aboutsummaryrefslogtreecommitdiff
path: root/gcc/config/i386/i386.h
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/config/i386/i386.h')
-rw-r--r--gcc/config/i386/i386.h2727
1 files changed, 0 insertions, 2727 deletions
diff --git a/gcc/config/i386/i386.h b/gcc/config/i386/i386.h
deleted file mode 100644
index 6acb1ba3af5..00000000000
--- a/gcc/config/i386/i386.h
+++ /dev/null
@@ -1,2727 +0,0 @@
-/* Definitions of target machine for GNU compiler for Intel X86
- (386, 486, Pentium).
- Copyright (C) 1988, 1992, 1994, 1995, 1996 Free Software Foundation, Inc.
-
-This file is part of GNU CC.
-
-GNU CC is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2, or (at your option)
-any later version.
-
-GNU CC is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GNU CC; see the file COPYING. If not, write to
-the Free Software Foundation, 59 Temple Place - Suite 330,
-Boston, MA 02111-1307, USA. */
-
-/* The purpose of this file is to define the characteristics of the i386,
- independent of assembler syntax or operating system.
-
- Three other files build on this one to describe a specific assembler syntax:
- bsd386.h, att386.h, and sun386.h.
-
- The actual tm.h file for a particular system should include
- this file, and then the file for the appropriate assembler syntax.
-
- Many macros that specify assembler syntax are omitted entirely from
- this file because they really belong in the files for particular
- assemblers. These include AS1, AS2, AS3, RP, IP, LPREFIX, L_SIZE,
- PUT_OP_SIZE, USE_STAR, ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE,
- PRINT_B_I_S, and many that start with ASM_ or end in ASM_OP. */
-
-/* Names to predefine in the preprocessor for this target machine. */
-
-#define I386 1
-
-/* Stubs for half-pic support if not OSF/1 reference platform. */
-
-#ifndef HALF_PIC_P
-#define HALF_PIC_P() 0
-#define HALF_PIC_NUMBER_PTRS 0
-#define HALF_PIC_NUMBER_REFS 0
-#define HALF_PIC_ENCODE(DECL)
-#define HALF_PIC_DECLARE(NAME)
-#define HALF_PIC_INIT() error ("half-pic init called on systems that don't support it.")
-#define HALF_PIC_ADDRESS_P(X) 0
-#define HALF_PIC_PTR(X) X
-#define HALF_PIC_FINISH(STREAM)
-#endif
-
-/* Define the specific costs for a given cpu */
-
-struct processor_costs {
- int add; /* cost of an add instruction */
- int lea; /* cost of a lea instruction */
- int shift_var; /* variable shift costs */
- int shift_const; /* constant shift costs */
- int mult_init; /* cost of starting a multiply */
- int mult_bit; /* cost of multiply per each bit set */
- int divide; /* cost of a divide/mod */
-};
-
-extern struct processor_costs *ix86_cost;
-
-/* Run-time compilation parameters selecting different hardware subsets. */
-
-extern int target_flags;
-
-/* Macros used in the machine description to test the flags. */
-
-/* configure can arrange to make this 2, to force a 486. */
-#ifndef TARGET_CPU_DEFAULT
-#define TARGET_CPU_DEFAULT 0
-#endif
-
-/* Masks for the -m switches */
-#define MASK_80387 000000000001 /* Hardware floating point */
-#define MASK_NOTUSED1 000000000002 /* bit not currently used */
-#define MASK_NOTUSED2 000000000004 /* bit not currently used */
-#define MASK_RTD 000000000010 /* Use ret that pops args */
-#define MASK_ALIGN_DOUBLE 000000000020 /* align doubles to 2 word boundary */
-#define MASK_SVR3_SHLIB 000000000040 /* Uninit locals into bss */
-#define MASK_IEEE_FP 000000000100 /* IEEE fp comparisons */
-#define MASK_FLOAT_RETURNS 000000000200 /* Return float in st(0) */
-#define MASK_NO_FANCY_MATH_387 000000000400 /* Disable sin, cos, sqrt */
-#define MASK_OMIT_LEAF_FRAME_POINTER 0x00000800 /* omit leaf frame pointers */
- /* Temporary codegen switches */
-#define MASK_DEBUG_ADDR 000001000000 /* Debug GO_IF_LEGITIMATE_ADDRESS */
-#define MASK_NO_WIDE_MULTIPLY 000002000000 /* Disable 32x32->64 multiplies */
-#define MASK_NO_MOVE 000004000000 /* Don't generate mem->mem */
-#define MASK_NO_PSEUDO 000010000000 /* Move op's args -> pseudos */
-#define MASK_DEBUG_ARG 000020000000 /* Debug function_arg */
-#define MASK_SCHEDULE_PROLOGUE 000040000000 /* Emit prologue as rtl */
-#define MASK_STACK_PROBE 000100000000 /* Enable stack probing */
-
-/* Use the floating point instructions */
-#define TARGET_80387 (target_flags & MASK_80387)
-
-/* Compile using ret insn that pops args.
- This will not work unless you use prototypes at least
- for all functions that can take varying numbers of args. */
-#define TARGET_RTD (target_flags & MASK_RTD)
-
-/* Align doubles to a two word boundary. This breaks compatibility with
- the published ABI's for structures containing doubles, but produces
- faster code on the pentium. */
-#define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
-
-/* Put uninitialized locals into bss, not data.
- Meaningful only on svr3. */
-#define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
-
-/* Use IEEE floating point comparisons. These handle correctly the cases
- where the result of a comparison is unordered. Normally SIGFPE is
- generated in such cases, in which case this isn't needed. */
-#define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
-
-/* Functions that return a floating point value may return that value
- in the 387 FPU or in 386 integer registers. If set, this flag causes
- the 387 to be used, which is compatible with most calling conventions. */
-#define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
-
-/* Disable generation of FP sin, cos and sqrt operations for 387.
- This is because FreeBSD lacks these in the math-emulator-code */
-#define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
-
-/* Don't create frame pointers for leaf functions */
-#define TARGET_OMIT_LEAF_FRAME_POINTER (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
-
-/* Temporary switches for tuning code generation */
-
-/* Disable 32x32->64 bit multiplies that are used for long long multiplies
- and division by constants, but sometimes cause reload problems. */
-#define TARGET_NO_WIDE_MULTIPLY (target_flags & MASK_NO_WIDE_MULTIPLY)
-#define TARGET_WIDE_MULTIPLY (!TARGET_NO_WIDE_MULTIPLY)
-
-/* Emit/Don't emit prologue as rtl */
-#define TARGET_SCHEDULE_PROLOGUE (target_flags & MASK_SCHEDULE_PROLOGUE)
-
-/* Debug GO_IF_LEGITIMATE_ADDRESS */
-#define TARGET_DEBUG_ADDR (target_flags & MASK_DEBUG_ADDR)
-
-/* Debug FUNCTION_ARG macros */
-#define TARGET_DEBUG_ARG (target_flags & MASK_DEBUG_ARG)
-
-/* Hack macros for tuning code generation */
-#define TARGET_MOVE ((target_flags & MASK_NO_MOVE) == 0) /* Don't generate memory->memory */
-#define TARGET_PSEUDO ((target_flags & MASK_NO_PSEUDO) == 0) /* Move op's args into pseudos */
-
-#define TARGET_386 (ix86_cpu == PROCESSOR_I386)
-#define TARGET_486 (ix86_cpu == PROCESSOR_I486)
-#define TARGET_PENTIUM (ix86_cpu == PROCESSOR_PENTIUM)
-#define TARGET_PENTIUMPRO (ix86_cpu == PROCESSOR_PENTIUMPRO)
-#define TARGET_USE_LEAVE (ix86_cpu == PROCESSOR_I386)
-#define TARGET_PUSH_MEMORY (ix86_cpu == PROCESSOR_I386)
-#define TARGET_ZERO_EXTEND_WITH_AND (ix86_cpu != PROCESSOR_I386 \
- && ix86_cpu != PROCESSOR_PENTIUMPRO)
-#define TARGET_DOUBLE_WITH_ADD (ix86_cpu != PROCESSOR_I386)
-#define TARGET_USE_BIT_TEST (ix86_cpu == PROCESSOR_I386)
-#define TARGET_UNROLL_STRLEN (ix86_cpu != PROCESSOR_I386)
-#define TARGET_USE_Q_REG (ix86_cpu == PROCESSOR_PENTIUM \
- || ix86_cpu == PROCESSOR_PENTIUMPRO)
-#define TARGET_USE_ANY_REG (ix86_cpu == PROCESSOR_I486)
-#define TARGET_CMOVE (ix86_arch == PROCESSOR_PENTIUMPRO)
-#define TARGET_DEEP_BRANCH_PREDICTION (ix86_cpu == PROCESSOR_PENTIUMPRO)
-#define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
-
-#define TARGET_SWITCHES \
-{ { "80387", MASK_80387 }, \
- { "no-80387", -MASK_80387 }, \
- { "hard-float", MASK_80387 }, \
- { "soft-float", -MASK_80387 }, \
- { "no-soft-float", MASK_80387 }, \
- { "386", 0 }, \
- { "no-386", 0 }, \
- { "486", 0 }, \
- { "no-486", 0 }, \
- { "pentium", 0 }, \
- { "pentiumpro", 0 }, \
- { "rtd", MASK_RTD }, \
- { "no-rtd", -MASK_RTD }, \
- { "align-double", MASK_ALIGN_DOUBLE }, \
- { "no-align-double", -MASK_ALIGN_DOUBLE }, \
- { "svr3-shlib", MASK_SVR3_SHLIB }, \
- { "no-svr3-shlib", -MASK_SVR3_SHLIB }, \
- { "ieee-fp", MASK_IEEE_FP }, \
- { "no-ieee-fp", -MASK_IEEE_FP }, \
- { "fp-ret-in-387", MASK_FLOAT_RETURNS }, \
- { "no-fp-ret-in-387", -MASK_FLOAT_RETURNS }, \
- { "no-fancy-math-387", MASK_NO_FANCY_MATH_387 }, \
- { "fancy-math-387", -MASK_NO_FANCY_MATH_387 }, \
- { "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER }, \
- { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER }, \
- { "no-wide-multiply", MASK_NO_WIDE_MULTIPLY }, \
- { "wide-multiply", -MASK_NO_WIDE_MULTIPLY }, \
- { "schedule-prologue", MASK_SCHEDULE_PROLOGUE }, \
- { "no-schedule-prologue", -MASK_SCHEDULE_PROLOGUE }, \
- { "debug-addr", MASK_DEBUG_ADDR }, \
- { "no-debug-addr", -MASK_DEBUG_ADDR }, \
- { "move", -MASK_NO_MOVE }, \
- { "no-move", MASK_NO_MOVE }, \
- { "debug-arg", MASK_DEBUG_ARG }, \
- { "no-debug-arg", -MASK_DEBUG_ARG }, \
- { "stack-arg-probe", MASK_STACK_PROBE }, \
- { "no-stack-arg-probe", -MASK_STACK_PROBE }, \
- SUBTARGET_SWITCHES \
- { "", MASK_SCHEDULE_PROLOGUE | TARGET_DEFAULT}}
-
-/* Which processor to schedule for. The cpu attribute defines a list that
- mirrors this list, so changes to i386.md must be made at the same time. */
-
-enum processor_type
- {PROCESSOR_I386, /* 80386 */
- PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
- PROCESSOR_PENTIUM,
- PROCESSOR_PENTIUMPRO};
-
-#define PROCESSOR_I386_STRING "i386"
-#define PROCESSOR_I486_STRING "i486"
-#define PROCESSOR_I586_STRING "i586"
-#define PROCESSOR_PENTIUM_STRING "pentium"
-#define PROCESSOR_I686_STRING "i686"
-#define PROCESSOR_PENTIUMPRO_STRING "pentiumpro"
-
-extern enum processor_type ix86_cpu;
-
-extern int ix86_arch;
-
-/* Define the default processor. This is overridden by other tm.h files. */
-#define PROCESSOR_DEFAULT \
- ((enum processor_type) TARGET_CPU_DEFAULT == PROCESSOR_I486) \
- ? PROCESSOR_I486 \
- : ((enum processor_type) TARGET_CPU_DEFAULT == PROCESSOR_PENTIUM) \
- ? PROCESSOR_PENTIUM \
- : ((enum processor_type) TARGET_CPU_DEFAULT == PROCESSOR_PENTIUMPRO) \
- ? PROCESSOR_PENTIUMPRO \
- : PROCESSOR_I386
-#define PROCESSOR_DEFAULT_STRING \
- ((enum processor_type) TARGET_CPU_DEFAULT == PROCESSOR_I486) \
- ? PROCESSOR_I486_STRING \
- : ((enum processor_type) TARGET_CPU_DEFAULT == PROCESSOR_PENTIUM) \
- ? PROCESSOR_PENTIUM_STRING \
- : ((enum processor_type) TARGET_CPU_DEFAULT == PROCESSOR_PENTIUMPRO) \
- ? PROCESSOR_PENTIUMPRO_STRING \
- : PROCESSOR_I386_STRING
-
-/* This macro is similar to `TARGET_SWITCHES' but defines names of
- command options that have values. Its definition is an
- initializer with a subgrouping for each command option.
-
- Each subgrouping contains a string constant, that defines the
- fixed part of the option name, and the address of a variable. The
- variable, type `char *', is set to the variable part of the given
- option if the fixed part matches. The actual option name is made
- by appending `-m' to the specified name. */
-#define TARGET_OPTIONS \
-{ { "cpu=", &ix86_cpu_string}, \
- { "arch=", &ix86_arch_string}, \
- { "reg-alloc=", &i386_reg_alloc_order }, \
- { "regparm=", &i386_regparm_string }, \
- { "align-loops=", &i386_align_loops_string }, \
- { "align-jumps=", &i386_align_jumps_string }, \
- { "align-functions=", &i386_align_funcs_string }, \
- { "branch-cost=", &i386_branch_cost_string }, \
- SUBTARGET_OPTIONS \
-}
-
-/* Sometimes certain combinations of command options do not make
- sense on a particular target machine. You can define a macro
- `OVERRIDE_OPTIONS' to take account of this. This macro, if
- defined, is executed once just after all the command options have
- been parsed.
-
- Don't use this macro to turn on various extra optimizations for
- `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
-
-#define OVERRIDE_OPTIONS override_options ()
-
-/* These are meant to be redefined in the host dependent files */
-#define SUBTARGET_SWITCHES
-#define SUBTARGET_OPTIONS
-
-/* Define this to change the optimizations performed by default. */
-#define OPTIMIZATION_OPTIONS(LEVEL) optimization_options(LEVEL)
-
-/* Specs for the compiler proper */
-
-#ifndef CC1_SPEC
-#define CC1_SPEC "\
-%{!mcpu*: \
-%{m386:-mcpu=i386 -march=i386} \
-%{mno-486:-mcpu=i386 -march=i386} \
-%{m486:-mcpu=i486 -march=i486} \
-%{mno-386:-mcpu=i486 -march=i486} \
-%{mno-pentium:-mcpu=i486 -march=i486} \
-%{mpentium:-mcpu=pentium} \
-%{mno-pentiumpro:-mcpu=pentium} \
-%{mpentiumpro:-mcpu=pentiumpro}}"
-#endif
-
-#ifndef CPP_CPU_SPEC
-#ifdef __STDC__
-#if TARGET_CPU_DEFAULT == 1
-#define CPP_CPU_DEFAULT "-Di486"
-#elif TARGET_CPU_DEFAULT == 2
-#define CPP_CPU_DEFAULT "-Di586"
-#elif TARGET_CPU_DEFAULT == 3
-#define CPP_CPU_DEFAULT "-Di686"
-#else
-#define CPP_CPU_DEFAULT ""
-#endif /* TARGET_CPU_DEFAULT */
-
-#define CPP_CPU_SPEC "\
--Di386 " CPP_CPU_DEFAULT " -Asystem(unix) -Acpu(i386) -Amachine(i386) \
-%{mcpu=i486:-Di486} %{m486:-Di486} \
-%{mpentium:-Dpentium -Di586} %{mcpu=pentium:-Dpentium -Di586} \
-%{mpentiumpro:-Dpentiumpro -Di686} %{mcpu=pentiumpro:-Dpentiumpro -Di686}"
-
-#else
-#define CPP_CPU_SPEC "\
--Di386 -Asystem(unix) -Acpu(i386) -Amachine(i386) \
-%{mcpu=i486:-Di486} %{m486:-Di486} \
-%{mpentium:-Dpentium -Di586} %{mcpu=pentium:-Dpentium -Di586} \
-%{mpentiumpro:-Dpentiumpro -Di686} %{mcpu=pentiumpro:-Dpentiumpro -Di686}"
-#endif /* __STDC__ */
-#endif /* CPP_CPU_SPEC */
-
-/* This macro defines names of additional specifications to put in the specs
- that can be used in various specifications like CC1_SPEC. Its definition
- is an initializer with a subgrouping for each command option.
-
- Each subgrouping contains a string constant, that defines the
- specification name, and a string constant that used by the GNU CC driver
- program.
-
- Do not define this macro if it does not need to do anything. */
-
-#ifndef SUBTARGET_EXTRA_SPECS
-#define SUBTARGET_EXTRA_SPECS
-#endif
-
-#define EXTRA_SPECS \
- { "cpp_cpu", CPP_CPU_SPEC }, \
- SUBTARGET_EXTRA_SPECS
-
-/* target machine storage layout */
-
-/* Define for XFmode extended real floating point support.
- This will automatically cause REAL_ARITHMETIC to be defined. */
-#define LONG_DOUBLE_TYPE_SIZE 96
-
-/* Define if you don't want extended real, but do want to use the
- software floating point emulator for REAL_ARITHMETIC and
- decimal <-> binary conversion. */
-/* #define REAL_ARITHMETIC */
-
-/* Define this if most significant byte of a word is the lowest numbered. */
-/* That is true on the 80386. */
-
-#define BITS_BIG_ENDIAN 0
-
-/* Define this if most significant byte of a word is the lowest numbered. */
-/* That is not true on the 80386. */
-#define BYTES_BIG_ENDIAN 0
-
-/* Define this if most significant word of a multiword number is the lowest
- numbered. */
-/* Not true for 80386 */
-#define WORDS_BIG_ENDIAN 0
-
-/* number of bits in an addressable storage unit */
-#define BITS_PER_UNIT 8
-
-/* Width in bits of a "word", which is the contents of a machine register.
- Note that this is not necessarily the width of data type `int';
- if using 16-bit ints on a 80386, this would still be 32.
- But on a machine with 16-bit registers, this would be 16. */
-#define BITS_PER_WORD 32
-
-/* Width of a word, in units (bytes). */
-#define UNITS_PER_WORD 4
-
-/* Width in bits of a pointer.
- See also the macro `Pmode' defined below. */
-#define POINTER_SIZE 32
-
-/* Allocation boundary (in *bits*) for storing arguments in argument list. */
-#define PARM_BOUNDARY 32
-
-/* Boundary (in *bits*) on which stack pointer should be aligned. */
-#define STACK_BOUNDARY 32
-
-/* Allocation boundary (in *bits*) for the code of a function.
- For i486, we get better performance by aligning to a cache
- line (i.e. 16 byte) boundary. */
-#define FUNCTION_BOUNDARY (1 << (i386_align_funcs + 3))
-
-/* Alignment of field after `int : 0' in a structure. */
-
-#define EMPTY_FIELD_BOUNDARY 32
-
-/* Minimum size in bits of the largest boundary to which any
- and all fundamental data types supported by the hardware
- might need to be aligned. No data type wants to be aligned
- rounder than this. The i386 supports 64-bit floating point
- quantities, but these can be aligned on any 32-bit boundary.
- The published ABIs say that doubles should be aligned on word
- boundaries, but the Pentium gets better performance with them
- aligned on 64 bit boundaries. */
-#define BIGGEST_ALIGNMENT (TARGET_ALIGN_DOUBLE ? 64 : 32)
-
-/* align DFmode constants and nonaggregates */
-#define ALIGN_DFmode (!TARGET_386)
-
-/* Set this non-zero if move instructions will actually fail to work
- when given unaligned data. */
-#define STRICT_ALIGNMENT 0
-
-/* If bit field type is int, don't let it cross an int,
- and give entire struct the alignment of an int. */
-/* Required on the 386 since it doesn't have bitfield insns. */
-#define PCC_BITFIELD_TYPE_MATTERS 1
-
-/* Maximum power of 2 that code can be aligned to. */
-#define MAX_CODE_ALIGN 6 /* 64 byte alignment */
-
-/* Align loop starts for optimal branching. */
-#define ASM_OUTPUT_LOOP_ALIGN(FILE) ASM_OUTPUT_ALIGN (FILE, i386_align_loops)
-
-/* This is how to align an instruction for optimal branching.
- On i486 we'll get better performance by aligning on a
- cache line (i.e. 16 byte) boundary. */
-#define ASM_OUTPUT_ALIGN_CODE(FILE) ASM_OUTPUT_ALIGN ((FILE), i386_align_jumps)
-
-
-/* Standard register usage. */
-
-/* This processor has special stack-like registers. See reg-stack.c
- for details. */
-
-#define STACK_REGS
-#define IS_STACK_MODE(mode) (mode==DFmode || mode==SFmode || mode==XFmode)
-
-/* Number of actual hardware registers.
- The hardware registers are assigned numbers for the compiler
- from 0 to just below FIRST_PSEUDO_REGISTER.
- All registers that the compiler knows about must be given numbers,
- even those that are not normally considered general registers.
-
- In the 80386 we give the 8 general purpose registers the numbers 0-7.
- We number the floating point registers 8-15.
- Note that registers 0-7 can be accessed as a short or int,
- while only 0-3 may be used with byte `mov' instructions.
-
- Reg 16 does not correspond to any hardware register, but instead
- appears in the RTL as an argument pointer prior to reload, and is
- eliminated during reloading in favor of either the stack or frame
- pointer. */
-
-#define FIRST_PSEUDO_REGISTER 17
-
-/* 1 for registers that have pervasive standard uses
- and are not available for the register allocator.
- On the 80386, the stack pointer is such, as is the arg pointer. */
-#define FIXED_REGISTERS \
-/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7,arg*/ \
-{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
-
-/* 1 for registers not available across function calls.
- These must include the FIXED_REGISTERS and also any
- registers that can be used without being saved.
- The latter must include the registers where values are returned
- and the register where structure-value addresses are passed.
- Aside from that, you can include as many other registers as you like. */
-
-#define CALL_USED_REGISTERS \
-/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7,arg*/ \
-{ 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
-
-/* Order in which to allocate registers. Each register must be
- listed once, even those in FIXED_REGISTERS. List frame pointer
- late and fixed registers last. Note that, in general, we prefer
- registers listed in CALL_USED_REGISTERS, keeping the others
- available for storage of persistent values.
-
- Three different versions of REG_ALLOC_ORDER have been tried:
-
- If the order is edx, ecx, eax, ... it produces a slightly faster compiler,
- but slower code on simple functions returning values in eax.
-
- If the order is eax, ecx, edx, ... it causes reload to abort when compiling
- perl 4.036 due to not being able to create a DImode register (to hold a 2
- word union).
-
- If the order is eax, edx, ecx, ... it produces better code for simple
- functions, and a slightly slower compiler. Users complained about the code
- generated by allocating edx first, so restore the 'natural' order of things. */
-
-#define REG_ALLOC_ORDER \
-/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7,arg*/ \
-{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 }
-
-/* A C statement (sans semicolon) to choose the order in which to
- allocate hard registers for pseudo-registers local to a basic
- block.
-
- Store the desired register order in the array `reg_alloc_order'.
- Element 0 should be the register to allocate first; element 1, the
- next register; and so on.
-
- The macro body should not assume anything about the contents of
- `reg_alloc_order' before execution of the macro.
-
- On most machines, it is not necessary to define this macro. */
-
-#define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
-
-/* Macro to conditionally modify fixed_regs/call_used_regs. */
-#define CONDITIONAL_REGISTER_USAGE \
- { \
- if (flag_pic) \
- { \
- fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
- call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
- } \
- if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
- { \
- int i; \
- HARD_REG_SET x; \
- COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
- if (TEST_HARD_REG_BIT (x, i)) \
- fixed_regs[i] = call_used_regs[i] = 1; \
- } \
- }
-
-/* Return number of consecutive hard regs needed starting at reg REGNO
- to hold something of mode MODE.
- This is ordinarily the length in words of a value of mode MODE
- but can be less for certain modes in special long registers.
-
- Actually there are no two word move instructions for consecutive
- registers. And only registers 0-3 may have mov byte instructions
- applied to them.
- */
-
-#define HARD_REGNO_NREGS(REGNO, MODE) \
- (FP_REGNO_P (REGNO) ? 1 \
- : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
-
-/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
- On the 80386, the first 4 cpu registers can hold any mode
- while the floating point registers may hold only floating point.
- Make it clear that the fp regs could not hold a 16-byte float. */
-
-/* The casts to int placate a compiler on a microvax,
- for cross-compiler testing. */
-
-#define HARD_REGNO_MODE_OK(REGNO, MODE) \
- ((REGNO) < 2 ? 1 \
- : (REGNO) < 4 ? 1 \
- : FP_REGNO_P (REGNO) \
- ? (((int) GET_MODE_CLASS (MODE) == (int) MODE_FLOAT \
- || (int) GET_MODE_CLASS (MODE) == (int) MODE_COMPLEX_FLOAT) \
- && GET_MODE_UNIT_SIZE (MODE) <= (LONG_DOUBLE_TYPE_SIZE == 96 ? 12 : 8))\
- : (int) (MODE) != (int) QImode ? 1 \
- : (reload_in_progress | reload_completed) == 1)
-
-/* Value is 1 if it is a good idea to tie two pseudo registers
- when one has mode MODE1 and one has mode MODE2.
- If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
- for any hard reg, then this must be 0 for correct output. */
-
-#define MODES_TIEABLE_P(MODE1, MODE2) ((MODE1) == (MODE2))
-
-/* Specify the registers used for certain standard purposes.
- The values of these macros are register numbers. */
-
-/* on the 386 the pc register is %eip, and is not usable as a general
- register. The ordinary mov instructions won't work */
-/* #define PC_REGNUM */
-
-/* Register to use for pushing function arguments. */
-#define STACK_POINTER_REGNUM 7
-
-/* Base register for access to local variables of the function. */
-#define FRAME_POINTER_REGNUM 6
-
-/* First floating point reg */
-#define FIRST_FLOAT_REG 8
-
-/* First & last stack-like regs */
-#define FIRST_STACK_REG FIRST_FLOAT_REG
-#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
-
-/* Value should be nonzero if functions must have frame pointers.
- Zero means the frame pointer need not be set up (and parms
- may be accessed via the stack pointer) in functions that seem suitable.
- This is computed in `reload', in reload1.c. */
-#define FRAME_POINTER_REQUIRED (TARGET_OMIT_LEAF_FRAME_POINTER && !leaf_function_p ())
-
-/* Base register for access to arguments of the function. */
-#define ARG_POINTER_REGNUM 16
-
-/* Register in which static-chain is passed to a function. */
-#define STATIC_CHAIN_REGNUM 2
-
-/* Register to hold the addressing base for position independent
- code access to data items. */
-#define PIC_OFFSET_TABLE_REGNUM 3
-
-/* Register in which address to store a structure value
- arrives in the function. On the 386, the prologue
- copies this from the stack to register %eax. */
-#define STRUCT_VALUE_INCOMING 0
-
-/* Place in which caller passes the structure value address.
- 0 means push the value on the stack like an argument. */
-#define STRUCT_VALUE 0
-
-/* A C expression which can inhibit the returning of certain function
- values in registers, based on the type of value. A nonzero value
- says to return the function value in memory, just as large
- structures are always returned. Here TYPE will be a C expression
- of type `tree', representing the data type of the value.
-
- Note that values of mode `BLKmode' must be explicitly handled by
- this macro. Also, the option `-fpcc-struct-return' takes effect
- regardless of this macro. On most systems, it is possible to
- leave the macro undefined; this causes a default definition to be
- used, whose value is the constant 1 for `BLKmode' values, and 0
- otherwise.
-
- Do not use this macro to indicate that structures and unions
- should always be returned in memory. You should instead use
- `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
-
-#define RETURN_IN_MEMORY(TYPE) \
- ((TYPE_MODE (TYPE) == BLKmode) || int_size_in_bytes (TYPE) > 12)
-
-
-/* Define the classes of registers for register constraints in the
- machine description. Also define ranges of constants.
-
- One of the classes must always be named ALL_REGS and include all hard regs.
- If there is more than one class, another class must be named NO_REGS
- and contain no registers.
-
- The name GENERAL_REGS must be the name of a class (or an alias for
- another name such as ALL_REGS). This is the class of registers
- that is allowed by "g" or "r" in a register constraint.
- Also, registers outside this class are allocated only when
- instructions express preferences for them.
-
- The classes must be numbered in nondecreasing order; that is,
- a larger-numbered class must never be contained completely
- in a smaller-numbered class.
-
- For any two classes, it is very desirable that there be another
- class that represents their union.
-
- It might seem that class BREG is unnecessary, since no useful 386
- opcode needs reg %ebx. But some systems pass args to the OS in ebx,
- and the "b" register constraint is useful in asms for syscalls. */
-
-enum reg_class
-{
- NO_REGS,
- AREG, DREG, CREG, BREG,
- AD_REGS, /* %eax/%edx for DImode */
- Q_REGS, /* %eax %ebx %ecx %edx */
- SIREG, DIREG,
- INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
- GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
- FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
- FLOAT_REGS,
- ALL_REGS, LIM_REG_CLASSES
-};
-
-#define N_REG_CLASSES (int) LIM_REG_CLASSES
-
-#define FLOAT_CLASS_P(CLASS) (reg_class_subset_p (CLASS, FLOAT_REGS))
-
-/* Give names of register classes as strings for dump file. */
-
-#define REG_CLASS_NAMES \
-{ "NO_REGS", \
- "AREG", "DREG", "CREG", "BREG", \
- "AD_REGS", \
- "Q_REGS", \
- "SIREG", "DIREG", \
- "INDEX_REGS", \
- "GENERAL_REGS", \
- "FP_TOP_REG", "FP_SECOND_REG", \
- "FLOAT_REGS", \
- "ALL_REGS" }
-
-/* Define which registers fit in which classes.
- This is an initializer for a vector of HARD_REG_SET
- of length N_REG_CLASSES. */
-
-#define REG_CLASS_CONTENTS \
-{ 0, \
- 0x1, 0x2, 0x4, 0x8, /* AREG, DREG, CREG, BREG */ \
- 0x3, /* AD_REGS */ \
- 0xf, /* Q_REGS */ \
- 0x10, 0x20, /* SIREG, DIREG */ \
- 0x7f, /* INDEX_REGS */ \
- 0x100ff, /* GENERAL_REGS */ \
- 0x0100, 0x0200, /* FP_TOP_REG, FP_SECOND_REG */ \
- 0xff00, /* FLOAT_REGS */ \
- 0x1ffff }
-
-/* The same information, inverted:
- Return the class number of the smallest class containing
- reg number REGNO. This could be a conditional expression
- or could index an array. */
-
-#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
-
-/* When defined, the compiler allows registers explicitly used in the
- rtl to be used as spill registers but prevents the compiler from
- extending the lifetime of these registers. */
-
-#define SMALL_REGISTER_CLASSES 1
-
-#define QI_REG_P(X) \
- (REG_P (X) && REGNO (X) < 4)
-#define NON_QI_REG_P(X) \
- (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
-
-#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
-#define FP_REGNO_P(n) ((n) >= FIRST_STACK_REG && (n) <= LAST_STACK_REG)
-
-#define STACK_REG_P(xop) (REG_P (xop) && \
- REGNO (xop) >= FIRST_STACK_REG && \
- REGNO (xop) <= LAST_STACK_REG)
-
-#define NON_STACK_REG_P(xop) (REG_P (xop) && ! STACK_REG_P (xop))
-
-#define STACK_TOP_P(xop) (REG_P (xop) && REGNO (xop) == FIRST_STACK_REG)
-
-/* Try to maintain the accuracy of the death notes for regs satisfying the
- following. Important for stack like regs, to know when to pop. */
-
-/* #define PRESERVE_DEATH_INFO_REGNO_P(x) FP_REGNO_P(x) */
-
-/* 1 if register REGNO can magically overlap other regs.
- Note that nonzero values work only in very special circumstances. */
-
-/* #define OVERLAPPING_REGNO_P(REGNO) FP_REGNO_P (REGNO) */
-
-/* The class value for index registers, and the one for base regs. */
-
-#define INDEX_REG_CLASS INDEX_REGS
-#define BASE_REG_CLASS GENERAL_REGS
-
-/* Get reg_class from a letter such as appears in the machine description. */
-
-#define REG_CLASS_FROM_LETTER(C) \
- ((C) == 'r' ? GENERAL_REGS : \
- (C) == 'q' ? Q_REGS : \
- (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
- ? FLOAT_REGS \
- : NO_REGS) : \
- (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
- ? FP_TOP_REG \
- : NO_REGS) : \
- (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
- ? FP_SECOND_REG \
- : NO_REGS) : \
- (C) == 'a' ? AREG : \
- (C) == 'b' ? BREG : \
- (C) == 'c' ? CREG : \
- (C) == 'd' ? DREG : \
- (C) == 'A' ? AD_REGS : \
- (C) == 'D' ? DIREG : \
- (C) == 'S' ? SIREG : NO_REGS)
-
-/* The letters I, J, K, L and M in a register constraint string
- can be used to stand for particular ranges of immediate operands.
- This macro defines what the ranges are.
- C is the letter, and VALUE is a constant value.
- Return 1 if VALUE is in the range specified by C.
-
- I is for non-DImode shifts.
- J is for DImode shifts.
- K and L are for an `andsi' optimization.
- M is for shifts that can be executed by the "lea" opcode.
- */
-
-#define CONST_OK_FOR_LETTER_P(VALUE, C) \
- ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 : \
- (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 : \
- (C) == 'K' ? (VALUE) == 0xff : \
- (C) == 'L' ? (VALUE) == 0xffff : \
- (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 : \
- (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 :\
- (C) == 'O' ? (VALUE) >= 0 && (VALUE) <= 32 : \
- 0)
-
-/* Similar, but for floating constants, and defining letters G and H.
- Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
- TARGET_387 isn't set, because the stack register converter may need to
- load 0.0 into the function value register. */
-
-#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
- ((C) == 'G' ? standard_80387_constant_p (VALUE) : 0)
-
-/* Place additional restrictions on the register class to use when it
- is necessary to be able to hold a value of mode MODE in a reload
- register for which class CLASS would ordinarily be used. */
-
-#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
- ((MODE) == QImode && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS) \
- ? Q_REGS : (CLASS))
-
-/* Given an rtx X being reloaded into a reg required to be
- in class CLASS, return the class of reg to actually use.
- In general this is just CLASS; but on some machines
- in some cases it is preferable to use a more restrictive class.
- On the 80386 series, we prevent floating constants from being
- reloaded into floating registers (since no move-insn can do that)
- and we ensure that QImodes aren't reloaded into the esi or edi reg. */
-
-/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
- QImode must go into class Q_REGS.
- Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
- movdf to do mem-to-mem moves through integer regs. */
-
-#define PREFERRED_RELOAD_CLASS(X,CLASS) \
- (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode ? NO_REGS \
- : GET_MODE (X) == QImode && ! reg_class_subset_p (CLASS, Q_REGS) ? Q_REGS \
- : ((CLASS) == ALL_REGS \
- && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) ? GENERAL_REGS \
- : (CLASS))
-
-/* If we are copying between general and FP registers, we need a memory
- location. */
-
-#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
- ((FLOAT_CLASS_P (CLASS1) && ! FLOAT_CLASS_P (CLASS2)) \
- || (! FLOAT_CLASS_P (CLASS1) && FLOAT_CLASS_P (CLASS2)))
-
-/* Return the maximum number of consecutive registers
- needed to represent mode MODE in a register of class CLASS. */
-/* On the 80386, this is the size of MODE in words,
- except in the FP regs, where a single reg is always enough. */
-#define CLASS_MAX_NREGS(CLASS, MODE) \
- (FLOAT_CLASS_P (CLASS) ? 1 : \
- ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
-
-/* A C expression whose value is nonzero if pseudos that have been
- assigned to registers of class CLASS would likely be spilled
- because registers of CLASS are needed for spill registers.
-
- The default value of this macro returns 1 if CLASS has exactly one
- register and zero otherwise. On most machines, this default
- should be used. Only define this macro to some other expression
- if pseudo allocated by `local-alloc.c' end up in memory because
- their hard registers were needed for spill registers. If this
- macro returns nonzero for those classes, those pseudos will only
- be allocated by `global.c', which knows how to reallocate the
- pseudo to another register. If there would not be another
- register available for reallocation, you should not change the
- definition of this macro since the only effect of such a
- definition would be to slow down register allocation. */
-
-#define CLASS_LIKELY_SPILLED_P(CLASS) \
- (((CLASS) == AREG) \
- || ((CLASS) == DREG) \
- || ((CLASS) == CREG) \
- || ((CLASS) == BREG) \
- || ((CLASS) == AD_REGS) \
- || ((CLASS) == SIREG) \
- || ((CLASS) == DIREG))
-
-
-/* Stack layout; function entry, exit and calling. */
-
-/* Define this if pushing a word on the stack
- makes the stack pointer a smaller address. */
-#define STACK_GROWS_DOWNWARD
-
-/* Define this if the nominal address of the stack frame
- is at the high-address end of the local variables;
- that is, each additional local variable allocated
- goes at a more negative offset in the frame. */
-#define FRAME_GROWS_DOWNWARD
-
-/* Offset within stack frame to start allocating local variables at.
- If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
- first local allocated. Otherwise, it is the offset to the BEGINNING
- of the first local allocated. */
-#define STARTING_FRAME_OFFSET 0
-
-/* If we generate an insn to push BYTES bytes,
- this says how many the stack pointer really advances by.
- On 386 pushw decrements by exactly 2 no matter what the position was.
- On the 386 there is no pushb; we use pushw instead, and this
- has the effect of rounding up to 2. */
-
-#define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & (-2))
-
-/* Offset of first parameter from the argument pointer register value. */
-#define FIRST_PARM_OFFSET(FNDECL) 0
-
-/* Value is the number of bytes of arguments automatically
- popped when returning from a subroutine call.
- FUNDECL is the declaration node of the function (as a tree),
- FUNTYPE is the data type of the function (as a tree),
- or for a library call it is an identifier node for the subroutine name.
- SIZE is the number of bytes of arguments passed on the stack.
-
- On the 80386, the RTD insn may be used to pop them if the number
- of args is fixed, but if the number is variable then the caller
- must pop them all. RTD can't be used for library calls now
- because the library is compiled with the Unix compiler.
- Use of RTD is a selectable option, since it is incompatible with
- standard Unix calling sequences. If the option is not selected,
- the caller must always pop the args.
-
- The attribute stdcall is equivalent to RTD on a per module basis. */
-
-#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) \
- (i386_return_pops_args (FUNDECL, FUNTYPE, SIZE))
-
-/* Define how to find the value returned by a function.
- VALTYPE is the data type of the value (as a tree).
- If the precise function being called is known, FUNC is its FUNCTION_DECL;
- otherwise, FUNC is 0. */
-#define FUNCTION_VALUE(VALTYPE, FUNC) \
- gen_rtx (REG, TYPE_MODE (VALTYPE), \
- VALUE_REGNO (TYPE_MODE (VALTYPE)))
-
-/* Define how to find the value returned by a library function
- assuming the value has mode MODE. */
-
-#define LIBCALL_VALUE(MODE) \
- gen_rtx (REG, MODE, VALUE_REGNO (MODE))
-
-/* Define the size of the result block used for communication between
- untyped_call and untyped_return. The block contains a DImode value
- followed by the block used by fnsave and frstor. */
-
-#define APPLY_RESULT_SIZE (8+108)
-
-/* 1 if N is a possible register number for function argument passing. */
-#define FUNCTION_ARG_REGNO_P(N) ((N) >= 0 && (N) < REGPARM_MAX)
-
-/* Define a data type for recording info about an argument list
- during the scan of that argument list. This data type should
- hold all necessary information about the function itself
- and about the args processed so far, enough to enable macros
- such as FUNCTION_ARG to determine where the next arg should go. */
-
-typedef struct i386_args {
- int words; /* # words passed so far */
- int nregs; /* # registers available for passing */
- int regno; /* next available register number */
-} CUMULATIVE_ARGS;
-
-/* Initialize a variable CUM of type CUMULATIVE_ARGS
- for a call to a function whose data type is FNTYPE.
- For a library call, FNTYPE is 0. */
-
-#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
- (init_cumulative_args (&CUM, FNTYPE, LIBNAME))
-
-/* Update the data in CUM to advance over an argument
- of mode MODE and data type TYPE.
- (TYPE is null for libcalls where that information may not be available.) */
-
-#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
- (function_arg_advance (&CUM, MODE, TYPE, NAMED))
-
-/* Define where to put the arguments to a function.
- Value is zero to push the argument on the stack,
- or a hard register in which to store the argument.
-
- MODE is the argument's machine mode.
- TYPE is the data type of the argument (as a tree).
- This is null for libcalls where that information may
- not be available.
- CUM is a variable of type CUMULATIVE_ARGS which gives info about
- the preceding args and about the function being called.
- NAMED is nonzero if this argument is a named parameter
- (otherwise it is an extra parameter matching an ellipsis). */
-
-#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
- (function_arg (&CUM, MODE, TYPE, NAMED))
-
-/* For an arg passed partly in registers and partly in memory,
- this is the number of registers used.
- For args passed entirely in registers or entirely in memory, zero. */
-
-#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
- (function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED))
-
-/* This macro is invoked just before the start of a function.
- It is used here to output code for -fpic that will load the
- return address into %ebx. */
-
-#undef ASM_OUTPUT_FUNCTION_PREFIX
-#define ASM_OUTPUT_FUNCTION_PREFIX(FILE, FNNAME) \
- asm_output_function_prefix (FILE, FNNAME)
-
-/* This macro generates the assembly code for function entry.
- FILE is a stdio stream to output the code to.
- SIZE is an int: how many units of temporary storage to allocate.
- Refer to the array `regs_ever_live' to determine which registers
- to save; `regs_ever_live[I]' is nonzero if register number I
- is ever used in the function. This macro is responsible for
- knowing which registers should not be saved even if used. */
-
-#define FUNCTION_PROLOGUE(FILE, SIZE) \
- function_prologue (FILE, SIZE)
-
-/* Output assembler code to FILE to increment profiler label # LABELNO
- for profiling a function entry. */
-
-#define FUNCTION_PROFILER(FILE, LABELNO) \
-{ \
- if (flag_pic) \
- { \
- fprintf (FILE, "\tleal %sP%d@GOTOFF(%%ebx),%%edx\n", \
- LPREFIX, (LABELNO)); \
- fprintf (FILE, "\tcall *_mcount@GOT(%%ebx)\n"); \
- } \
- else \
- { \
- fprintf (FILE, "\tmovl $%sP%d,%%edx\n", LPREFIX, (LABELNO)); \
- fprintf (FILE, "\tcall _mcount\n"); \
- } \
-}
-
-
-/* There are three profiling modes for basic blocks available.
- The modes are selected at compile time by using the options
- -a or -ax of the gnu compiler.
- The variable `profile_block_flag' will be set according to the
- selected option.
-
- profile_block_flag == 0, no option used:
-
- No profiling done.
-
- profile_block_flag == 1, -a option used.
-
- Count frequency of execution of every basic block.
-
- profile_block_flag == 2, -ax option used.
-
- Generate code to allow several different profiling modes at run time.
- Available modes are:
- Produce a trace of all basic blocks.
- Count frequency of jump instructions executed.
- In every mode it is possible to start profiling upon entering
- certain functions and to disable profiling of some other functions.
-
- The result of basic-block profiling will be written to a file `bb.out'.
- If the -ax option is used parameters for the profiling will be read
- from file `bb.in'.
-
-*/
-
-/* The following macro shall output assembler code to FILE
- to initialize basic-block profiling.
-
- If profile_block_flag == 2
-
- Output code to call the subroutine `__bb_init_trace_func'
- and pass two parameters to it. The first parameter is
- the address of a block allocated in the object module.
- The second parameter is the number of the first basic block
- of the function.
-
- The name of the block is a local symbol made with this statement:
-
- ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 0);
-
- Of course, since you are writing the definition of
- `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you
- can take a short cut in the definition of this macro and use the
- name that you know will result.
-
- The number of the first basic block of the function is
- passed to the macro in BLOCK_OR_LABEL.
-
- If described in a virtual assembler language the code to be
- output looks like:
-
- parameter1 <- LPBX0
- parameter2 <- BLOCK_OR_LABEL
- call __bb_init_trace_func
-
- else if profile_block_flag != 0
-
- Output code to call the subroutine `__bb_init_func'
- and pass one single parameter to it, which is the same
- as the first parameter to `__bb_init_trace_func'.
-
- The first word of this parameter is a flag which will be nonzero if
- the object module has already been initialized. So test this word
- first, and do not call `__bb_init_func' if the flag is nonzero.
- Note: When profile_block_flag == 2 the test need not be done
- but `__bb_init_trace_func' *must* be called.
-
- BLOCK_OR_LABEL may be used to generate a label number as a
- branch destination in case `__bb_init_func' will not be called.
-
- If described in a virtual assembler language the code to be
- output looks like:
-
- cmp (LPBX0),0
- jne local_label
- parameter1 <- LPBX0
- call __bb_init_func
-local_label:
-
-*/
-
-#undef FUNCTION_BLOCK_PROFILER
-#define FUNCTION_BLOCK_PROFILER(FILE, BLOCK_OR_LABEL) \
-do \
- { \
- static int num_func = 0; \
- rtx xops[8]; \
- char block_table[80], false_label[80]; \
- \
- ASM_GENERATE_INTERNAL_LABEL (block_table, "LPBX", 0); \
- \
- xops[1] = gen_rtx (SYMBOL_REF, VOIDmode, block_table); \
- xops[5] = stack_pointer_rtx; \
- xops[7] = gen_rtx (REG, Pmode, 0); /* eax */ \
- \
- CONSTANT_POOL_ADDRESS_P (xops[1]) = TRUE; \
- \
- switch (profile_block_flag) \
- { \
- \
- case 2: \
- \
- xops[2] = GEN_INT ((BLOCK_OR_LABEL)); \
- xops[3] = gen_rtx (MEM, Pmode, gen_rtx (SYMBOL_REF, VOIDmode, "__bb_init_trace_func")); \
- xops[6] = GEN_INT (8); \
- \
- output_asm_insn (AS1(push%L2,%2), xops); \
- if (!flag_pic) \
- output_asm_insn (AS1(push%L1,%1), xops); \
- else \
- { \
- output_asm_insn (AS2 (lea%L7,%a1,%7), xops); \
- output_asm_insn (AS1 (push%L7,%7), xops); \
- } \
- \
- output_asm_insn (AS1(call,%P3), xops); \
- output_asm_insn (AS2(add%L0,%6,%5), xops); \
- \
- break; \
- \
- default: \
- \
- ASM_GENERATE_INTERNAL_LABEL (false_label, "LPBZ", num_func); \
- \
- xops[0] = const0_rtx; \
- xops[2] = gen_rtx (MEM, Pmode, gen_rtx (SYMBOL_REF, VOIDmode, false_label)); \
- xops[3] = gen_rtx (MEM, Pmode, gen_rtx (SYMBOL_REF, VOIDmode, "__bb_init_func")); \
- xops[4] = gen_rtx (MEM, Pmode, xops[1]); \
- xops[6] = GEN_INT (4); \
- \
- CONSTANT_POOL_ADDRESS_P (xops[2]) = TRUE; \
- \
- output_asm_insn (AS2(cmp%L4,%0,%4), xops); \
- output_asm_insn (AS1(jne,%2), xops); \
- \
- if (!flag_pic) \
- output_asm_insn (AS1(push%L1,%1), xops); \
- else \
- { \
- output_asm_insn (AS2 (lea%L7,%a1,%7), xops); \
- output_asm_insn (AS1 (push%L7,%7), xops); \
- } \
- \
- output_asm_insn (AS1(call,%P3), xops); \
- output_asm_insn (AS2(add%L0,%6,%5), xops); \
- ASM_OUTPUT_INTERNAL_LABEL (FILE, "LPBZ", num_func); \
- num_func++; \
- \
- break; \
- \
- } \
- } \
-while (0)
-
-/* The following macro shall output assembler code to FILE
- to increment a counter associated with basic block number BLOCKNO.
-
- If profile_block_flag == 2
-
- Output code to initialize the global structure `__bb' and
- call the function `__bb_trace_func' which will increment the
- counter.
-
- `__bb' consists of two words. In the first word the number
- of the basic block has to be stored. In the second word
- the address of a block allocated in the object module
- has to be stored.
-
- The basic block number is given by BLOCKNO.
-
- The address of the block is given by the label created with
-
- ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 0);
-
- by FUNCTION_BLOCK_PROFILER.
-
- Of course, since you are writing the definition of
- `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you
- can take a short cut in the definition of this macro and use the
- name that you know will result.
-
- If described in a virtual assembler language the code to be
- output looks like:
-
- move BLOCKNO -> (__bb)
- move LPBX0 -> (__bb+4)
- call __bb_trace_func
-
- Note that function `__bb_trace_func' must not change the
- machine state, especially the flag register. To grant
- this, you must output code to save and restore registers
- either in this macro or in the macros MACHINE_STATE_SAVE
- and MACHINE_STATE_RESTORE. The last two macros will be
- used in the function `__bb_trace_func', so you must make
- sure that the function prologue does not change any
- register prior to saving it with MACHINE_STATE_SAVE.
-
- else if profile_block_flag != 0
-
- Output code to increment the counter directly.
- Basic blocks are numbered separately from zero within each
- compiled object module. The count associated with block number
- BLOCKNO is at index BLOCKNO in an array of words; the name of
- this array is a local symbol made with this statement:
-
- ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 2);
-
- Of course, since you are writing the definition of
- `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you
- can take a short cut in the definition of this macro and use the
- name that you know will result.
-
- If described in a virtual assembler language the code to be
- output looks like:
-
- inc (LPBX2+4*BLOCKNO)
-
-*/
-
-#define BLOCK_PROFILER(FILE, BLOCKNO) \
-do \
- { \
- rtx xops[8], cnt_rtx; \
- char counts[80]; \
- char *block_table = counts; \
- \
- switch (profile_block_flag) \
- { \
- \
- case 2: \
- \
- ASM_GENERATE_INTERNAL_LABEL (block_table, "LPBX", 0); \
- \
- xops[1] = gen_rtx (SYMBOL_REF, VOIDmode, block_table); \
- xops[2] = GEN_INT ((BLOCKNO)); \
- xops[3] = gen_rtx (MEM, Pmode, gen_rtx (SYMBOL_REF, VOIDmode, "__bb_trace_func")); \
- xops[4] = gen_rtx (SYMBOL_REF, VOIDmode, "__bb"); \
- xops[5] = plus_constant (xops[4], 4); \
- xops[0] = gen_rtx (MEM, SImode, xops[4]); \
- xops[6] = gen_rtx (MEM, SImode, xops[5]); \
- \
- CONSTANT_POOL_ADDRESS_P (xops[1]) = TRUE; \
- \
- fprintf(FILE, "\tpushf\n"); \
- output_asm_insn (AS2(mov%L0,%2,%0), xops); \
- if (flag_pic) \
- { \
- xops[7] = gen_rtx (REG, Pmode, 0); /* eax */ \
- output_asm_insn (AS1(push%L7,%7), xops); \
- output_asm_insn (AS2(lea%L7,%a1,%7), xops); \
- output_asm_insn (AS2(mov%L6,%7,%6), xops); \
- output_asm_insn (AS1(pop%L7,%7), xops); \
- } \
- else \
- output_asm_insn (AS2(mov%L6,%1,%6), xops); \
- output_asm_insn (AS1(call,%P3), xops); \
- fprintf(FILE, "\tpopf\n"); \
- \
- break; \
- \
- default: \
- \
- ASM_GENERATE_INTERNAL_LABEL (counts, "LPBX", 2); \
- cnt_rtx = gen_rtx (SYMBOL_REF, VOIDmode, counts); \
- SYMBOL_REF_FLAG (cnt_rtx) = TRUE; \
- \
- if (BLOCKNO) \
- cnt_rtx = plus_constant (cnt_rtx, (BLOCKNO)*4); \
- \
- if (flag_pic) \
- cnt_rtx = gen_rtx (PLUS, Pmode, pic_offset_table_rtx, cnt_rtx); \
- \
- xops[0] = gen_rtx (MEM, SImode, cnt_rtx); \
- output_asm_insn (AS1(inc%L0,%0), xops); \
- \
- break; \
- \
- } \
- } \
-while (0)
-
-/* The following macro shall output assembler code to FILE
- to indicate a return from function during basic-block profiling.
-
- If profiling_block_flag == 2:
-
- Output assembler code to call function `__bb_trace_ret'.
-
- Note that function `__bb_trace_ret' must not change the
- machine state, especially the flag register. To grant
- this, you must output code to save and restore registers
- either in this macro or in the macros MACHINE_STATE_SAVE_RET
- and MACHINE_STATE_RESTORE_RET. The last two macros will be
- used in the function `__bb_trace_ret', so you must make
- sure that the function prologue does not change any
- register prior to saving it with MACHINE_STATE_SAVE_RET.
-
- else if profiling_block_flag != 0:
-
- The macro will not be used, so it need not distinguish
- these cases.
-*/
-
-#define FUNCTION_BLOCK_PROFILER_EXIT(FILE) \
-do \
- { \
- rtx xops[1]; \
- \
- xops[0] = gen_rtx (MEM, Pmode, gen_rtx (SYMBOL_REF, VOIDmode, "__bb_trace_ret")); \
- \
- output_asm_insn (AS1(call,%P0), xops); \
- \
- } \
-while (0)
-
-/* The function `__bb_trace_func' is called in every basic block
- and is not allowed to change the machine state. Saving (restoring)
- the state can either be done in the BLOCK_PROFILER macro,
- before calling function (rsp. after returning from function)
- `__bb_trace_func', or it can be done inside the function by
- defining the macros:
-
- MACHINE_STATE_SAVE(ID)
- MACHINE_STATE_RESTORE(ID)
-
- In the latter case care must be taken, that the prologue code
- of function `__bb_trace_func' does not already change the
- state prior to saving it with MACHINE_STATE_SAVE.
-
- The parameter `ID' is a string identifying a unique macro use.
-
- On the i386 the initialization code at the begin of
- function `__bb_trace_func' contains a `sub' instruction
- therefore we handle save and restore of the flag register
- in the BLOCK_PROFILER macro. */
-
-#define MACHINE_STATE_SAVE(ID) \
- asm (" pushl %eax"); \
- asm (" pushl %ecx"); \
- asm (" pushl %edx"); \
- asm (" pushl %esi");
-
-#define MACHINE_STATE_RESTORE(ID) \
- asm (" popl %esi"); \
- asm (" popl %edx"); \
- asm (" popl %ecx"); \
- asm (" popl %eax");
-
-/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
- the stack pointer does not matter. The value is tested only in
- functions that have frame pointers.
- No definition is equivalent to always zero. */
-/* Note on the 386 it might be more efficient not to define this since
- we have to restore it ourselves from the frame pointer, in order to
- use pop */
-
-#define EXIT_IGNORE_STACK 1
-
-/* This macro generates the assembly code for function exit,
- on machines that need it. If FUNCTION_EPILOGUE is not defined
- then individual return instructions are generated for each
- return statement. Args are same as for FUNCTION_PROLOGUE.
-
- The function epilogue should not depend on the current stack pointer!
- It should use the frame pointer only. This is mandatory because
- of alloca; we also take advantage of it to omit stack adjustments
- before returning.
-
- If the last non-note insn in the function is a BARRIER, then there
- is no need to emit a function prologue, because control does not fall
- off the end. This happens if the function ends in an "exit" call, or
- if a `return' insn is emitted directly into the function. */
-
-#if 0
-#define FUNCTION_BEGIN_EPILOGUE(FILE) \
-do { \
- rtx last = get_last_insn (); \
- if (last && GET_CODE (last) == NOTE) \
- last = prev_nonnote_insn (last); \
-/* if (! last || GET_CODE (last) != BARRIER) \
- function_epilogue (FILE, SIZE);*/ \
-} while (0)
-#endif
-
-#define FUNCTION_EPILOGUE(FILE, SIZE) \
- function_epilogue (FILE, SIZE)
-
-/* Output assembler code for a block containing the constant parts
- of a trampoline, leaving space for the variable parts. */
-
-/* On the 386, the trampoline contains three instructions:
- mov #STATIC,ecx
- mov #FUNCTION,eax
- jmp @eax */
-#define TRAMPOLINE_TEMPLATE(FILE) \
-{ \
- ASM_OUTPUT_CHAR (FILE, GEN_INT (0xb9)); \
- ASM_OUTPUT_SHORT (FILE, const0_rtx); \
- ASM_OUTPUT_SHORT (FILE, const0_rtx); \
- ASM_OUTPUT_CHAR (FILE, GEN_INT (0xb8)); \
- ASM_OUTPUT_SHORT (FILE, const0_rtx); \
- ASM_OUTPUT_SHORT (FILE, const0_rtx); \
- ASM_OUTPUT_CHAR (FILE, GEN_INT (0xff)); \
- ASM_OUTPUT_CHAR (FILE, GEN_INT (0xe0)); \
-}
-
-/* Length in units of the trampoline for entering a nested function. */
-
-#define TRAMPOLINE_SIZE 12
-
-/* Emit RTL insns to initialize the variable parts of a trampoline.
- FNADDR is an RTX for the address of the function's pure code.
- CXT is an RTX for the static chain value for the function. */
-
-#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
-{ \
- emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 1)), CXT); \
- emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 6)), FNADDR); \
-}
-
-/* Definitions for register eliminations.
-
- This is an array of structures. Each structure initializes one pair
- of eliminable registers. The "from" register number is given first,
- followed by "to". Eliminations of the same "from" register are listed
- in order of preference.
-
- We have two registers that can be eliminated on the i386. First, the
- frame pointer register can often be eliminated in favor of the stack
- pointer register. Secondly, the argument pointer register can always be
- eliminated; it is replaced with either the stack or frame pointer. */
-
-#define ELIMINABLE_REGS \
-{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
- { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
- { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
-
-/* Given FROM and TO register numbers, say whether this elimination is allowed.
- Frame pointer elimination is automatically handled.
-
- For the i386, if frame pointer elimination is being done, we would like to
- convert ap into sp, not fp.
-
- All other eliminations are valid. */
-
-#define CAN_ELIMINATE(FROM, TO) \
- ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
- ? ! frame_pointer_needed \
- : 1)
-
-/* Define the offset between two registers, one to be eliminated, and the other
- its replacement, at the start of a routine. */
-
-#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
-{ \
- if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
- (OFFSET) = 8; /* Skip saved PC and previous frame pointer */ \
- else \
- { \
- int regno; \
- int offset = 0; \
- \
- for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
- if ((regs_ever_live[regno] && ! call_used_regs[regno]) \
- || (current_function_uses_pic_offset_table \
- && regno == PIC_OFFSET_TABLE_REGNUM)) \
- offset += 4; \
- \
- (OFFSET) = offset + get_frame_size (); \
- \
- if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
- (OFFSET) += 4; /* Skip saved PC */ \
- } \
-}
-
-/* Addressing modes, and classification of registers for them. */
-
-/* #define HAVE_POST_INCREMENT */
-/* #define HAVE_POST_DECREMENT */
-
-/* #define HAVE_PRE_DECREMENT */
-/* #define HAVE_PRE_INCREMENT */
-
-/* Macros to check register numbers against specific register classes. */
-
-/* These assume that REGNO is a hard or pseudo reg number.
- They give nonzero only if REGNO is a hard reg of the suitable class
- or a pseudo reg currently allocated to a suitable hard reg.
- Since they use reg_renumber, they are safe only once reg_renumber
- has been allocated, which happens in local-alloc.c. */
-
-#define REGNO_OK_FOR_INDEX_P(REGNO) \
- ((REGNO) < STACK_POINTER_REGNUM \
- || (unsigned) reg_renumber[REGNO] < STACK_POINTER_REGNUM)
-
-#define REGNO_OK_FOR_BASE_P(REGNO) \
- ((REGNO) <= STACK_POINTER_REGNUM \
- || (REGNO) == ARG_POINTER_REGNUM \
- || (unsigned) reg_renumber[REGNO] <= STACK_POINTER_REGNUM)
-
-#define REGNO_OK_FOR_SIREG_P(REGNO) ((REGNO) == 4 || reg_renumber[REGNO] == 4)
-#define REGNO_OK_FOR_DIREG_P(REGNO) ((REGNO) == 5 || reg_renumber[REGNO] == 5)
-
-/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
- and check its validity for a certain class.
- We have two alternate definitions for each of them.
- The usual definition accepts all pseudo regs; the other rejects
- them unless they have been allocated suitable hard regs.
- The symbol REG_OK_STRICT causes the latter definition to be used.
-
- Most source files want to accept pseudo regs in the hope that
- they will get allocated to the class that the insn wants them to be in.
- Source files for reload pass need to be strict.
- After reload, it makes no difference, since pseudo regs have
- been eliminated by then. */
-
-
-/* Non strict versions, pseudos are ok */
-#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
- (REGNO (X) < STACK_POINTER_REGNUM \
- || REGNO (X) >= FIRST_PSEUDO_REGISTER)
-
-#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
- (REGNO (X) <= STACK_POINTER_REGNUM \
- || REGNO (X) == ARG_POINTER_REGNUM \
- || REGNO (X) >= FIRST_PSEUDO_REGISTER)
-
-#define REG_OK_FOR_STRREG_NONSTRICT_P(X) \
- (REGNO (X) == 4 || REGNO (X) == 5 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
-
-/* Strict versions, hard registers only */
-#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
-#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
-#define REG_OK_FOR_STRREG_STRICT_P(X) \
- (REGNO_OK_FOR_DIREG_P (REGNO (X)) || REGNO_OK_FOR_SIREG_P (REGNO (X)))
-
-#ifndef REG_OK_STRICT
-#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P(X)
-#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P(X)
-#define REG_OK_FOR_STRREG_P(X) REG_OK_FOR_STRREG_NONSTRICT_P(X)
-
-#else
-#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P(X)
-#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P(X)
-#define REG_OK_FOR_STRREG_P(X) REG_OK_FOR_STRREG_STRICT_P(X)
-#endif
-
-/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
- that is a valid memory address for an instruction.
- The MODE argument is the machine mode for the MEM expression
- that wants to use this address.
-
- The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
- except for CONSTANT_ADDRESS_P which is usually machine-independent.
-
- See legitimize_pic_address in i386.c for details as to what
- constitutes a legitimate address when -fpic is used. */
-
-#define MAX_REGS_PER_ADDRESS 2
-
-#define CONSTANT_ADDRESS_P(X) \
- (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
- || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
- || GET_CODE (X) == HIGH)
-
-/* Nonzero if the constant value X is a legitimate general operand.
- It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
-
-#define LEGITIMATE_CONSTANT_P(X) 1
-
-#ifdef REG_OK_STRICT
-#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
-{ \
- if (legitimate_address_p (MODE, X, 1)) \
- goto ADDR; \
-}
-
-#else
-#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
-{ \
- if (legitimate_address_p (MODE, X, 0)) \
- goto ADDR; \
-}
-
-#endif
-
-/* Try machine-dependent ways of modifying an illegitimate address
- to be legitimate. If we find one, return the new, valid address.
- This macro is used in only one place: `memory_address' in explow.c.
-
- OLDX is the address as it was before break_out_memory_refs was called.
- In some cases it is useful to look at this to decide what needs to be done.
-
- MODE and WIN are passed so that this macro can use
- GO_IF_LEGITIMATE_ADDRESS.
-
- It is always safe for this macro to do nothing. It exists to recognize
- opportunities to optimize the output.
-
- For the 80386, we handle X+REG by loading X into a register R and
- using R+REG. R will go in a general reg and indexing will be used.
- However, if REG is a broken-out memory address or multiplication,
- nothing needs to be done because REG can certainly go in a general reg.
-
- When -fpic is used, special handling is needed for symbolic references.
- See comments by legitimize_pic_address in i386.c for details. */
-
-#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
-{ \
- rtx orig_x = (X); \
- (X) = legitimize_address (X, OLDX, MODE); \
- if (memory_address_p (MODE, X)) \
- goto WIN; \
-}
-
-#define REWRITE_ADDRESS(x) rewrite_address(x)
-
-/* Nonzero if the constant value X is a legitimate general operand
- when generating PIC code. It is given that flag_pic is on and
- that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
-
-#define LEGITIMATE_PIC_OPERAND_P(X) \
- (! SYMBOLIC_CONST (X) \
- || (GET_CODE (X) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (X)))
-
-#define SYMBOLIC_CONST(X) \
-(GET_CODE (X) == SYMBOL_REF \
- || GET_CODE (X) == LABEL_REF \
- || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
-
-/* Go to LABEL if ADDR (a legitimate address expression)
- has an effect that depends on the machine mode it is used for.
- On the 80386, only postdecrement and postincrement address depend thus
- (the amount of decrement or increment being the length of the operand). */
-#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
- if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == POST_DEC) goto LABEL
-
-/* Define this macro if references to a symbol must be treated
- differently depending on something about the variable or
- function named by the symbol (such as what section it is in).
-
- On i386, if using PIC, mark a SYMBOL_REF for a non-global symbol
- so that we may access it directly in the GOT. */
-
-#define ENCODE_SECTION_INFO(DECL) \
-do \
- { \
- if (flag_pic) \
- { \
- rtx rtl = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
- ? TREE_CST_RTL (DECL) : DECL_RTL (DECL)); \
- \
- if (TARGET_DEBUG_ADDR \
- && TREE_CODE_CLASS (TREE_CODE (DECL)) == 'd') \
- { \
- fprintf (stderr, "Encode %s, public = %s\n", \
- IDENTIFIER_POINTER (DECL_NAME (DECL)), \
- TREE_PUBLIC (DECL)); \
- } \
- \
- SYMBOL_REF_FLAG (XEXP (rtl, 0)) \
- = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
- || ! TREE_PUBLIC (DECL)); \
- } \
- } \
-while (0)
-
-/* Initialize data used by insn expanders. This is called from
- init_emit, once for each function, before code is generated.
- For 386, clear stack slot assignments remembered from previous
- functions. */
-
-#define INIT_EXPANDERS clear_386_stack_locals ()
-
-/* The `FINALIZE_PIC' macro serves as a hook to emit these special
- codes once the function is being compiled into assembly code, but
- not before. (It is not done before, because in the case of
- compiling an inline function, it would lead to multiple PIC
- prologues being included in functions which used inline functions
- and were compiled to assembly language.) */
-
-#define FINALIZE_PIC \
-do \
- { \
- extern int current_function_uses_pic_offset_table; \
- \
- current_function_uses_pic_offset_table |= profile_flag | profile_block_flag; \
- } \
-while (0)
-
-
-/* If defined, a C expression whose value is nonzero if IDENTIFIER
- with arguments ARGS is a valid machine specific attribute for DECL.
- The attributes in ATTRIBUTES have previously been assigned to DECL. */
-
-#define VALID_MACHINE_DECL_ATTRIBUTE(DECL, ATTRIBUTES, NAME, ARGS) \
- (i386_valid_decl_attribute_p (DECL, ATTRIBUTES, NAME, ARGS))
-
-/* If defined, a C expression whose value is nonzero if IDENTIFIER
- with arguments ARGS is a valid machine specific attribute for TYPE.
- The attributes in ATTRIBUTES have previously been assigned to TYPE. */
-
-#define VALID_MACHINE_TYPE_ATTRIBUTE(TYPE, ATTRIBUTES, NAME, ARGS) \
- (i386_valid_type_attribute_p (TYPE, ATTRIBUTES, NAME, ARGS))
-
-/* If defined, a C expression whose value is zero if the attributes on
- TYPE1 and TYPE2 are incompatible, one if they are compatible, and
- two if they are nearly compatible (which causes a warning to be
- generated). */
-
-#define COMP_TYPE_ATTRIBUTES(TYPE1, TYPE2) \
- (i386_comp_type_attributes (TYPE1, TYPE2))
-
-/* If defined, a C statement that assigns default attributes to newly
- defined TYPE. */
-
-/* #define SET_DEFAULT_TYPE_ATTRIBUTES (TYPE) */
-
-/* Max number of args passed in registers. If this is more than 3, we will
- have problems with ebx (register #4), since it is a caller save register and
- is also used as the pic register in ELF. So for now, don't allow more than
- 3 registers to be passed in registers. */
-
-#define REGPARM_MAX 3
-
-
-/* Specify the machine mode that this machine uses
- for the index in the tablejump instruction. */
-#define CASE_VECTOR_MODE Pmode
-
-/* Define this if the tablejump instruction expects the table
- to contain offsets from the address of the table.
- Do not define this if the table should contain absolute addresses. */
-/* #define CASE_VECTOR_PC_RELATIVE */
-
-/* Specify the tree operation to be used to convert reals to integers.
- This should be changed to take advantage of fist --wfs ??
- */
-#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
-
-/* This is the kind of divide that is easiest to do in the general case. */
-#define EASY_DIV_EXPR TRUNC_DIV_EXPR
-
-/* Define this as 1 if `char' should by default be signed; else as 0. */
-#define DEFAULT_SIGNED_CHAR 1
-
-/* Max number of bytes we can move from memory to memory
- in one reasonably fast instruction. */
-#define MOVE_MAX 4
-
-/* The number of scalar move insns which should be generated instead
- of a string move insn or a library call. Increasing the value
- will always make code faster, but eventually incurs high cost in
- increased code size.
-
- If you don't define this, a reasonable default is used.
-
- Make this large on i386, since the block move is very inefficient with small
- blocks, and the hard register needs of the block move require much reload
- work. */
-
-#define MOVE_RATIO 5
-
-/* Define if shifts truncate the shift count
- which implies one can omit a sign-extension or zero-extension
- of a shift count. */
-/* On i386, shifts do truncate the count. But bit opcodes don't. */
-
-/* #define SHIFT_COUNT_TRUNCATED */
-
-/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
- is done just by pretending it is already truncated. */
-#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
-
-/* We assume that the store-condition-codes instructions store 0 for false
- and some other value for true. This is the value stored for true. */
-
-#define STORE_FLAG_VALUE 1
-
-/* When a prototype says `char' or `short', really pass an `int'.
- (The 386 can't easily push less than an int.) */
-
-#define PROMOTE_PROTOTYPES
-
-/* Specify the machine mode that pointers have.
- After generation of rtl, the compiler makes no further distinction
- between pointers and any other objects of this machine mode. */
-#define Pmode SImode
-
-/* A function address in a call instruction
- is a byte address (for indexing purposes)
- so give the MEM rtx a byte's mode. */
-#define FUNCTION_MODE QImode
-
-/* A part of a C `switch' statement that describes the relative costs
- of constant RTL expressions. It must contain `case' labels for
- expression codes `const_int', `const', `symbol_ref', `label_ref'
- and `const_double'. Each case must ultimately reach a `return'
- statement to return the relative cost of the use of that kind of
- constant value in an expression. The cost may depend on the
- precise value of the constant, which is available for examination
- in X, and the rtx code of the expression in which it is contained,
- found in OUTER_CODE.
-
- CODE is the expression code--redundant, since it can be obtained
- with `GET_CODE (X)'. */
-
-#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
- case CONST_INT: \
- case CONST: \
- case LABEL_REF: \
- case SYMBOL_REF: \
- return flag_pic && SYMBOLIC_CONST (RTX) ? 2 : 1; \
- \
- case CONST_DOUBLE: \
- { \
- int code; \
- if (GET_MODE (RTX) == VOIDmode) \
- return 2; \
- \
- code = standard_80387_constant_p (RTX); \
- return code == 1 ? 0 : \
- code == 2 ? 1 : \
- 2; \
- }
-
-/* Delete the definition here when TOPLEVEL_COSTS_N_INSNS gets added to cse.c */
-#define TOPLEVEL_COSTS_N_INSNS(N) {total = COSTS_N_INSNS (N); break;}
-
-/* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
- This can be used, for example, to indicate how costly a multiply
- instruction is. In writing this macro, you can use the construct
- `COSTS_N_INSNS (N)' to specify a cost equal to N fast
- instructions. OUTER_CODE is the code of the expression in which X
- is contained.
-
- This macro is optional; do not define it if the default cost
- assumptions are adequate for the target machine. */
-
-#define RTX_COSTS(X,CODE,OUTER_CODE) \
- case ASHIFT: \
- if (GET_CODE (XEXP (X, 1)) == CONST_INT \
- && GET_MODE (XEXP (X, 0)) == SImode) \
- { \
- HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
- \
- if (value == 1) \
- return COSTS_N_INSNS (ix86_cost->add) \
- + rtx_cost(XEXP (X, 0), OUTER_CODE); \
- \
- if (value == 2 || value == 3) \
- return COSTS_N_INSNS (ix86_cost->lea) \
- + rtx_cost(XEXP (X, 0), OUTER_CODE); \
- } \
- /* fall through */ \
- \
- case ROTATE: \
- case ASHIFTRT: \
- case LSHIFTRT: \
- case ROTATERT: \
- if (GET_MODE (XEXP (X, 0)) == DImode) \
- { \
- if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
- if (INTVAL (XEXP (X, 1)) > 32) \
- return COSTS_N_INSNS(ix86_cost->shift_const + 2); \
- else \
- return COSTS_N_INSNS(ix86_cost->shift_const * 2); \
- return ((GET_CODE (XEXP (X, 1)) == AND \
- ? COSTS_N_INSNS(ix86_cost->shift_var * 2) \
- : COSTS_N_INSNS(ix86_cost->shift_var * 6 + 2)) \
- + rtx_cost(XEXP (X, 0), OUTER_CODE)); \
- } \
- return COSTS_N_INSNS (GET_CODE (XEXP (X, 1)) == CONST_INT \
- ? ix86_cost->shift_const \
- : ix86_cost->shift_var) \
- + rtx_cost(XEXP (X, 0), OUTER_CODE); \
- \
- case MULT: \
- if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
- { \
- unsigned HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
- int nbits = 0; \
- \
- if (value == 2) \
- return COSTS_N_INSNS (ix86_cost->add) \
- + rtx_cost(XEXP (X, 0), OUTER_CODE); \
- if (value == 4 || value == 8) \
- return COSTS_N_INSNS (ix86_cost->lea) \
- + rtx_cost(XEXP (X, 0), OUTER_CODE); \
- \
- while (value != 0) \
- { \
- nbits++; \
- value >>= 1; \
- } \
- \
- if (nbits == 1) \
- return COSTS_N_INSNS (ix86_cost->shift_const) \
- + rtx_cost(XEXP (X, 0), OUTER_CODE); \
- \
- return COSTS_N_INSNS (ix86_cost->mult_init \
- + nbits * ix86_cost->mult_bit) \
- + rtx_cost(XEXP (X, 0), OUTER_CODE); \
- } \
- \
- else /* This is arbitrary */ \
- TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \
- + 7 * ix86_cost->mult_bit); \
- \
- case DIV: \
- case UDIV: \
- case MOD: \
- case UMOD: \
- TOPLEVEL_COSTS_N_INSNS (ix86_cost->divide); \
- \
- case PLUS: \
- if (GET_CODE (XEXP (X, 0)) == REG \
- && GET_MODE (XEXP (X, 0)) == SImode \
- && GET_CODE (XEXP (X, 1)) == PLUS) \
- return COSTS_N_INSNS (ix86_cost->lea); \
- \
- /* fall through */ \
- case AND: \
- case IOR: \
- case XOR: \
- case MINUS: \
- if (GET_MODE (X) == DImode) \
- return COSTS_N_INSNS (ix86_cost->add) * 2 \
- + (rtx_cost (XEXP (X, 0), OUTER_CODE) \
- << (GET_MODE (XEXP (X, 0)) != DImode)) \
- + (rtx_cost (XEXP (X, 1), OUTER_CODE) \
- << (GET_MODE (XEXP (X, 1)) != DImode)); \
- case NEG: \
- case NOT: \
- if (GET_MODE (X) == DImode) \
- TOPLEVEL_COSTS_N_INSNS (ix86_cost->add * 2) \
- TOPLEVEL_COSTS_N_INSNS (ix86_cost->add)
-
-
-/* An expression giving the cost of an addressing mode that contains
- ADDRESS. If not defined, the cost is computed from the ADDRESS
- expression and the `CONST_COSTS' values.
-
- For most CISC machines, the default cost is a good approximation
- of the true cost of the addressing mode. However, on RISC
- machines, all instructions normally have the same length and
- execution time. Hence all addresses will have equal costs.
-
- In cases where more than one form of an address is known, the form
- with the lowest cost will be used. If multiple forms have the
- same, lowest, cost, the one that is the most complex will be used.
-
- For example, suppose an address that is equal to the sum of a
- register and a constant is used twice in the same basic block.
- When this macro is not defined, the address will be computed in a
- register and memory references will be indirect through that
- register. On machines where the cost of the addressing mode
- containing the sum is no higher than that of a simple indirect
- reference, this will produce an additional instruction and
- possibly require an additional register. Proper specification of
- this macro eliminates this overhead for such machines.
-
- Similar use of this macro is made in strength reduction of loops.
-
- ADDRESS need not be valid as an address. In such a case, the cost
- is not relevant and can be any value; invalid addresses need not be
- assigned a different cost.
-
- On machines where an address involving more than one register is as
- cheap as an address computation involving only one register,
- defining `ADDRESS_COST' to reflect this can cause two registers to
- be live over a region of code where only one would have been if
- `ADDRESS_COST' were not defined in that manner. This effect should
- be considered in the definition of this macro. Equivalent costs
- should probably only be given to addresses with different numbers
- of registers on machines with lots of registers.
-
- This macro will normally either not be defined or be defined as a
- constant.
-
- For i386, it is better to use a complex address than let gcc copy
- the address into a reg and make a new pseudo. But not if the address
- requires to two regs - that would mean more pseudos with longer
- lifetimes. */
-
-#define ADDRESS_COST(RTX) \
- ((CONSTANT_P (RTX) \
- || (GET_CODE (RTX) == PLUS && CONSTANT_P (XEXP (RTX, 1)) \
- && REG_P (XEXP (RTX, 0)))) ? 0 \
- : REG_P (RTX) ? 1 \
- : 2)
-
-/* A C expression for the cost of moving data of mode M between a
- register and memory. A value of 2 is the default; this cost is
- relative to those in `REGISTER_MOVE_COST'.
-
- If moving between registers and memory is more expensive than
- between two registers, you should define this macro to express the
- relative cost.
-
- On the i386, copying between floating-point and fixed-point
- registers is expensive. */
-
-#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
- (((FLOAT_CLASS_P (CLASS1) && ! FLOAT_CLASS_P (CLASS2)) \
- || (! FLOAT_CLASS_P (CLASS1) && FLOAT_CLASS_P (CLASS2))) ? 10 \
- : 2)
-
-
-/* A C expression for the cost of moving data of mode M between a
- register and memory. A value of 2 is the default; this cost is
- relative to those in `REGISTER_MOVE_COST'.
-
- If moving between registers and memory is more expensive than
- between two registers, you should define this macro to express the
- relative cost. */
-
-/* #define MEMORY_MOVE_COST(M) 2 */
-
-/* A C expression for the cost of a branch instruction. A value of 1
- is the default; other values are interpreted relative to that. */
-
-#define BRANCH_COST i386_branch_cost
-
-/* Define this macro as a C expression which is nonzero if accessing
- less than a word of memory (i.e. a `char' or a `short') is no
- faster than accessing a word of memory, i.e., if such access
- require more than one instruction or if there is no difference in
- cost between byte and (aligned) word loads.
-
- When this macro is not defined, the compiler will access a field by
- finding the smallest containing object; when it is defined, a
- fullword load will be used if alignment permits. Unless bytes
- accesses are faster than word accesses, using word accesses is
- preferable since it may eliminate subsequent memory access if
- subsequent accesses occur to other fields in the same word of the
- structure, but to different bytes. */
-
-#define SLOW_BYTE_ACCESS 0
-
-/* Nonzero if access to memory by shorts is slow and undesirable. */
-#define SLOW_SHORT_ACCESS 0
-
-/* Define this macro if zero-extension (of a `char' or `short' to an
- `int') can be done faster if the destination is a register that is
- known to be zero.
-
- If you define this macro, you must have instruction patterns that
- recognize RTL structures like this:
-
- (set (strict_low_part (subreg:QI (reg:SI ...) 0)) ...)
-
- and likewise for `HImode'. */
-
-/* #define SLOW_ZERO_EXTEND */
-
-/* Define this macro to be the value 1 if unaligned accesses have a
- cost many times greater than aligned accesses, for example if they
- are emulated in a trap handler.
-
- When this macro is non-zero, the compiler will act as if
- `STRICT_ALIGNMENT' were non-zero when generating code for block
- moves. This can cause significantly more instructions to be
- produced. Therefore, do not set this macro non-zero if unaligned
- accesses only add a cycle or two to the time for a memory access.
-
- If the value of this macro is always zero, it need not be defined. */
-
-/* #define SLOW_UNALIGNED_ACCESS 0 */
-
-/* Define this macro to inhibit strength reduction of memory
- addresses. (On some machines, such strength reduction seems to do
- harm rather than good.) */
-
-/* #define DONT_REDUCE_ADDR */
-
-/* Define this macro if it is as good or better to call a constant
- function address than to call an address kept in a register.
-
- Desirable on the 386 because a CALL with a constant address is
- faster than one with a register address. */
-
-#define NO_FUNCTION_CSE
-
-/* Define this macro if it is as good or better for a function to call
- itself with an explicit address than to call an address kept in a
- register. */
-
-#define NO_RECURSIVE_FUNCTION_CSE
-
-/* A C statement (sans semicolon) to update the integer variable COST
- based on the relationship between INSN that is dependent on
- DEP_INSN through the dependence LINK. The default is to make no
- adjustment to COST. This can be used for example to specify to
- the scheduler that an output- or anti-dependence does not incur
- the same cost as a data-dependence. */
-
-#define ADJUST_COST(insn,link,dep_insn,cost) \
- { \
- rtx next_inst; \
- if (GET_CODE (dep_insn) == CALL_INSN) \
- (cost) = 0; \
- \
- else if (GET_CODE (dep_insn) == INSN \
- && GET_CODE (PATTERN (dep_insn)) == SET \
- && GET_CODE (SET_DEST (PATTERN (dep_insn))) == REG \
- && GET_CODE (insn) == INSN \
- && GET_CODE (PATTERN (insn)) == SET \
- && !reg_overlap_mentioned_p (SET_DEST (PATTERN (dep_insn)), \
- SET_SRC (PATTERN (insn)))) \
- { \
- (cost) = 0; \
- } \
- \
- else if (GET_CODE (insn) == JUMP_INSN) \
- { \
- (cost) = 0; \
- } \
- \
- if (TARGET_PENTIUM) \
- { \
- if (cost !=0 && is_fp_insn (insn) && is_fp_insn (dep_insn) \
- && !is_fp_dest (dep_insn)) \
- { \
- (cost) = 0; \
- } \
- \
- if (agi_dependent (insn, dep_insn)) \
- { \
- (cost) = 3; \
- } \
- else if (GET_CODE (insn) == INSN \
- && GET_CODE (PATTERN (insn)) == SET \
- && SET_DEST (PATTERN (insn)) == cc0_rtx \
- && (next_inst = next_nonnote_insn (insn)) \
- && GET_CODE (next_inst) == JUMP_INSN) \
- { /* compare probably paired with jump */ \
- (cost) = 0; \
- } \
- } \
- else \
- if (!is_fp_dest (dep_insn)) \
- { \
- if(!agi_dependent (insn, dep_insn)) \
- (cost) = 0; \
- else if (TARGET_486) \
- (cost) = 2; \
- } \
- else \
- if (is_fp_store (insn) && is_fp_insn (dep_insn) \
- && NEXT_INSN (insn) && NEXT_INSN (NEXT_INSN (insn)) \
- && NEXT_INSN (NEXT_INSN (NEXT_INSN (insn))) \
- && (GET_CODE (NEXT_INSN (insn)) == INSN) \
- && (GET_CODE (NEXT_INSN (NEXT_INSN (insn))) == JUMP_INSN) \
- && (GET_CODE (NEXT_INSN (NEXT_INSN (NEXT_INSN (insn)))) == NOTE) \
- && (NOTE_LINE_NUMBER (NEXT_INSN (NEXT_INSN (NEXT_INSN (insn)))) \
- == NOTE_INSN_LOOP_END)) \
- { \
- (cost) = 3; \
- } \
- }
-
-
-#define ADJUST_BLOCKAGE(last_insn,insn,blockage) \
-{ \
- if (is_fp_store (last_insn) && is_fp_insn (insn) \
- && NEXT_INSN (last_insn) && NEXT_INSN (NEXT_INSN (last_insn)) \
- && NEXT_INSN (NEXT_INSN (NEXT_INSN (last_insn))) \
- && (GET_CODE (NEXT_INSN (last_insn)) == INSN) \
- && (GET_CODE (NEXT_INSN (NEXT_INSN (last_insn))) == JUMP_INSN) \
- && (GET_CODE (NEXT_INSN (NEXT_INSN (NEXT_INSN (last_insn)))) == NOTE) \
- && (NOTE_LINE_NUMBER (NEXT_INSN (NEXT_INSN (NEXT_INSN (last_insn)))) \
- == NOTE_INSN_LOOP_END)) \
- { \
- (blockage) = 3; \
- } \
-}
-
-
-/* Add any extra modes needed to represent the condition code.
-
- For the i386, we need separate modes when floating-point equality
- comparisons are being done. */
-
-#define EXTRA_CC_MODES CCFPEQmode
-
-/* Define the names for the modes specified above. */
-#define EXTRA_CC_NAMES "CCFPEQ"
-
-/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
- return the mode to be used for the comparison.
-
- For floating-point equality comparisons, CCFPEQmode should be used.
- VOIDmode should be used in all other cases. */
-
-#define SELECT_CC_MODE(OP,X,Y) \
- (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
- && ((OP) == EQ || (OP) == NE) ? CCFPEQmode : VOIDmode)
-
-/* Define the information needed to generate branch and scc insns. This is
- stored from the compare operation. Note that we can't use "rtx" here
- since it hasn't been defined! */
-
-extern struct rtx_def *(*i386_compare_gen)(), *(*i386_compare_gen_eq)();
-
-/* Tell final.c how to eliminate redundant test instructions. */
-
-/* Here we define machine-dependent flags and fields in cc_status
- (see `conditions.h'). */
-
-/* Set if the cc value was actually from the 80387 and
- we are testing eax directly (i.e. no sahf) */
-#define CC_TEST_AX 020000
-
-/* Set if the cc value is actually in the 80387, so a floating point
- conditional branch must be output. */
-#define CC_IN_80387 04000
-
-/* Set if the CC value was stored in a nonstandard way, so that
- the state of equality is indicated by zero in the carry bit. */
-#define CC_Z_IN_NOT_C 010000
-
-/* Set if the CC value was actually from the 80387 and loaded directly
- into the eflags instead of via eax/sahf. */
-#define CC_FCOMI 040000
-
-/* Store in cc_status the expressions
- that the condition codes will describe
- after execution of an instruction whose pattern is EXP.
- Do not alter them if the instruction would not alter the cc's. */
-
-#define NOTICE_UPDATE_CC(EXP, INSN) \
- notice_update_cc((EXP))
-
-/* Output a signed jump insn. Use template NORMAL ordinarily, or
- FLOAT following a floating point comparison.
- Use NO_OV following an arithmetic insn that set the cc's
- before a test insn that was deleted.
- NO_OV may be zero, meaning final should reinsert the test insn
- because the jump cannot be handled properly without it. */
-
-#define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
-{ \
- if (cc_prev_status.flags & CC_IN_80387) \
- return FLOAT; \
- if (cc_prev_status.flags & CC_NO_OVERFLOW) \
- return NO_OV; \
- return NORMAL; \
-}
-
-/* Control the assembler format that we output, to the extent
- this does not vary between assemblers. */
-
-/* How to refer to registers in assembler output.
- This sequence is indexed by compiler's hard-register-number (see above). */
-
-/* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
- For non floating point regs, the following are the HImode names.
-
- For float regs, the stack top is sometimes referred to as "%st(0)"
- instead of just "%st". PRINT_REG handles this with the "y" code. */
-
-#define HI_REGISTER_NAMES \
-{"ax","dx","cx","bx","si","di","bp","sp", \
- "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","" }
-
-#define REGISTER_NAMES HI_REGISTER_NAMES
-
-/* Table of additional register names to use in user input. */
-
-#define ADDITIONAL_REGISTER_NAMES \
-{ "eax", 0, "edx", 1, "ecx", 2, "ebx", 3, \
- "esi", 4, "edi", 5, "ebp", 6, "esp", 7, \
- "al", 0, "dl", 1, "cl", 2, "bl", 3, \
- "ah", 0, "dh", 1, "ch", 2, "bh", 3 }
-
-/* Note we are omitting these since currently I don't know how
-to get gcc to use these, since they want the same but different
-number as al, and ax.
-*/
-
-/* note the last four are not really qi_registers, but
- the md will have to never output movb into one of them
- only a movw . There is no movb into the last four regs */
-
-#define QI_REGISTER_NAMES \
-{"al", "dl", "cl", "bl", "si", "di", "bp", "sp",}
-
-/* These parallel the array above, and can be used to access bits 8:15
- of regs 0 through 3. */
-
-#define QI_HIGH_REGISTER_NAMES \
-{"ah", "dh", "ch", "bh", }
-
-/* How to renumber registers for dbx and gdb. */
-
-/* {0,2,1,3,6,7,4,5,12,13,14,15,16,17} */
-#define DBX_REGISTER_NUMBER(n) \
-((n) == 0 ? 0 : \
- (n) == 1 ? 2 : \
- (n) == 2 ? 1 : \
- (n) == 3 ? 3 : \
- (n) == 4 ? 6 : \
- (n) == 5 ? 7 : \
- (n) == 6 ? 4 : \
- (n) == 7 ? 5 : \
- (n) + 4)
-
-/* Before the prologue, RA is at 0(%esp). */
-#define INCOMING_RETURN_ADDR_RTX \
- gen_rtx (MEM, VOIDmode, gen_rtx (REG, VOIDmode, STACK_POINTER_REGNUM))
-
-/* PC is dbx register 8; let's use that column for RA. */
-#define DWARF_FRAME_RETURN_COLUMN 8
-
-/* This is how to output the definition of a user-level label named NAME,
- such as the label on a static function or variable NAME. */
-
-#define ASM_OUTPUT_LABEL(FILE,NAME) \
- (assemble_name (FILE, NAME), fputs (":\n", FILE))
-
-/* This is how to output an assembler line defining a `double' constant. */
-
-#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
-do { long l[2]; \
- REAL_VALUE_TO_TARGET_DOUBLE (VALUE, l); \
- if (sizeof (int) == sizeof (long)) \
- fprintf (FILE, "%s 0x%x,0x%x\n", ASM_LONG, l[0], l[1]); \
- else \
- fprintf (FILE, "%s 0x%lx,0x%lx\n", ASM_LONG, l[0], l[1]); \
- } while (0)
-
-/* This is how to output a `long double' extended real constant. */
-
-#undef ASM_OUTPUT_LONG_DOUBLE
-#define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
-do { long l[3]; \
- REAL_VALUE_TO_TARGET_LONG_DOUBLE (VALUE, l); \
- if (sizeof (int) == sizeof (long)) \
- fprintf (FILE, "%s 0x%x,0x%x,0x%x\n", ASM_LONG, l[0], l[1], l[2]); \
- else \
- fprintf (FILE, "%s 0x%lx,0x%lx,0x%lx\n", ASM_LONG, l[0], l[1], l[2]); \
- } while (0)
-
-/* This is how to output an assembler line defining a `float' constant. */
-
-#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
-do { long l; \
- REAL_VALUE_TO_TARGET_SINGLE (VALUE, l); \
- if (sizeof (int) == sizeof (long)) \
- fprintf ((FILE), "%s 0x%x\n", ASM_LONG, l); \
- else \
- fprintf ((FILE), "%s 0x%lx\n", ASM_LONG, l); \
- } while (0)
-
-/* Store in OUTPUT a string (made with alloca) containing
- an assembler-name for a local static variable named NAME.
- LABELNO is an integer which is different for each call. */
-
-#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
-( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
- sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
-
-
-
-/* This is how to output an assembler line defining an `int' constant. */
-
-#define ASM_OUTPUT_INT(FILE,VALUE) \
-( fprintf (FILE, "%s ", ASM_LONG), \
- output_addr_const (FILE,(VALUE)), \
- putc('\n',FILE))
-
-/* Likewise for `char' and `short' constants. */
-/* is this supposed to do align too?? */
-
-#define ASM_OUTPUT_SHORT(FILE,VALUE) \
-( fprintf (FILE, "%s ", ASM_SHORT), \
- output_addr_const (FILE,(VALUE)), \
- putc('\n',FILE))
-
-/*
-#define ASM_OUTPUT_SHORT(FILE,VALUE) \
-( fprintf (FILE, "%s ", ASM_BYTE_OP), \
- output_addr_const (FILE,(VALUE)), \
- fputs (",", FILE), \
- output_addr_const (FILE,(VALUE)), \
- fputs (" >> 8\n",FILE))
-*/
-
-
-#define ASM_OUTPUT_CHAR(FILE,VALUE) \
-( fprintf (FILE, "%s ", ASM_BYTE_OP), \
- output_addr_const (FILE, (VALUE)), \
- putc ('\n', FILE))
-
-/* This is how to output an assembler line for a numeric constant byte. */
-
-#define ASM_OUTPUT_BYTE(FILE,VALUE) \
- fprintf ((FILE), "%s 0x%x\n", ASM_BYTE_OP, (VALUE))
-
-/* This is how to output an insn to push a register on the stack.
- It need not be very fast code. */
-
-#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
- fprintf (FILE, "\tpushl e%s\n", reg_names[REGNO])
-
-/* This is how to output an insn to pop a register from the stack.
- It need not be very fast code. */
-
-#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
- fprintf (FILE, "\tpopl e%s\n", reg_names[REGNO])
-
-/* This is how to output an element of a case-vector that is absolute.
- */
-
-#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
- fprintf (FILE, "%s %s%d\n", ASM_LONG, LPREFIX, VALUE)
-
-/* This is how to output an element of a case-vector that is relative.
- We don't use these on the 386 yet, because the ATT assembler can't do
- forward reference the differences.
- */
-
-#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
- fprintf (FILE, "\t.word %s%d-%s%d\n",LPREFIX, VALUE,LPREFIX, REL)
-
-/* Define the parentheses used to group arithmetic operations
- in assembler code. */
-
-#define ASM_OPEN_PAREN ""
-#define ASM_CLOSE_PAREN ""
-
-/* Define results of standard character escape sequences. */
-#define TARGET_BELL 007
-#define TARGET_BS 010
-#define TARGET_TAB 011
-#define TARGET_NEWLINE 012
-#define TARGET_VT 013
-#define TARGET_FF 014
-#define TARGET_CR 015
-
-/* Print operand X (an rtx) in assembler syntax to file FILE.
- CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
- The CODE z takes the size of operand from the following digit, and
- outputs b,w,or l respectively.
-
- On the 80386, we use several such letters:
- f -- float insn (print a CONST_DOUBLE as a float rather than in hex).
- L,W,B,Q,S,T -- print the opcode suffix for specified size of operand.
- R -- print the prefix for register names.
- z -- print the opcode suffix for the size of the current operand.
- * -- print a star (in certain assembler syntax)
- w -- print the operand as if it's a "word" (HImode) even if it isn't.
- b -- print the operand as if it's a byte (QImode) even if it isn't.
- c -- don't print special prefixes before constant operands. */
-
-#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
- ((CODE) == '*')
-
-/* Print the name of a register based on its machine mode and number.
- If CODE is 'w', pretend the mode is HImode.
- If CODE is 'b', pretend the mode is QImode.
- If CODE is 'k', pretend the mode is SImode.
- If CODE is 'h', pretend the reg is the `high' byte register.
- If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op. */
-
-extern char *hi_reg_name[];
-extern char *qi_reg_name[];
-extern char *qi_high_reg_name[];
-
-#define PRINT_REG(X, CODE, FILE) \
- do { if (REGNO (X) == ARG_POINTER_REGNUM) \
- abort (); \
- fprintf (FILE, "%s", RP); \
- switch ((CODE == 'w' ? 2 \
- : CODE == 'b' ? 1 \
- : CODE == 'k' ? 4 \
- : CODE == 'y' ? 3 \
- : CODE == 'h' ? 0 \
- : GET_MODE_SIZE (GET_MODE (X)))) \
- { \
- case 3: \
- if (STACK_TOP_P (X)) \
- { \
- fputs ("st(0)", FILE); \
- break; \
- } \
- case 4: \
- case 8: \
- case 12: \
- if (! FP_REG_P (X)) fputs ("e", FILE); \
- case 2: \
- fputs (hi_reg_name[REGNO (X)], FILE); \
- break; \
- case 1: \
- fputs (qi_reg_name[REGNO (X)], FILE); \
- break; \
- case 0: \
- fputs (qi_high_reg_name[REGNO (X)], FILE); \
- break; \
- } \
- } while (0)
-
-#define PRINT_OPERAND(FILE, X, CODE) \
- print_operand (FILE, X, CODE)
-
-#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
- print_operand_address (FILE, ADDR)
-
-/* Print the name of a register for based on its machine mode and number.
- This macro is used to print debugging output.
- This macro is different from PRINT_REG in that it may be used in
- programs that are not linked with aux-output.o. */
-
-#define DEBUG_PRINT_REG(X, CODE, FILE) \
- do { static char *hi_name[] = HI_REGISTER_NAMES; \
- static char *qi_name[] = QI_REGISTER_NAMES; \
- fprintf (FILE, "%d %s", REGNO (X), RP); \
- if (REGNO (X) == ARG_POINTER_REGNUM) \
- { fputs ("argp", FILE); break; } \
- if (STACK_TOP_P (X)) \
- { fputs ("st(0)", FILE); break; } \
- if (FP_REG_P (X)) \
- { fputs (hi_name[REGNO(X)], FILE); break; } \
- switch (GET_MODE_SIZE (GET_MODE (X))) \
- { \
- default: \
- fputs ("e", FILE); \
- case 2: \
- fputs (hi_name[REGNO (X)], FILE); \
- break; \
- case 1: \
- fputs (qi_name[REGNO (X)], FILE); \
- break; \
- } \
- } while (0)
-
-/* Output the prefix for an immediate operand, or for an offset operand. */
-#define PRINT_IMMED_PREFIX(FILE) fputs (IP, (FILE))
-#define PRINT_OFFSET_PREFIX(FILE) fputs (IP, (FILE))
-
-/* Routines in libgcc that return floats must return them in an fp reg,
- just as other functions do which return such values.
- These macros make that happen. */
-
-#define FLOAT_VALUE_TYPE float
-#define INTIFY(FLOATVAL) FLOATVAL
-
-/* Nonzero if INSN magically clobbers register REGNO. */
-
-/* #define INSN_CLOBBERS_REGNO_P(INSN, REGNO) \
- (FP_REGNO_P (REGNO) \
- && (GET_CODE (INSN) == JUMP_INSN || GET_CODE (INSN) == BARRIER))
-*/
-
-/* a letter which is not needed by the normal asm syntax, which
- we can use for operand syntax in the extended asm */
-
-#define ASM_OPERAND_LETTER '#'
-
-#define RET return ""
-#define AT_SP(mode) (gen_rtx (MEM, (mode), stack_pointer_rtx))
-
-/* Helper macros to expand a binary/unary operator if needed */
-#define IX86_EXPAND_BINARY_OPERATOR(OP, MODE, OPERANDS) \
-do { \
- if (!ix86_expand_binary_operator (OP, MODE, OPERANDS)) \
- FAIL; \
-} while (0)
-
-#define IX86_EXPAND_UNARY_OPERATOR(OP, MODE, OPERANDS) \
-do { \
- if (!ix86_expand_unary_operator (OP, MODE, OPERANDS,)) \
- FAIL; \
-} while (0)
-
-
-/* Functions in i386.c */
-extern void override_options ();
-extern void order_regs_for_local_alloc ();
-extern char *output_strlen_unroll ();
-extern struct rtx_def *i386_sext16_if_const ();
-extern int i386_aligned_p ();
-extern int i386_cc_probably_useless_p ();
-extern int i386_valid_decl_attribute_p ();
-extern int i386_valid_type_attribute_p ();
-extern int i386_return_pops_args ();
-extern int i386_comp_type_attributes ();
-extern void init_cumulative_args ();
-extern void function_arg_advance ();
-extern struct rtx_def *function_arg ();
-extern int function_arg_partial_nregs ();
-extern char *output_strlen_unroll ();
-extern void output_op_from_reg ();
-extern void output_to_reg ();
-extern char *singlemove_string ();
-extern char *output_move_double ();
-extern char *output_move_memory ();
-extern char *output_move_pushmem ();
-extern int standard_80387_constant_p ();
-extern char *output_move_const_single ();
-extern int symbolic_operand ();
-extern int call_insn_operand ();
-extern int expander_call_insn_operand ();
-extern int symbolic_reference_mentioned_p ();
-extern int ix86_expand_binary_operator ();
-extern int ix86_binary_operator_ok ();
-extern int ix86_expand_unary_operator ();
-extern int ix86_unary_operator_ok ();
-extern void emit_pic_move ();
-extern void function_prologue ();
-extern int simple_386_epilogue ();
-extern void function_epilogue ();
-extern int legitimate_address_p ();
-extern struct rtx_def *legitimize_pic_address ();
-extern struct rtx_def *legitimize_address ();
-extern void print_operand ();
-extern void print_operand_address ();
-extern void notice_update_cc ();
-extern void split_di ();
-extern int binary_387_op ();
-extern int shift_op ();
-extern int VOIDmode_compare_op ();
-extern char *output_387_binary_op ();
-extern char *output_fix_trunc ();
-extern char *output_float_compare ();
-extern char *output_fp_cc0_set ();
-extern void save_386_machine_status ();
-extern void restore_386_machine_status ();
-extern void clear_386_stack_locals ();
-extern struct rtx_def *assign_386_stack_local ();
-extern int is_mul ();
-extern int is_div ();
-extern int last_to_set_cc ();
-extern int doesnt_set_condition_code ();
-extern int sets_condition_code ();
-extern int str_immediate_operand ();
-extern int is_fp_insn ();
-extern int is_fp_dest ();
-extern int is_fp_store ();
-extern int agi_dependent ();
-extern int reg_mentioned_in_mem ();
-
-#ifdef NOTYET
-extern struct rtx_def *copy_all_rtx ();
-extern void rewrite_address ();
-#endif
-
-/* Variables in i386.c */
-extern char *ix86_cpu_string; /* for -mcpu=<xxx> */
-extern char *ix86_arch_string; /* for -march=<xxx> */
-extern char *i386_reg_alloc_order; /* register allocation order */
-extern char *i386_regparm_string; /* # registers to use to pass args */
-extern char *i386_align_loops_string; /* power of two alignment for loops */
-extern char *i386_align_jumps_string; /* power of two alignment for non-loop jumps */
-extern char *i386_align_funcs_string; /* power of two alignment for functions */
-extern char *i386_branch_cost_string; /* values 1-5: see jump.c */
-extern int i386_regparm; /* i386_regparm_string as a number */
-extern int i386_align_loops; /* power of two alignment for loops */
-extern int i386_align_jumps; /* power of two alignment for non-loop jumps */
-extern int i386_align_funcs; /* power of two alignment for functions */
-extern int i386_branch_cost; /* values 1-5: see jump.c */
-extern char *hi_reg_name[]; /* names for 16 bit regs */
-extern char *qi_reg_name[]; /* names for 8 bit regs (low) */
-extern char *qi_high_reg_name[]; /* names for 8 bit regs (high) */
-extern enum reg_class regclass_map[]; /* smalled class containing REGNO */
-extern struct rtx_def *i386_compare_op0; /* operand 0 for comparisons */
-extern struct rtx_def *i386_compare_op1; /* operand 1 for comparisons */
-
-/* External variables used */
-extern int optimize; /* optimization level */
-extern int obey_regdecls; /* TRUE if stupid register allocation */
-
-/* External functions used */
-extern struct rtx_def *force_operand ();
-
-
-/*
-Local variables:
-version-control: t
-End:
-*/