aboutsummaryrefslogtreecommitdiff
path: root/gcc/config/i860/i860.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/config/i860/i860.c')
-rw-r--r--gcc/config/i860/i860.c2097
1 files changed, 0 insertions, 2097 deletions
diff --git a/gcc/config/i860/i860.c b/gcc/config/i860/i860.c
deleted file mode 100644
index dce13404783..00000000000
--- a/gcc/config/i860/i860.c
+++ /dev/null
@@ -1,2097 +0,0 @@
-/* Subroutines for insn-output.c for Intel 860
- Copyright (C) 1989, 1991 Free Software Foundation, Inc.
- Derived from sparc.c.
-
- Written by Richard Stallman (rms@ai.mit.edu).
-
- Hacked substantially by Ron Guilmette (rfg@netcom.com) to cater
- to the whims of the System V Release 4 assembler.
-
-This file is part of GNU CC.
-
-GNU CC is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2, or (at your option)
-any later version.
-
-GNU CC is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GNU CC; see the file COPYING. If not, write to
-the Free Software Foundation, 59 Temple Place - Suite 330,
-Boston, MA 02111-1307, USA. */
-
-
-#include "config.h"
-#include "flags.h"
-#include "rtl.h"
-#include "regs.h"
-#include "hard-reg-set.h"
-#include "real.h"
-#include "insn-config.h"
-#include "conditions.h"
-#include "insn-flags.h"
-#include "output.h"
-#include "recog.h"
-#include "insn-attr.h"
-
-#include <stdio.h>
-
-static rtx find_addr_reg ();
-
-#ifndef I860_REG_PREFIX
-#define I860_REG_PREFIX ""
-#endif
-
-char *i860_reg_prefix = I860_REG_PREFIX;
-
-/* Save information from a "cmpxx" operation until the branch is emitted. */
-
-rtx i860_compare_op0, i860_compare_op1;
-
-/* Return non-zero if this pattern, can be evaluated safely, even if it
- was not asked for. */
-int
-safe_insn_src_p (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- /* Just experimenting. */
-
- /* No floating point src is safe if it contains an arithmetic
- operation, since that operation may trap. */
- switch (GET_CODE (op))
- {
- case CONST_INT:
- case LABEL_REF:
- case SYMBOL_REF:
- case CONST:
- return 1;
-
- case REG:
- return 1;
-
- case MEM:
- return CONSTANT_ADDRESS_P (XEXP (op, 0));
-
- /* We never need to negate or complement constants. */
- case NEG:
- return (mode != SFmode && mode != DFmode);
- case NOT:
- case ZERO_EXTEND:
- return 1;
-
- case EQ:
- case NE:
- case LT:
- case GT:
- case LE:
- case GE:
- case LTU:
- case GTU:
- case LEU:
- case GEU:
- case MINUS:
- case PLUS:
- return (mode != SFmode && mode != DFmode);
- case AND:
- case IOR:
- case XOR:
- case ASHIFT:
- case ASHIFTRT:
- case LSHIFTRT:
- if ((GET_CODE (XEXP (op, 0)) == CONST_INT && ! SMALL_INT (XEXP (op, 0)))
- || (GET_CODE (XEXP (op, 1)) == CONST_INT && ! SMALL_INT (XEXP (op, 1))))
- return 0;
- return 1;
-
- default:
- return 0;
- }
-}
-
-/* Return 1 if REG is clobbered in IN.
- Return 2 if REG is used in IN.
- Return 3 if REG is both used and clobbered in IN.
- Return 0 if neither. */
-
-static int
-reg_clobbered_p (reg, in)
- rtx reg;
- rtx in;
-{
- register enum rtx_code code;
-
- if (in == 0)
- return 0;
-
- code = GET_CODE (in);
-
- if (code == SET || code == CLOBBER)
- {
- rtx dest = SET_DEST (in);
- int set = 0;
- int used = 0;
-
- while (GET_CODE (dest) == STRICT_LOW_PART
- || GET_CODE (dest) == SUBREG
- || GET_CODE (dest) == SIGN_EXTRACT
- || GET_CODE (dest) == ZERO_EXTRACT)
- dest = XEXP (dest, 0);
-
- if (dest == reg)
- set = 1;
- else if (GET_CODE (dest) == REG
- && refers_to_regno_p (REGNO (reg),
- REGNO (reg) + HARD_REGNO_NREGS (reg, GET_MODE (reg)),
- SET_DEST (in), 0))
- {
- set = 1;
- /* Anything that sets just part of the register
- is considered using as well as setting it.
- But note that a straight SUBREG of a single-word value
- clobbers the entire value. */
- if (dest != SET_DEST (in)
- && ! (GET_CODE (SET_DEST (in)) == SUBREG
- || UNITS_PER_WORD >= GET_MODE_SIZE (GET_MODE (dest))))
- used = 1;
- }
-
- if (code == SET)
- {
- if (set)
- used = refers_to_regno_p (REGNO (reg),
- REGNO (reg) + HARD_REGNO_NREGS (reg, GET_MODE (reg)),
- SET_SRC (in), 0);
- else
- used = refers_to_regno_p (REGNO (reg),
- REGNO (reg) + HARD_REGNO_NREGS (reg, GET_MODE (reg)),
- in, 0);
- }
-
- return set + used * 2;
- }
-
- if (refers_to_regno_p (REGNO (reg),
- REGNO (reg) + HARD_REGNO_NREGS (reg, GET_MODE (reg)),
- in, 0))
- return 2;
- return 0;
-}
-
-/* Return non-zero if OP can be written to without screwing up
- GCC's model of what's going on. It is assumed that this operand
- appears in the dest position of a SET insn in a conditional
- branch's delay slot. AFTER is the label to start looking from. */
-int
-operand_clobbered_before_used_after (op, after)
- rtx op;
- rtx after;
-{
- /* Just experimenting. */
- if (GET_CODE (op) == CC0)
- return 1;
- if (GET_CODE (op) == REG)
- {
- rtx insn;
-
- if (op == stack_pointer_rtx)
- return 0;
-
- /* Scan forward from the label, to see if the value of OP
- is clobbered before the first use. */
-
- for (insn = NEXT_INSN (after); insn; insn = NEXT_INSN (insn))
- {
- if (GET_CODE (insn) == NOTE)
- continue;
- if (GET_CODE (insn) == INSN
- || GET_CODE (insn) == JUMP_INSN
- || GET_CODE (insn) == CALL_INSN)
- {
- switch (reg_clobbered_p (op, PATTERN (insn)))
- {
- default:
- return 0;
- case 1:
- return 1;
- case 0:
- break;
- }
- }
- /* If we reach another label without clobbering OP,
- then we cannot safely write it here. */
- else if (GET_CODE (insn) == CODE_LABEL)
- return 0;
- if (GET_CODE (insn) == JUMP_INSN)
- {
- if (condjump_p (insn))
- return 0;
- /* This is a jump insn which has already
- been mangled. We can't tell what it does. */
- if (GET_CODE (PATTERN (insn)) == PARALLEL)
- return 0;
- if (! JUMP_LABEL (insn))
- return 0;
- /* Keep following jumps. */
- insn = JUMP_LABEL (insn);
- }
- }
- return 1;
- }
-
- /* In both of these cases, the first insn executed
- for this op will be a orh whatever%h,%?r0,%?r31,
- which is tolerable. */
- if (GET_CODE (op) == MEM)
- return (CONSTANT_ADDRESS_P (XEXP (op, 0)));
-
- return 0;
-}
-
-/* Return non-zero if this pattern, as a source to a "SET",
- is known to yield an instruction of unit size. */
-int
-single_insn_src_p (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- switch (GET_CODE (op))
- {
- case CONST_INT:
- /* This is not always a single insn src, technically,
- but output_delayed_branch knows how to deal with it. */
- return 1;
-
- case SYMBOL_REF:
- case CONST:
- /* This is not a single insn src, technically,
- but output_delayed_branch knows how to deal with it. */
- return 1;
-
- case REG:
- return 1;
-
- case MEM:
- return 1;
-
- /* We never need to negate or complement constants. */
- case NEG:
- return (mode != DFmode);
- case NOT:
- case ZERO_EXTEND:
- return 1;
-
- case PLUS:
- case MINUS:
- /* Detect cases that require multiple instructions. */
- if (CONSTANT_P (XEXP (op, 1))
- && !(GET_CODE (XEXP (op, 1)) == CONST_INT
- && SMALL_INT (XEXP (op, 1))))
- return 0;
- case EQ:
- case NE:
- case LT:
- case GT:
- case LE:
- case GE:
- case LTU:
- case GTU:
- case LEU:
- case GEU:
- /* Not doing floating point, since they probably
- take longer than the branch slot they might fill. */
- return (mode != SFmode && mode != DFmode);
-
- case AND:
- if (GET_CODE (XEXP (op, 1)) == NOT)
- {
- rtx arg = XEXP (XEXP (op, 1), 0);
- if (CONSTANT_P (arg)
- && !(GET_CODE (arg) == CONST_INT
- && (SMALL_INT (arg)
- || INTVAL (arg) & 0xffff == 0)))
- return 0;
- }
- case IOR:
- case XOR:
- /* Both small and round numbers take one instruction;
- others take two. */
- if (CONSTANT_P (XEXP (op, 1))
- && !(GET_CODE (XEXP (op, 1)) == CONST_INT
- && (SMALL_INT (XEXP (op, 1))
- || INTVAL (XEXP (op, 1)) & 0xffff == 0)))
- return 0;
-
- case ASHIFT:
- case ASHIFTRT:
- case LSHIFTRT:
- return 1;
-
- case SUBREG:
- if (SUBREG_WORD (op) != 0)
- return 0;
- return single_insn_src_p (SUBREG_REG (op), mode);
-
- /* Not doing floating point, since they probably
- take longer than the branch slot they might fill. */
- case FLOAT_EXTEND:
- case FLOAT_TRUNCATE:
- case FLOAT:
- case FIX:
- case UNSIGNED_FLOAT:
- case UNSIGNED_FIX:
- return 0;
-
- default:
- return 0;
- }
-}
-
-/* Return non-zero only if OP is a register of mode MODE,
- or const0_rtx. */
-int
-reg_or_0_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- return (op == const0_rtx || register_operand (op, mode)
- || op == CONST0_RTX (mode));
-}
-
-/* Return truth value of whether OP can be used as an operands in a three
- address add/subtract insn (such as add %o1,7,%l2) of mode MODE. */
-
-int
-arith_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- return (register_operand (op, mode)
- || (GET_CODE (op) == CONST_INT && SMALL_INT (op)));
-}
-
-/* Return 1 if OP is a valid first operand for a logical insn of mode MODE. */
-
-int
-logic_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- return (register_operand (op, mode)
- || (GET_CODE (op) == CONST_INT && LOGIC_INT (op)));
-}
-
-/* Return 1 if OP is a valid first operand for a shift insn of mode MODE. */
-
-int
-shift_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- return (register_operand (op, mode)
- || (GET_CODE (op) == CONST_INT));
-}
-
-/* Return 1 if OP is a valid first operand for either a logical insn
- or an add insn of mode MODE. */
-
-int
-compare_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- return (register_operand (op, mode)
- || (GET_CODE (op) == CONST_INT && SMALL_INT (op) && LOGIC_INT (op)));
-}
-
-/* Return truth value of whether OP can be used as the 5-bit immediate
- operand of a bte or btne insn. */
-
-int
-bte_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- return (register_operand (op, mode)
- || (GET_CODE (op) == CONST_INT
- && (unsigned) INTVAL (op) < 0x20));
-}
-
-/* Return 1 if OP is an indexed memory reference of mode MODE. */
-
-int
-indexed_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- return (GET_CODE (op) == MEM && GET_MODE (op) == mode
- && GET_CODE (XEXP (op, 0)) == PLUS
- && GET_MODE (XEXP (op, 0)) == SImode
- && register_operand (XEXP (XEXP (op, 0), 0), SImode)
- && register_operand (XEXP (XEXP (op, 0), 1), SImode));
-}
-
-/* Return 1 if OP is a suitable source operand for a load insn
- with mode MODE. */
-
-int
-load_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- return (memory_operand (op, mode) || indexed_operand (op, mode));
-}
-
-/* Return truth value of whether OP is a integer which fits the
- range constraining immediate operands in add/subtract insns. */
-
-int
-small_int (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- return (GET_CODE (op) == CONST_INT && SMALL_INT (op));
-}
-
-/* Return truth value of whether OP is a integer which fits the
- range constraining immediate operands in logic insns. */
-
-int
-logic_int (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- return (GET_CODE (op) == CONST_INT && LOGIC_INT (op));
-}
-
-/* Test for a valid operand for a call instruction.
- Don't allow the arg pointer register or virtual regs
- since they may change into reg + const, which the patterns
- can't handle yet. */
-
-int
-call_insn_operand (op, mode)
- rtx op;
- enum machine_mode mode;
-{
- if (GET_CODE (op) == MEM
- && (CONSTANT_ADDRESS_P (XEXP (op, 0))
- || (GET_CODE (XEXP (op, 0)) == REG
- && XEXP (op, 0) != arg_pointer_rtx
- && !(REGNO (XEXP (op, 0)) >= FIRST_PSEUDO_REGISTER
- && REGNO (XEXP (op, 0)) <= LAST_VIRTUAL_REGISTER))))
- return 1;
- return 0;
-}
-
-/* Return the best assembler insn template
- for moving operands[1] into operands[0] as a fullword. */
-
-static char *
-singlemove_string (operands)
- rtx *operands;
-{
- if (GET_CODE (operands[0]) == MEM)
- {
- if (GET_CODE (operands[1]) != MEM)
- if (CONSTANT_ADDRESS_P (XEXP (operands[0], 0)))
- {
- if (! ((cc_prev_status.flags & CC_KNOW_HI_R31)
- && (cc_prev_status.flags & CC_HI_R31_ADJ)
- && cc_prev_status.mdep == XEXP (operands[0], 0)))
- {
- CC_STATUS_INIT;
- output_asm_insn ("orh %h0,%?r0,%?r31", operands);
- }
- cc_status.flags |= CC_KNOW_HI_R31 | CC_HI_R31_ADJ;
- cc_status.mdep = XEXP (operands[0], 0);
- return "st.l %r1,%L0(%?r31)";
- }
- else
- return "st.l %r1,%0";
- else
- abort ();
-#if 0
- {
- rtx xoperands[2];
-
- cc_status.flags &= ~CC_F0_IS_0;
- xoperands[0] = gen_rtx (REG, SFmode, 32);
- xoperands[1] = operands[1];
- output_asm_insn (singlemove_string (xoperands), xoperands);
- xoperands[1] = xoperands[0];
- xoperands[0] = operands[0];
- output_asm_insn (singlemove_string (xoperands), xoperands);
- return "";
- }
-#endif
- }
- if (GET_CODE (operands[1]) == MEM)
- {
- if (CONSTANT_ADDRESS_P (XEXP (operands[1], 0)))
- {
- if (! ((cc_prev_status.flags & CC_KNOW_HI_R31)
- && (cc_prev_status.flags & CC_HI_R31_ADJ)
- && cc_prev_status.mdep == XEXP (operands[1], 0)))
- {
- CC_STATUS_INIT;
- output_asm_insn ("orh %h1,%?r0,%?r31", operands);
- }
- cc_status.flags |= CC_KNOW_HI_R31 | CC_HI_R31_ADJ;
- cc_status.mdep = XEXP (operands[1], 0);
- return "ld.l %L1(%?r31),%0";
- }
- return "ld.l %m1,%0";
- }
- if (GET_CODE (operands[1]) == CONST_INT)
- {
- if (operands[1] == const0_rtx)
- return "mov %?r0,%0";
- if((INTVAL (operands[1]) & 0xffff0000) == 0)
- return "or %L1,%?r0,%0";
- if((INTVAL (operands[1]) & 0xffff8000) == 0xffff8000)
- return "adds %1,%?r0,%0";
- if((INTVAL (operands[1]) & 0x0000ffff) == 0)
- return "orh %H1,%?r0,%0";
- }
- return "mov %1,%0";
-}
-
-/* Output assembler code to perform a doubleword move insn
- with operands OPERANDS. */
-
-char *
-output_move_double (operands)
- rtx *operands;
-{
- enum { REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP } optype0, optype1;
- rtx latehalf[2];
- rtx addreg0 = 0, addreg1 = 0;
- int highest_first = 0;
- int no_addreg1_decrement = 0;
-
- /* First classify both operands. */
-
- if (REG_P (operands[0]))
- optype0 = REGOP;
- else if (offsettable_memref_p (operands[0]))
- optype0 = OFFSOP;
- else if (GET_CODE (operands[0]) == MEM)
- optype0 = MEMOP;
- else
- optype0 = RNDOP;
-
- if (REG_P (operands[1]))
- optype1 = REGOP;
- else if (CONSTANT_P (operands[1]))
- optype1 = CNSTOP;
- else if (offsettable_memref_p (operands[1]))
- optype1 = OFFSOP;
- else if (GET_CODE (operands[1]) == MEM)
- optype1 = MEMOP;
- else
- optype1 = RNDOP;
-
- /* Check for the cases that the operand constraints are not
- supposed to allow to happen. Abort if we get one,
- because generating code for these cases is painful. */
-
- if (optype0 == RNDOP || optype1 == RNDOP)
- abort ();
-
- /* If an operand is an unoffsettable memory ref, find a register
- we can increment temporarily to make it refer to the second word. */
-
- if (optype0 == MEMOP)
- addreg0 = find_addr_reg (XEXP (operands[0], 0));
-
- if (optype1 == MEMOP)
- addreg1 = find_addr_reg (XEXP (operands[1], 0));
-
-/* ??? Perhaps in some cases move double words
- if there is a spare pair of floating regs. */
-
- /* Ok, we can do one word at a time.
- Normally we do the low-numbered word first,
- but if either operand is autodecrementing then we
- do the high-numbered word first.
-
- In either case, set up in LATEHALF the operands to use
- for the high-numbered word and in some cases alter the
- operands in OPERANDS to be suitable for the low-numbered word. */
-
- if (optype0 == REGOP)
- latehalf[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);
- else if (optype0 == OFFSOP)
- latehalf[0] = adj_offsettable_operand (operands[0], 4);
- else
- latehalf[0] = operands[0];
-
- if (optype1 == REGOP)
- latehalf[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1);
- else if (optype1 == OFFSOP)
- latehalf[1] = adj_offsettable_operand (operands[1], 4);
- else if (optype1 == CNSTOP)
- {
- if (GET_CODE (operands[1]) == CONST_DOUBLE)
- split_double (operands[1], &operands[1], &latehalf[1]);
- else if (CONSTANT_P (operands[1]))
- latehalf[1] = const0_rtx;
- }
- else
- latehalf[1] = operands[1];
-
- /* If the first move would clobber the source of the second one,
- do them in the other order.
-
- RMS says "This happens only for registers;
- such overlap can't happen in memory unless the user explicitly
- sets it up, and that is an undefined circumstance."
-
- but it happens on the sparc when loading parameter registers,
- so I am going to define that circumstance, and make it work
- as expected. */
-
- if (optype0 == REGOP && optype1 == REGOP
- && REGNO (operands[0]) == REGNO (latehalf[1]))
- {
- CC_STATUS_PARTIAL_INIT;
- /* Make any unoffsettable addresses point at high-numbered word. */
- if (addreg0)
- output_asm_insn ("adds 0x4,%0,%0", &addreg0);
- if (addreg1)
- output_asm_insn ("adds 0x4,%0,%0", &addreg1);
-
- /* Do that word. */
- output_asm_insn (singlemove_string (latehalf), latehalf);
-
- /* Undo the adds we just did. */
- if (addreg0)
- output_asm_insn ("adds -0x4,%0,%0", &addreg0);
- if (addreg1)
- output_asm_insn ("adds -0x4,%0,%0", &addreg1);
-
- /* Do low-numbered word. */
- return singlemove_string (operands);
- }
- else if (optype0 == REGOP && optype1 != REGOP
- && reg_overlap_mentioned_p (operands[0], operands[1]))
- {
- /* If both halves of dest are used in the src memory address,
- add the two regs and put them in the low reg (operands[0]).
- Then it works to load latehalf first. */
- if (reg_mentioned_p (operands[0], XEXP (operands[1], 0))
- && reg_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
- {
- rtx xops[2];
- xops[0] = latehalf[0];
- xops[1] = operands[0];
- output_asm_insn ("adds %1,%0,%1", xops);
- operands[1] = gen_rtx (MEM, DImode, operands[0]);
- latehalf[1] = adj_offsettable_operand (operands[1], 4);
- addreg1 = 0;
- highest_first = 1;
- }
- /* Only one register in the dest is used in the src memory address,
- and this is the first register of the dest, so we want to do
- the late half first here also. */
- else if (! reg_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
- highest_first = 1;
- /* Only one register in the dest is used in the src memory address,
- and this is the second register of the dest, so we want to do
- the late half last. If addreg1 is set, and addreg1 is the same
- register as latehalf, then we must suppress the trailing decrement,
- because it would clobber the value just loaded. */
- else if (addreg1 && reg_mentioned_p (addreg1, latehalf[0]))
- no_addreg1_decrement = 1;
- }
-
- /* Normal case: do the two words, low-numbered first.
- Overlap case (highest_first set): do high-numbered word first. */
-
- if (! highest_first)
- output_asm_insn (singlemove_string (operands), operands);
-
- CC_STATUS_PARTIAL_INIT;
- /* Make any unoffsettable addresses point at high-numbered word. */
- if (addreg0)
- output_asm_insn ("adds 0x4,%0,%0", &addreg0);
- if (addreg1)
- output_asm_insn ("adds 0x4,%0,%0", &addreg1);
-
- /* Do that word. */
- output_asm_insn (singlemove_string (latehalf), latehalf);
-
- /* Undo the adds we just did. */
- if (addreg0)
- output_asm_insn ("adds -0x4,%0,%0", &addreg0);
- if (addreg1 && !no_addreg1_decrement)
- output_asm_insn ("adds -0x4,%0,%0", &addreg1);
-
- if (highest_first)
- output_asm_insn (singlemove_string (operands), operands);
-
- return "";
-}
-
-char *
-output_fp_move_double (operands)
- rtx *operands;
-{
- /* If the source operand is any sort of zero, use f0 instead. */
-
- if (operands[1] == CONST0_RTX (GET_MODE (operands[1])))
- operands[1] = gen_rtx (REG, DFmode, F0_REGNUM);
-
- if (FP_REG_P (operands[0]))
- {
- if (FP_REG_P (operands[1]))
- return "fmov.dd %1,%0";
- if (GET_CODE (operands[1]) == REG)
- {
- output_asm_insn ("ixfr %1,%0", operands);
- operands[0] = gen_rtx (REG, VOIDmode, REGNO (operands[0]) + 1);
- operands[1] = gen_rtx (REG, VOIDmode, REGNO (operands[1]) + 1);
- return "ixfr %1,%0";
- }
- if (operands[1] == CONST0_RTX (DFmode))
- return "fmov.dd f0,%0";
- if (CONSTANT_ADDRESS_P (XEXP (operands[1], 0)))
- {
- if (! ((cc_prev_status.flags & CC_KNOW_HI_R31)
- && (cc_prev_status.flags & CC_HI_R31_ADJ)
- && cc_prev_status.mdep == XEXP (operands[1], 0)))
- {
- CC_STATUS_INIT;
- output_asm_insn ("orh %h1,%?r0,%?r31", operands);
- }
- cc_status.flags |= CC_KNOW_HI_R31 | CC_HI_R31_ADJ;
- cc_status.mdep = XEXP (operands[1], 0);
- return "fld.d %L1(%?r31),%0";
- }
- return "fld.d %1,%0";
- }
- else if (FP_REG_P (operands[1]))
- {
- if (GET_CODE (operands[0]) == REG)
- {
- output_asm_insn ("fxfr %1,%0", operands);
- operands[0] = gen_rtx (REG, VOIDmode, REGNO (operands[0]) + 1);
- operands[1] = gen_rtx (REG, VOIDmode, REGNO (operands[1]) + 1);
- return "fxfr %1,%0";
- }
- if (CONSTANT_ADDRESS_P (XEXP (operands[0], 0)))
- {
- if (! ((cc_prev_status.flags & CC_KNOW_HI_R31)
- && (cc_prev_status.flags & CC_HI_R31_ADJ)
- && cc_prev_status.mdep == XEXP (operands[0], 0)))
- {
- CC_STATUS_INIT;
- output_asm_insn ("orh %h0,%?r0,%?r31", operands);
- }
- cc_status.flags |= CC_KNOW_HI_R31 | CC_HI_R31_ADJ;
- cc_status.mdep = XEXP (operands[0], 0);
- return "fst.d %1,%L0(%?r31)";
- }
- return "fst.d %1,%0";
- }
- else
- abort ();
- /* NOTREACHED */
- return NULL;
-}
-
-/* Return a REG that occurs in ADDR with coefficient 1.
- ADDR can be effectively incremented by incrementing REG. */
-
-static rtx
-find_addr_reg (addr)
- rtx addr;
-{
- while (GET_CODE (addr) == PLUS)
- {
- if (GET_CODE (XEXP (addr, 0)) == REG)
- addr = XEXP (addr, 0);
- else if (GET_CODE (XEXP (addr, 1)) == REG)
- addr = XEXP (addr, 1);
- else if (CONSTANT_P (XEXP (addr, 0)))
- addr = XEXP (addr, 1);
- else if (CONSTANT_P (XEXP (addr, 1)))
- addr = XEXP (addr, 0);
- else
- abort ();
- }
- if (GET_CODE (addr) == REG)
- return addr;
- abort ();
- /* NOTREACHED */
- return NULL;
-}
-
-/* Return a template for a load instruction with mode MODE and
- arguments from the string ARGS.
-
- This string is in static storage. */
-
-static char *
-load_opcode (mode, args, reg)
- enum machine_mode mode;
- char *args;
- rtx reg;
-{
- static char buf[30];
- char *opcode;
-
- switch (mode)
- {
- case QImode:
- opcode = "ld.b";
- break;
-
- case HImode:
- opcode = "ld.s";
- break;
-
- case SImode:
- case SFmode:
- if (FP_REG_P (reg))
- opcode = "fld.l";
- else
- opcode = "ld.l";
- break;
-
- case DImode:
- if (!FP_REG_P (reg))
- abort ();
- case DFmode:
- opcode = "fld.d";
- break;
-
- default:
- abort ();
- }
-
- sprintf (buf, "%s %s", opcode, args);
- return buf;
-}
-
-/* Return a template for a store instruction with mode MODE and
- arguments from the string ARGS.
-
- This string is in static storage. */
-
-static char *
-store_opcode (mode, args, reg)
- enum machine_mode mode;
- char *args;
- rtx reg;
-{
- static char buf[30];
- char *opcode;
-
- switch (mode)
- {
- case QImode:
- opcode = "st.b";
- break;
-
- case HImode:
- opcode = "st.s";
- break;
-
- case SImode:
- case SFmode:
- if (FP_REG_P (reg))
- opcode = "fst.l";
- else
- opcode = "st.l";
- break;
-
- case DImode:
- if (!FP_REG_P (reg))
- abort ();
- case DFmode:
- opcode = "fst.d";
- break;
-
- default:
- abort ();
- }
-
- sprintf (buf, "%s %s", opcode, args);
- return buf;
-}
-
-/* Output a store-in-memory whose operands are OPERANDS[0,1].
- OPERANDS[0] is a MEM, and OPERANDS[1] is a reg or zero.
-
- This function returns a template for an insn.
- This is in static storage.
-
- It may also output some insns directly.
- It may alter the values of operands[0] and operands[1]. */
-
-char *
-output_store (operands)
- rtx *operands;
-{
- enum machine_mode mode = GET_MODE (operands[0]);
- rtx address = XEXP (operands[0], 0);
- char *string;
-
- cc_status.flags |= CC_KNOW_HI_R31 | CC_HI_R31_ADJ;
- cc_status.mdep = address;
-
- if (! ((cc_prev_status.flags & CC_KNOW_HI_R31)
- && (cc_prev_status.flags & CC_HI_R31_ADJ)
- && address == cc_prev_status.mdep))
- {
- CC_STATUS_INIT;
- output_asm_insn ("orh %h0,%?r0,%?r31", operands);
- cc_prev_status.mdep = address;
- }
-
- /* Store zero in two parts when appropriate. */
- if (mode == DFmode && operands[1] == CONST0_RTX (DFmode))
- return store_opcode (DFmode, "%r1,%L0(%?r31)", operands[1]);
-
- /* Code below isn't smart enough to move a doubleword in two parts,
- so use output_move_double to do that in the cases that require it. */
- if ((mode == DImode || mode == DFmode)
- && ! FP_REG_P (operands[1]))
- return output_move_double (operands);
-
- return store_opcode (mode, "%r1,%L0(%?r31)", operands[1]);
-}
-
-/* Output a load-from-memory whose operands are OPERANDS[0,1].
- OPERANDS[0] is a reg, and OPERANDS[1] is a mem.
-
- This function returns a template for an insn.
- This is in static storage.
-
- It may also output some insns directly.
- It may alter the values of operands[0] and operands[1]. */
-
-char *
-output_load (operands)
- rtx *operands;
-{
- enum machine_mode mode = GET_MODE (operands[0]);
- rtx address = XEXP (operands[1], 0);
-
- /* We don't bother trying to see if we know %hi(address).
- This is because we are doing a load, and if we know the
- %hi value, we probably also know that value in memory. */
- cc_status.flags |= CC_KNOW_HI_R31 | CC_HI_R31_ADJ;
- cc_status.mdep = address;
-
- if (! ((cc_prev_status.flags & CC_KNOW_HI_R31)
- && (cc_prev_status.flags & CC_HI_R31_ADJ)
- && address == cc_prev_status.mdep
- && cc_prev_status.mdep == cc_status.mdep))
- {
- CC_STATUS_INIT;
- output_asm_insn ("orh %h1,%?r0,%?r31", operands);
- cc_prev_status.mdep = address;
- }
-
- /* Code below isn't smart enough to move a doubleword in two parts,
- so use output_move_double to do that in the cases that require it. */
- if ((mode == DImode || mode == DFmode)
- && ! FP_REG_P (operands[0]))
- return output_move_double (operands);
-
- return load_opcode (mode, "%L1(%?r31),%0", operands[0]);
-}
-
-#if 0
-/* Load the address specified by OPERANDS[3] into the register
- specified by OPERANDS[0].
-
- OPERANDS[3] may be the result of a sum, hence it could either be:
-
- (1) CONST
- (2) REG
- (2) REG + CONST_INT
- (3) REG + REG + CONST_INT
- (4) REG + REG (special case of 3).
-
- Note that (3) is not a legitimate address.
- All cases are handled here. */
-
-void
-output_load_address (operands)
- rtx *operands;
-{
- rtx base, offset;
-
- if (CONSTANT_P (operands[3]))
- {
- output_asm_insn ("mov %3,%0", operands);
- return;
- }
-
- if (REG_P (operands[3]))
- {
- if (REGNO (operands[0]) != REGNO (operands[3]))
- output_asm_insn ("shl %?r0,%3,%0", operands);
- return;
- }
-
- if (GET_CODE (operands[3]) != PLUS)
- abort ();
-
- base = XEXP (operands[3], 0);
- offset = XEXP (operands[3], 1);
-
- if (GET_CODE (base) == CONST_INT)
- {
- rtx tmp = base;
- base = offset;
- offset = tmp;
- }
-
- if (GET_CODE (offset) != CONST_INT)
- {
- /* Operand is (PLUS (REG) (REG)). */
- base = operands[3];
- offset = const0_rtx;
- }
-
- if (REG_P (base))
- {
- operands[6] = base;
- operands[7] = offset;
- CC_STATUS_PARTIAL_INIT;
- if (SMALL_INT (offset))
- output_asm_insn ("adds %7,%6,%0", operands);
- else
- output_asm_insn ("mov %7,%0\n\tadds %0,%6,%0", operands);
- }
- else if (GET_CODE (base) == PLUS)
- {
- operands[6] = XEXP (base, 0);
- operands[7] = XEXP (base, 1);
- operands[8] = offset;
-
- CC_STATUS_PARTIAL_INIT;
- if (SMALL_INT (offset))
- output_asm_insn ("adds %6,%7,%0\n\tadds %8,%0,%0", operands);
- else
- output_asm_insn ("mov %8,%0\n\tadds %0,%6,%0\n\tadds %0,%7,%0", operands);
- }
- else
- abort ();
-}
-#endif
-
-/* Output code to place a size count SIZE in register REG.
- Because block moves are pipelined, we don't include the
- first element in the transfer of SIZE to REG.
- For this, we subtract ALIGN. (Actually, I think it is not
- right to subtract on this machine, so right now we don't.) */
-
-static void
-output_size_for_block_move (size, reg, align)
- rtx size, reg, align;
-{
- rtx xoperands[3];
-
- xoperands[0] = reg;
- xoperands[1] = size;
- xoperands[2] = align;
-
-#if 1
- cc_status.flags &= ~ CC_KNOW_HI_R31;
- output_asm_insn (singlemove_string (xoperands), xoperands);
-#else
- if (GET_CODE (size) == REG)
- output_asm_insn ("sub %2,%1,%0", xoperands);
- else
- {
- xoperands[1]
- = gen_rtx (CONST_INT, VOIDmode, INTVAL (size) - INTVAL (align));
- cc_status.flags &= ~ CC_KNOW_HI_R31;
- output_asm_insn ("mov %1,%0", xoperands);
- }
-#endif
-}
-
-/* Emit code to perform a block move.
-
- OPERANDS[0] is the destination.
- OPERANDS[1] is the source.
- OPERANDS[2] is the size.
- OPERANDS[3] is the known safe alignment.
- OPERANDS[4..6] are pseudos we can safely clobber as temps. */
-
-char *
-output_block_move (operands)
- rtx *operands;
-{
- /* A vector for our computed operands. Note that load_output_address
- makes use of (and can clobber) up to the 8th element of this vector. */
- rtx xoperands[10];
- rtx zoperands[10];
- static int movstrsi_label = 0;
- int i, j;
- rtx temp1 = operands[4];
- rtx alignrtx = operands[3];
- int align = INTVAL (alignrtx);
- int chunk_size;
-
- xoperands[0] = operands[0];
- xoperands[1] = operands[1];
- xoperands[2] = temp1;
-
- /* We can't move more than four bytes at a time
- because we have only one register to move them through. */
- if (align > 4)
- {
- align = 4;
- alignrtx = gen_rtx (CONST_INT, VOIDmode, 4);
- }
-
- /* Recognize special cases of block moves. These occur
- when GNU C++ is forced to treat something as BLKmode
- to keep it in memory, when its mode could be represented
- with something smaller.
-
- We cannot do this for global variables, since we don't know
- what pages they don't cross. Sigh. */
- if (GET_CODE (operands[2]) == CONST_INT
- && ! CONSTANT_ADDRESS_P (operands[0])
- && ! CONSTANT_ADDRESS_P (operands[1]))
- {
- int size = INTVAL (operands[2]);
- rtx op0 = xoperands[0];
- rtx op1 = xoperands[1];
-
- if ((align & 3) == 0 && (size & 3) == 0 && (size >> 2) <= 16)
- {
- if (memory_address_p (SImode, plus_constant (op0, size))
- && memory_address_p (SImode, plus_constant (op1, size)))
- {
- cc_status.flags &= ~CC_KNOW_HI_R31;
- for (i = (size>>2)-1; i >= 0; i--)
- {
- xoperands[0] = plus_constant (op0, i * 4);
- xoperands[1] = plus_constant (op1, i * 4);
- output_asm_insn ("ld.l %a1,%?r31\n\tst.l %?r31,%a0",
- xoperands);
- }
- return "";
- }
- }
- else if ((align & 1) == 0 && (size & 1) == 0 && (size >> 1) <= 16)
- {
- if (memory_address_p (HImode, plus_constant (op0, size))
- && memory_address_p (HImode, plus_constant (op1, size)))
- {
- cc_status.flags &= ~CC_KNOW_HI_R31;
- for (i = (size>>1)-1; i >= 0; i--)
- {
- xoperands[0] = plus_constant (op0, i * 2);
- xoperands[1] = plus_constant (op1, i * 2);
- output_asm_insn ("ld.s %a1,%?r31\n\tst.s %?r31,%a0",
- xoperands);
- }
- return "";
- }
- }
- else if (size <= 16)
- {
- if (memory_address_p (QImode, plus_constant (op0, size))
- && memory_address_p (QImode, plus_constant (op1, size)))
- {
- cc_status.flags &= ~CC_KNOW_HI_R31;
- for (i = size-1; i >= 0; i--)
- {
- xoperands[0] = plus_constant (op0, i);
- xoperands[1] = plus_constant (op1, i);
- output_asm_insn ("ld.b %a1,%?r31\n\tst.b %?r31,%a0",
- xoperands);
- }
- return "";
- }
- }
- }
-
- /* Since we clobber untold things, nix the condition codes. */
- CC_STATUS_INIT;
-
- /* This is the size of the transfer.
- Either use the register which already contains the size,
- or use a free register (used by no operands). */
- output_size_for_block_move (operands[2], operands[4], alignrtx);
-
-#if 0
- /* Also emit code to decrement the size value by ALIGN. */
- zoperands[0] = operands[0];
- zoperands[3] = plus_constant (operands[0], align);
- output_load_address (zoperands);
-#endif
-
- /* Generate number for unique label. */
-
- xoperands[3] = gen_rtx (CONST_INT, VOIDmode, movstrsi_label++);
-
- /* Calculate the size of the chunks we will be trying to move first. */
-
-#if 0
- if ((align & 3) == 0)
- chunk_size = 4;
- else if ((align & 1) == 0)
- chunk_size = 2;
- else
-#endif
- chunk_size = 1;
-
- /* Copy the increment (negative) to a register for bla insn. */
-
- xoperands[4] = gen_rtx (CONST_INT, VOIDmode, - chunk_size);
- xoperands[5] = operands[5];
- output_asm_insn ("adds %4,%?r0,%5", xoperands);
-
- /* Predecrement the loop counter. This happens again also in the `bla'
- instruction which precedes the loop, but we need to have it done
- two times before we enter the loop because of the bizarre semantics
- of the bla instruction. */
-
- output_asm_insn ("adds %5,%2,%2", xoperands);
-
- /* Check for the case where the original count was less than or equal to
- zero. Avoid going through the loop at all if the original count was
- indeed less than or equal to zero. Note that we treat the count as
- if it were a signed 32-bit quantity here, rather than an unsigned one,
- even though we really shouldn't. We have to do this because of the
- semantics of the `ble' instruction, which assume that the count is
- a signed 32-bit value. Anyway, in practice it won't matter because
- nobody is going to try to do a memcpy() of more than half of the
- entire address space (i.e. 2 gigabytes) anyway. */
-
- output_asm_insn ("bc .Le%3", xoperands);
-
- /* Make available a register which is a temporary. */
-
- xoperands[6] = operands[6];
-
- /* Now the actual loop.
- In xoperands, elements 1 and 0 are the input and output vectors.
- Element 2 is the loop index. Element 5 is the increment. */
-
- output_asm_insn ("subs %1,%5,%1", xoperands);
- output_asm_insn ("bla %5,%2,.Lm%3", xoperands);
- output_asm_insn ("adds %0,%2,%6", xoperands);
- output_asm_insn ("\n.Lm%3:", xoperands); /* Label for bla above. */
- output_asm_insn ("\n.Ls%3:", xoperands); /* Loop start label. */
- output_asm_insn ("adds %5,%6,%6", xoperands);
-
- /* NOTE: The code here which is supposed to handle the cases where the
- sources and destinations are known to start on a 4 or 2 byte boundary
- are currently broken. They fail to do anything about the overflow
- bytes which might still need to be copied even after we have copied
- some number of words or halfwords. Thus, for now we use the lowest
- common denominator, i.e. the code which just copies some number of
- totally unaligned individual bytes. (See the calculation of
- chunk_size above. */
-
- if (chunk_size == 4)
- {
- output_asm_insn ("ld.l %2(%1),%?r31", xoperands);
- output_asm_insn ("bla %5,%2,.Ls%3", xoperands);
- output_asm_insn ("st.l %?r31,8(%6)", xoperands);
- }
- else if (chunk_size == 2)
- {
- output_asm_insn ("ld.s %2(%1),%?r31", xoperands);
- output_asm_insn ("bla %5,%2,.Ls%3", xoperands);
- output_asm_insn ("st.s %?r31,4(%6)", xoperands);
- }
- else /* chunk_size == 1 */
- {
- output_asm_insn ("ld.b %2(%1),%?r31", xoperands);
- output_asm_insn ("bla %5,%2,.Ls%3", xoperands);
- output_asm_insn ("st.b %?r31,2(%6)", xoperands);
- }
- output_asm_insn ("\n.Le%3:", xoperands); /* Here if count <= 0. */
-
- return "";
-}
-
-/* Output a delayed branch insn with the delay insn in its
- branch slot. The delayed branch insn template is in TEMPLATE,
- with operands OPERANDS. The insn in its delay slot is INSN.
-
- As a special case, since we know that all memory transfers are via
- ld/st insns, if we see a (MEM (SYMBOL_REF ...)) we divide the memory
- reference around the branch as
-
- orh ha%x,%?r0,%?r31
- b ...
- ld/st l%x(%?r31),...
-
- As another special case, we handle loading (SYMBOL_REF ...) and
- other large constants around branches as well:
-
- orh h%x,%?r0,%0
- b ...
- or l%x,%0,%1
-
- */
-
-char *
-output_delayed_branch (template, operands, insn)
- char *template;
- rtx *operands;
- rtx insn;
-{
- rtx src = XVECEXP (PATTERN (insn), 0, 1);
- rtx dest = XVECEXP (PATTERN (insn), 0, 0);
-
- /* See if we are doing some branch together with setting some register
- to some 32-bit value which does (or may) have some of the high-order
- 16 bits set. If so, we need to set the register in two stages. One
- stage must be done before the branch, and the other one can be done
- in the delay slot. */
-
- if ( (GET_CODE (src) == CONST_INT
- && ((unsigned) INTVAL (src) & (unsigned) 0xffff0000) != (unsigned) 0)
- || (GET_CODE (src) == SYMBOL_REF)
- || (GET_CODE (src) == LABEL_REF)
- || (GET_CODE (src) == CONST))
- {
- rtx xoperands[2];
- xoperands[0] = dest;
- xoperands[1] = src;
-
- CC_STATUS_PARTIAL_INIT;
- /* Output the `orh' insn. */
- output_asm_insn ("orh %H1,%?r0,%0", xoperands);
-
- /* Output the branch instruction next. */
- output_asm_insn (template, operands);
-
- /* Now output the `or' insn. */
- output_asm_insn ("or %L1,%0,%0", xoperands);
- }
- else if ((GET_CODE (src) == MEM
- && CONSTANT_ADDRESS_P (XEXP (src, 0)))
- || (GET_CODE (dest) == MEM
- && CONSTANT_ADDRESS_P (XEXP (dest, 0))))
- {
- rtx xoperands[2];
- char *split_template;
- xoperands[0] = dest;
- xoperands[1] = src;
-
- /* Output the `orh' insn. */
- if (GET_CODE (src) == MEM)
- {
- if (! ((cc_prev_status.flags & CC_KNOW_HI_R31)
- && (cc_prev_status.flags & CC_HI_R31_ADJ)
- && cc_prev_status.mdep == XEXP (operands[1], 0)))
- {
- CC_STATUS_INIT;
- output_asm_insn ("orh %h1,%?r0,%?r31", xoperands);
- }
- split_template = load_opcode (GET_MODE (dest),
- "%L1(%?r31),%0", dest);
- }
- else
- {
- if (! ((cc_prev_status.flags & CC_KNOW_HI_R31)
- && (cc_prev_status.flags & CC_HI_R31_ADJ)
- && cc_prev_status.mdep == XEXP (operands[0], 0)))
- {
- CC_STATUS_INIT;
- output_asm_insn ("orh %h0,%?r0,%?r31", xoperands);
- }
- split_template = store_opcode (GET_MODE (dest),
- "%r1,%L0(%?r31)", src);
- }
-
- /* Output the branch instruction next. */
- output_asm_insn (template, operands);
-
- /* Now output the load or store.
- No need to do a CC_STATUS_INIT, because we are branching anyway. */
- output_asm_insn (split_template, xoperands);
- }
- else
- {
- int insn_code_number;
- rtx pat = gen_rtx (SET, VOIDmode, dest, src);
- rtx delay_insn = gen_rtx (INSN, VOIDmode, 0, 0, 0, pat, -1, 0, 0);
- int i;
-
- /* Output the branch instruction first. */
- output_asm_insn (template, operands);
-
- /* Now recognize the insn which we put in its delay slot.
- We must do this after outputting the branch insn,
- since operands may just be a pointer to `recog_operand'. */
- INSN_CODE (delay_insn) = insn_code_number = recog (pat, delay_insn);
- if (insn_code_number == -1)
- abort ();
-
- for (i = 0; i < insn_n_operands[insn_code_number]; i++)
- {
- if (GET_CODE (recog_operand[i]) == SUBREG)
- recog_operand[i] = alter_subreg (recog_operand[i]);
- }
-
- insn_extract (delay_insn);
- if (! constrain_operands (insn_code_number, 1))
- fatal_insn_not_found (delay_insn);
-
- template = insn_template[insn_code_number];
- if (template == 0)
- template = (*insn_outfun[insn_code_number]) (recog_operand, delay_insn);
- output_asm_insn (template, recog_operand);
- }
- CC_STATUS_INIT;
- return "";
-}
-
-/* Output a newly constructed insn DELAY_INSN. */
-char *
-output_delay_insn (delay_insn)
- rtx delay_insn;
-{
- char *template;
- int insn_code_number;
- int i;
-
- /* Now recognize the insn which we put in its delay slot.
- We must do this after outputting the branch insn,
- since operands may just be a pointer to `recog_operand'. */
- insn_code_number = recog_memoized (delay_insn);
- if (insn_code_number == -1)
- abort ();
-
- /* Extract the operands of this delay insn. */
- INSN_CODE (delay_insn) = insn_code_number;
- insn_extract (delay_insn);
-
- /* It is possible that this insn has not been properly scanned by final
- yet. If this insn's operands don't appear in the peephole's
- actual operands, then they won't be fixed up by final, so we
- make sure they get fixed up here. -- This is a kludge. */
- for (i = 0; i < insn_n_operands[insn_code_number]; i++)
- {
- if (GET_CODE (recog_operand[i]) == SUBREG)
- recog_operand[i] = alter_subreg (recog_operand[i]);
- }
-
-#ifdef REGISTER_CONSTRAINTS
- if (! constrain_operands (insn_code_number))
- abort ();
-#endif
-
- cc_prev_status = cc_status;
-
- /* Update `cc_status' for this instruction.
- The instruction's output routine may change it further.
- If the output routine for a jump insn needs to depend
- on the cc status, it should look at cc_prev_status. */
-
- NOTICE_UPDATE_CC (PATTERN (delay_insn), delay_insn);
-
- /* Now get the template for what this insn would
- have been, without the branch. */
-
- template = insn_template[insn_code_number];
- if (template == 0)
- template = (*insn_outfun[insn_code_number]) (recog_operand, delay_insn);
- output_asm_insn (template, recog_operand);
- return "";
-}
-
-/* Special routine to convert an SFmode value represented as a
- CONST_DOUBLE into its equivalent unsigned long bit pattern.
- We convert the value from a double precision floating-point
- value to single precision first, and thence to a bit-wise
- equivalent unsigned long value. This routine is used when
- generating an immediate move of an SFmode value directly
- into a general register because the svr4 assembler doesn't
- grok floating literals in instruction operand contexts. */
-
-unsigned long
-sfmode_constant_to_ulong (x)
- rtx x;
-{
- REAL_VALUE_TYPE d;
- union { float f; unsigned long i; } u2;
-
- if (GET_CODE (x) != CONST_DOUBLE || GET_MODE (x) != SFmode)
- abort ();
-
-#if TARGET_FLOAT_FORMAT != HOST_FLOAT_FORMAT
- error IEEE emulation needed
-#endif
- REAL_VALUE_FROM_CONST_DOUBLE (d, x);
- u2.f = d;
- return u2.i;
-}
-
-/* This function generates the assembly code for function entry.
- The macro FUNCTION_PROLOGUE in i860.h is defined to call this function.
-
- ASM_FILE is a stdio stream to output the code to.
- SIZE is an int: how many units of temporary storage to allocate.
-
- Refer to the array `regs_ever_live' to determine which registers
- to save; `regs_ever_live[I]' is nonzero if register number I
- is ever used in the function. This macro is responsible for
- knowing which registers should not be saved even if used.
-
- NOTE: `frame_lower_bytes' is the count of bytes which will lie
- between the new `fp' value and the new `sp' value after the
- prologue is done. `frame_upper_bytes' is the count of bytes
- that will lie between the new `fp' and the *old* `sp' value
- after the new `fp' is setup (in the prologue). The upper
- part of each frame always includes at least 2 words (8 bytes)
- to hold the saved frame pointer and the saved return address.
-
- The svr4 ABI for the i860 now requires that the values of the
- stack pointer and frame pointer registers be kept aligned to
- 16-byte boundaries at all times. We obey that restriction here.
-
- The svr4 ABI for the i860 is entirely vague when it comes to specifying
- exactly where the "preserved" registers should be saved. The native
- svr4 C compiler I now have doesn't help to clarify the requirements
- very much because it is plainly out-of-date and non-ABI-compliant
- (in at least one important way, i.e. how it generates function
- epilogues).
-
- The native svr4 C compiler saves the "preserved" registers (i.e.
- r4-r15 and f2-f7) in the lower part of a frame (i.e. at negative
- offsets from the frame pointer).
-
- Previous versions of GCC also saved the "preserved" registers in the
- "negative" part of the frame, but they saved them using positive
- offsets from the (adjusted) stack pointer (after it had been adjusted
- to allocate space for the new frame). That's just plain wrong
- because if the current function calls alloca(), the stack pointer
- will get moved, and it will be impossible to restore the registers
- properly again after that.
-
- Both compilers handled parameter registers (i.e. r16-r27 and f8-f15)
- by copying their values either into various "preserved" registers or
- into stack slots in the lower part of the current frame (as seemed
- appropriate, depending upon subsequent usage of these values).
-
- Here we want to save the preserved registers at some offset from the
- frame pointer register so as to avoid any possible problems arising
- from calls to alloca(). We can either save them at small positive
- offsets from the frame pointer, or at small negative offsets from
- the frame pointer. If we save them at small negative offsets from
- the frame pointer (i.e. in the lower part of the frame) then we
- must tell the rest of GCC (via STARTING_FRAME_OFFSET) exactly how
- many bytes of space we plan to use in the lower part of the frame
- for this purpose. Since other parts of the compiler reference the
- value of STARTING_FRAME_OFFSET long before final() calls this function,
- we would have to go ahead and assume the worst-case storage requirements
- for saving all of the "preserved" registers (and use that number, i.e.
- `80', to define STARTING_FRAME_OFFSET) if we wanted to save them in
- the lower part of the frame. That could potentially be very wasteful,
- and that wastefulness could really hamper people compiling for embedded
- i860 targets with very tight limits on stack space. Thus, we choose
- here to save the preserved registers in the upper part of the
- frame, so that we can decide at the very last minute how much (or how
- little) space we must allocate for this purpose.
-
- To satisfy the needs of the svr4 ABI "tdesc" scheme, preserved
- registers must always be saved so that the saved values of registers
- with higher numbers are at higher addresses. We obey that restriction
- here.
-
- There are two somewhat different ways that you can generate prologues
- here... i.e. pedantically ABI-compliant, and the "other" way. The
- "other" way is more consistent with what is currently generated by the
- "native" svr4 C compiler for the i860. That's important if you want
- to use the current (as of 8/91) incarnation of svr4 SDB for the i860.
- The SVR4 SDB for the i860 insists on having function prologues be
- non-ABI-compliant!
-
- To get fully ABI-compliant prologues, define I860_STRICT_ABI_PROLOGUES
- in the i860svr4.h file. (By default this is *not* defined).
-
- The differences between the ABI-compliant and non-ABI-compliant prologues
- are that (a) the ABI version seems to require the use of *signed*
- (rather than unsigned) adds and subtracts, and (b) the ordering of
- the various steps (e.g. saving preserved registers, saving the
- return address, setting up the new frame pointer value) is different.
-
- For strict ABI compliance, it seems to be the case that the very last
- thing that is supposed to happen in the prologue is getting the frame
- pointer set to its new value (but only after everything else has
- already been properly setup). We do that here, but only if the symbol
- I860_STRICT_ABI_PROLOGUES is defined.
-*/
-
-#ifndef STACK_ALIGNMENT
-#define STACK_ALIGNMENT 16
-#endif
-
-extern char call_used_regs[];
-extern int leaf_function_p ();
-
-char *current_function_original_name;
-
-static int must_preserve_r1;
-static unsigned must_preserve_bytes;
-
-void
-function_prologue (asm_file, local_bytes)
- register FILE *asm_file;
- register unsigned local_bytes;
-{
- register unsigned frame_lower_bytes;
- register unsigned frame_upper_bytes;
- register unsigned total_fsize;
- register unsigned preserved_reg_bytes = 0;
- register unsigned i;
- register unsigned preserved_so_far = 0;
-
- must_preserve_r1 = (optimize < 2 || ! leaf_function_p ());
- must_preserve_bytes = 4 + (must_preserve_r1 ? 4 : 0);
-
- /* Count registers that need preserving. Ignore r0. It never needs
- preserving. */
-
- for (i = 1; i < FIRST_PSEUDO_REGISTER; i++)
- {
- if (regs_ever_live[i] && ! call_used_regs[i])
- preserved_reg_bytes += 4;
- }
-
- /* Round-up the frame_lower_bytes so that it's a multiple of 16. */
-
- frame_lower_bytes = (local_bytes + STACK_ALIGNMENT - 1) & -STACK_ALIGNMENT;
-
- /* The upper part of each frame will contain the saved fp,
- the saved r1, and stack slots for all of the other "preserved"
- registers that we find we will need to save & restore. */
-
- frame_upper_bytes = must_preserve_bytes + preserved_reg_bytes;
-
- /* Round-up the frame_upper_bytes so that it's a multiple of 16. */
-
- frame_upper_bytes
- = (frame_upper_bytes + STACK_ALIGNMENT - 1) & -STACK_ALIGNMENT;
-
- total_fsize = frame_upper_bytes + frame_lower_bytes;
-
-#ifndef I860_STRICT_ABI_PROLOGUES
-
- /* There are two kinds of function prologues.
- You use the "small" version if the total frame size is
- small enough so that it can fit into an immediate 16-bit
- value in one instruction. Otherwise, you use the "large"
- version of the function prologue. */
-
- if (total_fsize > 0x7fff)
- {
- /* Adjust the stack pointer. The ABI sez to do this using `adds',
- but the native C compiler on svr4 uses `addu'. */
-
- fprintf (asm_file, "\taddu -%d,%ssp,%ssp\n",
- frame_upper_bytes, i860_reg_prefix, i860_reg_prefix);
-
- /* Save the old frame pointer. */
-
- fprintf (asm_file, "\tst.l %sfp,0(%ssp)\n",
- i860_reg_prefix, i860_reg_prefix);
-
- /* Setup the new frame pointer. The ABI sez to do this after
- preserving registers (using adds), but that's not what the
- native C compiler on svr4 does. */
-
- fprintf (asm_file, "\taddu 0,%ssp,%sfp\n",
- i860_reg_prefix, i860_reg_prefix);
-
- /* Get the value of frame_lower_bytes into r31. */
-
- fprintf (asm_file, "\torh %d,%sr0,%sr31\n",
- frame_lower_bytes >> 16, i860_reg_prefix, i860_reg_prefix);
- fprintf (asm_file, "\tor %d,%sr31,%sr31\n",
- frame_lower_bytes & 0xffff, i860_reg_prefix, i860_reg_prefix);
-
- /* Now re-adjust the stack pointer using the value in r31.
- The ABI sez to do this with `subs' but SDB may prefer `subu'. */
-
- fprintf (asm_file, "\tsubu %ssp,%sr31,%ssp\n",
- i860_reg_prefix, i860_reg_prefix, i860_reg_prefix);
-
- /* Preserve registers. The ABI sez to do this before setting
- up the new frame pointer, but that's not what the native
- C compiler on svr4 does. */
-
- for (i = 1; i < 32; i++)
- if (regs_ever_live[i] && ! call_used_regs[i])
- fprintf (asm_file, "\tst.l %s%s,%d(%sfp)\n",
- i860_reg_prefix, reg_names[i],
- must_preserve_bytes + (4 * preserved_so_far++),
- i860_reg_prefix);
-
- for (i = 32; i < 64; i++)
- if (regs_ever_live[i] && ! call_used_regs[i])
- fprintf (asm_file, "\tfst.l %s%s,%d(%sfp)\n",
- i860_reg_prefix, reg_names[i],
- must_preserve_bytes + (4 * preserved_so_far++),
- i860_reg_prefix);
-
- /* Save the return address. */
-
- if (must_preserve_r1)
- fprintf (asm_file, "\tst.l %sr1,4(%sfp)\n",
- i860_reg_prefix, i860_reg_prefix);
- }
- else
- {
- /* Adjust the stack pointer. The ABI sez to do this using `adds',
- but the native C compiler on svr4 uses `addu'. */
-
- fprintf (asm_file, "\taddu -%d,%ssp,%ssp\n",
- total_fsize, i860_reg_prefix, i860_reg_prefix);
-
- /* Save the old frame pointer. */
-
- fprintf (asm_file, "\tst.l %sfp,%d(%ssp)\n",
- i860_reg_prefix, frame_lower_bytes, i860_reg_prefix);
-
- /* Setup the new frame pointer. The ABI sez to do this after
- preserving registers and after saving the return address,
- (and its saz to do this using adds), but that's not what the
- native C compiler on svr4 does. */
-
- fprintf (asm_file, "\taddu %d,%ssp,%sfp\n",
- frame_lower_bytes, i860_reg_prefix, i860_reg_prefix);
-
- /* Preserve registers. The ABI sez to do this before setting
- up the new frame pointer, but that's not what the native
- compiler on svr4 does. */
-
- for (i = 1; i < 32; i++)
- if (regs_ever_live[i] && ! call_used_regs[i])
- fprintf (asm_file, "\tst.l %s%s,%d(%sfp)\n",
- i860_reg_prefix, reg_names[i],
- must_preserve_bytes + (4 * preserved_so_far++),
- i860_reg_prefix);
-
- for (i = 32; i < 64; i++)
- if (regs_ever_live[i] && ! call_used_regs[i])
- fprintf (asm_file, "\tfst.l %s%s,%d(%sfp)\n",
- i860_reg_prefix, reg_names[i],
- must_preserve_bytes + (4 * preserved_so_far++),
- i860_reg_prefix);
-
- /* Save the return address. The ABI sez to do this earlier,
- and also via an offset from %sp, but the native C compiler
- on svr4 does it later (i.e. now) and uses an offset from
- %fp. */
-
- if (must_preserve_r1)
- fprintf (asm_file, "\tst.l %sr1,4(%sfp)\n",
- i860_reg_prefix, i860_reg_prefix);
- }
-
-#else /* defined(I860_STRICT_ABI_PROLOGUES) */
-
- /* There are two kinds of function prologues.
- You use the "small" version if the total frame size is
- small enough so that it can fit into an immediate 16-bit
- value in one instruction. Otherwise, you use the "large"
- version of the function prologue. */
-
- if (total_fsize > 0x7fff)
- {
- /* Adjust the stack pointer (thereby allocating a new frame). */
-
- fprintf (asm_file, "\tadds -%d,%ssp,%ssp\n",
- frame_upper_bytes, i860_reg_prefix, i860_reg_prefix);
-
- /* Save the caller's frame pointer. */
-
- fprintf (asm_file, "\tst.l %sfp,0(%ssp)\n",
- i860_reg_prefix, i860_reg_prefix);
-
- /* Save return address. */
-
- if (must_preserve_r1)
- fprintf (asm_file, "\tst.l %sr1,4(%ssp)\n",
- i860_reg_prefix, i860_reg_prefix);
-
- /* Get the value of frame_lower_bytes into r31 for later use. */
-
- fprintf (asm_file, "\torh %d,%sr0,%sr31\n",
- frame_lower_bytes >> 16, i860_reg_prefix, i860_reg_prefix);
- fprintf (asm_file, "\tor %d,%sr31,%sr31\n",
- frame_lower_bytes & 0xffff, i860_reg_prefix, i860_reg_prefix);
-
- /* Now re-adjust the stack pointer using the value in r31. */
-
- fprintf (asm_file, "\tsubs %ssp,%sr31,%ssp\n",
- i860_reg_prefix, i860_reg_prefix, i860_reg_prefix);
-
- /* Pre-compute value to be used as the new frame pointer. */
-
- fprintf (asm_file, "\tadds %ssp,%sr31,%sr31\n",
- i860_reg_prefix, i860_reg_prefix, i860_reg_prefix);
-
- /* Preserve registers. */
-
- for (i = 1; i < 32; i++)
- if (regs_ever_live[i] && ! call_used_regs[i])
- fprintf (asm_file, "\tst.l %s%s,%d(%sr31)\n",
- i860_reg_prefix, reg_names[i],
- must_preserve_bytes + (4 * preserved_so_far++),
- i860_reg_prefix);
-
- for (i = 32; i < 64; i++)
- if (regs_ever_live[i] && ! call_used_regs[i])
- fprintf (asm_file, "\tfst.l %s%s,%d(%sr31)\n",
- i860_reg_prefix, reg_names[i],
- must_preserve_bytes + (4 * preserved_so_far++),
- i860_reg_prefix);
-
- /* Actually set the new value of the frame pointer. */
-
- fprintf (asm_file, "\tmov %sr31,%sfp\n",
- i860_reg_prefix, i860_reg_prefix);
- }
- else
- {
- /* Adjust the stack pointer. */
-
- fprintf (asm_file, "\tadds -%d,%ssp,%ssp\n",
- total_fsize, i860_reg_prefix, i860_reg_prefix);
-
- /* Save the caller's frame pointer. */
-
- fprintf (asm_file, "\tst.l %sfp,%d(%ssp)\n",
- i860_reg_prefix, frame_lower_bytes, i860_reg_prefix);
-
- /* Save the return address. */
-
- if (must_preserve_r1)
- fprintf (asm_file, "\tst.l %sr1,%d(%ssp)\n",
- i860_reg_prefix, frame_lower_bytes + 4, i860_reg_prefix);
-
- /* Preserve registers. */
-
- for (i = 1; i < 32; i++)
- if (regs_ever_live[i] && ! call_used_regs[i])
- fprintf (asm_file, "\tst.l %s%s,%d(%ssp)\n",
- i860_reg_prefix, reg_names[i],
- frame_lower_bytes + must_preserve_bytes + (4 * preserved_so_far++),
- i860_reg_prefix);
-
- for (i = 32; i < 64; i++)
- if (regs_ever_live[i] && ! call_used_regs[i])
- fprintf (asm_file, "\tfst.l %s%s,%d(%ssp)\n",
- i860_reg_prefix, reg_names[i],
- frame_lower_bytes + must_preserve_bytes + (4 * preserved_so_far++),
- i860_reg_prefix);
-
- /* Setup the new frame pointer. */
-
- fprintf (asm_file, "\tadds %d,%ssp,%sfp\n",
- frame_lower_bytes, i860_reg_prefix, i860_reg_prefix);
- }
-#endif /* defined(I860_STRICT_ABI_PROLOGUES) */
-
-#ifdef ASM_OUTPUT_PROLOGUE_SUFFIX
- ASM_OUTPUT_PROLOGUE_SUFFIX (asm_file);
-#endif /* defined(ASM_OUTPUT_PROLOGUE_SUFFIX) */
-}
-
-/* This function generates the assembly code for function exit.
- The macro FUNCTION_EPILOGUE in i860.h is defined to call this function.
-
- ASM_FILE is a stdio stream to output the code to.
- SIZE is an int: how many units of temporary storage to allocate.
-
- The function epilogue should not depend on the current stack pointer!
- It should use the frame pointer only. This is mandatory because
- of alloca; we also take advantage of it to omit stack adjustments
- before returning.
-
- Note that when we go to restore the preserved register values we must
- not try to address their slots by using offsets from the stack pointer.
- That's because the stack pointer may have been moved during the function
- execution due to a call to alloca(). Rather, we must restore all
- preserved registers via offsets from the frame pointer value.
-
- Note also that when the current frame is being "popped" (by adjusting
- the value of the stack pointer) on function exit, we must (for the
- sake of alloca) set the new value of the stack pointer based upon
- the current value of the frame pointer. We can't just add what we
- believe to be the (static) frame size to the stack pointer because
- if we did that, and alloca() had been called during this function,
- we would end up returning *without* having fully deallocated all of
- the space grabbed by alloca. If that happened, and a function
- containing one or more alloca() calls was called over and over again,
- then the stack would grow without limit!
-
- Finally note that the epilogues generated here are completely ABI
- compliant. They go out of their way to insure that the value in
- the frame pointer register is never less than the value in the stack
- pointer register. It's not clear why this relationship needs to be
- maintained at all times, but maintaining it only costs one extra
- instruction, so what the hell.
-*/
-
-/* This corresponds to a version 4 TDESC structure. Lower numbered
- versions successively omit the last word of the structure. We
- don't try to handle version 5 here. */
-
-typedef struct TDESC_flags {
- int version:4;
- int reg_packing:1;
- int callable_block:1;
- int reserved:4;
- int fregs:6; /* fp regs 2-7 */
- int iregs:16; /* regs 0-15 */
-} TDESC_flags;
-
-typedef struct TDESC {
- TDESC_flags flags;
- int integer_reg_offset; /* same as must_preserve_bytes */
- int floating_point_reg_offset;
- unsigned int positive_frame_size; /* same as frame_upper_bytes */
- unsigned int negative_frame_size; /* same as frame_lower_bytes */
-} TDESC;
-
-void
-function_epilogue (asm_file, local_bytes)
- register FILE *asm_file;
- register unsigned local_bytes;
-{
- register unsigned frame_upper_bytes;
- register unsigned frame_lower_bytes;
- register unsigned preserved_reg_bytes = 0;
- register unsigned i;
- register unsigned restored_so_far = 0;
- register unsigned int_restored;
- register unsigned mask;
- unsigned intflags=0;
- register TDESC_flags *flags = (TDESC_flags *) &intflags;
-
- flags->version = 4;
- flags->reg_packing = 1;
- flags->iregs = 8; /* old fp always gets saved */
-
- /* Round-up the frame_lower_bytes so that it's a multiple of 16. */
-
- frame_lower_bytes = (local_bytes + STACK_ALIGNMENT - 1) & -STACK_ALIGNMENT;
-
- /* Count the number of registers that were preserved in the prologue.
- Ignore r0. It is never preserved. */
-
- for (i = 1; i < FIRST_PSEUDO_REGISTER; i++)
- {
- if (regs_ever_live[i] && ! call_used_regs[i])
- preserved_reg_bytes += 4;
- }
-
- /* The upper part of each frame will contain only saved fp,
- the saved r1, and stack slots for all of the other "preserved"
- registers that we find we will need to save & restore. */
-
- frame_upper_bytes = must_preserve_bytes + preserved_reg_bytes;
-
- /* Round-up frame_upper_bytes so that t is a multiple of 16. */
-
- frame_upper_bytes
- = (frame_upper_bytes + STACK_ALIGNMENT - 1) & -STACK_ALIGNMENT;
-
- /* Restore all of the "preserved" registers that need restoring. */
-
- mask = 2;
-
- for (i = 1; i < 32; i++, mask<<=1)
- if (regs_ever_live[i] && ! call_used_regs[i]) {
- fprintf (asm_file, "\tld.l %d(%sfp),%s%s\n",
- must_preserve_bytes + (4 * restored_so_far++),
- i860_reg_prefix, i860_reg_prefix, reg_names[i]);
- if (i > 3 && i < 16)
- flags->iregs |= mask;
- }
-
- int_restored = restored_so_far;
- mask = 1;
-
- for (i = 32; i < 64; i++) {
- if (regs_ever_live[i] && ! call_used_regs[i]) {
- fprintf (asm_file, "\tfld.l %d(%sfp),%s%s\n",
- must_preserve_bytes + (4 * restored_so_far++),
- i860_reg_prefix, i860_reg_prefix, reg_names[i]);
- if (i > 33 & i < 40)
- flags->fregs |= mask;
- }
- if (i > 33 && i < 40)
- mask<<=1;
- }
-
- /* Get the value we plan to use to restore the stack pointer into r31. */
-
- fprintf (asm_file, "\tadds %d,%sfp,%sr31\n",
- frame_upper_bytes, i860_reg_prefix, i860_reg_prefix);
-
- /* Restore the return address and the old frame pointer. */
-
- if (must_preserve_r1) {
- fprintf (asm_file, "\tld.l 4(%sfp),%sr1\n",
- i860_reg_prefix, i860_reg_prefix);
- flags->iregs |= 2;
- }
-
- fprintf (asm_file, "\tld.l 0(%sfp),%sfp\n",
- i860_reg_prefix, i860_reg_prefix);
-
- /* Return and restore the old stack pointer value. */
-
- fprintf (asm_file, "\tbri %sr1\n\tmov %sr31,%ssp\n",
- i860_reg_prefix, i860_reg_prefix, i860_reg_prefix);
-
-#ifdef OUTPUT_TDESC /* Output an ABI-compliant TDESC entry */
- if (! frame_lower_bytes) {
- flags->version--;
- if (! frame_upper_bytes) {
- flags->version--;
- if (restored_so_far == int_restored) /* No FP saves */
- flags->version--;
- }
- }
- assemble_name(asm_file,current_function_original_name);
- fputs(".TDESC:\n", asm_file);
- fprintf(asm_file, "%s 0x%0x\n", ASM_LONG, intflags);
- fprintf(asm_file, "%s %d\n", ASM_LONG,
- int_restored ? must_preserve_bytes : 0);
- if (flags->version > 1) {
- fprintf(asm_file, "%s %d\n", ASM_LONG,
- (restored_so_far == int_restored) ? 0 : must_preserve_bytes +
- (4 * int_restored));
- if (flags->version > 2) {
- fprintf(asm_file, "%s %d\n", ASM_LONG, frame_upper_bytes);
- if (flags->version > 3)
- fprintf(asm_file, "%s %d\n", ASM_LONG, frame_lower_bytes);
- }
- }
- tdesc_section();
- fprintf(asm_file, "%s ", ASM_LONG);
- assemble_name(asm_file, current_function_original_name);
- fprintf(asm_file, "\n%s ", ASM_LONG);
- assemble_name(asm_file, current_function_original_name);
- fputs(".TDESC\n", asm_file);
- text_section();
-#endif
-}