aboutsummaryrefslogtreecommitdiff
path: root/gcc/config/i960/i960.h
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/config/i960/i960.h')
-rw-r--r--gcc/config/i960/i960.h1529
1 files changed, 0 insertions, 1529 deletions
diff --git a/gcc/config/i960/i960.h b/gcc/config/i960/i960.h
deleted file mode 100644
index 655a188cb37..00000000000
--- a/gcc/config/i960/i960.h
+++ /dev/null
@@ -1,1529 +0,0 @@
-/* Definitions of target machine for GNU compiler, for Intel 80960
- Copyright (C) 1992, 1993, 1995, 1996 Free Software Foundation, Inc.
- Contributed by Steven McGeady, Intel Corp.
- Additional Work by Glenn Colon-Bonet, Jonathan Shapiro, Andy Wilson
- Converted to GCC 2.0 by Jim Wilson and Michael Tiemann, Cygnus Support.
-
-This file is part of GNU CC.
-
-GNU CC is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2, or (at your option)
-any later version.
-
-GNU CC is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GNU CC; see the file COPYING. If not, write to
-the Free Software Foundation, 59 Temple Place - Suite 330,
-Boston, MA 02111-1307, USA. */
-
-/* Note that some other tm.h files may include this one and then override
- many of the definitions that relate to assembler syntax. */
-
-/* Names to predefine in the preprocessor for this target machine. */
-#define CPP_PREDEFINES "-Di960 -Di80960 -DI960 -DI80960 -Acpu(i960) -Amachine(i960)"
-
-/* Name to predefine in the preprocessor for processor variations. */
-#define CPP_SPEC "%{mic*:-D__i960\
- %{mka:-D__i960KA}%{mkb:-D__i960KB}\
- %{msa:-D__i960SA}%{msb:-D__i960SB}\
- %{mmc:-D__i960MC}\
- %{mca:-D__i960CA}%{mcc:-D__i960CC}\
- %{mcf:-D__i960CF}}\
- %{mka:-D__i960KA__ -D__i960_KA__}\
- %{mkb:-D__i960KB__ -D__i960_KB__}\
- %{msa:-D__i960SA__ -D__i960_SA__}\
- %{msb:-D__i960SB__ -D__i960_SB__}\
- %{mmc:-D__i960MC__ -D__i960_MC__}\
- %{mca:-D__i960CA__ -D__i960_CA__}\
- %{mcc:-D__i960CC__ -D__i960_CC__}\
- %{mcf:-D__i960CF__ -D__i960_CF__}\
- %{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:\
- %{!mcc:%{!mcf:-D__i960_KB -D__i960KB__ %{mic*:-D__i960KB}}}}}}}}}"
-
-/* -mic* options make characters signed by default. */
-/* Use #if rather than ?: because MIPS C compiler rejects ?: in
- initializers. */
-#if DEFAULT_SIGNED_CHAR
-#define SIGNED_CHAR_SPEC "%{funsigned-char:-D__CHAR_UNSIGNED__}"
-#else
-#define SIGNED_CHAR_SPEC "%{!fsigned-char:%{!mic*:-D__CHAR_UNSIGNED__}}"
-#endif
-
-/* Specs for the compiler, to handle processor variations.
- If the user gives an explicit -gstabs or -gcoff option, then do not
- try to add an implicit one, as this will fail. */
-#define CC1_SPEC \
- "%{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:%{!mcc:%{!mcf:-mkb}}}}}}}}\
- %{!gs*:%{!gc*:%{mbout:%{g*:-gstabs}}\
- %{mcoff:%{g*:-gcoff}}\
- %{!mbout:%{!mcoff:%{g*:-gstabs}}}}}"
-
-/* Specs for the assembler, to handle processor variations.
- For compatibility with Intel's gnu960 tool chain, pass -A options to
- the assembler. */
-#define ASM_SPEC \
- "%{mka:-AKA}%{mkb:-AKB}%{msa:-ASA}%{msb:-ASB}\
- %{mmc:-AMC}%{mca:-ACA}%{mcc:-ACC}%{mcf:-ACF}\
- %{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:%{!mcc:%{!mcf:-AKB}}}}}}}}\
- %{mlink-relax:-linkrelax}"
-
-/* Specs for the linker, to handle processor variations.
- For compatibility with Intel's gnu960 tool chain, pass -F and -A options
- to the linker. */
-#define LINK_SPEC \
- "%{mka:-AKA}%{mkb:-AKB}%{msa:-ASA}%{msb:-ASB}\
- %{mmc:-AMC}%{mca:-ACA}%{mcc:-ACC}%{mcf:-ACF}\
- %{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:%{!mcc:%{!mcf:-AKB}}}}}}}}\
- %{mbout:-Fbout}%{mcoff:-Fcoff}\
- %{mlink-relax:-relax}"
-
-/* Specs for the libraries to link with, to handle processor variations.
- Compatible with Intel's gnu960 tool chain. */
-#define LIB_SPEC "%{!nostdlib:-lcg %{p:-lprof}%{pg:-lgprof}\
- %{mka:-lfpg}%{msa:-lfpg}%{mca:-lfpg}%{mcf:-lfpg} -lgnu}"
-
-/* Show we can debug even without a frame pointer. */
-#define CAN_DEBUG_WITHOUT_FP
-
-/* Do leaf procedure and tail call optimizations for -O2 and higher. */
-#define OPTIMIZATION_OPTIONS(LEVEL) \
-{ \
- if ((LEVEL) >= 2) \
- { \
- target_flags |= TARGET_FLAG_LEAFPROC; \
- target_flags |= TARGET_FLAG_TAILCALL; \
- } \
-}
-
-/* Print subsidiary information on the compiler version in use. */
-#define TARGET_VERSION fprintf (stderr," (intel 80960)");
-
-/* Generate DBX debugging information. */
-#define DBX_DEBUGGING_INFO
-
-/* Generate SDB style debugging information. */
-#define SDB_DEBUGGING_INFO
-
-/* Generate DBX_DEBUGGING_INFO by default. */
-#define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
-
-/* Redefine this to print in hex and adjust values like GNU960. The extra
- bit is used to handle the type long double. Gcc does not support long
- double in sdb output, but we do support the non-standard format. */
-#define PUT_SDB_TYPE(A) \
- fprintf (asm_out_file, "\t.type\t0x%x;", (A & 0xf) + 2 * (A & ~0xf))
-
-/* Handle pragmas for compatibility with Intel's compilers. */
-#define HANDLE_PRAGMA(FILE, CH) process_pragma (FILE, CH)
-
-/* Run-time compilation parameters selecting different hardware subsets. */
-
-/* 960 architecture with floating-point. */
-#define TARGET_FLAG_NUMERICS 0x01
-#define TARGET_NUMERICS (target_flags & TARGET_FLAG_NUMERICS)
-
-/* 960 architecture with memory management. */
-/* ??? Not used currently. */
-#define TARGET_FLAG_PROTECTED 0x02
-#define TARGET_PROTECTED (target_flags & TARGET_FLAG_PROTECTED)
-
-/* The following three are mainly used to provide a little sanity checking
- against the -mARCH flags given. */
-
-/* Nonzero if we should generate code for the KA and similar processors.
- No FPU, no microcode instructions. */
-#define TARGET_FLAG_K_SERIES 0x04
-#define TARGET_K_SERIES (target_flags & TARGET_FLAG_K_SERIES)
-
-/* Nonzero if we should generate code for the MC processor.
- Not really different from KB for our purposes. */
-#define TARGET_FLAG_MC 0x08
-#define TARGET_MC (target_flags & TARGET_FLAG_MC)
-
-/* Nonzero if we should generate code for the CA processor.
- Enables different optimization strategies. */
-#define TARGET_FLAG_C_SERIES 0x10
-#define TARGET_C_SERIES (target_flags & TARGET_FLAG_C_SERIES)
-
-/* Nonzero if we should generate leaf-procedures when we find them.
- You may not want to do this because leaf-proc entries are
- slower when not entered via BAL - this would be true when
- a linker not supporting the optimization is used. */
-#define TARGET_FLAG_LEAFPROC 0x20
-#define TARGET_LEAFPROC (target_flags & TARGET_FLAG_LEAFPROC)
-
-/* Nonzero if we should perform tail-call optimizations when we find them.
- You may not want to do this because the detection of cases where
- this is not valid is not totally complete. */
-#define TARGET_FLAG_TAILCALL 0x40
-#define TARGET_TAILCALL (target_flags & TARGET_FLAG_TAILCALL)
-
-/* Nonzero if use of a complex addressing mode is a win on this implementation.
- Complex addressing modes are probably not worthwhile on the K-series,
- but they definitely are on the C-series. */
-#define TARGET_FLAG_COMPLEX_ADDR 0x80
-#define TARGET_COMPLEX_ADDR (target_flags & TARGET_FLAG_COMPLEX_ADDR)
-
-/* Align code to 8 byte boundaries for faster fetching. */
-#define TARGET_FLAG_CODE_ALIGN 0x100
-#define TARGET_CODE_ALIGN (target_flags & TARGET_FLAG_CODE_ALIGN)
-
-/* Append branch prediction suffixes to branch opcodes. */
-/* ??? Not used currently. */
-#define TARGET_FLAG_BRANCH_PREDICT 0x200
-#define TARGET_BRANCH_PREDICT (target_flags & TARGET_FLAG_BRANCH_PREDICT)
-
-/* Forces prototype and return promotions. */
-/* ??? This does not work. */
-#define TARGET_FLAG_CLEAN_LINKAGE 0x400
-#define TARGET_CLEAN_LINKAGE (target_flags & TARGET_FLAG_CLEAN_LINKAGE)
-
-/* For compatibility with iC960 v3.0. */
-#define TARGET_FLAG_IC_COMPAT3_0 0x800
-#define TARGET_IC_COMPAT3_0 (target_flags & TARGET_FLAG_IC_COMPAT3_0)
-
-/* For compatibility with iC960 v2.0. */
-#define TARGET_FLAG_IC_COMPAT2_0 0x1000
-#define TARGET_IC_COMPAT2_0 (target_flags & TARGET_FLAG_IC_COMPAT2_0)
-
-/* If no unaligned accesses are to be permitted. */
-#define TARGET_FLAG_STRICT_ALIGN 0x2000
-#define TARGET_STRICT_ALIGN (target_flags & TARGET_FLAG_STRICT_ALIGN)
-
-/* For compatibility with iC960 assembler. */
-#define TARGET_FLAG_ASM_COMPAT 0x4000
-#define TARGET_ASM_COMPAT (target_flags & TARGET_FLAG_ASM_COMPAT)
-
-/* For compatibility with the gcc960 v1.2 compiler. Use the old structure
- alignment rules. Also, turns on STRICT_ALIGNMENT. */
-#define TARGET_FLAG_OLD_ALIGN 0x8000
-#define TARGET_OLD_ALIGN (target_flags & TARGET_FLAG_OLD_ALIGN)
-
-extern int target_flags;
-
-/* Macro to define tables used to set the flags.
- This is a list in braces of pairs in braces,
- each pair being { "NAME", VALUE }
- where VALUE is the bits to set or minus the bits to clear.
- An empty string NAME is used to identify the default VALUE. */
-
-/* ??? Not all ten of these architecture variations actually exist, but I
- am not sure which are real and which aren't. */
-
-#define TARGET_SWITCHES \
- { {"sa", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR)},\
- {"sb", (TARGET_FLAG_NUMERICS|TARGET_FLAG_K_SERIES| \
- TARGET_FLAG_COMPLEX_ADDR)},\
-/* {"sc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED|\
- TARGET_FLAG_MC|TARGET_FLAG_COMPLEX_ADDR)},*/ \
- {"ka", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR)},\
- {"kb", (TARGET_FLAG_NUMERICS|TARGET_FLAG_K_SERIES| \
- TARGET_FLAG_COMPLEX_ADDR)},\
-/* {"kc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED|\
- TARGET_FLAG_MC|TARGET_FLAG_COMPLEX_ADDR)},*/ \
- {"mc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED|\
- TARGET_FLAG_MC|TARGET_FLAG_COMPLEX_ADDR)},\
- {"ca", (TARGET_FLAG_C_SERIES|TARGET_FLAG_BRANCH_PREDICT|\
- TARGET_FLAG_CODE_ALIGN|TARGET_FLAG_COMPLEX_ADDR)},\
-/* {"cb", (TARGET_FLAG_NUMERICS|TARGET_FLAG_C_SERIES|\
- TARGET_FLAG_BRANCH_PREDICT|TARGET_FLAG_CODE_ALIGN)},\
- {"cc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED|\
- TARGET_FLAG_C_SERIES|TARGET_FLAG_BRANCH_PREDICT|\
- TARGET_FLAG_CODE_ALIGN)}, */ \
- {"cf", (TARGET_FLAG_C_SERIES|TARGET_FLAG_BRANCH_PREDICT|\
- TARGET_FLAG_CODE_ALIGN|TARGET_FLAG_COMPLEX_ADDR)},\
- {"numerics", (TARGET_FLAG_NUMERICS)}, \
- {"soft-float", -(TARGET_FLAG_NUMERICS)}, \
- {"leaf-procedures", TARGET_FLAG_LEAFPROC}, \
- {"no-leaf-procedures",-(TARGET_FLAG_LEAFPROC)}, \
- {"tail-call",TARGET_FLAG_TAILCALL}, \
- {"no-tail-call",-(TARGET_FLAG_TAILCALL)}, \
- {"complex-addr",TARGET_FLAG_COMPLEX_ADDR}, \
- {"no-complex-addr",-(TARGET_FLAG_COMPLEX_ADDR)}, \
- {"code-align",TARGET_FLAG_CODE_ALIGN}, \
- {"no-code-align",-(TARGET_FLAG_CODE_ALIGN)}, \
- {"clean-linkage", (TARGET_FLAG_CLEAN_LINKAGE)}, \
- {"no-clean-linkage", -(TARGET_FLAG_CLEAN_LINKAGE)}, \
- {"ic-compat", TARGET_FLAG_IC_COMPAT2_0}, \
- {"ic2.0-compat", TARGET_FLAG_IC_COMPAT2_0}, \
- {"ic3.0-compat", TARGET_FLAG_IC_COMPAT3_0}, \
- {"asm-compat",TARGET_FLAG_ASM_COMPAT}, \
- {"intel-asm",TARGET_FLAG_ASM_COMPAT}, \
- {"strict-align", TARGET_FLAG_STRICT_ALIGN}, \
- {"no-strict-align", -(TARGET_FLAG_STRICT_ALIGN)}, \
- {"old-align", (TARGET_FLAG_OLD_ALIGN|TARGET_FLAG_STRICT_ALIGN)}, \
- {"no-old-align", -(TARGET_FLAG_OLD_ALIGN|TARGET_FLAG_STRICT_ALIGN)}, \
- {"link-relax", 0}, \
- {"no-link-relax", 0}, \
- { "", TARGET_DEFAULT}}
-
-/* Override conflicting target switch options.
- Doesn't actually detect if more than one -mARCH option is given, but
- does handle the case of two blatantly conflicting -mARCH options. */
-#define OVERRIDE_OPTIONS \
-{ \
- if (TARGET_K_SERIES && TARGET_C_SERIES) \
- { \
- warning ("conflicting architectures defined - using C series", 0); \
- target_flags &= ~TARGET_FLAG_K_SERIES; \
- } \
- if (TARGET_K_SERIES && TARGET_MC) \
- { \
- warning ("conflicting architectures defined - using K series", 0); \
- target_flags &= ~TARGET_FLAG_MC; \
- } \
- if (TARGET_C_SERIES && TARGET_MC) \
- { \
- warning ("conflicting architectures defined - using C series", 0);\
- target_flags &= ~TARGET_FLAG_MC; \
- } \
- if (TARGET_IC_COMPAT3_0) \
- { \
- flag_short_enums = 1; \
- flag_signed_char = 1; \
- target_flags |= TARGET_FLAG_CLEAN_LINKAGE; \
- if (TARGET_IC_COMPAT2_0) \
- { \
- warning ("iC2.0 and iC3.0 are incompatible - using iC3.0", 0); \
- target_flags &= ~TARGET_FLAG_IC_COMPAT2_0; \
- } \
- } \
- if (TARGET_IC_COMPAT2_0) \
- { \
- flag_signed_char = 1; \
- target_flags |= TARGET_FLAG_CLEAN_LINKAGE; \
- } \
- i960_initialize (); \
-}
-
-/* Don't enable anything by default. The user is expected to supply a -mARCH
- option. If none is given, then -mkb is added by CC1_SPEC. */
-#define TARGET_DEFAULT 0
-
-/* Target machine storage layout. */
-
-/* Define for cross-compilation from a host with a different float format
- or endianness, as well as to support 80 bit long doubles on the i960. */
-#define REAL_ARITHMETIC
-
-/* Define this if most significant bit is lowest numbered
- in instructions that operate on numbered bit-fields. */
-#define BITS_BIG_ENDIAN 0
-
-/* Define this if most significant byte of a word is the lowest numbered.
- The i960 case be either big endian or little endian. We only support
- little endian, which is the most common. */
-#define BYTES_BIG_ENDIAN 0
-
-/* Define this if most significant word of a multiword number is lowest
- numbered. */
-#define WORDS_BIG_ENDIAN 0
-
-/* Number of bits in an addressable storage unit. */
-#define BITS_PER_UNIT 8
-
-/* Bitfields cannot cross word boundaries. */
-#define BITFIELD_NBYTES_LIMITED 1
-
-/* Width in bits of a "word", which is the contents of a machine register.
- Note that this is not necessarily the width of data type `int';
- if using 16-bit ints on a 68000, this would still be 32.
- But on a machine with 16-bit registers, this would be 16. */
-#define BITS_PER_WORD 32
-
-/* Width of a word, in units (bytes). */
-#define UNITS_PER_WORD 4
-
-/* Width in bits of a pointer. See also the macro `Pmode' defined below. */
-#define POINTER_SIZE 32
-
-/* Width in bits of a long double. Identical to double for now. */
-#define LONG_DOUBLE_TYPE_SIZE 64
-
-/* Allocation boundary (in *bits*) for storing pointers in memory. */
-#define POINTER_BOUNDARY 32
-
-/* Allocation boundary (in *bits*) for storing arguments in argument list. */
-#define PARM_BOUNDARY 32
-
-/* Boundary (in *bits*) on which stack pointer should be aligned. */
-#define STACK_BOUNDARY 128
-
-/* Allocation boundary (in *bits*) for the code of a function. */
-#define FUNCTION_BOUNDARY 128
-
-/* Alignment of field after `int : 0' in a structure. */
-#define EMPTY_FIELD_BOUNDARY 32
-
-/* This makes zero-length anonymous fields lay the next field
- at a word boundary. It also makes the whole struct have
- at least word alignment if there are any bitfields at all. */
-#define PCC_BITFIELD_TYPE_MATTERS 1
-
-/* Every structure's size must be a multiple of this. */
-#define STRUCTURE_SIZE_BOUNDARY 8
-
-/* No data type wants to be aligned rounder than this.
- Extended precision floats gets 4-word alignment. */
-#define BIGGEST_ALIGNMENT 128
-
-/* Define this if move instructions will actually fail to work
- when given unaligned data.
- 80960 will work even with unaligned data, but it is slow. */
-#define STRICT_ALIGNMENT TARGET_STRICT_ALIGN
-
-/* Specify alignment for string literals (which might be higher than the
- base type's minimal alignment requirement. This allows strings to be
- aligned on word boundaries, and optimizes calls to the str* and mem*
- library functions. */
-#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
- (TREE_CODE (EXP) == STRING_CST \
- && i960_object_bytes_bitalign (int_size_in_bytes (TREE_TYPE (EXP))) > (ALIGN) \
- ? i960_object_bytes_bitalign (int_size_in_bytes (TREE_TYPE (EXP))) \
- : (ALIGN))
-
-/* Make XFmode floating point quantities be 128 bit aligned. */
-#define DATA_ALIGNMENT(TYPE, ALIGN) \
- (TREE_CODE (TYPE) == ARRAY_TYPE \
- && TYPE_MODE (TREE_TYPE (TYPE)) == XFmode \
- && (ALIGN) < 128 ? 128 : (ALIGN))
-
-/* Macros to determine size of aggregates (structures and unions
- in C). Normally, these may be defined to simply return the maximum
- alignment and simple rounded-up size, but on some machines (like
- the i960), the total size of a structure is based on a non-trivial
- rounding method. */
-
-#define ROUND_TYPE_ALIGN(TYPE, COMPUTED, SPECIFIED) \
- ((TREE_CODE (TYPE) == REAL_TYPE && TYPE_MODE (TYPE) == XFmode) \
- ? 128 /* Put 80 bit floating point elements on 128 bit boundaries. */ \
- : ((!TARGET_OLD_ALIGN && TREE_CODE (TYPE) == RECORD_TYPE) \
- ? i960_round_align (MAX ((COMPUTED), (SPECIFIED)), TYPE_SIZE (TYPE)) \
- : MAX ((COMPUTED), (SPECIFIED))))
-
-#define ROUND_TYPE_SIZE(TYPE, COMPUTED, SPECIFIED) \
- ((TREE_CODE (TYPE) == REAL_TYPE && TYPE_MODE (TYPE) == XFmode) \
- ? build_int_2 (128, 0) : round_up (COMPUTED, SPECIFIED))
-
-/* Standard register usage. */
-
-/* Number of actual hardware registers.
- The hardware registers are assigned numbers for the compiler
- from 0 to just below FIRST_PSEUDO_REGISTER.
- All registers that the compiler knows about must be given numbers,
- even those that are not normally considered general registers.
-
- Registers 0-15 are the global registers (g0-g15).
- Registers 16-31 are the local registers (r0-r15).
- Register 32-35 are the fp registers (fp0-fp3).
- Register 36 is the condition code register.
- Register 37 is unused. */
-
-#define FIRST_PSEUDO_REGISTER 38
-
-/* 1 for registers that have pervasive standard uses and are not available
- for the register allocator. On 80960, this includes the frame pointer
- (g15), the previous FP (r0), the stack pointer (r1), the return
- instruction pointer (r2), and the argument pointer (g14). */
-#define FIXED_REGISTERS \
- {0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 1, 1, \
- 1, 1, 1, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 1, 1}
-
-/* 1 for registers not available across function calls.
- These must include the FIXED_REGISTERS and also any
- registers that can be used without being saved.
- The latter must include the registers where values are returned
- and the register where structure-value addresses are passed.
- Aside from that, you can include as many other registers as you like. */
-
-/* On the 80960, note that:
- g0..g3 are used for return values,
- g0..g7 may always be used for parameters,
- g8..g11 may be used for parameters, but are preserved if they aren't,
- g12 is always preserved, but otherwise unused,
- g13 is the struct return ptr if used, or temp, but may be trashed,
- g14 is the leaf return ptr or the arg block ptr otherwise zero,
- must be reset to zero before returning if it was used,
- g15 is the frame pointer,
- r0 is the previous FP,
- r1 is the stack pointer,
- r2 is the return instruction pointer,
- r3-r15 are always available,
- r3 is clobbered by calls in functions that use the arg pointer
- r4-r11 may be clobbered by the mcount call when profiling
- r4-r15 if otherwise unused may be used for preserving global registers
- fp0..fp3 are never available. */
-#define CALL_USED_REGISTERS \
- {1, 1, 1, 1, 1, 1, 1, 1, \
- 0, 0, 0, 0, 0, 1, 1, 1, \
- 1, 1, 1, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, \
- 1, 1, 1, 1, 1, 1}
-
-/* If no fp unit, make all of the fp registers fixed so that they can't
- be used. */
-#define CONDITIONAL_REGISTER_USAGE \
- if (! TARGET_NUMERICS) { \
- fixed_regs[32] = fixed_regs[33] = fixed_regs[34] = fixed_regs[35] = 1;\
- } \
-
-/* Return number of consecutive hard regs needed starting at reg REGNO
- to hold something of mode MODE.
- This is ordinarily the length in words of a value of mode MODE
- but can be less for certain modes in special long registers.
-
- On 80960, ordinary registers hold 32 bits worth, but can be ganged
- together to hold double or extended precision floating point numbers,
- and the floating point registers hold any size floating point number */
-#define HARD_REGNO_NREGS(REGNO, MODE) \
- ((REGNO) < 32 \
- ? (((MODE) == VOIDmode) \
- ? 1 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) \
- : ((REGNO) < FIRST_PSEUDO_REGISTER) ? 1 : 0)
-
-/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
- On 80960, the cpu registers can hold any mode but the float registers
- can only hold SFmode, DFmode, or XFmode. */
-extern unsigned int hard_regno_mode_ok[FIRST_PSEUDO_REGISTER];
-#define HARD_REGNO_MODE_OK(REGNO, MODE) \
- ((hard_regno_mode_ok[REGNO] & (1 << (int) (MODE))) != 0)
-
-/* Value is 1 if it is a good idea to tie two pseudo registers
- when one has mode MODE1 and one has mode MODE2.
- If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
- for any hard reg, then this must be 0 for correct output. */
-
-#define MODES_TIEABLE_P(MODE1, MODE2) \
- ((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
-
-/* Specify the registers used for certain standard purposes.
- The values of these macros are register numbers. */
-
-/* 80960 pc isn't overloaded on a register that the compiler knows about. */
-/* #define PC_REGNUM */
-
-/* Register to use for pushing function arguments. */
-#define STACK_POINTER_REGNUM 17
-
-/* Actual top-of-stack address is same as
- the contents of the stack pointer register. */
-#define STACK_POINTER_OFFSET (-current_function_outgoing_args_size)
-
-/* Base register for access to local variables of the function. */
-#define FRAME_POINTER_REGNUM 15
-
-/* Value should be nonzero if functions must have frame pointers.
- Zero means the frame pointer need not be set up (and parms
- may be accessed via the stack pointer) in functions that seem suitable.
- This is computed in `reload', in reload1.c. */
-/* ??? It isn't clear to me why this is here. Perhaps because of a bug (since
- fixed) in the definition of INITIAL_FRAME_POINTER_OFFSET which would have
- caused this to fail. */
-#define FRAME_POINTER_REQUIRED (! leaf_function_p ())
-
-/* C statement to store the difference between the frame pointer
- and the stack pointer values immediately after the function prologue.
-
- Since the stack grows upward on the i960, this must be a negative number.
- This includes the 64 byte hardware register save area and the size of
- the frame. */
-
-#define INITIAL_FRAME_POINTER_OFFSET(VAR) \
- do { (VAR) = - (64 + compute_frame_size (get_frame_size ())); } while (0)
-
-/* Base register for access to arguments of the function. */
-#define ARG_POINTER_REGNUM 14
-
-/* Register in which static-chain is passed to a function.
- On i960, we use r3. */
-#define STATIC_CHAIN_REGNUM 19
-
-/* Functions which return large structures get the address
- to place the wanted value at in g13. */
-
-#define STRUCT_VALUE_REGNUM 13
-
-/* The order in which to allocate registers. */
-
-#define REG_ALLOC_ORDER \
-{ 4, 5, 6, 7, 0, 1, 2, 3, 13, /* g4, g5, g6, g7, g0, g1, g2, g3, g13 */ \
- 20, 21, 22, 23, 24, 25, 26, 27,/* r4, r5, r6, r7, r8, r9, r10, r11 */ \
- 28, 29, 30, 31, 19, 8, 9, 10, /* r12, r13, r14, r15, r3, g8, g9, g10 */ \
- 11, 12, /* g11, g12 */ \
- 32, 33, 34, 35, /* fp0, fp1, fp2, fp3 */ \
- /* We can't actually allocate these. */ \
- 16, 17, 18, 14, 15, 36, 37} /* r0, r1, r2, g14, g15, cc */
-
-/* Define the classes of registers for register constraints in the
- machine description. Also define ranges of constants.
-
- One of the classes must always be named ALL_REGS and include all hard regs.
- If there is more than one class, another class must be named NO_REGS
- and contain no registers.
-
- The name GENERAL_REGS must be the name of a class (or an alias for
- another name such as ALL_REGS). This is the class of registers
- that is allowed by "g" or "r" in a register constraint.
- Also, registers outside this class are allocated only when
- instructions express preferences for them.
-
- The classes must be numbered in nondecreasing order; that is,
- a larger-numbered class must never be contained completely
- in a smaller-numbered class.
-
- For any two classes, it is very desirable that there be another
- class that represents their union. */
-
-/* The 80960 has four kinds of registers, global, local, floating point,
- and condition code. The cc register is never allocated, so no class
- needs to be defined for it. */
-
-enum reg_class { NO_REGS, GLOBAL_REGS, LOCAL_REGS, LOCAL_OR_GLOBAL_REGS,
- FP_REGS, ALL_REGS, LIM_REG_CLASSES };
-
-/* 'r' includes floating point registers if TARGET_NUMERICS. 'd' never
- does. */
-#define GENERAL_REGS ((TARGET_NUMERICS) ? ALL_REGS : LOCAL_OR_GLOBAL_REGS)
-
-#define N_REG_CLASSES (int) LIM_REG_CLASSES
-
-/* Give names of register classes as strings for dump file. */
-
-#define REG_CLASS_NAMES \
-{ "NO_REGS", "GLOBAL_REGS", "LOCAL_REGS", "LOCAL_OR_GLOBAL_REGS", \
- "FP_REGS", "ALL_REGS" }
-
-/* Define which registers fit in which classes.
- This is an initializer for a vector of HARD_REG_SET
- of length N_REG_CLASSES. */
-
-#define REG_CLASS_CONTENTS \
-{ {0, 0}, {0x0ffff, 0}, {0xffff0000, 0}, {-1,0}, {0, -1}, {-1,-1}}
-
-/* The same information, inverted:
- Return the class number of the smallest class containing
- reg number REGNO. This could be a conditional expression
- or could index an array. */
-
-#define REGNO_REG_CLASS(REGNO) \
- ((REGNO) < 16 ? GLOBAL_REGS \
- : (REGNO) < 32 ? LOCAL_REGS \
- : (REGNO) < 36 ? FP_REGS \
- : NO_REGS)
-
-/* The class value for index registers, and the one for base regs.
- There is currently no difference between base and index registers on the
- i960, but this distinction may one day be useful. */
-#define INDEX_REG_CLASS LOCAL_OR_GLOBAL_REGS
-#define BASE_REG_CLASS LOCAL_OR_GLOBAL_REGS
-
-/* Get reg_class from a letter such as appears in the machine description.
- 'f' is a floating point register (fp0..fp3)
- 'l' is a local register (r0-r15)
- 'b' is a global register (g0-g15)
- 'd' is any local or global register
- 'r' or 'g' are pre-defined to the class GENERAL_REGS. */
-/* 'l' and 'b' are probably never used. Note that 'd' and 'r' are *not*
- the same thing, since 'r' may include the fp registers. */
-#define REG_CLASS_FROM_LETTER(C) \
- (((C) == 'f') && (TARGET_NUMERICS) ? FP_REGS : ((C) == 'l' ? LOCAL_REGS : \
- (C) == 'b' ? GLOBAL_REGS : ((C) == 'd' ? LOCAL_OR_GLOBAL_REGS : NO_REGS)))
-
-/* The letters I, J, K, L and M in a register constraint string
- can be used to stand for particular ranges of immediate operands.
- This macro defines what the ranges are.
- C is the letter, and VALUE is a constant value.
- Return 1 if VALUE is in the range specified by C.
-
- For 80960:
- 'I' is used for literal values 0..31
- 'J' means literal 0
- 'K' means 0..-31. */
-
-#define CONST_OK_FOR_LETTER_P(VALUE, C) \
- ((C) == 'I' ? (((unsigned) (VALUE)) <= 31) \
- : (C) == 'J' ? ((VALUE) == 0) \
- : (C) == 'K' ? ((VALUE) >= -31 && (VALUE) <= 0) \
- : (C) == 'M' ? ((VALUE) >= -32 && (VALUE) <= 0) \
- : 0)
-
-/* Similar, but for floating constants, and defining letters G and H.
- Here VALUE is the CONST_DOUBLE rtx itself.
- For the 80960, G is 0.0 and H is 1.0. */
-
-#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
- ((TARGET_NUMERICS) && \
- (((C) == 'G' && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
- || ((C) == 'H' && ((VALUE) == CONST1_RTX (GET_MODE (VALUE))))))
-
-/* Given an rtx X being reloaded into a reg required to be
- in class CLASS, return the class of reg to actually use.
- In general this is just CLASS; but on some machines
- in some cases it is preferable to use a more restrictive class. */
-
-/* On 960, can't load constant into floating-point reg except
- 0.0 or 1.0.
-
- Any hard reg is ok as a src operand of a reload insn. */
-
-#define PREFERRED_RELOAD_CLASS(X,CLASS) \
- (GET_CODE (X) == REG && REGNO (X) < FIRST_PSEUDO_REGISTER \
- ? (CLASS) \
- : ((CLASS) == FP_REGS && CONSTANT_P (X) \
- && (X) != CONST0_RTX (DFmode) && (X) != CONST1_RTX (DFmode)\
- && (X) != CONST0_RTX (SFmode) && (X) != CONST1_RTX (SFmode)\
- ? NO_REGS \
- : (CLASS) == ALL_REGS ? LOCAL_OR_GLOBAL_REGS : (CLASS)))
-
-#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
- secondary_reload_class (CLASS, MODE, IN)
-
-/* Return the maximum number of consecutive registers
- needed to represent mode MODE in a register of class CLASS. */
-/* On 80960, this is the size of MODE in words,
- except in the FP regs, where a single reg is always enough. */
-#define CLASS_MAX_NREGS(CLASS, MODE) \
- ((CLASS) == FP_REGS ? 1 : HARD_REGNO_NREGS (0, (MODE)))
-
-/* Stack layout; function entry, exit and calling. */
-
-/* Define this if pushing a word on the stack
- makes the stack pointer a smaller address. */
-/* #define STACK_GROWS_DOWNWARD */
-
-/* Define this if the nominal address of the stack frame
- is at the high-address end of the local variables;
- that is, each additional local variable allocated
- goes at a more negative offset in the frame. */
-/* #define FRAME_GROWS_DOWNWARD */
-
-/* Offset within stack frame to start allocating local variables at.
- If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
- first local allocated. Otherwise, it is the offset to the BEGINNING
- of the first local allocated.
-
- The i960 has a 64 byte register save area, plus possibly some extra
- bytes allocated for varargs functions. */
-#define STARTING_FRAME_OFFSET 64
-
-/* If we generate an insn to push BYTES bytes,
- this says how many the stack pointer really advances by.
- On 80960, don't define this because there are no push insns. */
-/* #define PUSH_ROUNDING(BYTES) BYTES */
-
-/* Offset of first parameter from the argument pointer register value. */
-#define FIRST_PARM_OFFSET(FNDECL) 0
-
-/* When a parameter is passed in a register, no stack space is
- allocated for it. However, when args are passed in the
- stack, space is allocated for every register parameter. */
-#define MAYBE_REG_PARM_STACK_SPACE 48
-#define FINAL_REG_PARM_STACK_SPACE(CONST_SIZE, VAR_SIZE) \
- i960_final_reg_parm_stack_space (CONST_SIZE, VAR_SIZE);
-#define REG_PARM_STACK_SPACE(DECL) i960_reg_parm_stack_space (DECL)
-#define OUTGOING_REG_PARM_STACK_SPACE
-
-/* Keep the stack pointer constant throughout the function. */
-#define ACCUMULATE_OUTGOING_ARGS
-
-/* Value is 1 if returning from a function call automatically
- pops the arguments described by the number-of-args field in the call.
- FUNDECL is the declaration node of the function (as a tree),
- FUNTYPE is the data type of the function (as a tree),
- or for a library call it is an identifier node for the subroutine name. */
-
-#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
-
-/* Define how to find the value returned by a library function
- assuming the value has mode MODE. */
-
-#define LIBCALL_VALUE(MODE) gen_rtx ((REG), (MODE), 0)
-
-/* 1 if N is a possible register number for a function value
- as seen by the caller.
- On 80960, returns are in g0..g3 */
-
-#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
-
-/* 1 if N is a possible register number for function argument passing.
- On 80960, parameters are passed in g0..g11 */
-
-#define FUNCTION_ARG_REGNO_P(N) ((N) < 12)
-
-/* Perform any needed actions needed for a function that is receiving a
- variable number of arguments.
-
- CUM is as above.
-
- MODE and TYPE are the mode and type of the current parameter.
-
- PRETEND_SIZE is a variable that should be set to the amount of stack
- that must be pushed by the prolog to pretend that our caller pushed
- it.
-
- Normally, this macro will push all remaining incoming registers on the
- stack and set PRETEND_SIZE to the length of the registers pushed. */
-
-#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
- i960_setup_incoming_varargs(&CUM,MODE,TYPE,&PRETEND_SIZE,NO_RTL)
-
-/* Define a data type for recording info about an argument list
- during the scan of that argument list. This data type should
- hold all necessary information about the function itself
- and about the args processed so far, enough to enable macros
- such as FUNCTION_ARG to determine where the next arg should go.
-
- On 80960, this is two integers, which count the number of register
- parameters and the number of stack parameters seen so far. */
-
-struct cum_args { int ca_nregparms; int ca_nstackparms; };
-
-#define CUMULATIVE_ARGS struct cum_args
-
-/* Define the number of registers that can hold parameters.
- This macro is used only in macro definitions below and/or i960.c. */
-#define NPARM_REGS 12
-
-/* Define how to round to the next parameter boundary.
- This macro is used only in macro definitions below and/or i960.c. */
-#define ROUND_PARM(X, MULTIPLE_OF) \
- ((((X) + (MULTIPLE_OF) - 1) / (MULTIPLE_OF)) * MULTIPLE_OF)
-
-/* Initialize a variable CUM of type CUMULATIVE_ARGS
- for a call to a function whose data type is FNTYPE.
- For a library call, FNTYPE is 0.
-
- On 80960, the offset always starts at 0; the first parm reg is g0. */
-
-#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
- ((CUM).ca_nregparms = 0, (CUM).ca_nstackparms = 0)
-
-/* Update the data in CUM to advance over an argument
- of mode MODE and data type TYPE.
- CUM should be advanced to align with the data type accessed and
- also the size of that data type in # of regs.
- (TYPE is null for libcalls where that information may not be available.) */
-
-#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
- i960_function_arg_advance(&CUM, MODE, TYPE, NAMED)
-
-/* Indicate the alignment boundary for an argument of the specified mode and
- type. */
-#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
- (((TYPE) != 0) \
- ? ((TYPE_ALIGN (TYPE) <= PARM_BOUNDARY) \
- ? PARM_BOUNDARY \
- : TYPE_ALIGN (TYPE)) \
- : ((GET_MODE_ALIGNMENT (MODE) <= PARM_BOUNDARY) \
- ? PARM_BOUNDARY \
- : GET_MODE_ALIGNMENT (MODE)))
-
-/* Determine where to put an argument to a function.
- Value is zero to push the argument on the stack,
- or a hard register in which to store the argument.
-
- MODE is the argument's machine mode.
- TYPE is the data type of the argument (as a tree).
- This is null for libcalls where that information may
- not be available.
- CUM is a variable of type CUMULATIVE_ARGS which gives info about
- the preceding args and about the function being called.
- NAMED is nonzero if this argument is a named parameter
- (otherwise it is an extra parameter matching an ellipsis). */
-
-extern struct rtx_def *i960_function_arg ();
-#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
- i960_function_arg(&CUM, MODE, TYPE, NAMED)
-
-/* Define how to find the value returned by a function.
- VALTYPE is the data type of the value (as a tree).
- If the precise function being called is known, FUNC is its FUNCTION_DECL;
- otherwise, FUNC is 0. */
-
-#define FUNCTION_VALUE(TYPE, FUNC) \
- gen_rtx (REG, TYPE_MODE (TYPE), 0)
-
-/* Force aggregates and objects larger than 16 bytes to be returned in memory,
- since we only have 4 registers available for return values. */
-
-#define RETURN_IN_MEMORY(TYPE) \
- (TYPE_MODE (TYPE) == BLKmode || int_size_in_bytes (TYPE) > 16)
-
-/* Don't default to pcc-struct-return, because we have already specified
- exactly how to return structures in the RETURN_IN_MEMORY macro. */
-#define DEFAULT_PCC_STRUCT_RETURN 0
-
-/* For an arg passed partly in registers and partly in memory,
- this is the number of registers used.
- This never happens on 80960. */
-
-#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
-
-/* Output the label for a function definition.
- This handles leaf functions and a few other things for the i960. */
-
-#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
- i960_function_name_declare (FILE, NAME, DECL)
-
-/* This macro generates the assembly code for function entry.
- FILE is a stdio stream to output the code to.
- SIZE is an int: how many units of temporary storage to allocate.
- Refer to the array `regs_ever_live' to determine which registers
- to save; `regs_ever_live[I]' is nonzero if register number I
- is ever used in the function. This macro is responsible for
- knowing which registers should not be saved even if used. */
-
-#define FUNCTION_PROLOGUE(FILE, SIZE) i960_function_prologue ((FILE), (SIZE))
-
-/* Output assembler code to FILE to increment profiler label # LABELNO
- for profiling a function entry. */
-
-#define FUNCTION_PROFILER(FILE, LABELNO) \
- output_function_profiler ((FILE), (LABELNO));
-
-/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
- the stack pointer does not matter. The value is tested only in
- functions that have frame pointers.
- No definition is equivalent to always zero. */
-
-#define EXIT_IGNORE_STACK 1
-
-/* This macro generates the assembly code for function exit,
- on machines that need it. If FUNCTION_EPILOGUE is not defined
- then individual return instructions are generated for each
- return statement. Args are same as for FUNCTION_PROLOGUE.
-
- The function epilogue should not depend on the current stack pointer!
- It should use the frame pointer only. This is mandatory because
- of alloca; we also take advantage of it to omit stack adjustments
- before returning. */
-
-#define FUNCTION_EPILOGUE(FILE, SIZE) i960_function_epilogue (FILE, SIZE)
-
-/* Addressing modes, and classification of registers for them. */
-
-/* #define HAVE_POST_INCREMENT */
-/* #define HAVE_POST_DECREMENT */
-
-/* #define HAVE_PRE_DECREMENT */
-/* #define HAVE_PRE_INCREMENT */
-
-/* Macros to check register numbers against specific register classes. */
-
-/* These assume that REGNO is a hard or pseudo reg number.
- They give nonzero only if REGNO is a hard reg of the suitable class
- or a pseudo reg currently allocated to a suitable hard reg.
- Since they use reg_renumber, they are safe only once reg_renumber
- has been allocated, which happens in local-alloc.c. */
-
-#define REGNO_OK_FOR_INDEX_P(REGNO) \
- ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32)
-#define REGNO_OK_FOR_BASE_P(REGNO) \
- ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32)
-#define REGNO_OK_FOR_FP_P(REGNO) \
- ((REGNO) < 36 || (unsigned) reg_renumber[REGNO] < 36)
-
-/* Now macros that check whether X is a register and also,
- strictly, whether it is in a specified class.
-
- These macros are specific to the 960, and may be used only
- in code for printing assembler insns and in conditions for
- define_optimization. */
-
-/* 1 if X is an fp register. */
-
-#define FP_REG_P(X) (REGNO (X) >= 32 && REGNO (X) < 36)
-
-/* Maximum number of registers that can appear in a valid memory address. */
-#define MAX_REGS_PER_ADDRESS 2
-
-#define CONSTANT_ADDRESS_P(X) \
- (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
- || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
- || GET_CODE (X) == HIGH)
-
-/* LEGITIMATE_CONSTANT_P is nonzero if the constant value X
- is a legitimate general operand.
- It is given that X satisfies CONSTANT_P.
-
- Anything but a CONST_DOUBLE can be made to work, excepting 0.0 and 1.0.
-
- ??? This probably should be defined to 1. */
-
-#define LEGITIMATE_CONSTANT_P(X) \
- ((GET_CODE (X) != CONST_DOUBLE) || fp_literal ((X), GET_MODE (X)))
-
-/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
- and check its validity for a certain class.
- We have two alternate definitions for each of them.
- The usual definition accepts all pseudo regs; the other rejects
- them unless they have been allocated suitable hard regs.
- The symbol REG_OK_STRICT causes the latter definition to be used.
-
- Most source files want to accept pseudo regs in the hope that
- they will get allocated to the class that the insn wants them to be in.
- Source files for reload pass need to be strict.
- After reload, it makes no difference, since pseudo regs have
- been eliminated by then. */
-
-#ifndef REG_OK_STRICT
-
-/* Nonzero if X is a hard reg that can be used as an index
- or if it is a pseudo reg. */
-#define REG_OK_FOR_INDEX_P(X) \
- (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
-/* Nonzero if X is a hard reg that can be used as a base reg
- or if it is a pseudo reg. */
-#define REG_OK_FOR_BASE_P(X) \
- (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
-
-#define REG_OK_FOR_INDEX_P_STRICT(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
-#define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
-
-#else
-
-/* Nonzero if X is a hard reg that can be used as an index. */
-#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
-/* Nonzero if X is a hard reg that can be used as a base reg. */
-#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
-
-#endif
-
-/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
- that is a valid memory address for an instruction.
- The MODE argument is the machine mode for the MEM expression
- that wants to use this address.
-
- On 80960, legitimate addresses are:
- base ld (g0),r0
- disp (12 or 32 bit) ld foo,r0
- base + index ld (g0)[g1*1],r0
- base + displ ld 0xf00(g0),r0
- base + index*scale + displ ld 0xf00(g0)[g1*4],r0
- index*scale + base ld (g0)[g1*4],r0
- index*scale + displ ld 0xf00[g1*4],r0
- index*scale ld [g1*4],r0
- index + base + displ ld 0xf00(g0)[g1*1],r0
-
- In each case, scale can be 1, 2, 4, 8, or 16. */
-
-/* Returns 1 if the scale factor of an index term is valid. */
-#define SCALE_TERM_P(X) \
- (GET_CODE (X) == CONST_INT \
- && (INTVAL (X) == 1 || INTVAL (X) == 2 || INTVAL (X) == 4 \
- || INTVAL(X) == 8 || INTVAL (X) == 16))
-
-
-#ifdef REG_OK_STRICT
-#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
- { if (legitimate_address_p (MODE, X, 1)) goto ADDR; }
-#else
-#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
- { if (legitimate_address_p (MODE, X, 0)) goto ADDR; }
-#endif
-
-/* Try machine-dependent ways of modifying an illegitimate address
- to be legitimate. If we find one, return the new, valid address.
- This macro is used in only one place: `memory_address' in explow.c.
-
- OLDX is the address as it was before break_out_memory_refs was called.
- In some cases it is useful to look at this to decide what needs to be done.
-
- MODE and WIN are passed so that this macro can use
- GO_IF_LEGITIMATE_ADDRESS.
-
- It is always safe for this macro to do nothing. It exists to recognize
- opportunities to optimize the output. */
-
-/* On 80960, convert non-canonical addresses to canonical form. */
-
-extern struct rtx_def *legitimize_address ();
-#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
-{ rtx orig_x = (X); \
- (X) = legitimize_address (X, OLDX, MODE); \
- if ((X) != orig_x && memory_address_p (MODE, X)) \
- goto WIN; }
-
-/* Go to LABEL if ADDR (a legitimate address expression)
- has an effect that depends on the machine mode it is used for.
- On the 960 this is never true. */
-
-#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
-
-/* Specify the machine mode that this machine uses
- for the index in the tablejump instruction. */
-#define CASE_VECTOR_MODE SImode
-
-/* Define this if the tablejump instruction expects the table
- to contain offsets from the address of the table.
- Do not define this if the table should contain absolute addresses. */
-/* #define CASE_VECTOR_PC_RELATIVE */
-
-/* Specify the tree operation to be used to convert reals to integers. */
-#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
-
-/* This is the kind of divide that is easiest to do in the general case. */
-#define EASY_DIV_EXPR TRUNC_DIV_EXPR
-
-/* Define this as 1 if `char' should by default be signed; else as 0. */
-#define DEFAULT_SIGNED_CHAR 0
-
-/* Allow and ignore #sccs directives. */
-#define SCCS_DIRECTIVE
-
-/* Max number of bytes we can move from memory to memory
- in one reasonably fast instruction. */
-#define MOVE_MAX 16
-
-/* Define if operations between registers always perform the operation
- on the full register even if a narrower mode is specified. */
-#define WORD_REGISTER_OPERATIONS
-
-/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
- will either zero-extend or sign-extend. The value of this macro should
- be the code that says which one of the two operations is implicitly
- done, NIL if none. */
-#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
-
-/* Nonzero if access to memory by bytes is no faster than for words.
- Defining this results in worse code on the i960. */
-
-#define SLOW_BYTE_ACCESS 0
-
-/* We assume that the store-condition-codes instructions store 0 for false
- and some other value for true. This is the value stored for true. */
-
-#define STORE_FLAG_VALUE 1
-
-/* Define this to be nonzero if shift instructions ignore all but the low-order
- few bits. */
-#define SHIFT_COUNT_TRUNCATED 0
-
-/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
- is done just by pretending it is already truncated. */
-#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
-
-/* Specify the machine mode that pointers have.
- After generation of rtl, the compiler makes no further distinction
- between pointers and any other objects of this machine mode. */
-#define Pmode SImode
-
-/* Specify the widest mode that BLKmode objects can be promoted to */
-#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
-
-/* These global variables are used to pass information between
- cc setter and cc user at insn emit time. */
-
-extern struct rtx_def *i960_compare_op0, *i960_compare_op1;
-
-/* Define the function that build the compare insn for scc and bcc. */
-
-extern struct rtx_def *gen_compare_reg ();
-
-/* Add any extra modes needed to represent the condition code.
-
- Also, signed and unsigned comparisons are distinguished, as
- are operations which are compatible with chkbit insns. */
-#define EXTRA_CC_MODES CC_UNSmode, CC_CHKmode
-
-/* Define the names for the modes specified above. */
-#define EXTRA_CC_NAMES "CC_UNS", "CC_CHK"
-
-/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
- return the mode to be used for the comparison. For floating-point, CCFPmode
- should be used. CC_NOOVmode should be used when the first operand is a
- PLUS, MINUS, or NEG. CCmode should be used when no special processing is
- needed. */
-#define SELECT_CC_MODE(OP,X,Y) select_cc_mode (OP, X)
-
-/* A function address in a call instruction is a byte address
- (for indexing purposes) so give the MEM rtx a byte's mode. */
-#define FUNCTION_MODE SImode
-
-/* Define this if addresses of constant functions
- shouldn't be put through pseudo regs where they can be cse'd.
- Desirable on machines where ordinary constants are expensive
- but a CALL with constant address is cheap. */
-#define NO_FUNCTION_CSE
-
-/* Use memcpy, etc. instead of bcopy. */
-
-#ifndef WIND_RIVER
-#define TARGET_MEM_FUNCTIONS 1
-#endif
-
-/* Compute the cost of computing a constant rtl expression RTX
- whose rtx-code is CODE. The body of this macro is a portion
- of a switch statement. If the code is computed here,
- return it with a return statement. Otherwise, break from the switch. */
-
-/* Constants that can be (non-ldconst) insn operands are cost 0. Constants
- that can be non-ldconst operands in rare cases are cost 1. Other constants
- have higher costs. */
-
-#define CONST_COSTS(RTX, CODE, OUTER_CODE) \
- case CONST_INT: \
- if ((INTVAL (RTX) >= 0 && INTVAL (RTX) < 32) \
- || power2_operand (RTX, VOIDmode)) \
- return 0; \
- else if (INTVAL (RTX) >= -31 && INTVAL (RTX) < 0) \
- return 1; \
- case CONST: \
- case LABEL_REF: \
- case SYMBOL_REF: \
- return (TARGET_FLAG_C_SERIES ? 6 : 8); \
- case CONST_DOUBLE: \
- if ((RTX) == CONST0_RTX (DFmode) || (RTX) == CONST0_RTX (SFmode) \
- || (RTX) == CONST1_RTX (DFmode) || (RTX) == CONST1_RTX (SFmode))\
- return 1; \
- return 12;
-
-/* The i960 offers addressing modes which are "as cheap as a register".
- See i960.c (or gcc.texinfo) for details. */
-
-#define ADDRESS_COST(RTX) \
- (GET_CODE (RTX) == REG ? 1 : i960_address_cost (RTX))
-
-/* Control the assembler format that we output. */
-
-/* Output at beginning of assembler file. */
-
-#define ASM_FILE_START(file)
-
-/* Output to assembler file text saying following lines
- may contain character constants, extra white space, comments, etc. */
-
-#define ASM_APP_ON ""
-
-/* Output to assembler file text saying following lines
- no longer contain unusual constructs. */
-
-#define ASM_APP_OFF ""
-
-/* Output before read-only data. */
-
-#define TEXT_SECTION_ASM_OP ".text"
-
-/* Output before writable data. */
-
-#define DATA_SECTION_ASM_OP ".data"
-
-/* How to refer to registers in assembler output.
- This sequence is indexed by compiler's hard-register-number (see above). */
-
-#define REGISTER_NAMES { \
- "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", \
- "g8", "g9", "g10", "g11", "g12", "g13", "g14", "fp", \
- "pfp","sp", "rip", "r3", "r4", "r5", "r6", "r7", \
- "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
- "fp0","fp1","fp2", "fp3", "cc", "fake" }
-
-/* How to renumber registers for dbx and gdb.
- In the 960 encoding, g0..g15 are registers 16..31. */
-
-#define DBX_REGISTER_NUMBER(REGNO) \
- (((REGNO) < 16) ? (REGNO) + 16 \
- : (((REGNO) > 31) ? (REGNO) : (REGNO) - 16))
-
-/* Don't emit dbx records longer than this. This is an arbitrary value. */
-#define DBX_CONTIN_LENGTH 1500
-
-/* This is how to output a note to DBX telling it the line number
- to which the following sequence of instructions corresponds. */
-
-#define ASM_OUTPUT_SOURCE_LINE(FILE, LINE) \
-{ if (write_symbols == SDB_DEBUG) { \
- fprintf ((FILE), "\t.ln %d\n", \
- (sdb_begin_function_line \
- ? (LINE) - sdb_begin_function_line : 1)); \
- } else if (write_symbols == DBX_DEBUG) { \
- fprintf((FILE),"\t.stabd 68,0,%d\n",(LINE)); \
- } }
-
-/* This is how to output the definition of a user-level label named NAME,
- such as the label on a static function or variable NAME. */
-
-#define ASM_OUTPUT_LABEL(FILE,NAME) \
- do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
-
-/* This is how to output a command to make the user-level label named NAME
- defined for reference from other files. */
-
-#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
-{ fputs ("\t.globl ", FILE); \
- assemble_name (FILE, NAME); \
- fputs ("\n", FILE); }
-
-/* This is how to output a reference to a user-level label named NAME.
- `assemble_name' uses this. */
-
-#define ASM_OUTPUT_LABELREF(FILE,NAME) fprintf (FILE, "_%s", NAME)
-
-/* This is how to output an internal numbered label where
- PREFIX is the class of label and NUM is the number within the class. */
-
-#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
- fprintf (FILE, "%s%d:\n", PREFIX, NUM)
-
-/* This is how to store into the string LABEL
- the symbol_ref name of an internal numbered label where
- PREFIX is the class of label and NUM is the number within the class.
- This is suitable for output with `assemble_name'. */
-
-#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
- sprintf (LABEL, "*%s%d", PREFIX, NUM)
-
-/* This is how to output an assembler line defining a `long double'
- constant. */
-
-#define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) i960_output_long_double(FILE, VALUE)
-
-/* This is how to output an assembler line defining a `double' constant. */
-
-#define ASM_OUTPUT_DOUBLE(FILE,VALUE) i960_output_double(FILE, VALUE)
-
-/* This is how to output an assembler line defining a `float' constant. */
-
-#define ASM_OUTPUT_FLOAT(FILE,VALUE) i960_output_float(FILE, VALUE)
-
-/* This is how to output an assembler line defining an `int' constant. */
-
-#define ASM_OUTPUT_INT(FILE,VALUE) \
-( fprintf (FILE, "\t.word "), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, "\n"))
-
-/* Likewise for `char' and `short' constants. */
-
-#define ASM_OUTPUT_SHORT(FILE,VALUE) \
-( fprintf (FILE, "\t.short "), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, "\n"))
-
-#define ASM_OUTPUT_CHAR(FILE,VALUE) \
-( fprintf (FILE, "\t.byte "), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, "\n"))
-
-/* This is how to output an assembler line for a numeric constant byte. */
-
-#define ASM_OUTPUT_BYTE(FILE,VALUE) \
- fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
-
-#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
- fprintf (FILE, "\tst\t%s,(sp)\n\taddo\t4,sp,sp\n", reg_names[REGNO])
-
-/* This is how to output an insn to pop a register from the stack.
- It need not be very fast code. */
-
-#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
- fprintf (FILE, "\tsubo\t4,sp,sp\n\tld\t(sp),%s\n", reg_names[REGNO])
-
-/* This is how to output an element of a case-vector that is absolute. */
-
-#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
- fprintf (FILE, "\t.word L%d\n", VALUE)
-
-/* This is how to output an element of a case-vector that is relative. */
-
-#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
- fprintf (FILE, "\t.word L%d-L%d\n", VALUE, REL)
-
-/* This is how to output an assembler line that says to advance the
- location counter to a multiple of 2**LOG bytes. */
-
-#define ASM_OUTPUT_ALIGN(FILE,LOG) \
- fprintf (FILE, "\t.align %d\n", (LOG))
-
-#define ASM_OUTPUT_SKIP(FILE,SIZE) \
- fprintf (FILE, "\t.space %d\n", (SIZE))
-
-/* This says how to output an assembler line
- to define a global common symbol. */
-
-/* For common objects, output unpadded size... gld960 & lnk960 both
- have code to align each common object at link time. Also, if size
- is 0, treat this as a declaration, not a definition - i.e.,
- do nothing at all. */
-
-#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
-{ if ((SIZE) != 0) \
- { \
- fputs (".globl ", (FILE)), \
- assemble_name ((FILE), (NAME)), \
- fputs ("\n.comm ", (FILE)), \
- assemble_name ((FILE), (NAME)), \
- fprintf ((FILE), ",%d\n", (SIZE)); \
- } \
-}
-
-/* This says how to output an assembler line to define a local common symbol.
- Output unpadded size, with request to linker to align as requested.
- 0 size should not be possible here. */
-
-#define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN) \
-( fputs (".bss\t", (FILE)), \
- assemble_name ((FILE), (NAME)), \
- fprintf ((FILE), ",%d,%d\n", (SIZE), \
- ((ALIGN) <= 8 ? 0 \
- : ((ALIGN) <= 16 ? 1 \
- : ((ALIGN) <= 32 ? 2 \
- : ((ALIGN <= 64 ? 3 : 4)))))))
-
-/* Output text for an #ident directive. */
-#define ASM_OUTPUT_IDENT(FILE, STR) fprintf(FILE, "\t# %s\n", STR);
-
-/* Align code to 8 byte boundary if TARGET_CODE_ALIGN is true. */
-
-#define ASM_OUTPUT_ALIGN_CODE(FILE) \
-{ if (TARGET_CODE_ALIGN) fputs("\t.align 3\n",FILE); }
-
-/* Store in OUTPUT a string (made with alloca) containing
- an assembler-name for a local static variable named NAME.
- LABELNO is an integer which is different for each call. */
-
-#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
- ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
- sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
-
-/* Define the parentheses used to group arithmetic operations
- in assembler code. */
-
-#define ASM_OPEN_PAREN "("
-#define ASM_CLOSE_PAREN ")"
-
-/* Define results of standard character escape sequences. */
-#define TARGET_BELL 007
-#define TARGET_BS 010
-#define TARGET_TAB 011
-#define TARGET_NEWLINE 012
-#define TARGET_VT 013
-#define TARGET_FF 014
-#define TARGET_CR 015
-
-/* Output assembler code to FILE to initialize this source file's
- basic block profiling info, if that has not already been done. */
-
-#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
-{ fprintf (FILE, "\tld LPBX0,g12\n"); \
- fprintf (FILE, "\tcmpobne 0,g12,LPY%d\n",LABELNO);\
- fprintf (FILE, "\tlda LPBX0,g12\n"); \
- fprintf (FILE, "\tcall ___bb_init_func\n"); \
- fprintf (FILE, "LPY%d:\n",LABELNO); }
-
-/* Output assembler code to FILE to increment the entry-count for
- the BLOCKNO'th basic block in this source file. */
-
-#define BLOCK_PROFILER(FILE, BLOCKNO) \
-{ int blockn = (BLOCKNO); \
- fprintf (FILE, "\tld LPBX2+%d,g12\n", 4 * blockn); \
- fprintf (FILE, "\taddo g12,1,g12\n"); \
- fprintf (FILE, "\tst g12,LPBX2+%d\n", 4 * blockn); }
-
-/* Print operand X (an rtx) in assembler syntax to file FILE.
- CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
- For `%' followed by punctuation, CODE is the punctuation and X is null. */
-
-#define PRINT_OPERAND(FILE, X, CODE) \
- i960_print_operand (FILE, X, CODE);
-
-/* Print a memory address as an operand to reference that memory location. */
-
-#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
- i960_print_operand_addr (FILE, ADDR)
-
-/* Output assembler code for a block containing the constant parts
- of a trampoline, leaving space for the variable parts. */
-
-/* On the i960, the trampoline contains three instructions:
- ldconst _function, r4
- ldconst static addr, r3
- jump (r4) */
-
-#define TRAMPOLINE_TEMPLATE(FILE) \
-{ \
- ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x8C203000)); \
- ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
- ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x8C183000)); \
- ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
- ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x84212000)); \
-}
-
-/* Length in units of the trampoline for entering a nested function. */
-
-#define TRAMPOLINE_SIZE 20
-
-/* Emit RTL insns to initialize the variable parts of a trampoline.
- FNADDR is an RTX for the address of the function's pure code.
- CXT is an RTX for the static chain value for the function. */
-
-#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
-{ \
- emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 4)), \
- FNADDR); \
- emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 12)), \
- CXT); \
-}
-
-#if 0
-/* Promote char and short arguments to ints, when want compatibility with
- the iC960 compilers. */
-
-/* ??? In order for this to work, all users would need to be changed
- to test the value of the macro at run time. */
-#define PROMOTE_PROTOTYPES TARGET_CLEAN_LINKAGE
-/* ??? This does not exist. */
-#define PROMOTE_RETURN TARGET_CLEAN_LINKAGE
-#endif
-
-/* Instruction type definitions. Used to alternate instructions types for
- better performance on the C series chips. */
-
-enum insn_types { I_TYPE_REG, I_TYPE_MEM, I_TYPE_CTRL };
-
-/* Holds the insn type of the last insn output to the assembly file. */
-
-extern enum insn_types i960_last_insn_type;
-
-/* Parse opcodes, and set the insn last insn type based on them. */
-
-#define ASM_OUTPUT_OPCODE(FILE, INSN) i960_scan_opcode (INSN)
-
-/* Table listing what rtl codes each predicate in i960.c will accept. */
-
-#define PREDICATE_CODES \
- {"fpmove_src_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
- LABEL_REF, SUBREG, REG, MEM}}, \
- {"arith_operand", {SUBREG, REG, CONST_INT}}, \
- {"logic_operand", {SUBREG, REG, CONST_INT}}, \
- {"fp_arith_operand", {SUBREG, REG, CONST_DOUBLE}}, \
- {"signed_arith_operand", {SUBREG, REG, CONST_INT}}, \
- {"literal", {CONST_INT}}, \
- {"fp_literal_one", {CONST_DOUBLE}}, \
- {"fp_literal_double", {CONST_DOUBLE}}, \
- {"fp_literal", {CONST_DOUBLE}}, \
- {"signed_literal", {CONST_INT}}, \
- {"symbolic_memory_operand", {SUBREG, MEM}}, \
- {"eq_or_neq", {EQ, NE}}, \
- {"arith32_operand", {SUBREG, REG, LABEL_REF, SYMBOL_REF, CONST_INT, \
- CONST_DOUBLE, CONST}}, \
- {"power2_operand", {CONST_INT}}, \
- {"cmplpower2_operand", {CONST_INT}},
-
-/* Define functions in i960.c and used in insn-output.c. */
-
-extern char *i960_output_ldconst ();
-extern char *i960_output_call_insn ();
-extern char *i960_output_ret_insn ();
-
-/* Defined in reload.c, and used in insn-recog.c. */
-
-extern int rtx_equal_function_value_matters;