aboutsummaryrefslogtreecommitdiff
path: root/gcc/config/mn10300/mn10300.h
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/config/mn10300/mn10300.h')
-rw-r--r--gcc/config/mn10300/mn10300.h1019
1 files changed, 0 insertions, 1019 deletions
diff --git a/gcc/config/mn10300/mn10300.h b/gcc/config/mn10300/mn10300.h
deleted file mode 100644
index c36c6c499f6..00000000000
--- a/gcc/config/mn10300/mn10300.h
+++ /dev/null
@@ -1,1019 +0,0 @@
-/* Definitions of target machine for GNU compiler.
- Matsushita MN10300 series
- Copyright (C) 1996, 1997 Free Software Foundation, Inc.
- Contributed by Jeff Law (law@cygnus.com).
-
-This file is part of GNU CC.
-
-GNU CC is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2, or (at your option)
-any later version.
-
-GNU CC is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GNU CC; see the file COPYING. If not, write to
-the Free Software Foundation, 59 Temple Place - Suite 330,
-Boston, MA 02111-1307, USA. */
-
-#include "svr4.h"
-
-#undef ASM_SPEC
-#undef ASM_FINAL_SPEC
-#undef LIB_SPEC
-#undef ENDFILE_SPEC
-#undef LINK_SPEC
-#undef STARTFILE_SPEC
-
-/* Names to predefine in the preprocessor for this target machine. */
-
-#define CPP_PREDEFINES "-D__mn10300__ -D__MN10300__"
-
-/* Run-time compilation parameters selecting different hardware subsets. */
-
-extern int target_flags;
-
-/* Global registers known to hold the value zero. */
-extern struct rtx_def *zero_dreg;
-extern struct rtx_def *zero_areg;
-
-/* Macros used in the machine description to test the flags. */
-
-/* Macro to define tables used to set the flags.
- This is a list in braces of pairs in braces,
- each pair being { "NAME", VALUE }
- where VALUE is the bits to set or minus the bits to clear.
- An empty string NAME is used to identify the default VALUE. */
-
-#define TARGET_SWITCHES \
- {{ "", TARGET_DEFAULT}}
-
-#ifndef TARGET_DEFAULT
-#define TARGET_DEFAULT 0
-#endif
-
-/* Print subsidiary information on the compiler version in use. */
-
-#define TARGET_VERSION fprintf (stderr, " (MN10300)");
-
-
-/* Target machine storage layout */
-
-/* Define this if most significant bit is lowest numbered
- in instructions that operate on numbered bit-fields.
- This is not true on the Matsushita MN1003. */
-#define BITS_BIG_ENDIAN 0
-
-/* Define this if most significant byte of a word is the lowest numbered. */
-/* This is not true on the Matsushita MN10300. */
-#define BYTES_BIG_ENDIAN 0
-
-/* Define this if most significant word of a multiword number is lowest
- numbered.
- This is not true on the Matsushita MN10300. */
-#define WORDS_BIG_ENDIAN 0
-
-/* Number of bits in an addressable storage unit */
-#define BITS_PER_UNIT 8
-
-/* Width in bits of a "word", which is the contents of a machine register.
- Note that this is not necessarily the width of data type `int';
- if using 16-bit ints on a 68000, this would still be 32.
- But on a machine with 16-bit registers, this would be 16. */
-#define BITS_PER_WORD 32
-
-/* Width of a word, in units (bytes). */
-#define UNITS_PER_WORD 4
-
-/* Width in bits of a pointer.
- See also the macro `Pmode' defined below. */
-#define POINTER_SIZE 32
-
-/* Allocation boundary (in *bits*) for storing arguments in argument list. */
-#define PARM_BOUNDARY 32
-
-/* The stack goes in 32 bit lumps. */
-#define STACK_BOUNDARY 32
-
-/* Allocation boundary (in *bits*) for the code of a function.
- 8 is the minimum boundary; it's unclear if bigger alignments
- would improve performance. */
-#define FUNCTION_BOUNDARY 8
-
-/* No data type wants to be aligned rounder than this. */
-#define BIGGEST_ALIGNMENT 32
-
-/* Alignment of field after `int : 0' in a structure. */
-#define EMPTY_FIELD_BOUNDARY 32
-
-/* Define this if move instructions will actually fail to work
- when given unaligned data. */
-#define STRICT_ALIGNMENT 1
-
-/* Define this as 1 if `char' should by default be signed; else as 0. */
-#define DEFAULT_SIGNED_CHAR 0
-
-/* Define results of standard character escape sequences. */
-#define TARGET_BELL 007
-#define TARGET_BS 010
-#define TARGET_TAB 011
-#define TARGET_NEWLINE 012
-#define TARGET_VT 013
-#define TARGET_FF 014
-#define TARGET_CR 015
-
-/* Standard register usage. */
-
-/* Number of actual hardware registers.
- The hardware registers are assigned numbers for the compiler
- from 0 to just below FIRST_PSEUDO_REGISTER.
-
- All registers that the compiler knows about must be given numbers,
- even those that are not normally considered general registers. */
-
-#define FIRST_PSEUDO_REGISTER 10
-
-/* 1 for registers that have pervasive standard uses
- and are not available for the register allocator. */
-
-#define FIXED_REGISTERS \
- { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1}
-
-/* 1 for registers not available across function calls.
- These must include the FIXED_REGISTERS and also any
- registers that can be used without being saved.
- The latter must include the registers where values are returned
- and the register where structure-value addresses are passed.
- Aside from that, you can include as many other registers as you
- like. */
-
-#define CALL_USED_REGISTERS \
- { 1, 1, 0, 0, 1, 1, 0, 0, 1, 1}
-
-#define REG_ALLOC_ORDER \
- { 0, 1, 4, 5, 2, 3, 6, 7, 8, 9}
-
-/* Return number of consecutive hard regs needed starting at reg REGNO
- to hold something of mode MODE.
-
- This is ordinarily the length in words of a value of mode MODE
- but can be less for certain modes in special long registers. */
-
-#define HARD_REGNO_NREGS(REGNO, MODE) \
- ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
-
-/* Value is 1 if hard register REGNO can hold a value of machine-mode
- MODE. */
-
-#define HARD_REGNO_MODE_OK(REGNO, MODE) \
- (REGNO_REG_CLASS (REGNO) == DATA_REGS \
- ? ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) <= 4 \
- : ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) == 4)
-
-/* Value is 1 if it is a good idea to tie two pseudo registers
- when one has mode MODE1 and one has mode MODE2.
- If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
- for any hard reg, then this must be 0 for correct output. */
-#define MODES_TIEABLE_P(MODE1, MODE2) \
- (MODE1 == MODE2 || GET_MODE_SIZE (MODE1) <= 4 && GET_MODE_SIZE (MODE2) <= 4)
-
-/* 4 data, and effectively 3 address registers is small as far as I'm
- concerned. */
-#define SMALL_REGISTER_CLASSES 1
-
-/* Define the classes of registers for register constraints in the
- machine description. Also define ranges of constants.
-
- One of the classes must always be named ALL_REGS and include all hard regs.
- If there is more than one class, another class must be named NO_REGS
- and contain no registers.
-
- The name GENERAL_REGS must be the name of a class (or an alias for
- another name such as ALL_REGS). This is the class of registers
- that is allowed by "g" or "r" in a register constraint.
- Also, registers outside this class are allocated only when
- instructions express preferences for them.
-
- The classes must be numbered in nondecreasing order; that is,
- a larger-numbered class must never be contained completely
- in a smaller-numbered class.
-
- For any two classes, it is very desirable that there be another
- class that represents their union. */
-
-enum reg_class {
- NO_REGS, DATA_REGS, ADDRESS_REGS, SP_REGS, DATA_OR_ADDRESS_REGS, SP_OR_ADDRESS_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
-};
-
-#define N_REG_CLASSES (int) LIM_REG_CLASSES
-
-/* Give names of register classes as strings for dump file. */
-
-#define REG_CLASS_NAMES \
-{ "NO_REGS", "DATA_REGS", "ADDRESS_REGS", \
- "SP_REGS", "DATA_OR_ADDRESS_REGS", "SP_OR_ADDRESS_REGS", \
- "GENERAL_REGS", "ALL_REGS", "LIM_REGS" }
-
-/* Define which registers fit in which classes.
- This is an initializer for a vector of HARD_REG_SET
- of length N_REG_CLASSES. */
-
-#define REG_CLASS_CONTENTS \
-{ 0, /* No regs */ \
- 0x00f, /* DATA_REGS */ \
- 0x1f0, /* ADDRESS_REGS */ \
- 0x200, /* SP_REGS */ \
- 0x1ff, /* DATA_OR_ADDRESS_REGS */\
- 0x1f0, /* SP_OR_ADDRESS_REGS */\
- 0x1ff, /* GENERAL_REGS */ \
- 0x3ff, /* ALL_REGS */ \
-}
-
-/* The same information, inverted:
- Return the class number of the smallest class containing
- reg number REGNO. This could be a conditional expression
- or could index an array. */
-
-#define REGNO_REG_CLASS(REGNO) \
- ((REGNO) < 4 ? DATA_REGS : \
- (REGNO) < 9 ? ADDRESS_REGS : \
- (REGNO) == 9 ? SP_REGS: 0)
-
-/* The class value for index registers, and the one for base regs. */
-
-#define INDEX_REG_CLASS DATA_REGS
-#define BASE_REG_CLASS SP_OR_ADDRESS_REGS
-
-/* Get reg_class from a letter such as appears in the machine description. */
-
-#define REG_CLASS_FROM_LETTER(C) \
- ((C) == 'd' ? DATA_REGS : \
- (C) == 'a' ? ADDRESS_REGS : \
- (C) == 'x' ? SP_REGS : NO_REGS)
-
-/* Macros to check register numbers against specific register classes. */
-
-/* These assume that REGNO is a hard or pseudo reg number.
- They give nonzero only if REGNO is a hard reg of the suitable class
- or a pseudo reg currently allocated to a suitable hard reg.
- Since they use reg_renumber, they are safe only once reg_renumber
- has been allocated, which happens in local-alloc.c. */
-
-#define REGNO_OK_FOR_BASE_P(regno) \
- (((regno) > 3 && regno < FIRST_PSEUDO_REGISTER) \
- || (reg_renumber[regno] > 3 && reg_renumber[regno] < FIRST_PSEUDO_REGISTER))
-
-#define REGNO_OK_FOR_INDEX_P(regno) \
- (((regno) >= 0 && regno < 4) \
- || (reg_renumber[regno] >= 0 && reg_renumber[regno] < 4))
-
-
-/* Given an rtx X being reloaded into a reg required to be
- in class CLASS, return the class of reg to actually use.
- In general this is just CLASS; but on some machines
- in some cases it is preferable to use a more restrictive class. */
-
-#define PREFERRED_RELOAD_CLASS(X,CLASS) \
- (X == stack_pointer_rtx && CLASS != SP_REGS ? ADDRESS_REGS : CLASS)
-
-#define PREFERRED_OUTPUT_RELOAD_CLASS(X,CLASS) \
- (X == stack_pointer_rtx && CLASS != SP_REGS ? ADDRESS_REGS : CLASS)
-
-#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
- ((MODE == QImode || MODE == HImode) ? DATA_REGS : CLASS)
-
-#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
- secondary_reload_class(CLASS,MODE,IN)
-
-/* Return the maximum number of consecutive registers
- needed to represent mode MODE in a register of class CLASS. */
-
-#define CLASS_MAX_NREGS(CLASS, MODE) \
- ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
-
-/* The letters I, J, K, L, M, N, O, P in a register constraint string
- can be used to stand for particular ranges of immediate operands.
- This macro defines what the ranges are.
- C is the letter, and VALUE is a constant value.
- Return 1 if VALUE is in the range specified by C. */
-
-#define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
-#define INT_16_BITS(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
-
-#define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
-#define CONST_OK_FOR_J(VALUE) ((VALUE) == 1)
-#define CONST_OK_FOR_K(VALUE) ((VALUE) == 2)
-#define CONST_OK_FOR_L(VALUE) ((VALUE) == 4)
-#define CONST_OK_FOR_M(VALUE) ((VALUE) == 3)
-#define CONST_OK_FOR_N(VALUE) ((VALUE) == 255 || (VALUE) == 65535)
-
-#define CONST_OK_FOR_LETTER_P(VALUE, C) \
- ((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
- (C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
- (C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
- (C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
- (C) == 'M' ? CONST_OK_FOR_M (VALUE) : \
- (C) == 'N' ? CONST_OK_FOR_N (VALUE) : 0)
-
-
-/* Similar, but for floating constants, and defining letters G and H.
- Here VALUE is the CONST_DOUBLE rtx itself.
-
- `G' is a floating-point zero. */
-
-#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
- ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
- && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) : 0)
-
-
-/* Stack layout; function entry, exit and calling. */
-
-/* Define this if pushing a word on the stack
- makes the stack pointer a smaller address. */
-
-#define STACK_GROWS_DOWNWARD
-
-/* Define this if the nominal address of the stack frame
- is at the high-address end of the local variables;
- that is, each additional local variable allocated
- goes at a more negative offset in the frame. */
-
-#define FRAME_GROWS_DOWNWARD
-
-/* Offset within stack frame to start allocating local variables at.
- If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
- first local allocated. Otherwise, it is the offset to the BEGINNING
- of the first local allocated. */
-
-#define STARTING_FRAME_OFFSET 0
-
-/* Offset of first parameter from the argument pointer register value. */
-/* Is equal to the size of the saved fp + pc, even if an fp isn't
- saved since the value is used before we know. */
-
-#define FIRST_PARM_OFFSET(FNDECL) 4
-
-/* Specify the registers used for certain standard purposes.
- The values of these macros are register numbers. */
-
-/* Register to use for pushing function arguments. */
-#define STACK_POINTER_REGNUM 9
-
-/* Base register for access to local variables of the function. */
-#define FRAME_POINTER_REGNUM 7
-
-/* Base register for access to arguments of the function. This
- is a fake register and will be eliminated into either the frame
- pointer or stack pointer. */
-#define ARG_POINTER_REGNUM 8
-
-/* Register in which static-chain is passed to a function. */
-#define STATIC_CHAIN_REGNUM 5
-
-/* Value should be nonzero if functions must have frame pointers.
- Zero means the frame pointer need not be set up (and parms
- may be accessed via the stack pointer) in functions that seem suitable.
- This is computed in `reload', in reload1.c.
-
- We allow frame pointers to be eliminated when not having one will
- not interfere with debugging.
-
- * If this is a leaf function, then we can keep the stack pointer
- constant throughout the function, and therefore gdb can easily
- find the base of the current frame.
-
- * If this function never allocates stack space for outgoing
- args (ie calls functions with either no args, or args only
- in registers), then the stack pointer will be constant and
- gdb can easily find the base of the current frame.
-
- We'd really like to define ACCUMULATE_OUTGOING_ARGS and eliminate
- all frame pointer, but currently we can't.
-
- We probably also want a -m option to eliminate frame pointer, even
- if the resulting executable can not be debugged. */
-
-#define ELIMINABLE_REGS \
-{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
- { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
- { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
-
-#define CAN_ELIMINATE(FROM, TO) 1
-
-#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
- OFFSET = initial_offset (FROM, TO)
-
-#define FRAME_POINTER_REQUIRED \
- !(leaf_function_p () || current_function_outgoing_args_size == 0)
-#define CAN_DEBUG_WITHOUT_FP
-
-/* A guess for the MN10300. */
-#define PROMOTE_PROTOTYPES 1
-
-/* Value is the number of bytes of arguments automatically
- popped when returning from a subroutine call.
- FUNDECL is the declaration node of the function (as a tree),
- FUNTYPE is the data type of the function (as a tree),
- or for a library call it is an identifier node for the subroutine name.
- SIZE is the number of bytes of arguments passed on the stack. */
-
-#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
-
-/* We use d0/d1 for passing parameters, so allocate 8 bytes of space
- for a register flushback area. */
-#define REG_PARM_STACK_SPACE(DECL) 8
-
-/* So we can allocate space for return pointers once for the function
- instead of around every call. */
-#define STACK_POINTER_OFFSET 4
-
-/* 1 if N is a possible register number for function argument passing.
- On the MN10300, no registers are used in this way. */
-
-#define FUNCTION_ARG_REGNO_P(N) ((N) <= 1)
-
-
-/* Define a data type for recording info about an argument list
- during the scan of that argument list. This data type should
- hold all necessary information about the function itself
- and about the args processed so far, enough to enable macros
- such as FUNCTION_ARG to determine where the next arg should go.
-
- On the MN10300, this is a single integer, which is a number of bytes
- of arguments scanned so far. */
-
-#define CUMULATIVE_ARGS struct cum_arg
-struct cum_arg {int nbytes; };
-
-/* Initialize a variable CUM of type CUMULATIVE_ARGS
- for a call to a function whose data type is FNTYPE.
- For a library call, FNTYPE is 0.
-
- On the MN10300, the offset starts at 0. */
-
-#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
- ((CUM).nbytes = 0)
-
-/* Update the data in CUM to advance over an argument
- of mode MODE and data type TYPE.
- (TYPE is null for libcalls where that information may not be available.) */
-
-#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
- ((CUM).nbytes += ((MODE) != BLKmode \
- ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
- : (int_size_in_bytes (TYPE) + 3) & ~3))
-
-/* Define where to put the arguments to a function.
- Value is zero to push the argument on the stack,
- or a hard register in which to store the argument.
-
- MODE is the argument's machine mode.
- TYPE is the data type of the argument (as a tree).
- This is null for libcalls where that information may
- not be available.
- CUM is a variable of type CUMULATIVE_ARGS which gives info about
- the preceding args and about the function being called.
- NAMED is nonzero if this argument is a named parameter
- (otherwise it is an extra parameter matching an ellipsis). */
-
-/* On the MN10300 all args are pushed. */
-
-extern struct rtx_def *function_arg ();
-#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
- function_arg (&CUM, MODE, TYPE, NAMED)
-
-#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
- function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
-
-
-#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
- ((TYPE) && int_size_in_bytes (TYPE) > 8)
-
-#define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
- ((TYPE) && int_size_in_bytes (TYPE) > 8)
-
-/* Define how to find the value returned by a function.
- VALTYPE is the data type of the value (as a tree).
- If the precise function being called is known, FUNC is its FUNCTION_DECL;
- otherwise, FUNC is 0. */
-
-#define FUNCTION_VALUE(VALTYPE, FUNC) gen_rtx (REG, TYPE_MODE (VALTYPE), 0)
-
-/* Define how to find the value returned by a library function
- assuming the value has mode MODE. */
-
-#define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, 0)
-
-/* 1 if N is a possible register number for a function value. */
-
-#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
-
-/* Return values > 8 bytes in length in memory. */
-#define DEFAULT_PCC_STRUCT_RETURN 0
-#define RETURN_IN_MEMORY(TYPE) \
- (int_size_in_bytes (TYPE) > 8 || TYPE_MODE (TYPE) == BLKmode)
-
-/* Register in which address to store a structure value
- is passed to a function. On the MN10300 it's passed as
- the first parameter. */
-
-#define STRUCT_VALUE 0
-
-/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
- the stack pointer does not matter. The value is tested only in
- functions that have frame pointers.
- No definition is equivalent to always zero. */
-
-#define EXIT_IGNORE_STACK 1
-
-/* Output assembler code to FILE to increment profiler label # LABELNO
- for profiling a function entry. */
-
-#define FUNCTION_PROFILER(FILE, LABELNO) ;
-
-#define TRAMPOLINE_TEMPLATE(FILE) \
- do { \
- fprintf (FILE, "\tadd -4,sp\n"); \
- fprintf (FILE, "\t.long 0x0004fffa\n"); \
- fprintf (FILE, "\tmov (0,sp),a0\n"); \
- fprintf (FILE, "\tadd 4,sp\n"); \
- fprintf (FILE, "\tmov (13,a0),a1\n"); \
- fprintf (FILE, "\tmov (17,a0),a0\n"); \
- fprintf (FILE, "\tjmp (a0)\n"); \
- fprintf (FILE, "\t.long 0\n"); \
- fprintf (FILE, "\t.long 0\n"); \
- } while (0)
-
-/* Length in units of the trampoline for entering a nested function. */
-
-#define TRAMPOLINE_SIZE 0x1b
-
-#define TRAMPOLINE_ALIGNMENT 32
-
-/* Emit RTL insns to initialize the variable parts of a trampoline.
- FNADDR is an RTX for the address of the function's pure code.
- CXT is an RTX for the static chain value for the function. */
-
-#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
-{ \
- emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 0x14)), \
- (CXT)); \
- emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 0x18)), \
- (FNADDR)); \
-}
-/* A C expression whose value is RTL representing the value of the return
- address for the frame COUNT steps up from the current frame.
-
- On the mn10300, the return address is not at a constant location
- due to the frame layout. Luckily, it is at a constant offset from
- the argument pointer, so we define RETURN_ADDR_RTX to return a
- MEM using arg_pointer_rtx. Reload will replace arg_pointer_rtx
- with a reference to the stack/frame pointer + an appropriate offset. */
-
-#define RETURN_ADDR_RTX(COUNT, FRAME) \
- ((COUNT == 0) \
- ? gen_rtx (MEM, Pmode, arg_pointer_rtx) \
- : (rtx) 0)
-
-/* Emit code for a call to builtin_saveregs. We must emit USE insns which
- reference the 2 integer arg registers.
- Ordinarily they are not call used registers, but they are for
- _builtin_saveregs, so we must make this explicit. */
-
-extern struct rtx_def *mn10300_builtin_saveregs ();
-#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) mn10300_builtin_saveregs (ARGLIST)
-
-/* Addressing modes, and classification of registers for them. */
-
-
-/* 1 if X is an rtx for a constant that is a valid address. */
-
-#define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
-
-/* Extra constraints. */
-
-#define OK_FOR_R(OP) \
- (GET_CODE (OP) == MEM \
- && GET_MODE (OP) == QImode \
- && (CONSTANT_ADDRESS_P (XEXP (OP, 0)) \
- || (GET_CODE (XEXP (OP, 0)) == REG \
- && REG_OK_FOR_BASE_P (XEXP (OP, 0)) \
- && XEXP (OP, 0) != stack_pointer_rtx) \
- || (GET_CODE (XEXP (OP, 0)) == PLUS \
- && GET_CODE (XEXP (XEXP (OP, 0), 0)) == REG \
- && REG_OK_FOR_BASE_P (XEXP (XEXP (OP, 0), 0)) \
- && XEXP (XEXP (OP, 0), 0) != stack_pointer_rtx \
- && GET_CODE (XEXP (XEXP (OP, 0), 1)) == CONST_INT \
- && INT_8_BITS (INTVAL (XEXP (XEXP (OP, 0), 1))))))
-
-#define EXTRA_CONSTRAINT(OP, C) \
- ((C) == 'R' ? OK_FOR_R (OP) : (C) == 'S' ? GET_CODE (OP) == SYMBOL_REF : 0)
-
-/* Maximum number of registers that can appear in a valid memory address. */
-
-#define MAX_REGS_PER_ADDRESS 2
-
-/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
- and check its validity for a certain class.
- We have two alternate definitions for each of them.
- The usual definition accepts all pseudo regs; the other rejects
- them unless they have been allocated suitable hard regs.
- The symbol REG_OK_STRICT causes the latter definition to be used.
-
- Most source files want to accept pseudo regs in the hope that
- they will get allocated to the class that the insn wants them to be in.
- Source files for reload pass need to be strict.
- After reload, it makes no difference, since pseudo regs have
- been eliminated by then. */
-
-#ifndef REG_OK_STRICT
-/* Nonzero if X is a hard reg that can be used as an index
- or if it is a pseudo reg. */
-#define REG_OK_FOR_INDEX_P(X) \
- ((REGNO (X) >= 0 && REGNO(X) <= 3) || REGNO (X) >= FIRST_PSEUDO_REGISTER)
-/* Nonzero if X is a hard reg that can be used as a base reg
- or if it is a pseudo reg. */
-#define REG_OK_FOR_BASE_P(X) \
- ((REGNO (X) >= 4 && REGNO(X) <= 9) || REGNO (X) >= FIRST_PSEUDO_REGISTER)
-#else
-/* Nonzero if X is a hard reg that can be used as an index. */
-#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
-/* Nonzero if X is a hard reg that can be used as a base reg. */
-#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
-#endif
-
-
-/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
- that is a valid memory address for an instruction.
- The MODE argument is the machine mode for the MEM expression
- that wants to use this address.
-
- The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
- except for CONSTANT_ADDRESS_P which is actually
- machine-independent. */
-
-/* Accept either REG or SUBREG where a register is valid. */
-
-#define RTX_OK_FOR_BASE_P(X) \
- ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
- || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
- && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
-
-#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
-{ \
- if (CONSTANT_ADDRESS_P (X)) \
- goto ADDR; \
- if (RTX_OK_FOR_BASE_P (X)) \
- goto ADDR; \
- if (GET_CODE (X) == PLUS) \
- { \
- rtx base = 0, index = 0; \
- if (REG_P (XEXP (X, 0)) \
- && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
- base = XEXP (X, 0), index = XEXP (X, 1); \
- if (REG_P (XEXP (X, 1)) \
- && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
- base = XEXP (X, 1), index = XEXP (X, 0); \
- if (base != 0 && index != 0) \
- { \
- if (CONSTANT_ADDRESS_P (index)) \
- goto ADDR; \
- if (REG_P (index) \
- && REG_OK_FOR_INDEX_P (index) \
- && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (word_mode)) \
- goto ADDR; \
- } \
- } \
-}
-
-
-/* Try machine-dependent ways of modifying an illegitimate address
- to be legitimate. If we find one, return the new, valid address.
- This macro is used in only one place: `memory_address' in explow.c.
-
- OLDX is the address as it was before break_out_memory_refs was called.
- In some cases it is useful to look at this to decide what needs to be done.
-
- MODE and WIN are passed so that this macro can use
- GO_IF_LEGITIMATE_ADDRESS.
-
- It is always safe for this macro to do nothing. It exists to recognize
- opportunities to optimize the output. */
-
-#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
-
-/* Go to LABEL if ADDR (a legitimate address expression)
- has an effect that depends on the machine mode it is used for. */
-
-#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
-
-/* Nonzero if the constant value X is a legitimate general operand.
- It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
-
-#define LEGITIMATE_CONSTANT_P(X) 1
-
-
-/* Tell final.c how to eliminate redundant test instructions. */
-
-/* Here we define machine-dependent flags and fields in cc_status
- (see `conditions.h'). No extra ones are needed for the vax. */
-
-/* Store in cc_status the expressions
- that the condition codes will describe
- after execution of an instruction whose pattern is EXP.
- Do not alter them if the instruction would not alter the cc's. */
-
-#define CC_OVERFLOW_UNUSABLE 0x200
-#define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
-
-/* Compute the cost of computing a constant rtl expression RTX
- whose rtx-code is CODE. The body of this macro is a portion
- of a switch statement. If the code is computed here,
- return it with a return statement. Otherwise, break from the switch. */
-
-#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
- case CONST_INT: \
- /* Zeros are extremely cheap. */ \
- if (INTVAL (RTX) == 0 && OUTER_CODE == SET) \
- return 0; \
- /* If it fits in 8 bits, then it's still relatively cheap. */ \
- if (INT_8_BITS (INTVAL (RTX))) \
- return 1; \
- /* This is the "base" cost, includes constants where either the \
- upper or lower 16bits are all zeros. */ \
- if (INT_16_BITS (INTVAL (RTX)) \
- || (INTVAL (RTX) & 0xffff) == 0 \
- || (INTVAL (RTX) & 0xffff0000) == 0) \
- return 2; \
- return 4; \
- /* These are more costly than a CONST_INT, but we can relax them, \
- so they're less costly than a CONST_DOUBLE. */ \
- case CONST: \
- case LABEL_REF: \
- case SYMBOL_REF: \
- return 6; \
- /* We don't optimize CONST_DOUBLEs well nor do we relax them well, \
- so their cost is very high. */ \
- case CONST_DOUBLE: \
- return 8;
-
-
-#define REGISTER_MOVE_COST(CLASS1, CLASS2) (CLASS1 != CLASS2 ? 4 : 0)
-
-/* A crude cut at RTX_COSTS for the MN10300. */
-
-/* Provide the costs of a rtl expression. This is in the body of a
- switch on CODE. */
-#define RTX_COSTS(RTX,CODE,OUTER_CODE) \
- case MOD: \
- case DIV: \
- return 8; \
- case MULT: \
- return 8;
-
-/* Nonzero if access to memory by bytes or half words is no faster
- than accessing full words. */
-#define SLOW_BYTE_ACCESS 1
-
-/* Dispatch tables on the mn10300 are extremely expensive in terms of code
- and readonly data size. So we crank up the case threshold value to
- encourage a series of if/else comparisons to implement many small switch
- statements. In theory, this value could be increased much more if we
- were solely optimizing for space, but we keep it "reasonable" to avoid
- serious code efficiency lossage. */
-#define CASE_VALUES_THRESHOLD 6
-
-#define NO_FUNCTION_CSE
-
-/* According expr.c, a value of around 6 should minimize code size, and
- for the MN10300 series, that's our primary concern. */
-#define MOVE_RATIO 6
-
-#define TEXT_SECTION_ASM_OP "\t.section .text"
-#define DATA_SECTION_ASM_OP "\t.section .data"
-#define BSS_SECTION_ASM_OP "\t.section .bss"
-
-/* Output at beginning/end of assembler file. */
-#undef ASM_FILE_START
-#define ASM_FILE_START(FILE) asm_file_start(FILE)
-
-#define ASM_COMMENT_START "#"
-
-/* Output to assembler file text saying following lines
- may contain character constants, extra white space, comments, etc. */
-
-#define ASM_APP_ON "#APP\n"
-
-/* Output to assembler file text saying following lines
- no longer contain unusual constructs. */
-
-#define ASM_APP_OFF "#NO_APP\n"
-
-/* This is how to output an assembler line defining a `double' constant.
- It is .dfloat or .gfloat, depending. */
-
-#define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
-do { char dstr[30]; \
- REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
- fprintf (FILE, "\t.double %s\n", dstr); \
- } while (0)
-
-
-/* This is how to output an assembler line defining a `float' constant. */
-#define ASM_OUTPUT_FLOAT(FILE, VALUE) \
-do { char dstr[30]; \
- REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
- fprintf (FILE, "\t.float %s\n", dstr); \
- } while (0)
-
-/* This is how to output an assembler line defining an `int' constant. */
-
-#define ASM_OUTPUT_INT(FILE, VALUE) \
-( fprintf (FILE, "\t.long "), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, "\n"))
-
-/* Likewise for `char' and `short' constants. */
-
-#define ASM_OUTPUT_SHORT(FILE, VALUE) \
-( fprintf (FILE, "\t.hword "), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, "\n"))
-
-#define ASM_OUTPUT_CHAR(FILE, VALUE) \
-( fprintf (FILE, "\t.byte "), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, "\n"))
-
-/* This is how to output an assembler line for a numeric constant byte. */
-#define ASM_OUTPUT_BYTE(FILE, VALUE) \
- fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
-
-/* Define the parentheses used to group arithmetic operations
- in assembler code. */
-
-#define ASM_OPEN_PAREN "("
-#define ASM_CLOSE_PAREN ")"
-
-/* This says how to output the assembler to define a global
- uninitialized but not common symbol.
- Try to use asm_output_bss to implement this macro. */
-
-#define ASM_OUTPUT_BSS(FILE, DECL, NAME, SIZE, ROUNDED) \
- asm_output_bss ((FILE), (DECL), (NAME), (SIZE), (ROUNDED))
-
-/* This is how to output the definition of a user-level label named NAME,
- such as the label on a static function or variable NAME. */
-
-#define ASM_OUTPUT_LABEL(FILE, NAME) \
- do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
-
-/* This is how to output a command to make the user-level label named NAME
- defined for reference from other files. */
-
-#define ASM_GLOBALIZE_LABEL(FILE, NAME) \
- do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
-
-/* This is how to output a reference to a user-level label named NAME.
- `assemble_name' uses this. */
-
-#undef ASM_OUTPUT_LABELREF
-#define ASM_OUTPUT_LABELREF(FILE, NAME) \
- do { \
- char* real_name; \
- STRIP_NAME_ENCODING (real_name, (NAME)); \
- fprintf (FILE, "_%s", real_name); \
- } while (0)
-
-/* Store in OUTPUT a string (made with alloca) containing
- an assembler-name for a local static variable named NAME.
- LABELNO is an integer which is different for each call. */
-
-#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
-( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
- sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO)))
-
-/* This is how we tell the assembler that two symbols have the same value. */
-
-#define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
- do { assemble_name(FILE, NAME1); \
- fputs(" = ", FILE); \
- assemble_name(FILE, NAME2); \
- fputc('\n', FILE); } while (0)
-
-
-/* How to refer to registers in assembler output.
- This sequence is indexed by compiler's hard-register-number (see above). */
-
-#define REGISTER_NAMES \
-{ "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", "ap", "sp" }
-
-/* Print an instruction operand X on file FILE.
- look in mn10300.c for details */
-
-#define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE,X,CODE)
-
-/* Print a memory operand whose address is X, on file FILE.
- This uses a function in output-vax.c. */
-
-#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
-
-#define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
-#define ASM_OUTPUT_REG_POP(FILE,REGNO)
-
-/* This is how to output an element of a case-vector that is absolute. */
-
-#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
- asm_fprintf (FILE, "\t%s .L%d\n", ".long", VALUE)
-
-/* This is how to output an element of a case-vector that is relative. */
-
-#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
- fprintf (FILE, "\t%s .L%d-.L%d\n", ".long", VALUE, REL)
-
-#define ASM_OUTPUT_ALIGN(FILE,LOG) \
- if ((LOG) != 0) \
- fprintf (FILE, "\t.align %d\n", (LOG))
-
-/* We don't have to worry about dbx compatability for the mn10300. */
-#define DEFAULT_GDB_EXTENSIONS 1
-
-/* Use stabs debugging info by default. */
-#undef PREFERRED_DEBUGGING_TYPE
-#define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
-
-#define DBX_REGISTER_NUMBER(REGNO) REGNO
-
-/* Define to use software floating point emulator for REAL_ARITHMETIC and
- decimal <-> binary conversion. */
-#define REAL_ARITHMETIC
-
-/* Specify the machine mode that this machine uses
- for the index in the tablejump instruction. */
-#define CASE_VECTOR_MODE Pmode
-
-/* Define this if the case instruction drops through after the table
- when the index is out of range. Don't define it if the case insn
- jumps to the default label instead. */
-#define CASE_DROPS_THROUGH
-
-/* Define if operations between registers always perform the operation
- on the full register even if a narrower mode is specified. */
-#define WORD_REGISTER_OPERATIONS
-
-#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
-
-/* Specify the tree operation to be used to convert reals to integers. */
-#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
-
-/* This flag, if defined, says the same insns that convert to a signed fixnum
- also convert validly to an unsigned one. */
-#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
-
-/* This is the kind of divide that is easiest to do in the general case. */
-#define EASY_DIV_EXPR TRUNC_DIV_EXPR
-
-/* Max number of bytes we can move from memory to memory
- in one reasonably fast instruction. */
-#define MOVE_MAX 4
-
-/* Define if shifts truncate the shift count
- which implies one can omit a sign-extension or zero-extension
- of a shift count. */
-#define SHIFT_COUNT_TRUNCATED 1
-
-/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
- is done just by pretending it is already truncated. */
-#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
-
-#define STORE_FLAG_VALUE 1
-
-/* Specify the machine mode that pointers have.
- After generation of rtl, the compiler makes no further distinction
- between pointers and any other objects of this machine mode. */
-#define Pmode SImode
-
-/* A function address in a call instruction
- is a byte address (for indexing purposes)
- so give the MEM rtx a byte's mode. */
-#define FUNCTION_MODE QImode
-
-/* The assembler op to get a word. */
-
-#define FILE_ASM_OP "\t.file\n"
-
-extern void asm_file_start ();
-extern int const_costs ();
-extern void print_operand ();
-extern void print_operand_address ();
-extern void expand_prologue ();
-extern void expand_epilogue ();
-extern void notice_update_cc ();
-extern int call_address_operand ();
-extern enum reg_class secondary_reload_class ();
-extern int initial_offset ();
-extern char *output_tst ();