aboutsummaryrefslogtreecommitdiff
path: root/gcc/config/gmicro/gmicro.h
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/config/gmicro/gmicro.h')
-rw-r--r--gcc/config/gmicro/gmicro.h1588
1 files changed, 0 insertions, 1588 deletions
diff --git a/gcc/config/gmicro/gmicro.h b/gcc/config/gmicro/gmicro.h
deleted file mode 100644
index 29701f25fd7..00000000000
--- a/gcc/config/gmicro/gmicro.h
+++ /dev/null
@@ -1,1588 +0,0 @@
-/* Definitions of target machine for GNU compiler. Gmicro (TRON) version.
- Copyright (C) 1987, 88, 89, 95, 96, 1997 Free Software Foundation, Inc.
- Contributed by Masanobu Yuhara, Fujitsu Laboratories LTD.
- (yuhara@flab.fujitsu.co.jp)
-
-This file is part of GNU CC.
-
-GNU CC is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2, or (at your option)
-any later version.
-
-GNU CC is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GNU CC; see the file COPYING. If not, write to
-the Free Software Foundation, 59 Temple Place - Suite 330,
-Boston, MA 02111-1307, USA. */
-
-
-/* Note that some other tm.h files include this one and then override
- many of the definitions that relate to assembler syntax. */
-
-
-/* Names to predefine in the preprocessor for this target machine. */
-
-#define CPP_PREDEFINES "-Dgmicro -Acpu(tron) -Amachine(tron)"
-
-/* #define CPP_SPEC ** currently not defined **/
-
-/* #define CC1_SPEC ** currently not defined **/
-
-
-/* Print subsidiary information on the compiler version in use. */
-/*
-#define TARGET_VERSION fprintf (stderr, " (Gmicro syntax)");
-*/
-
-/* Run-time compilation parameters selecting different hardware subsets. */
-
-extern int target_flags;
-
-/* Macros used in the machine description to test the flags. */
-
-/* Compile for a Gmicro/300. */
-#define TARGET_G300 (target_flags & 1)
-/* Compile for a Gmicro/200. */
-#define TARGET_G200 (target_flags & 2)
-/* Compile for a Gmicro/100. */
-#define TARGET_G100 (target_flags & 4)
-
-/* Compile FPU insns for floating point (not library calls). */
-#define TARGET_FPU (target_flags & 8)
-
-/* Pop up arguments by called function. */
-#define TARGET_RTD (target_flags & 0x10)
-
-/* Compile passing first args in regs 0 and 1.
- This exists only to test compiler features that will be needed for
- RISC chips. It is not usable and is not intended to be usable on
- this cpu ;-< */
-#define TARGET_REGPARM (target_flags & 0x20)
-
-#define TARGET_BITFIELD (target_flags & 0x40)
-
-#define TARGET_NEWRETURN (target_flags & 0x80)
-
-/* Do not expand __builtin_smov (strcpy) to multiple movs.
- Use the smov instruction. */
-#define TARGET_FORCE_SMOV (target_flags & 0x100)
-
-/* default options are -m300, -mFPU,
- with bitfield instructions added because it won't always work otherwise.
- If there are versions of the gmicro that don't support bitfield instructions
- then it will take some thinking to figure out how to make them work. */
-#define TARGET_DEFAULT 0x49
-
-/* Macro to define tables used to set the flags.
- This is a list in braces of pairs in braces,
- each pair being { "NAME", VALUE }
- where VALUE is the bits to set or minus the bits to clear.
- An empty string NAME is used to identify the default VALUE. */
-
-#define TARGET_SWITCHES \
- { { "g300", 1}, \
- { "g200", 2}, \
- { "g100", 4}, \
- { "fpu", 8}, \
- { "soft-float", -8}, \
- { "rtd", 0x10}, \
- { "no-rtd", -0x10}, \
- { "regparm", 0x20}, \
- { "no-regparm", -0x20}, \
-#if 0 /* Since we don't define PCC_BITFIELD_TYPE_MATTERS or use a large
- STRUCTURE_SIZE_BOUNDARY, we must have bitfield instructions. */
- { "bitfield", 0x40}, \
- { "no-bitfield", -0x40}, \
-#endif
- { "newreturn", 0x80}, \
- { "no-newreturn", -0x80}, \
- { "force-smov", 0x100}, \
- { "no-force-smov", -0x100}, \
- { "", TARGET_DEFAULT}}
-
-
-/* Blow away G100 flag silently off TARGET_fpu (since we can't clear
- any bits in TARGET_SWITCHES above) */
-#define OVERRIDE_OPTIONS \
-{ \
- if (TARGET_G100) target_flags &= ~8; \
-}
-
-/* target machine storage layout */
-
-/* Define this if most significant bit is lowest numbered
- in instructions that operate on numbered bit-fields.
- This is true for Gmicro insns.
- We make it true always by avoiding using the single-bit insns
- except in special cases with constant bit numbers. */
-#define BITS_BIG_ENDIAN 1
-
-/* Define this if most significant byte of a word is the lowest numbered. */
-/* That is true on the Gmicro. */
-#define BYTES_BIG_ENDIAN 1
-
-/* Define this if most significant word of a multiword number is the lowest
- numbered. */
-/* For Gmicro we can decide arbitrarily
- since there are no machine instructions for them. ????? */
-#define WORDS_BIG_ENDIAN 0
-
-/* number of bits in an addressable storage unit */
-#define BITS_PER_UNIT 8
-
-/* Width in bits of a "word", which is the contents of a machine register. */
-#define BITS_PER_WORD 32
-
-/* Width of a word, in units (bytes). */
-#define UNITS_PER_WORD 4
-
-/* Width in bits of a pointer.
- See also the macro `Pmode' defined below. */
-#define POINTER_SIZE 32
-
-/* Allocation boundary (in *bits*) for storing arguments in argument list. */
-#define PARM_BOUNDARY 32
-
-/* Boundary (in *bits*) on which stack pointer should be aligned. */
-#define STACK_BOUNDARY 32
-
-/* Allocation boundary (in *bits*) for the code of a function. */
-/* Instructions of the Gmicro should be on half-word boundary */
-/* But word boundary gets better performance */
-#define FUNCTION_BOUNDARY 32
-
-/* Alignment of field after `int : 0' in a structure. */
-#define EMPTY_FIELD_BOUNDARY 32
-
-/* No data type wants to be aligned rounder than this. */
-/* This is not necessarily 32 on the Gmicro */
-#define BIGGEST_ALIGNMENT 32
-
-/* Set this non-zero if move instructions will actually fail to work
- when given unaligned data.
- Unaligned data is allowed on Gmicro, though the access is slow. */
-
-#define STRICT_ALIGNMENT 1
-#define SLOW_UNALIGNED_ACCESS 1
-
-/* Make strings word-aligned so strcpy from constants will be faster. */
-#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
- (TREE_CODE (EXP) == STRING_CST \
- && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
-
-/* Make arrays of chars word-aligned for the same reasons. */
-#define DATA_ALIGNMENT(TYPE, ALIGN) \
- (TREE_CODE (TYPE) == ARRAY_TYPE \
- && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
- && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
-
-/* Define number of bits in most basic integer type.
- (If undefined, default is BITS_PER_WORD). */
-#define INT_TYPE_SIZE 32
-
-/* #define PCC_BITFIELD_TYPE_MATTERS 1 ????? */
-
-/* #define CHECK_FLOAT_VALUE (MODE, VALUE) ????? */
-
-
-/* Standard register usage. */
-
-/* Number of actual hardware registers.
- The hardware registers are assigned numbers for the compiler
- from 0 to just below FIRST_PSEUDO_REGISTER.
- All registers that the compiler knows about must be given numbers,
- even those that are not normally considered general registers.
- For the Gmicro, we give the general registers numbers 0-15,
- and the FPU floating point registers numbers 16-31. */
-#define FIRST_PSEUDO_REGISTER 32
-
-/* 1 for registers that have pervasive standard uses
- and are not available for the register allocator.
- On the Gmicro, the stack pointer and the frame pointer are
- such registers. */
-/* frame pointer is not indicated as fixed, because fp may be used freely
- when a frame is not built. */
-#define FIXED_REGISTERS \
- {0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 1, \
- /* FPU registers. */ \
- 0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, }
-
-/* 1 for registers not available across function calls.
- These must include the FIXED_REGISTERS and also any
- registers that can be used without being saved.
- The latter must include the registers where values are returned
- and the register where structure-value addresses are passed.
- Aside from that, you can include as many other registers as you like. */
-#define CALL_USED_REGISTERS \
- {1, 1, 1, 1, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 1, \
- /* FPU registers. */ \
- 1, 1, 1, 1, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, }
-
-
-/* Make sure everything's fine if we *don't* have a given processor.
- This assumes that putting a register in fixed_regs will keep the
- compilers mitt's completely off it. We don't bother to zero it out
- of register classes. If TARGET_FPU is not set,
- the compiler won't touch since no instructions that use these
- registers will be valid. */
-/* This Macro is not defined now.
- #define CONDITIONAL_REGISTER_USAGE */
-
-/* The Gmicro has no overlapping register */
-/* #define OVERLAPPING_REGNO_P(REGNO) */
-
-/* #define INSN_CLOBBERS_REGNO_P(INSN,REGNO) */
-/* #define PRESERVE_DEATH_INFO_REGNO_P(REGNO) */
-
-/* Return number of consecutive hard regs needed starting at reg REGNO
- to hold something of mode MODE.
- This is ordinarily the length in words of a value of mode MODE
- but can be less for certain modes in special long registers.
-
- On the Gmicro, ordinary registers hold 32 bits worth;
- for the Gmicro/FPU registers, a single register is always enough for
- anything that can be stored in them at all. */
-#define HARD_REGNO_NREGS(REGNO, MODE) \
- ((REGNO) >= 16 ? 1 \
- : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
-
-/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
- On the Gmicro, the cpu registers can hold any mode but the FPU registers
- can hold only SFmode or DFmode. And the FPU registers can't hold anything
- if FPU use is disabled. */
-#define HARD_REGNO_MODE_OK(REGNO, MODE) \
- ((REGNO) < 16 \
- || ((REGNO) < 32 \
- ? TARGET_FPU && (GET_MODE_CLASS (MODE) == MODE_FLOAT || \
- GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
- : 0 ))
-
-/* Value is 1 if it is a good idea to tie two pseudo registers
- when one has mode MODE1 and one has mode MODE2.
- If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
- for any hard reg, then this must be 0 for correct output. */
-#define MODES_TIEABLE_P(MODE1, MODE2) \
- (! TARGET_FPU \
- || ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
- GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
- == ((MODE2) == SFmode || (MODE2) == DFmode)))
-
-/* Specify the registers used for certain standard purposes.
- The values of these macros are register numbers. */
-
-/* Gmicro pc isn't overloaded on a register. */
-/* #define PC_REGNUM */
-
-/* Register to use for pushing function arguments. */
-#define STACK_POINTER_REGNUM 15
-
-/* Base register for access to local variables of the function. */
-#define FRAME_POINTER_REGNUM 14
-
-/* Value should be nonzero if functions must have frame pointers.
- Zero means the frame pointer need not be set up (and parms
- may be accessed via the stack pointer) in functions that seem suitable.
- This is computed in `reload', in reload1.c. */
-#define FRAME_POINTER_REQUIRED 0
-
-/* Base register for access to arguments of the function. */
-/* The Gmicro does not have hardware ap. Fp is treated as ap */
-#define ARG_POINTER_REGNUM 14
-
-/* Register in which static-chain is passed to a function. */
-#define STATIC_CHAIN_REGNUM 0
-
-/* Register in which address to store a structure value
- is passed to a function. */
-#define STRUCT_VALUE_REGNUM 1
-
-/* Define the classes of registers for register constraints in the
- machine description. Also define ranges of constants.
-
- One of the classes must always be named ALL_REGS and include all hard regs.
- If there is more than one class, another class must be named NO_REGS
- and contain no registers.
-
- The name GENERAL_REGS must be the name of a class (or an alias for
- another name such as ALL_REGS). This is the class of registers
- that is allowed by "g" or "r" in a register constraint.
- Also, registers outside this class are allocated only when
- instructions express preferences for them.
-
- The classes must be numbered in nondecreasing order; that is,
- a larger-numbered class must never be contained completely
- in a smaller-numbered class.
-
- For any two classes, it is very desirable that there be another
- class that represents their union. */
-
-/* The Gmicro has two kinds of registers, so four classes would be
- a complete set. */
-
-enum reg_class { NO_REGS, FPU_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES };
-
-#define N_REG_CLASSES (int) LIM_REG_CLASSES
-
-/* Give names of register classes as strings for dump file. */
-
-#define REG_CLASS_NAMES \
- { "NO_REGS", "FPU_REGS", "GENERAL_REGS", "ALL_REGS" }
-
-/* Define which registers fit in which classes.
- This is an initializer for a vector of HARD_REG_SET
- of length N_REG_CLASSES. */
-
-#define REG_CLASS_CONTENTS \
-{ \
- 0, /* NO_REGS */ \
- 0xffff0000, /* FPU_REGS */ \
- 0x0000ffff, /* GENERAL_REGS */ \
- 0xffffffff /* ALL_REGS */ \
-}
-
-/* The same information, inverted:
- Return the class number of the smallest class containing
- reg number REGNO. This could be a conditional expression
- or could index an array. */
-
-extern enum reg_class regno_reg_class[];
-#define REGNO_REG_CLASS(REGNO) ( (REGNO < 16) ? GENERAL_REGS : FPU_REGS )
-
-/* The class value for index registers, and the one for base regs. */
-
-#define INDEX_REG_CLASS GENERAL_REGS
-#define BASE_REG_CLASS GENERAL_REGS
-
-/* Get reg_class from a letter such as appears in the machine description.
- We do a trick here to modify the effective constraints on the
- machine description; we zorch the constraint letters that aren't
- appropriate for a specific target. This allows us to guarantee
- that a specific kind of register will not be used for a given target
- without fiddling with the register classes above. */
-
-#define REG_CLASS_FROM_LETTER(C) \
- ((C) == 'r' ? GENERAL_REGS : \
- ((C) == 'f' ? (TARGET_FPU ? FPU_REGS : NO_REGS) : \
- NO_REGS))
-
-/* The letters I, J, K, L and M in a register constraint string
- can be used to stand for particular ranges of immediate operands.
- This macro defines what the ranges are.
- C is the letter, and VALUE is a constant value.
- Return 1 if VALUE is in the range specified by C.
-
- For the Gmicro, all immediate value optimizations are done
- by assembler, so no machine dependent definition is necessary ??? */
-
-/* #define CONST_OK_FOR_LETTER_P(VALUE, C) ((C) == 'I') */
-#define CONST_OK_FOR_LETTER_P(VALUE, C) 0
-
-/*
- * The letters G defines all of the floating constants tha are *NOT*
- * Gmicro-FPU constant.
- */
-
-#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
- ((C) == 'F' || \
- (C) == 'G' && !(TARGET_FPU && standard_fpu_constant_p (VALUE)))
-
-/* Given an rtx X being reloaded into a reg required to be
- in class CLASS, return the class of reg to actually use.
- In general this is just CLASS; but on some machines
- in some cases it is preferable to use a more restrictive class. */
-/* On the Gmicro series, there is no restriction on GENERAL_REGS,
- so CLASS is returned. I do not know whether I should treat FPU_REGS
- specially or not (at least, m68k does not). */
-
-#define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS
-
-/* Return the maximum number of consecutive registers
- needed to represent mode MODE in a register of class CLASS. */
-/* On the Gmicro, this is the size of MODE in words,
- except in the FPU regs, where a single reg is always enough. */
-#define CLASS_MAX_NREGS(CLASS, MODE) \
- ((CLASS) == FPU_REGS ? \
- 1 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
-
-/* Stack layout; function entry, exit and calling. */
-
-/* Define this if pushing a word on the stack
- makes the stack pointer a smaller address. */
-#define STACK_GROWS_DOWNWARD
-
-/* Define this if the nominal address of the stack frame
- is at the high-address end of the local variables;
- that is, each additional local variable allocated
- goes at a more negative offset in the frame. */
-#define FRAME_GROWS_DOWNWARD
-
-/* Offset within stack frame to start allocating local variables at.
- If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
- first local allocated. Otherwise, it is the offset to the BEGINNING
- of the first local allocated. */
-/* On the Gmicro, FP points to the old FP and the first local variables are
- at (FP - 4). */
-#define STARTING_FRAME_OFFSET 0
-
-/* If we generate an insn to push BYTES bytes,
- this says how many the stack pointer really advances by. */
-/* On the Gmicro, sp is decremented by the exact size of the operand */
-#define PUSH_ROUNDING(BYTES) (BYTES)
-
-/* Offset of first parameter from the argument pointer register value. */
-/* On the Gmicro, the first argument is found at (ap + 8) where ap is fp. */
-#define FIRST_PARM_OFFSET(FNDECL) 8
-
-/* Value is the number of byte of arguments automatically
- popped when returning from a subroutine call.
- FUNDECL is the declaration node of the function (as a tree),
- FUNTYPE is the data type of the function (as a tree),
- or for a library call it is an identifier node for the subroutine name.
- SIZE is the number of bytes of arguments passed on the stack.
-
- On the Gmicro, the EXITD insn may be used to pop them if the number
- of args is fixed, but if the number is variable then the caller must pop
- them all. The adjsp operand of the EXITD insn can't be used for library
- calls now because the library is compiled with the standard compiler.
- Use of adjsp operand is a selectable option, since it is incompatible with
- standard Unix calling sequences. If the option is not selected,
- the caller must always pop the args.
- On the m68k this is an RTD option, so I use the same name
- for the Gmicro. The option name may be changed in the future. */
-
-#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) \
- ((TARGET_RTD && (!(FUNDECL) || TREE_CODE (FUNDECL) != IDENTIFIER_NODE) \
- && (TYPE_ARG_TYPES (FUNTYPE) == 0 \
- || (TREE_VALUE (tree_last (TYPE_ARG_TYPES (FUNTYPE))) \
- == void_type_node))) \
- ? (SIZE) : 0)
-
-/* Define how to find the value returned by a function.
- VALTYPE is the data type of the value (as a tree).
- If the precise function being called is known, FUNC is its FUNCTION_DECL;
- otherwise, FUNC is 0. */
-
-/* On the Gmicro the floating return value is in fr0 not r0. */
-
-#define FUNCTION_VALUE(VALTYPE, FUNC) LIBCALL_VALUE (TYPE_MODE (VALTYPE))
-
-/* Define how to find the value returned by a library function
- assuming the value has mode MODE. */
-
-#define LIBCALL_VALUE(MODE) \
- (gen_rtx (REG, (MODE), \
- ((TARGET_FPU && ((MODE) == SFmode || (MODE) == DFmode)) ? 16 : 0)))
-
-
-/* 1 if N is a possible register number for a function value.
- On the Gmicro, r0 and fp0 are the possible registers. */
-
-#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0 || (N) == 16)
-
-/* Define this if PCC uses the nonreentrant convention for returning
- structure and union values. */
-
-#define PCC_STATIC_STRUCT_RETURN
-
-/* 1 if N is a possible register number for function argument passing.
- On the Gmicro, no registers are used in this way. */
-/* Really? For the performance improvement, registers should be used !! */
-
-#define FUNCTION_ARG_REGNO_P(N) 0
-
-/* Define a data type for recording info about an argument list
- during the scan of that argument list. This data type should
- hold all necessary information about the function itself
- and about the args processed so far, enough to enable macros
- such as FUNCTION_ARG to determine where the next arg should go.
-
- On the Gmicro, this is a single integer, which is a number of bytes
- of arguments scanned so far. */
-
-#define CUMULATIVE_ARGS int
-
-/* Initialize a variable CUM of type CUMULATIVE_ARGS
- for a call to a function whose data type is FNTYPE.
- For a library call, FNTYPE is 0.
-
- On the Gmicro, the offset starts at 0. */
-
-#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
- ((CUM) = 0)
-
-/* Update the data in CUM to advance over an argument
- of mode MODE and data type TYPE.
- (TYPE is null for libcalls where that information may not be available.) */
-
-#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
- ((CUM) += ((MODE) != BLKmode \
- ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
- : (int_size_in_bytes (TYPE) + 3) & ~3))
-
-/* Define where to put the arguments to a function.
- Value is zero to push the argument on the stack,
- or a hard register in which to store the argument.
-
- MODE is the argument's machine mode.
- TYPE is the data type of the argument (as a tree).
- This is null for libcalls where that information may
- not be available.
- CUM is a variable of type CUMULATIVE_ARGS which gives info about
- the preceding args and about the function being called.
- NAMED is nonzero if this argument is a named parameter
- (otherwise it is an extra parameter matching an ellipsis). */
-
-/* On the Gmicro all args are pushed, except if -mregparm is specified
- then the first two words of arguments are passed in d0, d1.
- *NOTE* -mregparm does not work.
- It exists only to test register calling conventions. */
-
-#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
-((TARGET_REGPARM && (CUM) < 8) ? gen_rtx (REG, (MODE), (CUM) / 4) : 0)
-
-/* For an arg passed partly in registers and partly in memory,
- this is the number of registers used.
- For args passed entirely in registers or entirely in memory, zero. */
-
-#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
-((TARGET_REGPARM && (CUM) < 8 \
- && 8 < ((CUM) + ((MODE) == BLKmode \
- ? int_size_in_bytes (TYPE) \
- : GET_MODE_SIZE (MODE)))) \
- ? 2 - (CUM) / 4 : 0)
-
-/* The following macro is defined to output register list.
- The LSB of Mask is the lowest number register.
- Regoff is MY_GREG_OFF or MY_FREG_OFF.
- Do NOT use <i> in File, Mask, Regoff !!
- Should be changed from macros to functions. M.Yuhara */
-
-#define MY_GREG_OFF 0
-#define MY_FREG_OFF 16
-
-#define MY_PRINT_MASK(File, Mask, Regoff) \
-{ \
- int i, first = -1; \
- if ((Mask) == 0) { \
- fprintf(File, "#0"); \
- } else { \
- fprintf(File, "("); \
- for (i = 0; i < 16; i++) { \
- if ( (Mask) & (1 << i) ) { \
- if (first < 0) { \
- if (first == -2) { \
- fprintf(File, ","); \
- } \
- first = i; \
- fprintf(File, "%s", reg_names[Regoff + i]); \
- } \
- } else if (first >= 0) { \
- if (i > first + 1) { \
- fprintf(File, "-%s", reg_names[Regoff + i - 1]); \
- } \
- first = -2; \
- } \
- } \
- if ( (first >= 0) && (first != 15) ) \
- fprintf(File, "-%s", reg_names[Regoff + 15]);\
- fprintf(File, ")"); \
- } \
-}
-
-
-#define MY_PRINT_ONEREG_L(FILE,MASK) \
-{ register int i; \
- for (i = 0; i < 16; i++) \
- if ( (1 << i) & (MASK)) { \
- fprintf(FILE, "%s", reg_names[i]); \
- (MASK) &= ~(1 << i); \
- break; \
- } \
-}
-
-
-#define MY_PRINT_ONEREG_H(FILE,MASK) \
-{ register int i; \
- for (i = 15; i >= 0; i--) \
- if ( (1 << i) & (MASK)) { \
- fprintf(FILE, "%s", reg_names[i]); \
- (MASK) &= ~(1 << i); \
- break; \
- } \
-}
-
-/* This macro generates the assembly code for function entry.
- FILE is a stdio stream to output the code to.
- SIZE is an int: how many units of temporary storage to allocate.
- Refer to the array `regs_ever_live' to determine which registers
- to save; `regs_ever_live[I]' is nonzero if register number I
- is ever used in the function. This macro is responsible for
- knowing which registers should not be saved even if used. */
-
-/* The next macro needs much optimization !!
- M.Yuhara */
-
-#define FUNCTION_PROLOGUE(FILE, SIZE) \
-{ register int regno; \
- register int mask = 0; \
- register int nregs = 0; \
- static char *reg_names[] = REGISTER_NAMES; \
- extern char call_used_regs[]; \
- int fsize = ((SIZE) + 3) & -4; \
- for (regno = 0; regno < 16; regno++) \
- if (regs_ever_live[regno] && !call_used_regs[regno]) { \
- mask |= (1 << regno); \
- nregs++; \
- } \
- if (frame_pointer_needed) { \
- mask &= ~(1 << FRAME_POINTER_REGNUM); \
- if (nregs > 4) { \
- fprintf(FILE, "\tenter.w #%d,", fsize); \
- MY_PRINT_MASK(FILE, mask, MY_GREG_OFF); \
- fprintf(FILE,"\n"); \
- } else { \
- fprintf(FILE, "\tmov.w fp,@-sp\n"); \
- fprintf(FILE, "\tmov.w sp,fp\n"); \
- if (fsize > 0) \
- myoutput_sp_adjust(FILE, "sub", fsize); \
- while (nregs--) { \
- fprintf(FILE, "\tmov.w "); \
- MY_PRINT_ONEREG_H(FILE, mask); \
- fprintf(FILE, ",@-sp\n"); \
- } \
- } \
- } else { \
- if (fsize > 0) \
- myoutput_sp_adjust(FILE, "sub", fsize); \
- if (mask != 0) { \
- if (nregs > 4) { \
- fprintf(FILE, "\tstm.w "); \
- MY_PRINT_MASK(FILE, mask, MY_GREG_OFF); \
- fprintf(FILE, ",@-sp\n"); \
- } else { \
- while (nregs--) { \
- fprintf(FILE, "\tmov.w "); \
- MY_PRINT_ONEREG_H(FILE, mask); \
- fprintf(FILE, ",@-sp\n"); \
- } \
- } \
- } \
- } \
- mask = 0; \
- for (regno = 16; regno < 32; regno++) \
- if (regs_ever_live[regno] && !call_used_regs[regno]) \
- mask |= 1 << (regno - 16); \
- if (mask != 0) { \
- fprintf(FILE, "\tfstm.w "); \
- MY_PRINT_MASK(FILE, mask, MY_FREG_OFF); \
- fprintf(FILE, ",@-sp\n", mask); \
- } \
-}
-
-
-/* Output assembler code to FILE to increment profiler label # LABELNO
- for profiling a function entry. */
-/* ??? M.Yuhara */
-
-#define FUNCTION_PROFILER(FILE, LABELNO) \
- fprintf (FILE, "\tmova @LP%d,r0\n\tjsr mcount\n", (LABELNO))
-
-/* Output assembler code to FILE to initialize this source file's
- basic block profiling info, if that has not already been done. */
-
-#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
- fprintf (FILE, "\tcmp #0,@LPBX0\n\tbne LPI%d\n\tpusha @LPBX0\n\tjsr ___bb_init_func\n\tadd #4,sp\nLPI%d:\n", \
- LABELNO, LABELNO);
-
-/* Output assembler code to FILE to increment the entry-count for
- the BLOCKNO'th basic block in this source file. */
-
-#define BLOCK_PROFILER(FILE, BLOCKNO) \
- fprintf (FILE, "\tadd #1,@(LPBX2+%d)\n", 4 * BLOCKNO)
-
-/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
- the stack pointer does not matter. The value is tested only in
- functions that have frame pointers.
- No definition is equivalent to always zero. */
-
-#define EXIT_IGNORE_STACK 1
-
-/* This macro generates the assembly code for function exit,
- on machines that need it. If FUNCTION_EPILOGUE is not defined
- then individual return instructions are generated for each
- return statement. Args are same as for FUNCTION_PROLOGUE.
-
- The function epilogue should not depend on the current stack pointer (when
- frame_pinter_needed) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- It should use the frame pointer only. This is mandatory because
- of alloca; we also take advantage of it to omit stack adjustments
- before returning. */
-
-/* The Gmicro FPU seems to be unable to fldm/fstm double or single
- floating. It only allows extended !! */
-/* Optimization is not enough, especially FREGs load !! M.Yuhara */
-
-#define FUNCTION_EPILOGUE(FILE, SIZE) \
-{ register int regno; \
- register int mask, fmask; \
- register int nregs, nfregs; \
- int offset, foffset; \
- extern char call_used_regs[]; \
- static char *reg_names[] = REGISTER_NAMES; \
- int fsize = ((SIZE) + 3) & -4; \
- FUNCTION_EXTRA_EPILOGUE (FILE, SIZE); \
- nfregs = 0; fmask = 0; \
- for (regno = 16; regno < 31; regno++) \
- if (regs_ever_live[regno] && ! call_used_regs[regno]) \
- { nfregs++; fmask |= 1 << (regno - 16); } \
- foffset = nfregs * 12; \
- nregs = 0; mask = 0; \
- if (frame_pointer_needed) regs_ever_live[FRAME_POINTER_REGNUM] = 0; \
- for (regno = 0; regno < 16; regno++) \
- if (regs_ever_live[regno] && ! call_used_regs[regno]) \
- { nregs++; mask |= 1 << regno; } \
- if (frame_pointer_needed) { \
- offset = nregs * 4 + fsize; \
- if (nfregs > 0) { \
- fprintf(FILE, "\tfldm.x @(%d,fp),", -(foffset + offset));\
- MY_PRINT_MASK(FILE, fmask, MY_FREG_OFF); \
- fprintf(FILE, "\n"); \
- } \
- if (nregs > 4 \
- || current_function_pops_args) { \
- fprintf(FILE, "\tmova @(%d,fp),sp\n", -offset); \
- fprintf(FILE, "\texitd "); \
- MY_PRINT_MASK(FILE, mask, MY_GREG_OFF); \
- fprintf(FILE, ",#%d\n", current_function_pops_args); \
- } else { \
- while (nregs--) { \
- fprintf(FILE, "\tmov:l.w @(%d,fp),", -offset); \
- MY_PRINT_ONEREG_L(FILE, mask); \
- fprintf(FILE, "\n"); \
- offset -= 4; \
- } \
- if (TARGET_NEWRETURN) { \
- fprintf(FILE, "\tmova.w @(4,fp),sp\n"); \
- fprintf(FILE, "\tmov:l.w @fp,fp\n"); \
- } else { \
- fprintf(FILE, "\tmov.w fp,sp\n"); \
- fprintf(FILE, "\tmov.w @sp+,fp\n"); \
- } \
- fprintf(FILE, "\trts\n"); \
- } \
- } else { \
- if (nfregs > 0) { \
- fprintf(FILE, "\tfldm.w @sp+,"); \
- MY_PRINT_MASK(FILE, fmask, MY_FREG_OFF); \
- fprintf(FILE, "\n"); \
- } \
- if (nregs > 4) { \
- fprintf(FILE, "\tldm.w @sp+,"); \
- MY_PRINT_MASK(FILE, mask, MY_GREG_OFF); \
- fprintf(FILE, "\n"); \
- } else { \
- while (nregs--) { \
- fprintf(FILE, "\tmov.w @sp+,"); \
- MY_PRINT_ONEREG_L(FILE,mask); \
- fprintf(FILE, "\n"); \
- } \
- } \
- if (current_function_pops_args) { \
- myoutput_sp_adjust(FILE, "add", \
- (fsize + 4 + current_function_pops_args)); \
- fprintf(FILE, "\tjmp @(%d,sp)\n", current_function_pops_args);\
- } else { \
- if (fsize > 0) \
- myoutput_sp_adjust(FILE, "add", fsize); \
- fprintf(FILE, "\trts\n"); \
- } \
- } \
-}
-
-/* This is a hook for other tm files to change. */
-#define FUNCTION_EXTRA_EPILOGUE(FILE, SIZE)
-
-/* If the memory address ADDR is relative to the frame pointer,
- correct it to be relative to the stack pointer instead.
- This is for when we don't use a frame pointer.
- ADDR should be a variable name. */
-
-/* You have to change the next macro if you want to use more complex
- addressing modes (such as double indirection and more than one
- chain-addressing stages). */
-
-#define FIX_FRAME_POINTER_ADDRESS(ADDR,DEPTH) \
-{ int offset = -1; \
- rtx regs = stack_pointer_rtx; \
- if (ADDR == frame_pointer_rtx) \
- offset = 0; \
- else if (GET_CODE (ADDR) == PLUS && XEXP (ADDR, 0) == frame_pointer_rtx \
- && GET_CODE (XEXP (ADDR, 1)) == CONST_INT) \
- offset = INTVAL (XEXP (ADDR, 1)); \
- else if (GET_CODE (ADDR) == PLUS && XEXP (ADDR, 0) == frame_pointer_rtx) \
- { rtx other_reg = XEXP (ADDR, 1); \
- offset = 0; \
- regs = gen_rtx (PLUS, Pmode, stack_pointer_rtx, other_reg); } \
- else if (GET_CODE (ADDR) == PLUS && XEXP (ADDR, 1) == frame_pointer_rtx) \
- { rtx other_reg = XEXP (ADDR, 0); \
- offset = 0; \
- regs = gen_rtx (PLUS, Pmode, stack_pointer_rtx, other_reg); } \
- else if (GET_CODE (ADDR) == PLUS \
- && GET_CODE (XEXP (ADDR, 0)) == PLUS \
- && XEXP (XEXP (ADDR, 0), 0) == frame_pointer_rtx \
- && GET_CODE (XEXP (ADDR, 1)) == CONST_INT) \
- { rtx other_reg = XEXP (XEXP (ADDR, 0), 1); \
- offset = INTVAL (XEXP (ADDR, 1)); \
- regs = gen_rtx (PLUS, Pmode, stack_pointer_rtx, other_reg); } \
- else if (GET_CODE (ADDR) == PLUS \
- && GET_CODE (XEXP (ADDR, 0)) == PLUS \
- && XEXP (XEXP (ADDR, 0), 1) == frame_pointer_rtx \
- && GET_CODE (XEXP (ADDR, 1)) == CONST_INT) \
- { rtx other_reg = XEXP (XEXP (ADDR, 0), 0); \
- offset = INTVAL (XEXP (ADDR, 1)); \
- regs = gen_rtx (PLUS, Pmode, stack_pointer_rtx, other_reg); } \
- if (offset >= 0) \
- { int regno; \
- extern char call_used_regs[]; \
- for (regno = 16; regno < 32; regno++) \
- if (regs_ever_live[regno] && ! call_used_regs[regno]) \
- offset += 12; \
- for (regno = 0; regno < 16; regno++) \
- if (regs_ever_live[regno] && ! call_used_regs[regno]) \
- offset += 4; \
- offset -= 4; \
- ADDR = plus_constant (regs, offset + (DEPTH)); } }
-
-/* Addressing modes, and classification of registers for them. */
-
-/* #define HAVE_POST_INCREMENT */
-/* #define HAVE_POST_DECREMENT */
-
-/* #define HAVE_PRE_DECREMENT */
-/* #define HAVE_PRE_INCREMENT */
-
-/* Macros to check register numbers against specific register classes. */
-
-/* These assume that REGNO is a hard or pseudo reg number.
- They give nonzero only if REGNO is a hard reg of the suitable class
- or a pseudo reg currently allocated to a suitable hard reg.
- Since they use reg_renumber, they are safe only once reg_renumber
- has been allocated, which happens in local-alloc.c. */
-
-/* Gmicro */
-#define REGNO_OK_FOR_GREG_P(REGNO) \
-((REGNO) < 16 || (unsigned) reg_renumber[REGNO] < 16)
-#define REGNO_OK_FOR_FPU_P(REGNO) \
-(((REGNO) ^ 0x10) < 16 || (unsigned) (reg_renumber[REGNO] ^ 0x10) < 16)
-
-#define REGNO_OK_FOR_INDEX_P(REGNO) REGNO_OK_FOR_GREG_P(REGNO)
-#define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_GREG_P(REGNO)
-
-/* Now macros that check whether X is a register and also,
- strictly, whether it is in a specified class.
-
- These macros are specific to the Gmicro, and may be used only
- in code for printing assembler insns and in conditions for
- define_optimization. */
-
-/* 1 if X is an fpu register. */
-
-#define FPU_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FPU_P (REGNO (X)))
-
-/* I used GREG_P in the gmicro.md file. */
-
-#ifdef REG_OK_STRICT
-#define GREG_P(X) (REG_P (X) && REGNO_OK_FOR_GREG_P (REGNO(X)))
-#else
-#define GREG_P(X) (REG_P (X) && ((REGNO (X) & ~0xf) != 0x10))
-#endif
-
-/* Maximum number of registers that can appear in a valid memory address. */
-
-/* The Gmicro allows more registers in the chained addressing mode.
- But I do not know gcc supports such an architecture. */
-
-#define MAX_REGS_PER_ADDRESS 2
-
-/* Recognize any constant value that is a valid address. */
-
-#define CONSTANT_ADDRESS_P(X) \
- (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
- || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
- || GET_CODE (X) == HIGH)
-
-/* Nonzero if the constant value X is a legitimate general operand.
- It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
-
-#define LEGITIMATE_CONSTANT_P(X) 1
-
-/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
- and check its validity for a certain class.
- We have two alternate definitions for each of them.
- The usual definition accepts all pseudo regs; the other rejects
- them unless they have been allocated suitable hard regs.
- The symbol REG_OK_STRICT causes the latter definition to be used.
-
- Most source files want to accept pseudo regs in the hope that
- they will get allocated to the class that the insn wants them to be in.
- Source files for reload pass need to be strict.
- After reload, it makes no difference, since pseudo regs have
- been eliminated by then. */
-
-#ifndef REG_OK_STRICT
-
-/* Nonzero if X is a hard reg that can be used as an index
- or if it is a pseudo reg. */
-#define REG_OK_FOR_INDEX_P(X) ((REGNO (X) & ~0xf) != 0x10)
-/* Nonzero if X is a hard reg that can be used as a base reg
- or if it is a pseudo reg. */
-#define REG_OK_FOR_BASE_P(X) ((REGNO (X) & ~0xf) != 0x10)
-
-#else
-
-/* Nonzero if X is a hard reg that can be used as an index. */
-#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
-/* Nonzero if X is a hard reg that can be used as a base reg. */
-#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
-
-#endif
-
-/* The gcc uses the following effective address of the Gmicro.
- (without using PC!!).
- {@} ( {Rbase} + {Disp} + {Rindex * [1,2,4,8]} )
- where
- @: memory indirection.
- Rbase: Base Register = General Register.
- Disp: Displacement (up to 32bits)
- Rindex: Index Register = General Register.
- [1,2,4,8]: Scale of Index. 1 or 2 or 4 or 8.
- The inside of { } can be omitted.
- This restricts the chained addressing up to 1 stage. */
-
-
-
-/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
- that is a valid memory address for an instruction.
- The MODE argument is the machine mode for the MEM expression
- that wants to use this address.
-
- The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
- except for CONSTANT_ADDRESS_P which is actually machine-independent. */
-
-#define REG_CODE_BASE_P(X) \
- (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))
-
-#define REG_CODE_INDEX_P(X) \
- (GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X))
-
-/* GET_CODE(X) must be PLUS. This macro does not check for PLUS! */
-#define BASE_PLUS_DISP_P(X) \
- ( REG_CODE_BASE_P (XEXP (X, 0)) \
- && CONSTANT_ADDRESS_P (XEXP (X, 1)) \
- || \
- REG_CODE_BASE_P (XEXP (X, 1)) \
- && CONSTANT_ADDRESS_P (XEXP (X, 0)) )
-
-/* 1 if X is {0,Rbase} + {0,disp}. */
-#define BASED_ADDRESS_P(X) \
- (CONSTANT_ADDRESS_P (X) \
- || REG_CODE_BASE_P (X) \
- || (GET_CODE (X) == PLUS) \
- && BASE_PLUS_DISP_P (X))
-
-/* 1 if X is 1 or 2 or 4 or 8. GET_CODE(X) must be CONST_INT. */
-#define SCALE_OF_INDEX_P(X) \
- ( INTVAL(X) == 4 \
- || INTVAL(X) == 2 \
- || INTVAL(X) == 8 \
- || INTVAL(X) == 1 )
-
-/* #define INDEX_TERM_P(X,MODE) */
-#define INDEX_TERM_P(X) \
- ( REG_CODE_INDEX_P(X) \
- || (GET_CODE (X) == MULT \
- && ( (xfoo0 = XEXP (X, 0)), (xfoo1 = XEXP(X, 1)), \
- ( ( (GET_CODE (xfoo0) == CONST_INT) \
- && SCALE_OF_INDEX_P (xfoo0) \
- && REG_CODE_INDEX_P (xfoo1) ) \
- || \
- ( (GET_CODE (xfoo1) == CONST_INT) \
- && SCALE_OF_INDEX_P (xfoo1) \
- && REG_CODE_INDEX_P (xfoo0) ) ))))
-
-/* Assumes there are no cases such that X = (Ireg + Disp) + Disp */
-#define BASE_DISP_INDEX_P(X) \
- ( BASED_ADDRESS_P (X) \
- || ( (GET_CODE (X) == PLUS) \
- && ( ( (xboo0 = XEXP (X, 0)), (xboo1 = XEXP (X, 1)), \
- (REG_CODE_BASE_P (xboo0) \
- && (GET_CODE (xboo1) == PLUS) \
- && ( ( CONSTANT_ADDRESS_P (XEXP (xboo1, 0)) \
- && INDEX_TERM_P (XEXP (xboo1, 1)) ) \
- || ( CONSTANT_ADDRESS_P (XEXP (xboo1, 1)) \
- && INDEX_TERM_P (XEXP (xboo1, 0))) ))) \
- || \
- (CONSTANT_ADDRESS_P (xboo0) \
- && (GET_CODE (xboo1) == PLUS) \
- && ( ( REG_CODE_BASE_P (XEXP (xboo1, 0)) \
- && INDEX_TERM_P (XEXP (xboo1, 1)) ) \
- || ( REG_CODE_BASE_P (XEXP (xboo1, 1)) \
- && INDEX_TERM_P (XEXP (xboo1, 0))) )) \
- || \
- (INDEX_TERM_P (xboo0) \
- && ( ( (GET_CODE (xboo1) == PLUS) \
- && ( ( REG_CODE_BASE_P (XEXP (xboo1, 0)) \
- && CONSTANT_ADDRESS_P (XEXP (xboo1, 1)) ) \
- || ( REG_CODE_BASE_P (XEXP (xboo1, 1)) \
- && CONSTANT_ADDRESS_P (XEXP (xboo1, 0))) )) \
- || \
- (CONSTANT_ADDRESS_P (xboo1)) \
- || \
- (REG_CODE_BASE_P (xboo1)) )))))
-
-/*
- If you want to allow double-indirection,
- you have to change the <fp-relative> => <sp-relative> conversion
- routine. M.Yuhara
-
-#ifdef REG_OK_STRICT
-#define DOUBLE_INDIRECTION(X,ADDR) {\
- if (BASE_DISP_INDEX_P (XEXP (XEXP (X, 0), 0) )) goto ADDR; \
- }
-#else
-#define DOUBLE_INDIRECTION(X,ADDR) { }
-#endif
-*/
-
-
-#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) {\
- register rtx xboo0, xboo1, xfoo0, xfoo1; \
- if (GET_CODE (X) == MEM) { \
- /* \
- if (GET_CODE (XEXP (X,0)) == MEM) { \
- DOUBLE_INDIRECTION(X,ADDR); \
- } else { \
- if (BASE_DISP_INDEX_P (XEXP (X, 0))) goto ADDR; \
- } \
- */ \
- } else { \
- if (BASE_DISP_INDEX_P (X)) goto ADDR; \
- if ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC) \
- && REG_P (XEXP (X, 0)) \
- && (REGNO (XEXP (X, 0)) == STACK_POINTER_REGNUM)) \
- goto ADDR; \
- } \
-}
-
-
-/* Try machine-dependent ways of modifying an illegitimate address
- to be legitimate. If we find one, return the new, valid address.
- This macro is used in only one place: `memory_address' in explow.c.
-
- OLDX is the address as it was before break_out_memory_refs was called.
- In some cases it is useful to look at this to decide what needs to be done.
-
- MODE and WIN are passed so that this macro can use
- GO_IF_LEGITIMATE_ADDRESS.
-
- It is always safe for this macro to do nothing. It exists to recognize
- opportunities to optimize the output.
-
- For the Gmicro, nothing is done now. */
-
-#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
-
-/* Go to LABEL if ADDR (a legitimate address expression)
- has an effect that depends on the machine mode it is used for.
- On the VAX, the predecrement and postincrement address depend thus
- (the amount of decrement or increment being the length of the operand)
- and all indexed address depend thus (because the index scale factor
- is the length of the operand).
- The Gmicro mimics the VAX now. Since ADDE is legitimate, it cannot
- include auto-inc/dec. */
-
-/* Unnecessary ??? */
-#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
- { if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) \
- goto LABEL; }
-
-
-/* Specify the machine mode that this machine uses
- for the index in the tablejump instruction. */
-/* #define CASE_VECTOR_MODE HImode */
-#define CASE_VECTOR_MODE SImode
-
-/* Define this if the tablejump instruction expects the table
- to contain offsets from the address of the table.
- Do not define this if the table should contain absolute addresses. */
-#define CASE_VECTOR_PC_RELATIVE
-
-/* Specify the tree operation to be used to convert reals to integers. */
-#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
-
-/* This is the kind of divide that is easiest to do in the general case. */
-#define EASY_DIV_EXPR TRUNC_DIV_EXPR
-
-/* Define this as 1 if `char' should by default be signed; else as 0. */
-#define DEFAULT_SIGNED_CHAR 1
-
-/* Max number of bytes we can move from memory to memory
- in one reasonably fast instruction. */
-#define MOVE_MAX 4
-
-/* Define this if zero-extension is slow (more than one real instruction). */
-/* #define SLOW_ZERO_EXTEND */
-
-/* Nonzero if access to memory by bytes is slow and undesirable. */
-#define SLOW_BYTE_ACCESS 0
-
-/* Define if shifts truncate the shift count
- which implies one can omit a sign-extension or zero-extension
- of a shift count. */
-/* #define SHIFT_COUNT_TRUNCATED */
-
-/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
- is done just by pretending it is already truncated. */
-#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
-
-/* We assume that the store-condition-codes instructions store 0 for false
- and some other value for true. This is the value stored for true. */
-
-/* #define STORE_FLAG_VALUE -1 */
-
-/* When a prototype says `char' or `short', really pass an `int'. */
-#define PROMOTE_PROTOTYPES
-
-/* Specify the machine mode that pointers have.
- After generation of rtl, the compiler makes no further distinction
- between pointers and any other objects of this machine mode. */
-#define Pmode SImode
-
-/* A function address in a call instruction
- is a byte address (for indexing purposes)
- so give the MEM rtx a byte's mode. */
-#define FUNCTION_MODE QImode
-
-/* Compute the cost of computing a constant rtl expression RTX
- whose rtx-code is CODE. The body of this macro is a portion
- of a switch statement. If the code is computed here,
- return it with a return statement. Otherwise, break from the switch. */
-
-#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
- case CONST_INT: \
- if ((unsigned) INTVAL (RTX) < 8) return 0; \
- if ((unsigned) (INTVAL (RTX) + 0x80) < 0x100) return 1; \
- if ((unsigned) (INTVAL (RTX) + 0x8000) < 0x10000) return 2; \
- case CONST: \
- case LABEL_REF: \
- case SYMBOL_REF: \
- return 3; \
- case CONST_DOUBLE: \
- return 5;
-
-/* Define subroutines to call to handle multiply and divide.
- The `*' prevents an underscore from being prepended by the compiler. */
-/* Use libgcc on Gmicro */
-/* #define UDIVSI3_LIBCALL "*udiv" */
-/* #define UMODSI3_LIBCALL "*urem" */
-
-
-/* Tell final.c how to eliminate redundant test instructions. */
-
-/* Here we define machine-dependent flags and fields in cc_status
- (see `conditions.h'). */
-
-/* Set if the cc value is actually in the FPU, so a floating point
- conditional branch must be output. */
-#define CC_IN_FPU 04000
-
-/* Store in cc_status the expressions
- that the condition codes will describe
- after execution of an instruction whose pattern is EXP.
- Do not alter them if the instruction would not alter the cc's. */
-
-/* Since Gmicro's compare instructions depend on the branch condition,
- all branch should be kept.
- More work must be done to optimize condition code !! M.Yuhara */
-
-#define NOTICE_UPDATE_CC(EXP, INSN) {CC_STATUS_INIT;}
-
-/* The skeleton of the next macro is taken from "vax.h".
- FPU-reg manipulation is added. M.Yuhara */
-/* Now comment out.
-#define NOTICE_UPDATE_CC(EXP, INSN) { \
- if (GET_CODE (EXP) == SET) { \
- if ( !FPU_REG_P (XEXP (EXP, 0)) \
- && (XEXP (EXP, 0) != cc0_rtx) \
- && (FPU_REG_P (XEXP (EXP, 1)) \
- || GET_CODE (XEXP (EXP, 1)) == FIX \
- || GET_CODE (XEXP (EXP, 1)) == FLOAT_TRUNCATE \
- || GET_CODE (XEXP (EXP, 1)) == FLOAT_EXTEND)) { \
- CC_STATUS_INIT; \
- } else if (GET_CODE (SET_SRC (EXP)) == CALL) { \
- CC_STATUS_INIT; \
- } else if (GET_CODE (SET_DEST (EXP)) != PC) { \
- cc_status.flags = 0; \
- cc_status.value1 = SET_DEST (EXP); \
- cc_status.value2 = SET_SRC (EXP); \
- } \
- } else if (GET_CODE (EXP) == PARALLEL \
- && GET_CODE (XVECEXP (EXP, 0, 0)) == SET \
- && GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) != PC) {\
- cc_status.flags = 0; \
- cc_status.value1 = SET_DEST (XVECEXP (EXP, 0, 0)); \
- cc_status.value2 = SET_SRC (XVECEXP (EXP, 0, 0)); \
- /* PARALLELs whose first element sets the PC are aob, sob VAX insns. \
- They do change the cc's. So drop through and forget the cc's. * / \
- } else CC_STATUS_INIT; \
- if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \
- && cc_status.value2 \
- && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \
- cc_status.value2 = 0; \
- if (cc_status.value1 && GET_CODE (cc_status.value1) == MEM \
- && cc_status.value2 \
- && GET_CODE (cc_status.value2) == MEM) \
- cc_status.value2 = 0; \
- if ( (cc_status.value1 && FPU_REG_P (cc_status.value1)) \
- || (cc_status.value2 && FPU_REG_P (cc_status.value2))) \
- cc_status.flags = CC_IN_FPU; \
-}
-*/
-
-#define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
-{ if (cc_prev_status.flags & CC_IN_FPU) \
- return FLOAT; \
- if (cc_prev_status.flags & CC_NO_OVERFLOW) \
- return NO_OV; \
- return NORMAL; }
-
-/* Control the assembler format that we output. */
-
-/* Output before read-only data. */
-
-#define TEXT_SECTION_ASM_OP ".section text,code,align=4"
-
-/* Output before writable data. */
-
-#define DATA_SECTION_ASM_OP ".section data,data,align=4"
-
-/* Output before uninitialized data. */
-
-#define BSS_SECTION_ASM_OP ".section bss,data,align=4"
-
-/* Output at beginning of assembler file.
- It is not appropriate for this to print a list of the options used,
- since that's not the convention that we use. */
-
-#define ASM_FILE_START(FILE)
-
-/* Output at the end of assembler file. */
-
-#define ASM_FILE_END(FILE) fprintf (FILE, "\t.end\n");
-
-
-/* Don't try to define `gcc_compiled.' since the assembler do not
- accept symbols with periods and GDB doesn't run on this machine anyway. */
-#define ASM_IDENTIFY_GCC(FILE)
-
-
-/* Output to assembler file text saying following lines
- may contain character constants, extra white space, comments, etc. */
-
-#define ASM_APP_ON ""
-/* #define ASM_APP_ON "#APP\n" */
-
-/* Output to assembler file text saying following lines
- no longer contain unusual constructs. */
-
-#define ASM_APP_OFF ""
-/* #define ASM_APP_OFF ";#NO_APP\n" */
-
-/* How to refer to registers in assembler output.
- This sequence is indexed by compiler's hard-register-number (see above). */
-
-#define REGISTER_NAMES \
-{"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
- "r8", "r9", "r10", "r11", "r12", "r13", "fp", "sp", \
- "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7", \
- "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15"}
-
-/* How to renumber registers for dbx and gdb. */
-
-#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
-
-/* Define this if gcc should produce debugging output for dbx in response
- to the -g flag. This does not work for the Gmicro now */
-
-#define DBX_DEBUGGING_INFO
-
-/* This is how to output the definition of a user-level label named NAME,
- such as the label on a static function or variable NAME. */
-
-#define ASM_OUTPUT_LABEL(FILE,NAME) { \
- assemble_name (FILE, NAME); \
- fputs (":\n", FILE); \
-}
-
-/* This is how to output a command to make the user-level label named NAME
- defined for reference from other files. */
-
-#define ASM_GLOBALIZE_LABEL(FILE,NAME) {\
- fputs ("\t.global ", FILE); \
- assemble_name (FILE, NAME); \
- fputs ("\n", FILE); \
-}
-
-/* This is how to output a command to make the external label named NAME
- which are not defined in the file to be referable */
-/* ".import" does not work ??? */
-
-#define ASM_OUTPUT_EXTERNAL(FILE,DECL,NAME) { \
- fputs ("\t.global ", FILE); \
- assemble_name (FILE, NAME); \
- fputs ("\n", FILE); \
-}
-
-
-/* The prefix to add to user-visible assembler symbols. */
-
-#define USER_LABEL_PREFIX "_"
-
-/* This is how to output an internal numbered label where
- PREFIX is the class of label and NUM is the number within the class. */
-
-#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
- fprintf (FILE, "%s%d:\n", PREFIX, NUM)
-
-/* This is how to store into the string LABEL
- the symbol_ref name of an internal numbered label where
- PREFIX is the class of label and NUM is the number within the class.
- This is suitable for output with `assemble_name'. */
-
-#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
- sprintf (LABEL, "*%s%d", PREFIX, NUM)
-
-/* This is how to output an assembler line defining a `double' constant. */
-
-/* do {...} while(0) is necessary, because these macros are used as
- if (xxx) MACRO; else ....
- ^
-*/
-
-
-#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
-do { union { double d; long l[2];} tem; \
- tem.d = (VALUE); \
- fprintf (FILE, "\t.fdata.d h'%x%08x.d\n", tem.l[0], tem.l[1]); \
-} while(0)
-
-
-/* This is how to output an assembler line defining a `float' constant. */
-
-#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
-do { union { float f; long l;} tem; \
- tem.f = (VALUE); \
- fprintf (FILE, "\t.fdata.s h'%x.s\n", tem.l); \
-} while(0)
-
-/* This is how to output an assembler line defining an `int' constant. */
-
-#define ASM_OUTPUT_INT(FILE,VALUE) \
-( fprintf (FILE, "\t.data.w "), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, "\n"))
-
-/* Likewise for `char' and `short' constants. */
-
-#define ASM_OUTPUT_SHORT(FILE,VALUE) \
-( fprintf (FILE, "\t.data.h "), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, "\n"))
-
-#define ASM_OUTPUT_CHAR(FILE,VALUE) \
-( fprintf (FILE, "\t.data.b "), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, "\n"))
-
-/* This is how to output an assembler line for a numeric constant byte. */
-
-#define ASM_OUTPUT_BYTE(FILE,VALUE) \
- fprintf (FILE, "\t.data.b h'%x\n", (VALUE))
-
-#define ASM_OUTPUT_ASCII(FILE,P,SIZE) \
- output_ascii ((FILE), (P), (SIZE))
-
-/* This is how to output an insn to push a register on the stack.
- It need not be very fast code. */
-
-#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
- fprintf (FILE, "\tmov %s,@-sp\n", reg_names[REGNO])
-
-/* This is how to output an insn to pop a register from the stack.
- It need not be very fast code. */
-
-#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
- fprintf (FILE, "\tmov @sp+,%s\n", reg_names[REGNO])
-
-/* This is how to output an element of a case-vector that is absolute.
- (The Gmicro does not use such vectors,
- but we must define this macro anyway.) */
-
-#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
- fprintf (FILE, "\t.data.w L%d\n", VALUE)
-
-
-/* This is how to output an element of a case-vector that is relative. */
-
-#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
- fprintf (FILE, "\t.data.w L%d-L%d\n", VALUE, REL)
-
-
-/* This is how to output an assembler line
- that says to advance the location counter
- to a multiple of 2**LOG bytes. */
-
-#define ASM_OUTPUT_ALIGN(FILE,LOG) \
- fprintf (FILE, "\t.align %d\n", (1 << (LOG)));
-
-#define ASM_OUTPUT_SKIP(FILE,SIZE) \
- fprintf (FILE, "\t.res.b %d\n", (SIZE))
-
-/* This says how to output an assembler line
- to define a global common symbol. */
-
-#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
-( bss_section (), \
- assemble_name ((FILE), (NAME)), \
- fprintf ((FILE), ":\t.res.b %d\n", (ROUNDED)),\
- fprintf ((FILE), "\t.export "), \
- assemble_name ((FILE), (NAME)), \
- fprintf ((FILE), "\n") )
-
-/* This says how to output an assembler line
- to define a local common symbol. */
-
-#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
-( bss_section (), \
- assemble_name ((FILE), (NAME)), \
- fprintf ((FILE), ":\t.res.b %d\n", (ROUNDED)))
-
-/* Store in OUTPUT a string (made with alloca) containing
- an assembler-name for a local static variable named NAME.
- LABELNO is an integer which is different for each call. */
-
-/* $__ is unique ????? M.Yuhara */
-#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
-( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 12), \
- sprintf ((OUTPUT), "$__%s%d", (NAME), (LABELNO)))
-
-/* Define the parentheses used to group arithmetic operations
- in assembler code. */
-
-#define ASM_OPEN_PAREN "("
-#define ASM_CLOSE_PAREN ")"
-
-/* Define results of standard character escape sequences. */
-#define TARGET_BELL 007
-#define TARGET_BS 010
-#define TARGET_TAB 011
-#define TARGET_NEWLINE 012
-#define TARGET_VT 013
-#define TARGET_FF 014
-#define TARGET_CR 015
-
-/* Output a float value (represented as a C double) as an immediate operand.
- This macro is a Gmicro/68k-specific macro. */
-
-#define ASM_OUTPUT_FLOAT_OPERAND(FILE,VALUE) \
-do { union { float f; long l;} tem; \
- tem.f = (VALUE); \
- fprintf (FILE, "#h'%x.s", tem.l); \
-} while(0)
-
-
-/* Output a double value (represented as a C double) as an immediate operand.
- This macro is a 68k-specific macro. */
-#define ASM_OUTPUT_DOUBLE_OPERAND(FILE,VALUE) \
-do { union { double d; long l[2];} tem; \
- tem.d = (VALUE); \
- fprintf (FILE, "#h'%x%08x.d", tem.l[0], tem.l[1]); \
-} while(0)
-
-/* Print operand X (an rtx) in assembler syntax to file FILE.
- CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
- For `%' followed by punctuation, CODE is the punctuation and X is null.
-
- On the Gmicro, we use several CODE characters:
- 'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
- 'b' for branch target label.
- '-' for an operand pushing on the stack.
- '+' for an operand pushing on the stack.
- '#' for an immediate operand prefix
-*/
-
-#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
- ( (CODE) == '#' || (CODE) == '-' \
- || (CODE) == '+' || (CODE) == '@' || (CODE) == '!')
-
-
-#define PRINT_OPERAND(FILE, X, CODE) \
-{ int i; \
- static char *reg_name[] = REGISTER_NAMES; \
-/* fprintf (stderr, "PRINT_OPERAND CODE=%c(0x%x), ", CODE, CODE);\
-myprcode(GET_CODE(X)); */ \
- if (CODE == '#') fprintf (FILE, "#"); \
- else if (CODE == '-') fprintf (FILE, "@-sp"); \
- else if (CODE == '+') fprintf (FILE, "@sp+"); \
- else if (CODE == 's') fprintf (stderr, "err: PRINT_OPERAND <s>\n"); \
- else if (CODE == '!') fprintf (stderr, "err: PRINT_OPERAND <!>\n"); \
- else if (CODE == '.') fprintf (stderr, "err: PRINT_OPERAND <.>\n"); \
- else if (CODE == 'b') { \
- if (GET_CODE (X) == MEM) \
- output_addr_const (FILE, XEXP (X, 0)); /* for bsr */ \
- else \
- output_addr_const (FILE, X); /* for bcc */ \
- } \
- else if (CODE == 'p') \
- print_operand_address (FILE, X); \
- else if (GET_CODE (X) == REG) \
- fprintf (FILE, "%s", reg_name[REGNO (X)]); \
- else if (GET_CODE (X) == MEM) \
- output_address (XEXP (X, 0)); \
- else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == SFmode) \
- { union { double d; int i[2]; } u; \
- union { float f; int i; } u1; \
- u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X); \
- u1.f = u.d; \
- if (CODE == 'f') \
- ASM_OUTPUT_FLOAT_OPERAND (FILE, u1.f); \
- else \
- fprintf (FILE, "#h'%x", u1.i); } \
- else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == DFmode) \
- { union { double d; int i[2]; } u; \
- u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X); \
- ASM_OUTPUT_DOUBLE_OPERAND (FILE, u.d); } \
- else { putc ('#', FILE); \
-output_addr_const (FILE, X); }}
-
-/* Note that this contains a kludge that knows that the only reason
- we have an address (plus (label_ref...) (reg...))
- is in the insn before a tablejump, and we know that m68k.md
- generates a label LInnn: on such an insn. */
-#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
- { print_operand_address (FILE, ADDR); }
-
-/*
-Local variables:
-version-control: t
-End:
-*/