")])
-;;
-;;(define_insn "fixuns_truncsfdi2"
-;; [(set (match_operand:DI 0 "register_operand" "=r")
-;; (unsigned_fix:DI (match_operand:SF 1 "register_operand" "r")))]
-;; ""
-;; "fixuns_truncsfdi2 %0,%1"
-;; [(set_attr "length" "4")])
-;;
-;;(define_insn "fixuns_truncdfdi2"
-;; [(set (match_operand:DI 0 "register_operand" "=r")
-;; (unsigned_fix:DI (match_operand:DF 1 "register_operand" "r")))]
-;; ""
-;; "fixuns_truncdfdi2 %0,%1"
-;; [(set_attr "length" "4")])
-
-
-;; ::::::::::::::::::::
-;; ::
-;; :: 32 bit Integer arithmetic
-;; ::
-;; ::::::::::::::::::::
-
-;; Addition
-(define_insn "addsi3"
- [(set (match_operand:SI 0 "integer_register_operand" "=d")
- (plus:SI (match_operand:SI 1 "integer_register_operand" "%d")
- (match_operand:SI 2 "gpr_or_int12_operand" "dNOP")))]
- ""
- "add%I2 %1,%2,%0"
- [(set_attr "length" "4")
- (set_attr "type" "int")])
-
-;; Subtraction. No need to worry about constants, since the compiler
-;; canonicalizes them into addsi3's. We prevent SUBREG's here to work around a
-;; combine bug, that combines the 32x32->upper 32 bit multiply that uses a
-;; SUBREG with a minus that shows up in modulus by constants.
-(define_insn "subsi3"
- [(set (match_operand:SI 0 "integer_register_operand" "=d")
- (minus:SI (match_operand:SI 1 "gpr_no_subreg_operand" "d")
- (match_operand:SI 2 "gpr_no_subreg_operand" "d")))]
- ""
- "sub %1,%2,%0"
- [(set_attr "length" "4")
- (set_attr "type" "int")])
-
-;; Signed multiplication producing 64 bit results from 32 bit inputs
-;; Note, frv doesn't have a 32x32->32 bit multiply, but the compiler
-;; will do the 32x32->64 bit multiply and use the bottom word.
-(define_expand "mulsidi3"
- [(set (match_operand:DI 0 "integer_register_operand" "")
- (mult:DI (sign_extend:DI (match_operand:SI 1 "integer_register_operand" ""))
- (sign_extend:DI (match_operand:SI 2 "gpr_or_int12_operand" ""))))]
- ""
- "
-{
- if (GET_CODE (operands[2]) == CONST_INT)
- {
- emit_insn (gen_mulsidi3_const (operands[0], operands[1], operands[2]));
- DONE;
- }
-}")
-
-(define_insn "*mulsidi3_reg"
- [(set (match_operand:DI 0 "even_gpr_operand" "=e")
- (mult:DI (sign_extend:DI (match_operand:SI 1 "integer_register_operand" "%d"))
- (sign_extend:DI (match_operand:SI 2 "integer_register_operand" "d"))))]
- ""
- "smul %1,%2,%0"
- [(set_attr "length" "4")
- (set_attr "type" "mul")])
-
-(define_insn "mulsidi3_const"
- [(set (match_operand:DI 0 "even_gpr_operand" "=e")
- (mult:DI (sign_extend:DI (match_operand:SI 1 "integer_register_operand" "d"))
- (match_operand:SI 2 "int12_operand" "NOP")))]
- ""
- "smuli %1,%2,%0"
- [(set_attr "length" "4")
- (set_attr "type" "mul")])
-
-;; Unsigned multiplication producing 64 bit results from 32 bit inputs
-(define_expand "umulsidi3"
- [(set (match_operand:DI 0 "even_gpr_operand" "")
- (mult:DI (zero_extend:DI (match_operand:SI 1 "integer_register_operand" ""))
- (zero_extend:DI (match_operand:SI 2 "gpr_or_int12_operand" ""))))]
- ""
- "
-{
- if (GET_CODE (operands[2]) == CONST_INT)
- {
- emit_insn (gen_umulsidi3_const (operands[0], operands[1], operands[2]));
- DONE;
- }
-}")
-
-(define_insn "*mulsidi3_reg"
- [(set (match_operand:DI 0 "even_gpr_operand" "=e")
- (mult:DI (zero_extend:DI (match_operand:SI 1 "integer_register_operand" "%d"))
- (zero_extend:DI (match_operand:SI 2 "integer_register_operand" "d"))))]
- ""
- "umul %1,%2,%0"
- [(set_attr "length" "4")
- (set_attr "type" "mul")])
-
-(define_insn "umulsidi3_const"
- [(set (match_operand:DI 0 "even_gpr_operand" "=e")
- (mult:DI (zero_extend:DI (match_operand:SI 1 "integer_register_operand" "d"))
- (match_operand:SI 2 "int12_operand" "NOP")))]
- ""
- "umuli %1,%2,%0"
- [(set_attr "length" "4")
- (set_attr "type" "mul")])
-
-;; Signed Division
-(define_insn "divsi3"
- [(set (match_operand:SI 0 "register_operand" "=d,d")
- (div:SI (match_operand:SI 1 "register_operand" "d,d")
- (match_operand:SI 2 "gpr_or_int12_operand" "d,NOP")))]
- ""
- "sdiv%I2 %1,%2,%0"
- [(set_attr "length" "4")
- (set_attr "type" "div")])
-
-;; Unsigned Division
-(define_insn "udivsi3"
- [(set (match_operand:SI 0 "register_operand" "=d,d")
- (udiv:SI (match_operand:SI 1 "register_operand" "d,d")
- (match_operand:SI 2 "gpr_or_int12_operand" "d,NOP")))]
- ""
- "udiv%I2 %1,%2,%0"
- [(set_attr "length" "4")
- (set_attr "type" "div")])
-
-;; Negation
-(define_insn "negsi2"
- [(set (match_operand:SI 0 "integer_register_operand" "=d")
- (neg:SI (match_operand:SI 1 "integer_register_operand" "d")))]
- ""
- "sub %.,%1,%0"
- [(set_attr "length" "4")
- (set_attr "type" "int")])
-
-;; Find first one bit
-;; (define_insn "ffssi2"
-;; [(set (match_operand:SI 0 "register_operand" "=r")
-;; (ffs:SI (match_operand:SI 1 "register_operand" "r")))]
-;; ""
-;; "ffssi2 %0,%1"
-;; [(set_attr "length" "4")])
-
-
-;; ::::::::::::::::::::
-;; ::
-;; :: 64 bit Integer arithmetic
-;; ::
-;; ::::::::::::::::::::
-
-;; Addition
-(define_expand "adddi3"
- [(parallel [(set (match_operand:DI 0 "integer_register_operand" "")
- (plus:DI (match_operand:DI 1 "integer_register_operand" "")
- (match_operand:DI 2 "gpr_or_int10_operand" "")))
- (clobber (match_scratch:CC 3 ""))])]
- ""
- "
-{
- if (GET_CODE (operands[2]) == CONST_INT
- && INTVAL (operands[2]) == -2048
- && !no_new_pseudos)
- operands[2] = force_reg (DImode, operands[2]);
-}")
-
-(define_insn_and_split "*adddi3_internal"
- [(set (match_operand:DI 0 "integer_register_operand" "=&e,e,e,&e,e,&e,e")
- (plus:DI (match_operand:DI 1 "integer_register_operand" "%e,0,e,e,0,e,0")
- (match_operand:DI 2 "gpr_or_int10_operand" "e,e,0,N,N,OP,OP")))
- (clobber (match_scratch:CC 3 "=t,t,t,t,t,t,t"))]
- "GET_CODE (operands[2]) != CONST_INT || INTVAL (operands[2]) != -2048"
- "#"
- "reload_completed"
- [(match_dup 4)
- (match_dup 5)]
- "
-{
- rtx op0_high = gen_highpart (SImode, operands[0]);
- rtx op1_high = gen_highpart (SImode, operands[1]);
- rtx op0_low = gen_lowpart (SImode, operands[0]);
- rtx op1_low = gen_lowpart (SImode, operands[1]);
- rtx op2 = operands[2];
- rtx op3 = operands[3];
-
- if (GET_CODE (op2) != CONST_INT)
- {
- rtx op2_high = gen_highpart (SImode, operands[2]);
- rtx op2_low = gen_lowpart (SImode, operands[2]);
- operands[4] = gen_adddi3_lower (op0_low, op1_low, op2_low, op3);
- operands[5] = gen_adddi3_upper (op0_high, op1_high, op2_high, op3);
- }
- else if (INTVAL (op2) >= 0)
- {
- operands[4] = gen_adddi3_lower (op0_low, op1_low, op2, op3);
- operands[5] = gen_adddi3_upper (op0_high, op1_high, const0_rtx, op3);
- }
- else
- {
- operands[4] = gen_subdi3_lower (op0_low, op1_low,
- GEN_INT (- INTVAL (op2)), op3);
- operands[5] = gen_subdi3_upper (op0_high, op1_high, const0_rtx, op3);
- }
-}"
- [(set_attr "length" "8")
- (set_attr "type" "multi")])
-
-;; Subtraction No need to worry about constants, since the compiler
-;; canonicalizes them into adddi3's.
-(define_expand "subdi3"
- [(parallel [(set (match_operand:DI 0 "integer_register_operand" "")
- (minus:DI (match_operand:DI 1 "integer_register_operand" "")
- (match_operand:DI 2 "integer_register_operand" "")))
- (clobber (match_dup 3))])]
- ""
- "
-{
- operands[3] = gen_reg_rtx (CCmode);
-}")
-
-(define_insn_and_split "*subdi3_internal"
- [(set (match_operand:DI 0 "integer_register_operand" "=&e,e,e")
- (minus:DI (match_operand:DI 1 "integer_register_operand" "e,0,e")
- (match_operand:DI 2 "integer_register_operand" "e,e,0")))
- (clobber (match_operand:CC 3 "icc_operand" "=t,t,t"))]
- ""
- "#"
- "reload_completed"
- [(match_dup 4)
- (match_dup 5)]
- "
-{
- rtx op0_high = gen_highpart (SImode, operands[0]);
- rtx op1_high = gen_highpart (SImode, operands[1]);
- rtx op2_high = gen_highpart (SImode, operands[2]);
- rtx op0_low = gen_lowpart (SImode, operands[0]);
- rtx op1_low = gen_lowpart (SImode, operands[1]);
- rtx op2_low = gen_lowpart (SImode, operands[2]);
- rtx op3 = operands[3];
-
- operands[4] = gen_subdi3_lower (op0_low, op1_low, op2_low, op3);
- operands[5] = gen_subdi3_upper (op0_high, op1_high, op2_high, op3);
-}"
- [(set_attr "length" "8")
- (set_attr "type" "multi")])
-
-;; Patterns for addsi3/subdi3 after spliting
-(define_insn "adddi3_lower"
- [(set (match_operand:SI 0 "integer_register_operand" "=d")
- (plus:SI (match_operand:SI 1 "integer_register_operand" "d")
- (match_operand:SI 2 "gpr_or_int10_operand" "dOP")))
- (set (match_operand:CC 3 "icc_operand" "=t")
- (compare:CC (plus:SI (match_dup 1)
- (match_dup 2))
- (const_int 0)))]
- "GET_CODE (operands[2]) != CONST_INT || INTVAL (operands[2]) >= 0"
- "add%I2cc %1,%2,%0,%3"
- [(set_attr "length" "4")
- (set_attr "type" "int")])
-
-(define_insn "adddi3_upper"
- [(set (match_operand:SI 0 "integer_register_operand" "=d,d")
- (plus:SI (match_operand:SI 1 "integer_register_operand" "d,d")
- (plus:SI (match_operand:SI 2 "reg_or_0_operand" "d,O")
- (match_operand:CC 3 "icc_operand" "t,t"))))]
- ""
- "@
- addx %1,%2,%0,%3
- addx %1,%.,%0,%3"
- [(set_attr "length" "4")
- (set_attr "type" "int")])
-
-(define_insn "subdi3_lower"
- [(set (match_operand:SI 0 "integer_register_operand" "=d")
- (minus:SI (match_operand:SI 1 "integer_register_operand" "d")
- (match_operand:SI 2 "gpr_or_int10_operand" "dOP")))
- (set (match_operand:CC 3 "icc_operand" "=t")
- (compare:CC (plus:SI (match_dup 1)
- (match_dup 2))
- (const_int 0)))]
- "GET_CODE (operands[2]) != CONST_INT || INTVAL (operands[2]) >= 0"
- "sub%I2cc %1,%2,%0,%3"
- [(set_attr "length" "4")
- (set_attr "type" "int")])
-
-(define_insn "subdi3_upper"
- [(set (match_operand:SI 0 "integer_register_operand" "=d,d")
- (minus:SI (match_operand:SI 1 "integer_register_operand" "d,d")
- (minus:SI (match_operand:SI 2 "reg_or_0_operand" "d,O")
- (match_operand:CC 3 "icc_operand" "t,t"))))]
- ""
- "@
- subx %1,%2,%0,%3
- subx %1,%.,%0,%3"
- [(set_attr "length" "4")
- (set_attr "type" "int")])
-
-;; Multiplication (same size)
-;; (define_insn "muldi3"
-;; [(set (match_operand:DI 0 "register_operand" "=r")
-;; (mult:DI (match_operand:DI 1 "register_operand" "%r")
-;; (match_operand:DI 2 "nonmemory_operand" "ri")))]
-;; ""
-;; "muldi3 %0,%1,%2"
-;; [(set_attr "length" "4")])
-
-;; Signed Division
-;; (define_insn "divdi3"
-;; [(set (match_operand:DI 0 "register_operand" "=r")
-;; (div:DI (match_operand:DI 1 "register_operand" "r")
-;; (match_operand:DI 2 "nonmemory_operand" "ri")))]
-;; ""
-;; "divdi3 %0,%1,%2"
-;; [(set_attr "length" "4")])
-
-;; Undsgned Division
-;; (define_insn "udivdi3"
-;; [(set (match_operand:DI 0 "register_operand" "=r")
-;; (udiv:DI (match_operand:DI 1 "register_operand" "r")
-;; (match_operand:DI 2 "nonmemory_operand" "ri")))]
-;; ""
-;; "udivdi3 %0,%1,%2"
-;; [(set_attr "length" "4")])
-
-;; Negation
-;; (define_insn "negdi2"
-;; [(set (match_operand:DI 0 "register_operand" "=r")
-;; (neg:DI (match_operand:DI 1 "register_operand" "r")))]
-;; ""
-;; "negdi2 %0,%1"
-;; [(set_attr "length" "4")])
-
-;; Find first one bit
-;; (define_insn "ffsdi2"
-;; [(set (match_operand:DI 0 "register_operand" "=r")
-;; (ffs:DI (match_operand:DI 1 "register_operand" "r")))]
-;; ""
-;; "ffsdi2 %0,%1"
-;; [(set_attr "length" "4")])
-
-
-;; ::::::::::::::::::::
-;; ::
-;; :: 32 bit floating point arithmetic
-;; ::
-;; ::::::::::::::::::::
-
-;; Addition
-(define_insn "addsf3"
- [(set (match_operand:SF 0 "fpr_operand" "=f")
- (plus:SF (match_operand:SF 1 "fpr_operand" "%f")
- (match_operand:SF 2 "fpr_operand" "f")))]
- "TARGET_HARD_FLOAT"
- "fadds %1,%2,%0"
- [(set_attr "length" "4")
- (set_attr "type" "fsadd")])
-
-;; Subtraction
-(define_insn "subsf3"
- [(set (match_operand:SF 0 "fpr_operand" "=f")
- (minus:SF (match_operand:SF 1 "fpr_operand" "f")
- (match_operand:SF 2 "fpr_operand" "f")))]
- "TARGET_HARD_FLOAT"
- "fsubs %1,%2,%0"
- [(set_attr "length" "4")
- (set_attr "type" "fsadd")])
-
-;; Multiplication
-(define_insn "mulsf3"
- [(set (match_operand:SF 0 "fpr_operand" "=f")
- (mult:SF (match_operand:SF 1 "fpr_operand" "%f")
- (match_operand:SF 2 "fpr_operand" "f")))]
- "TARGET_HARD_FLOAT"
- "fmuls %1,%2,%0"
- [(set_attr "length" "4")
- (set_attr "type" "fsmul")])
-
-;; Multiplication with addition/subtraction
-(define_insn "*muladdsf4"
- [(set (match_operand:SF 0 "fpr_operand" "=f")
- (plus:SF (mult:SF (match_operand:SF 1 "fpr_operand" "%f")
- (match_operand:SF 2 "fpr_operand" "f"))
- (match_operand:SF 3 "fpr_operand" "0")))]
- "TARGET_HARD_FLOAT && TARGET_MULADD"
- "fmadds %1,%2,%0"
- [(set_attr "length" "4")
- (set_attr "type" "fmas")])
-
-(define_insn "*mulsubsf4"
- [(set (match_operand:SF 0 "fpr_operand" "=f")
- (minus:SF (mult:SF (match_operand:SF 1 "fpr_operand" "%f")
- (match_operand:SF 2 "fpr_operand" "f"))
- (match_operand:SF 3 "fpr_operand" "0")))]
- "TARGET_HARD_FLOAT && TARGET_MULADD"
- "fmsubs %1,%2,%0"
- [(set_attr "length" "4")
- (set_attr "type" "fmas")])
-
-;; Division
-(define_insn "divsf3"
- [(set (match_operand:SF 0 "fpr_operand" "=f")
- (div:SF (match_operand:SF 1 "fpr_operand" "f")
- (match_operand:SF 2 "fpr_operand" "f")))]
- "TARGET_HARD_FLOAT"
- "fdivs %1,%2,%0"
- [(set_attr "length" "4")
- (set_attr "type" "fsdiv")])
-
-;; Negation
-(define_insn "negsf2"
- [(set (match_operand:SF 0 "fpr_operand" "=f")
- (neg:SF (match_operand:SF 1 "fpr_operand" "f")))]
- "TARGET_HARD_FLOAT"
- "fnegs %1,%0"
- [(set_attr "length" "4")
- (set_attr "type" "fsconv")])
-
-;; Absolute value
-(define_insn "abssf2"
- [(set (match_operand:SF 0 "fpr_operand" "=f")
- (abs:SF (match_operand:SF 1 "fpr_operand" "f")))]
- "TARGET_HARD_FLOAT"
- "fabss %1,%0"
- [(set_attr "length" "4")
- (set_attr "type" "fsconv")])
-
-;; Square root
-(define_insn "sqrtsf2"
- [(set (match_operand:SF 0 "fpr_operand" "=f")
- (sqrt:SF (match_operand:SF 1 "fpr_operand" "f")))]
- "TARGET_HARD_FLOAT"
- "fsqrts %1,%0"
- [(set_attr "length" "4")
- (set_attr "type" "sqrt_single")])
-
-
-;; ::::::::::::::::::::
-;; ::
-;; :: 64 bit floating point arithmetic
-;; ::
-;; ::::::::::::::::::::
-
-;; Addition
-(define_insn "adddf3"
- [(set (match_operand:DF 0 "even_fpr_operand" "=h")
- (plus:DF (match_operand:DF 1 "fpr_operand" "%h")
- (match_operand:DF 2 "fpr_operand" "h")))]
- "TARGET_HARD_FLOAT && TARGET_DOUBLE"
- "faddd %1,%2,%0"
- [(set_attr "length" "4")
- (set_attr "type" "fdadd")])
-
-;; Subtraction
-(define_insn "subdf3"
- [(set (match_operand:DF 0 "even_fpr_operand" "=h")
- (minus:DF (match_operand:DF 1 "fpr_operand" "h")
- (match_operand:DF 2 "fpr_operand" "h")))]
- "TARGET_HARD_FLOAT && TARGET_DOUBLE"
- "fsubd %1,%2,%0"
- [(set_attr "length" "4")
- (set_attr "type" "fdadd")])
-
-;; Multiplication
-(define_insn "muldf3"
- [(set (match_operand:DF 0 "even_fpr_operand" "=h")
- (mult:DF (match_operand:DF 1 "fpr_operand" "%h")
- (match_operand:DF 2 "fpr_operand" "h")))]
- "TARGET_HARD_FLOAT && TARGET_DOUBLE"
- "fmuld %1,%2,%0"
- [(set_attr "length" "4")
- (set_attr "type" "fdmul")])
-
-;; Multiplication with addition/subtraction
-(define_insn "*muladddf4"
- [(set (match_operand:DF 0 "fpr_operand" "=f")
- (plus:DF (mult:DF (match_operand:DF 1 "fpr_operand" "%f")
- (match_operand:DF 2 "fpr_operand" "f"))
- (match_operand:DF 3 "fpr_operand" "0")))]
- "TARGET_HARD_FLOAT && TARGET_DOUBLE && TARGET_MULADD"
- "fmaddd %1,%2,%0"
- [(set_attr "length" "4")
- (set_attr "type" "fmas")])
-
-(define_insn "*mulsubdf4"
- [(set (match_operand:DF 0 "fpr_operand" "=f")
- (minus:DF (mult:DF (match_operand:DF 1 "fpr_operand" "%f")
- (match_operand:DF 2 "fpr_operand" "f"))
- (match_operand:DF 3 "fpr_operand" "0")))]
- "TARGET_HARD_FLOAT && TARGET_DOUBLE && TARGET_MULADD"
- "fmsubd %1,%2,%0"
- [(set_attr "length" "4")
- (set_attr "type" "fmas")])
-
-;; Division
-(define_insn "divdf3"
- [(set (match_operand:DF 0 "even_fpr_operand" "=h")
- (div:DF (match_operand:DF 1 "fpr_operand" "h")
- (match_operand:DF 2 "fpr_operand" "h")))]
- "TARGET_HARD_FLOAT && TARGET_DOUBLE"
- "fdivd %1,%2,%0"
- [(set_attr "length" "4")
- (set_attr "type" "fddiv")])
-
-;; Negation
-(define_insn "negdf2"
- [(set (match_operand:DF 0 "even_fpr_operand" "=h")
- (neg:DF (match_operand:DF 1 "fpr_operand" "h")))]
- "TARGET_HARD_FLOAT && TARGET_DOUBLE"
- "fnegd %1,%0"
- [(set_attr "length" "4")
- (set_attr "type" "fdconv")])
-
-;; Absolute value
-(define_insn "absdf2"
- [(set (match_operand:DF 0 "even_fpr_operand" "=h")
- (abs:DF (match_operand:DF 1 "fpr_operand" "h")))]
- "TARGET_HARD_FLOAT && TARGET_DOUBLE"
- "fabsd %1,%0"
- [(set_attr "length" "4")
- (set_attr "type" "fdconv")])
-
-;; Square root
-(define_insn "sqrtdf2"
- [(set (match_operand:DF 0 "even_fpr_operand" "=h")
- (sqrt:DF (match_operand:DF 1 "fpr_operand" "h")))]
- "TARGET_HARD_FLOAT && TARGET_DOUBLE"
- "fsqrtd %1,%0"
- [(set_attr "length" "4")
- (set_attr "type" "sqrt_double")])
-
-
-;; ::::::::::::::::::::
-;; ::
-;; :: 32 bit Integer Shifts and Rotates
-;; ::
-;; ::::::::::::::::::::
-
-;; Arithmetic Shift Left
-(define_insn "ashlsi3"
- [(set (match_operand:SI 0 "integer_register_operand" "=d,d")
- (ashift:SI (match_operand:SI 1 "integer_register_operand" "d,d")
- (match_operand:SI 2 "gpr_or_int12_operand" "d,NOP")))]
- ""
- "sll%I2 %1,%2,%0"
- [(set_attr "length" "4")
- (set_attr "type" "int")])
-
-;; Arithmetic Shift Right
-(define_insn "ashrsi3"
- [(set (match_operand:SI 0 "integer_register_operand" "=d,d")
- (ashiftrt:SI (match_operand:SI 1 "integer_register_operand" "d,d")
- (match_operand:SI 2 "gpr_or_int12_operand" "d,NOP")))]
- ""
- "sra%I2 %1, %2, %0"
- [(set_attr "length" "4")
- (set_attr "type" "int")])
-
-;; Logical Shift Right
-(define_insn "lshrsi3"
- [(set (match_operand:SI 0 "integer_register_operand" "=d,d")
- (lshiftrt:SI (match_operand:SI 1 "integer_register_operand" "d,d")
- (match_operand:SI 2 "gpr_or_int12_operand" "d,NOP")))]
- ""
- "srl%I2 %1, %2, %0"
- [(set_attr "length" "4")
- (set_attr "type" "int")])
-
-;; Rotate Left
-;; (define_insn "rotlsi3"
-;; [(set (match_operand:SI 0 "register_operand" "=r")
-;; (rotate:SI (match_operand:SI 1 "register_operand" "r")
-;; (match_operand:SI 2 "nonmemory_operand" "ri")))]
-;; ""
-;; "rotlsi3 %0,%1,%2"
-;; [(set_attr "length" "4")])
-
-;; Rotate Right
-;; (define_insn "rotrsi3"
-;; [(set (match_operand:SI 0 "register_operand" "=r")
-;; (rotatert:SI (match_operand:SI 1 "register_operand" "r")
-;; (match_operand:SI 2 "nonmemory_operand" "ri")))]
-;; ""
-;; "rotrsi3 %0,%1,%2"
-;; [(set_attr "length" "4")])
-
-
-;; ::::::::::::::::::::
-;; ::
-;; :: 64 bit Integer Shifts and Rotates
-;; ::
-;; ::::::::::::::::::::
-
-;; Arithmetic Shift Left
-;; (define_insn "ashldi3"
-;; [(set (match_operand:DI 0 "register_operand" "=r")
-;; (ashift:DI (match_operand:DI 1 "register_operand" "r")
-;; (match_operand:SI 2 "nonmemory_operand" "ri")))]
-;; ""
-;; "ashldi3 %0,%1,%2"
-;; [(set_attr "length" "4")])
-
-;; Arithmetic Shift Right
-;; (define_insn "ashrdi3"
-;; [(set (match_operand:DI 0 "register_operand" "=r")
-;; (ashiftrt:DI (match_operand:DI 1 "register_operand" "r")
-;; (match_operand:SI 2 "nonmemory_operand" "ri")))]
-;; ""
-;; "ashrdi3 %0,%1,%2"
-;; [(set_attr "length" "4")])
-
-;; Logical Shift Right
-;; (define_insn "lshrdi3"
-;; [(set (match_operand:DI 0 "register_operand" "=r")
-;; (lshiftrt:DI (match_operand:DI 1 "register_operand" "r")
-;; (match_operand:SI 2 "nonmemory_operand" "ri")))]
-;; ""
-;; "lshrdi3 %0,%1,%2"
-;; [(set_attr "length" "4")])
-
-;; Rotate Left
-;; (define_insn "rotldi3"
-;; [(set (match_operand:DI 0 "register_operand" "=r")
-;; (rotate:DI (match_operand:DI 1 "register_operand" "r")
-;; (match_operand:SI 2 "nonmemory_operand" "ri")))]
-;; ""
-;; "rotldi3 %0,%1,%2"
-;; [(set_attr "length" "4")])
-
-;; Rotate Right
-;; (define_insn "rotrdi3"
-;; [(set (match_operand:DI 0 "register_operand" "=r")
-;; (rotatert:DI (match_operand:DI 1 "register_operand" "r")
-;; (match_operand:SI 2 "nonmemory_operand" "ri")))]
-;; ""
-;; "rotrdi3 %0,%1,%2"
-;; [(set_attr "length" "4")])
-
-
-;; ::::::::::::::::::::
-;; ::
-;; :: 32 Bit Integer Logical operations
-;; ::
-;; ::::::::::::::::::::
-
-;; Logical AND, 32 bit integers
-(define_insn "andsi3_media"
- [(set (match_operand:SI 0 "gpr_or_fpr_operand" "=d,f")
- (and:SI (match_operand:SI 1 "gpr_or_fpr_operand" "%d,f")
- (match_operand:SI 2 "gpr_fpr_or_int12_operand" "dNOP,f")))]
- "TARGET_MEDIA"
- "@
- and%I2 %1, %2, %0
- mand %1, %2, %0"
- [(set_attr "length" "4")
- (set_attr "type" "int,mlogic")])
-
-(define_insn "andsi3_nomedia"
- [(set (match_operand:SI 0 "integer_register_operand" "=d")
- (and:SI (match_operand:SI 1 "integer_register_operand" "%d")
- (match_operand:SI 2 "gpr_or_int12_operand" "dNOP")))]
- "!TARGET_MEDIA"
- "and%I2 %1, %2, %0"
- [(set_attr "length" "4")
- (set_attr "type" "int")])
-
-(define_expand "andsi3"
- [(set (match_operand:SI 0 "gpr_or_fpr_operand" "")
- (and:SI (match_operand:SI 1 "gpr_or_fpr_operand" "")
- (match_operand:SI 2 "gpr_fpr_or_int12_operand" "")))]
- ""
- "")
-
-;; Inclusive OR, 32 bit integers
-(define_insn "iorsi3_media"
- [(set (match_operand:SI 0 "gpr_or_fpr_operand" "=d,f")
- (ior:SI (match_operand:SI 1 "gpr_or_fpr_operand" "%d,f")
- (match_operand:SI 2 "gpr_fpr_or_int12_operand" "dNOP,f")))]
- "TARGET_MEDIA"
- "@
- or%I2 %1, %2, %0
- mor %1, %2, %0"
- [(set_attr "length" "4")
- (set_attr "type" "int,mlogic")])
-
-(define_insn "iorsi3_nomedia"
- [(set (match_operand:SI 0 "integer_register_operand" "=d")
- (ior:SI (match_operand:SI 1 "integer_register_operand" "%d")
- (match_operand:SI 2 "gpr_or_int12_operand" "dNOP")))]
- "!TARGET_MEDIA"
- "or%I2 %1, %2, %0"
- [(set_attr "length" "4")
- (set_attr "type" "int")])
-
-(define_expand "iorsi3"
- [(set (match_operand:SI 0 "gpr_or_fpr_operand" "")
- (ior:SI (match_operand:SI 1 "gpr_or_fpr_operand" "")
- (match_operand:SI 2 "gpr_fpr_or_int12_operand" "")))]
- ""
- "")
-
-;; Exclusive OR, 32 bit integers
-(define_insn "xorsi3_media"
- [(set (match_operand:SI 0 "gpr_or_fpr_operand" "=d,f")
- (xor:SI (match_operand:SI 1 "gpr_or_fpr_operand" "%d,f")
- (match_operand:SI 2 "gpr_fpr_or_int12_operand" "dNOP,f")))]
- "TARGET_MEDIA"
- "@
- xor%I2 %1, %2, %0
- mxor %1, %2, %0"
- [(set_attr "length" "4")
- (set_attr "type" "int,mlogic")])
-
-(define_insn "xorsi3_nomedia"
- [(set (match_operand:SI 0 "integer_register_operand" "=d")
- (xor:SI (match_operand:SI 1 "integer_register_operand" "%d")
- (match_operand:SI 2 "gpr_or_int12_operand" "dNOP")))]
- "!TARGET_MEDIA"
- "xor%I2 %1, %2, %0"
- [(set_attr "length" "4")
- (set_attr "type" "int")])
-
-(define_expand "xorsi3"
- [(set (match_operand:SI 0 "gpr_or_fpr_operand" "")
- (xor:SI (match_operand:SI 1 "gpr_or_fpr_operand" "")
- (match_operand:SI 2 "gpr_fpr_or_int12_operand" "")))]
- ""
- "")
-
-;; One's complement, 32 bit integers
-(define_insn "one_cmplsi2_media"
- [(set (match_operand:SI 0 "gpr_or_fpr_operand" "=d,f")
- (not:SI (match_operand:SI 1 "gpr_or_fpr_operand" "d,f")))]
- "TARGET_MEDIA"
- "@
- not %1, %0
- mnot %1, %0"
- [(set_attr "length" "4")
- (set_attr "type" "int,mlogic")])
-
-(define_insn "one_cmplsi2_nomedia"
- [(set (match_operand:SI 0 "integer_register_operand" "=d")
- (not:SI (match_operand:SI 1 "integer_register_operand" "d")))]
- "!TARGET_MEDIA"
- "not %1,%0"
- [(set_attr "length" "4")
- (set_attr "type" "int")])
-
-(define_expand "one_cmplsi2"
- [(set (match_operand:SI 0 "gpr_or_fpr_operand" "")
- (not:SI (match_operand:SI 1 "gpr_or_fpr_operand" "")))]
- ""
- "")
-
-
-;; ::::::::::::::::::::
-;; ::
-;; :: 64 Bit Integer Logical operations
-;; ::
-;; ::::::::::::::::::::
-
-;; Logical AND, 64 bit integers
-;; (define_insn "anddi3"
-;; [(set (match_operand:DI 0 "register_operand" "=r")
-;; (and:DI (match_operand:DI 1 "register_operand" "%r")
-;; (match_operand:DI 2 "nonmemory_operand" "ri")))]
-;; ""
-;; "anddi3 %0,%1,%2"
-;; [(set_attr "length" "4")])
-
-;; Includive OR, 64 bit integers
-;; (define_insn "iordi3"
-;; [(set (match_operand:DI 0 "register_operand" "=r")
-;; (ior:DI (match_operand:DI 1 "register_operand" "%r")
-;; (match_operand:DI 2 "nonmemory_operand" "ri")))]
-;; ""
-;; "iordi3 %0,%1,%2"
-;; [(set_attr "length" "4")])
-
-;; Excludive OR, 64 bit integers
-;; (define_insn "xordi3"
-;; [(set (match_operand:DI 0 "register_operand" "=r")
-;; (xor:DI (match_operand:DI 1 "register_operand" "%r")
-;; (match_operand:DI 2 "nonmemory_operand" "ri")))]
-;; ""
-;; "xordi3 %0,%1,%2"
-;; [(set_attr "length" "4")])
-
-;; One's complement, 64 bit integers
-;; (define_insn "one_cmpldi2"
-;; [(set (match_operand:DI 0 "register_operand" "=r")
-;; (not:DI (match_operand:DI 1 "register_operand" "r")))]
-;; ""
-;; "notdi3 %0,%1"
-;; [(set_attr "length" "4")])
-
-
-;; ::::::::::::::::::::
-;; ::
-;; :: Combination of integer operation with comparison
-;; ::
-;; ::::::::::::::::::::
-
-(define_insn "*combo_intop_compare1"
- [(set (match_operand:CC 0 "icc_operand" "=t")
- (compare:CC (match_operator:SI 1 "intop_compare_operator"
- [(match_operand:SI 2 "integer_register_operand" "d")
- (match_operand:SI 3 "gpr_or_int10_operand" "dJ")])
- (const_int 0)))]
- ""
- "%O1%I3cc %2, %3, %., %0"
- [(set_attr "type" "int")
- (set_attr "length" "4")])
-
-(define_insn "*combo_intop_compare2"
- [(set (match_operand:CC_UNS 0 "icc_operand" "=t")
- (compare:CC_UNS (match_operator:SI 1 "intop_compare_operator"
- [(match_operand:SI 2 "integer_register_operand" "d")
- (match_operand:SI 3 "gpr_or_int10_operand" "dJ")])
- (const_int 0)))]
- ""
- "%O1%I3cc %2, %3, %., %0"
- [(set_attr "type" "int")
- (set_attr "length" "4")])
-
-(define_insn "*combo_intop_compare3"
- [(set (match_operand:CC 0 "icc_operand" "=t")
- (compare:CC (match_operator:SI 1 "intop_compare_operator"
- [(match_operand:SI 2 "integer_register_operand" "d")
- (match_operand:SI 3 "gpr_or_int10_operand" "dJ")])
- (const_int 0)))
- (set (match_operand:SI 4 "integer_register_operand" "=d")
- (match_operator:SI 5 "intop_compare_operator"
- [(match_dup 2)
- (match_dup 3)]))]
- "GET_CODE (operands[1]) == GET_CODE (operands[5])"
- "%O1%I3cc %2, %3, %4, %0"
- [(set_attr "type" "int")
- (set_attr "length" "4")])
-
-(define_insn "*combo_intop_compare4"
- [(set (match_operand:CC_UNS 0 "icc_operand" "=t")
- (compare:CC_UNS (match_operator:SI 1 "intop_compare_operator"
- [(match_operand:SI 2 "integer_register_operand" "d")
- (match_operand:SI 3 "gpr_or_int10_operand" "dJ")])
- (const_int 0)))
- (set (match_operand:SI 4 "integer_register_operand" "=d")
- (match_operator:SI 5 "intop_compare_operator"
- [(match_dup 2)
- (match_dup 3)]))]
- "GET_CODE (operands[1]) == GET_CODE (operands[5])"
- "%O1%I3cc %2, %3, %4, %0"
- [(set_attr "type" "int")
- (set_attr "length" "4")])
-
-
-;; ::::::::::::::::::::
-;; ::
-;; :: Comparisons
-;; ::
-;; ::::::::::::::::::::
-
-;; Note, we store the operands in the comparison insns, and use them later
-;; when generating the branch or scc operation.
-
-;; First the routines called by the machine independent part of the compiler
-(define_expand "cmpsi"
- [(set (cc0)
- (compare (match_operand:SI 0 "integer_register_operand" "")
- (match_operand:SI 1 "gpr_or_int10_operand" "")))]
- ""
- "
-{
- frv_compare_op0 = operands[0];
- frv_compare_op1 = operands[1];
- DONE;
-}")
-
-;(define_expand "cmpdi"
-; [(set (cc0)
-; (compare (match_operand:DI 0 "register_operand" "")
-; (match_operand:DI 1 "nonmemory_operand" "")))]
-; ""
-; "
-;{
-; frv_compare_op0 = operands[0];
-; frv_compare_op1 = operands[1];
-; DONE;
-;}")
-
-(define_expand "cmpsf"
- [(set (cc0)
- (compare (match_operand:SF 0 "fpr_operand" "")
- (match_operand:SF 1 "fpr_operand" "")))]
- "TARGET_HARD_FLOAT"
- "
-{
- frv_compare_op0 = operands[0];
- frv_compare_op1 = operands[1];
- DONE;
-}")
-
-(define_expand "cmpdf"
- [(set (cc0)
- (compare (match_operand:DF 0 "fpr_operand" "")
- (match_operand:DF 1 "fpr_operand" "")))]
- "TARGET_HARD_FLOAT && TARGET_DOUBLE"
- "
-{
- frv_compare_op0 = operands[0];
- frv_compare_op1 = operands[1];
- DONE;
-}")
-
-;; Now, the actual comparisons, generated by the branch and/or scc operations
-
-(define_insn "cmpsi_cc"
- [(set (match_operand:CC 0 "icc_operand" "=t,t")
- (compare:CC (match_operand:SI 1 "integer_register_operand" "d,d")
- (match_operand:SI 2 "gpr_or_int10_operand" "d,J")))]
- ""
- "cmp%I2 %1,%2,%0"
- [(set_attr "length" "4")
- (set_attr "type" "int")])
-
-(define_insn "*cmpsi_cc_uns"
- [(set (match_operand:CC_UNS 0 "icc_operand" "=t,t")
- (compare:CC_UNS (match_operand:SI 1 "integer_register_operand" "d,d")
- (match_operand:SI 2 "gpr_or_int10_operand" "d,J")))]
- ""
- "cmp%I2 %1,%2,%0"
- [(set_attr "length" "4")
- (set_attr "type" "int")])
-
-(define_insn "*cmpsf_cc_fp"
- [(set (match_operand:CC_FP 0 "fcc_operand" "=u")
- (compare:CC_FP (match_operand:SF 1 "fpr_operand" "f")
- (match_operand:SF 2 "fpr_operand" "f")))]
- "TARGET_HARD_FLOAT"
- "fcmps %1,%2,%0"
- [(set_attr "length" "4")
- (set_attr "type" "fsadd")])
-
-(define_insn "*cmpdf_cc_fp"
- [(set (match_operand:CC_FP 0 "fcc_operand" "=u")
- (compare:CC_FP (match_operand:DF 1 "even_fpr_operand" "h")
- (match_operand:DF 2 "even_fpr_operand" "h")))]
- "TARGET_HARD_FLOAT && TARGET_DOUBLE"
- "fcmpd %1,%2,%0"
- [(set_attr "length" "4")
- (set_attr "type" "fdadd")])
-
-
-;; ::::::::::::::::::::
-;; ::
-;; :: Branches
-;; ::
-;; ::::::::::::::::::::
-
-;; Define_expands called by the machine independent part of the compiler
-;; to allocate a new comparison register. Each of these named patterns
-;; must be present, and they cannot be amalgamated into one pattern.
-;;
-;; If a fixed condition code register is being used, (as opposed to, say,
-;; using cc0), then the expands should look like this:
-;;
-;; (define_expand "<name_of_test>"
-;; [(set (reg:CC <number_of_CC_register>)
-;; (compare:CC (match_dup 1)
-;; (match_dup 2)))
-;; (set (pc)
-;; (if_then_else (eq:CC (reg:CC <number_of_CC_register>)
-;; (const_int 0))
-;; (label_ref (match_operand 0 "" ""))
-;; (pc)))]
-;; ""
-;; "{
-;; operands[1] = frv_compare_op0;
-;; operands[2] = frv_compare_op1;
-;; }"
-;; )
-
-(define_expand "beq"
- [(use (match_operand 0 "" ""))]
- ""
- "
-{
- if (! frv_emit_cond_branch (EQ, operands[0]))
- FAIL;
-
- DONE;
-}")
-
-(define_expand "bne"
- [(use (match_operand 0 "" ""))]
- ""
- "
-{
- if (! frv_emit_cond_branch (NE, operands[0]))
- FAIL;
-
- DONE;
-}")
-
-(define_expand "blt"
- [(use (match_operand 0 "" ""))]
- ""
- "
-{
- if (! frv_emit_cond_branch (LT, operands[0]))
- FAIL;
-
- DONE;
-}")
-
-(define_expand "ble"
- [(use (match_operand 0 "" ""))]
- ""
- "
-{
- if (! frv_emit_cond_branch (LE, operands[0]))
- FAIL;
-
- DONE;
-}")
-
-(define_expand "bgt"
- [(use (match_operand 0 "" ""))]
- ""
- "
-{
- if (! frv_emit_cond_branch (GT, operands[0]))
- FAIL;
-
- DONE;
-}")
-
-(define_expand "bge"
- [(use (match_operand 0 "" ""))]
- ""
- "
-{
- if (! frv_emit_cond_branch (GE, operands[0]))
- FAIL;
-
- DONE;
-}")
-
-(define_expand "bltu"
- [(use (match_operand 0 "" ""))]
- ""
- "
-{
- if (! frv_emit_cond_branch (LTU, operands[0]))
- FAIL;
-
- DONE;
-}")
-
-(define_expand "bleu"
- [(use (match_operand 0 "" ""))]
- ""
- "
-{
- if (! frv_emit_cond_branch (LEU, operands[0]))
- FAIL;
-
- DONE;
-}")
-
-(define_expand "bgtu"
- [(use (match_operand 0 "" ""))]
- ""
- "
-{
- if (! frv_emit_cond_branch (GTU, operands[0]))
- FAIL;
-
- DONE;
-}")
-
-(define_expand "bgeu"
- [(use (match_operand 0 "" ""))]
- ""
- "
-{
- if (! frv_emit_cond_branch (GEU, operands[0]))
- FAIL;
-
- DONE;
-}")
-
-;; Actual branches. We must allow for the (label_ref) and the (pc) to be
-;; swapped. If they are swapped, it reverses the sense of the branch.
-;;
-;; Note - unlike the define expands above, these patterns can be amalgamated
-;; into one pattern for branch-if-true and one for branch-if-false. This does
-;; require an operand operator to select the correct branch mnemonic.
-;;
-;; If a fixed condition code register is being used, (as opposed to, say,
-;; using cc0), then the expands could look like this:
-;;
-;; (define_insn "*branch_true"
-;; [(set (pc)
-;; (if_then_else (match_operator:CC 0 "comparison_operator"
-;; [(reg:CC <number_of_CC_register>)
-;; (const_int 0)])
-;; (label_ref (match_operand 1 "" ""))
-;; (pc)))]
-;; ""
-;; "b%B0 %1"
-;; [(set_attr "length" "4")]
-;; )
-;;
-;; In the above example the %B is a directive to frv_print_operand()
-;; to decode and print the correct branch mnemonic.
-
-(define_insn "*branch_signed_true"
- [(set (pc)
- (if_then_else (match_operator:CC 0 "signed_relational_operator"
- [(match_operand 1 "icc_operand" "t")
- (const_int 0)])
- (label_ref (match_operand 2 "" ""))
- (pc)))]
- ""
- "*
-{
- if (get_attr_length (insn) == 4)
- return \"b%c0 %1,%#,%l2\";
- else
- return \"b%C0 %1,%#,1f\;call %l2\\n1:\";
-}"
- [(set (attr "length")
- (if_then_else
- (and (ge (minus (match_dup 2) (pc)) (const_int -32768))
- (le (minus (match_dup 2) (pc)) (const_int 32764)))
- (const_int 4)
- (const_int 8)))
- (set (attr "far_jump")
- (if_then_else
- (eq_attr "length" "4")
- (const_string "no")
- (const_string "yes")))
- (set (attr "type")
- (if_then_else
- (eq_attr "length" "4")
- (const_string "branch")
- (const_string "multi")))])
-
-(define_insn "*branch_signed_false"
- [(set (pc)
- (if_then_else (match_operator:CC 0 "signed_relational_operator"
- [(match_operand 1 "icc_operand" "t")
- (const_int 0)])
- (pc)
- (label_ref (match_operand 2 "" ""))))]
- ""
- "*
-{
- if (get_attr_length (insn) == 4)
- return \"b%C0 %1,%#,%l2\";
- else
- return \"b%c0 %1,%#,1f\;call %l2\\n1:\";
-}"
- [(set (attr "length")
- (if_then_else
- (and (ge (minus (match_dup 2) (pc)) (const_int -32768))
- (le (minus (match_dup 2) (pc)) (const_int 32764)))
- (const_int 4)
- (const_int 8)))
- (set (attr "far_jump")
- (if_then_else
- (eq_attr "length" "4")
- (const_string "no")
- (const_string "yes")))
- (set (attr "type")
- (if_then_else
- (eq_attr "length" "4")
- (const_string "branch")
- (const_string "multi")))])
-
-(define_insn "*branch_unsigned_true"
- [(set (pc)
- (if_then_else (match_operator:CC_UNS 0 "unsigned_relational_operator"
- [(match_operand 1 "icc_operand" "t")
- (const_int 0)])
- (label_ref (match_operand 2 "" ""))
- (pc)))]
- ""
- "*
-{
- if (get_attr_length (insn) == 4)
- return \"b%c0 %1,%#,%l2\";
- else
- return \"b%C0 %1,%#,1f\;call %l2\\n1:\";
-}"
- [(set (attr "length")
- (if_then_else
- (and (ge (minus (match_dup 2) (pc)) (const_int -32768))
- (le (minus (match_dup 2) (pc)) (const_int 32764)))
- (const_int 4)
- (const_int 8)))
- (set (attr "far_jump")
- (if_then_else
- (eq_attr "length" "4")
- (const_string "no")
- (const_string "yes")))
- (set (attr "type")
- (if_then_else
- (eq_attr "length" "4")
- (const_string "branch")
- (const_string "multi")))])
-
-(define_insn "*branch_unsigned_false"
- [(set (pc)
- (if_then_else (match_operator:CC_UNS 0 "unsigned_relational_operator"
- [(match_operand 1 "icc_operand" "t")
- (const_int 0)])
- (pc)
- (label_ref (match_operand 2 "" ""))))]
- ""
- "*
-{
- if (get_attr_length (insn) == 4)
- return \"b%C0 %1,%#,%l2\";
- else
- return \"b%c0 %1,%#,1f\;call %l2\\n1:\";
-}"
- [(set (attr "length")
- (if_then_else
- (and (ge (minus (match_dup 2) (pc)) (const_int -32768))
- (le (minus (match_dup 2) (pc)) (const_int 32764)))
- (const_int 4)
- (const_int 8)))
- (set (attr "far_jump")
- (if_then_else
- (eq_attr "length" "4")
- (const_string "no")
- (const_string "yes")))
- (set (attr "type")
- (if_then_else
- (eq_attr "length" "4")
- (const_string "branch")
- (const_string "multi")))])
-
-(define_insn "*branch_fp_true"
- [(set (pc)
- (if_then_else (match_operator:CC_FP 0 "float_relational_operator"
- [(match_operand 1 "fcc_operand" "u")
- (const_int 0)])
- (label_ref (match_operand 2 "" ""))
- (pc)))]
- ""
- "*
-{
- if (get_attr_length (insn) == 4)
- return \"fb%f0 %1,%#,%l2\";
- else
- return \"fb%F0 %1,%#,1f\;call %l2\\n1:\";
-}"
- [(set (attr "length")
- (if_then_else
- (and (ge (minus (match_dup 2) (pc)) (const_int -32768))
- (le (minus (match_dup 2) (pc)) (const_int 32764)))
- (const_int 4)
- (const_int 8)))
- (set (attr "far_jump")
- (if_then_else
- (eq_attr "length" "4")
- (const_string "no")
- (const_string "yes")))
- (set (attr "type")
- (if_then_else
- (eq_attr "length" "4")
- (const_string "branch")
- (const_string "multi")))])
-
-(define_insn "*branch_fp_false"
- [(set (pc)
- (if_then_else (match_operator:CC_FP 0 "float_relational_operator"
- [(match_operand 1 "fcc_operand" "u")
- (const_int 0)])
- (pc)
- (label_ref (match_operand 2 "" ""))))]
- ""
- "*
-{
- if (get_attr_length (insn) == 4)
- return \"fb%F0 %1,%#,%l2\";
- else
- return \"fb%f0 %1,%#,1f\;call %l2\\n1:\";
-}"
- [(set (attr "length")
- (if_then_else
- (and (ge (minus (match_dup 2) (pc)) (const_int -32768))
- (le (minus (match_dup 2) (pc)) (const_int 32764)))
- (const_int 4)
- (const_int 8)))
- (set (attr "far_jump")
- (if_then_else
- (eq_attr "length" "4")
- (const_string "no")
- (const_string "yes")))
- (set (attr "type")
- (if_then_else
- (eq_attr "length" "4")
- (const_string "branch")
- (const_string "multi")))])
-
-
-;; ::::::::::::::::::::
-;; ::
-;; :: Set flag operations
-;; ::
-;; ::::::::::::::::::::
-
-;; Define_expands called by the machine independent part of the compiler
-;; to allocate a new comparison register
-
-(define_expand "seq"
- [(match_operand:SI 0 "integer_register_operand" "")]
- "TARGET_SCC"
- "
-{
- if (! frv_emit_scc (EQ, operands[0]))
- FAIL;
-
- DONE;
-}")
-
-(define_expand "sne"
- [(match_operand:SI 0 "integer_register_operand" "")]
- "TARGET_SCC"
- "
-{
- if (! frv_emit_scc (NE, operands[0]))
- FAIL;
-
- DONE;
-}")
-
-(define_expand "slt"
- [(match_operand:SI 0 "integer_register_operand" "")]
- "TARGET_SCC"
- "
-{
- if (! frv_emit_scc (LT, operands[0]))
- FAIL;
-
- DONE;
-}")
-
-(define_expand "sle"
- [(match_operand:SI 0 "integer_register_operand" "")]
- "TARGET_SCC"
- "
-{
- if (! frv_emit_scc (LE, operands[0]))
- FAIL;
-
- DONE;
-}")
-
-(define_expand "sgt"
- [(match_operand:SI 0 "integer_register_operand" "")]
- "TARGET_SCC"
- "
-{
- if (! frv_emit_scc (GT, operands[0]))
- FAIL;
-
- DONE;
-}")
-
-(define_expand "sge"
- [(match_operand:SI 0 "integer_register_operand" "")]
- "TARGET_SCC"
- "
-{
- if (! frv_emit_scc (GE, operands[0]))
- FAIL;
-
- DONE;
-}")
-
-(define_expand "sltu"
- [(match_operand:SI 0 "integer_register_operand" "")]
- "TARGET_SCC"
- "
-{
- if (! frv_emit_scc (LTU, operands[0]))
- FAIL;
-
- DONE;
-}")
-
-(define_expand "sleu"
- [(match_operand:SI 0 "integer_register_operand" "")]
- "TARGET_SCC"
- "
-{
- if (! frv_emit_scc (LEU, operands[0]))
- FAIL;
-
- DONE;
-}")
-
-(define_expand "sgtu"
- [(match_operand:SI 0 "integer_register_operand" "")]
- "TARGET_SCC"
- "
-{
- if (! frv_emit_scc (GTU, operands[0]))
- FAIL;
-
- DONE;
-}")
-
-(define_expand "sgeu"
- [(match_operand:SI 0 "integer_register_operand" "")]
- "TARGET_SCC"
- "
-{
- if (! frv_emit_scc (GEU, operands[0]))
- FAIL;
-
- DONE;
-}")
-
-(define_insn "*scc_signed"
- [(set (match_operand:SI 0 "integer_register_operand" "=d")
- (match_operator:SI 1 "signed_relational_operator"
- [(match_operand:CC 2 "icc_operand" "t")
- (const_int 0)]))
- (clobber (match_operand:CC_CCR 3 "icr_operand" "=v"))]
- ""
- "#"
- [(set_attr "length" "12")
- (set_attr "type" "multi")])
-
-(define_insn "*scc_unsigned"
- [(set (match_operand:SI 0 "integer_register_operand" "=d")
- (match_operator:SI 1 "unsigned_relational_operator"
- [(match_operand:CC_UNS 2 "icc_operand" "t")
- (const_int 0)]))
- (clobber (match_operand:CC_CCR 3 "icr_operand" "=v"))]
- ""
- "#"
- [(set_attr "length" "12")
- (set_attr "type" "multi")])
-
-(define_insn "*scc_float"
- [(set (match_operand:SI 0 "integer_register_operand" "=d")
- (match_operator:SI 1 "float_relational_operator"
- [(match_operand:CC_FP 2 "fcc_operand" "u")
- (const_int 0)]))
- (clobber (match_operand:CC_CCR 3 "fcr_operand" "=w"))]
- ""
- "#"
- [(set_attr "length" "12")
- (set_attr "type" "multi")])
-
-;; XXX -- add reload_completed to the splits, because register allocation
-;; currently isn't ready to see cond_exec packets.
-(define_split
- [(set (match_operand:SI 0 "integer_register_operand" "")
- (match_operator:SI 1 "relational_operator"
- [(match_operand 2 "cc_operand" "")
- (const_int 0)]))
- (clobber (match_operand 3 "cr_operand" ""))]
- "reload_completed"
- [(match_dup 4)]
- "operands[4] = frv_split_scc (operands[0], operands[1], operands[2],
- operands[3], (HOST_WIDE_INT) 1);")
-
-(define_insn "*scc_neg1_signed"
- [(set (match_operand:SI 0 "integer_register_operand" "=d")
- (neg:SI (match_operator:SI 1 "signed_relational_operator"
- [(match_operand:CC 2 "icc_operand" "t")
- (const_int 0)])))
- (clobber (match_operand:CC_CCR 3 "icr_operand" "=v"))]
- ""
- "#"
- [(set_attr "length" "12")
- (set_attr "type" "multi")])
-
-(define_insn "*scc_neg1_unsigned"
- [(set (match_operand:SI 0 "integer_register_operand" "=d")
- (neg:SI (match_operator:SI 1 "unsigned_relational_operator"
- [(match_operand:CC_UNS 2 "icc_operand" "t")
- (const_int 0)])))
- (clobber (match_operand:CC_CCR 3 "icr_operand" "=v"))]
- ""
- "#"
- [(set_attr "length" "12")
- (set_attr "type" "multi")])
-
-(define_insn "*scc_neg1_float"
- [(set (match_operand:SI 0 "integer_register_operand" "=d")
- (neg:SI (match_operator:SI 1 "float_relational_operator"
- [(match_operand:CC_FP 2 "fcc_operand" "u")
- (const_int 0)])))
- (clobber (match_operand:CC_CCR 3 "fcr_operand" "=w"))]
- ""
- "#"
- [(set_attr "length" "12")
- (set_attr "type" "multi")])
-
-(define_split
- [(set (match_operand:SI 0 "integer_register_operand" "")
- (neg:SI (match_operator:SI 1 "relational_operator"
- [(match_operand 2 "cc_operand" "")
- (const_int 0)])))
- (clobber (match_operand 3 "cr_operand" ""))]
- "reload_completed"
- [(match_dup 4)]
- "operands[4] = frv_split_scc (operands[0], operands[1], operands[2],
- operands[3], (HOST_WIDE_INT) -1);")
-
-
-;; ::::::::::::::::::::
-;; ::
-;; :: Conditionally executed instructions
-;; ::
-;; ::::::::::::::::::::
-
-;; Convert ICC/FCC comparison into CCR bits so we can do conditional execution
-(define_insn "*ck_signed"
- [(set (match_operand:CC_CCR 0 "icr_operand" "=v")
- (match_operator:CC_CCR 1 "signed_relational_operator"
- [(match_operand:CC 2 "icc_operand" "t")
- (const_int 0)]))]
- ""
- "ck%c1 %2, %0"
- [(set_attr "length" "4")
- (set_attr "type" "ccr")])
-
-(define_insn "*ck_unsigned"
- [(set (match_operand:CC_CCR 0 "icr_operand" "=v")
- (match_operator:CC_CCR 1 "unsigned_relational_operator"
- [(match_operand:CC_UNS 2 "icc_operand" "t")
- (const_int 0)]))]
- ""
- "ck%c1 %2, %0"
- [(set_attr "length" "4")
- (set_attr "type" "ccr")])
-
-(define_insn "*fck_float"
- [(set (match_operand:CC_CCR 0 "fcr_operand" "=w")
- (match_operator:CC_CCR 1 "float_relational_operator"
- [(match_operand:CC_FP 2 "fcc_operand" "u")
- (const_int 0)]))]
- "TARGET_HAS_FPRS"
- "fck%c1 %2, %0"
- [(set_attr "length" "4")
- (set_attr "type" "ccr")])
-
-;; Conditionally convert ICC/FCC comparison into CCR bits to provide && and ||
-;; tests in conditional execution
-(define_insn "cond_exec_ck"
- [(set (match_operand:CC_CCR 0 "cr_operand" "=v,w")
- (if_then_else:CC_CCR (match_operator 1 "ccr_eqne_operator"
- [(match_operand 2 "cr_operand" "C,C")
- (const_int 0)])
- (match_operator 3 "relational_operator"
- [(match_operand 4 "cc_operand" "t,u")
- (const_int 0)])
- (const_int 0)))]
- ""
- "@
- cck%c3 %4, %0, %2, %e1
- cfck%f3 %4, %0, %2, %e1"
- [(set_attr "length" "4")
- (set_attr "type" "ccr")])
-
-;; Conditionally set a register to either 0 or another register
-(define_insn "*cond_exec_movqi"
- [(cond_exec
- (match_operator 0 "ccr_eqne_operator"
- [(match_operand 1 "cr_operand" "C,C,C,C,C,C")
- (const_int 0)])
- (set (match_operand:QI 2 "condexec_dest_operand" "=d,d,U,?f,?f,?d")
- (match_operand:QI 3 "condexec_source_operand" "dO,U,dO,f,d,f")))]
- "register_operand(operands[2], QImode) || reg_or_0_operand (operands[3], QImode)"
- "* return output_condmove_single (operands, insn);"
- [(set_attr "length" "4")
- (set_attr "type" "int,gload,gstore,fsconv,movgf,movfg")])
-
-(define_insn "*cond_exec_movhi"
- [(cond_exec
- (match_operator 0 "ccr_eqne_operator"
- [(match_operand 1 "cr_operand" "C,C,C,C,C,C")
- (const_int 0)])
- (set (match_operand:HI 2 "condexec_dest_operand" "=d,d,U,?f,?f,?d")
- (match_operand:HI 3 "condexec_source_operand" "dO,U,dO,f,d,f")))]
- "register_operand(operands[2], HImode) || reg_or_0_operand (operands[3], HImode)"
- "* return output_condmove_single (operands, insn);"
- [(set_attr "length" "4")
- (set_attr "type" "int,gload,gstore,fsconv,movgf,movfg")])
-
-(define_insn "*cond_exec_movsi"
- [(cond_exec
- (match_operator 0 "ccr_eqne_operator"
- [(match_operand 1 "cr_operand" "C,C,C,C,C,C,C,C")
- (const_int 0)])
- (set (match_operand:SI 2 "condexec_dest_operand" "=d,d,U,?f,?f,?d,?f,?m")
- (match_operand:SI 3 "condexec_source_operand" "dO,U,dO,f,d,f,m,f")))]
- "register_operand(operands[2], SImode) || reg_or_0_operand (operands[3], SImode)"
- "* return output_condmove_single (operands, insn);"
- [(set_attr "length" "4")
- (set_attr "type" "int,gload,gstore,fsconv,movgf,movfg,fload,fstore")])
-
-
-(define_insn "*cond_exec_movsf_has_fprs"
- [(cond_exec
- (match_operator 0 "ccr_eqne_operator"
- [(match_operand 1 "cr_operand" "C,C,C,C,C,C,C,C,C,C")
- (const_int 0)])
- (set (match_operand:SF 2 "condexec_dest_operand" "=f,?d,?d,?f,f,f,?d,U,?U,U")
- (match_operand:SF 3 "condexec_source_operand" "f,d,f,d,G,U,U,f,d,G")))]
- "TARGET_HAS_FPRS"
- "* return output_condmove_single (operands, insn);"
- [(set_attr "length" "4")
- (set_attr "type" "fsconv,int,movgf,movfg,movgf,fload,gload,fstore,gstore,gstore")])
-
-(define_insn "*cond_exec_movsf_no_fprs"
- [(cond_exec
- (match_operator 0 "ccr_eqne_operator"
- [(match_operand 1 "cr_operand" "C,C,C")
- (const_int 0)])
- (set (match_operand:SF 2 "condexec_dest_operand" "=d,d,U")
- (match_operand:SF 3 "condexec_source_operand" "d,U,dG")))]
- "! TARGET_HAS_FPRS"
- "* return output_condmove_single (operands, insn);"
- [(set_attr "length" "4")
- (set_attr "type" "int,gload,gstore")])
-
-(define_insn "*cond_exec_si_binary1"
- [(cond_exec
- (match_operator 0 "ccr_eqne_operator"
- [(match_operand 1 "cr_operand" "C")
- (const_int 0)])
- (set (match_operand:SI 2 "integer_register_operand" "=d")
- (match_operator:SI 3 "condexec_si_binary_operator"
- [(match_operand:SI 4 "integer_register_operand" "d")
- (match_operand:SI 5 "integer_register_operand" "d")])))]
- ""
- "*
-{
- switch (GET_CODE (operands[3]))
- {
- case PLUS: return \"cadd %4, %z5, %2, %1, %e0\";
- case MINUS: return \"csub %4, %z5, %2, %1, %e0\";
- case AND: return \"cand %4, %z5, %2, %1, %e0\";
- case IOR: return \"cor %4, %z5, %2, %1, %e0\";
- case XOR: return \"cxor %4, %z5, %2, %1, %e0\";
- case ASHIFT: return \"csll %4, %z5, %2, %1, %e0\";
- case ASHIFTRT: return \"csra %4, %z5, %2, %1, %e0\";
- case LSHIFTRT: return \"csrl %4, %z5, %2, %1, %e0\";
- default: abort ();
- }
-}"
- [(set_attr "length" "4")
- (set_attr "type" "int")])
-
-(define_insn "*cond_exec_si_binary2"
- [(cond_exec
- (match_operator 0 "ccr_eqne_operator"
- [(match_operand 1 "cr_operand" "C")
- (const_int 0)])
- (set (match_operand:SI 2 "fpr_operand" "=f")
- (match_operator:SI 3 "condexec_si_media_operator"
- [(match_operand:SI 4 "fpr_operand" "f")
- (match_operand:SI 5 "fpr_operand" "f")])))]
- "TARGET_MEDIA"
- "*
-{
- switch (GET_CODE (operands[3]))
- {
- case AND: return \"cmand %4, %5, %2, %1, %e0\";
- case IOR: return \"cmor %4, %5, %2, %1, %e0\";
- case XOR: return \"cmxor %4, %5, %2, %1, %e0\";
- default: abort ();
- }
-}"
- [(set_attr "length" "4")
- (set_attr "type" "mlogic")])
-
-;; Note, flow does not (currently) know how to handle an operation that uses
-;; only part of the hard registers allocated for a multiregister value, such as
-;; DImode in this case if the user is only interested in the lower 32-bits. So
-;; we emit a USE of the entire register after the csmul instruction so it won't
-;; get confused. See frv_ifcvt_modify_insn for more details.
-
-(define_insn "*cond_exec_si_smul"
- [(cond_exec
- (match_operator 0 "ccr_eqne_operator"
- [(match_operand 1 "cr_operand" "C")
- (const_int 0)])
- (set (match_operand:DI 2 "even_gpr_operand" "=e")
- (mult:DI (sign_extend:DI (match_operand:SI 3 "integer_register_operand" "%d"))
- (sign_extend:DI (match_operand:SI 4 "integer_register_operand" "d")))))]
- ""
- "csmul %3, %4, %2, %1, %e0"
- [(set_attr "length" "4")
- (set_attr "type" "mul")])
-
-(define_insn "*cond_exec_si_divide"
- [(cond_exec
- (match_operator 0 "ccr_eqne_operator"
- [(match_operand 1 "cr_operand" "C")
- (const_int 0)])
- (set (match_operand:SI 2 "integer_register_operand" "=d")
- (match_operator:SI 3 "condexec_si_divide_operator"
- [(match_operand:SI 4 "integer_register_operand" "d")
- (match_operand:SI 5 "integer_register_operand" "d")])))]
- ""
- "*
-{
- switch (GET_CODE (operands[3]))
- {
- case DIV: return \"csdiv %4, %z5, %2, %1, %e0\";
- case UDIV: return \"cudiv %4, %z5, %2, %1, %e0\";
- default: abort ();
- }
-}"
- [(set_attr "length" "4")
- (set_attr "type" "div")])
-
-(define_insn "*cond_exec_si_unary1"
- [(cond_exec
- (match_operator 0 "ccr_eqne_operator"
- [(match_operand 1 "cr_operand" "C")
- (const_int 0)])
- (set (match_operand:SI 2 "integer_register_operand" "=d")
- (match_operator:SI 3 "condexec_si_unary_operator"
- [(match_operand:SI 4 "integer_register_operand" "d")])))]
- ""
- "*
-{
- switch (GET_CODE (operands[3]))
- {
- case NOT: return \"cnot %4, %2, %1, %e0\";
- case NEG: return \"csub %., %4, %2, %1, %e0\";
- default: abort ();
- }
-}"
- [(set_attr "length" "4")
- (set_attr "type" "int")])
-
-(define_insn "*cond_exec_si_unary2"
- [(cond_exec
- (match_operator 0 "ccr_eqne_operator"
- [(match_operand 1 "cr_operand" "C")
- (const_int 0)])
- (set (match_operand:SI 2 "fpr_operand" "=f")
- (not:SI (match_operand:SI 3 "fpr_operand" "f"))))]
- "TARGET_MEDIA"
- "cmnot %3, %2, %1, %e0"
- [(set_attr "length" "4")
- (set_attr "type" "mlogic")])
-
-(define_insn "*cond_exec_cmpsi_cc"
- [(cond_exec
- (match_operator 0 "ccr_eqne_operator"
- [(match_operand 1 "cr_operand" "C")
- (const_int 0)])
- (set (match_operand:CC 2 "icc_operand" "=t")
- (compare:CC (match_operand:SI 3 "integer_register_operand" "d")
- (match_operand:SI 4 "reg_or_0_operand" "dO"))))]
- "reload_completed
- && REGNO (operands[1]) == REGNO (operands[2]) - ICC_FIRST + ICR_FIRST"
- "ccmp %3, %z4, %1, %e0"
- [(set_attr "length" "4")
- (set_attr "type" "int")])
-
-(define_insn "*cond_exec_cmpsi_cc_uns"
- [(cond_exec
- (match_operator 0 "ccr_eqne_operator"
- [(match_operand 1 "cr_operand" "C")
- (const_int 0)])
- (set (match_operand:CC_UNS 2 "icc_operand" "=t")
- (compare:CC_UNS (match_operand:SI 3 "integer_register_operand" "d")
- (match_operand:SI 4 "reg_or_0_operand" "dO"))))]
- "reload_completed
- && REGNO (operands[1]) == REGNO (operands[2]) - ICC_FIRST + ICR_FIRST"
- "ccmp %3, %z4, %1, %e0"
- [(set_attr "length" "4")
- (set_attr "type" "int")])
-
-(define_insn "*cond_exec_sf_conv"
- [(cond_exec
- (match_operator 0 "ccr_eqne_operator"
- [(match_operand 1 "cr_operand" "C")
- (const_int 0)])
- (set (match_operand:SF 2 "fpr_operand" "=f")
- (match_operator:SF 3 "condexec_sf_conv_operator"
- [(match_operand:SF 4 "fpr_operand" "f")])))]
- "TARGET_HARD_FLOAT"
- "*
-{
- switch (GET_CODE (operands[3]))
- {
- case ABS: return \"cfabss %4, %2, %1, %e0\";
- case NEG: return \"cfnegs %4, %2, %1, %e0\";
- default: abort ();
- }
-}"
- [(set_attr "length" "4")
- (set_attr "type" "fsconv")])
-
-(define_insn "*cond_exec_sf_add"
- [(cond_exec
- (match_operator 0 "ccr_eqne_operator"
- [(match_operand 1 "cr_operand" "C")
- (const_int 0)])
- (set (match_operand:SF 2 "fpr_operand" "=f")
- (match_operator:SF 3 "condexec_sf_add_operator"
- [(match_operand:SF 4 "fpr_operand" "f")
- (match_operand:SF 5 "fpr_operand" "f")])))]
- "TARGET_HARD_FLOAT"
- "*
-{
- switch (GET_CODE (operands[3]))
- {
- case PLUS: return \"cfadds %4, %5, %2, %1, %e0\";
- case MINUS: return \"cfsubs %4, %5, %2, %1, %e0\";
- default: abort ();
- }
-}"
- [(set_attr "length" "4")
- (set_attr "type" "fsadd")])
-
-(define_insn "*cond_exec_sf_mul"
- [(cond_exec
- (match_operator 0 "ccr_eqne_operator"
- [(match_operand 1 "cr_operand" "C")
- (const_int 0)])
- (set (match_operand:SF 2 "fpr_operand" "=f")
- (mult:SF (match_operand:SF 3 "fpr_operand" "f")
- (match_operand:SF 4 "fpr_operand" "f"))))]
- "TARGET_HARD_FLOAT"
- "cfmuls %3, %4, %2, %1, %e0"
- [(set_attr "length" "4")
- (set_attr "type" "fsmul")])
-
-(define_insn "*cond_exec_sf_div"
- [(cond_exec
- (match_operator 0 "ccr_eqne_operator"
- [(match_operand 1 "cr_operand" "C")
- (const_int 0)])
- (set (match_operand:SF 2 "fpr_operand" "=f")
- (div:SF (match_operand:SF 3 "fpr_operand" "f")
- (match_operand:SF 4 "fpr_operand" "f"))))]
- "TARGET_HARD_FLOAT"
- "cfdivs %3, %4, %2, %1, %e0"
- [(set_attr "length" "4")
- (set_attr "type" "fsdiv")])
-
-(define_insn "*cond_exec_sf_sqrt"
- [(cond_exec
- (match_operator 0 "ccr_eqne_operator"
- [(match_operand 1 "cr_operand" "C")
- (const_int 0)])
- (set (match_operand:SF 2 "fpr_operand" "=f")
- (sqrt:SF (match_operand:SF 3 "fpr_operand" "f"))))]
- "TARGET_HARD_FLOAT"
- "cfsqrts %3, %2, %1, %e0"
- [(set_attr "length" "4")
- (set_attr "type" "fsdiv")])
-
-(define_insn "*cond_exec_cmpsi_cc_fp"
- [(cond_exec
- (match_operator 0 "ccr_eqne_operator"
- [(match_operand 1 "cr_operand" "C")
- (const_int 0)])
- (set (match_operand:CC_FP 2 "fcc_operand" "=u")
- (compare:CC_FP (match_operand:SF 3 "fpr_operand" "f")
- (match_operand:SF 4 "fpr_operand" "f"))))]
- "reload_completed && TARGET_HARD_FLOAT
- && REGNO (operands[1]) == REGNO (operands[2]) - FCC_FIRST + FCR_FIRST"
- "cfcmps %3, %4, %2, %1, %e0"
- [(set_attr "length" "4")
- (set_attr "type" "fsconv")])
-
-
-;; ::::::::::::::::::::
-;; ::
-;; :: Logical operations on CR registers
-;; ::
-;; ::::::::::::::::::::
-
-;; We use UNSPEC to encode andcr/iorcr/etc. rather than the normal RTL
-;; operations, since the RTL operations only have an idea of TRUE and FALSE,
-;; while the CRs have TRUE, FALSE, and UNDEFINED.
-
-(define_expand "andcr"
- [(set (match_operand:CC_CCR 0 "cr_operand" "")
- (unspec:CC_CCR [(match_operand:CC_CCR 1 "cr_operand" "")
- (match_operand:CC_CCR 2 "cr_operand" "")
- (const_int 0)] UNSPEC_CR_LOGIC))]
- ""
- "")
-
-(define_expand "orcr"
- [(set (match_operand:CC_CCR 0 "cr_operand" "")
- (unspec:CC_CCR [(match_operand:CC_CCR 1 "cr_operand" "")
- (match_operand:CC_CCR 2 "cr_operand" "")
- (const_int 1)] UNSPEC_CR_LOGIC))]
- ""
- "")
-
-(define_expand "xorcr"
- [(set (match_operand:CC_CCR 0 "cr_operand" "")
- (unspec:CC_CCR [(match_operand:CC_CCR 1 "cr_operand" "")
- (match_operand:CC_CCR 2 "cr_operand" "")
- (const_int 2)] UNSPEC_CR_LOGIC))]
- ""
- "")
-
-(define_expand "nandcr"
- [(set (match_operand:CC_CCR 0 "cr_operand" "")
- (unspec:CC_CCR [(match_operand:CC_CCR 1 "cr_operand" "")
- (match_operand:CC_CCR 2 "cr_operand" "")
- (const_int 3)] UNSPEC_CR_LOGIC))]
- ""
- "")
-
-(define_expand "norcr"
- [(set (match_operand:CC_CCR 0 "cr_operand" "")
- (unspec:CC_CCR [(match_operand:CC_CCR 1 "cr_operand" "")
- (match_operand:CC_CCR 2 "cr_operand" "")
- (const_int 4)] UNSPEC_CR_LOGIC))]
- ""
- "")
-
-(define_expand "andncr"
- [(set (match_operand:CC_CCR 0 "cr_operand" "")
- (unspec:CC_CCR [(match_operand:CC_CCR 1 "cr_operand" "")
- (match_operand:CC_CCR 2 "cr_operand" "")
- (const_int 5)] UNSPEC_CR_LOGIC))]
- ""
- "")
-
-(define_expand "orncr"
- [(set (match_operand:CC_CCR 0 "cr_operand" "")
- (unspec:CC_CCR [(match_operand:CC_CCR 1 "cr_operand" "")
- (match_operand:CC_CCR 2 "cr_operand" "")
- (const_int 6)] UNSPEC_CR_LOGIC))]
- ""
- "")
-
-(define_expand "nandncr"
- [(set (match_operand:CC_CCR 0 "cr_operand" "")
- (unspec:CC_CCR [(match_operand:CC_CCR 1 "cr_operand" "")
- (match_operand:CC_CCR 2 "cr_operand" "")
- (const_int 7)] UNSPEC_CR_LOGIC))]
- ""
- "")
-
-(define_expand "norncr"
- [(set (match_operand:CC_CCR 0 "cr_operand" "")
- (unspec:CC_CCR [(match_operand:CC_CCR 1 "cr_operand" "")
- (match_operand:CC_CCR 2 "cr_operand" "")
- (const_int 8)] UNSPEC_CR_LOGIC))]
- ""
- "")
-
-(define_expand "notcr"
- [(set (match_operand:CC_CCR 0 "cr_operand" "")
- (unspec:CC_CCR [(match_operand:CC_CCR 1 "cr_operand" "")
- (match_dup 1)
- (const_int 9)] UNSPEC_CR_LOGIC))]
- ""
- "")
-
-(define_insn "*logical_cr"
- [(set (match_operand:CC_CCR 0 "cr_operand" "=C")
- (unspec:CC_CCR [(match_operand:CC_CCR 1 "cr_operand" "C")
- (match_operand:CC_CCR 2 "cr_operand" "C")
- (match_operand:SI 3 "const_int_operand" "n")]
- UNSPEC_CR_LOGIC))]
- ""
- "*
-{
- switch (INTVAL (operands[3]))
- {
- default: break;
- case 0: return \"andcr %1, %2, %0\";
- case 1: return \"orcr %1, %2, %0\";
- case 2: return \"xorcr %1, %2, %0\";
- case 3: return \"nandcr %1, %2, %0\";
- case 4: return \"norcr %1, %2, %0\";
- case 5: return \"andncr %1, %2, %0\";
- case 6: return \"orncr %1, %2, %0\";
- case 7: return \"nandncr %1, %2, %0\";
- case 8: return \"norncr %1, %2, %0\";
- case 9: return \"notcr %1, %0\";
- }
-
- fatal_insn (\"logical_cr\", insn);
-}"
- [(set_attr "length" "4")
- (set_attr "type" "ccr")])
-
-
-;; ::::::::::::::::::::
-;; ::
-;; :: Conditional move instructions
-;; ::
-;; ::::::::::::::::::::
-
-
-;; - conditional moves based on floating-point comparisons require
-;; TARGET_HARD_FLOAT, because an FPU is required to do the comparison.
-
-;; - conditional moves between FPRs based on integer comparisons
-;; require TARGET_HAS_FPRS.
-
-(define_expand "movqicc"
- [(set (match_operand:QI 0 "integer_register_operand" "")
- (if_then_else:QI (match_operand 1 "" "")
- (match_operand:QI 2 "gpr_or_int_operand" "")
- (match_operand:QI 3 "gpr_or_int_operand" "")))]
- "TARGET_COND_MOVE"
- "
-{
- if (!frv_emit_cond_move (operands[0], operands[1], operands[2], operands[3]))
- FAIL;
-
- DONE;
-}")
-
-(define_insn "*movqicc_internal1_signed"
- [(set (match_operand:QI 0 "integer_register_operand" "=d,d,d")
- (if_then_else:QI (match_operator:CC 1 "signed_relational_operator"
- [(match_operand:CC 2 "icc_operand" "t,t,t")
- (const_int 0)])
- (match_operand:QI 3 "reg_or_0_operand" "0,dO,dO")
- (match_operand:QI 4 "reg_or_0_operand" "dO,0,dO")))
- (clobber (match_operand:CC_CCR 5 "icr_operand" "=v,v,v"))]
- ""
- "#"
- [(set_attr "length" "8,8,12")
- (set_attr "type" "multi")])
-
-(define_insn "*movqicc_internal1_unsigned"
- [(set (match_operand:QI 0 "integer_register_operand" "=d,d,d")
- (if_then_else:QI (match_operator:CC_UNS 1 "unsigned_relational_operator"
- [(match_operand:CC_UNS 2 "icc_operand" "t,t,t")
- (const_int 0)])
- (match_operand:QI 3 "reg_or_0_operand" "0,dO,dO")
- (match_operand:QI 4 "reg_or_0_operand" "dO,0,dO")))
- (clobber (match_operand:CC_CCR 5 "icr_operand" "=v,v,v"))]
- ""
- "#"
- [(set_attr "length" "8,8,12")
- (set_attr "type" "multi")])
-
-(define_insn "*movqicc_internal1_float"
- [(set (match_operand:QI 0 "integer_register_operand" "=d,d,d")
- (if_then_else:QI (match_operator:CC_FP 1 "float_relational_operator"
- [(match_operand:CC_FP 2 "fcc_operand" "u,u,u")
- (const_int 0)])
- (match_operand:QI 3 "reg_or_0_operand" "0,dO,dO")
- (match_operand:QI 4 "reg_or_0_operand" "dO,0,dO")))
- (clobber (match_operand:CC_CCR 5 "fcr_operand" "=w,w,w"))]
- "TARGET_HARD_FLOAT"
- "#"
- [(set_attr "length" "8,8,12")
- (set_attr "type" "multi")])
-
-(define_insn "*movqicc_internal2_signed"
- [(set (match_operand:QI 0 "integer_register_operand" "=d,d,d,d,d")
- (if_then_else:QI (match_operator:CC 1 "signed_relational_operator"
- [(match_operand:CC 2 "icc_operand" "t,t,t,t,t")
- (const_int 0)])
- (match_operand:QI 3 "const_int_operand" "O,O,L,n,n")
- (match_operand:QI 4 "const_int_operand" "L,n,O,O,n")))
- (clobber (match_operand:CC_CCR 5 "icr_operand" "=v,v,v,v,v"))]
- "(INTVAL (operands[3]) == 0
- || INTVAL (operands[4]) == 0
- || (IN_RANGE_P (INTVAL (operands[3]), -2048, 2047)
- && IN_RANGE_P (INTVAL (operands[4]) - INTVAL (operands[3]), -2048, 2047)))"
- "#"
- [(set_attr "length" "8,12,8,12,12")
- (set_attr "type" "multi")])
-
-(define_insn "*movqicc_internal2_unsigned"
- [(set (match_operand:QI 0 "integer_register_operand" "=d,d,d,d,d")
- (if_then_else:QI (match_operator:CC_UNS 1 "unsigned_relational_operator"
- [(match_operand:CC_UNS 2 "icc_operand" "t,t,t,t,t")
- (const_int 0)])
- (match_operand:QI 3 "const_int_operand" "O,O,L,n,n")
- (match_operand:QI 4 "const_int_operand" "L,n,O,O,n")))
- (clobber (match_operand:CC_CCR 5 "icr_operand" "=v,v,v,v,v"))]
- "(INTVAL (operands[3]) == 0
- || INTVAL (operands[4]) == 0
- || (IN_RANGE_P (INTVAL (operands[3]), -2048, 2047)
- && IN_RANGE_P (INTVAL (operands[4]) - INTVAL (operands[3]), -2048, 2047)))"
- "#"
- [(set_attr "length" "8,12,8,12,12")
- (set_attr "type" "multi")])
-
-(define_insn "*movqicc_internal2_float"
- [(set (match_operand:QI 0 "integer_register_operand" "=d,d,d,d,d")
- (if_then_else:QI (match_operator:CC_FP 1 "float_relational_operator"
- [(match_operand:CC_FP 2 "fcc_operand" "u,u,u,u,u")
- (const_int 0)])
- (match_operand:QI 3 "const_int_operand" "O,O,L,n,n")
- (match_operand:QI 4 "const_int_operand" "L,n,O,O,n")))
- (clobber (match_operand:CC_CCR 5 "fcr_operand" "=w,w,w,w,w"))]
- "TARGET_HARD_FLOAT
- && (INTVAL (operands[3]) == 0
- || INTVAL (operands[4]) == 0
- || (IN_RANGE_P (INTVAL (operands[3]), -2048, 2047)
- && IN_RANGE_P (INTVAL (operands[4]) - INTVAL (operands[3]), -2048, 2047)))"
- "#"
- [(set_attr "length" "8,12,8,12,12")
- (set_attr "type" "multi")])
-
-(define_split
- [(set (match_operand:QI 0 "integer_register_operand" "")
- (if_then_else:QI (match_operator 1 "relational_operator"
- [(match_operand 2 "cc_operand" "")
- (const_int 0)])
- (match_operand:QI 3 "gpr_or_int_operand" "")
- (match_operand:QI 4 "gpr_or_int_operand" "")))
- (clobber (match_operand:CC_CCR 5 "cr_operand" ""))]
- "reload_completed"
- [(match_dup 6)]
- "operands[6] = frv_split_cond_move (operands);")
-
-(define_expand "movhicc"
- [(set (match_operand:HI 0 "integer_register_operand" "")
- (if_then_else:HI (match_operand 1 "" "")
- (match_operand:HI 2 "gpr_or_int_operand" "")
- (match_operand:HI 3 "gpr_or_int_operand" "")))]
- "TARGET_COND_MOVE"
- "
-{
- if (!frv_emit_cond_move (operands[0], operands[1], operands[2], operands[3]))
- FAIL;
-
- DONE;
-}")
-
-(define_insn "*movhicc_internal1_signed"
- [(set (match_operand:HI 0 "integer_register_operand" "=d,d,d")
- (if_then_else:HI (match_operator:CC 1 "signed_relational_operator"
- [(match_operand:CC 2 "icc_operand" "t,t,t")
- (const_int 0)])
- (match_operand:HI 3 "reg_or_0_operand" "0,dO,dO")
- (match_operand:HI 4 "reg_or_0_operand" "dO,0,dO")))
- (clobber (match_operand:CC_CCR 5 "icr_operand" "=v,v,v"))]
- ""
- "#"
- [(set_attr "length" "8,8,12")
- (set_attr "type" "multi")])
-
-(define_insn "*movhicc_internal1_unsigned"
- [(set (match_operand:HI 0 "integer_register_operand" "=d,d,d")
- (if_then_else:HI (match_operator:CC_UNS 1 "unsigned_relational_operator"
- [(match_operand:CC_UNS 2 "icc_operand" "t,t,t")
- (const_int 0)])
- (match_operand:HI 3 "reg_or_0_operand" "0,dO,dO")
- (match_operand:HI 4 "reg_or_0_operand" "dO,0,dO")))
- (clobber (match_operand:CC_CCR 5 "icr_operand" "=v,v,v"))]
- ""
- "#"
- [(set_attr "length" "8,8,12")
- (set_attr "type" "multi")])
-
-(define_insn "*movhicc_internal1_float"
- [(set (match_operand:HI 0 "integer_register_operand" "=d,d,d")
- (if_then_else:HI (match_operator:CC_FP 1 "float_relational_operator"
- [(match_operand:CC_FP 2 "fcc_operand" "u,u,u")
- (const_int 0)])
- (match_operand:HI 3 "reg_or_0_operand" "0,dO,dO")
- (match_operand:HI 4 "reg_or_0_operand" "dO,0,dO")))
- (clobber (match_operand:CC_CCR 5 "fcr_operand" "=w,w,w"))]
- "TARGET_HARD_FLOAT"
- "#"
- [(set_attr "length" "8,8,12")
- (set_attr "type" "multi")])
-
-(define_insn "*movhicc_internal2_signed"
- [(set (match_operand:HI 0 "integer_register_operand" "=d,d,d,d,d")
- (if_then_else:HI (match_operator:CC 1 "signed_relational_operator"
- [(match_operand:CC 2 "icc_operand" "t,t,t,t,t")
- (const_int 0)])
- (match_operand:HI 3 "const_int_operand" "O,O,L,n,n")
- (match_operand:HI 4 "const_int_operand" "L,n,O,O,n")))
- (clobber (match_operand:CC_CCR 5 "icr_operand" "=v,v,v,v,v"))]
- "(INTVAL (operands[3]) == 0
- || INTVAL (operands[4]) == 0
- || (IN_RANGE_P (INTVAL (operands[3]), -2048, 2047)
- && IN_RANGE_P (INTVAL (operands[4]) - INTVAL (operands[3]), -2048, 2047)))"
- "#"
- [(set_attr "length" "8,12,8,12,12")
- (set_attr "type" "multi")])
-
-(define_insn "*movhicc_internal2_unsigned"
- [(set (match_operand:HI 0 "integer_register_operand" "=d,d,d,d,d")
- (if_then_else:HI (match_operator:CC_UNS 1 "unsigned_relational_operator"
- [(match_operand:CC_UNS 2 "icc_operand" "t,t,t,t,t")
- (const_int 0)])
- (match_operand:HI 3 "const_int_operand" "O,O,L,n,n")
- (match_operand:HI 4 "const_int_operand" "L,n,O,O,n")))
- (clobber (match_operand:CC_CCR 5 "icr_operand" "=v,v,v,v,v"))]
- "(INTVAL (operands[3]) == 0
- || INTVAL (operands[4]) == 0
- || (IN_RANGE_P (INTVAL (operands[3]), -2048, 2047)
- && IN_RANGE_P (INTVAL (operands[4]) - INTVAL (operands[3]), -2048, 2047)))"
- "#"
- [(set_attr "length" "8,12,8,12,12")
- (set_attr "type" "multi")])
-
-(define_insn "*movhicc_internal2_float"
- [(set (match_operand:HI 0 "integer_register_operand" "=d,d,d,d,d")
- (if_then_else:HI (match_operator:CC_FP 1 "float_relational_operator"
- [(match_operand:CC_FP 2 "fcc_operand" "u,u,u,u,u")
- (const_int 0)])
- (match_operand:HI 3 "const_int_operand" "O,O,L,n,n")
- (match_operand:HI 4 "const_int_operand" "L,n,O,O,n")))
- (clobber (match_operand:CC_CCR 5 "fcr_operand" "=w,w,w,w,w"))]
- "TARGET_HARD_FLOAT
- && (INTVAL (operands[3]) == 0
- || INTVAL (operands[4]) == 0
- || (IN_RANGE_P (INTVAL (operands[3]), -2048, 2047)
- && IN_RANGE_P (INTVAL (operands[4]) - INTVAL (operands[3]), -2048, 2047)))"
- "#"
- [(set_attr "length" "8,12,8,12,12")
- (set_attr "type" "multi")])
-
-(define_split
- [(set (match_operand:HI 0 "integer_register_operand" "")
- (if_then_else:HI (match_operator 1 "relational_operator"
- [(match_operand 2 "cc_operand" "")
- (const_int 0)])
- (match_operand:HI 3 "gpr_or_int_operand" "")
- (match_operand:HI 4 "gpr_or_int_operand" "")))
- (clobber (match_operand:CC_CCR 5 "cr_operand" ""))]
- "reload_completed"
- [(match_dup 6)]
- "operands[6] = frv_split_cond_move (operands);")
-
-(define_expand "movsicc"
- [(set (match_operand:SI 0 "integer_register_operand" "")
- (if_then_else:SI (match_operand 1 "" "")
- (match_operand:SI 2 "gpr_or_int_operand" "")
- (match_operand:SI 3 "gpr_or_int_operand" "")))]
- "TARGET_COND_MOVE"
- "
-{
- if (!frv_emit_cond_move (operands[0], operands[1], operands[2], operands[3]))
- FAIL;
-
- DONE;
-}")
-
-(define_insn "*movsicc_internal1_signed"
- [(set (match_operand:SI 0 "integer_register_operand" "=d,d,d")
- (if_then_else:SI (match_operator:CC 1 "signed_relational_operator"
- [(match_operand:CC 2 "icc_operand" "t,t,t")
- (const_int 0)])
- (match_operand:SI 3 "reg_or_0_operand" "0,dO,dO")
- (match_operand:SI 4 "reg_or_0_operand" "dO,0,dO")))
- (clobber (match_operand:CC_CCR 5 "icr_operand" "=v,v,v"))]
- ""
- "#"
- [(set_attr "length" "8,8,12")
- (set_attr "type" "multi")])
-
-(define_insn "*movsicc_internal1_unsigned"
- [(set (match_operand:SI 0 "integer_register_operand" "=d,d,d")
- (if_then_else:SI (match_operator:CC_UNS 1 "unsigned_relational_operator"
- [(match_operand:CC_UNS 2 "icc_operand" "t,t,t")
- (const_int 0)])
- (match_operand:SI 3 "reg_or_0_operand" "0,dO,dO")
- (match_operand:SI 4 "reg_or_0_operand" "dO,0,dO")))
- (clobber (match_operand:CC_CCR 5 "icr_operand" "=v,v,v"))]
- ""
- "#"
- [(set_attr "length" "8,8,12")
- (set_attr "type" "multi")])
-
-(define_insn "*movsicc_internal1_float"
- [(set (match_operand:SI 0 "integer_register_operand" "=d,d,d")
- (if_then_else:SI (match_operator:CC_FP 1 "float_relational_operator"
- [(match_operand:CC_FP 2 "fcc_operand" "u,u,u")
- (const_int 0)])
- (match_operand:SI 3 "reg_or_0_operand" "0,dO,dO")
- (match_operand:SI 4 "reg_or_0_operand" "dO,0,dO")))
- (clobber (match_operand:CC_CCR 5 "fcr_operand" "=w,w,w"))]
- "TARGET_HARD_FLOAT"
- "#"
- [(set_attr "length" "8,8,12")
- (set_attr "type" "multi")])
-
-(define_insn "*movsicc_internal2_signed"
- [(set (match_operand:SI 0 "integer_register_operand" "=d,d,d,d,d")
- (if_then_else:SI (match_operator:CC 1 "signed_relational_operator"
- [(match_operand:CC 2 "icc_operand" "t,t,t,t,t")
- (const_int 0)])
- (match_operand:SI 3 "const_int_operand" "O,O,L,n,n")
- (match_operand:SI 4 "const_int_operand" "L,n,O,O,n")))
- (clobber (match_operand:CC_CCR 5 "icr_operand" "=v,v,v,v,v"))]
- "(INTVAL (operands[3]) == 0
- || INTVAL (operands[4]) == 0
- || (IN_RANGE_P (INTVAL (operands[3]), -2048, 2047)
- && IN_RANGE_P (INTVAL (operands[4]) - INTVAL (operands[3]), -2048, 2047)))"
- "#"
- [(set_attr "length" "8,12,8,12,12")
- (set_attr "type" "multi")])
-
-(define_insn "*movsicc_internal2_unsigned"
- [(set (match_operand:SI 0 "integer_register_operand" "=d,d,d,d,d")
- (if_then_else:SI (match_operator:CC_UNS 1 "unsigned_relational_operator"
- [(match_operand:CC_UNS 2 "icc_operand" "t,t,t,t,t")
- (const_int 0)])
- (match_operand:SI 3 "const_int_operand" "O,O,L,n,n")
- (match_operand:SI 4 "const_int_operand" "L,n,O,O,n")))
- (clobber (match_operand:CC_CCR 5 "icr_operand" "=v,v,v,v,v"))]
- "(INTVAL (operands[3]) == 0
- || INTVAL (operands[4]) == 0
- || (IN_RANGE_P (INTVAL (operands[3]), -2048, 2047)
- && IN_RANGE_P (INTVAL (operands[4]) - INTVAL (operands[3]), -2048, 2047)))"
- "#"
- [(set_attr "length" "8,12,8,12,12")
- (set_attr "type" "multi")])
-
-(define_insn "*movsicc_internal2_float"
- [(set (match_operand:SI 0 "integer_register_operand" "=d,d,d,d,d")
- (if_then_else:SI (match_operator:CC_FP 1 "float_relational_operator"
- [(match_operand:CC_FP 2 "fcc_operand" "u,u,u,u,u")
- (const_int 0)])
- (match_operand:SI 3 "const_int_operand" "O,O,L,n,n")
- (match_operand:SI 4 "const_int_operand" "L,n,O,O,n")))
- (clobber (match_operand:CC_CCR 5 "fcr_operand" "=w,w,w,w,w"))]
- "TARGET_HARD_FLOAT
- && (INTVAL (operands[3]) == 0
- || INTVAL (operands[4]) == 0
- || (IN_RANGE_P (INTVAL (operands[3]), -2048, 2047)
- && IN_RANGE_P (INTVAL (operands[4]) - INTVAL (operands[3]), -2048, 2047)))"
- "#"
- [(set_attr "length" "8,12,8,12,12")
- (set_attr "type" "multi")])
-
-(define_split
- [(set (match_operand:SI 0 "integer_register_operand" "")
- (if_then_else:SI (match_operator 1 "relational_operator"
- [(match_operand 2 "cc_operand" "")
- (const_int 0)])
- (match_operand:SI 3 "gpr_or_int_operand" "")
- (match_operand:SI 4 "gpr_or_int_operand" "")))
- (clobber (match_operand:CC_CCR 5 "cr_operand" ""))]
- "reload_completed"
- [(match_dup 6)]
- "operands[6] = frv_split_cond_move (operands);")
-
-(define_expand "movsfcc"
- [(set (match_operand:SF 0 "register_operand" "")
- (if_then_else:SF (match_operand 1 "" "")
- (match_operand:SF 2 "register_operand" "")
- (match_operand:SF 3 "register_operand" "")))]
- "TARGET_COND_MOVE"
- "
-{
- if (!frv_emit_cond_move (operands[0], operands[1], operands[2], operands[3]))
- FAIL;
-
- DONE;
-}")
-
-(define_insn "*movsfcc_has_fprs_signed"
- [(set (match_operand:SF 0 "register_operand" "=f,f,f,?f,?f,?d")
- (if_then_else:SF (match_operator:CC 1 "signed_relational_operator"
- [(match_operand:CC 2 "icc_operand" "t,t,t,t,t,t")
- (const_int 0)])
- (match_operand:SF 3 "register_operand" "0,f,f,f,d,fd")
- (match_operand:SF 4 "register_operand" "f,0,f,d,fd,fd")))
- (clobber (match_operand:CC_CCR 5 "icr_operand" "=v,v,v,v,v,v"))]
- "TARGET_HAS_FPRS"
- "#"
- [(set_attr "length" "8,8,12,12,12,12")
- (set_attr "type" "multi")])
-
-(define_insn "*movsfcc_has_fprs_unsigned"
- [(set (match_operand:SF 0 "register_operand" "=f,f,f,?f,?f,?d")
- (if_then_else:SF (match_operator:CC_UNS 1 "unsigned_relational_operator"
- [(match_operand:CC_UNS 2 "icc_operand" "t,t,t,t,t,t")
- (const_int 0)])
- (match_operand:SF 3 "register_operand" "0,f,f,f,d,fd")
- (match_operand:SF 4 "register_operand" "f,0,f,d,fd,fd")))
- (clobber (match_operand:CC_CCR 5 "icr_operand" "=v,v,v,v,v,v"))]
- "TARGET_HAS_FPRS"
- "#"
- [(set_attr "length" "8,8,12,12,12,12")
- (set_attr "type" "multi")])
-
-(define_insn "*movsfcc_hardfloat_float"
- [(set (match_operand:SF 0 "register_operand" "=f,f,f,?f,?f,?d")
- (if_then_else:SF (match_operator:CC_FP 1 "float_relational_operator"
- [(match_operand:CC_FP 2 "fcc_operand" "u,u,u,u,u,u")
- (const_int 0)])
- (match_operand:SF 3 "register_operand" "0,f,f,f,d,fd")
- (match_operand:SF 4 "register_operand" "f,0,f,d,fd,fd")))
- (clobber (match_operand:CC_CCR 5 "fcr_operand" "=w,w,w,w,w,w"))]
- "TARGET_HARD_FLOAT"
- "#"
- [(set_attr "length" "8,8,12,12,12,12")
- (set_attr "type" "multi")])
-
-(define_insn "*movsfcc_no_fprs_signed"
- [(set (match_operand:SF 0 "integer_register_operand" "=d,d,d")
- (if_then_else:SF (match_operator:CC 1 "signed_relational_operator"
- [(match_operand:CC 2 "icc_operand" "t,t,t")
- (const_int 0)])
- (match_operand:SF 3 "integer_register_operand" "0,d,d")
- (match_operand:SF 4 "integer_register_operand" "d,0,d")))
- (clobber (match_operand:CC_CCR 5 "icr_operand" "=v,v,v"))]
- "! TARGET_HAS_FPRS"
- "#"
- [(set_attr "length" "8,8,12")
- (set_attr "type" "multi")])
-
-(define_insn "*movsfcc_no_fprs_unsigned"
- [(set (match_operand:SF 0 "integer_register_operand" "=d,d,d")
- (if_then_else:SF (match_operator:CC_UNS 1 "unsigned_relational_operator"
- [(match_operand:CC_UNS 2 "icc_operand" "t,t,t")
- (const_int 0)])
- (match_operand:SF 3 "integer_register_operand" "0,d,d")
- (match_operand:SF 4 "integer_register_operand" "d,0,d")))
- (clobber (match_operand:CC_CCR 5 "icr_operand" "=v,v,v"))]
- "! TARGET_HAS_FPRS"
- "#"
- [(set_attr "length" "8,8,12")
- (set_attr "type" "multi")])
-
-(define_split
- [(set (match_operand:SF 0 "register_operand" "")
- (if_then_else:SF (match_operator 1 "relational_operator"
- [(match_operand 2 "cc_operand" "")
- (const_int 0)])
- (match_operand:SF 3 "register_operand" "")
- (match_operand:SF 4 "register_operand" "")))
- (clobber (match_operand:CC_CCR 5 "cr_operand" ""))]
- "reload_completed"
- [(match_dup 6)]
- "operands[6] = frv_split_cond_move (operands);")
-
-
-;; ::::::::::::::::::::
-;; ::
-;; :: Minimum, maximum, and integer absolute value
-;; ::
-;; ::::::::::::::::::::
-
-;; These 'instructions' are provided to give the compiler a slightly better
-;; nudge at register allocation, then it would if it constructed the
-;; instructions from basic building blocks (since it indicates it prefers one
-;; of the operands to be the same as the destination. It also helps the
-;; earlier passes of the compiler, by not breaking things into small basic
-;; blocks.
-
-(define_expand "abssi2"
- [(parallel [(set (match_operand:SI 0 "integer_register_operand" "")
- (abs:SI (match_operand:SI 1 "integer_register_operand" "")))
- (clobber (match_dup 2))
- (clobber (match_dup 3))])]
- "TARGET_COND_MOVE"
- "
-{
- operands[2] = gen_reg_rtx (CCmode);
- operands[3] = gen_reg_rtx (CC_CCRmode);
-}")
-
-(define_insn_and_split "*abssi2_internal"
- [(set (match_operand:SI 0 "integer_register_operand" "=d,d")
- (abs:SI (match_operand:SI 1 "integer_register_operand" "0,d")))
- (clobber (match_operand:CC 2 "icc_operand" "=t,t"))
- (clobber (match_operand:CC_CCR 3 "icr_operand" "=v,v"))]
- "TARGET_COND_MOVE"
- "#"
- "reload_completed"
- [(match_dup 4)]
- "operands[4] = frv_split_abs (operands);"
- [(set_attr "length" "12,16")
- (set_attr "type" "multi")])
-
-(define_expand "sminsi3"
- [(parallel [(set (match_operand:SI 0 "integer_register_operand" "")
- (smin:SI (match_operand:SI 1 "integer_register_operand" "")
- (match_operand:SI 2 "gpr_or_int10_operand" "")))
- (clobber (match_dup 3))
- (clobber (match_dup 4))])]
- "TARGET_COND_MOVE"
- "
-{
- operands[3] = gen_reg_rtx (CCmode);
- operands[4] = gen_reg_rtx (CC_CCRmode);
-}")
-
-(define_expand "smaxsi3"
- [(parallel [(set (match_operand:SI 0 "integer_register_operand" "")
- (smax:SI (match_operand:SI 1 "integer_register_operand" "")
- (match_operand:SI 2 "gpr_or_int10_operand" "")))
- (clobber (match_dup 3))
- (clobber (match_dup 4))])]
- "TARGET_COND_MOVE"
- "
-{
- operands[3] = gen_reg_rtx (CCmode);
- operands[4] = gen_reg_rtx (CC_CCRmode);
-}")
-
-(define_insn_and_split "*minmax_si_signed"
- [(set (match_operand:SI 0 "integer_register_operand" "=d,d,&d")
- (match_operator:SI 1 "minmax_operator"
- [(match_operand:SI 2 "integer_register_operand" "%0,dO,d")
- (match_operand:SI 3 "gpr_or_int10_operand" "dO,0,dJ")]))
- (clobber (match_operand:CC 4 "icc_operand" "=t,t,t"))
- (clobber (match_operand:CC_CCR 5 "icr_operand" "=v,v,v"))]
- "TARGET_COND_MOVE"
- "#"
- "reload_completed"
- [(match_dup 6)]
- "operands[6] = frv_split_minmax (operands);"
- [(set_attr "length" "12,12,16")
- (set_attr "type" "multi")])
-
-(define_expand "uminsi3"
- [(parallel [(set (match_operand:SI 0 "integer_register_operand" "")
- (umin:SI (match_operand:SI 1 "integer_register_operand" "")
- (match_operand:SI 2 "gpr_or_int10_operand" "")))
- (clobber (match_dup 3))
- (clobber (match_dup 4))])]
- "TARGET_COND_MOVE"
- "
-{
- operands[3] = gen_reg_rtx (CC_UNSmode);
- operands[4] = gen_reg_rtx (CC_CCRmode);
-}")
-
-(define_expand "umaxsi3"
- [(parallel [(set (match_operand:SI 0 "integer_register_operand" "")
- (umax:SI (match_operand:SI 1 "integer_register_operand" "")
- (match_operand:SI 2 "gpr_or_int10_operand" "")))
- (clobber (match_dup 3))
- (clobber (match_dup 4))])]
- "TARGET_COND_MOVE"
- "
-{
- operands[3] = gen_reg_rtx (CC_UNSmode);
- operands[4] = gen_reg_rtx (CC_CCRmode);
-}")
-
-(define_insn_and_split "*minmax_si_unsigned"
- [(set (match_operand:SI 0 "integer_register_operand" "=d,d,&d")
- (match_operator:SI 1 "minmax_operator"
- [(match_operand:SI 2 "integer_register_operand" "%0,dO,d")
- (match_operand:SI 3 "gpr_or_int10_operand" "dO,0,dJ")]))
- (clobber (match_operand:CC_UNS 4 "icc_operand" "=t,t,t"))
- (clobber (match_operand:CC_CCR 5 "icr_operand" "=v,v,v"))]
- "TARGET_COND_MOVE"
- "#"
- "reload_completed"
- [(match_dup 6)]
- "operands[6] = frv_split_minmax (operands);"
- [(set_attr "length" "12,12,16")
- (set_attr "type" "multi")])
-
-(define_expand "sminsf3"
- [(parallel [(set (match_operand:SF 0 "fpr_operand" "")
- (smin:SF (match_operand:SF 1 "fpr_operand" "")
- (match_operand:SF 2 "fpr_operand" "")))
- (clobber (match_dup 3))
- (clobber (match_dup 4))])]
- "TARGET_COND_MOVE && TARGET_HARD_FLOAT"
- "
-{
- operands[3] = gen_reg_rtx (CC_FPmode);
- operands[4] = gen_reg_rtx (CC_CCRmode);
-}")
-
-(define_expand "smaxsf3"
- [(parallel [(set (match_operand:SF 0 "fpr_operand" "")
- (smax:SF (match_operand:SF 1 "fpr_operand" "")
- (match_operand:SF 2 "fpr_operand" "")))
- (clobber (match_dup 3))
- (clobber (match_dup 4))])]
- "TARGET_COND_MOVE && TARGET_HARD_FLOAT"
- "
-{
- operands[3] = gen_reg_rtx (CC_FPmode);
- operands[4] = gen_reg_rtx (CC_CCRmode);
-}")
-
-(define_insn_and_split "*minmax_sf"
- [(set (match_operand:SF 0 "fpr_operand" "=f,f,f")
- (match_operator:SF 1 "minmax_operator"
- [(match_operand:SF 2 "fpr_operand" "%0,f,f")
- (match_operand:SF 3 "fpr_operand" "f,0,f")]))
- (clobber (match_operand:CC_FP 4 "fcc_operand" "=u,u,u"))
- (clobber (match_operand:CC_CCR 5 "fcr_operand" "=w,w,w"))]
- "TARGET_COND_MOVE && TARGET_HARD_FLOAT"
- "#"
- "reload_completed"
- [(match_dup 6)]
- "operands[6] = frv_split_minmax (operands);"
- [(set_attr "length" "12,12,16")
- (set_attr "type" "multi")])
-
-(define_expand "smindf3"
- [(parallel [(set (match_operand:DF 0 "fpr_operand" "")
- (smin:DF (match_operand:DF 1 "fpr_operand" "")
- (match_operand:DF 2 "fpr_operand" "")))
- (clobber (match_dup 3))
- (clobber (match_dup 4))])]
- "TARGET_COND_MOVE && TARGET_HARD_FLOAT && TARGET_DOUBLE"
- "
-{
- operands[3] = gen_reg_rtx (CC_FPmode);
- operands[4] = gen_reg_rtx (CC_CCRmode);
-}")
-
-(define_expand "smaxdf3"
- [(parallel [(set (match_operand:DF 0 "fpr_operand" "")
- (smax:DF (match_operand:DF 1 "fpr_operand" "")
- (match_operand:DF 2 "fpr_operand" "")))
- (clobber (match_dup 3))
- (clobber (match_dup 4))])]
- "TARGET_COND_MOVE && TARGET_HARD_FLOAT && TARGET_DOUBLE"
- "
-{
- operands[3] = gen_reg_rtx (CC_FPmode);
- operands[4] = gen_reg_rtx (CC_CCRmode);
-}")
-
-(define_insn_and_split "*minmax_df"
- [(set (match_operand:DF 0 "fpr_operand" "=f,f,f")
- (match_operator:DF 1 "minmax_operator"
- [(match_operand:DF 2 "fpr_operand" "%0,f,f")
- (match_operand:DF 3 "fpr_operand" "f,0,f")]))
- (clobber (match_operand:CC_FP 4 "fcc_operand" "=u,u,u"))
- (clobber (match_operand:CC_CCR 5 "fcr_operand" "=w,w,w"))]
- "TARGET_COND_MOVE && TARGET_HARD_FLOAT && TARGET_DOUBLE"
- "#"
- "reload_completed"
- [(match_dup 6)]
- "operands[6] = frv_split_minmax (operands);"
- [(set_attr "length" "12,12,16")
- (set_attr "type" "multi")])
-
-
-;; ::::::::::::::::::::
-;; ::
-;; :: Call and branch instructions
-;; ::
-;; ::::::::::::::::::::
-
-;; Subroutine call instruction returning no value. Operand 0 is the function
-;; to call; operand 1 is the number of bytes of arguments pushed (in mode
-;; `SImode', except it is normally a `const_int'); operand 2 is the number of
-;; registers used as operands.
-
-;; On most machines, operand 2 is not actually stored into the RTL pattern. It
-;; is supplied for the sake of some RISC machines which need to put this
-;; information into the assembler code; they can put it in the RTL instead of
-;; operand 1.
-
-(define_expand "call"
- [(use (match_operand:QI 0 "" ""))
- (use (match_operand 1 "" ""))
- (use (match_operand 2 "" ""))
- (use (match_operand 3 "" ""))]
- ""
- "
-{
- rtx lr = gen_rtx_REG (Pmode, LR_REGNO);
- rtx addr;
-
- if (GET_CODE (operands[0]) != MEM)
- abort ();
-
- addr = XEXP (operands[0], 0);
- if (! call_operand (addr, Pmode))
- addr = force_reg (Pmode, addr);
-
- if (! operands[2])
- operands[2] = const0_rtx;
-
- emit_call_insn (gen_call_internal (addr, operands[1], operands[2], lr));
- DONE;
-}")
-
-(define_insn "call_internal"
- [(call (mem:QI (match_operand:SI 0 "call_operand" "S,dNOP"))
- (match_operand 1 "" ""))
- (use (match_operand 2 "" ""))
- (clobber (match_operand:SI 3 "lr_operand" "=l,l"))]
- ""
- "@
- call %0
- call%i0l %M0"
- [(set_attr "length" "4")
- (set_attr "type" "call,jumpl")])
-
-;; Subroutine call instruction returning a value. Operand 0 is the hard
-;; register in which the value is returned. There are three more operands, the
-;; same as the three operands of the `call' instruction (but with numbers
-;; increased by one).
-
-;; Subroutines that return `BLKmode' objects use the `call' insn.
-
-(define_expand "call_value"
- [(use (match_operand 0 "" ""))
- (use (match_operand:QI 1 "" ""))
- (use (match_operand 2 "" ""))
- (use (match_operand 3 "" ""))
- (use (match_operand 4 "" ""))]
- ""
- "
-{
- rtx lr = gen_rtx_REG (Pmode, LR_REGNO);
- rtx addr;
-
- if (GET_CODE (operands[1]) != MEM)
- abort ();
-
- addr = XEXP (operands[1], 0);
- if (! call_operand (addr, Pmode))
- addr = force_reg (Pmode, addr);
-
- if (! operands[3])
- operands[3] = const0_rtx;
-
- emit_call_insn (gen_call_value_internal (operands[0], addr, operands[2],
- operands[3], lr));
- DONE;
-}")
-
-(define_insn "call_value_internal"
- [(set (match_operand 0 "register_operand" "=d,d")
- (call (mem:QI (match_operand:SI 1 "call_operand" "S,dNOP"))
- (match_operand 2 "" "")))
- (use (match_operand 3 "" ""))
- (clobber (match_operand:SI 4 "lr_operand" "=l,l"))]
- ""
- "@
- call %1
- call%i1l %M1"
- [(set_attr "length" "4")
- (set_attr "type" "call,jumpl")])
-
-;; return instruction generated instead of jmp to epilog
-(define_expand "return"
- [(parallel [(return)
- (use (match_dup 0))
- (use (const_int 1))])]
- "direct_return_p ()"
- "
-{
- operands[0] = gen_rtx_REG (Pmode, LR_REGNO);
-}")
-
-;; return instruction generated by the epilogue
-(define_expand "epilogue_return"
- [(parallel [(return)
- (use (match_operand:SI 0 "register_operand" ""))
- (use (const_int 0))])]
- ""
- "")
-
-(define_insn "*return_internal"
- [(return)
- (use (match_operand:SI 0 "register_operand" "l,d"))
- (use (match_operand:SI 1 "immediate_operand" "n,n"))]
- ""
- "@
- ret
- jmpl @(%0,%.)"
- [(set_attr "length" "4")
- (set_attr "type" "jump,jumpl")])
-
-;; A version of addsi3 for deallocating stack space at the end of the
-;; epilogue. The addition is done in parallel with an (unspec_volatile),
-;; which represents the clobbering of the deallocated space.
-(define_insn "stack_adjust"
- [(set (match_operand:SI 0 "register_operand" "=d")
- (plus:SI (match_operand:SI 1 "register_operand" "d")
- (match_operand:SI 2 "general_operand" "dNOP")))
- (unspec_volatile [(const_int 0)] UNSPEC_STACK_ADJUST)]
- ""
- "add%I2 %1,%2,%0"
- [(set_attr "length" "4")
- (set_attr "type" "int")])
-
-;; Normal unconditional jump
-
-;; Use the "call" instruction for long branches, but prefer to use "bra" for
-;; short ones since it does not force us to save the link register.
-
-;; This define_insn uses the branch-shortening code to decide which
-;; instruction it emits. Since the main branch-shortening interface is
-;; through get_attr_length(), the two alternatives must be given different
-;; lengths. Here we pretend that the far jump is 8 rather than 4 bytes
-;; long, though both alternatives are really the same size.
-(define_insn "jump"
- [(set (pc) (label_ref (match_operand 0 "" "")))]
- ""
- "*
-{
- if (get_attr_length (insn) == 4)
- return \"bra %l0\";
- else
- return \"call %l0\";
-}"
- [(set (attr "length")
- (if_then_else
- (and (ge (minus (match_dup 0) (pc)) (const_int -32768))
- (le (minus (match_dup 0) (pc)) (const_int 32764)))
- (const_int 4)
- (const_int 8)))
- (set (attr "far_jump")
- (if_then_else
- (eq_attr "length" "4")
- (const_string "no")
- (const_string "yes")))
- (set (attr "type")
- (if_then_else
- (eq_attr "length" "4")
- (const_string "jump")
- (const_string "call")))])
-
-;; Indirect jump through a register
-(define_insn "indirect_jump"
- [(set (pc) (match_operand:SI 0 "register_operand" "d,l"))]
- ""
- "@
- jmpl @(%0,%.)
- bralr"
- [(set_attr "length" "4")
- (set_attr "type" "jumpl,branch")])
-
-;; Instruction to jump to a variable address. This is a low-level capability
-;; which can be used to implement a dispatch table when there is no `casesi'
-;; pattern. Either the 'casesi' pattern or the 'tablejump' pattern, or both,
-;; MUST be present in this file.
-
-;; This pattern requires two operands: the address or offset, and a label which
-;; should immediately precede the jump table. If the macro
-;; `CASE_VECTOR_PC_RELATIVE' is defined then the first operand is an offset
-;; which counts from the address of the table; otherwise, it is an absolute
-;; address to jump to. In either case, the first operand has mode `Pmode'.
-
-;; The `tablejump' insn is always the last insn before the jump table it uses.
-;; Its assembler code normally has no need to use the second operand, but you
-;; should incorporate it in the RTL pattern so that the jump optimizer will not
-;; delete the table as unreachable code.
-
-(define_expand "tablejump"
- [(parallel [(set (pc) (match_operand:SI 0 "address_operand" "p"))
- (use (label_ref (match_operand 1 "" "")))])]
- "!flag_pic"
- "")
-
-(define_insn "tablejump_insn"
- [(set (pc) (match_operand:SI 0 "address_operand" "p"))
- (use (label_ref (match_operand 1 "" "")))]
- ""
- "jmp%I0l %M0"
- [(set_attr "length" "4")
- (set_attr "type" "jumpl")])
-
-;; Implement switch statements when generating PIC code. Switches are
-;; implemented by `tablejump' when not using -fpic.
-
-;; Emit code here to do the range checking and make the index zero based.
-;; operand 0 is the index
-;; operand 1 is the lower bound
-;; operand 2 is the range of indices (highest - lowest + 1)
-;; operand 3 is the label that precedes the table itself
-;; operand 4 is the fall through label
-
-(define_expand "casesi"
- [(use (match_operand:SI 0 "integer_register_operand" ""))
- (use (match_operand:SI 1 "const_int_operand" ""))
- (use (match_operand:SI 2 "const_int_operand" ""))
- (use (match_operand 3 "" ""))
- (use (match_operand 4 "" ""))]
- "flag_pic"
- "
-{
- rtx indx;
- rtx scale;
- rtx low = operands[1];
- rtx range = operands[2];
- rtx table = operands[3];
- rtx treg;
- rtx fail = operands[4];
- rtx mem;
- rtx reg2;
- rtx reg3;
-
- if (GET_CODE (operands[1]) != CONST_INT)
- abort ();
-
- if (GET_CODE (operands[2]) != CONST_INT)
- abort ();
-
- /* If we can't generate an immediate instruction, promote to register */
- if (! IN_RANGE_P (INTVAL (range), -2048, 2047))
- range = force_reg (SImode, range);
-
- /* If low bound is 0, we don't have to subtract it. */
- if (INTVAL (operands[1]) == 0)
- indx = operands[0];
- else
- {
- indx = gen_reg_rtx (SImode);
- if (IN_RANGE_P (INTVAL (low), -2047, 2048))
- emit_insn (gen_addsi3 (indx, operands[0], GEN_INT (- INTVAL (low))));
- else
- emit_insn (gen_subsi3 (indx, operands[0], force_reg (SImode, low)));
- }
-
- /* Do an unsigned comparison (in the proper mode) between the index
- expression and the value which represents the length of the range.
- Since we just finished subtracting the lower bound of the range
- from the index expression, this comparison allows us to simultaneously
- check that the original index expression value is both greater than
- or equal to the minimum value of the range and less than or equal to
- the maximum value of the range. */
-
- emit_cmp_and_jump_insns (indx, range, GTU, NULL_RTX, SImode, 1, fail);
-
- /* Move the table address to a register */
- treg = gen_reg_rtx (Pmode);
- emit_insn (gen_movsi (treg, gen_rtx_LABEL_REF (VOIDmode, table)));
-
- /* scale index-low by wordsize */
- scale = gen_reg_rtx (SImode);
- emit_insn (gen_ashlsi3 (scale, indx, GEN_INT (2)));
-
- /* Load the address, add the start of the table back in,
- and jump to it. */
- mem = gen_rtx_MEM (SImode, gen_rtx_PLUS (Pmode, scale, treg));
- reg2 = gen_reg_rtx (SImode);
- reg3 = gen_reg_rtx (SImode);
- emit_insn (gen_movsi (reg2, mem));
- emit_insn (gen_addsi3 (reg3, reg2, treg));
- emit_jump_insn (gen_tablejump_insn (reg3, table));
- DONE;
-}")
-
-
-;; ::::::::::::::::::::
-;; ::
-;; :: Prologue and Epilogue instructions
-;; ::
-;; ::::::::::::::::::::
-
-;; Called after register allocation to add any instructions needed for the
-;; prologue. Using a prologue insn is favored compared to putting all of the
-;; instructions in the FUNCTION_PROLOGUE macro, since it allows the scheduler
-;; to intermix instructions with the saves of the caller saved registers. In
-;; some cases, it might be necessary to emit a barrier instruction as the last
-;; insn to prevent such scheduling.
-(define_expand "prologue"
- [(const_int 1)]
- ""
- "
-{
- frv_expand_prologue ();
- DONE;
-}")
-
-;; Called after register allocation to add any instructions needed for the
-;; epilogue. Using a epilogue insn is favored compared to putting all of the
-;; instructions in the FUNCTION_EPILOGUE macro, since it allows the scheduler
-;; to intermix instructions with the restires of the caller saved registers.
-;; In some cases, it might be necessary to emit a barrier instruction as the
-;; first insn to prevent such scheduling.
-(define_expand "epilogue"
- [(const_int 2)]
- ""
- "
-{
- frv_expand_epilogue (FALSE);
- DONE;
-}")
-
-;; This pattern, if defined, emits RTL for exit from a function without the final
-;; branch back to the calling function. This pattern will be emitted before any
-;; sibling call (aka tail call) sites.
-;;
-;; The sibcall_epilogue pattern must not clobber any arguments used for
-;; parameter passing or any stack slots for arguments passed to the current
-;; function.
-(define_expand "sibcall_epilogue"
- [(const_int 3)]
- ""
- "
-{
- frv_expand_epilogue (TRUE);
- DONE;
-}")
-
-;; Set up the pic register to hold the address of the pic table
-(define_insn "pic_prologue"
- [(set (match_operand:SI 0 "integer_register_operand" "=d")
- (unspec_volatile:SI [(const_int 0)] UNSPEC_PIC_PROLOGUE))
- (clobber (match_operand:SI 1 "lr_operand" "=l"))
- (clobber (match_operand:SI 2 "integer_register_operand" "=d"))]
- ""
- "*
-{
- static int frv_pic_labelno = 0;
-
- operands[3] = GEN_INT (frv_pic_labelno++);
- return \"call %P3\\n%P3:\;movsg %1, %0\;sethi #gprelhi(%P3), %2\;setlo #gprello(%P3), %2\;sub %0,%2,%0\";
-}"
- [(set_attr "length" "16")
- (set_attr "type" "multi")])
-
-;; ::::::::::::::::::::
-;; ::
-;; :: Miscellaneous instructions
-;; ::
-;; ::::::::::::::::::::
-
-;; No operation, needed in case the user uses -g but not -O.
-(define_insn "nop"
- [(const_int 0)]
- ""
- "nop"
- [(set_attr "length" "4")
- (set_attr "type" "int")])
-
-;; Pseudo instruction that prevents the scheduler from moving code above this
-;; point. Note, type unknown is used to make sure the VLIW instructions are
-;; not continued past this point.
-(define_insn "blockage"
- [(unspec_volatile [(const_int 0)] UNSPEC_BLOCKAGE)]
- ""
- "# blockage"
- [(set_attr "length" "0")
- (set_attr "type" "unknown")])
-
-;; ::::::::::::::::::::
-;; ::
-;; :: Media instructions
-;; ::
-;; ::::::::::::::::::::
-
-;; Unimplemented instructions:
-;; - MCMPSH, MCMPUH
-
-(define_constants
- [(UNSPEC_MLOGIC 100)
- (UNSPEC_MNOT 101)
- (UNSPEC_MAVEH 102)
- (UNSPEC_MSATH 103)
- (UNSPEC_MADDH 104)
- (UNSPEC_MQADDH 105)
- (UNSPEC_MPACKH 106)
- (UNSPEC_MUNPACKH 107)
- (UNSPEC_MDPACKH 108)
- (UNSPEC_MBTOH 109)
- (UNSPEC_MHTOB 110)
- (UNSPEC_MROT 111)
- (UNSPEC_MSHIFT 112)
- (UNSPEC_MEXPDHW 113)
- (UNSPEC_MEXPDHD 114)
- (UNSPEC_MWCUT 115)
- (UNSPEC_MMULH 116)
- (UNSPEC_MMULXH 117)
- (UNSPEC_MMACH 118)
- (UNSPEC_MMRDH 119)
- (UNSPEC_MQMULH 120)
- (UNSPEC_MQMULXH 121)
- (UNSPEC_MQMACH 122)
- (UNSPEC_MCPX 123)
- (UNSPEC_MQCPX 124)
- (UNSPEC_MCUT 125)
- (UNSPEC_MRDACC 126)
- (UNSPEC_MRDACCG 127)
- (UNSPEC_MWTACC 128)
- (UNSPEC_MWTACCG 129)
- (UNSPEC_MTRAP 130)
- (UNSPEC_MCLRACC 131)
- (UNSPEC_MCLRACCA 132)
- (UNSPEC_MCOP1 133)
- (UNSPEC_MCOP2 134)
- (UNSPEC_MDUNPACKH 135)
- (UNSPEC_MDUNPACKH_INTERNAL 136)
- (UNSPEC_MBTOHE 137)
- (UNSPEC_MBTOHE_INTERNAL 138)
- (UNSPEC_MBTOHE 137)
- (UNSPEC_MBTOHE_INTERNAL 138)
- (UNSPEC_MQMACH2 139)
- (UNSPEC_MADDACC 140)
- (UNSPEC_MDADDACC 141)
- (UNSPEC_MABSHS 142)
- (UNSPEC_MDROTLI 143)
- (UNSPEC_MCPLHI 144)
- (UNSPEC_MCPLI 145)
- (UNSPEC_MDCUTSSI 146)
- (UNSPEC_MQSATHS 147)
- (UNSPEC_MHSETLOS 148)
- (UNSPEC_MHSETLOH 149)
- (UNSPEC_MHSETHIS 150)
- (UNSPEC_MHSETHIH 151)
- (UNSPEC_MHDSETS 152)
- (UNSPEC_MHDSETH 153)
-])
-
-;; Logic operations: type "mlogic"
-
-(define_expand "mand"
- [(set (match_operand:SI 0 "fpr_operand" "")
- (unspec:SI [(match_operand:SI 1 "fpr_operand" "")
- (match_operand:SI 2 "fpr_operand" "")
- (match_dup 3)]
- UNSPEC_MLOGIC))]
- "TARGET_MEDIA"
- "operands[3] = GEN_INT (FRV_BUILTIN_MAND);")
-
-(define_expand "mor"
- [(set (match_operand:SI 0 "fpr_operand" "")
- (unspec:SI [(match_operand:SI 1 "fpr_operand" "")
- (match_operand:SI 2 "fpr_operand" "")
- (match_dup 3)]
- UNSPEC_MLOGIC))]
- "TARGET_MEDIA"
- "operands[3] = GEN_INT (FRV_BUILTIN_MOR);")
-
-(define_expand "mxor"
- [(set (match_operand:SI 0 "fpr_operand" "")
- (unspec:SI [(match_operand:SI 1 "fpr_operand" "")
- (match_operand:SI 2 "fpr_operand" "")
- (match_dup 3)]
- UNSPEC_MLOGIC))]
- "TARGET_MEDIA"
- "operands[3] = GEN_INT (FRV_BUILTIN_MXOR);")
-
-(define_insn "*mlogic"
- [(set (match_operand:SI 0 "fpr_operand" "=f")
- (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")
- (match_operand:SI 2 "fpr_operand" "f")
- (match_operand:SI 3 "const_int_operand" "n")]
- UNSPEC_MLOGIC))]
- "TARGET_MEDIA"
- "*
-{
- switch (INTVAL (operands[3]))
- {
- default: break;
- case FRV_BUILTIN_MAND: return \"mand %1, %2, %0\";
- case FRV_BUILTIN_MOR: return \"mor %1, %2, %0\";
- case FRV_BUILTIN_MXOR: return \"mxor %1, %2, %0\";
- }
-
- fatal_insn (\"Bad media insn, mlogic\", insn);
-}"
- [(set_attr "length" "4")
- (set_attr "type" "mlogic")])
-
-(define_insn "*cond_exec_mlogic"
- [(cond_exec
- (match_operator 0 "ccr_eqne_operator"
- [(match_operand 1 "cr_operand" "C")
- (const_int 0)])
- (set (match_operand:SI 2 "fpr_operand" "=f")
- (unspec:SI [(match_operand:SI 3 "fpr_operand" "f")
- (match_operand:SI 4 "fpr_operand" "f")
- (match_operand:SI 5 "const_int_operand" "n")]
- UNSPEC_MLOGIC)))]
- "TARGET_MEDIA"
- "*
-{
- switch (INTVAL (operands[5]))
- {
- default: break;
- case FRV_BUILTIN_MAND: return \"cmand %3, %4, %2, %1, %e0\";
- case FRV_BUILTIN_MOR: return \"cmor %3, %4, %2, %1, %e0\";
- case FRV_BUILTIN_MXOR: return \"cmxor %3, %4, %2, %1, %e0\";
- }
-
- fatal_insn (\"Bad media insn, cond_exec_mlogic\", insn);
-}"
- [(set_attr "length" "4")
- (set_attr "type" "mlogic")])
-
-;; Logical not: type "mlogic"
-
-(define_insn "mnot"
- [(set (match_operand:SI 0 "fpr_operand" "=f")
- (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")] UNSPEC_MNOT))]
- "TARGET_MEDIA"
- "mnot %1, %0"
- [(set_attr "length" "4")
- (set_attr "type" "mlogic")])
-
-(define_insn "*cond_exec_mnot"
- [(cond_exec
- (match_operator 0 "ccr_eqne_operator"
- [(match_operand 1 "cr_operand" "C")
- (const_int 0)])
- (set (match_operand:SI 2 "fpr_operand" "=f")
- (unspec:SI [(match_operand:SI 3 "fpr_operand" "f")] UNSPEC_MNOT)))]
- "TARGET_MEDIA"
- "cmnot %3, %2, %1, %e0"
- [(set_attr "length" "4")
- (set_attr "type" "mlogic")])
-
-;; Dual average (halfword): type "maveh"
-
-(define_insn "maveh"
- [(set (match_operand:SI 0 "fpr_operand" "=f")
- (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")
- (match_operand:SI 2 "fpr_operand" "f")]
- UNSPEC_MAVEH))]
- "TARGET_MEDIA"
- "maveh %1, %2, %0"
- [(set_attr "length" "4")
- (set_attr "type" "maveh")])
-
-;; Dual saturation (halfword): type "msath"
-
-(define_expand "msaths"
- [(set (match_operand:SI 0 "fpr_operand" "=f")
- (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")
- (match_operand:SI 2 "fpr_operand" "f")
- (match_dup 3)]
- UNSPEC_MSATH))]
- "TARGET_MEDIA"
- "operands[3] = GEN_INT (FRV_BUILTIN_MSATHS);")
-
-(define_expand "msathu"
- [(set (match_operand:SI 0 "fpr_operand" "=f")
- (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")
- (match_operand:SI 2 "fpr_operand" "f")
- (match_dup 3)]
- UNSPEC_MSATH))]
- "TARGET_MEDIA"
- "operands[3] = GEN_INT (FRV_BUILTIN_MSATHU);")
-
-(define_insn "*msath"
- [(set (match_operand:SI 0 "fpr_operand" "=f")
- (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")
- (match_operand:SI 2 "fpr_operand" "f")
- (match_operand:SI 3 "const_int_operand" "n")]
- UNSPEC_MSATH))]
- "TARGET_MEDIA"
- "*
-{
- switch (INTVAL (operands[3]))
- {
- default: break;
- case FRV_BUILTIN_MSATHS: return \"msaths %1, %2, %0\";
- case FRV_BUILTIN_MSATHU: return \"msathu %1, %2, %0\";
- }
-
- fatal_insn (\"Bad media insn, msath\", insn);
-}"
- [(set_attr "length" "4")
- (set_attr "type" "msath")])
-
-;; Dual addition/subtraction with saturation (halfword): type "maddh"
-
-(define_expand "maddhss"
- [(set (match_operand:SI 0 "fpr_operand" "=f")
- (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")
- (match_operand:SI 2 "fpr_operand" "f")
- (match_dup 3)]
- UNSPEC_MADDH))]
- "TARGET_MEDIA"
- "operands[3] = GEN_INT (FRV_BUILTIN_MADDHSS);")
-
-(define_expand "maddhus"
- [(set (match_operand:SI 0 "fpr_operand" "=f")
- (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")
- (match_operand:SI 2 "fpr_operand" "f")
- (match_dup 3)]
- UNSPEC_MADDH))]
- "TARGET_MEDIA"
- "operands[3] = GEN_INT (FRV_BUILTIN_MADDHUS);")
-
-(define_expand "msubhss"
- [(set (match_operand:SI 0 "fpr_operand" "=f")
- (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")
- (match_operand:SI 2 "fpr_operand" "f")
- (match_dup 3)]
- UNSPEC_MADDH))]
- "TARGET_MEDIA"
- "operands[3] = GEN_INT (FRV_BUILTIN_MSUBHSS);")
-
-(define_expand "msubhus"
- [(set (match_operand:SI 0 "fpr_operand" "=f")
- (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")
- (match_operand:SI 2 "fpr_operand" "f")
- (match_dup 3)]
- UNSPEC_MADDH))]
- "TARGET_MEDIA"
- "operands[3] = GEN_INT (FRV_BUILTIN_MSUBHUS);")
-
-(define_insn "*maddh"
- [(set (match_operand:SI 0 "fpr_operand" "=f")
- (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")
- (match_operand:SI 2 "fpr_operand" "f")
- (match_operand:SI 3 "const_int_operand" "n")]
- UNSPEC_MADDH))]
- "TARGET_MEDIA"
- "*
-{
- switch (INTVAL (operands[3]))
- {
- default: break;
- case FRV_BUILTIN_MADDHSS: return \"maddhss %1, %2, %0\";
- case FRV_BUILTIN_MADDHUS: return \"maddhus %1, %2, %0\";
- case FRV_BUILTIN_MSUBHSS: return \"msubhss %1, %2, %0\";
- case FRV_BUILTIN_MSUBHUS: return \"msubhus %1, %2, %0\";
- }
-
- fatal_insn (\"Bad media insn, maddh\", insn);
-}"
- [(set_attr "length" "4")
- (set_attr "type" "maddh")])
-
-(define_insn "*cond_exec_maddh"
- [(cond_exec
- (match_operator 0 "ccr_eqne_operator"
- [(match_operand 1 "cr_operand" "C")
- (const_int 0)])
- (set (match_operand:SI 2 "fpr_operand" "=f")
- (unspec:SI [(match_operand:SI 3 "fpr_operand" "f")
- (match_operand:SI 4 "fpr_operand" "f")
- (match_operand:SI 5 "const_int_operand" "n")]
- UNSPEC_MADDH)))]
- "TARGET_MEDIA"
- "*
-{
- switch (INTVAL (operands[5]))
- {
- default: break;
- case FRV_BUILTIN_MADDHSS: return \"cmaddhss %3, %4, %2, %1, %e0\";
- case FRV_BUILTIN_MADDHUS: return \"cmaddhus %3, %4, %2, %1, %e0\";
- case FRV_BUILTIN_MSUBHSS: return \"cmsubhss %3, %4, %2, %1, %e0\";
- case FRV_BUILTIN_MSUBHUS: return \"cmsubhus %3, %4, %2, %1, %e0\";
- }
-
- fatal_insn (\"Bad media insn, cond_exec_maddh\", insn);
-}"
- [(set_attr "length" "4")
- (set_attr "type" "maddh")])
-
-;; Quad addition/subtraction with saturation (halfword): type "mqaddh"
-
-(define_expand "mqaddhss"
- [(set (match_operand:DI 0 "even_fpr_operand" "=h")
- (unspec:DI [(match_operand:DI 1 "even_fpr_operand" "h")
- (match_operand:DI 2 "even_fpr_operand" "h")
- (match_dup 3)]
- UNSPEC_MQADDH))]
- "TARGET_MEDIA"
- "operands[3] = GEN_INT (FRV_BUILTIN_MQADDHSS);")
-
-(define_expand "mqaddhus"
- [(set (match_operand:DI 0 "even_fpr_operand" "=h")
- (unspec:DI [(match_operand:DI 1 "even_fpr_operand" "h")
- (match_operand:DI 2 "even_fpr_operand" "h")
- (match_dup 3)]
- UNSPEC_MQADDH))]
- "TARGET_MEDIA"
- "operands[3] = GEN_INT (FRV_BUILTIN_MQADDHUS);")
-
-(define_expand "mqsubhss"
- [(set (match_operand:DI 0 "even_fpr_operand" "=h")
- (unspec:DI [(match_operand:DI 1 "even_fpr_operand" "h")
- (match_operand:DI 2 "even_fpr_operand" "h")
- (match_dup 3)]
- UNSPEC_MQADDH))]
- "TARGET_MEDIA"
- "operands[3] = GEN_INT (FRV_BUILTIN_MQSUBHSS);")
-
-(define_expand "mqsubhus"
- [(set (match_operand:DI 0 "even_fpr_operand" "=h")
- (unspec:DI [(match_operand:DI 1 "even_fpr_operand" "h")
- (match_operand:DI 2 "even_fpr_operand" "h")
- (match_dup 3)]
- UNSPEC_MQADDH))]
- "TARGET_MEDIA"
- "operands[3] = GEN_INT (FRV_BUILTIN_MQSUBHUS);")
-
-(define_insn "*mqaddh"
- [(set (match_operand:DI 0 "even_fpr_operand" "=h")
- (unspec:DI [(match_operand:DI 1 "even_fpr_operand" "h")
- (match_operand:DI 2 "even_fpr_operand" "h")
- (match_operand:SI 3 "const_int_operand" "n")]
- UNSPEC_MQADDH))]
- "TARGET_MEDIA"
- "*
-{
- switch (INTVAL (operands[3]))
- {
- default: break;
- case FRV_BUILTIN_MQADDHSS: return \"mqaddhss %1, %2, %0\";
- case FRV_BUILTIN_MQADDHUS: return \"mqaddhus %1, %2, %0\";
- case FRV_BUILTIN_MQSUBHSS: return \"mqsubhss %1, %2, %0\";
- case FRV_BUILTIN_MQSUBHUS: return \"mqsubhus %1, %2, %0\";
- }
-
- fatal_insn (\"Bad media insn, mqaddh\", insn);
-}"
- [(set_attr "length" "4")
- (set_attr "type" "mqaddh")])
-
-(define_insn "*cond_exec_mqaddh"
- [(cond_exec
- (match_operator 0 "ccr_eqne_operator"
- [(match_operand 1 "cr_operand" "C")
- (const_int 0)])
- (set (match_operand:DI 2 "even_fpr_operand" "=h")
- (unspec:DI [(match_operand:DI 3 "even_fpr_operand" "h")
- (match_operand:DI 4 "even_fpr_operand" "h")
- (match_operand:SI 5 "const_int_operand" "n")]
- UNSPEC_MQADDH)))]
- "TARGET_MEDIA"
- "*
-{
- switch (INTVAL (operands[5]))
- {
- default: break;
- case FRV_BUILTIN_MQADDHSS: return \"cmqaddhss %3, %4, %2, %1, %e0\";
- case FRV_BUILTIN_MQADDHUS: return \"cmqaddhus %3, %4, %2, %1, %e0\";
- case FRV_BUILTIN_MQSUBHSS: return \"cmqsubhss %3, %4, %2, %1, %e0\";
- case FRV_BUILTIN_MQSUBHUS: return \"cmqsubhus %3, %4, %2, %1, %e0\";
- }
-
- fatal_insn (\"Bad media insn, cond_exec_mqaddh\", insn);
-}"
- [(set_attr "length" "4")
- (set_attr "type" "mqaddh")])
-
-;; Pack halfword: type "mpackh"
-
-(define_insn "mpackh"
- [(set (match_operand:SI 0 "fpr_operand" "=f")
- (unspec:SI [(match_operand:HI 1 "fpr_operand" "f")
- (match_operand:HI 2 "fpr_operand" "f")]
- UNSPEC_MPACKH))]
- "TARGET_MEDIA"
- "mpackh %1, %2, %0"
- [(set_attr "length" "4")
- (set_attr "type" "mpackh")])
-
-;; Unpack halfword: type "mpackh"
-
-(define_insn "munpackh"
- [(set (match_operand:DI 0 "even_fpr_operand" "=h")
- (unspec:DI [(match_operand:SI 1 "fpr_operand" "f")]
- UNSPEC_MUNPACKH))]
- "TARGET_MEDIA"
- "munpackh %1, %0"
- [(set_attr "length" "4")
- (set_attr "type" "munpackh")])
-
-;; Dual pack halfword: type "mdpackh"
-
-(define_insn "mdpackh"
- [(set (match_operand:DI 0 "even_fpr_operand" "=h")
- (unspec:DI [(match_operand:DI 1 "even_fpr_operand" "h")
- (match_operand:DI 2 "even_fpr_operand" "h")]
- UNSPEC_MDPACKH))]
- "TARGET_MEDIA"
- "mdpackh %1, %2, %0"
- [(set_attr "length" "4")
- (set_attr "type" "mdpackh")])
-
-;; Byte-halfword conversion: type "mbhconv"
-
-(define_insn "mbtoh"
- [(set (match_operand:DI 0 "even_fpr_operand" "=h")
- (unspec:DI [(match_operand:SI 1 "fpr_operand" "f")]
- UNSPEC_MBTOH))]
- "TARGET_MEDIA"
- "mbtoh %1, %0"
- [(set_attr "length" "4")
- (set_attr "type" "mbhconv")])
-
-(define_insn "*cond_exec_mbtoh"
- [(cond_exec
- (match_operator 0 "ccr_eqne_operator"
- [(match_operand 1 "cr_operand" "C")
- (const_int 0)])
- (set (match_operand:DI 2 "even_fpr_operand" "=h")
- (unspec:DI [(match_operand:SI 3 "fpr_operand" "f")]
- UNSPEC_MBTOH)))]
- "TARGET_MEDIA"
- "cmbtoh %3, %2, %1, %e0"
- [(set_attr "length" "4")
- (set_attr "type" "mbhconv")])
-
-(define_insn "mhtob"
- [(set (match_operand:SI 0 "fpr_operand" "=f")
- (unspec:SI [(match_operand:DI 1 "even_fpr_operand" "h")]
- UNSPEC_MHTOB))]
- "TARGET_MEDIA"
- "mhtob %1, %0"
- [(set_attr "length" "4")
- (set_attr "type" "mbhconv")])
-
-(define_insn "*cond_exec_mhtob"
- [(cond_exec
- (match_operator 0 "ccr_eqne_operator"
- [(match_operand 1 "cr_operand" "C")
- (const_int 0)])
- (set (match_operand:SI 2 "fpr_operand" "=f")
- (unspec:SI [(match_operand:DI 3 "even_fpr_operand" "h")]
- UNSPEC_MHTOB)))]
- "TARGET_MEDIA"
- "cmhtob %3, %2, %1, %e0"
- [(set_attr "length" "4")
- (set_attr "type" "mbhconv")])
-
-;; Rotate: type "mrot"
-
-(define_expand "mrotli"
- [(set (match_operand:SI 0 "fpr_operand" "")
- (unspec:SI [(match_operand:SI 1 "fpr_operand" "")
- (match_operand:SI 2 "uint5_operand" "")
- (match_dup 3)]
- UNSPEC_MROT))]
- "TARGET_MEDIA"
- "operands[3] = GEN_INT (FRV_BUILTIN_MROTLI);")
-
-(define_expand "mrotri"
- [(set (match_operand:SI 0 "fpr_operand" "")
- (unspec:SI [(match_operand:SI 1 "fpr_operand" "")
- (match_operand:SI 2 "uint5_operand" "")
- (match_dup 3)]
- UNSPEC_MROT))]
- "TARGET_MEDIA"
- "operands[3] = GEN_INT (FRV_BUILTIN_MROTRI);")
-
-(define_insn "*mrot"
- [(set (match_operand:SI 0 "fpr_operand" "=f")
- (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")
- (match_operand:SI 2 "uint5_operand" "I")
- (match_operand:SI 3 "const_int_operand" "n")]
- UNSPEC_MROT))]
- "TARGET_MEDIA"
- "*
-{
- switch (INTVAL (operands[3]))
- {
- default: break;
- case FRV_BUILTIN_MROTLI: return \"mrotli %1, %2, %0\";
- case FRV_BUILTIN_MROTRI: return \"mrotri %1, %2, %0\";
- }
-
- fatal_insn (\"Bad media insn, mrot\", insn);
-}"
- [(set_attr "length" "4")
- (set_attr "type" "mrot")])
-
-;; Dual shift halfword: type "msh"
-
-(define_expand "msllhi"
- [(set (match_operand:SI 0 "fpr_operand" "")
- (unspec:SI [(match_operand:SI 1 "fpr_operand" "")
- (match_operand:SI 2 "uint4_operand" "")
- (match_dup 3)]
- UNSPEC_MSHIFT))]
- "TARGET_MEDIA"
- "operands[3] = GEN_INT (FRV_BUILTIN_MSLLHI);")
-
-(define_expand "msrlhi"
- [(set (match_operand:SI 0 "fpr_operand" "")
- (unspec:SI [(match_operand:SI 1 "fpr_operand" "")
- (match_operand:SI 2 "uint4_operand" "")
- (match_dup 3)]
- UNSPEC_MSHIFT))]
- "TARGET_MEDIA"
- "operands[3] = GEN_INT (FRV_BUILTIN_MSRLHI);")
-
-(define_expand "msrahi"
- [(set (match_operand:SI 0 "fpr_operand" "")
- (unspec:SI [(match_operand:SI 1 "fpr_operand" "")
- (match_operand:SI 2 "uint4_operand" "")
- (match_dup 3)]
- UNSPEC_MSHIFT))]
- "TARGET_MEDIA"
- "operands[3] = GEN_INT (FRV_BUILTIN_MSRAHI);")
-
-(define_insn "*mshift"
- [(set (match_operand:SI 0 "fpr_operand" "=f")
- (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")
- (match_operand:SI 2 "uint4_operand" "I")
- (match_operand:SI 3 "const_int_operand" "n")]
- UNSPEC_MSHIFT))]
- "TARGET_MEDIA"
- "*
-{
- switch (INTVAL (operands[3]))
- {
- default: break;
- case FRV_BUILTIN_MSLLHI: return \"msllhi %1, %2, %0\";
- case FRV_BUILTIN_MSRLHI: return \"msrlhi %1, %2, %0\";
- case FRV_BUILTIN_MSRAHI: return \"msrahi %1, %2, %0\";
- }
-
- fatal_insn (\"Bad media insn, mshift\", insn);
-}"
- [(set_attr "length" "4")
- (set_attr "type" "mshift")])
-
-;; Expand halfword to word: type "mexpdhw"
-
-(define_insn "mexpdhw"
- [(set (match_operand:SI 0 "even_fpr_operand" "=h")
- (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")
- (match_operand:SI 2 "uint1_operand" "I")]
- UNSPEC_MEXPDHW))]
- "TARGET_MEDIA"
- "mexpdhw %1, %2, %0"
- [(set_attr "length" "4")
- (set_attr "type" "mexpdhw")])
-
-(define_insn "*cond_exec_mexpdhw"
- [(cond_exec
- (match_operator 0 "ccr_eqne_operator"
- [(match_operand 1 "cr_operand" "C")
- (const_int 0)])
- (set (match_operand:SI 2 "even_fpr_operand" "=h")
- (unspec:SI [(match_operand:SI 3 "fpr_operand" "f")
- (match_operand:SI 4 "uint1_operand" "I")]
- UNSPEC_MEXPDHW)))]
- "TARGET_MEDIA"
- "cmexpdhw %3, %4, %2, %1, %e0"
- [(set_attr "length" "4")
- (set_attr "type" "mexpdhw")])
-
-;; Expand halfword to double: type "mexpdhd"
-
-(define_insn "mexpdhd"
- [(set (match_operand:DI 0 "even_fpr_operand" "=h")
- (unspec:DI [(match_operand:SI 1 "fpr_operand" "f")
- (match_operand:SI 2 "uint1_operand" "I")]
- UNSPEC_MEXPDHD))]
- "TARGET_MEDIA"
- "mexpdhd %1, %2, %0"
- [(set_attr "length" "4")
- (set_attr "type" "mexpdhd")])
-
-(define_insn "*cond_exec_mexpdhd"
- [(cond_exec
- (match_operator 0 "ccr_eqne_operator"
- [(match_operand 1 "cr_operand" "C")
- (const_int 0)])
- (set (match_operand:DI 2 "even_fpr_operand" "=h")
- (unspec:DI [(match_operand:SI 3 "fpr_operand" "f")
- (match_operand:SI 4 "uint1_operand" "I")]
- UNSPEC_MEXPDHD)))]
- "TARGET_MEDIA"
- "cmexpdhd %3, %4, %2, %1, %e0"
- [(set_attr "length" "4")
- (set_attr "type" "mexpdhd")])
-
-;; FR cut: type "mwcut"
-
-(define_insn "mwcut"
- [(set (match_operand:SI 0 "fpr_operand" "=f")
- (unspec:SI [(match_operand:DI 1 "fpr_operand" "f")
- (match_operand:SI 2 "fpr_or_int6_operand" "fI")]
- UNSPEC_MWCUT))]
- "TARGET_MEDIA"
- "mwcut%i2 %1, %2, %0"
- [(set_attr "length" "4")
- (set_attr "type" "mwcut")])
-
-;; Dual multiplication (halfword): type "mmulh"
-
-(define_expand "mmulhs"
- [(parallel [(set (match_operand:DI 0 "even_acc_operand" "=b")
- (unspec:DI [(match_operand:SI 1 "fpr_operand" "f")
- (match_operand:SI 2 "fpr_operand" "f")
- (match_dup 4)]
- UNSPEC_MMULH))
- (set (match_operand:HI 3 "accg_operand" "=B")
- (unspec:HI [(const_int 0)] UNSPEC_MMULH))])]
- "TARGET_MEDIA"
- "operands[4] = GEN_INT (FRV_BUILTIN_MMULHS);")
-
-(define_expand "mmulhu"
- [(parallel [(set (match_operand:DI 0 "even_acc_operand" "=b")
- (unspec:DI [(match_operand:SI 1 "fpr_operand" "f")
- (match_operand:SI 2 "fpr_operand" "f")
- (match_dup 4)]
- UNSPEC_MMULH))
- (set (match_operand:HI 3 "accg_operand" "=B")
- (unspec:HI [(const_int 0)] UNSPEC_MMULH))])]
- "TARGET_MEDIA"
- "operands[4] = GEN_INT (FRV_BUILTIN_MMULHU);")
-
-(define_insn "*mmulh"
- [(set (match_operand:DI 0 "even_acc_operand" "=b")
- (unspec:DI [(match_operand:SI 1 "fpr_operand" "f")
- (match_operand:SI 2 "fpr_operand" "f")
- (match_operand:SI 3 "const_int_operand" "n")]
- UNSPEC_MMULH))
- (set (match_operand:HI 4 "accg_operand" "=B")
- (unspec:HI [(const_int 0)] UNSPEC_MMULH))]
- "TARGET_MEDIA"
- "*
-{
- switch (INTVAL (operands[3]))
- {
- default: break;
- case FRV_BUILTIN_MMULHS: return \"mmulhs %1, %2, %0\";
- case FRV_BUILTIN_MMULHU: return \"mmulhu %1, %2, %0\";
- }
-
- fatal_insn (\"Bad media insn, mmulh\", insn);
-}"
- [(set_attr "length" "4")
- (set_attr "type" "mmulh")])
-
-(define_insn "*cond_exec_mmulh"
- [(cond_exec
- (match_operator 0 "ccr_eqne_operator"
- [(match_operand 1 "cr_operand" "C")
- (const_int 0)])
- (parallel [(set (match_operand:DI 2 "even_acc_operand" "=b")
- (unspec:DI [(match_operand:SI 3 "fpr_operand" "f")
- (match_operand:SI 4 "fpr_operand" "f")
- (match_operand:SI 5 "const_int_operand" "n")]
- UNSPEC_MMULH))
- (set (match_operand:HI 6 "accg_operand" "=B")
- (unspec:HI [(const_int 0)] UNSPEC_MMULH))]))]
- "TARGET_MEDIA"
- "*
-{
- switch (INTVAL (operands[5]))
- {
- default: break;
- case FRV_BUILTIN_MMULHS: return \"cmmulhs %3, %4, %2, %1, %e0\";
- case FRV_BUILTIN_MMULHU: return \"cmmulhu %3, %4, %2, %1, %e0\";
- }
-
- fatal_insn (\"Bad media insn, cond_exec_mmulh\", insn);
-}"
- [(set_attr "length" "4")
- (set_attr "type" "mmulh")])
-
-;; Dual cross multiplication (halfword): type "mmulxh"
-
-(define_expand "mmulxhs"
- [(parallel [(set (match_operand:DI 0 "even_acc_operand" "=b")
- (unspec:DI [(match_operand:SI 1 "fpr_operand" "f")
- (match_operand:SI 2 "fpr_operand" "f")
- (match_dup 4)]
- UNSPEC_MMULXH))
- (set (match_operand:HI 3 "accg_operand" "=B")
- (unspec:HI [(const_int 0)] UNSPEC_MMULXH))])]
- "TARGET_MEDIA"
- "operands[4] = GEN_INT (FRV_BUILTIN_MMULXHS);")
-
-(define_expand "mmulxhu"
- [(parallel [(set (match_operand:DI 0 "even_acc_operand" "=b")
- (unspec:DI [(match_operand:SI 1 "fpr_operand" "f")
- (match_operand:SI 2 "fpr_operand" "f")
- (match_dup 4)]
- UNSPEC_MMULXH))
- (set (match_operand:HI 3 "accg_operand" "=B")
- (unspec:HI [(const_int 0)] UNSPEC_MMULXH))])]
- "TARGET_MEDIA"
- "operands[4] = GEN_INT (FRV_BUILTIN_MMULXHU);")
-
-(define_insn "*mmulxh"
- [(set (match_operand:DI 0 "even_acc_operand" "=b")
- (unspec:DI [(match_operand:SI 1 "fpr_operand" "f")
- (match_operand:SI 2 "fpr_operand" "f")
- (match_operand:SI 3 "const_int_operand" "n")]
- UNSPEC_MMULXH))
- (set (match_operand:HI 4 "accg_operand" "=B")
- (unspec:HI [(const_int 0)] UNSPEC_MMULXH))]
- "TARGET_MEDIA"
- "*
-{
- switch (INTVAL (operands[3]))
- {
- default: break;
- case FRV_BUILTIN_MMULXHS: return \"mmulxhs %1, %2, %0\";
- case FRV_BUILTIN_MMULXHU: return \"mmulxhu %1, %2, %0\";
- }
-
- fatal_insn (\"Bad media insn, mmulxh\", insn);
-}"
- [(set_attr "length" "4")
- (set_attr "type" "mmulxh")])
-
-;; Dual product-sum (halfword): type "mmach"
-
-(define_expand "mmachs"
- [(parallel [(set (match_operand:DI 0 "even_acc_operand" "+b")
- (unspec:DI [(match_dup 0)
- (match_operand:SI 1 "fpr_operand" "f")
- (match_operand:SI 2 "fpr_operand" "f")
- (match_operand:HI 3 "accg_operand" "+B")
- (match_dup 4)]
- UNSPEC_MMACH))
- (set (match_dup 3)
- (unspec:HI [(const_int 0)] UNSPEC_MMACH))])]
- "TARGET_MEDIA"
- "operands[4] = GEN_INT (FRV_BUILTIN_MMACHS);")
-
-(define_expand "mmachu"
- [(parallel [(set (match_operand:DI 0 "even_acc_operand" "+b")
- (unspec:DI [(match_dup 0)
- (match_operand:SI 1 "fpr_operand" "f")
- (match_operand:SI 2 "fpr_operand" "f")
- (match_operand:HI 3 "accg_operand" "+B")
- (match_dup 4)]
- UNSPEC_MMACH))
- (set (match_dup 3)
- (unspec:HI [(const_int 0)] UNSPEC_MMACH))])]
- "TARGET_MEDIA"
- "operands[4] = GEN_INT (FRV_BUILTIN_MMACHU);")
-
-(define_insn "*mmach"
- [(set (match_operand:DI 0 "even_acc_operand" "+b")
- (unspec:DI [(match_dup 0)
- (match_operand:SI 1 "fpr_operand" "f")
- (match_operand:SI 2 "fpr_operand" "f")
- (match_operand:HI 3 "accg_operand" "+B")
- (match_operand:SI 4 "const_int_operand" "n")]
- UNSPEC_MMACH))
- (set (match_dup 3) (unspec:HI [(const_int 0)] UNSPEC_MMACH))]
- "TARGET_MEDIA"
- "*
-{
- switch (INTVAL (operands[4]))
- {
- default: break;
- case FRV_BUILTIN_MMACHS: return \"mmachs %1, %2, %0\";
- case FRV_BUILTIN_MMACHU: return \"mmachu %1, %2, %0\";
- }
-
- fatal_insn (\"Bad media insn, mmach\", insn);
-}"
- [(set_attr "length" "4")
- (set_attr "type" "mmach")])
-
-(define_insn "*cond_exec_mmach"
- [(cond_exec
- (match_operator 0 "ccr_eqne_operator"
- [(match_operand 1 "cr_operand" "C")
- (const_int 0)])
- (parallel [(set (match_operand:DI 2 "even_acc_operand" "+b")
- (unspec:DI [(match_dup 2)
- (match_operand:SI 3 "fpr_operand" "f")
- (match_operand:SI 4 "fpr_operand" "f")
- (match_operand:HI 5 "accg_operand" "+B")
- (match_operand:SI 6 "const_int_operand" "n")]
- UNSPEC_MMACH))
- (set (match_dup 5)
- (unspec:HI [(const_int 0)] UNSPEC_MMACH))]))]
- "TARGET_MEDIA"
- "*
-{
- switch (INTVAL (operands[6]))
- {
- default: break;
- case FRV_BUILTIN_MMACHS: return \"cmmachs %3, %4, %2, %1, %e0\";
- case FRV_BUILTIN_MMACHU: return \"cmmachu %3, %4, %2, %1, %e0\";
- }
-
- fatal_insn (\"Bad media insn, cond_exec_mmach\", insn);
-}"
- [(set_attr "length" "4")
- (set_attr "type" "mmach")])
-
-;; Dual product-difference: type "mmrdh"
-
-(define_expand "mmrdhs"
- [(parallel [(set (match_operand:DI 0 "even_acc_operand" "+b")
- (unspec:DI [(match_dup 0)
- (match_operand:SI 1 "fpr_operand" "f")
- (match_operand:SI 2 "fpr_operand" "f")
- (match_operand:HI 3 "accg_operand" "+B")
- (match_dup 4)]
- UNSPEC_MMRDH))
- (set (match_dup 3)
- (unspec:HI [(const_int 0)] UNSPEC_MMRDH))])]
- "TARGET_MEDIA"
- "operands[4] = GEN_INT (FRV_BUILTIN_MMRDHS);")
-
-(define_expand "mmrdhu"
- [(parallel [(set (match_operand:DI 0 "even_acc_operand" "+b")
- (unspec:DI [(match_dup 0)
- (match_operand:SI 1 "fpr_operand" "f")
- (match_operand:SI 2 "fpr_operand" "f")
- (match_operand:HI 3 "accg_operand" "+B")
- (match_dup 4)]
- UNSPEC_MMRDH))
- (set (match_dup 3)
- (unspec:HI [(const_int 0)] UNSPEC_MMRDH))])]
- "TARGET_MEDIA"
- "operands[4] = GEN_INT (FRV_BUILTIN_MMRDHU);")
-
-(define_insn "*mmrdh"
- [(set (match_operand:DI 0 "even_acc_operand" "+b")
- (unspec:DI [(match_dup 0)
- (match_operand:SI 1 "fpr_operand" "f")
- (match_operand:SI 2 "fpr_operand" "f")
- (match_operand:HI 3 "accg_operand" "+B")
- (match_operand:SI 4 "const_int_operand" "n")]
- UNSPEC_MMRDH))
- (set (match_dup 3)
- (unspec:HI [(const_int 0)] UNSPEC_MMRDH))]
- "TARGET_MEDIA"
- "*
-{
- switch (INTVAL (operands[4]))
- {
- default: break;
- case FRV_BUILTIN_MMRDHS: return \"mmrdhs %1, %2, %0\";
- case FRV_BUILTIN_MMRDHU: return \"mmrdhu %1, %2, %0\";
- }
-
- fatal_insn (\"Bad media insn, mrdh\", insn);
-}"
- [(set_attr "length" "4")
- (set_attr "type" "mmrdh")])
-
-;; Quad multiply (halfword): type "mqmulh"
-
-(define_expand "mqmulhs"
- [(parallel [(set (match_operand:V4SI 0 "quad_acc_operand" "=A")
- (unspec:V4SI [(match_operand:DI 1 "even_fpr_operand" "h")
- (match_operand:DI 2 "even_fpr_operand" "h")
- (match_dup 4)]
- UNSPEC_MQMULH))
- (set (match_operand:V4QI 3 "accg_operand" "=B")
- (unspec:V4QI [(const_int 0)] UNSPEC_MQMULH))])]
- "TARGET_MEDIA"
- "operands[4] = GEN_INT (FRV_BUILTIN_MQMULHS);")
-
-(define_expand "mqmulhu"
- [(parallel [(set (match_operand:V4SI 0 "quad_acc_operand" "=A")
- (unspec:V4SI [(match_operand:DI 1 "even_fpr_operand" "h")
- (match_operand:DI 2 "even_fpr_operand" "h")
- (match_dup 4)]
- UNSPEC_MQMULH))
- (set (match_operand:V4QI 3 "accg_operand" "=B")
- (unspec:V4QI [(const_int 0)] UNSPEC_MQMULH))])]
- "TARGET_MEDIA"
- "operands[4] = GEN_INT (FRV_BUILTIN_MQMULHU);")
-
-(define_insn "*mqmulh"
- [(set (match_operand:V4SI 0 "quad_acc_operand" "=A")
- (unspec:V4SI [(match_operand:DI 1 "even_fpr_operand" "h")
- (match_operand:DI 2 "even_fpr_operand" "h")
- (match_operand:SI 3 "const_int_operand" "n")]
- UNSPEC_MQMULH))
- (set (match_operand:V4QI 4 "accg_operand" "=B")
- (unspec:V4QI [(const_int 0)] UNSPEC_MQMULH))]
- "TARGET_MEDIA"
- "*
-{
- switch (INTVAL (operands[3]))
- {
- default: break;
- case FRV_BUILTIN_MQMULHS: return \"mqmulhs %1, %2, %0\";
- case FRV_BUILTIN_MQMULHU: return \"mqmulhu %1, %2, %0\";
- }
-
- fatal_insn (\"Bad media insn, mqmulh\", insn);
-}"
- [(set_attr "length" "4")
- (set_attr "type" "mqmulh")])
-
-(define_insn "*cond_exec_mqmulh"
- [(cond_exec
- (match_operator 0 "ccr_eqne_operator"
- [(match_operand 1 "cr_operand" "C")
- (const_int 0)])
- (parallel [(set (match_operand:V4SI 2 "quad_acc_operand" "=A")
- (unspec:V4SI [(match_operand:DI 3 "even_fpr_operand" "h")
- (match_operand:DI 4 "even_fpr_operand" "h")
- (match_operand:SI 5 "const_int_operand" "n")]
- UNSPEC_MQMULH))
- (set (match_operand:V4QI 6 "accg_operand" "=B")
- (unspec:V4QI [(const_int 0)] UNSPEC_MQMULH))]))]
- "TARGET_MEDIA"
- "*
-{
- switch (INTVAL (operands[5]))
- {
- default: break;
- case FRV_BUILTIN_MQMULHS: return \"cmqmulhs %3, %4, %2, %1, %e0\";
- case FRV_BUILTIN_MQMULHU: return \"cmqmulhu %3, %4, %2, %1, %e0\";
- }
-
- fatal_insn (\"Bad media insn, cond_exec_mqmulh\", insn);
-}"
- [(set_attr "length" "4")
- (set_attr "type" "mqmulh")])
-
-;; Quad cross multiply (halfword): type "mqmulxh"
-
-(define_expand "mqmulxhs"
- [(parallel [(set (match_operand:V4SI 0 "quad_acc_operand" "=A")
- (unspec:V4SI [(match_operand:DI 1 "even_fpr_operand" "h")
- (match_operand:DI 2 "even_fpr_operand" "h")
- (match_dup 4)]
- UNSPEC_MQMULXH))
- (set (match_operand:V4QI 3 "accg_operand" "=B")
- (unspec:V4QI [(const_int 0)] UNSPEC_MQMULXH))])]
- "TARGET_MEDIA"
- "operands[4] = GEN_INT (FRV_BUILTIN_MQMULXHS);")
-
-(define_expand "mqmulxhu"
- [(parallel [(set (match_operand:V4SI 0 "quad_acc_operand" "=A")
- (unspec:V4SI [(match_operand:DI 1 "even_fpr_operand" "h")
- (match_operand:DI 2 "even_fpr_operand" "h")
- (match_dup 4)]
- UNSPEC_MQMULXH))
- (set (match_operand:V4QI 3 "accg_operand" "=B")
- (unspec:V4QI [(const_int 0)] UNSPEC_MQMULXH))])]
- "TARGET_MEDIA"
- "operands[4] = GEN_INT (FRV_BUILTIN_MQMULXHU);")
-
-(define_insn "*mqmulxh"
- [(set (match_operand:V4SI 0 "quad_acc_operand" "=A")
- (unspec:V4SI [(match_operand:DI 1 "even_fpr_operand" "h")
- (match_operand:DI 2 "even_fpr_operand" "h")
- (match_operand:SI 3 "const_int_operand" "n")]
- UNSPEC_MQMULXH))
- (set (match_operand:V4QI 4 "accg_operand" "=B")
- (unspec:V4QI [(const_int 0)] UNSPEC_MQMULXH))]
- "TARGET_MEDIA"
- "*
-{
- switch (INTVAL (operands[3]))
- {
- default: break;
- case FRV_BUILTIN_MQMULXHS: return \"mqmulxhs %1, %2, %0\";
- case FRV_BUILTIN_MQMULXHU: return \"mqmulxhu %1, %2, %0\";
- }
-
- fatal_insn (\"Bad media insn, mqmulxh\", insn);
-}"
- [(set_attr "length" "4")
- (set_attr "type" "mqmulxh")])
-
-;; Quad product-sum (halfword): type "mqmach"
-
-(define_expand "mqmachs"
- [(parallel [(set (match_operand:V4SI 0 "even_acc_operand" "+A")
- (unspec:V4SI [(match_dup 0)
- (match_operand:DI 1 "even_fpr_operand" "h")
- (match_operand:DI 2 "even_fpr_operand" "h")
- (match_operand:V4QI 3 "accg_operand" "+B")
- (match_dup 4)]
- UNSPEC_MQMACH))
- (set (match_dup 3)
- (unspec:V4QI [(const_int 0)] UNSPEC_MQMACH))])]
- "TARGET_MEDIA"
- "operands[4] = GEN_INT (FRV_BUILTIN_MQMACHS);")
-
-(define_expand "mqmachu"
- [(parallel [(set (match_operand:V4SI 0 "even_acc_operand" "+A")
- (unspec:V4SI [(match_dup 0)
- (match_operand:DI 1 "even_fpr_operand" "h")
- (match_operand:DI 2 "even_fpr_operand" "h")
- (match_operand:V4QI 3 "accg_operand" "+B")
- (match_dup 4)]
- UNSPEC_MQMACH))
- (set (match_dup 3)
- (unspec:V4QI [(const_int 0)] UNSPEC_MQMACH))])]
- "TARGET_MEDIA"
- "operands[4] = GEN_INT (FRV_BUILTIN_MQMACHU);")
-
-(define_insn "*mqmach"
- [(set (match_operand:V4SI 0 "even_acc_operand" "+A")
- (unspec:V4SI [(match_dup 0)
- (match_operand:DI 1 "even_fpr_operand" "h")
- (match_operand:DI 2 "even_fpr_operand" "h")
- (match_operand:V4QI 3 "accg_operand" "+B")
- (match_operand:SI 4 "const_int_operand" "n")]
- UNSPEC_MQMACH))
- (set (match_dup 3)
- (unspec:V4QI [(const_int 0)] UNSPEC_MQMACH))]
- "TARGET_MEDIA"
- "*
-{
- switch (INTVAL (operands[4]))
- {
- default: break;
- case FRV_BUILTIN_MQMACHS: return \"mqmachs %1, %2, %0\";
- case FRV_BUILTIN_MQMACHU: return \"mqmachu %1, %2, %0\";
- }
-
- fatal_insn (\"Bad media insn, mqmach\", insn);
-}"
- [(set_attr "length" "4")
- (set_attr "type" "mqmach")])
-
-(define_insn "*cond_exec_mqmach"
- [(cond_exec
- (match_operator 0 "ccr_eqne_operator"
- [(match_operand 1 "cr_operand" "C")
- (const_int 0)])
- (parallel [(set (match_operand:V4SI 2 "even_acc_operand" "+A")
- (unspec:V4SI [(match_dup 2)
- (match_operand:DI 3 "even_fpr_operand" "h")
- (match_operand:DI 4 "even_fpr_operand" "h")
- (match_operand:V4QI 5 "accg_operand" "+B")
- (match_operand:SI 6 "const_int_operand" "n")]
- UNSPEC_MQMACH))
- (set (match_dup 5)
- (unspec:V4QI [(const_int 0)] UNSPEC_MQMACH))]))]
- "TARGET_MEDIA"
- "*
-{
- switch (INTVAL (operands[6]))
- {
- default: break;
- case FRV_BUILTIN_MQMACHS: return \"cmqmachs %3, %4, %2, %1, %e0\";
- case FRV_BUILTIN_MQMACHU: return \"cmqmachu %3, %4, %2, %1, %e0\";
- }
-
- fatal_insn (\"Bad media insn, cond_exec_mqmach\", insn);
-}"
- [(set_attr "length" "4")
- (set_attr "type" "mqmach")])
-
-;; Dual complex number product-sum (halfword)
-
-(define_expand "mcpxrs"
- [(parallel [(set (match_operand:SI 0 "acc_operand" "=a")
- (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")
- (match_operand:SI 2 "fpr_operand" "f")
- (match_dup 4)]
- UNSPEC_MCPX))
- (set (match_operand:QI 3 "accg_operand" "=B")
- (unspec:QI [(const_int 0)] UNSPEC_MCPX))])]
- "TARGET_MEDIA"
- "operands[4] = GEN_INT (FRV_BUILTIN_MCPXRS);")
-
-(define_expand "mcpxru"
- [(parallel [(set (match_operand:SI 0 "acc_operand" "=a")
- (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")
- (match_operand:SI 2 "fpr_operand" "f")
- (match_dup 4)]
- UNSPEC_MCPX))
- (set (match_operand:QI 3 "accg_operand" "=B")
- (unspec:QI [(const_int 0)] UNSPEC_MCPX))])]
- "TARGET_MEDIA"
- "operands[4] = GEN_INT (FRV_BUILTIN_MCPXRU);")
-
-(define_expand "mcpxis"
- [(parallel [(set (match_operand:SI 0 "acc_operand" "=a")
- (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")
- (match_operand:SI 2 "fpr_operand" "f")
- (match_dup 4)]
- UNSPEC_MCPX))
- (set (match_operand:QI 3 "accg_operand" "=B")
- (unspec:QI [(const_int 0)] UNSPEC_MCPX))])]
- "TARGET_MEDIA"
- "operands[4] = GEN_INT (FRV_BUILTIN_MCPXIS);")
-
-(define_expand "mcpxiu"
- [(parallel [(set (match_operand:SI 0 "acc_operand" "=a")
- (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")
- (match_operand:SI 2 "fpr_operand" "f")
- (match_dup 4)]
- UNSPEC_MCPX))
- (set (match_operand:QI 3 "accg_operand" "=B")
- (unspec:QI [(const_int 0)] UNSPEC_MCPX))])]
- "TARGET_MEDIA"
- "operands[4] = GEN_INT (FRV_BUILTIN_MCPXIU);")
-
-(define_insn "*mcpx"
- [(parallel [(set (match_operand:SI 0 "acc_operand" "=a")
- (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")
- (match_operand:SI 2 "fpr_operand" "f")
- (match_operand:SI 3 "const_int_operand" "n")]
- UNSPEC_MCPX))
- (set (match_operand:QI 4 "accg_operand" "=B")
- (unspec:QI [(const_int 0)] UNSPEC_MCPX))])]
- "TARGET_MEDIA"
- "*
-{
- switch (INTVAL (operands[3]))
- {
- default: break;
- case FRV_BUILTIN_MCPXRS: return \"mcpxrs %1, %2, %0\";
- case FRV_BUILTIN_MCPXRU: return \"mcpxru %1, %2, %0\";
- case FRV_BUILTIN_MCPXIS: return \"mcpxis %1, %2, %0\";
- case FRV_BUILTIN_MCPXIU: return \"mcpxiu %1, %2, %0\";
- }
-
- fatal_insn (\"Bad media insn, mcpx\", insn);
-}"
- [(set_attr "length" "4")
- (set_attr "type" "mcpx")])
-
-(define_insn "*cond_exec_mcpx"
- [(cond_exec
- (match_operator 0 "ccr_eqne_operator"
- [(match_operand 1 "cr_operand" "C")
- (const_int 0)])
- (parallel [(set (match_operand:SI 2 "acc_operand" "=a")
- (unspec:SI [(match_operand:SI 3 "fpr_operand" "f")
- (match_operand:SI 4 "fpr_operand" "f")
- (match_operand:SI 5 "const_int_operand" "n")]
- UNSPEC_MCPX))
- (set (match_operand:QI 6 "accg_operand" "=B")
- (unspec:QI [(const_int 0)] UNSPEC_MCPX))]))]
- "TARGET_MEDIA"
- "*
-{
- switch (INTVAL (operands[5]))
- {
- default: break;
- case FRV_BUILTIN_MCPXRS: return \"cmcpxrs %3, %4, %2, %1, %e0\";
- case FRV_BUILTIN_MCPXRU: return \"cmcpxru %3, %4, %2, %1, %e0\";
- case FRV_BUILTIN_MCPXIS: return \"cmcpxis %3, %4, %2, %1, %e0\";
- case FRV_BUILTIN_MCPXIU: return \"cmcpxiu %3, %4, %2, %1, %e0\";
- }
-
- fatal_insn (\"Bad media insn, cond_exec_mcpx\", insn);
-}"
- [(set_attr "length" "4")
- (set_attr "type" "mcpx")])
-
-;; Quad complex number product-sum (halfword): type "mqcpx"
-
-(define_expand "mqcpxrs"
- [(parallel [(set (match_operand:DI 0 "even_acc_operand" "=b")
- (unspec:DI [(match_operand:DI 1 "fpr_operand" "f")
- (match_operand:DI 2 "fpr_operand" "f")
- (match_dup 4)]
- UNSPEC_MQCPX))
- (set (match_operand:HI 3 "accg_operand" "=B")
- (unspec:HI [(const_int 0)] UNSPEC_MQCPX))])]
- "TARGET_MEDIA"
- "operands[4] = GEN_INT (FRV_BUILTIN_MQCPXRS);")
-
-(define_expand "mqcpxru"
- [(parallel [(set (match_operand:DI 0 "even_acc_operand" "=b")
- (unspec:DI [(match_operand:DI 1 "fpr_operand" "f")
- (match_operand:DI 2 "fpr_operand" "f")
- (match_dup 4)]
- UNSPEC_MQCPX))
- (set (match_operand:HI 3 "accg_operand" "=B")
- (unspec:HI [(const_int 0)] UNSPEC_MQCPX))])]
- "TARGET_MEDIA"
- "operands[4] = GEN_INT (FRV_BUILTIN_MQCPXRU);")
-
-(define_expand "mqcpxis"
- [(parallel [(set (match_operand:DI 0 "even_acc_operand" "=b")
- (unspec:DI [(match_operand:DI 1 "fpr_operand" "f")
- (match_operand:DI 2 "fpr_operand" "f")
- (match_dup 4)]
- UNSPEC_MQCPX))
- (set (match_operand:HI 3 "accg_operand" "=B")
- (unspec:HI [(const_int 0)] UNSPEC_MQCPX))])]
- "TARGET_MEDIA"
- "operands[4] = GEN_INT (FRV_BUILTIN_MQCPXIS);")
-
-(define_expand "mqcpxiu"
- [(parallel [(set (match_operand:DI 0 "even_acc_operand" "=b")
- (unspec:DI [(match_operand:DI 1 "fpr_operand" "f")
- (match_operand:DI 2 "fpr_operand" "f")
- (match_dup 4)]
- UNSPEC_MQCPX))
- (set (match_operand:HI 3 "accg_operand" "=B")
- (unspec:HI [(const_int 0)] UNSPEC_MQCPX))])]
- "TARGET_MEDIA"
- "operands[4] = GEN_INT (FRV_BUILTIN_MQCPXIU);")
-
-(define_insn "*mqcpx"
- [(set (match_operand:DI 0 "even_acc_operand" "=b")
- (unspec:DI [(match_operand:DI 1 "fpr_operand" "f")
- (match_operand:DI 2 "fpr_operand" "f")
- (match_operand:SI 3 "const_int_operand" "n")]
- UNSPEC_MQCPX))
- (set (match_operand:HI 4 "accg_operand" "=B")
- (unspec:HI [(const_int 0)] UNSPEC_MQCPX))]
- "TARGET_MEDIA"
- "*
-{
- switch (INTVAL (operands[3]))
- {
- default: break;
- case FRV_BUILTIN_MQCPXRS: return \"mqcpxrs %1, %2, %0\";
- case FRV_BUILTIN_MQCPXRU: return \"mqcpxru %1, %2, %0\";
- case FRV_BUILTIN_MQCPXIS: return \"mqcpxis %1, %2, %0\";
- case FRV_BUILTIN_MQCPXIU: return \"mqcpxiu %1, %2, %0\";
- }
-
- fatal_insn (\"Bad media insn, mqcpx\", insn);
-}"
- [(set_attr "length" "4")
- (set_attr "type" "mqcpx")])
-
-;; Cut: type "mcut"
-
-(define_expand "mcut"
- [(set (match_operand:SI 0 "fpr_operand" "=f")
- (unspec:SI [(match_operand:SI 1 "acc_operand" "a")
- (match_operand:SI 2 "fpr_or_int6_operand" "fI")
- (match_operand:QI 3 "accg_operand" "B")
- (match_dup 4)]
- UNSPEC_MCUT))]
- "TARGET_MEDIA"
- "operands[4] = GEN_INT (FRV_BUILTIN_MCUT);")
-
-(define_expand "mcutss"
- [(set (match_operand:SI 0 "fpr_operand" "=f")
- (unspec:SI [(match_operand:SI 1 "acc_operand" "a")
- (match_operand:SI 2 "fpr_or_int6_operand" "fI")
- (match_operand:QI 3 "accg_operand" "B")
- (match_dup 4)]
- UNSPEC_MCUT))]
- "TARGET_MEDIA"
- "operands[4] = GEN_INT (FRV_BUILTIN_MCUTSS);")
-
-(define_insn "*mcut"
- [(set (match_operand:SI 0 "fpr_operand" "=f")
- (unspec:SI [(match_operand:SI 1 "acc_operand" "a")
- (match_operand:SI 2 "fpr_or_int6_operand" "fI")
- (match_operand:QI 3 "accg_operand" "B")
- (match_operand:SI 4 "const_int_operand" "n")]
- UNSPEC_MCUT))]
- "TARGET_MEDIA"
- "*
-{
- switch (INTVAL (operands[4]))
- {
- default: break;
- case FRV_BUILTIN_MCUT: return \"mcut%i2 %1, %2, %0\";
- case FRV_BUILTIN_MCUTSS: return \"mcutss%i2 %1, %2, %0\";
- }
-
- fatal_insn (\"Bad media insn, mcut\", insn);
-}"
- [(set_attr "length" "4")
- (set_attr "type" "mcut")])
-
-;; Accumulator read: type "mrdacc"
-
-(define_insn "mrdacc"
- [(set (match_operand:SI 0 "fpr_operand" "=f")
- (unspec:SI [(match_operand:SI 1 "acc_operand" "a")] UNSPEC_MRDACC))]
- "TARGET_MEDIA"
- "mrdacc %1, %0"
- [(set_attr "length" "4")
- (set_attr "type" "mrdacc")])
-
-(define_insn "mrdaccg"
- [(set (match_operand:SI 0 "fpr_operand" "=f")
- (unspec:SI [(match_operand:QI 1 "accg_operand" "B")] UNSPEC_MRDACCG))]
- "TARGET_MEDIA"
- "mrdaccg %1, %0"
- [(set_attr "length" "4")
- (set_attr "type" "mrdacc")])
-
-;; Accumulator write: type "mwtacc"
-
-(define_insn "mwtacc"
- [(set (match_operand:SI 0 "acc_operand" "=a")
- (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")] UNSPEC_MWTACC))]
- "TARGET_MEDIA"
- "mwtacc %1, %0"
- [(set_attr "length" "4")
- (set_attr "type" "mwtacc")])
-
-(define_insn "mwtaccg"
- [(set (match_operand:QI 0 "accg_operand" "=B")
- (unspec:QI [(match_operand:SI 1 "fpr_operand" "f")] UNSPEC_MWTACCG))]
- "TARGET_MEDIA"
- "mwtaccg %1, %0"
- [(set_attr "length" "4")
- (set_attr "type" "mwtacc")])
-
-;; Trap: This one executes on the control unit, not the media units.
-
-(define_insn "mtrap"
- [(unspec_volatile [(const_int 0)] UNSPEC_MTRAP)]
- "TARGET_MEDIA"
- "mtrap"
- [(set_attr "length" "4")
- (set_attr "type" "trap")])
-
-;; Clear single accumulator: type "mclracc"
-
-(define_insn "mclracc_internal"
- [(set (match_operand:SI 0 "acc_operand" "=a")
- (unspec:SI [(const_int 0)] UNSPEC_MCLRACC))
- (set (match_operand:QI 1 "accg_operand" "=B")
- (unspec:QI [(const_int 0)] UNSPEC_MCLRACC))]
- "TARGET_MEDIA"
- "mclracc %0,#0"
- [(set_attr "length" "4")
- (set_attr "type" "mclracc")])
-
-(define_expand "mclracc"
- [(parallel [(set (match_operand:SI 0 "acc_operand" "=a")
- (unspec:SI [(const_int 0)] UNSPEC_MCLRACC))
- (set (match_dup 1)
- (unspec:QI [(const_int 0)] UNSPEC_MCLRACC))])]
- "TARGET_MEDIA"
- "
-{
- if (GET_CODE (operands[0]) != REG || !ACC_P (REGNO (operands[0])))
- FAIL;
-
- operands[1] = frv_matching_accg_for_acc (operands[0]);
-}")
-
-;; Clear all accumulators: type "mclracca"
-
-(define_insn "mclracca8_internal"
- [(set (match_operand:V4SI 0 "quad_acc_operand" "=b")
- (unspec:V4SI [(const_int 0)] UNSPEC_MCLRACCA))
- (set (match_operand:V4SI 1 "quad_acc_operand" "=b")
- (unspec:V4SI [(const_int 0)] UNSPEC_MCLRACCA))
- (set (match_operand:V4QI 2 "accg_operand" "=B")
- (unspec:V4QI [(const_int 0)] UNSPEC_MCLRACCA))
- (set (match_operand:V4QI 3 "accg_operand" "=B")
- (unspec:V4QI [(const_int 0)] UNSPEC_MCLRACCA))]
- "TARGET_MEDIA && TARGET_ACC_8"
- "mclracc acc0,#1"
- [(set_attr "length" "4")
- (set_attr "type" "mclracca")])
-
-(define_insn "mclracca4_internal"
- [(set (match_operand:V4SI 0 "quad_acc_operand" "=b")
- (unspec:V4SI [(const_int 0)] UNSPEC_MCLRACCA))
- (set (match_operand:V4QI 1 "accg_operand" "=B")
- (unspec:V4QI [(const_int 0)] UNSPEC_MCLRACCA))]
- "TARGET_MEDIA && TARGET_ACC_4"
- "mclracc acc0,#1"
- [(set_attr "length" "4")
- (set_attr "type" "mclracca")])
-
-(define_expand "mclracca8"
- [(parallel [(set (match_dup 0) (unspec:V4SI [(const_int 0)] UNSPEC_MCLRACCA))
- (set (match_dup 1) (unspec:V4SI [(const_int 0)] UNSPEC_MCLRACCA))
- (set (match_dup 2) (unspec:V4QI [(const_int 0)] UNSPEC_MCLRACCA))
- (set (match_dup 3) (unspec:V4QI [(const_int 0)] UNSPEC_MCLRACCA))])]
- "TARGET_MEDIA && TARGET_ACC_8"
- "
-{
- operands[0] = gen_rtx_REG (V4SImode, ACC_FIRST);
- operands[1] = gen_rtx_REG (V4SImode, ACC_FIRST + 4);
- operands[2] = gen_rtx_REG (V4QImode, ACCG_FIRST);
- operands[3] = gen_rtx_REG (V4QImode, ACCG_FIRST + 4);
-}")
-
-(define_expand "mclracca4"
- [(parallel [(set (match_dup 0) (unspec:V4SI [(const_int 0)] UNSPEC_MCLRACCA))
- (set (match_dup 1) (unspec:V4QI [(const_int 0)] UNSPEC_MCLRACCA))])]
- "TARGET_MEDIA && TARGET_ACC_4"
- "
-{
- operands[0] = gen_rtx_REG (V4SImode, ACC_FIRST);
- operands[1] = gen_rtx_REG (V4QImode, ACCG_FIRST);
-}")
-
-(define_insn "mcop1"
- [(set (match_operand:SI 0 "fpr_operand" "=f")
- (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")
- (match_operand:SI 2 "fpr_operand" "f")] UNSPEC_MCOP1))]
- "TARGET_MEDIA_REV1"
- "mcop1 %1, %2, %0"
- [(set_attr "length" "4")
-;; What is the class of the insn ???
- (set_attr "type" "multi")])
-
-(define_insn "mcop2"
- [(set (match_operand:SI 0 "fpr_operand" "=f")
- (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")
- (match_operand:SI 2 "fpr_operand" "f")] UNSPEC_MCOP2))]
- "TARGET_MEDIA_REV1"
- "mcop2 %1, %2, %0"
- [(set_attr "length" "4")
-;; What is the class of the insn ???
- (set_attr "type" "multi")])
-
-(define_insn "*mdunpackh_internal"
- [(set (match_operand:V4SI 0 "quad_fpr_operand" "=x")
- (unspec:V4SI [(match_operand:DI 1 "even_fpr_operand" "h")]
- UNSPEC_MDUNPACKH_INTERNAL))]
- "TARGET_MEDIA_REV1"
- "mdunpackh %1, %0"
- [(set_attr "length" "4")
- (set_attr "type" "mdunpackh")])
-
-(define_insn_and_split "mdunpackh"
- [(set (match_operand:V4SI 0 "memory_operand" "=o")
- (unspec:V4SI [(match_operand:DI 1 "even_fpr_operand" "h")]
- UNSPEC_MDUNPACKH))
- (clobber (match_scratch:V4SI 2 "=x"))]
- "TARGET_MEDIA_REV1"
- "#"
- "reload_completed"
- [(set (match_dup 2)
- (unspec:V4SI [(match_dup 1)] UNSPEC_MDUNPACKH_INTERNAL))
- (set (match_dup 3)
- (match_dup 4))
- (set (match_dup 5)
- (match_dup 6))]
- "
-{
- operands[3] = change_address (operands[0], DImode, NULL_RTX);
- operands[4] = gen_rtx_REG (DImode, REGNO (operands[2]));
- operands[5] = frv_index_memory (operands[0], DImode, 1);
- operands[6] = gen_rtx_REG (DImode, REGNO (operands[2])+2);
-}"
- [(set_attr "length" "20")
- (set_attr "type" "multi")])
-
-(define_insn "*mbtohe_internal"
- [(set (match_operand:V4SI 0 "quad_fpr_operand" "=x")
- (unspec:V4SI [(match_operand:SI 1 "fpr_operand" "f")]
- UNSPEC_MBTOHE_INTERNAL))]
- "TARGET_MEDIA_REV1"
- "mbtohe %1, %0"
- [(set_attr "length" "4")
- (set_attr "type" "mbhconve")])
-
-(define_insn_and_split "mbtohe"
- [(set (match_operand:V4SI 0 "memory_operand" "=o")
- (unspec:V4SI [(match_operand:SI 1 "fpr_operand" "f")]
- UNSPEC_MBTOHE))
- (clobber (match_scratch:V4SI 2 "=x"))]
- "TARGET_MEDIA_REV1"
- "#"
- "reload_completed"
- [(set (match_dup 2)
- (unspec:V4SI [(match_dup 1)] UNSPEC_MBTOHE_INTERNAL))
- (set (match_dup 3)
- (match_dup 4))
- (set (match_dup 5)
- (match_dup 6))]
- "
-{
- operands[3] = change_address (operands[0], DImode, NULL_RTX);
- operands[4] = gen_rtx_REG (DImode, REGNO (operands[2]));
- operands[5] = frv_index_memory (operands[0], DImode, 1);
- operands[6] = gen_rtx_REG (DImode, REGNO (operands[2])+2);
-}"
- [(set_attr "length" "20")
- (set_attr "type" "multi")])
-
-;; Quad product-sum (halfword) instructions only found on the FR400.
-;; type "mqmach"
-
-(define_expand "mqxmachs"
- [(parallel [(set (match_operand:V4SI 0 "quad_acc_operand" "")
- (unspec:V4SI [(match_dup 0)
- (match_operand:DI 1 "even_fpr_operand" "")
- (match_operand:DI 2 "even_fpr_operand" "")
- (match_operand:V4QI 3 "accg_operand" "")
- (match_dup 4)]
- UNSPEC_MQMACH2))
- (set (match_dup 3)
- (unspec:V4QI [(const_int 0)] UNSPEC_MQMACH2))])]
- "TARGET_MEDIA_REV2"
- "operands[4] = GEN_INT (FRV_BUILTIN_MQXMACHS);")
-
-(define_expand "mqxmacxhs"
- [(parallel [(set (match_operand:V4SI 0 "quad_acc_operand" "")
- (unspec:V4SI [(match_dup 0)
- (match_operand:DI 1 "even_fpr_operand" "")
- (match_operand:DI 2 "even_fpr_operand" "")
- (match_operand:V4QI 3 "accg_operand" "")
- (match_dup 4)]
- UNSPEC_MQMACH2))
- (set (match_dup 3)
- (unspec:V4QI [(const_int 0)] UNSPEC_MQMACH2))])]
- "TARGET_MEDIA_REV2"
- "operands[4] = GEN_INT (FRV_BUILTIN_MQXMACXHS);")
-
-(define_expand "mqmacxhs"
- [(parallel [(set (match_operand:V4SI 0 "quad_acc_operand" "")
- (unspec:V4SI [(match_dup 0)
- (match_operand:DI 1 "even_fpr_operand" "")
- (match_operand:DI 2 "even_fpr_operand" "")
- (match_operand:V4QI 3 "accg_operand" "")
- (match_dup 4)]
- UNSPEC_MQMACH2))
- (set (match_dup 3)
- (unspec:V4QI [(const_int 0)] UNSPEC_MQMACH2))])]
- "TARGET_MEDIA_REV2"
- "operands[4] = GEN_INT (FRV_BUILTIN_MQMACXHS);")
-
-(define_insn "*mqmach2"
- [(set (match_operand:V4SI 0 "quad_acc_operand" "+A")
- (unspec:V4SI [(match_dup 0)
- (match_operand:DI 1 "even_fpr_operand" "h")
- (match_operand:DI 2 "even_fpr_operand" "h")
- (match_operand:V4QI 3 "accg_operand" "+B")
- (match_operand:SI 4 "const_int_operand" "n")]
- UNSPEC_MQMACH2))
- (set (match_dup 3)
- (unspec:V4QI [(const_int 0)] UNSPEC_MQMACH2))]
- "TARGET_MEDIA_REV2"
- "*
-{
- switch (INTVAL (operands[4]))
- {
- default: break;
- case FRV_BUILTIN_MQXMACHS: return \"mqxmachs %1, %2, %0\";
- case FRV_BUILTIN_MQXMACXHS: return \"mqxmacxhs %1, %2, %0\";
- case FRV_BUILTIN_MQMACXHS: return \"mqmacxhs %1, %2, %0\";
- }
-
- fatal_insn (\"Bad media insn, mqmach2\", insn);
-}"
- [(set_attr "length" "4")
- (set_attr "type" "mqmach")])
-
-;; Accumulator addition/subtraction: type "maddacc"
-
-(define_expand "maddaccs"
- [(parallel [(set (match_operand:DI 0 "even_acc_operand" "")
- (unspec:DI [(match_dup 0)
- (match_operand:DI 1 "even_acc_operand" "")]
- UNSPEC_MADDACC))
- (set (match_operand:HI 2 "accg_operand" "")
- (unspec:HI [(match_dup 2)
- (match_operand:HI 3 "accg_operand" "")
- (match_dup 4)]
- UNSPEC_MADDACC))])]
- "TARGET_MEDIA_REV2"
- "operands[4] = GEN_INT (FRV_BUILTIN_MADDACCS);")
-
-(define_expand "msubaccs"
- [(parallel [(set (match_operand:DI 0 "even_acc_operand" "")
- (unspec:DI [(match_dup 0)
- (match_operand:DI 1 "even_acc_operand" "")]
- UNSPEC_MADDACC))
- (set (match_operand:HI 2 "accg_operand" "")
- (unspec:HI [(match_dup 2)
- (match_operand:HI 3 "accg_operand" "")
- (match_dup 4)]
- UNSPEC_MADDACC))])]
- "TARGET_MEDIA_REV2"
- "operands[4] = GEN_INT (FRV_BUILTIN_MSUBACCS);")
-
-(define_expand "masaccs"
- [(parallel [(set (match_operand:DI 0 "even_acc_operand" "")
- (unspec:DI [(match_dup 0)
- (match_operand:DI 1 "even_acc_operand" "")]
- UNSPEC_MADDACC))
- (set (match_operand:HI 2 "accg_operand" "")
- (unspec:HI [(match_dup 2)
- (match_operand:HI 3 "accg_operand" "")
- (match_dup 4)]
- UNSPEC_MADDACC))])]
- "TARGET_MEDIA_REV2"
- "operands[4] = GEN_INT (FRV_BUILTIN_MASACCS);")
-
-(define_insn "*maddacc"
- [(set (match_operand:DI 0 "even_acc_operand" "+b")
- (unspec:DI [(match_dup 0)
- (match_operand:DI 1 "even_acc_operand" "b")]
- UNSPEC_MADDACC))
- (set (match_operand:HI 2 "accg_operand" "+B")
- (unspec:HI [(match_dup 2)
- (match_operand:HI 3 "accg_operand" "B")
- (match_operand:SI 4 "const_int_operand" "n")]
- UNSPEC_MADDACC))]
- "TARGET_MEDIA_REV2"
- "*
-{
- switch (INTVAL (operands[4]))
- {
- default: break;
- case FRV_BUILTIN_MADDACCS: return \"maddaccs %1, %0\";
- case FRV_BUILTIN_MSUBACCS: return \"msubaccs %1, %0\";
- case FRV_BUILTIN_MASACCS: return \"masaccs %1, %0\";
- }
-
- fatal_insn (\"Bad media insn, maddacc\", insn);
-}"
- [(set_attr "length" "4")
- (set_attr "type" "maddacc")])
-
-;; Dual accumulator addition/subtraction: type "mdaddacc"
-
-(define_expand "mdaddaccs"
- [(parallel [(set (match_operand:V4SI 0 "quad_acc_operand" "")
- (unspec:V4SI [(match_dup 0)
- (match_operand:V4SI 1 "quad_acc_operand" "")]
- UNSPEC_MDADDACC))
- (set (match_operand:V4QI 2 "accg_operand" "")
- (unspec:V4QI [(match_dup 2)
- (match_operand:V4QI 3 "accg_operand" "")
- (match_dup 4)]
- UNSPEC_MDADDACC))])]
- "TARGET_MEDIA_REV2"
- "operands[4] = GEN_INT (FRV_BUILTIN_MDADDACCS);")
-
-(define_expand "mdsubaccs"
- [(parallel [(set (match_operand:V4SI 0 "quad_acc_operand" "")
- (unspec:V4SI [(match_dup 0)
- (match_operand:V4SI 1 "quad_acc_operand" "")]
- UNSPEC_MDADDACC))
- (set (match_operand:V4QI 2 "accg_operand" "")
- (unspec:V4QI [(match_dup 2)
- (match_operand:V4QI 3 "accg_operand" "")
- (match_dup 4)]
- UNSPEC_MDADDACC))])]
- "TARGET_MEDIA_REV2"
- "operands[4] = GEN_INT (FRV_BUILTIN_MDSUBACCS);")
-
-(define_expand "mdasaccs"
- [(parallel [(set (match_operand:V4SI 0 "quad_acc_operand" "")
- (unspec:V4SI [(match_dup 0)
- (match_operand:V4SI 1 "quad_acc_operand" "")]
- UNSPEC_MDADDACC))
- (set (match_operand:V4QI 2 "accg_operand" "")
- (unspec:V4QI [(match_dup 2)
- (match_operand:V4QI 3 "accg_operand" "")
- (match_dup 4)]
- UNSPEC_MDADDACC))])]
- "TARGET_MEDIA_REV2"
- "operands[4] = GEN_INT (FRV_BUILTIN_MDASACCS);")
-
-(define_insn "*mdaddacc"
- [(set (match_operand:V4SI 0 "quad_acc_operand" "+A")
- (unspec:V4SI [(match_dup 0)
- (match_operand:V4SI 1 "quad_acc_operand" "A")]
- UNSPEC_MDADDACC))
- (set (match_operand:V4QI 2 "accg_operand" "+B")
- (unspec:V4QI [(match_dup 2)
- (match_operand:V4QI 3 "accg_operand" "B")
- (match_operand:SI 4 "const_int_operand" "n")]
- UNSPEC_MDADDACC))]
- "TARGET_MEDIA_REV2"
- "*
-{
- switch (INTVAL (operands[4]))
- {
- default: break;
- case FRV_BUILTIN_MDADDACCS: return \"mdaddaccs %1, %0\";
- case FRV_BUILTIN_MDSUBACCS: return \"mdsubaccs %1, %0\";
- case FRV_BUILTIN_MDASACCS: return \"mdasaccs %1, %0\";
- }
-
- fatal_insn (\"Bad media insn, mdaddacc\", insn);
-}"
- [(set_attr "length" "4")
- (set_attr "type" "mdaddacc")])
-
-;; Dual absolute (halfword): type "mabsh"
-
-(define_insn "mabshs"
- [(set (match_operand:SI 0 "fpr_operand" "=f")
- (unspec:SI [(match_operand:SI 1 "fpr_operand" "f")] UNSPEC_MABSHS))]
- "TARGET_MEDIA_REV2"
- "mabshs %1, %0"
- [(set_attr "length" "4")
- (set_attr "type" "mabsh")])
-
-;; Dual rotate: type "mdrot"
-
-(define_insn "mdrotli"
- [(set (match_operand:DI 0 "even_fpr_operand" "=h")
- (unspec:DI [(match_operand:DI 1 "even_fpr_operand" "h")
- (match_operand:SI 2 "uint5_operand" "I")]
- UNSPEC_MDROTLI))]
- "TARGET_MEDIA_REV2"
- "mdrotli %1, %2, %0"
- [(set_attr "length" "4")
- (set_attr "type" "mdrot")])
-
-;; Dual coupling (concatenation): type "mcpl"
-
-(define_insn "mcplhi"
- [(set (match_operand:SI 0 "fpr_operand" "=f")
- (unspec:SI [(match_operand:DI 1 "fpr_operand" "h")
- (match_operand:SI 2 "uint4_operand" "I")]
- UNSPEC_MCPLHI))]
- "TARGET_MEDIA_REV2"
- "mcplhi %1, %2, %0"
- [(set_attr "length" "4")
- (set_attr "type" "mcpl")])
-
-(define_insn "mcpli"
- [(set (match_operand:SI 0 "fpr_operand" "=f")
- (unspec:SI [(match_operand:DI 1 "fpr_operand" "h")
- (match_operand:SI 2 "uint5_operand" "I")]
- UNSPEC_MCPLI))]
- "TARGET_MEDIA_REV2"
- "mcpli %1, %2, %0"
- [(set_attr "length" "4")
- (set_attr "type" "mcpl")])
-
-;; Dual cut: type "mdcut"
-
-(define_insn "mdcutssi"
- [(set (match_operand:DI 0 "even_fpr_operand" "=h")
- (unspec:DI [(match_operand:DI 1 "even_acc_operand" "b")
- (match_operand:SI 2 "int6_operand" "I")
- (match_operand:HI 3 "accg_operand" "B")]
- UNSPEC_MDCUTSSI))]
- "TARGET_MEDIA_REV2"
- "mdcutssi %1, %2, %0"
- [(set_attr "length" "4")
- (set_attr "type" "mdcut")])
-
-;; Quad saturate (halfword): type "mqsath"
-
-(define_insn "mqsaths"
- [(set (match_operand:DI 0 "even_fpr_operand" "=h")
- (unspec:DI [(match_operand:DI 1 "even_fpr_operand" "h")
- (match_operand:DI 2 "even_fpr_operand" "h")]
- UNSPEC_MQSATHS))]
- "TARGET_MEDIA_REV2"
- "mqsaths %1, %2, %0"
- [(set_attr "length" "4")
- (set_attr "type" "mqsath")])
-
-;; Set hi/lo instrctions: type "mset"
-
-(define_insn "mhsetlos"
- [(set (match_operand:SI 0 "fpr_operand" "=f")
- (unspec:SI [(match_operand:SI 1 "fpr_operand" "0")
- (match_operand:SI 2 "int12_operand" "NOP")]
- UNSPEC_MHSETLOS))]
- "TARGET_MEDIA_REV2"
- "mhsetlos %2, %0"
- [(set_attr "length" "4")
- (set_attr "type" "mset")])
-
-(define_insn "mhsetloh"
- [(set (match_operand:SI 0 "fpr_operand" "=f")
- (unspec:SI [(match_operand:SI 1 "fpr_operand" "0")
- (match_operand:SI 2 "int5_operand" "I")]
- UNSPEC_MHSETLOH))]
- "TARGET_MEDIA_REV2"
- "mhsetloh %2, %0"
- [(set_attr "length" "4")
- (set_attr "type" "mset")])
-
-(define_insn "mhsethis"
- [(set (match_operand:SI 0 "fpr_operand" "=f")
- (unspec:SI [(match_operand:SI 1 "fpr_operand" "0")
- (match_operand:SI 2 "int12_operand" "NOP")]
- UNSPEC_MHSETHIS))]
- "TARGET_MEDIA_REV2"
- "mhsethis %2, %0"
- [(set_attr "length" "4")
- (set_attr "type" "mset")])
-
-(define_insn "mhsethih"
- [(set (match_operand:SI 0 "fpr_operand" "=f")
- (unspec:SI [(match_operand:SI 1 "fpr_operand" "0")
- (match_operand:SI 2 "int5_operand" "I")]
- UNSPEC_MHSETHIH))]
- "TARGET_MEDIA_REV2"
- "mhsethih %2, %0"
- [(set_attr "length" "4")
- (set_attr "type" "mset")])
-
-(define_insn "mhdsets"
- [(set (match_operand:SI 0 "fpr_operand" "=f")
- (unspec:SI [(match_operand:SI 1 "int12_operand" "NOP")]
- UNSPEC_MHDSETS))]
- "TARGET_MEDIA_REV2"
- "mhdsets %1, %0"
- [(set_attr "length" "4")
- (set_attr "type" "mset")])
-
-(define_insn "mhdseth"
- [(set (match_operand:SI 0 "fpr_operand" "=f")
- (unspec:SI [(match_operand:SI 1 "fpr_operand" "0")
- (match_operand:SI 2 "int5_operand" "I")]
- UNSPEC_MHDSETH))]
- "TARGET_MEDIA_REV2"
- "mhdseth %2, %0"
- [(set_attr "length" "4")
- (set_attr "type" "mset")])
diff --git a/gcc/config/frv/frvbegin.c b/gcc/config/frv/frvbegin.c
deleted file mode 100644
index a5f5b1fa93e..00000000000
--- a/gcc/config/frv/frvbegin.c
+++ /dev/null
@@ -1,150 +0,0 @@
-/* Frv initialization file linked before all user modules
- Copyright (C) 1999, 2000 Free Software Foundation, Inc.
- Contributed by Red Hat, Inc.
-
- This file is part of GNU CC.
-
- GNU CC is free software ; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation * either version 2, or (at your option)
- any later version.
-
- GNU CC is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY ; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with GNU CC; see the file COPYING. If not, write to
- the Free Software Foundation, 59 Temple Place - Suite 330,
- Boston, MA 02111-1307, USA.
-
- This file was originally taken from the file crtstuff.c in the
- main compiler directory, and simplified. */
-
-#include "defaults.h"
-#include <stddef.h>
-#include "unwind-dw2-fde.h"
-#include "gbl-ctors.h"
-
-/* Declare a pointer to void function type. */
-#define STATIC static
-
-#ifdef __FRV_UNDERSCORE__
-#define UNDERSCORE "_"
-#else
-#define UNDERSCORE ""
-#endif
-
-#define INIT_SECTION_NEG_ONE(SECTION, FLAGS, NAME) \
-__asm__ (".section " SECTION "," FLAGS "\n\t" \
- ".globl " UNDERSCORE NAME "\n\t" \
- ".type " UNDERSCORE NAME ",@object\n\t" \
- ".p2align 2\n" \
- UNDERSCORE NAME ":\n\t" \
- ".word -1\n\t" \
- ".previous")
-
-#define INIT_SECTION(SECTION, FLAGS, NAME) \
-__asm__ (".section " SECTION "," FLAGS "\n\t" \
- ".globl " UNDERSCORE NAME "\n\t" \
- ".type " UNDERSCORE NAME ",@object\n\t" \
- ".p2align 2\n" \
- UNDERSCORE NAME ":\n\t" \
- ".previous")
-
-/* Beginning of .ctor/.dtor sections that provides a list of constructors and
- destructors to run. */
-
-INIT_SECTION_NEG_ONE (".ctors", "\"aw\"", "__CTOR_LIST__");
-INIT_SECTION_NEG_ONE (".dtors", "\"aw\"", "__DTOR_LIST__");
-
-/* Beginning of .eh_frame section that provides all of the exception handling
- tables. */
-
-INIT_SECTION (".eh_frame", "\"aw\"", "__EH_FRAME_BEGIN__");
-
-/* Beginning of .rofixup section that provides a list of pointers that we
- need to adjust. */
-
-INIT_SECTION (".rofixup", "\"a\"", "__ROFIXUP_LIST__");
-
-extern void __frv_register_eh(void) __attribute__((__constructor__));
-extern void __frv_deregister_eh(void) __attribute__((__destructor__));
-
-extern func_ptr __EH_FRAME_BEGIN__[];
-
-/* Register the exeception handling table as the first constructor */
-void
-__frv_register_eh (void)
-{
- static struct object object;
- if (__register_frame_info)
- __register_frame_info (__EH_FRAME_BEGIN__, &object);
-}
-
-/* Note, do not declare __{,de}register_frame_info weak as it seems
- to interfere with the pic support. */
-
-/* Unregister the exeception handling table as a deconstructor */
-void
-__frv_deregister_eh (void)
-{
- static int completed = 0;
-
- if (completed)
- return;
-
- if (__deregister_frame_info)
- __deregister_frame_info (__EH_FRAME_BEGIN__);
-
- completed = 1;
-}
-
-/* Run the global destructors */
-void
-__do_global_dtors ()
-{
- static func_ptr *p = __DTOR_LIST__ + 1;
- while (*p)
- {
- p++;
- (*(p-1)) ();
- }
-}
-
-/* Run the global constructors */
-void
-__do_global_ctors ()
-{
- unsigned long nptrs = (unsigned long) __CTOR_LIST__[0];
- unsigned i;
-
- if (nptrs == (unsigned long)-1)
- for (nptrs = 0; __CTOR_LIST__[nptrs + 1] != 0; nptrs++);
-
- for (i = nptrs; i >= 1; i--)
- __CTOR_LIST__[i] ();
-
- atexit (__do_global_dtors);
-}
-
-/* Subroutine called automatically by `main'.
- Compiling a global function named `main'
- produces an automatic call to this function at the beginning.
-
- For many systems, this routine calls __do_global_ctors.
- For systems which support a .init section we use the .init section
- to run __do_global_ctors, so we need not do anything here. */
-
-void
-__main ()
-{
- /* Support recursive calls to `main': run initializers just once. */
- static int initialized;
- if (! initialized)
- {
- initialized = 1;
- __do_global_ctors ();
- }
-}
diff --git a/gcc/config/frv/frvend.c b/gcc/config/frv/frvend.c
deleted file mode 100644
index f1635cc1049..00000000000
--- a/gcc/config/frv/frvend.c
+++ /dev/null
@@ -1,63 +0,0 @@
-/* Frv initialization file linked after all user modules
- Copyright (C) 1999, 2000 Free Software Foundation, Inc.
- Contributed by Red Hat, Inc.
-
- This file is part of GNU CC.
-
- GNU CC is free software ; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation * either version 2, or (at your option)
- any later version.
-
- GNU CC is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY ; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with GNU CC; see the file COPYING. If not, write to
- the Free Software Foundation, 59 Temple Place - Suite 330,
- Boston, MA 02111-1307, USA. */
-
-#include "defaults.h"
-#include <stddef.h>
-#include "unwind-dw2-fde.h"
-
-#ifdef __FRV_UNDERSCORE__
-#define UNDERSCORE "_"
-#else
-#define UNDERSCORE ""
-#endif
-
-#define FINI_SECTION_ZERO(SECTION, FLAGS, NAME) \
-__asm__ (".section " SECTION "," FLAGS "\n\t" \
- ".globl " UNDERSCORE NAME "\n\t" \
- ".type " UNDERSCORE NAME ",@object\n\t" \
- ".p2align 2\n" \
- UNDERSCORE NAME ":\n\t" \
- ".word 0\n\t" \
- ".previous")
-
-#define FINI_SECTION(SECTION, FLAGS, NAME) \
-__asm__ (".section " SECTION "," FLAGS "\n\t" \
- ".globl " UNDERSCORE NAME "\n\t" \
- ".type " UNDERSCORE NAME ",@object\n\t" \
- ".p2align 2\n" \
- UNDERSCORE NAME ":\n\t" \
- ".previous")
-
-/* End of .ctor/.dtor sections that provides a list of constructors and
- destructors to run. */
-
-FINI_SECTION_ZERO (".ctors", "\"aw\"", "__CTOR_END__");
-FINI_SECTION_ZERO (".dtors", "\"aw\"", "__DTOR_END__");
-
-/* End of .eh_frame section that provides all of the exception handling
- tables. */
-
-FINI_SECTION_ZERO (".eh_frame", "\"aw\"", "__FRAME_END__");
-
-/* End of .rofixup section that provides a list of pointers that we
- need to adjust. */
-
-FINI_SECTION (".rofixup", "\"a\"", "__ROFIXUP_END__");
diff --git a/gcc/config/frv/lib1funcs.asm b/gcc/config/frv/lib1funcs.asm
deleted file mode 100644
index 18a814235e0..00000000000
--- a/gcc/config/frv/lib1funcs.asm
+++ /dev/null
@@ -1,275 +0,0 @@
-/* Library functions.
- Copyright (C) 2000 Free Software Foundation, Inc.
- Contributed by Red Hat, Inc.
-
- This file is part of GNU CC.
-
- GNU CC is free software ; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation * either version 2, or (at your option)
- any later version.
-
- GNU CC is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY ; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with GNU CC; see the file COPYING. If not, write to
- the Free Software Foundation, 59 Temple Place - Suite 330,
- Boston, MA 02111-1307, USA. */
-
-#include <frv-asm.h>
-
-
-#ifdef L_cmpll
-/* icc0 = __cmpll (long long a, long long b) */
-
- .file "_cmpll.s"
- .globl EXT(__cmpll)
- .type EXT(__cmpll),@function
- .text
- .p2align 4
-EXT(__cmpll):
- cmp gr8, gr10, icc0
- ckeq icc0, cc4
- P(ccmp) gr9, gr11, cc4, 1
- ret
-.Lend:
- .size EXT(__cmpll),.Lend-EXT(__cmpll)
-#endif /* L_cmpll */
-
-#ifdef L_cmpf
-/* icc0 = __cmpf (float a, float b) */
-/* Note, because this function returns the result in ICC0, it means it can't
- handle NaNs. */
-
- .file "_cmpf.s"
- .globl EXT(__cmpf)
- .type EXT(__cmpf),@function
- .text
- .p2align 4
-EXT(__cmpf):
-#ifdef __FRV_HARD_FLOAT__ /* floating point instructions available */
- movgf gr8, fr0
- P(movgf) gr9, fr1
- setlos #1, gr8
- fcmps fr0, fr1, fcc0
- P(fcklt) fcc0, cc0
- fckeq fcc0, cc1
- csub gr0, gr8, gr8, cc0, 1
- cmov gr0, gr8, cc1, 1
- cmpi gr8, 0, icc0
- ret
-#else /* no floating point instructions available */
- movsg lr, gr4
- addi sp, #-16, sp
- sti gr4, @(sp, 8)
- st fp, @(sp, gr0)
- mov sp, fp
- call EXT(__cmpsf2)
- cmpi gr8, #0, icc0
- ldi @(sp, 8), gr4
- movgs gr4, lr
- ld @(sp,gr0), fp
- addi sp, #16, sp
- ret
-#endif
-.Lend:
- .size EXT(__cmpf),.Lend-EXT(__cmpf)
-#endif
-
-#ifdef L_cmpd
-/* icc0 = __cmpd (double a, double b) */
-/* Note, because this function returns the result in ICC0, it means it can't
- handle NaNs. */
-
- .file "_cmpd.s"
- .globl EXT(__cmpd)
- .type EXT(__cmpd),@function
- .text
- .p2align 4
-EXT(__cmpd):
- movsg lr, gr4
- addi sp, #-16, sp
- sti gr4, @(sp, 8)
- st fp, @(sp, gr0)
- mov sp, fp
- call EXT(__cmpdf2)
- cmpi gr8, #0, icc0
- ldi @(sp, 8), gr4
- movgs gr4, lr
- ld @(sp,gr0), fp
- addi sp, #16, sp
- ret
-.Lend:
- .size EXT(__cmpd),.Lend-EXT(__cmpd)
-#endif
-
-#ifdef L_addll
-/* gr8,gr9 = __addll (long long a, long long b) */
-/* Note, gcc will never call this function, but it is present in case an
- ABI program calls it. */
-
- .file "_addll.s"
- .globl EXT(__addll)
- .type EXT(__addll),@function
- .text
- .p2align
-EXT(__addll):
- addcc gr9, gr11, gr9, icc0
- addx gr8, gr10, gr8, icc0
- ret
-.Lend:
- .size EXT(__addll),.Lend-EXT(__addll)
-#endif
-
-#ifdef L_subll
-/* gr8,gr9 = __subll (long long a, long long b) */
-/* Note, gcc will never call this function, but it is present in case an
- ABI program calls it. */
-
- .file "_subll.s"
- .globl EXT(__subll)
- .type EXT(__subll),@function
- .text
- .p2align 4
-EXT(__subll):
- subcc gr9, gr11, gr9, icc0
- subx gr8, gr10, gr8, icc0
- ret
-.Lend:
- .size EXT(__subll),.Lend-EXT(__subll)
-#endif
-
-#ifdef L_andll
-/* gr8,gr9 = __andll (long long a, long long b) */
-/* Note, gcc will never call this function, but it is present in case an
- ABI program calls it. */
-
- .file "_andll.s"
- .globl EXT(__andll)
- .type EXT(__andll),@function
- .text
- .p2align 4
-EXT(__andll):
- P(and) gr9, gr11, gr9
- P2(and) gr8, gr10, gr8
- ret
-.Lend:
- .size EXT(__andll),.Lend-EXT(__andll)
-#endif
-
-#ifdef L_orll
-/* gr8,gr9 = __orll (long long a, long long b) */
-/* Note, gcc will never call this function, but it is present in case an
- ABI program calls it. */
-
- .file "_orll.s"
- .globl EXT(__orll)
- .type EXT(__orll),@function
- .text
- .p2align 4
-EXT(__orll):
- P(or) gr9, gr11, gr9
- P2(or) gr8, gr10, gr8
- ret
-.Lend:
- .size EXT(__orll),.Lend-EXT(__orll)
-#endif
-
-#ifdef L_xorll
-/* gr8,gr9 = __xorll (long long a, long long b) */
-/* Note, gcc will never call this function, but it is present in case an
- ABI program calls it. */
-
- .file "_xorll.s"
- .globl EXT(__xorll)
- .type EXT(__xorll),@function
- .text
- .p2align 4
-EXT(__xorll):
- P(xor) gr9, gr11, gr9
- P2(xor) gr8, gr10, gr8
- ret
-.Lend:
- .size EXT(__xorll),.Lend-EXT(__xorll)
-#endif
-
-#ifdef L_notll
-/* gr8,gr9 = __notll (long long a) */
-/* Note, gcc will never call this function, but it is present in case an
- ABI program calls it. */
-
- .file "_notll.s"
- .globl EXT(__notll)
- .type EXT(__notll),@function
- .text
- .p2align 4
-EXT(__notll):
- P(not) gr9, gr9
- P2(not) gr8, gr8
- ret
-.Lend:
- .size EXT(__notll),.Lend-EXT(__notll)
-#endif
-
-#ifdef L_cmov
-/* (void) __cmov (char *dest, const char *src, size_t len) */
-/*
- * void __cmov (char *dest, const char *src, size_t len)
- * {
- * size_t i;
- *
- * if (dest < src || dest > src+len)
- * {
- * for (i = 0; i < len; i++)
- * dest[i] = src[i];
- * }
- * else
- * {
- * while (len-- > 0)
- * dest[len] = src[len];
- * }
- * }
- */
-
- .file "_cmov.s"
- .globl EXT(__cmov)
- .type EXT(__cmov),@function
- .text
- .p2align 4
-EXT(__cmov):
- P(cmp) gr8, gr9, icc0
- add gr9, gr10, gr4
- P(cmp) gr8, gr4, icc1
- bc icc0, 0, .Lfwd
- bls icc1, 0, .Lback
-.Lfwd:
- /* move bytes in a forward direction */
- P(setlos) #0, gr5
- cmp gr0, gr10, icc0
- P(subi) gr9, #1, gr9
- P2(subi) gr8, #1, gr8
- bnc icc0, 0, .Lret
-.Lfloop:
- /* forward byte move loop */
- addi gr5, #1, gr5
- P(ldsb) @(gr9, gr5), gr4
- cmp gr5, gr10, icc0
- P(stb) gr4, @(gr8, gr5)
- bc icc0, 0, .Lfloop
- ret
-.Lbloop:
- /* backward byte move loop body */
- ldsb @(gr9,gr10),gr4
- stb gr4,@(gr8,gr10)
-.Lback:
- P(cmpi) gr10, #0, icc0
- addi gr10, #-1, gr10
- bne icc0, 0, .Lbloop
-.Lret:
- ret
-.Lend:
- .size EXT(__cmov),.Lend-EXT(__cmov)
-#endif
diff --git a/gcc/config/frv/modi.c b/gcc/config/frv/modi.c
deleted file mode 100644
index d5a91fc0f55..00000000000
--- a/gcc/config/frv/modi.c
+++ /dev/null
@@ -1,4 +0,0 @@
-int __modi (int a, int b)
-{
- return a % b;
-}
diff --git a/gcc/config/frv/t-frv b/gcc/config/frv/t-frv
deleted file mode 100644
index a92f63bb8da..00000000000
--- a/gcc/config/frv/t-frv
+++ /dev/null
@@ -1,93 +0,0 @@
-# Name of assembly file containing libgcc1 functions.
-# This entry must be present, but it can be empty if the target does
-# not need any assembler functions to support its code generation.
-#
-# Alternatively if assembler functions *are* needed then define the
-# entries below:
-CROSS_LIBGCC1 = libgcc1-asm.a
-LIB1ASMSRC = frv/lib1funcs.asm
-LIB1ASMFUNCS = _cmpll _cmpf _cmpd _addll _subll _andll _orll _xorll _notll _cmov
-LIB2FUNCS_EXTRA = cmovh.c cmovw.c cmovd.c modi.c umodi.c uitof.c uitod.c ulltof.c ulltod.c
-
-# We want fine grained libraries, so use the new code to build the
-# floating point emulation libraries.
-FPBIT = fp-bit.c
-DPBIT = dp-bit.c
-
-# If any special flags are necessary when building libgcc2 put them here.
-TARGET_LIBGCC2_CFLAGS =
-
-fp-bit.c: $(srcdir)/config/fp-bit.c
- echo '#define FLOAT' > fp-bit.c
- echo '#include "frv/frv-abi.h"' >> fp-bit.c
- cat $(srcdir)/config/fp-bit.c >> fp-bit.c
-
-dp-bit.c: $(srcdir)/config/fp-bit.c
- echo '#include "frv/frv-abi.h"' > dp-bit.c
- cat $(srcdir)/config/fp-bit.c >> dp-bit.c
-
-cmovh.c: $(srcdir)/config/frv/cmovh.c
- $(LN_S) $(srcdir)/config/frv/cmovh.c .
-
-cmovw.c: $(srcdir)/config/frv/cmovw.c
- $(LN_S) $(srcdir)/config/frv/cmovw.c .
-
-cmovd.c: $(srcdir)/config/frv/cmovd.c
- $(LN_S) $(srcdir)/config/frv/cmovd.c .
-
-modi.c: $(srcdir)/config/frv/modi.c
- $(LN_S) $(srcdir)/config/frv/modi.c .
-
-umodi.c: $(srcdir)/config/frv/umodi.c
- $(LN_S) $(srcdir)/config/frv/umodi.c .
-
-uitof.c: $(srcdir)/config/frv/uitof.c
- $(LN_S) $(srcdir)/config/frv/uitof.c .
-
-uitod.c: $(srcdir)/config/frv/uitod.c
- $(LN_S) $(srcdir)/config/frv/uitod.c .
-
-ulltof.c: $(srcdir)/config/frv/ulltof.c
- $(LN_S) $(srcdir)/config/frv/ulltof.c .
-
-ulltod.c: $(srcdir)/config/frv/ulltod.c
- $(LN_S) $(srcdir)/config/frv/ulltod.c .
-
-# Build frvbegin.o and frvend.o
-EXTRA_MULTILIB_PARTS=frvbegin.o frvend.o
-
-# Compile two additional files that are linked with every program
-# linked using GCC on systems using COFF or ELF, for the sake of C++
-# constructors.
-
-FRVSTUFF_CFLAGS = $(TARGET_LIBGCC2_CFLAGS)
-
-$(T)frvbegin$(objext): $(srcdir)/config/frv/frvbegin.c $(GCC_PASSES) \
- $(CONFIG_H) defaults.h unwind-dw2-fde.h gbl-ctors.h
- $(GCC_FOR_TARGET) $(GCC_CFLAGS) $(INCLUDES) $(MULTILIB_CFLAGS) $(FRVSTUFF_CFLAGS) \
- -c $(srcdir)/config/frv/frvbegin.c -o $(T)frvbegin$(objext)
-
-$(T)frvend$(objext): $(srcdir)/config/frv/frvend.c $(GCC_PASSES) \
- $(CONFIG_H) defaults.h unwind-dw2-fde.h gbl-ctors.h
- $(GCC_FOR_TARGET) $(GCC_CFLAGS) $(INCLUDES) $(MULTILIB_CFLAGS) $(FRVSTUFF_CFLAGS) \
- -c $(srcdir)/config/frv/frvend.c -o $(T)frvend$(objext)
-
-# Enable the following if multilibs are needed.
-# See gcc/genmultilib, gcc/gcc.texi and gcc/tm.texi for a
-# description of the options and their values.
-#
-#MULTILIB_OPTIONS = mcpu=fr500/mcpu=tomcat/mcpu=simple/mcpu=frv msoft-float mdword/mno-dword
-#MULTILIB_DIRNAMES = fr500 tomcat simple frv nof dw no-dw
-#MULTILIB_MATCHES = mcpu?simple=mcpu?fr300 mno-double=mcpu?fr500 mcpu?frv=mdouble
-#MULTILIB_EXCEPTIONS = *mcpu=simple/*msoft-float* *mcpu=frv/*msoft-float*
-#MULTILIB_EXTRA_OPTS = mlibrary-pic
-
-MULTILIB_OPTIONS = mcpu=frv/mcpu=fr400/mcpu=simple mno-pack mlibrary-pic
-MULTILIB_DIRNAMES = frv fr400 simple unpacked pic
-MULTILIB_MATCHES = mcpu?simple=mcpu?fr300 mlibrary-pic=fpic mlibrary-pic=fPIC
-MULTILIB_EXCEPTIONS = mcpu=frv/mno-pack* mcpu=simple/mno-pack*
-
-LIBGCC = stmp-multilib
-INSTALL_LIBGCC = install-multilib
-
-EXTRA_HEADERS = $(srcdir)/config/frv/frv-asm.h $(srcdir)/config/frv/media.h
diff --git a/gcc/config/frv/uitod.c b/gcc/config/frv/uitod.c
deleted file mode 100644
index 14290ab6b04..00000000000
--- a/gcc/config/frv/uitod.c
+++ /dev/null
@@ -1,4 +0,0 @@
-double __uitod (unsigned int a)
-{
- return a;
-}
diff --git a/gcc/config/frv/uitof.c b/gcc/config/frv/uitof.c
deleted file mode 100644
index 059bc7c7417..00000000000
--- a/gcc/config/frv/uitof.c
+++ /dev/null
@@ -1,4 +0,0 @@
-float __uitof (unsigned int a)
-{
- return a;
-}
diff --git a/gcc/config/frv/ulltod.c b/gcc/config/frv/ulltod.c
deleted file mode 100644
index e6bee12081f..00000000000
--- a/gcc/config/frv/ulltod.c
+++ /dev/null
@@ -1,4 +0,0 @@
-double __ulltod (unsigned long long a)
-{
- return a;
-}
diff --git a/gcc/config/frv/ulltof.c b/gcc/config/frv/ulltof.c
deleted file mode 100644
index 29cdfd4d2a1..00000000000
--- a/gcc/config/frv/ulltof.c
+++ /dev/null
@@ -1,4 +0,0 @@
-float __ulltof (unsigned long long a)
-{
- return a;
-}
diff --git a/gcc/config/frv/umodi.c b/gcc/config/frv/umodi.c
deleted file mode 100644
index 4ffe5ad8132..00000000000
--- a/gcc/config/frv/umodi.c
+++ /dev/null
@@ -1,4 +0,0 @@
-unsigned int __umodi (unsigned int a, unsigned int b)
-{
- return a % b;
-}
diff --git a/gcc/config/frv/xm-frv.h b/gcc/config/frv/xm-frv.h
deleted file mode 100644
index 8f2ed66ccfc..00000000000
--- a/gcc/config/frv/xm-frv.h
+++ /dev/null
@@ -1,38 +0,0 @@
-/* Definitions for Frv target
- Copyright (C) 1999 Free Software Foundation, Inc.
- Contributed by Red Hat, Inc.
-
-This file is part of GNU CC.
-
-GNU CC is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2, or (at your option)
-any later version.
-
-GNU CC is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GNU CC; see the file COPYING. If not, write to
-the Free Software Foundation, 59 Temple Place - Suite 330,
-Boston, MA 02111-1307, USA. */
-
-/* #defines that need visibility everywhere. */
-#define FALSE 0
-#define TRUE 1
-
-/* A C expression for the status code to be returned when the compiler exits
- after serious errors. */
-#define FATAL_EXIT_CODE 33
-
-/* A C expression for the status code to be returned when the compiler exits
- without serious errors. */
-#define SUCCESS_EXIT_CODE 0
-
-/* target machine dependencies.
- tm.h is a symbolic link to the actual target specific file. */
-#include "tm.h"
-
-/* end of xm-frv.h */