aboutsummaryrefslogtreecommitdiff
path: root/gcc/fold-const.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/fold-const.c')
-rw-r--r--gcc/fold-const.c5701
1 files changed, 0 insertions, 5701 deletions
diff --git a/gcc/fold-const.c b/gcc/fold-const.c
deleted file mode 100644
index f75d479637e..00000000000
--- a/gcc/fold-const.c
+++ /dev/null
@@ -1,5701 +0,0 @@
-/* Fold a constant sub-tree into a single node for C-compiler
- Copyright (C) 1987, 88, 92-96, 1997 Free Software Foundation, Inc.
-
-This file is part of GNU CC.
-
-GNU CC is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2, or (at your option)
-any later version.
-
-GNU CC is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GNU CC; see the file COPYING. If not, write to
-the Free Software Foundation, 59 Temple Place - Suite 330,
-Boston, MA 02111-1307, USA. */
-
-/*@@ This file should be rewritten to use an arbitrary precision
- @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
- @@ Perhaps the routines could also be used for bc/dc, and made a lib.
- @@ The routines that translate from the ap rep should
- @@ warn if precision et. al. is lost.
- @@ This would also make life easier when this technology is used
- @@ for cross-compilers. */
-
-
-/* The entry points in this file are fold, size_int and size_binop.
-
- fold takes a tree as argument and returns a simplified tree.
-
- size_binop takes a tree code for an arithmetic operation
- and two operands that are trees, and produces a tree for the
- result, assuming the type comes from `sizetype'.
-
- size_int takes an integer value, and creates a tree constant
- with type from `sizetype'. */
-
-#include <stdio.h>
-#include <setjmp.h>
-#include "config.h"
-#include "flags.h"
-#include "tree.h"
-
-/* Handle floating overflow for `const_binop'. */
-static jmp_buf float_error;
-
-static void encode PROTO((HOST_WIDE_INT *,
- HOST_WIDE_INT, HOST_WIDE_INT));
-static void decode PROTO((HOST_WIDE_INT *,
- HOST_WIDE_INT *, HOST_WIDE_INT *));
-int div_and_round_double PROTO((enum tree_code, int, HOST_WIDE_INT,
- HOST_WIDE_INT, HOST_WIDE_INT,
- HOST_WIDE_INT, HOST_WIDE_INT *,
- HOST_WIDE_INT *, HOST_WIDE_INT *,
- HOST_WIDE_INT *));
-static int split_tree PROTO((tree, enum tree_code, tree *,
- tree *, int *));
-static tree const_binop PROTO((enum tree_code, tree, tree, int));
-static tree fold_convert PROTO((tree, tree));
-static enum tree_code invert_tree_comparison PROTO((enum tree_code));
-static enum tree_code swap_tree_comparison PROTO((enum tree_code));
-static int truth_value_p PROTO((enum tree_code));
-static int operand_equal_for_comparison_p PROTO((tree, tree, tree));
-static int twoval_comparison_p PROTO((tree, tree *, tree *, int *));
-static tree eval_subst PROTO((tree, tree, tree, tree, tree));
-static tree omit_one_operand PROTO((tree, tree, tree));
-static tree pedantic_omit_one_operand PROTO((tree, tree, tree));
-static tree distribute_bit_expr PROTO((enum tree_code, tree, tree, tree));
-static tree make_bit_field_ref PROTO((tree, tree, int, int, int));
-static tree optimize_bit_field_compare PROTO((enum tree_code, tree,
- tree, tree));
-static tree decode_field_reference PROTO((tree, int *, int *,
- enum machine_mode *, int *,
- int *, tree *, tree *));
-static int all_ones_mask_p PROTO((tree, int));
-static int simple_operand_p PROTO((tree));
-static tree range_binop PROTO((enum tree_code, tree, tree, int,
- tree, int));
-static tree make_range PROTO((tree, int *, tree *, tree *));
-static tree build_range_check PROTO((tree, tree, int, tree, tree));
-static int merge_ranges PROTO((int *, tree *, tree *, int, tree, tree,
- int, tree, tree));
-static tree fold_range_test PROTO((tree));
-static tree unextend PROTO((tree, int, int, tree));
-static tree fold_truthop PROTO((enum tree_code, tree, tree, tree));
-static tree strip_compound_expr PROTO((tree, tree));
-
-#ifndef BRANCH_COST
-#define BRANCH_COST 1
-#endif
-
-/* Suppose A1 + B1 = SUM1, using 2's complement arithmetic ignoring overflow.
- Suppose A, B and SUM have the same respective signs as A1, B1, and SUM1.
- Then this yields nonzero if overflow occurred during the addition.
- Overflow occurs if A and B have the same sign, but A and SUM differ in sign.
- Use `^' to test whether signs differ, and `< 0' to isolate the sign. */
-#define overflow_sum_sign(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)
-
-/* To do constant folding on INTEGER_CST nodes requires two-word arithmetic.
- We do that by representing the two-word integer in 4 words, with only
- HOST_BITS_PER_WIDE_INT/2 bits stored in each word, as a positive number. */
-
-#define LOWPART(x) \
- ((x) & (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT/2)) - 1))
-#define HIGHPART(x) \
- ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT/2)
-#define BASE ((unsigned HOST_WIDE_INT) 1 << HOST_BITS_PER_WIDE_INT/2)
-
-/* Unpack a two-word integer into 4 words.
- LOW and HI are the integer, as two `HOST_WIDE_INT' pieces.
- WORDS points to the array of HOST_WIDE_INTs. */
-
-static void
-encode (words, low, hi)
- HOST_WIDE_INT *words;
- HOST_WIDE_INT low, hi;
-{
- words[0] = LOWPART (low);
- words[1] = HIGHPART (low);
- words[2] = LOWPART (hi);
- words[3] = HIGHPART (hi);
-}
-
-/* Pack an array of 4 words into a two-word integer.
- WORDS points to the array of words.
- The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces. */
-
-static void
-decode (words, low, hi)
- HOST_WIDE_INT *words;
- HOST_WIDE_INT *low, *hi;
-{
- *low = words[0] | words[1] * BASE;
- *hi = words[2] | words[3] * BASE;
-}
-
-/* Make the integer constant T valid for its type
- by setting to 0 or 1 all the bits in the constant
- that don't belong in the type.
- Yield 1 if a signed overflow occurs, 0 otherwise.
- If OVERFLOW is nonzero, a signed overflow has already occurred
- in calculating T, so propagate it.
-
- Make the real constant T valid for its type by calling CHECK_FLOAT_VALUE,
- if it exists. */
-
-int
-force_fit_type (t, overflow)
- tree t;
- int overflow;
-{
- HOST_WIDE_INT low, high;
- register int prec;
-
- if (TREE_CODE (t) == REAL_CST)
- {
-#ifdef CHECK_FLOAT_VALUE
- CHECK_FLOAT_VALUE (TYPE_MODE (TREE_TYPE (t)), TREE_REAL_CST (t),
- overflow);
-#endif
- return overflow;
- }
-
- else if (TREE_CODE (t) != INTEGER_CST)
- return overflow;
-
- low = TREE_INT_CST_LOW (t);
- high = TREE_INT_CST_HIGH (t);
-
- if (TREE_CODE (TREE_TYPE (t)) == POINTER_TYPE)
- prec = POINTER_SIZE;
- else
- prec = TYPE_PRECISION (TREE_TYPE (t));
-
- /* First clear all bits that are beyond the type's precision. */
-
- if (prec == 2 * HOST_BITS_PER_WIDE_INT)
- ;
- else if (prec > HOST_BITS_PER_WIDE_INT)
- {
- TREE_INT_CST_HIGH (t)
- &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
- }
- else
- {
- TREE_INT_CST_HIGH (t) = 0;
- if (prec < HOST_BITS_PER_WIDE_INT)
- TREE_INT_CST_LOW (t) &= ~((HOST_WIDE_INT) (-1) << prec);
- }
-
- /* Unsigned types do not suffer sign extension or overflow. */
- if (TREE_UNSIGNED (TREE_TYPE (t)))
- return overflow;
-
- /* If the value's sign bit is set, extend the sign. */
- if (prec != 2 * HOST_BITS_PER_WIDE_INT
- && (prec > HOST_BITS_PER_WIDE_INT
- ? (TREE_INT_CST_HIGH (t)
- & ((HOST_WIDE_INT) 1 << (prec - HOST_BITS_PER_WIDE_INT - 1)))
- : TREE_INT_CST_LOW (t) & ((HOST_WIDE_INT) 1 << (prec - 1))))
- {
- /* Value is negative:
- set to 1 all the bits that are outside this type's precision. */
- if (prec > HOST_BITS_PER_WIDE_INT)
- {
- TREE_INT_CST_HIGH (t)
- |= ((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
- }
- else
- {
- TREE_INT_CST_HIGH (t) = -1;
- if (prec < HOST_BITS_PER_WIDE_INT)
- TREE_INT_CST_LOW (t) |= ((HOST_WIDE_INT) (-1) << prec);
- }
- }
-
- /* Yield nonzero if signed overflow occurred. */
- return
- ((overflow | (low ^ TREE_INT_CST_LOW (t)) | (high ^ TREE_INT_CST_HIGH (t)))
- != 0);
-}
-
-/* Add two doubleword integers with doubleword result.
- Each argument is given as two `HOST_WIDE_INT' pieces.
- One argument is L1 and H1; the other, L2 and H2.
- The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
-
-int
-add_double (l1, h1, l2, h2, lv, hv)
- HOST_WIDE_INT l1, h1, l2, h2;
- HOST_WIDE_INT *lv, *hv;
-{
- HOST_WIDE_INT l, h;
-
- l = l1 + l2;
- h = h1 + h2 + ((unsigned HOST_WIDE_INT) l < l1);
-
- *lv = l;
- *hv = h;
- return overflow_sum_sign (h1, h2, h);
-}
-
-/* Negate a doubleword integer with doubleword result.
- Return nonzero if the operation overflows, assuming it's signed.
- The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1.
- The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
-
-int
-neg_double (l1, h1, lv, hv)
- HOST_WIDE_INT l1, h1;
- HOST_WIDE_INT *lv, *hv;
-{
- if (l1 == 0)
- {
- *lv = 0;
- *hv = - h1;
- return (*hv & h1) < 0;
- }
- else
- {
- *lv = - l1;
- *hv = ~ h1;
- return 0;
- }
-}
-
-/* Multiply two doubleword integers with doubleword result.
- Return nonzero if the operation overflows, assuming it's signed.
- Each argument is given as two `HOST_WIDE_INT' pieces.
- One argument is L1 and H1; the other, L2 and H2.
- The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
-
-int
-mul_double (l1, h1, l2, h2, lv, hv)
- HOST_WIDE_INT l1, h1, l2, h2;
- HOST_WIDE_INT *lv, *hv;
-{
- HOST_WIDE_INT arg1[4];
- HOST_WIDE_INT arg2[4];
- HOST_WIDE_INT prod[4 * 2];
- register unsigned HOST_WIDE_INT carry;
- register int i, j, k;
- HOST_WIDE_INT toplow, tophigh, neglow, neghigh;
-
- encode (arg1, l1, h1);
- encode (arg2, l2, h2);
-
- bzero ((char *) prod, sizeof prod);
-
- for (i = 0; i < 4; i++)
- {
- carry = 0;
- for (j = 0; j < 4; j++)
- {
- k = i + j;
- /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000. */
- carry += arg1[i] * arg2[j];
- /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF. */
- carry += prod[k];
- prod[k] = LOWPART (carry);
- carry = HIGHPART (carry);
- }
- prod[i + 4] = carry;
- }
-
- decode (prod, lv, hv); /* This ignores prod[4] through prod[4*2-1] */
-
- /* Check for overflow by calculating the top half of the answer in full;
- it should agree with the low half's sign bit. */
- decode (prod+4, &toplow, &tophigh);
- if (h1 < 0)
- {
- neg_double (l2, h2, &neglow, &neghigh);
- add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
- }
- if (h2 < 0)
- {
- neg_double (l1, h1, &neglow, &neghigh);
- add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
- }
- return (*hv < 0 ? ~(toplow & tophigh) : toplow | tophigh) != 0;
-}
-
-/* Shift the doubleword integer in L1, H1 left by COUNT places
- keeping only PREC bits of result.
- Shift right if COUNT is negative.
- ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
- Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
-
-void
-lshift_double (l1, h1, count, prec, lv, hv, arith)
- HOST_WIDE_INT l1, h1, count;
- int prec;
- HOST_WIDE_INT *lv, *hv;
- int arith;
-{
- if (count < 0)
- {
- rshift_double (l1, h1, - count, prec, lv, hv, arith);
- return;
- }
-
-#ifdef SHIFT_COUNT_TRUNCATED
- if (SHIFT_COUNT_TRUNCATED)
- count %= prec;
-#endif
-
- if (count >= HOST_BITS_PER_WIDE_INT)
- {
- *hv = (unsigned HOST_WIDE_INT) l1 << count - HOST_BITS_PER_WIDE_INT;
- *lv = 0;
- }
- else
- {
- *hv = (((unsigned HOST_WIDE_INT) h1 << count)
- | ((unsigned HOST_WIDE_INT) l1 >> HOST_BITS_PER_WIDE_INT - count - 1 >> 1));
- *lv = (unsigned HOST_WIDE_INT) l1 << count;
- }
-}
-
-/* Shift the doubleword integer in L1, H1 right by COUNT places
- keeping only PREC bits of result. COUNT must be positive.
- ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
- Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
-
-void
-rshift_double (l1, h1, count, prec, lv, hv, arith)
- HOST_WIDE_INT l1, h1, count;
- int prec;
- HOST_WIDE_INT *lv, *hv;
- int arith;
-{
- unsigned HOST_WIDE_INT signmask;
- signmask = (arith
- ? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1))
- : 0);
-
-#ifdef SHIFT_COUNT_TRUNCATED
- if (SHIFT_COUNT_TRUNCATED)
- count %= prec;
-#endif
-
- if (count >= HOST_BITS_PER_WIDE_INT)
- {
- *hv = signmask;
- *lv = ((signmask << 2 * HOST_BITS_PER_WIDE_INT - count - 1 << 1)
- | ((unsigned HOST_WIDE_INT) h1 >> count - HOST_BITS_PER_WIDE_INT));
- }
- else
- {
- *lv = (((unsigned HOST_WIDE_INT) l1 >> count)
- | ((unsigned HOST_WIDE_INT) h1 << HOST_BITS_PER_WIDE_INT - count - 1 << 1));
- *hv = ((signmask << HOST_BITS_PER_WIDE_INT - count)
- | ((unsigned HOST_WIDE_INT) h1 >> count));
- }
-}
-
-/* Rotate the doubleword integer in L1, H1 left by COUNT places
- keeping only PREC bits of result.
- Rotate right if COUNT is negative.
- Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
-
-void
-lrotate_double (l1, h1, count, prec, lv, hv)
- HOST_WIDE_INT l1, h1, count;
- int prec;
- HOST_WIDE_INT *lv, *hv;
-{
- HOST_WIDE_INT s1l, s1h, s2l, s2h;
-
- count %= prec;
- if (count < 0)
- count += prec;
-
- lshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
- rshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
- *lv = s1l | s2l;
- *hv = s1h | s2h;
-}
-
-/* Rotate the doubleword integer in L1, H1 left by COUNT places
- keeping only PREC bits of result. COUNT must be positive.
- Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
-
-void
-rrotate_double (l1, h1, count, prec, lv, hv)
- HOST_WIDE_INT l1, h1, count;
- int prec;
- HOST_WIDE_INT *lv, *hv;
-{
- HOST_WIDE_INT s1l, s1h, s2l, s2h;
-
- count %= prec;
- if (count < 0)
- count += prec;
-
- rshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
- lshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
- *lv = s1l | s2l;
- *hv = s1h | s2h;
-}
-
-/* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
- for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
- CODE is a tree code for a kind of division, one of
- TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
- or EXACT_DIV_EXPR
- It controls how the quotient is rounded to a integer.
- Return nonzero if the operation overflows.
- UNS nonzero says do unsigned division. */
-
-int
-div_and_round_double (code, uns,
- lnum_orig, hnum_orig, lden_orig, hden_orig,
- lquo, hquo, lrem, hrem)
- enum tree_code code;
- int uns;
- HOST_WIDE_INT lnum_orig, hnum_orig; /* num == numerator == dividend */
- HOST_WIDE_INT lden_orig, hden_orig; /* den == denominator == divisor */
- HOST_WIDE_INT *lquo, *hquo, *lrem, *hrem;
-{
- int quo_neg = 0;
- HOST_WIDE_INT num[4 + 1]; /* extra element for scaling. */
- HOST_WIDE_INT den[4], quo[4];
- register int i, j;
- unsigned HOST_WIDE_INT work;
- register unsigned HOST_WIDE_INT carry = 0;
- HOST_WIDE_INT lnum = lnum_orig;
- HOST_WIDE_INT hnum = hnum_orig;
- HOST_WIDE_INT lden = lden_orig;
- HOST_WIDE_INT hden = hden_orig;
- int overflow = 0;
-
- if ((hden == 0) && (lden == 0))
- abort ();
-
- /* calculate quotient sign and convert operands to unsigned. */
- if (!uns)
- {
- if (hnum < 0)
- {
- quo_neg = ~ quo_neg;
- /* (minimum integer) / (-1) is the only overflow case. */
- if (neg_double (lnum, hnum, &lnum, &hnum) && (lden & hden) == -1)
- overflow = 1;
- }
- if (hden < 0)
- {
- quo_neg = ~ quo_neg;
- neg_double (lden, hden, &lden, &hden);
- }
- }
-
- if (hnum == 0 && hden == 0)
- { /* single precision */
- *hquo = *hrem = 0;
- /* This unsigned division rounds toward zero. */
- *lquo = lnum / (unsigned HOST_WIDE_INT) lden;
- goto finish_up;
- }
-
- if (hnum == 0)
- { /* trivial case: dividend < divisor */
- /* hden != 0 already checked. */
- *hquo = *lquo = 0;
- *hrem = hnum;
- *lrem = lnum;
- goto finish_up;
- }
-
- bzero ((char *) quo, sizeof quo);
-
- bzero ((char *) num, sizeof num); /* to zero 9th element */
- bzero ((char *) den, sizeof den);
-
- encode (num, lnum, hnum);
- encode (den, lden, hden);
-
- /* Special code for when the divisor < BASE. */
- if (hden == 0 && lden < BASE)
- {
- /* hnum != 0 already checked. */
- for (i = 4 - 1; i >= 0; i--)
- {
- work = num[i] + carry * BASE;
- quo[i] = work / (unsigned HOST_WIDE_INT) lden;
- carry = work % (unsigned HOST_WIDE_INT) lden;
- }
- }
- else
- {
- /* Full double precision division,
- with thanks to Don Knuth's "Seminumerical Algorithms". */
- int num_hi_sig, den_hi_sig;
- unsigned HOST_WIDE_INT quo_est, scale;
-
- /* Find the highest non-zero divisor digit. */
- for (i = 4 - 1; ; i--)
- if (den[i] != 0) {
- den_hi_sig = i;
- break;
- }
-
- /* Insure that the first digit of the divisor is at least BASE/2.
- This is required by the quotient digit estimation algorithm. */
-
- scale = BASE / (den[den_hi_sig] + 1);
- if (scale > 1) { /* scale divisor and dividend */
- carry = 0;
- for (i = 0; i <= 4 - 1; i++) {
- work = (num[i] * scale) + carry;
- num[i] = LOWPART (work);
- carry = HIGHPART (work);
- } num[4] = carry;
- carry = 0;
- for (i = 0; i <= 4 - 1; i++) {
- work = (den[i] * scale) + carry;
- den[i] = LOWPART (work);
- carry = HIGHPART (work);
- if (den[i] != 0) den_hi_sig = i;
- }
- }
-
- num_hi_sig = 4;
-
- /* Main loop */
- for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--) {
- /* guess the next quotient digit, quo_est, by dividing the first
- two remaining dividend digits by the high order quotient digit.
- quo_est is never low and is at most 2 high. */
- unsigned HOST_WIDE_INT tmp;
-
- num_hi_sig = i + den_hi_sig + 1;
- work = num[num_hi_sig] * BASE + num[num_hi_sig - 1];
- if (num[num_hi_sig] != den[den_hi_sig])
- quo_est = work / den[den_hi_sig];
- else
- quo_est = BASE - 1;
-
- /* refine quo_est so it's usually correct, and at most one high. */
- tmp = work - quo_est * den[den_hi_sig];
- if (tmp < BASE
- && den[den_hi_sig - 1] * quo_est > (tmp * BASE + num[num_hi_sig - 2]))
- quo_est--;
-
- /* Try QUO_EST as the quotient digit, by multiplying the
- divisor by QUO_EST and subtracting from the remaining dividend.
- Keep in mind that QUO_EST is the I - 1st digit. */
-
- carry = 0;
- for (j = 0; j <= den_hi_sig; j++)
- {
- work = quo_est * den[j] + carry;
- carry = HIGHPART (work);
- work = num[i + j] - LOWPART (work);
- num[i + j] = LOWPART (work);
- carry += HIGHPART (work) != 0;
- }
-
- /* if quo_est was high by one, then num[i] went negative and
- we need to correct things. */
-
- if (num[num_hi_sig] < carry)
- {
- quo_est--;
- carry = 0; /* add divisor back in */
- for (j = 0; j <= den_hi_sig; j++)
- {
- work = num[i + j] + den[j] + carry;
- carry = HIGHPART (work);
- num[i + j] = LOWPART (work);
- }
- num [num_hi_sig] += carry;
- }
-
- /* store the quotient digit. */
- quo[i] = quo_est;
- }
- }
-
- decode (quo, lquo, hquo);
-
- finish_up:
- /* if result is negative, make it so. */
- if (quo_neg)
- neg_double (*lquo, *hquo, lquo, hquo);
-
- /* compute trial remainder: rem = num - (quo * den) */
- mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
- neg_double (*lrem, *hrem, lrem, hrem);
- add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
-
- switch (code)
- {
- case TRUNC_DIV_EXPR:
- case TRUNC_MOD_EXPR: /* round toward zero */
- case EXACT_DIV_EXPR: /* for this one, it shouldn't matter */
- return overflow;
-
- case FLOOR_DIV_EXPR:
- case FLOOR_MOD_EXPR: /* round toward negative infinity */
- if (quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio < 0 && rem != 0 */
- {
- /* quo = quo - 1; */
- add_double (*lquo, *hquo, (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1,
- lquo, hquo);
- }
- else return overflow;
- break;
-
- case CEIL_DIV_EXPR:
- case CEIL_MOD_EXPR: /* round toward positive infinity */
- if (!quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio > 0 && rem != 0 */
- {
- add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
- lquo, hquo);
- }
- else return overflow;
- break;
-
- case ROUND_DIV_EXPR:
- case ROUND_MOD_EXPR: /* round to closest integer */
- {
- HOST_WIDE_INT labs_rem = *lrem, habs_rem = *hrem;
- HOST_WIDE_INT labs_den = lden, habs_den = hden, ltwice, htwice;
-
- /* get absolute values */
- if (*hrem < 0) neg_double (*lrem, *hrem, &labs_rem, &habs_rem);
- if (hden < 0) neg_double (lden, hden, &labs_den, &habs_den);
-
- /* if (2 * abs (lrem) >= abs (lden)) */
- mul_double ((HOST_WIDE_INT) 2, (HOST_WIDE_INT) 0,
- labs_rem, habs_rem, &ltwice, &htwice);
- if (((unsigned HOST_WIDE_INT) habs_den
- < (unsigned HOST_WIDE_INT) htwice)
- || (((unsigned HOST_WIDE_INT) habs_den
- == (unsigned HOST_WIDE_INT) htwice)
- && ((HOST_WIDE_INT unsigned) labs_den
- < (unsigned HOST_WIDE_INT) ltwice)))
- {
- if (*hquo < 0)
- /* quo = quo - 1; */
- add_double (*lquo, *hquo,
- (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, lquo, hquo);
- else
- /* quo = quo + 1; */
- add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
- lquo, hquo);
- }
- else return overflow;
- }
- break;
-
- default:
- abort ();
- }
-
- /* compute true remainder: rem = num - (quo * den) */
- mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
- neg_double (*lrem, *hrem, lrem, hrem);
- add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
- return overflow;
-}
-
-#ifndef REAL_ARITHMETIC
-/* Effectively truncate a real value to represent the nearest possible value
- in a narrower mode. The result is actually represented in the same data
- type as the argument, but its value is usually different.
-
- A trap may occur during the FP operations and it is the responsibility
- of the calling function to have a handler established. */
-
-REAL_VALUE_TYPE
-real_value_truncate (mode, arg)
- enum machine_mode mode;
- REAL_VALUE_TYPE arg;
-{
- return REAL_VALUE_TRUNCATE (mode, arg);
-}
-
-#if TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
-
-/* Check for infinity in an IEEE double precision number. */
-
-int
-target_isinf (x)
- REAL_VALUE_TYPE x;
-{
- /* The IEEE 64-bit double format. */
- union {
- REAL_VALUE_TYPE d;
- struct {
- unsigned sign : 1;
- unsigned exponent : 11;
- unsigned mantissa1 : 20;
- unsigned mantissa2;
- } little_endian;
- struct {
- unsigned mantissa2;
- unsigned mantissa1 : 20;
- unsigned exponent : 11;
- unsigned sign : 1;
- } big_endian;
- } u;
-
- u.d = dconstm1;
- if (u.big_endian.sign == 1)
- {
- u.d = x;
- return (u.big_endian.exponent == 2047
- && u.big_endian.mantissa1 == 0
- && u.big_endian.mantissa2 == 0);
- }
- else
- {
- u.d = x;
- return (u.little_endian.exponent == 2047
- && u.little_endian.mantissa1 == 0
- && u.little_endian.mantissa2 == 0);
- }
-}
-
-/* Check whether an IEEE double precision number is a NaN. */
-
-int
-target_isnan (x)
- REAL_VALUE_TYPE x;
-{
- /* The IEEE 64-bit double format. */
- union {
- REAL_VALUE_TYPE d;
- struct {
- unsigned sign : 1;
- unsigned exponent : 11;
- unsigned mantissa1 : 20;
- unsigned mantissa2;
- } little_endian;
- struct {
- unsigned mantissa2;
- unsigned mantissa1 : 20;
- unsigned exponent : 11;
- unsigned sign : 1;
- } big_endian;
- } u;
-
- u.d = dconstm1;
- if (u.big_endian.sign == 1)
- {
- u.d = x;
- return (u.big_endian.exponent == 2047
- && (u.big_endian.mantissa1 != 0
- || u.big_endian.mantissa2 != 0));
- }
- else
- {
- u.d = x;
- return (u.little_endian.exponent == 2047
- && (u.little_endian.mantissa1 != 0
- || u.little_endian.mantissa2 != 0));
- }
-}
-
-/* Check for a negative IEEE double precision number. */
-
-int
-target_negative (x)
- REAL_VALUE_TYPE x;
-{
- /* The IEEE 64-bit double format. */
- union {
- REAL_VALUE_TYPE d;
- struct {
- unsigned sign : 1;
- unsigned exponent : 11;
- unsigned mantissa1 : 20;
- unsigned mantissa2;
- } little_endian;
- struct {
- unsigned mantissa2;
- unsigned mantissa1 : 20;
- unsigned exponent : 11;
- unsigned sign : 1;
- } big_endian;
- } u;
-
- u.d = dconstm1;
- if (u.big_endian.sign == 1)
- {
- u.d = x;
- return u.big_endian.sign;
- }
- else
- {
- u.d = x;
- return u.little_endian.sign;
- }
-}
-#else /* Target not IEEE */
-
-/* Let's assume other float formats don't have infinity.
- (This can be overridden by redefining REAL_VALUE_ISINF.) */
-
-target_isinf (x)
- REAL_VALUE_TYPE x;
-{
- return 0;
-}
-
-/* Let's assume other float formats don't have NaNs.
- (This can be overridden by redefining REAL_VALUE_ISNAN.) */
-
-target_isnan (x)
- REAL_VALUE_TYPE x;
-{
- return 0;
-}
-
-/* Let's assume other float formats don't have minus zero.
- (This can be overridden by redefining REAL_VALUE_NEGATIVE.) */
-
-target_negative (x)
- REAL_VALUE_TYPE x;
-{
- return x < 0;
-}
-#endif /* Target not IEEE */
-
-/* Try to change R into its exact multiplicative inverse in machine mode
- MODE. Return nonzero function value if successful. */
-
-int
-exact_real_inverse (mode, r)
- enum machine_mode mode;
- REAL_VALUE_TYPE *r;
-{
- union
- {
- double d;
- unsigned short i[4];
- }x, t, y;
- int i;
-
- /* Usually disable if bounds checks are not reliable. */
- if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT) && !flag_pretend_float)
- return 0;
-
- /* Set array index to the less significant bits in the unions, depending
- on the endian-ness of the host doubles.
- Disable if insufficient information on the data structure. */
-#if HOST_FLOAT_FORMAT == UNKNOWN_FLOAT_FORMAT
- return 0;
-#else
-#if HOST_FLOAT_FORMAT == VAX_FLOAT_FORMAT
-#define K 2
-#else
-#if HOST_FLOAT_FORMAT == IBM_FLOAT_FORMAT
-#define K 2
-#else
-#define K (2 * HOST_FLOAT_WORDS_BIG_ENDIAN)
-#endif
-#endif
-#endif
-
- if (setjmp (float_error))
- {
- /* Don't do the optimization if there was an arithmetic error. */
-fail:
- set_float_handler (NULL_PTR);
- return 0;
- }
- set_float_handler (float_error);
-
- /* Domain check the argument. */
- x.d = *r;
- if (x.d == 0.0)
- goto fail;
-
-#ifdef REAL_INFINITY
- if (REAL_VALUE_ISINF (x.d) || REAL_VALUE_ISNAN (x.d))
- goto fail;
-#endif
-
- /* Compute the reciprocal and check for numerical exactness.
- It is unnecessary to check all the significand bits to determine
- whether X is a power of 2. If X is not, then it is impossible for
- the bottom half significand of both X and 1/X to be all zero bits.
- Hence we ignore the data structure of the top half and examine only
- the low order bits of the two significands. */
- t.d = 1.0 / x.d;
- if (x.i[K] != 0 || x.i[K + 1] != 0 || t.i[K] != 0 || t.i[K + 1] != 0)
- goto fail;
-
- /* Truncate to the required mode and range-check the result. */
- y.d = REAL_VALUE_TRUNCATE (mode, t.d);
-#ifdef CHECK_FLOAT_VALUE
- i = 0;
- if (CHECK_FLOAT_VALUE (mode, y.d, i))
- goto fail;
-#endif
-
- /* Fail if truncation changed the value. */
- if (y.d != t.d || y.d == 0.0)
- goto fail;
-
-#ifdef REAL_INFINITY
- if (REAL_VALUE_ISINF (y.d) || REAL_VALUE_ISNAN (y.d))
- goto fail;
-#endif
-
- /* Output the reciprocal and return success flag. */
- set_float_handler (NULL_PTR);
- *r = y.d;
- return 1;
-}
-#endif /* no REAL_ARITHMETIC */
-
-/* Split a tree IN into a constant and a variable part
- that could be combined with CODE to make IN.
- CODE must be a commutative arithmetic operation.
- Store the constant part into *CONP and the variable in &VARP.
- Return 1 if this was done; zero means the tree IN did not decompose
- this way.
-
- If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR.
- Therefore, we must tell the caller whether the variable part
- was subtracted. We do this by storing 1 or -1 into *VARSIGNP.
- The value stored is the coefficient for the variable term.
- The constant term we return should always be added;
- we negate it if necessary. */
-
-static int
-split_tree (in, code, varp, conp, varsignp)
- tree in;
- enum tree_code code;
- tree *varp, *conp;
- int *varsignp;
-{
- register tree outtype = TREE_TYPE (in);
- *varp = 0;
- *conp = 0;
-
- /* Strip any conversions that don't change the machine mode. */
- while ((TREE_CODE (in) == NOP_EXPR
- || TREE_CODE (in) == CONVERT_EXPR)
- && (TYPE_MODE (TREE_TYPE (in))
- == TYPE_MODE (TREE_TYPE (TREE_OPERAND (in, 0)))))
- in = TREE_OPERAND (in, 0);
-
- if (TREE_CODE (in) == code
- || (! FLOAT_TYPE_P (TREE_TYPE (in))
- /* We can associate addition and subtraction together
- (even though the C standard doesn't say so)
- for integers because the value is not affected.
- For reals, the value might be affected, so we can't. */
- && ((code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
- || (code == MINUS_EXPR && TREE_CODE (in) == PLUS_EXPR))))
- {
- enum tree_code code = TREE_CODE (TREE_OPERAND (in, 0));
- if (code == INTEGER_CST)
- {
- *conp = TREE_OPERAND (in, 0);
- *varp = TREE_OPERAND (in, 1);
- if (TYPE_MODE (TREE_TYPE (*varp)) != TYPE_MODE (outtype)
- && TREE_TYPE (*varp) != outtype)
- *varp = convert (outtype, *varp);
- *varsignp = (TREE_CODE (in) == MINUS_EXPR) ? -1 : 1;
- return 1;
- }
- if (TREE_CONSTANT (TREE_OPERAND (in, 1)))
- {
- *conp = TREE_OPERAND (in, 1);
- *varp = TREE_OPERAND (in, 0);
- *varsignp = 1;
- if (TYPE_MODE (TREE_TYPE (*varp)) != TYPE_MODE (outtype)
- && TREE_TYPE (*varp) != outtype)
- *varp = convert (outtype, *varp);
- if (TREE_CODE (in) == MINUS_EXPR)
- {
- /* If operation is subtraction and constant is second,
- must negate it to get an additive constant.
- And this cannot be done unless it is a manifest constant.
- It could also be the address of a static variable.
- We cannot negate that, so give up. */
- if (TREE_CODE (*conp) == INTEGER_CST)
- /* Subtracting from integer_zero_node loses for long long. */
- *conp = fold (build1 (NEGATE_EXPR, TREE_TYPE (*conp), *conp));
- else
- return 0;
- }
- return 1;
- }
- if (TREE_CONSTANT (TREE_OPERAND (in, 0)))
- {
- *conp = TREE_OPERAND (in, 0);
- *varp = TREE_OPERAND (in, 1);
- if (TYPE_MODE (TREE_TYPE (*varp)) != TYPE_MODE (outtype)
- && TREE_TYPE (*varp) != outtype)
- *varp = convert (outtype, *varp);
- *varsignp = (TREE_CODE (in) == MINUS_EXPR) ? -1 : 1;
- return 1;
- }
- }
- return 0;
-}
-
-/* Combine two constants ARG1 and ARG2 under operation CODE
- to produce a new constant.
- We assume ARG1 and ARG2 have the same data type,
- or at least are the same kind of constant and the same machine mode.
-
- If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
-
-static tree
-const_binop (code, arg1, arg2, notrunc)
- enum tree_code code;
- register tree arg1, arg2;
- int notrunc;
-{
- STRIP_NOPS (arg1); STRIP_NOPS (arg2);
-
- if (TREE_CODE (arg1) == INTEGER_CST)
- {
- register HOST_WIDE_INT int1l = TREE_INT_CST_LOW (arg1);
- register HOST_WIDE_INT int1h = TREE_INT_CST_HIGH (arg1);
- HOST_WIDE_INT int2l = TREE_INT_CST_LOW (arg2);
- HOST_WIDE_INT int2h = TREE_INT_CST_HIGH (arg2);
- HOST_WIDE_INT low, hi;
- HOST_WIDE_INT garbagel, garbageh;
- register tree t;
- int uns = TREE_UNSIGNED (TREE_TYPE (arg1));
- int overflow = 0;
- int no_overflow = 0;
-
- switch (code)
- {
- case BIT_IOR_EXPR:
- low = int1l | int2l, hi = int1h | int2h;
- break;
-
- case BIT_XOR_EXPR:
- low = int1l ^ int2l, hi = int1h ^ int2h;
- break;
-
- case BIT_AND_EXPR:
- low = int1l & int2l, hi = int1h & int2h;
- break;
-
- case BIT_ANDTC_EXPR:
- low = int1l & ~int2l, hi = int1h & ~int2h;
- break;
-
- case RSHIFT_EXPR:
- int2l = - int2l;
- case LSHIFT_EXPR:
- /* It's unclear from the C standard whether shifts can overflow.
- The following code ignores overflow; perhaps a C standard
- interpretation ruling is needed. */
- lshift_double (int1l, int1h, int2l,
- TYPE_PRECISION (TREE_TYPE (arg1)),
- &low, &hi,
- !uns);
- no_overflow = 1;
- break;
-
- case RROTATE_EXPR:
- int2l = - int2l;
- case LROTATE_EXPR:
- lrotate_double (int1l, int1h, int2l,
- TYPE_PRECISION (TREE_TYPE (arg1)),
- &low, &hi);
- break;
-
- case PLUS_EXPR:
- overflow = add_double (int1l, int1h, int2l, int2h, &low, &hi);
- break;
-
- case MINUS_EXPR:
- neg_double (int2l, int2h, &low, &hi);
- add_double (int1l, int1h, low, hi, &low, &hi);
- overflow = overflow_sum_sign (hi, int2h, int1h);
- break;
-
- case MULT_EXPR:
- overflow = mul_double (int1l, int1h, int2l, int2h, &low, &hi);
- break;
-
- case TRUNC_DIV_EXPR:
- case FLOOR_DIV_EXPR: case CEIL_DIV_EXPR:
- case EXACT_DIV_EXPR:
- /* This is a shortcut for a common special case. */
- if (int2h == 0 && int2l > 0
- && ! TREE_CONSTANT_OVERFLOW (arg1)
- && ! TREE_CONSTANT_OVERFLOW (arg2)
- && int1h == 0 && int1l >= 0)
- {
- if (code == CEIL_DIV_EXPR)
- int1l += int2l - 1;
- low = int1l / int2l, hi = 0;
- break;
- }
-
- /* ... fall through ... */
-
- case ROUND_DIV_EXPR:
- if (int2h == 0 && int2l == 1)
- {
- low = int1l, hi = int1h;
- break;
- }
- if (int1l == int2l && int1h == int2h
- && ! (int1l == 0 && int1h == 0))
- {
- low = 1, hi = 0;
- break;
- }
- overflow = div_and_round_double (code, uns,
- int1l, int1h, int2l, int2h,
- &low, &hi, &garbagel, &garbageh);
- break;
-
- case TRUNC_MOD_EXPR:
- case FLOOR_MOD_EXPR: case CEIL_MOD_EXPR:
- /* This is a shortcut for a common special case. */
- if (int2h == 0 && int2l > 0
- && ! TREE_CONSTANT_OVERFLOW (arg1)
- && ! TREE_CONSTANT_OVERFLOW (arg2)
- && int1h == 0 && int1l >= 0)
- {
- if (code == CEIL_MOD_EXPR)
- int1l += int2l - 1;
- low = int1l % int2l, hi = 0;
- break;
- }
-
- /* ... fall through ... */
-
- case ROUND_MOD_EXPR:
- overflow = div_and_round_double (code, uns,
- int1l, int1h, int2l, int2h,
- &garbagel, &garbageh, &low, &hi);
- break;
-
- case MIN_EXPR:
- case MAX_EXPR:
- if (uns)
- {
- low = (((unsigned HOST_WIDE_INT) int1h
- < (unsigned HOST_WIDE_INT) int2h)
- || (((unsigned HOST_WIDE_INT) int1h
- == (unsigned HOST_WIDE_INT) int2h)
- && ((unsigned HOST_WIDE_INT) int1l
- < (unsigned HOST_WIDE_INT) int2l)));
- }
- else
- {
- low = ((int1h < int2h)
- || ((int1h == int2h)
- && ((unsigned HOST_WIDE_INT) int1l
- < (unsigned HOST_WIDE_INT) int2l)));
- }
- if (low == (code == MIN_EXPR))
- low = int1l, hi = int1h;
- else
- low = int2l, hi = int2h;
- break;
-
- default:
- abort ();
- }
- got_it:
- if (TREE_TYPE (arg1) == sizetype && hi == 0
- && low >= 0 && low <= TREE_INT_CST_LOW (TYPE_MAX_VALUE (sizetype))
- && ! overflow
- && ! TREE_OVERFLOW (arg1) && ! TREE_OVERFLOW (arg2))
- t = size_int (low);
- else
- {
- t = build_int_2 (low, hi);
- TREE_TYPE (t) = TREE_TYPE (arg1);
- }
-
- TREE_OVERFLOW (t)
- = ((notrunc ? !uns && overflow
- : force_fit_type (t, overflow && !uns) && ! no_overflow)
- | TREE_OVERFLOW (arg1)
- | TREE_OVERFLOW (arg2));
- TREE_CONSTANT_OVERFLOW (t) = (TREE_OVERFLOW (t)
- | TREE_CONSTANT_OVERFLOW (arg1)
- | TREE_CONSTANT_OVERFLOW (arg2));
- return t;
- }
-#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
- if (TREE_CODE (arg1) == REAL_CST)
- {
- REAL_VALUE_TYPE d1;
- REAL_VALUE_TYPE d2;
- int overflow = 0;
- REAL_VALUE_TYPE value;
- tree t;
-
- d1 = TREE_REAL_CST (arg1);
- d2 = TREE_REAL_CST (arg2);
-
- /* If either operand is a NaN, just return it. Otherwise, set up
- for floating-point trap; we return an overflow. */
- if (REAL_VALUE_ISNAN (d1))
- return arg1;
- else if (REAL_VALUE_ISNAN (d2))
- return arg2;
- else if (setjmp (float_error))
- {
- t = copy_node (arg1);
- overflow = 1;
- goto got_float;
- }
-
- set_float_handler (float_error);
-
-#ifdef REAL_ARITHMETIC
- REAL_ARITHMETIC (value, code, d1, d2);
-#else
- switch (code)
- {
- case PLUS_EXPR:
- value = d1 + d2;
- break;
-
- case MINUS_EXPR:
- value = d1 - d2;
- break;
-
- case MULT_EXPR:
- value = d1 * d2;
- break;
-
- case RDIV_EXPR:
-#ifndef REAL_INFINITY
- if (d2 == 0)
- abort ();
-#endif
-
- value = d1 / d2;
- break;
-
- case MIN_EXPR:
- value = MIN (d1, d2);
- break;
-
- case MAX_EXPR:
- value = MAX (d1, d2);
- break;
-
- default:
- abort ();
- }
-#endif /* no REAL_ARITHMETIC */
- t = build_real (TREE_TYPE (arg1),
- real_value_truncate (TYPE_MODE (TREE_TYPE (arg1)), value));
- got_float:
- set_float_handler (NULL_PTR);
-
- TREE_OVERFLOW (t)
- = (force_fit_type (t, overflow)
- | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2));
- TREE_CONSTANT_OVERFLOW (t)
- = TREE_OVERFLOW (t)
- | TREE_CONSTANT_OVERFLOW (arg1)
- | TREE_CONSTANT_OVERFLOW (arg2);
- return t;
- }
-#endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
- if (TREE_CODE (arg1) == COMPLEX_CST)
- {
- register tree type = TREE_TYPE (arg1);
- register tree r1 = TREE_REALPART (arg1);
- register tree i1 = TREE_IMAGPART (arg1);
- register tree r2 = TREE_REALPART (arg2);
- register tree i2 = TREE_IMAGPART (arg2);
- register tree t;
-
- switch (code)
- {
- case PLUS_EXPR:
- t = build_complex (type,
- const_binop (PLUS_EXPR, r1, r2, notrunc),
- const_binop (PLUS_EXPR, i1, i2, notrunc));
- break;
-
- case MINUS_EXPR:
- t = build_complex (type,
- const_binop (MINUS_EXPR, r1, r2, notrunc),
- const_binop (MINUS_EXPR, i1, i2, notrunc));
- break;
-
- case MULT_EXPR:
- t = build_complex (type,
- const_binop (MINUS_EXPR,
- const_binop (MULT_EXPR,
- r1, r2, notrunc),
- const_binop (MULT_EXPR,
- i1, i2, notrunc),
- notrunc),
- const_binop (PLUS_EXPR,
- const_binop (MULT_EXPR,
- r1, i2, notrunc),
- const_binop (MULT_EXPR,
- i1, r2, notrunc),
- notrunc));
- break;
-
- case RDIV_EXPR:
- {
- register tree magsquared
- = const_binop (PLUS_EXPR,
- const_binop (MULT_EXPR, r2, r2, notrunc),
- const_binop (MULT_EXPR, i2, i2, notrunc),
- notrunc);
-
- t = build_complex (type,
- const_binop
- (INTEGRAL_TYPE_P (TREE_TYPE (r1))
- ? TRUNC_DIV_EXPR : RDIV_EXPR,
- const_binop (PLUS_EXPR,
- const_binop (MULT_EXPR, r1, r2,
- notrunc),
- const_binop (MULT_EXPR, i1, i2,
- notrunc),
- notrunc),
- magsquared, notrunc),
- const_binop
- (INTEGRAL_TYPE_P (TREE_TYPE (r1))
- ? TRUNC_DIV_EXPR : RDIV_EXPR,
- const_binop (MINUS_EXPR,
- const_binop (MULT_EXPR, i1, r2,
- notrunc),
- const_binop (MULT_EXPR, r1, i2,
- notrunc),
- notrunc),
- magsquared, notrunc));
- }
- break;
-
- default:
- abort ();
- }
- return t;
- }
- return 0;
-}
-
-/* Return an INTEGER_CST with value V and type from `sizetype'. */
-
-tree
-size_int (number)
- unsigned HOST_WIDE_INT number;
-{
- register tree t;
- /* Type-size nodes already made for small sizes. */
- static tree size_table[2*HOST_BITS_PER_WIDE_INT + 1];
-
- if (number < 2*HOST_BITS_PER_WIDE_INT + 1
- && size_table[number] != 0)
- return size_table[number];
- if (number < 2*HOST_BITS_PER_WIDE_INT + 1)
- {
- push_obstacks_nochange ();
- /* Make this a permanent node. */
- end_temporary_allocation ();
- t = build_int_2 (number, 0);
- TREE_TYPE (t) = sizetype;
- size_table[number] = t;
- pop_obstacks ();
- }
- else
- {
- t = build_int_2 (number, 0);
- TREE_TYPE (t) = sizetype;
- TREE_OVERFLOW (t) = TREE_CONSTANT_OVERFLOW (t) = force_fit_type (t, 0);
- }
- return t;
-}
-
-/* Combine operands OP1 and OP2 with arithmetic operation CODE.
- CODE is a tree code. Data type is taken from `sizetype',
- If the operands are constant, so is the result. */
-
-tree
-size_binop (code, arg0, arg1)
- enum tree_code code;
- tree arg0, arg1;
-{
- /* Handle the special case of two integer constants faster. */
- if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
- {
- /* And some specific cases even faster than that. */
- if (code == PLUS_EXPR && integer_zerop (arg0))
- return arg1;
- else if ((code == MINUS_EXPR || code == PLUS_EXPR)
- && integer_zerop (arg1))
- return arg0;
- else if (code == MULT_EXPR && integer_onep (arg0))
- return arg1;
-
- /* Handle general case of two integer constants. */
- return const_binop (code, arg0, arg1, 0);
- }
-
- if (arg0 == error_mark_node || arg1 == error_mark_node)
- return error_mark_node;
-
- return fold (build (code, sizetype, arg0, arg1));
-}
-
-/* Given T, a tree representing type conversion of ARG1, a constant,
- return a constant tree representing the result of conversion. */
-
-static tree
-fold_convert (t, arg1)
- register tree t;
- register tree arg1;
-{
- register tree type = TREE_TYPE (t);
- int overflow = 0;
-
- if (TREE_CODE (type) == POINTER_TYPE || INTEGRAL_TYPE_P (type))
- {
- if (TREE_CODE (arg1) == INTEGER_CST)
- {
- /* If we would build a constant wider than GCC supports,
- leave the conversion unfolded. */
- if (TYPE_PRECISION (type) > 2 * HOST_BITS_PER_WIDE_INT)
- return t;
-
- /* Given an integer constant, make new constant with new type,
- appropriately sign-extended or truncated. */
- t = build_int_2 (TREE_INT_CST_LOW (arg1),
- TREE_INT_CST_HIGH (arg1));
- TREE_TYPE (t) = type;
- /* Indicate an overflow if (1) ARG1 already overflowed,
- or (2) force_fit_type indicates an overflow.
- Tell force_fit_type that an overflow has already occurred
- if ARG1 is a too-large unsigned value and T is signed. */
- TREE_OVERFLOW (t)
- = (TREE_OVERFLOW (arg1)
- | force_fit_type (t,
- (TREE_INT_CST_HIGH (arg1) < 0
- & (TREE_UNSIGNED (type)
- < TREE_UNSIGNED (TREE_TYPE (arg1))))));
- TREE_CONSTANT_OVERFLOW (t)
- = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
- }
-#if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
- else if (TREE_CODE (arg1) == REAL_CST)
- {
- /* Don't initialize these, use assignments.
- Initialized local aggregates don't work on old compilers. */
- REAL_VALUE_TYPE x;
- REAL_VALUE_TYPE l;
- REAL_VALUE_TYPE u;
- tree type1 = TREE_TYPE (arg1);
-
- x = TREE_REAL_CST (arg1);
- l = real_value_from_int_cst (type1, TYPE_MIN_VALUE (type));
- u = real_value_from_int_cst (type1, TYPE_MAX_VALUE (type));
- /* See if X will be in range after truncation towards 0.
- To compensate for truncation, move the bounds away from 0,
- but reject if X exactly equals the adjusted bounds. */
-#ifdef REAL_ARITHMETIC
- REAL_ARITHMETIC (l, MINUS_EXPR, l, dconst1);
- REAL_ARITHMETIC (u, PLUS_EXPR, u, dconst1);
-#else
- l--;
- u++;
-#endif
- /* If X is a NaN, use zero instead and show we have an overflow.
- Otherwise, range check. */
- if (REAL_VALUE_ISNAN (x))
- overflow = 1, x = dconst0;
- else if (! (REAL_VALUES_LESS (l, x) && REAL_VALUES_LESS (x, u)))
- overflow = 1;
-
-#ifndef REAL_ARITHMETIC
- {
- HOST_WIDE_INT low, high;
- HOST_WIDE_INT half_word
- = (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2);
-
- if (x < 0)
- x = -x;
-
- high = (HOST_WIDE_INT) (x / half_word / half_word);
- x -= (REAL_VALUE_TYPE) high * half_word * half_word;
- if (x >= (REAL_VALUE_TYPE) half_word * half_word / 2)
- {
- low = x - (REAL_VALUE_TYPE) half_word * half_word / 2;
- low |= (HOST_WIDE_INT) -1 << (HOST_BITS_PER_WIDE_INT - 1);
- }
- else
- low = (HOST_WIDE_INT) x;
- if (TREE_REAL_CST (arg1) < 0)
- neg_double (low, high, &low, &high);
- t = build_int_2 (low, high);
- }
-#else
- {
- HOST_WIDE_INT low, high;
- REAL_VALUE_TO_INT (&low, &high, x);
- t = build_int_2 (low, high);
- }
-#endif
- TREE_TYPE (t) = type;
- TREE_OVERFLOW (t)
- = TREE_OVERFLOW (arg1) | force_fit_type (t, overflow);
- TREE_CONSTANT_OVERFLOW (t)
- = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
- }
-#endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
- TREE_TYPE (t) = type;
- }
- else if (TREE_CODE (type) == REAL_TYPE)
- {
-#if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
- if (TREE_CODE (arg1) == INTEGER_CST)
- return build_real_from_int_cst (type, arg1);
-#endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
- if (TREE_CODE (arg1) == REAL_CST)
- {
- if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1)))
- {
- t = arg1;
- TREE_TYPE (arg1) = type;
- return t;
- }
- else if (setjmp (float_error))
- {
- overflow = 1;
- t = copy_node (arg1);
- goto got_it;
- }
- set_float_handler (float_error);
-
- t = build_real (type, real_value_truncate (TYPE_MODE (type),
- TREE_REAL_CST (arg1)));
- set_float_handler (NULL_PTR);
-
- got_it:
- TREE_OVERFLOW (t)
- = TREE_OVERFLOW (arg1) | force_fit_type (t, overflow);
- TREE_CONSTANT_OVERFLOW (t)
- = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
- return t;
- }
- }
- TREE_CONSTANT (t) = 1;
- return t;
-}
-
-/* Return an expr equal to X but certainly not valid as an lvalue.
- Also make sure it is not valid as an null pointer constant. */
-
-tree
-non_lvalue (x)
- tree x;
-{
- tree result;
-
- /* These things are certainly not lvalues. */
- if (TREE_CODE (x) == NON_LVALUE_EXPR
- || TREE_CODE (x) == INTEGER_CST
- || TREE_CODE (x) == REAL_CST
- || TREE_CODE (x) == STRING_CST
- || TREE_CODE (x) == ADDR_EXPR)
- {
- if (TREE_CODE (x) == INTEGER_CST && integer_zerop (x))
- {
- /* Use NOP_EXPR instead of NON_LVALUE_EXPR
- so convert_for_assignment won't strip it.
- This is so this 0 won't be treated as a null pointer constant. */
- result = build1 (NOP_EXPR, TREE_TYPE (x), x);
- TREE_CONSTANT (result) = TREE_CONSTANT (x);
- return result;
- }
- return x;
- }
-
- result = build1 (NON_LVALUE_EXPR, TREE_TYPE (x), x);
- TREE_CONSTANT (result) = TREE_CONSTANT (x);
- return result;
-}
-
-/* Nonzero means lvalues are limited to those valid in pedantic ANSI C.
- Zero means allow extended lvalues. */
-
-int pedantic_lvalues;
-
-/* When pedantic, return an expr equal to X but certainly not valid as a
- pedantic lvalue. Otherwise, return X. */
-
-tree
-pedantic_non_lvalue (x)
- tree x;
-{
- if (pedantic_lvalues)
- return non_lvalue (x);
- else
- return x;
-}
-
-/* Given a tree comparison code, return the code that is the logical inverse
- of the given code. It is not safe to do this for floating-point
- comparisons, except for NE_EXPR and EQ_EXPR. */
-
-static enum tree_code
-invert_tree_comparison (code)
- enum tree_code code;
-{
- switch (code)
- {
- case EQ_EXPR:
- return NE_EXPR;
- case NE_EXPR:
- return EQ_EXPR;
- case GT_EXPR:
- return LE_EXPR;
- case GE_EXPR:
- return LT_EXPR;
- case LT_EXPR:
- return GE_EXPR;
- case LE_EXPR:
- return GT_EXPR;
- default:
- abort ();
- }
-}
-
-/* Similar, but return the comparison that results if the operands are
- swapped. This is safe for floating-point. */
-
-static enum tree_code
-swap_tree_comparison (code)
- enum tree_code code;
-{
- switch (code)
- {
- case EQ_EXPR:
- case NE_EXPR:
- return code;
- case GT_EXPR:
- return LT_EXPR;
- case GE_EXPR:
- return LE_EXPR;
- case LT_EXPR:
- return GT_EXPR;
- case LE_EXPR:
- return GE_EXPR;
- default:
- abort ();
- }
-}
-
-/* Return nonzero if CODE is a tree code that represents a truth value. */
-
-static int
-truth_value_p (code)
- enum tree_code code;
-{
- return (TREE_CODE_CLASS (code) == '<'
- || code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR
- || code == TRUTH_OR_EXPR || code == TRUTH_ORIF_EXPR
- || code == TRUTH_XOR_EXPR || code == TRUTH_NOT_EXPR);
-}
-
-/* Return nonzero if two operands are necessarily equal.
- If ONLY_CONST is non-zero, only return non-zero for constants.
- This function tests whether the operands are indistinguishable;
- it does not test whether they are equal using C's == operation.
- The distinction is important for IEEE floating point, because
- (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
- (2) two NaNs may be indistinguishable, but NaN!=NaN. */
-
-int
-operand_equal_p (arg0, arg1, only_const)
- tree arg0, arg1;
- int only_const;
-{
- /* If both types don't have the same signedness, then we can't consider
- them equal. We must check this before the STRIP_NOPS calls
- because they may change the signedness of the arguments. */
- if (TREE_UNSIGNED (TREE_TYPE (arg0)) != TREE_UNSIGNED (TREE_TYPE (arg1)))
- return 0;
-
- STRIP_NOPS (arg0);
- STRIP_NOPS (arg1);
-
- if (TREE_CODE (arg0) != TREE_CODE (arg1)
- /* This is needed for conversions and for COMPONENT_REF.
- Might as well play it safe and always test this. */
- || TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1)))
- return 0;
-
- /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
- We don't care about side effects in that case because the SAVE_EXPR
- takes care of that for us. In all other cases, two expressions are
- equal if they have no side effects. If we have two identical
- expressions with side effects that should be treated the same due
- to the only side effects being identical SAVE_EXPR's, that will
- be detected in the recursive calls below. */
- if (arg0 == arg1 && ! only_const
- && (TREE_CODE (arg0) == SAVE_EXPR
- || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
- return 1;
-
- /* Next handle constant cases, those for which we can return 1 even
- if ONLY_CONST is set. */
- if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
- switch (TREE_CODE (arg0))
- {
- case INTEGER_CST:
- return (TREE_INT_CST_LOW (arg0) == TREE_INT_CST_LOW (arg1)
- && TREE_INT_CST_HIGH (arg0) == TREE_INT_CST_HIGH (arg1));
-
- case REAL_CST:
- return REAL_VALUES_EQUAL (TREE_REAL_CST (arg0), TREE_REAL_CST (arg1));
-
- case COMPLEX_CST:
- return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
- only_const)
- && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
- only_const));
-
- case STRING_CST:
- return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
- && ! strncmp (TREE_STRING_POINTER (arg0),
- TREE_STRING_POINTER (arg1),
- TREE_STRING_LENGTH (arg0)));
-
- case ADDR_EXPR:
- return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
- 0);
- }
-
- if (only_const)
- return 0;
-
- switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
- {
- case '1':
- /* Two conversions are equal only if signedness and modes match. */
- if ((TREE_CODE (arg0) == NOP_EXPR || TREE_CODE (arg0) == CONVERT_EXPR)
- && (TREE_UNSIGNED (TREE_TYPE (arg0))
- != TREE_UNSIGNED (TREE_TYPE (arg1))))
- return 0;
-
- return operand_equal_p (TREE_OPERAND (arg0, 0),
- TREE_OPERAND (arg1, 0), 0);
-
- case '<':
- case '2':
- if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 0)
- && operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 1),
- 0))
- return 1;
-
- /* For commutative ops, allow the other order. */
- return ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MULT_EXPR
- || TREE_CODE (arg0) == MIN_EXPR || TREE_CODE (arg0) == MAX_EXPR
- || TREE_CODE (arg0) == BIT_IOR_EXPR
- || TREE_CODE (arg0) == BIT_XOR_EXPR
- || TREE_CODE (arg0) == BIT_AND_EXPR
- || TREE_CODE (arg0) == NE_EXPR || TREE_CODE (arg0) == EQ_EXPR)
- && operand_equal_p (TREE_OPERAND (arg0, 0),
- TREE_OPERAND (arg1, 1), 0)
- && operand_equal_p (TREE_OPERAND (arg0, 1),
- TREE_OPERAND (arg1, 0), 0));
-
- case 'r':
- switch (TREE_CODE (arg0))
- {
- case INDIRECT_REF:
- return operand_equal_p (TREE_OPERAND (arg0, 0),
- TREE_OPERAND (arg1, 0), 0);
-
- case COMPONENT_REF:
- case ARRAY_REF:
- return (operand_equal_p (TREE_OPERAND (arg0, 0),
- TREE_OPERAND (arg1, 0), 0)
- && operand_equal_p (TREE_OPERAND (arg0, 1),
- TREE_OPERAND (arg1, 1), 0));
-
- case BIT_FIELD_REF:
- return (operand_equal_p (TREE_OPERAND (arg0, 0),
- TREE_OPERAND (arg1, 0), 0)
- && operand_equal_p (TREE_OPERAND (arg0, 1),
- TREE_OPERAND (arg1, 1), 0)
- && operand_equal_p (TREE_OPERAND (arg0, 2),
- TREE_OPERAND (arg1, 2), 0));
- }
- break;
- }
-
- return 0;
-}
-
-/* Similar to operand_equal_p, but see if ARG0 might have been made by
- shorten_compare from ARG1 when ARG1 was being compared with OTHER.
-
- When in doubt, return 0. */
-
-static int
-operand_equal_for_comparison_p (arg0, arg1, other)
- tree arg0, arg1;
- tree other;
-{
- int unsignedp1, unsignedpo;
- tree primarg1, primother;
- unsigned correct_width;
-
- if (operand_equal_p (arg0, arg1, 0))
- return 1;
-
- if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
- || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
- return 0;
-
- /* Duplicate what shorten_compare does to ARG1 and see if that gives the
- actual comparison operand, ARG0.
-
- First throw away any conversions to wider types
- already present in the operands. */
-
- primarg1 = get_narrower (arg1, &unsignedp1);
- primother = get_narrower (other, &unsignedpo);
-
- correct_width = TYPE_PRECISION (TREE_TYPE (arg1));
- if (unsignedp1 == unsignedpo
- && TYPE_PRECISION (TREE_TYPE (primarg1)) < correct_width
- && TYPE_PRECISION (TREE_TYPE (primother)) < correct_width)
- {
- tree type = TREE_TYPE (arg0);
-
- /* Make sure shorter operand is extended the right way
- to match the longer operand. */
- primarg1 = convert (signed_or_unsigned_type (unsignedp1,
- TREE_TYPE (primarg1)),
- primarg1);
-
- if (operand_equal_p (arg0, convert (type, primarg1), 0))
- return 1;
- }
-
- return 0;
-}
-
-/* See if ARG is an expression that is either a comparison or is performing
- arithmetic on comparisons. The comparisons must only be comparing
- two different values, which will be stored in *CVAL1 and *CVAL2; if
- they are non-zero it means that some operands have already been found.
- No variables may be used anywhere else in the expression except in the
- comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
- the expression and save_expr needs to be called with CVAL1 and CVAL2.
-
- If this is true, return 1. Otherwise, return zero. */
-
-static int
-twoval_comparison_p (arg, cval1, cval2, save_p)
- tree arg;
- tree *cval1, *cval2;
- int *save_p;
-{
- enum tree_code code = TREE_CODE (arg);
- char class = TREE_CODE_CLASS (code);
-
- /* We can handle some of the 'e' cases here. */
- if (class == 'e' && code == TRUTH_NOT_EXPR)
- class = '1';
- else if (class == 'e'
- && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
- || code == COMPOUND_EXPR))
- class = '2';
-
- /* ??? Disable this since the SAVE_EXPR might already be in use outside
- the expression. There may be no way to make this work, but it needs
- to be looked at again for 2.6. */
-#if 0
- else if (class == 'e' && code == SAVE_EXPR && SAVE_EXPR_RTL (arg) == 0)
- {
- /* If we've already found a CVAL1 or CVAL2, this expression is
- two complex to handle. */
- if (*cval1 || *cval2)
- return 0;
-
- class = '1';
- *save_p = 1;
- }
-#endif
-
- switch (class)
- {
- case '1':
- return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
-
- case '2':
- return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
- && twoval_comparison_p (TREE_OPERAND (arg, 1),
- cval1, cval2, save_p));
-
- case 'c':
- return 1;
-
- case 'e':
- if (code == COND_EXPR)
- return (twoval_comparison_p (TREE_OPERAND (arg, 0),
- cval1, cval2, save_p)
- && twoval_comparison_p (TREE_OPERAND (arg, 1),
- cval1, cval2, save_p)
- && twoval_comparison_p (TREE_OPERAND (arg, 2),
- cval1, cval2, save_p));
- return 0;
-
- case '<':
- /* First see if we can handle the first operand, then the second. For
- the second operand, we know *CVAL1 can't be zero. It must be that
- one side of the comparison is each of the values; test for the
- case where this isn't true by failing if the two operands
- are the same. */
-
- if (operand_equal_p (TREE_OPERAND (arg, 0),
- TREE_OPERAND (arg, 1), 0))
- return 0;
-
- if (*cval1 == 0)
- *cval1 = TREE_OPERAND (arg, 0);
- else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
- ;
- else if (*cval2 == 0)
- *cval2 = TREE_OPERAND (arg, 0);
- else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
- ;
- else
- return 0;
-
- if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
- ;
- else if (*cval2 == 0)
- *cval2 = TREE_OPERAND (arg, 1);
- else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
- ;
- else
- return 0;
-
- return 1;
- }
-
- return 0;
-}
-
-/* ARG is a tree that is known to contain just arithmetic operations and
- comparisons. Evaluate the operations in the tree substituting NEW0 for
- any occurrence of OLD0 as an operand of a comparison and likewise for
- NEW1 and OLD1. */
-
-static tree
-eval_subst (arg, old0, new0, old1, new1)
- tree arg;
- tree old0, new0, old1, new1;
-{
- tree type = TREE_TYPE (arg);
- enum tree_code code = TREE_CODE (arg);
- char class = TREE_CODE_CLASS (code);
-
- /* We can handle some of the 'e' cases here. */
- if (class == 'e' && code == TRUTH_NOT_EXPR)
- class = '1';
- else if (class == 'e'
- && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
- class = '2';
-
- switch (class)
- {
- case '1':
- return fold (build1 (code, type,
- eval_subst (TREE_OPERAND (arg, 0),
- old0, new0, old1, new1)));
-
- case '2':
- return fold (build (code, type,
- eval_subst (TREE_OPERAND (arg, 0),
- old0, new0, old1, new1),
- eval_subst (TREE_OPERAND (arg, 1),
- old0, new0, old1, new1)));
-
- case 'e':
- switch (code)
- {
- case SAVE_EXPR:
- return eval_subst (TREE_OPERAND (arg, 0), old0, new0, old1, new1);
-
- case COMPOUND_EXPR:
- return eval_subst (TREE_OPERAND (arg, 1), old0, new0, old1, new1);
-
- case COND_EXPR:
- return fold (build (code, type,
- eval_subst (TREE_OPERAND (arg, 0),
- old0, new0, old1, new1),
- eval_subst (TREE_OPERAND (arg, 1),
- old0, new0, old1, new1),
- eval_subst (TREE_OPERAND (arg, 2),
- old0, new0, old1, new1)));
- }
-
- case '<':
- {
- tree arg0 = TREE_OPERAND (arg, 0);
- tree arg1 = TREE_OPERAND (arg, 1);
-
- /* We need to check both for exact equality and tree equality. The
- former will be true if the operand has a side-effect. In that
- case, we know the operand occurred exactly once. */
-
- if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
- arg0 = new0;
- else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
- arg0 = new1;
-
- if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
- arg1 = new0;
- else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
- arg1 = new1;
-
- return fold (build (code, type, arg0, arg1));
- }
- }
-
- return arg;
-}
-
-/* Return a tree for the case when the result of an expression is RESULT
- converted to TYPE and OMITTED was previously an operand of the expression
- but is now not needed (e.g., we folded OMITTED * 0).
-
- If OMITTED has side effects, we must evaluate it. Otherwise, just do
- the conversion of RESULT to TYPE. */
-
-static tree
-omit_one_operand (type, result, omitted)
- tree type, result, omitted;
-{
- tree t = convert (type, result);
-
- if (TREE_SIDE_EFFECTS (omitted))
- return build (COMPOUND_EXPR, type, omitted, t);
-
- return non_lvalue (t);
-}
-
-/* Similar, but call pedantic_non_lvalue instead of non_lvalue. */
-
-static tree
-pedantic_omit_one_operand (type, result, omitted)
- tree type, result, omitted;
-{
- tree t = convert (type, result);
-
- if (TREE_SIDE_EFFECTS (omitted))
- return build (COMPOUND_EXPR, type, omitted, t);
-
- return pedantic_non_lvalue (t);
-}
-
-
-
-/* Return a simplified tree node for the truth-negation of ARG. This
- never alters ARG itself. We assume that ARG is an operation that
- returns a truth value (0 or 1). */
-
-tree
-invert_truthvalue (arg)
- tree arg;
-{
- tree type = TREE_TYPE (arg);
- enum tree_code code = TREE_CODE (arg);
-
- if (code == ERROR_MARK)
- return arg;
-
- /* If this is a comparison, we can simply invert it, except for
- floating-point non-equality comparisons, in which case we just
- enclose a TRUTH_NOT_EXPR around what we have. */
-
- if (TREE_CODE_CLASS (code) == '<')
- {
- if (FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0)))
- && code != NE_EXPR && code != EQ_EXPR)
- return build1 (TRUTH_NOT_EXPR, type, arg);
- else
- return build (invert_tree_comparison (code), type,
- TREE_OPERAND (arg, 0), TREE_OPERAND (arg, 1));
- }
-
- switch (code)
- {
- case INTEGER_CST:
- return convert (type, build_int_2 (TREE_INT_CST_LOW (arg) == 0
- && TREE_INT_CST_HIGH (arg) == 0, 0));
-
- case TRUTH_AND_EXPR:
- return build (TRUTH_OR_EXPR, type,
- invert_truthvalue (TREE_OPERAND (arg, 0)),
- invert_truthvalue (TREE_OPERAND (arg, 1)));
-
- case TRUTH_OR_EXPR:
- return build (TRUTH_AND_EXPR, type,
- invert_truthvalue (TREE_OPERAND (arg, 0)),
- invert_truthvalue (TREE_OPERAND (arg, 1)));
-
- case TRUTH_XOR_EXPR:
- /* Here we can invert either operand. We invert the first operand
- unless the second operand is a TRUTH_NOT_EXPR in which case our
- result is the XOR of the first operand with the inside of the
- negation of the second operand. */
-
- if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
- return build (TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
- TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
- else
- return build (TRUTH_XOR_EXPR, type,
- invert_truthvalue (TREE_OPERAND (arg, 0)),
- TREE_OPERAND (arg, 1));
-
- case TRUTH_ANDIF_EXPR:
- return build (TRUTH_ORIF_EXPR, type,
- invert_truthvalue (TREE_OPERAND (arg, 0)),
- invert_truthvalue (TREE_OPERAND (arg, 1)));
-
- case TRUTH_ORIF_EXPR:
- return build (TRUTH_ANDIF_EXPR, type,
- invert_truthvalue (TREE_OPERAND (arg, 0)),
- invert_truthvalue (TREE_OPERAND (arg, 1)));
-
- case TRUTH_NOT_EXPR:
- return TREE_OPERAND (arg, 0);
-
- case COND_EXPR:
- return build (COND_EXPR, type, TREE_OPERAND (arg, 0),
- invert_truthvalue (TREE_OPERAND (arg, 1)),
- invert_truthvalue (TREE_OPERAND (arg, 2)));
-
- case COMPOUND_EXPR:
- return build (COMPOUND_EXPR, type, TREE_OPERAND (arg, 0),
- invert_truthvalue (TREE_OPERAND (arg, 1)));
-
- case NON_LVALUE_EXPR:
- return invert_truthvalue (TREE_OPERAND (arg, 0));
-
- case NOP_EXPR:
- case CONVERT_EXPR:
- case FLOAT_EXPR:
- return build1 (TREE_CODE (arg), type,
- invert_truthvalue (TREE_OPERAND (arg, 0)));
-
- case BIT_AND_EXPR:
- if (!integer_onep (TREE_OPERAND (arg, 1)))
- break;
- return build (EQ_EXPR, type, arg, convert (type, integer_zero_node));
-
- case SAVE_EXPR:
- return build1 (TRUTH_NOT_EXPR, type, arg);
-
- case CLEANUP_POINT_EXPR:
- return build1 (CLEANUP_POINT_EXPR, type,
- invert_truthvalue (TREE_OPERAND (arg, 0)));
- }
- if (TREE_CODE (TREE_TYPE (arg)) != BOOLEAN_TYPE)
- abort ();
- return build1 (TRUTH_NOT_EXPR, type, arg);
-}
-
-/* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
- operands are another bit-wise operation with a common input. If so,
- distribute the bit operations to save an operation and possibly two if
- constants are involved. For example, convert
- (A | B) & (A | C) into A | (B & C)
- Further simplification will occur if B and C are constants.
-
- If this optimization cannot be done, 0 will be returned. */
-
-static tree
-distribute_bit_expr (code, type, arg0, arg1)
- enum tree_code code;
- tree type;
- tree arg0, arg1;
-{
- tree common;
- tree left, right;
-
- if (TREE_CODE (arg0) != TREE_CODE (arg1)
- || TREE_CODE (arg0) == code
- || (TREE_CODE (arg0) != BIT_AND_EXPR
- && TREE_CODE (arg0) != BIT_IOR_EXPR))
- return 0;
-
- if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 0))
- {
- common = TREE_OPERAND (arg0, 0);
- left = TREE_OPERAND (arg0, 1);
- right = TREE_OPERAND (arg1, 1);
- }
- else if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1), 0))
- {
- common = TREE_OPERAND (arg0, 0);
- left = TREE_OPERAND (arg0, 1);
- right = TREE_OPERAND (arg1, 0);
- }
- else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 0), 0))
- {
- common = TREE_OPERAND (arg0, 1);
- left = TREE_OPERAND (arg0, 0);
- right = TREE_OPERAND (arg1, 1);
- }
- else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 1), 0))
- {
- common = TREE_OPERAND (arg0, 1);
- left = TREE_OPERAND (arg0, 0);
- right = TREE_OPERAND (arg1, 0);
- }
- else
- return 0;
-
- return fold (build (TREE_CODE (arg0), type, common,
- fold (build (code, type, left, right))));
-}
-
-/* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
- starting at BITPOS. The field is unsigned if UNSIGNEDP is non-zero. */
-
-static tree
-make_bit_field_ref (inner, type, bitsize, bitpos, unsignedp)
- tree inner;
- tree type;
- int bitsize, bitpos;
- int unsignedp;
-{
- tree result = build (BIT_FIELD_REF, type, inner,
- size_int (bitsize), size_int (bitpos));
-
- TREE_UNSIGNED (result) = unsignedp;
-
- return result;
-}
-
-/* Optimize a bit-field compare.
-
- There are two cases: First is a compare against a constant and the
- second is a comparison of two items where the fields are at the same
- bit position relative to the start of a chunk (byte, halfword, word)
- large enough to contain it. In these cases we can avoid the shift
- implicit in bitfield extractions.
-
- For constants, we emit a compare of the shifted constant with the
- BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
- compared. For two fields at the same position, we do the ANDs with the
- similar mask and compare the result of the ANDs.
-
- CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
- COMPARE_TYPE is the type of the comparison, and LHS and RHS
- are the left and right operands of the comparison, respectively.
-
- If the optimization described above can be done, we return the resulting
- tree. Otherwise we return zero. */
-
-static tree
-optimize_bit_field_compare (code, compare_type, lhs, rhs)
- enum tree_code code;
- tree compare_type;
- tree lhs, rhs;
-{
- int lbitpos, lbitsize, rbitpos, rbitsize;
- int lnbitpos, lnbitsize, rnbitpos, rnbitsize;
- tree type = TREE_TYPE (lhs);
- tree signed_type, unsigned_type;
- int const_p = TREE_CODE (rhs) == INTEGER_CST;
- enum machine_mode lmode, rmode, lnmode, rnmode;
- int lunsignedp, runsignedp;
- int lvolatilep = 0, rvolatilep = 0;
- int alignment;
- tree linner, rinner;
- tree mask;
- tree offset;
-
- /* Get all the information about the extractions being done. If the bit size
- if the same as the size of the underlying object, we aren't doing an
- extraction at all and so can do nothing. */
- linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
- &lunsignedp, &lvolatilep, &alignment);
- if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
- || offset != 0)
- return 0;
-
- if (!const_p)
- {
- /* If this is not a constant, we can only do something if bit positions,
- sizes, and signedness are the same. */
- rinner = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
- &runsignedp, &rvolatilep, &alignment);
-
- if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
- || lunsignedp != runsignedp || offset != 0)
- return 0;
- }
-
- /* See if we can find a mode to refer to this field. We should be able to,
- but fail if we can't. */
- lnmode = get_best_mode (lbitsize, lbitpos,
- TYPE_ALIGN (TREE_TYPE (linner)), word_mode,
- lvolatilep);
- if (lnmode == VOIDmode)
- return 0;
-
- /* Set signed and unsigned types of the precision of this mode for the
- shifts below. */
- signed_type = type_for_mode (lnmode, 0);
- unsigned_type = type_for_mode (lnmode, 1);
-
- if (! const_p)
- {
- rnmode = get_best_mode (rbitsize, rbitpos,
- TYPE_ALIGN (TREE_TYPE (rinner)), word_mode,
- rvolatilep);
- if (rnmode == VOIDmode)
- return 0;
- }
-
- /* Compute the bit position and size for the new reference and our offset
- within it. If the new reference is the same size as the original, we
- won't optimize anything, so return zero. */
- lnbitsize = GET_MODE_BITSIZE (lnmode);
- lnbitpos = lbitpos & ~ (lnbitsize - 1);
- lbitpos -= lnbitpos;
- if (lnbitsize == lbitsize)
- return 0;
-
- if (! const_p)
- {
- rnbitsize = GET_MODE_BITSIZE (rnmode);
- rnbitpos = rbitpos & ~ (rnbitsize - 1);
- rbitpos -= rnbitpos;
- if (rnbitsize == rbitsize)
- return 0;
- }
-
- if (BYTES_BIG_ENDIAN)
- lbitpos = lnbitsize - lbitsize - lbitpos;
-
- /* Make the mask to be used against the extracted field. */
- mask = build_int_2 (~0, ~0);
- TREE_TYPE (mask) = unsigned_type;
- force_fit_type (mask, 0);
- mask = convert (unsigned_type, mask);
- mask = const_binop (LSHIFT_EXPR, mask, size_int (lnbitsize - lbitsize), 0);
- mask = const_binop (RSHIFT_EXPR, mask,
- size_int (lnbitsize - lbitsize - lbitpos), 0);
-
- if (! const_p)
- /* If not comparing with constant, just rework the comparison
- and return. */
- return build (code, compare_type,
- build (BIT_AND_EXPR, unsigned_type,
- make_bit_field_ref (linner, unsigned_type,
- lnbitsize, lnbitpos, 1),
- mask),
- build (BIT_AND_EXPR, unsigned_type,
- make_bit_field_ref (rinner, unsigned_type,
- rnbitsize, rnbitpos, 1),
- mask));
-
- /* Otherwise, we are handling the constant case. See if the constant is too
- big for the field. Warn and return a tree of for 0 (false) if so. We do
- this not only for its own sake, but to avoid having to test for this
- error case below. If we didn't, we might generate wrong code.
-
- For unsigned fields, the constant shifted right by the field length should
- be all zero. For signed fields, the high-order bits should agree with
- the sign bit. */
-
- if (lunsignedp)
- {
- if (! integer_zerop (const_binop (RSHIFT_EXPR,
- convert (unsigned_type, rhs),
- size_int (lbitsize), 0)))
- {
- warning ("comparison is always %s due to width of bitfield",
- code == NE_EXPR ? "one" : "zero");
- return convert (compare_type,
- (code == NE_EXPR
- ? integer_one_node : integer_zero_node));
- }
- }
- else
- {
- tree tem = const_binop (RSHIFT_EXPR, convert (signed_type, rhs),
- size_int (lbitsize - 1), 0);
- if (! integer_zerop (tem) && ! integer_all_onesp (tem))
- {
- warning ("comparison is always %s due to width of bitfield",
- code == NE_EXPR ? "one" : "zero");
- return convert (compare_type,
- (code == NE_EXPR
- ? integer_one_node : integer_zero_node));
- }
- }
-
- /* Single-bit compares should always be against zero. */
- if (lbitsize == 1 && ! integer_zerop (rhs))
- {
- code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
- rhs = convert (type, integer_zero_node);
- }
-
- /* Make a new bitfield reference, shift the constant over the
- appropriate number of bits and mask it with the computed mask
- (in case this was a signed field). If we changed it, make a new one. */
- lhs = make_bit_field_ref (linner, unsigned_type, lnbitsize, lnbitpos, 1);
- if (lvolatilep)
- {
- TREE_SIDE_EFFECTS (lhs) = 1;
- TREE_THIS_VOLATILE (lhs) = 1;
- }
-
- rhs = fold (const_binop (BIT_AND_EXPR,
- const_binop (LSHIFT_EXPR,
- convert (unsigned_type, rhs),
- size_int (lbitpos), 0),
- mask, 0));
-
- return build (code, compare_type,
- build (BIT_AND_EXPR, unsigned_type, lhs, mask),
- rhs);
-}
-
-/* Subroutine for fold_truthop: decode a field reference.
-
- If EXP is a comparison reference, we return the innermost reference.
-
- *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
- set to the starting bit number.
-
- If the innermost field can be completely contained in a mode-sized
- unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
-
- *PVOLATILEP is set to 1 if the any expression encountered is volatile;
- otherwise it is not changed.
-
- *PUNSIGNEDP is set to the signedness of the field.
-
- *PMASK is set to the mask used. This is either contained in a
- BIT_AND_EXPR or derived from the width of the field.
-
- *PAND_MASK is set the the mask found in a BIT_AND_EXPR, if any.
-
- Return 0 if this is not a component reference or is one that we can't
- do anything with. */
-
-static tree
-decode_field_reference (exp, pbitsize, pbitpos, pmode, punsignedp,
- pvolatilep, pmask, pand_mask)
- tree exp;
- int *pbitsize, *pbitpos;
- enum machine_mode *pmode;
- int *punsignedp, *pvolatilep;
- tree *pmask;
- tree *pand_mask;
-{
- tree and_mask = 0;
- tree mask, inner, offset;
- tree unsigned_type;
- int precision;
- int alignment;
-
- /* All the optimizations using this function assume integer fields.
- There are problems with FP fields since the type_for_size call
- below can fail for, e.g., XFmode. */
- if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
- return 0;
-
- STRIP_NOPS (exp);
-
- if (TREE_CODE (exp) == BIT_AND_EXPR)
- {
- and_mask = TREE_OPERAND (exp, 1);
- exp = TREE_OPERAND (exp, 0);
- STRIP_NOPS (exp); STRIP_NOPS (and_mask);
- if (TREE_CODE (and_mask) != INTEGER_CST)
- return 0;
- }
-
-
- inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
- punsignedp, pvolatilep, &alignment);
- if ((inner == exp && and_mask == 0)
- || *pbitsize < 0 || offset != 0)
- return 0;
-
- /* Compute the mask to access the bitfield. */
- unsigned_type = type_for_size (*pbitsize, 1);
- precision = TYPE_PRECISION (unsigned_type);
-
- mask = build_int_2 (~0, ~0);
- TREE_TYPE (mask) = unsigned_type;
- force_fit_type (mask, 0);
- mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
- mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
-
- /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
- if (and_mask != 0)
- mask = fold (build (BIT_AND_EXPR, unsigned_type,
- convert (unsigned_type, and_mask), mask));
-
- *pmask = mask;
- *pand_mask = and_mask;
- return inner;
-}
-
-/* Return non-zero if MASK represents a mask of SIZE ones in the low-order
- bit positions. */
-
-static int
-all_ones_mask_p (mask, size)
- tree mask;
- int size;
-{
- tree type = TREE_TYPE (mask);
- int precision = TYPE_PRECISION (type);
- tree tmask;
-
- tmask = build_int_2 (~0, ~0);
- TREE_TYPE (tmask) = signed_type (type);
- force_fit_type (tmask, 0);
- return
- tree_int_cst_equal (mask,
- const_binop (RSHIFT_EXPR,
- const_binop (LSHIFT_EXPR, tmask,
- size_int (precision - size),
- 0),
- size_int (precision - size), 0));
-}
-
-/* Subroutine for fold_truthop: determine if an operand is simple enough
- to be evaluated unconditionally. */
-
-static int
-simple_operand_p (exp)
- tree exp;
-{
- /* Strip any conversions that don't change the machine mode. */
- while ((TREE_CODE (exp) == NOP_EXPR
- || TREE_CODE (exp) == CONVERT_EXPR)
- && (TYPE_MODE (TREE_TYPE (exp))
- == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
- exp = TREE_OPERAND (exp, 0);
-
- return (TREE_CODE_CLASS (TREE_CODE (exp)) == 'c'
- || (TREE_CODE_CLASS (TREE_CODE (exp)) == 'd'
- && ! TREE_ADDRESSABLE (exp)
- && ! TREE_THIS_VOLATILE (exp)
- && ! DECL_NONLOCAL (exp)
- /* Don't regard global variables as simple. They may be
- allocated in ways unknown to the compiler (shared memory,
- #pragma weak, etc). */
- && ! TREE_PUBLIC (exp)
- && ! DECL_EXTERNAL (exp)
- /* Loading a static variable is unduly expensive, but global
- registers aren't expensive. */
- && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
-}
-
-/* The following functions are subroutines to fold_range_test and allow it to
- try to change a logical combination of comparisons into a range test.
-
- For example, both
- X == 2 && X == 3 && X == 4 && X == 5
- and
- X >= 2 && X <= 5
- are converted to
- (unsigned) (X - 2) <= 3
-
- We decribe each set of comparisons as being either inside or outside
- a range, using a variable named like IN_P, and then describe the
- range with a lower and upper bound. If one of the bounds is omitted,
- it represents either the highest or lowest value of the type.
-
- In the comments below, we represent a range by two numbers in brackets
- preceeded by a "+" to designate being inside that range, or a "-" to
- designate being outside that range, so the condition can be inverted by
- flipping the prefix. An omitted bound is represented by a "-". For
- example, "- [-, 10]" means being outside the range starting at the lowest
- possible value and ending at 10, in other words, being greater than 10.
- The range "+ [-, -]" is always true and hence the range "- [-, -]" is
- always false.
-
- We set up things so that the missing bounds are handled in a consistent
- manner so neither a missing bound nor "true" and "false" need to be
- handled using a special case. */
-
-/* Return the result of applying CODE to ARG0 and ARG1, but handle the case
- of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
- and UPPER1_P are nonzero if the respective argument is an upper bound
- and zero for a lower. TYPE, if nonzero, is the type of the result; it
- must be specified for a comparison. ARG1 will be converted to ARG0's
- type if both are specified. */
-
-static tree
-range_binop (code, type, arg0, upper0_p, arg1, upper1_p)
- enum tree_code code;
- tree type;
- tree arg0, arg1;
- int upper0_p, upper1_p;
-{
- tree tem;
- int result;
- int sgn0, sgn1;
-
- /* If neither arg represents infinity, do the normal operation.
- Else, if not a comparison, return infinity. Else handle the special
- comparison rules. Note that most of the cases below won't occur, but
- are handled for consistency. */
-
- if (arg0 != 0 && arg1 != 0)
- {
- tem = fold (build (code, type != 0 ? type : TREE_TYPE (arg0),
- arg0, convert (TREE_TYPE (arg0), arg1)));
- STRIP_NOPS (tem);
- return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
- }
-
- if (TREE_CODE_CLASS (code) != '<')
- return 0;
-
- /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
- for neither. Then compute our result treating them as never equal
- and comparing bounds to non-bounds as above. */
- sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
- sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
- switch (code)
- {
- case EQ_EXPR: case NE_EXPR:
- result = (code == NE_EXPR);
- break;
- case LT_EXPR: case LE_EXPR:
- result = sgn0 < sgn1;
- break;
- case GT_EXPR: case GE_EXPR:
- result = sgn0 > sgn1;
- break;
- }
-
- return convert (type, result ? integer_one_node : integer_zero_node);
-}
-
-/* Given EXP, a logical expression, set the range it is testing into
- variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
- actually being tested. *PLOW and *PHIGH will have be made the same type
- as the returned expression. If EXP is not a comparison, we will most
- likely not be returning a useful value and range. */
-
-static tree
-make_range (exp, pin_p, plow, phigh)
- tree exp;
- int *pin_p;
- tree *plow, *phigh;
-{
- enum tree_code code;
- tree arg0, arg1, type;
- int in_p, n_in_p;
- tree low, high, n_low, n_high;
-
- /* Start with simply saying "EXP != 0" and then look at the code of EXP
- and see if we can refine the range. Some of the cases below may not
- happen, but it doesn't seem worth worrying about this. We "continue"
- the outer loop when we've changed something; otherwise we "break"
- the switch, which will "break" the while. */
-
- in_p = 0, low = high = convert (TREE_TYPE (exp), integer_zero_node);
-
- while (1)
- {
- code = TREE_CODE (exp);
- arg0 = TREE_OPERAND (exp, 0), arg1 = TREE_OPERAND (exp, 1);
- if (TREE_CODE_CLASS (code) == '<' || TREE_CODE_CLASS (code) == '1'
- || TREE_CODE_CLASS (code) == '2')
- type = TREE_TYPE (arg0);
-
- switch (code)
- {
- case TRUTH_NOT_EXPR:
- in_p = ! in_p, exp = arg0;
- continue;
-
- case EQ_EXPR: case NE_EXPR:
- case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
- /* We can only do something if the range is testing for zero
- and if the second operand is an integer constant. Note that
- saying something is "in" the range we make is done by
- complementing IN_P since it will set in the initial case of
- being not equal to zero; "out" is leaving it alone. */
- if (low == 0 || high == 0
- || ! integer_zerop (low) || ! integer_zerop (high)
- || TREE_CODE (arg1) != INTEGER_CST)
- break;
-
- switch (code)
- {
- case NE_EXPR: /* - [c, c] */
- low = high = arg1;
- break;
- case EQ_EXPR: /* + [c, c] */
- in_p = ! in_p, low = high = arg1;
- break;
- case GT_EXPR: /* - [-, c] */
- low = 0, high = arg1;
- break;
- case GE_EXPR: /* + [c, -] */
- in_p = ! in_p, low = arg1, high = 0;
- break;
- case LT_EXPR: /* - [c, -] */
- low = arg1, high = 0;
- break;
- case LE_EXPR: /* + [-, c] */
- in_p = ! in_p, low = 0, high = arg1;
- break;
- }
-
- exp = arg0;
-
- /* If this is an unsigned comparison, we also know that EXP is
- greater than or equal to zero. We base the range tests we make
- on that fact, so we record it here so we can parse existing
- range tests. */
- if (TREE_UNSIGNED (type) && (low == 0 || high == 0))
- {
- if (! merge_ranges (&n_in_p, &n_low, &n_high, in_p, low, high,
- 1, convert (type, integer_zero_node),
- NULL_TREE))
- break;
-
- in_p = n_in_p, low = n_low, high = n_high;
-
- /* If the high bound is missing, reverse the range so it
- goes from zero to the low bound minus 1. */
- if (high == 0)
- {
- in_p = ! in_p;
- high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
- integer_one_node, 0);
- low = convert (type, integer_zero_node);
- }
- }
- continue;
-
- case NEGATE_EXPR:
- /* (-x) IN [a,b] -> x in [-b, -a] */
- n_low = range_binop (MINUS_EXPR, type,
- convert (type, integer_zero_node), 0, high, 1);
- n_high = range_binop (MINUS_EXPR, type,
- convert (type, integer_zero_node), 0, low, 0);
- low = n_low, high = n_high;
- exp = arg0;
- continue;
-
- case BIT_NOT_EXPR:
- /* ~ X -> -X - 1 */
- exp = build (MINUS_EXPR, type, build1 (NEGATE_EXPR, type, arg0),
- convert (type, integer_one_node));
- continue;
-
- case PLUS_EXPR: case MINUS_EXPR:
- if (TREE_CODE (arg1) != INTEGER_CST)
- break;
-
- /* If EXP is signed, any overflow in the computation is undefined,
- so we don't worry about it so long as our computations on
- the bounds don't overflow. For unsigned, overflow is defined
- and this is exactly the right thing. */
- n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
- type, low, 0, arg1, 0);
- n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
- type, high, 1, arg1, 0);
- if ((n_low != 0 && TREE_OVERFLOW (n_low))
- || (n_high != 0 && TREE_OVERFLOW (n_high)))
- break;
-
- /* Check for an unsigned range which has wrapped around the maximum
- value thus making n_high < n_low, and normalize it. */
- if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
- {
- low = range_binop (PLUS_EXPR, type, n_high, 0,
- integer_one_node, 0);
- high = range_binop (MINUS_EXPR, type, n_low, 0,
- integer_one_node, 0);
- in_p = ! in_p;
- }
- else
- low = n_low, high = n_high;
-
- exp = arg0;
- continue;
-
- case NOP_EXPR: case NON_LVALUE_EXPR: case CONVERT_EXPR:
- if (! INTEGRAL_TYPE_P (type)
- || (low != 0 && ! int_fits_type_p (low, type))
- || (high != 0 && ! int_fits_type_p (high, type)))
- break;
-
- if (low != 0)
- low = convert (type, low);
-
- if (high != 0)
- high = convert (type, high);
-
- exp = arg0;
- continue;
- }
-
- break;
- }
-
- /* If EXP is a constant, we can evaluate whether this is true or false. */
- if (TREE_CODE (exp) == INTEGER_CST)
- {
- in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
- exp, 0, low, 0))
- && integer_onep (range_binop (LE_EXPR, integer_type_node,
- exp, 1, high, 1)));
- low = high = 0;
- exp = 0;
- }
-
- *pin_p = in_p, *plow = low, *phigh = high;
- return exp;
-}
-
-/* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
- type, TYPE, return an expression to test if EXP is in (or out of, depending
- on IN_P) the range. */
-
-static tree
-build_range_check (type, exp, in_p, low, high)
- tree type;
- tree exp;
- int in_p;
- tree low, high;
-{
- tree etype = TREE_TYPE (exp);
- tree utype, value;
-
- if (! in_p
- && (0 != (value = build_range_check (type, exp, 1, low, high))))
- return invert_truthvalue (value);
-
- else if (low == 0 && high == 0)
- return convert (type, integer_one_node);
-
- else if (low == 0)
- return fold (build (LE_EXPR, type, exp, high));
-
- else if (high == 0)
- return fold (build (GE_EXPR, type, exp, low));
-
- else if (operand_equal_p (low, high, 0))
- return fold (build (EQ_EXPR, type, exp, low));
-
- else if (TREE_UNSIGNED (etype) && integer_zerop (low))
- return build_range_check (type, exp, 1, 0, high);
-
- else if (integer_zerop (low))
- {
- utype = unsigned_type (etype);
- return build_range_check (type, convert (utype, exp), 1, 0,
- convert (utype, high));
- }
-
- else if (0 != (value = const_binop (MINUS_EXPR, high, low, 0))
- && ! TREE_OVERFLOW (value))
- return build_range_check (type,
- fold (build (MINUS_EXPR, etype, exp, low)),
- 1, convert (etype, integer_zero_node), value);
- else
- return 0;
-}
-
-/* Given two ranges, see if we can merge them into one. Return 1 if we
- can, 0 if we can't. Set the output range into the specified parameters. */
-
-static int
-merge_ranges (pin_p, plow, phigh, in0_p, low0, high0, in1_p, low1, high1)
- int *pin_p;
- tree *plow, *phigh;
- int in0_p, in1_p;
- tree low0, high0, low1, high1;
-{
- int no_overlap;
- int subset;
- int temp;
- tree tem;
- int in_p;
- tree low, high;
-
- /* Make range 0 be the range that starts first. Swap them if it isn't. */
- if (integer_onep (range_binop (GT_EXPR, integer_type_node,
- low0, 0, low1, 0))
- || (((low0 == 0 && low1 == 0)
- || integer_onep (range_binop (EQ_EXPR, integer_type_node,
- low0, 0, low1, 0)))
- && integer_onep (range_binop (GT_EXPR, integer_type_node,
- high0, 1, high1, 1))))
- {
- temp = in0_p, in0_p = in1_p, in1_p = temp;
- tem = low0, low0 = low1, low1 = tem;
- tem = high0, high0 = high1, high1 = tem;
- }
-
- /* Now flag two cases, whether the ranges are disjoint or whether the
- second range is totally subsumed in the first. Note that the tests
- below are simplified by the ones above. */
- no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
- high0, 1, low1, 0));
- subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
- high1, 1, high0, 1));
-
- /* We now have four cases, depending on whether we are including or
- excluding the two ranges. */
- if (in0_p && in1_p)
- {
- /* If they don't overlap, the result is false. If the second range
- is a subset it is the result. Otherwise, the range is from the start
- of the second to the end of the first. */
- if (no_overlap)
- in_p = 0, low = high = 0;
- else if (subset)
- in_p = 1, low = low1, high = high1;
- else
- in_p = 1, low = low1, high = high0;
- }
-
- else if (in0_p && ! in1_p)
- {
- /* If they don't overlap, the result is the first range. If the
- second range is a subset of the first, we can't describe this as
- a single range unless both ranges end at the same place. If both
- ranges start in the same place, then the result is false.
- Otherwise, we go from the start of the first range to just before
- the start of the second. */
- if (no_overlap)
- in_p = 1, low = low0, high = high0;
- else if (subset
- && integer_zerop (range_binop (EQ_EXPR, integer_type_node,
- high0, 1, high1, 0)))
- return 0;
- else if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
- low0, 0, low1, 0)))
- in_p = 0, low = high = 0;
- else
- {
- in_p = 1, low = low0;
- high = range_binop (MINUS_EXPR, NULL_TREE, low1, 0,
- integer_one_node, 0);
- }
- }
-
- else if (! in0_p && in1_p)
- {
- /* If they don't overlap, the result is the second range. If the second
- is a subset of the first, the result is false. Otherwise,
- the range starts just after the first range and ends at the
- end of the second. */
- if (no_overlap)
- in_p = 1, low = low1, high = high1;
- else if (subset)
- in_p = 0, low = high = 0;
- else
- {
- in_p = 1, high = high1;
- low = range_binop (PLUS_EXPR, NULL_TREE, high0, 1,
- integer_one_node, 0);
- }
- }
-
- else
- {
- /* The case where we are excluding both ranges. Here the complex case
- is if they don't overlap. In that case, the only time we have a
- range is if they are adjacent. If the second is a subset of the
- first, the result is the first. Otherwise, the range to exclude
- starts at the beginning of the first range and ends at the end of the
- second. */
- if (no_overlap)
- {
- if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
- range_binop (PLUS_EXPR, NULL_TREE,
- high0, 1,
- integer_one_node, 1),
- 1, low1, 0)))
- in_p = 0, low = low0, high = high1;
- else
- return 0;
- }
- else if (subset)
- in_p = 0, low = low0, high = high0;
- else
- in_p = 0, low = low0, high = high1;
- }
-
- *pin_p = in_p, *plow = low, *phigh = high;
- return 1;
-}
-
-/* EXP is some logical combination of boolean tests. See if we can
- merge it into some range test. Return the new tree if so. */
-
-static tree
-fold_range_test (exp)
- tree exp;
-{
- int or_op = (TREE_CODE (exp) == TRUTH_ORIF_EXPR
- || TREE_CODE (exp) == TRUTH_OR_EXPR);
- int in0_p, in1_p, in_p;
- tree low0, low1, low, high0, high1, high;
- tree lhs = make_range (TREE_OPERAND (exp, 0), &in0_p, &low0, &high0);
- tree rhs = make_range (TREE_OPERAND (exp, 1), &in1_p, &low1, &high1);
- tree tem;
-
- /* If this is an OR operation, invert both sides; we will invert
- again at the end. */
- if (or_op)
- in0_p = ! in0_p, in1_p = ! in1_p;
-
- /* If both expressions are the same, if we can merge the ranges, and we
- can build the range test, return it or it inverted. If one of the
- ranges is always true or always false, consider it to be the same
- expression as the other. */
- if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
- && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
- in1_p, low1, high1)
- && 0 != (tem = (build_range_check (TREE_TYPE (exp),
- lhs != 0 ? lhs
- : rhs != 0 ? rhs : integer_zero_node,
- in_p, low, high))))
- return or_op ? invert_truthvalue (tem) : tem;
-
- /* On machines where the branch cost is expensive, if this is a
- short-circuited branch and the underlying object on both sides
- is the same, make a non-short-circuit operation. */
- else if (BRANCH_COST >= 2
- && (TREE_CODE (exp) == TRUTH_ANDIF_EXPR
- || TREE_CODE (exp) == TRUTH_ORIF_EXPR)
- && operand_equal_p (lhs, rhs, 0))
- {
- /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR. */
- if (simple_operand_p (lhs))
- return build (TREE_CODE (exp) == TRUTH_ANDIF_EXPR
- ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
- TREE_TYPE (exp), TREE_OPERAND (exp, 0),
- TREE_OPERAND (exp, 1));
- else
- {
- tree common = save_expr (lhs);
-
- if (0 != (lhs = build_range_check (TREE_TYPE (exp), common,
- or_op ? ! in0_p : in0_p,
- low0, high0))
- && (0 != (rhs = build_range_check (TREE_TYPE (exp), common,
- or_op ? ! in1_p : in1_p,
- low1, high1))))
- return build (TREE_CODE (exp) == TRUTH_ANDIF_EXPR
- ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
- TREE_TYPE (exp), lhs, rhs);
- }
- }
- else
- return 0;
-}
-
-/* Subroutine for fold_truthop: C is an INTEGER_CST interpreted as a P
- bit value. Arrange things so the extra bits will be set to zero if and
- only if C is signed-extended to its full width. If MASK is nonzero,
- it is an INTEGER_CST that should be AND'ed with the extra bits. */
-
-static tree
-unextend (c, p, unsignedp, mask)
- tree c;
- int p;
- int unsignedp;
- tree mask;
-{
- tree type = TREE_TYPE (c);
- int modesize = GET_MODE_BITSIZE (TYPE_MODE (type));
- tree temp;
-
- if (p == modesize || unsignedp)
- return c;
-
- /* We work by getting just the sign bit into the low-order bit, then
- into the high-order bit, then sign-extend. We then XOR that value
- with C. */
- temp = const_binop (RSHIFT_EXPR, c, size_int (p - 1), 0);
- temp = const_binop (BIT_AND_EXPR, temp, size_int (1), 0);
-
- /* We must use a signed type in order to get an arithmetic right shift.
- However, we must also avoid introducing accidental overflows, so that
- a subsequent call to integer_zerop will work. Hence we must
- do the type conversion here. At this point, the constant is either
- zero or one, and the conversion to a signed type can never overflow.
- We could get an overflow if this conversion is done anywhere else. */
- if (TREE_UNSIGNED (type))
- temp = convert (signed_type (type), temp);
-
- temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1), 0);
- temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1), 0);
- if (mask != 0)
- temp = const_binop (BIT_AND_EXPR, temp, convert (TREE_TYPE (c), mask), 0);
- /* If necessary, convert the type back to match the type of C. */
- if (TREE_UNSIGNED (type))
- temp = convert (type, temp);
-
- return convert (type, const_binop (BIT_XOR_EXPR, c, temp, 0));
-}
-
-/* Find ways of folding logical expressions of LHS and RHS:
- Try to merge two comparisons to the same innermost item.
- Look for range tests like "ch >= '0' && ch <= '9'".
- Look for combinations of simple terms on machines with expensive branches
- and evaluate the RHS unconditionally.
-
- For example, if we have p->a == 2 && p->b == 4 and we can make an
- object large enough to span both A and B, we can do this with a comparison
- against the object ANDed with the a mask.
-
- If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
- operations to do this with one comparison.
-
- We check for both normal comparisons and the BIT_AND_EXPRs made this by
- function and the one above.
-
- CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
- TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
-
- TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
- two operands.
-
- We return the simplified tree or 0 if no optimization is possible. */
-
-static tree
-fold_truthop (code, truth_type, lhs, rhs)
- enum tree_code code;
- tree truth_type, lhs, rhs;
-{
- /* If this is the "or" of two comparisons, we can do something if we
- the comparisons are NE_EXPR. If this is the "and", we can do something
- if the comparisons are EQ_EXPR. I.e.,
- (a->b == 2 && a->c == 4) can become (a->new == NEW).
-
- WANTED_CODE is this operation code. For single bit fields, we can
- convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
- comparison for one-bit fields. */
-
- enum tree_code wanted_code;
- enum tree_code lcode, rcode;
- tree ll_arg, lr_arg, rl_arg, rr_arg;
- tree ll_inner, lr_inner, rl_inner, rr_inner;
- int ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
- int rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
- int xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
- int lnbitsize, lnbitpos, rnbitsize, rnbitpos;
- int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
- enum machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
- enum machine_mode lnmode, rnmode;
- tree ll_mask, lr_mask, rl_mask, rr_mask;
- tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
- tree l_const, r_const;
- tree type, result;
- int first_bit, end_bit;
- int volatilep;
-
- /* Start by getting the comparison codes. Fail if anything is volatile.
- If one operand is a BIT_AND_EXPR with the constant one, treat it as if
- it were surrounded with a NE_EXPR. */
-
- if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
- return 0;
-
- lcode = TREE_CODE (lhs);
- rcode = TREE_CODE (rhs);
-
- if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
- lcode = NE_EXPR, lhs = build (NE_EXPR, truth_type, lhs, integer_zero_node);
-
- if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
- rcode = NE_EXPR, rhs = build (NE_EXPR, truth_type, rhs, integer_zero_node);
-
- if (TREE_CODE_CLASS (lcode) != '<' || TREE_CODE_CLASS (rcode) != '<')
- return 0;
-
- code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
- ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
-
- ll_arg = TREE_OPERAND (lhs, 0);
- lr_arg = TREE_OPERAND (lhs, 1);
- rl_arg = TREE_OPERAND (rhs, 0);
- rr_arg = TREE_OPERAND (rhs, 1);
-
- /* If the RHS can be evaluated unconditionally and its operands are
- simple, it wins to evaluate the RHS unconditionally on machines
- with expensive branches. In this case, this isn't a comparison
- that can be merged. */
-
- /* @@ I'm not sure it wins on the m88110 to do this if the comparisons
- are with zero (tmw). */
-
- if (BRANCH_COST >= 2
- && INTEGRAL_TYPE_P (TREE_TYPE (rhs))
- && simple_operand_p (rl_arg)
- && simple_operand_p (rr_arg))
- return build (code, truth_type, lhs, rhs);
-
- /* See if the comparisons can be merged. Then get all the parameters for
- each side. */
-
- if ((lcode != EQ_EXPR && lcode != NE_EXPR)
- || (rcode != EQ_EXPR && rcode != NE_EXPR))
- return 0;
-
- volatilep = 0;
- ll_inner = decode_field_reference (ll_arg,
- &ll_bitsize, &ll_bitpos, &ll_mode,
- &ll_unsignedp, &volatilep, &ll_mask,
- &ll_and_mask);
- lr_inner = decode_field_reference (lr_arg,
- &lr_bitsize, &lr_bitpos, &lr_mode,
- &lr_unsignedp, &volatilep, &lr_mask,
- &lr_and_mask);
- rl_inner = decode_field_reference (rl_arg,
- &rl_bitsize, &rl_bitpos, &rl_mode,
- &rl_unsignedp, &volatilep, &rl_mask,
- &rl_and_mask);
- rr_inner = decode_field_reference (rr_arg,
- &rr_bitsize, &rr_bitpos, &rr_mode,
- &rr_unsignedp, &volatilep, &rr_mask,
- &rr_and_mask);
-
- /* It must be true that the inner operation on the lhs of each
- comparison must be the same if we are to be able to do anything.
- Then see if we have constants. If not, the same must be true for
- the rhs's. */
- if (volatilep || ll_inner == 0 || rl_inner == 0
- || ! operand_equal_p (ll_inner, rl_inner, 0))
- return 0;
-
- if (TREE_CODE (lr_arg) == INTEGER_CST
- && TREE_CODE (rr_arg) == INTEGER_CST)
- l_const = lr_arg, r_const = rr_arg;
- else if (lr_inner == 0 || rr_inner == 0
- || ! operand_equal_p (lr_inner, rr_inner, 0))
- return 0;
- else
- l_const = r_const = 0;
-
- /* If either comparison code is not correct for our logical operation,
- fail. However, we can convert a one-bit comparison against zero into
- the opposite comparison against that bit being set in the field. */
-
- wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
- if (lcode != wanted_code)
- {
- if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
- l_const = ll_mask;
- else
- return 0;
- }
-
- if (rcode != wanted_code)
- {
- if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
- r_const = rl_mask;
- else
- return 0;
- }
-
- /* See if we can find a mode that contains both fields being compared on
- the left. If we can't, fail. Otherwise, update all constants and masks
- to be relative to a field of that size. */
- first_bit = MIN (ll_bitpos, rl_bitpos);
- end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
- lnmode = get_best_mode (end_bit - first_bit, first_bit,
- TYPE_ALIGN (TREE_TYPE (ll_inner)), word_mode,
- volatilep);
- if (lnmode == VOIDmode)
- return 0;
-
- lnbitsize = GET_MODE_BITSIZE (lnmode);
- lnbitpos = first_bit & ~ (lnbitsize - 1);
- type = type_for_size (lnbitsize, 1);
- xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
-
- if (BYTES_BIG_ENDIAN)
- {
- xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
- xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
- }
-
- ll_mask = const_binop (LSHIFT_EXPR, convert (type, ll_mask),
- size_int (xll_bitpos), 0);
- rl_mask = const_binop (LSHIFT_EXPR, convert (type, rl_mask),
- size_int (xrl_bitpos), 0);
-
- if (l_const)
- {
- l_const = convert (type, l_const);
- l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
- l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos), 0);
- if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
- fold (build1 (BIT_NOT_EXPR,
- type, ll_mask)),
- 0)))
- {
- warning ("comparison is always %s",
- wanted_code == NE_EXPR ? "one" : "zero");
-
- return convert (truth_type,
- wanted_code == NE_EXPR
- ? integer_one_node : integer_zero_node);
- }
- }
- if (r_const)
- {
- r_const = convert (type, r_const);
- r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
- r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos), 0);
- if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
- fold (build1 (BIT_NOT_EXPR,
- type, rl_mask)),
- 0)))
- {
- warning ("comparison is always %s",
- wanted_code == NE_EXPR ? "one" : "zero");
-
- return convert (truth_type,
- wanted_code == NE_EXPR
- ? integer_one_node : integer_zero_node);
- }
- }
-
- /* If the right sides are not constant, do the same for it. Also,
- disallow this optimization if a size or signedness mismatch occurs
- between the left and right sides. */
- if (l_const == 0)
- {
- if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
- || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
- /* Make sure the two fields on the right
- correspond to the left without being swapped. */
- || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
- return 0;
-
- first_bit = MIN (lr_bitpos, rr_bitpos);
- end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
- rnmode = get_best_mode (end_bit - first_bit, first_bit,
- TYPE_ALIGN (TREE_TYPE (lr_inner)), word_mode,
- volatilep);
- if (rnmode == VOIDmode)
- return 0;
-
- rnbitsize = GET_MODE_BITSIZE (rnmode);
- rnbitpos = first_bit & ~ (rnbitsize - 1);
- xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
-
- if (BYTES_BIG_ENDIAN)
- {
- xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
- xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
- }
-
- lr_mask = const_binop (LSHIFT_EXPR, convert (type, lr_mask),
- size_int (xlr_bitpos), 0);
- rr_mask = const_binop (LSHIFT_EXPR, convert (type, rr_mask),
- size_int (xrr_bitpos), 0);
-
- /* Make a mask that corresponds to both fields being compared.
- Do this for both items being compared. If the masks agree,
- we can do this by masking both and comparing the masked
- results. */
- ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
- lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask, 0);
- if (operand_equal_p (ll_mask, lr_mask, 0) && lnbitsize == rnbitsize)
- {
- lhs = make_bit_field_ref (ll_inner, type, lnbitsize, lnbitpos,
- ll_unsignedp || rl_unsignedp);
- rhs = make_bit_field_ref (lr_inner, type, rnbitsize, rnbitpos,
- lr_unsignedp || rr_unsignedp);
- if (! all_ones_mask_p (ll_mask, lnbitsize))
- {
- lhs = build (BIT_AND_EXPR, type, lhs, ll_mask);
- rhs = build (BIT_AND_EXPR, type, rhs, ll_mask);
- }
- return build (wanted_code, truth_type, lhs, rhs);
- }
-
- /* There is still another way we can do something: If both pairs of
- fields being compared are adjacent, we may be able to make a wider
- field containing them both. */
- if ((ll_bitsize + ll_bitpos == rl_bitpos
- && lr_bitsize + lr_bitpos == rr_bitpos)
- || (ll_bitpos == rl_bitpos + rl_bitsize
- && lr_bitpos == rr_bitpos + rr_bitsize))
- return build (wanted_code, truth_type,
- make_bit_field_ref (ll_inner, type,
- ll_bitsize + rl_bitsize,
- MIN (ll_bitpos, rl_bitpos),
- ll_unsignedp),
- make_bit_field_ref (lr_inner, type,
- lr_bitsize + rr_bitsize,
- MIN (lr_bitpos, rr_bitpos),
- lr_unsignedp));
-
- return 0;
- }
-
- /* Handle the case of comparisons with constants. If there is something in
- common between the masks, those bits of the constants must be the same.
- If not, the condition is always false. Test for this to avoid generating
- incorrect code below. */
- result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask, 0);
- if (! integer_zerop (result)
- && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const, 0),
- const_binop (BIT_AND_EXPR, result, r_const, 0)) != 1)
- {
- if (wanted_code == NE_EXPR)
- {
- warning ("`or' of unmatched not-equal tests is always 1");
- return convert (truth_type, integer_one_node);
- }
- else
- {
- warning ("`and' of mutually exclusive equal-tests is always zero");
- return convert (truth_type, integer_zero_node);
- }
- }
-
- /* Construct the expression we will return. First get the component
- reference we will make. Unless the mask is all ones the width of
- that field, perform the mask operation. Then compare with the
- merged constant. */
- result = make_bit_field_ref (ll_inner, type, lnbitsize, lnbitpos,
- ll_unsignedp || rl_unsignedp);
-
- ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
- if (! all_ones_mask_p (ll_mask, lnbitsize))
- result = build (BIT_AND_EXPR, type, result, ll_mask);
-
- return build (wanted_code, truth_type, result,
- const_binop (BIT_IOR_EXPR, l_const, r_const, 0));
-}
-
-/* If T contains a COMPOUND_EXPR which was inserted merely to evaluate
- S, a SAVE_EXPR, return the expression actually being evaluated. Note
- that we may sometimes modify the tree. */
-
-static tree
-strip_compound_expr (t, s)
- tree t;
- tree s;
-{
- tree type = TREE_TYPE (t);
- enum tree_code code = TREE_CODE (t);
-
- /* See if this is the COMPOUND_EXPR we want to eliminate. */
- if (code == COMPOUND_EXPR && TREE_CODE (TREE_OPERAND (t, 0)) == CONVERT_EXPR
- && TREE_OPERAND (TREE_OPERAND (t, 0), 0) == s)
- return TREE_OPERAND (t, 1);
-
- /* See if this is a COND_EXPR or a simple arithmetic operator. We
- don't bother handling any other types. */
- else if (code == COND_EXPR)
- {
- TREE_OPERAND (t, 0) = strip_compound_expr (TREE_OPERAND (t, 0), s);
- TREE_OPERAND (t, 1) = strip_compound_expr (TREE_OPERAND (t, 1), s);
- TREE_OPERAND (t, 2) = strip_compound_expr (TREE_OPERAND (t, 2), s);
- }
- else if (TREE_CODE_CLASS (code) == '1')
- TREE_OPERAND (t, 0) = strip_compound_expr (TREE_OPERAND (t, 0), s);
- else if (TREE_CODE_CLASS (code) == '<'
- || TREE_CODE_CLASS (code) == '2')
- {
- TREE_OPERAND (t, 0) = strip_compound_expr (TREE_OPERAND (t, 0), s);
- TREE_OPERAND (t, 1) = strip_compound_expr (TREE_OPERAND (t, 1), s);
- }
-
- return t;
-}
-
-/* Perform constant folding and related simplification of EXPR.
- The related simplifications include x*1 => x, x*0 => 0, etc.,
- and application of the associative law.
- NOP_EXPR conversions may be removed freely (as long as we
- are careful not to change the C type of the overall expression)
- We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
- but we can constant-fold them if they have constant operands. */
-
-tree
-fold (expr)
- tree expr;
-{
- register tree t = expr;
- tree t1 = NULL_TREE;
- tree tem;
- tree type = TREE_TYPE (expr);
- register tree arg0, arg1;
- register enum tree_code code = TREE_CODE (t);
- register int kind;
- int invert;
-
- /* WINS will be nonzero when the switch is done
- if all operands are constant. */
-
- int wins = 1;
-
- /* Don't try to process an RTL_EXPR since its operands aren't trees.
- Likewise for a SAVE_EXPR that's already been evaluated. */
- if (code == RTL_EXPR || (code == SAVE_EXPR && SAVE_EXPR_RTL (t)) != 0)
- return t;
-
- /* Return right away if already constant. */
- if (TREE_CONSTANT (t))
- {
- if (code == CONST_DECL)
- return DECL_INITIAL (t);
- return t;
- }
-
- kind = TREE_CODE_CLASS (code);
- if (code == NOP_EXPR || code == FLOAT_EXPR || code == CONVERT_EXPR)
- {
- tree subop;
-
- /* Special case for conversion ops that can have fixed point args. */
- arg0 = TREE_OPERAND (t, 0);
-
- /* Don't use STRIP_NOPS, because signedness of argument type matters. */
- if (arg0 != 0)
- STRIP_TYPE_NOPS (arg0);
-
- if (arg0 != 0 && TREE_CODE (arg0) == COMPLEX_CST)
- subop = TREE_REALPART (arg0);
- else
- subop = arg0;
-
- if (subop != 0 && TREE_CODE (subop) != INTEGER_CST
-#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
- && TREE_CODE (subop) != REAL_CST
-#endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
- )
- /* Note that TREE_CONSTANT isn't enough:
- static var addresses are constant but we can't
- do arithmetic on them. */
- wins = 0;
- }
- else if (kind == 'e' || kind == '<'
- || kind == '1' || kind == '2' || kind == 'r')
- {
- register int len = tree_code_length[(int) code];
- register int i;
- for (i = 0; i < len; i++)
- {
- tree op = TREE_OPERAND (t, i);
- tree subop;
-
- if (op == 0)
- continue; /* Valid for CALL_EXPR, at least. */
-
- if (kind == '<' || code == RSHIFT_EXPR)
- {
- /* Signedness matters here. Perhaps we can refine this
- later. */
- STRIP_TYPE_NOPS (op);
- }
- else
- {
- /* Strip any conversions that don't change the mode. */
- STRIP_NOPS (op);
- }
-
- if (TREE_CODE (op) == COMPLEX_CST)
- subop = TREE_REALPART (op);
- else
- subop = op;
-
- if (TREE_CODE (subop) != INTEGER_CST
-#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
- && TREE_CODE (subop) != REAL_CST
-#endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
- )
- /* Note that TREE_CONSTANT isn't enough:
- static var addresses are constant but we can't
- do arithmetic on them. */
- wins = 0;
-
- if (i == 0)
- arg0 = op;
- else if (i == 1)
- arg1 = op;
- }
- }
-
- /* If this is a commutative operation, and ARG0 is a constant, move it
- to ARG1 to reduce the number of tests below. */
- if ((code == PLUS_EXPR || code == MULT_EXPR || code == MIN_EXPR
- || code == MAX_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR
- || code == BIT_AND_EXPR)
- && (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST))
- {
- tem = arg0; arg0 = arg1; arg1 = tem;
-
- tem = TREE_OPERAND (t, 0); TREE_OPERAND (t, 0) = TREE_OPERAND (t, 1);
- TREE_OPERAND (t, 1) = tem;
- }
-
- /* Now WINS is set as described above,
- ARG0 is the first operand of EXPR,
- and ARG1 is the second operand (if it has more than one operand).
-
- First check for cases where an arithmetic operation is applied to a
- compound, conditional, or comparison operation. Push the arithmetic
- operation inside the compound or conditional to see if any folding
- can then be done. Convert comparison to conditional for this purpose.
- The also optimizes non-constant cases that used to be done in
- expand_expr.
-
- Before we do that, see if this is a BIT_AND_EXPR or a BIT_OR_EXPR,
- one of the operands is a comparison and the other is a comparison, a
- BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
- code below would make the expression more complex. Change it to a
- TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
- TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
-
- if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
- || code == EQ_EXPR || code == NE_EXPR)
- && ((truth_value_p (TREE_CODE (arg0))
- && (truth_value_p (TREE_CODE (arg1))
- || (TREE_CODE (arg1) == BIT_AND_EXPR
- && integer_onep (TREE_OPERAND (arg1, 1)))))
- || (truth_value_p (TREE_CODE (arg1))
- && (truth_value_p (TREE_CODE (arg0))
- || (TREE_CODE (arg0) == BIT_AND_EXPR
- && integer_onep (TREE_OPERAND (arg0, 1)))))))
- {
- t = fold (build (code == BIT_AND_EXPR ? TRUTH_AND_EXPR
- : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
- : TRUTH_XOR_EXPR,
- type, arg0, arg1));
-
- if (code == EQ_EXPR)
- t = invert_truthvalue (t);
-
- return t;
- }
-
- if (TREE_CODE_CLASS (code) == '1')
- {
- if (TREE_CODE (arg0) == COMPOUND_EXPR)
- return build (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
- fold (build1 (code, type, TREE_OPERAND (arg0, 1))));
- else if (TREE_CODE (arg0) == COND_EXPR)
- {
- t = fold (build (COND_EXPR, type, TREE_OPERAND (arg0, 0),
- fold (build1 (code, type, TREE_OPERAND (arg0, 1))),
- fold (build1 (code, type, TREE_OPERAND (arg0, 2)))));
-
- /* If this was a conversion, and all we did was to move into
- inside the COND_EXPR, bring it back out. But leave it if
- it is a conversion from integer to integer and the
- result precision is no wider than a word since such a
- conversion is cheap and may be optimized away by combine,
- while it couldn't if it were outside the COND_EXPR. Then return
- so we don't get into an infinite recursion loop taking the
- conversion out and then back in. */
-
- if ((code == NOP_EXPR || code == CONVERT_EXPR
- || code == NON_LVALUE_EXPR)
- && TREE_CODE (t) == COND_EXPR
- && TREE_CODE (TREE_OPERAND (t, 1)) == code
- && TREE_CODE (TREE_OPERAND (t, 2)) == code
- && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0))
- == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 2), 0)))
- && ! (INTEGRAL_TYPE_P (TREE_TYPE (t))
- && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0)))
- && TYPE_PRECISION (TREE_TYPE (t)) <= BITS_PER_WORD))
- t = build1 (code, type,
- build (COND_EXPR,
- TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0)),
- TREE_OPERAND (t, 0),
- TREE_OPERAND (TREE_OPERAND (t, 1), 0),
- TREE_OPERAND (TREE_OPERAND (t, 2), 0)));
- return t;
- }
- else if (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<')
- return fold (build (COND_EXPR, type, arg0,
- fold (build1 (code, type, integer_one_node)),
- fold (build1 (code, type, integer_zero_node))));
- }
- else if (TREE_CODE_CLASS (code) == '2'
- || TREE_CODE_CLASS (code) == '<')
- {
- if (TREE_CODE (arg1) == COMPOUND_EXPR)
- return build (COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
- fold (build (code, type,
- arg0, TREE_OPERAND (arg1, 1))));
- else if (TREE_CODE (arg1) == COND_EXPR
- || (TREE_CODE_CLASS (TREE_CODE (arg1)) == '<'
- && TREE_CODE_CLASS (code) != '<'))
- {
- tree test, true_value, false_value;
-
- if (TREE_CODE (arg1) == COND_EXPR)
- {
- test = TREE_OPERAND (arg1, 0);
- true_value = TREE_OPERAND (arg1, 1);
- false_value = TREE_OPERAND (arg1, 2);
- }
- else
- {
- tree testtype = TREE_TYPE (arg1);
- test = arg1;
- true_value = convert (testtype, integer_one_node);
- false_value = convert (testtype, integer_zero_node);
- }
-
- /* If ARG0 is complex we want to make sure we only evaluate
- it once. Though this is only required if it is volatile, it
- might be more efficient even if it is not. However, if we
- succeed in folding one part to a constant, we do not need
- to make this SAVE_EXPR. Since we do this optimization
- primarily to see if we do end up with constant and this
- SAVE_EXPR interferes with later optimizations, suppressing
- it when we can is important. */
-
- if (TREE_CODE (arg0) != SAVE_EXPR
- && ((TREE_CODE (arg0) != VAR_DECL
- && TREE_CODE (arg0) != PARM_DECL)
- || TREE_SIDE_EFFECTS (arg0)))
- {
- tree lhs = fold (build (code, type, arg0, true_value));
- tree rhs = fold (build (code, type, arg0, false_value));
-
- if (TREE_CONSTANT (lhs) || TREE_CONSTANT (rhs))
- return fold (build (COND_EXPR, type, test, lhs, rhs));
-
- arg0 = save_expr (arg0);
- }
-
- test = fold (build (COND_EXPR, type, test,
- fold (build (code, type, arg0, true_value)),
- fold (build (code, type, arg0, false_value))));
- if (TREE_CODE (arg0) == SAVE_EXPR)
- return build (COMPOUND_EXPR, type,
- convert (void_type_node, arg0),
- strip_compound_expr (test, arg0));
- else
- return convert (type, test);
- }
-
- else if (TREE_CODE (arg0) == COMPOUND_EXPR)
- return build (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
- fold (build (code, type, TREE_OPERAND (arg0, 1), arg1)));
- else if (TREE_CODE (arg0) == COND_EXPR
- || (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<'
- && TREE_CODE_CLASS (code) != '<'))
- {
- tree test, true_value, false_value;
-
- if (TREE_CODE (arg0) == COND_EXPR)
- {
- test = TREE_OPERAND (arg0, 0);
- true_value = TREE_OPERAND (arg0, 1);
- false_value = TREE_OPERAND (arg0, 2);
- }
- else
- {
- tree testtype = TREE_TYPE (arg0);
- test = arg0;
- true_value = convert (testtype, integer_one_node);
- false_value = convert (testtype, integer_zero_node);
- }
-
- if (TREE_CODE (arg1) != SAVE_EXPR
- && ((TREE_CODE (arg1) != VAR_DECL
- && TREE_CODE (arg1) != PARM_DECL)
- || TREE_SIDE_EFFECTS (arg1)))
- {
- tree lhs = fold (build (code, type, true_value, arg1));
- tree rhs = fold (build (code, type, false_value, arg1));
-
- if (TREE_CONSTANT (lhs) || TREE_CONSTANT (rhs)
- || TREE_CONSTANT (arg1))
- return fold (build (COND_EXPR, type, test, lhs, rhs));
-
- arg1 = save_expr (arg1);
- }
-
- test = fold (build (COND_EXPR, type, test,
- fold (build (code, type, true_value, arg1)),
- fold (build (code, type, false_value, arg1))));
- if (TREE_CODE (arg1) == SAVE_EXPR)
- return build (COMPOUND_EXPR, type,
- convert (void_type_node, arg1),
- strip_compound_expr (test, arg1));
- else
- return convert (type, test);
- }
- }
- else if (TREE_CODE_CLASS (code) == '<'
- && TREE_CODE (arg0) == COMPOUND_EXPR)
- return build (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
- fold (build (code, type, TREE_OPERAND (arg0, 1), arg1)));
- else if (TREE_CODE_CLASS (code) == '<'
- && TREE_CODE (arg1) == COMPOUND_EXPR)
- return build (COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
- fold (build (code, type, arg0, TREE_OPERAND (arg1, 1))));
-
- switch (code)
- {
- case INTEGER_CST:
- case REAL_CST:
- case STRING_CST:
- case COMPLEX_CST:
- case CONSTRUCTOR:
- return t;
-
- case CONST_DECL:
- return fold (DECL_INITIAL (t));
-
- case NOP_EXPR:
- case FLOAT_EXPR:
- case CONVERT_EXPR:
- case FIX_TRUNC_EXPR:
- /* Other kinds of FIX are not handled properly by fold_convert. */
-
- if (TREE_TYPE (TREE_OPERAND (t, 0)) == TREE_TYPE (t))
- return TREE_OPERAND (t, 0);
-
- /* Handle cases of two conversions in a row. */
- if (TREE_CODE (TREE_OPERAND (t, 0)) == NOP_EXPR
- || TREE_CODE (TREE_OPERAND (t, 0)) == CONVERT_EXPR)
- {
- tree inside_type = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
- tree inter_type = TREE_TYPE (TREE_OPERAND (t, 0));
- tree final_type = TREE_TYPE (t);
- int inside_int = INTEGRAL_TYPE_P (inside_type);
- int inside_ptr = POINTER_TYPE_P (inside_type);
- int inside_float = FLOAT_TYPE_P (inside_type);
- int inside_prec = TYPE_PRECISION (inside_type);
- int inside_unsignedp = TREE_UNSIGNED (inside_type);
- int inter_int = INTEGRAL_TYPE_P (inter_type);
- int inter_ptr = POINTER_TYPE_P (inter_type);
- int inter_float = FLOAT_TYPE_P (inter_type);
- int inter_prec = TYPE_PRECISION (inter_type);
- int inter_unsignedp = TREE_UNSIGNED (inter_type);
- int final_int = INTEGRAL_TYPE_P (final_type);
- int final_ptr = POINTER_TYPE_P (final_type);
- int final_float = FLOAT_TYPE_P (final_type);
- int final_prec = TYPE_PRECISION (final_type);
- int final_unsignedp = TREE_UNSIGNED (final_type);
-
- /* In addition to the cases of two conversions in a row
- handled below, if we are converting something to its own
- type via an object of identical or wider precision, neither
- conversion is needed. */
- if (inside_type == final_type
- && ((inter_int && final_int) || (inter_float && final_float))
- && inter_prec >= final_prec)
- return TREE_OPERAND (TREE_OPERAND (t, 0), 0);
-
- /* Likewise, if the intermediate and final types are either both
- float or both integer, we don't need the middle conversion if
- it is wider than the final type and doesn't change the signedness
- (for integers). Avoid this if the final type is a pointer
- since then we sometimes need the inner conversion. Likewise if
- the outer has a precision not equal to the size of its mode. */
- if ((((inter_int || inter_ptr) && (inside_int || inside_ptr))
- || (inter_float && inside_float))
- && inter_prec >= inside_prec
- && (inter_float || inter_unsignedp == inside_unsignedp)
- && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (final_type))
- && TYPE_MODE (final_type) == TYPE_MODE (inter_type))
- && ! final_ptr)
- return convert (final_type, TREE_OPERAND (TREE_OPERAND (t, 0), 0));
-
- /* Two conversions in a row are not needed unless:
- - some conversion is floating-point (overstrict for now), or
- - the intermediate type is narrower than both initial and
- final, or
- - the intermediate type and innermost type differ in signedness,
- and the outermost type is wider than the intermediate, or
- - the initial type is a pointer type and the precisions of the
- intermediate and final types differ, or
- - the final type is a pointer type and the precisions of the
- initial and intermediate types differ. */
- if (! inside_float && ! inter_float && ! final_float
- && (inter_prec > inside_prec || inter_prec > final_prec)
- && ! (inside_int && inter_int
- && inter_unsignedp != inside_unsignedp
- && inter_prec < final_prec)
- && ((inter_unsignedp && inter_prec > inside_prec)
- == (final_unsignedp && final_prec > inter_prec))
- && ! (inside_ptr && inter_prec != final_prec)
- && ! (final_ptr && inside_prec != inter_prec)
- && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (final_type))
- && TYPE_MODE (final_type) == TYPE_MODE (inter_type))
- && ! final_ptr)
- return convert (final_type, TREE_OPERAND (TREE_OPERAND (t, 0), 0));
- }
-
- if (TREE_CODE (TREE_OPERAND (t, 0)) == MODIFY_EXPR
- && TREE_CONSTANT (TREE_OPERAND (TREE_OPERAND (t, 0), 1))
- /* Detect assigning a bitfield. */
- && !(TREE_CODE (TREE_OPERAND (TREE_OPERAND (t, 0), 0)) == COMPONENT_REF
- && DECL_BIT_FIELD (TREE_OPERAND (TREE_OPERAND (TREE_OPERAND (t, 0), 0), 1))))
- {
- /* Don't leave an assignment inside a conversion
- unless assigning a bitfield. */
- tree prev = TREE_OPERAND (t, 0);
- TREE_OPERAND (t, 0) = TREE_OPERAND (prev, 1);
- /* First do the assignment, then return converted constant. */
- t = build (COMPOUND_EXPR, TREE_TYPE (t), prev, fold (t));
- TREE_USED (t) = 1;
- return t;
- }
- if (!wins)
- {
- TREE_CONSTANT (t) = TREE_CONSTANT (arg0);
- return t;
- }
- return fold_convert (t, arg0);
-
-#if 0 /* This loses on &"foo"[0]. */
- case ARRAY_REF:
- {
- int i;
-
- /* Fold an expression like: "foo"[2] */
- if (TREE_CODE (arg0) == STRING_CST
- && TREE_CODE (arg1) == INTEGER_CST
- && !TREE_INT_CST_HIGH (arg1)
- && (i = TREE_INT_CST_LOW (arg1)) < TREE_STRING_LENGTH (arg0))
- {
- t = build_int_2 (TREE_STRING_POINTER (arg0)[i], 0);
- TREE_TYPE (t) = TREE_TYPE (TREE_TYPE (arg0));
- force_fit_type (t, 0);
- }
- }
- return t;
-#endif /* 0 */
-
- case COMPONENT_REF:
- if (TREE_CODE (arg0) == CONSTRUCTOR)
- {
- tree m = purpose_member (arg1, CONSTRUCTOR_ELTS (arg0));
- if (m)
- t = TREE_VALUE (m);
- }
- return t;
-
- case RANGE_EXPR:
- TREE_CONSTANT (t) = wins;
- return t;
-
- case NEGATE_EXPR:
- if (wins)
- {
- if (TREE_CODE (arg0) == INTEGER_CST)
- {
- HOST_WIDE_INT low, high;
- int overflow = neg_double (TREE_INT_CST_LOW (arg0),
- TREE_INT_CST_HIGH (arg0),
- &low, &high);
- t = build_int_2 (low, high);
- TREE_TYPE (t) = type;
- TREE_OVERFLOW (t)
- = (TREE_OVERFLOW (arg0)
- | force_fit_type (t, overflow && !TREE_UNSIGNED (type)));
- TREE_CONSTANT_OVERFLOW (t)
- = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg0);
- }
- else if (TREE_CODE (arg0) == REAL_CST)
- t = build_real (type, REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
- }
- else if (TREE_CODE (arg0) == NEGATE_EXPR)
- return TREE_OPERAND (arg0, 0);
-
- /* Convert - (a - b) to (b - a) for non-floating-point. */
- else if (TREE_CODE (arg0) == MINUS_EXPR && ! FLOAT_TYPE_P (type))
- return build (MINUS_EXPR, type, TREE_OPERAND (arg0, 1),
- TREE_OPERAND (arg0, 0));
-
- return t;
-
- case ABS_EXPR:
- if (wins)
- {
- if (TREE_CODE (arg0) == INTEGER_CST)
- {
- if (! TREE_UNSIGNED (type)
- && TREE_INT_CST_HIGH (arg0) < 0)
- {
- HOST_WIDE_INT low, high;
- int overflow = neg_double (TREE_INT_CST_LOW (arg0),
- TREE_INT_CST_HIGH (arg0),
- &low, &high);
- t = build_int_2 (low, high);
- TREE_TYPE (t) = type;
- TREE_OVERFLOW (t)
- = (TREE_OVERFLOW (arg0)
- | force_fit_type (t, overflow));
- TREE_CONSTANT_OVERFLOW (t)
- = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg0);
- }
- }
- else if (TREE_CODE (arg0) == REAL_CST)
- {
- if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
- t = build_real (type,
- REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
- }
- }
- else if (TREE_CODE (arg0) == ABS_EXPR || TREE_CODE (arg0) == NEGATE_EXPR)
- return build1 (ABS_EXPR, type, TREE_OPERAND (arg0, 0));
- return t;
-
- case CONJ_EXPR:
- if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
- return arg0;
- else if (TREE_CODE (arg0) == COMPLEX_EXPR)
- return build (COMPLEX_EXPR, TREE_TYPE (arg0),
- TREE_OPERAND (arg0, 0),
- fold (build1 (NEGATE_EXPR,
- TREE_TYPE (TREE_TYPE (arg0)),
- TREE_OPERAND (arg0, 1))));
- else if (TREE_CODE (arg0) == COMPLEX_CST)
- return build_complex (type, TREE_OPERAND (arg0, 0),
- fold (build1 (NEGATE_EXPR,
- TREE_TYPE (TREE_TYPE (arg0)),
- TREE_OPERAND (arg0, 1))));
- else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
- return fold (build (TREE_CODE (arg0), type,
- fold (build1 (CONJ_EXPR, type,
- TREE_OPERAND (arg0, 0))),
- fold (build1 (CONJ_EXPR,
- type, TREE_OPERAND (arg0, 1)))));
- else if (TREE_CODE (arg0) == CONJ_EXPR)
- return TREE_OPERAND (arg0, 0);
- return t;
-
- case BIT_NOT_EXPR:
- if (wins)
- {
- t = build_int_2 (~ TREE_INT_CST_LOW (arg0),
- ~ TREE_INT_CST_HIGH (arg0));
- TREE_TYPE (t) = type;
- force_fit_type (t, 0);
- TREE_OVERFLOW (t) = TREE_OVERFLOW (arg0);
- TREE_CONSTANT_OVERFLOW (t) = TREE_CONSTANT_OVERFLOW (arg0);
- }
- else if (TREE_CODE (arg0) == BIT_NOT_EXPR)
- return TREE_OPERAND (arg0, 0);
- return t;
-
- case PLUS_EXPR:
- /* A + (-B) -> A - B */
- if (TREE_CODE (arg1) == NEGATE_EXPR)
- return fold (build (MINUS_EXPR, type, arg0, TREE_OPERAND (arg1, 0)));
- else if (! FLOAT_TYPE_P (type))
- {
- if (integer_zerop (arg1))
- return non_lvalue (convert (type, arg0));
-
- /* If we are adding two BIT_AND_EXPR's, both of which are and'ing
- with a constant, and the two constants have no bits in common,
- we should treat this as a BIT_IOR_EXPR since this may produce more
- simplifications. */
- if (TREE_CODE (arg0) == BIT_AND_EXPR
- && TREE_CODE (arg1) == BIT_AND_EXPR
- && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
- && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
- && integer_zerop (const_binop (BIT_AND_EXPR,
- TREE_OPERAND (arg0, 1),
- TREE_OPERAND (arg1, 1), 0)))
- {
- code = BIT_IOR_EXPR;
- goto bit_ior;
- }
-
- /* (A * C) + (B * C) -> (A+B) * C. Since we are most concerned
- about the case where C is a constant, just try one of the
- four possibilities. */
-
- if (TREE_CODE (arg0) == MULT_EXPR && TREE_CODE (arg1) == MULT_EXPR
- && operand_equal_p (TREE_OPERAND (arg0, 1),
- TREE_OPERAND (arg1, 1), 0))
- return fold (build (MULT_EXPR, type,
- fold (build (PLUS_EXPR, type,
- TREE_OPERAND (arg0, 0),
- TREE_OPERAND (arg1, 0))),
- TREE_OPERAND (arg0, 1)));
- }
- /* In IEEE floating point, x+0 may not equal x. */
- else if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
- || flag_fast_math)
- && real_zerop (arg1))
- return non_lvalue (convert (type, arg0));
- associate:
- /* In most languages, can't associate operations on floats
- through parentheses. Rather than remember where the parentheses
- were, we don't associate floats at all. It shouldn't matter much.
- However, associating multiplications is only very slightly
- inaccurate, so do that if -ffast-math is specified. */
- if (FLOAT_TYPE_P (type)
- && ! (flag_fast_math && code == MULT_EXPR))
- goto binary;
-
- /* The varsign == -1 cases happen only for addition and subtraction.
- It says that the arg that was split was really CON minus VAR.
- The rest of the code applies to all associative operations. */
- if (!wins)
- {
- tree var, con;
- int varsign;
-
- if (split_tree (arg0, code, &var, &con, &varsign))
- {
- if (varsign == -1)
- {
- /* EXPR is (CON-VAR) +- ARG1. */
- /* If it is + and VAR==ARG1, return just CONST. */
- if (code == PLUS_EXPR && operand_equal_p (var, arg1, 0))
- return convert (TREE_TYPE (t), con);
-
- /* If ARG0 is a constant, don't change things around;
- instead keep all the constant computations together. */
-
- if (TREE_CONSTANT (arg0))
- return t;
-
- /* Otherwise return (CON +- ARG1) - VAR. */
- t = build (MINUS_EXPR, type,
- fold (build (code, type, con, arg1)), var);
- }
- else
- {
- /* EXPR is (VAR+CON) +- ARG1. */
- /* If it is - and VAR==ARG1, return just CONST. */
- if (code == MINUS_EXPR && operand_equal_p (var, arg1, 0))
- return convert (TREE_TYPE (t), con);
-
- /* If ARG0 is a constant, don't change things around;
- instead keep all the constant computations together. */
-
- if (TREE_CONSTANT (arg0))
- return t;
-
- /* Otherwise return VAR +- (ARG1 +- CON). */
- tem = fold (build (code, type, arg1, con));
- t = build (code, type, var, tem);
-
- if (integer_zerop (tem)
- && (code == PLUS_EXPR || code == MINUS_EXPR))
- return convert (type, var);
- /* If we have x +/- (c - d) [c an explicit integer]
- change it to x -/+ (d - c) since if d is relocatable
- then the latter can be a single immediate insn
- and the former cannot. */
- if (TREE_CODE (tem) == MINUS_EXPR
- && TREE_CODE (TREE_OPERAND (tem, 0)) == INTEGER_CST)
- {
- tree tem1 = TREE_OPERAND (tem, 1);
- TREE_OPERAND (tem, 1) = TREE_OPERAND (tem, 0);
- TREE_OPERAND (tem, 0) = tem1;
- TREE_SET_CODE (t,
- (code == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR));
- }
- }
- return t;
- }
-
- if (split_tree (arg1, code, &var, &con, &varsign))
- {
- if (TREE_CONSTANT (arg1))
- return t;
-
- if (varsign == -1)
- TREE_SET_CODE (t,
- (code == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR));
-
- /* EXPR is ARG0 +- (CON +- VAR). */
- if (TREE_CODE (t) == MINUS_EXPR
- && operand_equal_p (var, arg0, 0))
- {
- /* If VAR and ARG0 cancel, return just CON or -CON. */
- if (code == PLUS_EXPR)
- return convert (TREE_TYPE (t), con);
- return fold (build1 (NEGATE_EXPR, TREE_TYPE (t),
- convert (TREE_TYPE (t), con)));
- }
-
- t = build (TREE_CODE (t), type,
- fold (build (code, TREE_TYPE (t), arg0, con)), var);
-
- if (integer_zerop (TREE_OPERAND (t, 0))
- && TREE_CODE (t) == PLUS_EXPR)
- return convert (TREE_TYPE (t), var);
- return t;
- }
- }
- binary:
-#if defined (REAL_IS_NOT_DOUBLE) && ! defined (REAL_ARITHMETIC)
- if (TREE_CODE (arg1) == REAL_CST)
- return t;
-#endif /* REAL_IS_NOT_DOUBLE, and no REAL_ARITHMETIC */
- if (wins)
- t1 = const_binop (code, arg0, arg1, 0);
- if (t1 != NULL_TREE)
- {
- /* The return value should always have
- the same type as the original expression. */
- if (TREE_TYPE (t1) != TREE_TYPE (t))
- t1 = convert (TREE_TYPE (t), t1);
-
- return t1;
- }
- return t;
-
- case MINUS_EXPR:
- if (! FLOAT_TYPE_P (type))
- {
- if (! wins && integer_zerop (arg0))
- return build1 (NEGATE_EXPR, type, arg1);
- if (integer_zerop (arg1))
- return non_lvalue (convert (type, arg0));
-
- /* (A * C) - (B * C) -> (A-B) * C. Since we are most concerned
- about the case where C is a constant, just try one of the
- four possibilities. */
-
- if (TREE_CODE (arg0) == MULT_EXPR && TREE_CODE (arg1) == MULT_EXPR
- && operand_equal_p (TREE_OPERAND (arg0, 1),
- TREE_OPERAND (arg1, 1), 0))
- return fold (build (MULT_EXPR, type,
- fold (build (MINUS_EXPR, type,
- TREE_OPERAND (arg0, 0),
- TREE_OPERAND (arg1, 0))),
- TREE_OPERAND (arg0, 1)));
- }
- /* Convert A - (-B) to A + B. */
- else if (TREE_CODE (arg1) == NEGATE_EXPR)
- return fold (build (PLUS_EXPR, type, arg0, TREE_OPERAND (arg1, 0)));
-
- else if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
- || flag_fast_math)
- {
- /* Except with IEEE floating point, 0-x equals -x. */
- if (! wins && real_zerop (arg0))
- return build1 (NEGATE_EXPR, type, arg1);
- /* Except with IEEE floating point, x-0 equals x. */
- if (real_zerop (arg1))
- return non_lvalue (convert (type, arg0));
- }
-
- /* Fold &x - &x. This can happen from &x.foo - &x.
- This is unsafe for certain floats even in non-IEEE formats.
- In IEEE, it is unsafe because it does wrong for NaNs.
- Also note that operand_equal_p is always false if an operand
- is volatile. */
-
- if ((! FLOAT_TYPE_P (type) || flag_fast_math)
- && operand_equal_p (arg0, arg1, 0))
- return convert (type, integer_zero_node);
-
- goto associate;
-
- case MULT_EXPR:
- if (! FLOAT_TYPE_P (type))
- {
- if (integer_zerop (arg1))
- return omit_one_operand (type, arg1, arg0);
- if (integer_onep (arg1))
- return non_lvalue (convert (type, arg0));
-
- /* ((A / C) * C) is A if the division is an
- EXACT_DIV_EXPR. Since C is normally a constant,
- just check for one of the four possibilities. */
-
- if (TREE_CODE (arg0) == EXACT_DIV_EXPR
- && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
- return TREE_OPERAND (arg0, 0);
-
- /* (a * (1 << b)) is (a << b) */
- if (TREE_CODE (arg1) == LSHIFT_EXPR
- && integer_onep (TREE_OPERAND (arg1, 0)))
- return fold (build (LSHIFT_EXPR, type, arg0,
- TREE_OPERAND (arg1, 1)));
- if (TREE_CODE (arg0) == LSHIFT_EXPR
- && integer_onep (TREE_OPERAND (arg0, 0)))
- return fold (build (LSHIFT_EXPR, type, arg1,
- TREE_OPERAND (arg0, 1)));
- }
- else
- {
- /* x*0 is 0, except for IEEE floating point. */
- if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
- || flag_fast_math)
- && real_zerop (arg1))
- return omit_one_operand (type, arg1, arg0);
- /* In IEEE floating point, x*1 is not equivalent to x for snans.
- However, ANSI says we can drop signals,
- so we can do this anyway. */
- if (real_onep (arg1))
- return non_lvalue (convert (type, arg0));
- /* x*2 is x+x */
- if (! wins && real_twop (arg1))
- {
- tree arg = save_expr (arg0);
- return build (PLUS_EXPR, type, arg, arg);
- }
- }
- goto associate;
-
- case BIT_IOR_EXPR:
- bit_ior:
- {
- register enum tree_code code0, code1;
-
- if (integer_all_onesp (arg1))
- return omit_one_operand (type, arg1, arg0);
- if (integer_zerop (arg1))
- return non_lvalue (convert (type, arg0));
- t1 = distribute_bit_expr (code, type, arg0, arg1);
- if (t1 != NULL_TREE)
- return t1;
-
- /* (A << C1) | (A >> C2) if A is unsigned and C1+C2 is the size of A
- is a rotate of A by C1 bits. */
- /* (A << B) | (A >> (Z - B)) if A is unsigned and Z is the size of A
- is a rotate of A by B bits. */
-
- code0 = TREE_CODE (arg0);
- code1 = TREE_CODE (arg1);
- if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
- || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
- && operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1,0), 0)
- && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
- {
- register tree tree01, tree11;
- register enum tree_code code01, code11;
-
- tree01 = TREE_OPERAND (arg0, 1);
- tree11 = TREE_OPERAND (arg1, 1);
- code01 = TREE_CODE (tree01);
- code11 = TREE_CODE (tree11);
- if (code01 == INTEGER_CST
- && code11 == INTEGER_CST
- && TREE_INT_CST_HIGH (tree01) == 0
- && TREE_INT_CST_HIGH (tree11) == 0
- && ((TREE_INT_CST_LOW (tree01) + TREE_INT_CST_LOW (tree11))
- == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
- return build (LROTATE_EXPR, type, TREE_OPERAND (arg0, 0),
- code0 == LSHIFT_EXPR ? tree01 : tree11);
- else if (code11 == MINUS_EXPR
- && TREE_CODE (TREE_OPERAND (tree11, 0)) == INTEGER_CST
- && TREE_INT_CST_HIGH (TREE_OPERAND (tree11, 0)) == 0
- && TREE_INT_CST_LOW (TREE_OPERAND (tree11, 0))
- == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)))
- && operand_equal_p (tree01, TREE_OPERAND (tree11, 1), 0))
- return build (code0 == LSHIFT_EXPR ? LROTATE_EXPR : RROTATE_EXPR,
- type, TREE_OPERAND (arg0, 0), tree01);
- else if (code01 == MINUS_EXPR
- && TREE_CODE (TREE_OPERAND (tree01, 0)) == INTEGER_CST
- && TREE_INT_CST_HIGH (TREE_OPERAND (tree01, 0)) == 0
- && TREE_INT_CST_LOW (TREE_OPERAND (tree01, 0))
- == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)))
- && operand_equal_p (tree11, TREE_OPERAND (tree01, 1), 0))
- return build (code0 != LSHIFT_EXPR ? LROTATE_EXPR : RROTATE_EXPR,
- type, TREE_OPERAND (arg0, 0), tree11);
- }
-
- goto associate;
- }
-
- case BIT_XOR_EXPR:
- if (integer_zerop (arg1))
- return non_lvalue (convert (type, arg0));
- if (integer_all_onesp (arg1))
- return fold (build1 (BIT_NOT_EXPR, type, arg0));
- goto associate;
-
- case BIT_AND_EXPR:
- bit_and:
- if (integer_all_onesp (arg1))
- return non_lvalue (convert (type, arg0));
- if (integer_zerop (arg1))
- return omit_one_operand (type, arg1, arg0);
- t1 = distribute_bit_expr (code, type, arg0, arg1);
- if (t1 != NULL_TREE)
- return t1;
- /* Simplify ((int)c & 0x377) into (int)c, if c is unsigned char. */
- if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == NOP_EXPR
- && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1, 0))))
- {
- int prec = TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1, 0)));
- if (prec < BITS_PER_WORD && prec < HOST_BITS_PER_WIDE_INT
- && (~TREE_INT_CST_LOW (arg0)
- & (((HOST_WIDE_INT) 1 << prec) - 1)) == 0)
- return build1 (NOP_EXPR, type, TREE_OPERAND (arg1, 0));
- }
- if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
- && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
- {
- int prec = TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)));
- if (prec < BITS_PER_WORD && prec < HOST_BITS_PER_WIDE_INT
- && (~TREE_INT_CST_LOW (arg1)
- & (((HOST_WIDE_INT) 1 << prec) - 1)) == 0)
- return build1 (NOP_EXPR, type, TREE_OPERAND (arg0, 0));
- }
- goto associate;
-
- case BIT_ANDTC_EXPR:
- if (integer_all_onesp (arg0))
- return non_lvalue (convert (type, arg1));
- if (integer_zerop (arg0))
- return omit_one_operand (type, arg0, arg1);
- if (TREE_CODE (arg1) == INTEGER_CST)
- {
- arg1 = fold (build1 (BIT_NOT_EXPR, type, arg1));
- code = BIT_AND_EXPR;
- goto bit_and;
- }
- goto binary;
-
- case RDIV_EXPR:
- /* In most cases, do nothing with a divide by zero. */
-#if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
-#ifndef REAL_INFINITY
- if (TREE_CODE (arg1) == REAL_CST && real_zerop (arg1))
- return t;
-#endif
-#endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
-
- /* In IEEE floating point, x/1 is not equivalent to x for snans.
- However, ANSI says we can drop signals, so we can do this anyway. */
- if (real_onep (arg1))
- return non_lvalue (convert (type, arg0));
-
- /* If ARG1 is a constant, we can convert this to a multiply by the
- reciprocal. This does not have the same rounding properties,
- so only do this if -ffast-math. We can actually always safely
- do it if ARG1 is a power of two, but it's hard to tell if it is
- or not in a portable manner. */
- if (TREE_CODE (arg1) == REAL_CST)
- {
- if (flag_fast_math
- && 0 != (tem = const_binop (code, build_real (type, dconst1),
- arg1, 0)))
- return fold (build (MULT_EXPR, type, arg0, tem));
- /* Find the reciprocal if optimizing and the result is exact. */
- else if (optimize)
- {
- REAL_VALUE_TYPE r;
- r = TREE_REAL_CST (arg1);
- if (exact_real_inverse (TYPE_MODE(TREE_TYPE(arg0)), &r))
- {
- tem = build_real (type, r);
- return fold (build (MULT_EXPR, type, arg0, tem));
- }
- }
- }
- goto binary;
-
- case TRUNC_DIV_EXPR:
- case ROUND_DIV_EXPR:
- case FLOOR_DIV_EXPR:
- case CEIL_DIV_EXPR:
- case EXACT_DIV_EXPR:
- if (integer_onep (arg1))
- return non_lvalue (convert (type, arg0));
- if (integer_zerop (arg1))
- return t;
-
- /* If we have ((a / C1) / C2) where both division are the same type, try
- to simplify. First see if C1 * C2 overflows or not. */
- if (TREE_CODE (arg0) == code && TREE_CODE (arg1) == INTEGER_CST
- && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
- {
- tree new_divisor;
-
- new_divisor = const_binop (MULT_EXPR, TREE_OPERAND (arg0, 1), arg1, 0);
- tem = const_binop (FLOOR_DIV_EXPR, new_divisor, arg1, 0);
-
- if (TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)) == TREE_INT_CST_LOW (tem)
- && TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1)) == TREE_INT_CST_HIGH (tem))
- {
- /* If no overflow, divide by C1*C2. */
- return fold (build (code, type, TREE_OPERAND (arg0, 0), new_divisor));
- }
- }
-
- /* Look for ((a * C1) / C3) or (((a * C1) + C2) / C3),
- where C1 % C3 == 0 or C3 % C1 == 0. We can simplify these
- expressions, which often appear in the offsets or sizes of
- objects with a varying size. Only deal with positive divisors
- and multiplicands. If C2 is negative, we must have C2 % C3 == 0.
-
- Look for NOPs and SAVE_EXPRs inside. */
-
- if (TREE_CODE (arg1) == INTEGER_CST
- && tree_int_cst_sgn (arg1) >= 0)
- {
- int have_save_expr = 0;
- tree c2 = integer_zero_node;
- tree xarg0 = arg0;
-
- if (TREE_CODE (xarg0) == SAVE_EXPR && SAVE_EXPR_RTL (xarg0) == 0)
- have_save_expr = 1, xarg0 = TREE_OPERAND (xarg0, 0);
-
- STRIP_NOPS (xarg0);
-
- if (TREE_CODE (xarg0) == PLUS_EXPR
- && TREE_CODE (TREE_OPERAND (xarg0, 1)) == INTEGER_CST)
- c2 = TREE_OPERAND (xarg0, 1), xarg0 = TREE_OPERAND (xarg0, 0);
- else if (TREE_CODE (xarg0) == MINUS_EXPR
- && TREE_CODE (TREE_OPERAND (xarg0, 1)) == INTEGER_CST
- /* If we are doing this computation unsigned, the negate
- is incorrect. */
- && ! TREE_UNSIGNED (type))
- {
- c2 = fold (build1 (NEGATE_EXPR, type, TREE_OPERAND (xarg0, 1)));
- xarg0 = TREE_OPERAND (xarg0, 0);
- }
-
- if (TREE_CODE (xarg0) == SAVE_EXPR && SAVE_EXPR_RTL (xarg0) == 0)
- have_save_expr = 1, xarg0 = TREE_OPERAND (xarg0, 0);
-
- STRIP_NOPS (xarg0);
-
- if (TREE_CODE (xarg0) == MULT_EXPR
- && TREE_CODE (TREE_OPERAND (xarg0, 1)) == INTEGER_CST
- && tree_int_cst_sgn (TREE_OPERAND (xarg0, 1)) >= 0
- && (integer_zerop (const_binop (TRUNC_MOD_EXPR,
- TREE_OPERAND (xarg0, 1), arg1, 1))
- || integer_zerop (const_binop (TRUNC_MOD_EXPR, arg1,
- TREE_OPERAND (xarg0, 1), 1)))
- && (tree_int_cst_sgn (c2) >= 0
- || integer_zerop (const_binop (TRUNC_MOD_EXPR, c2,
- arg1, 1))))
- {
- tree outer_div = integer_one_node;
- tree c1 = TREE_OPERAND (xarg0, 1);
- tree c3 = arg1;
-
- /* If C3 > C1, set them equal and do a divide by
- C3/C1 at the end of the operation. */
- if (tree_int_cst_lt (c1, c3))
- outer_div = const_binop (code, c3, c1, 0), c3 = c1;
-
- /* The result is A * (C1/C3) + (C2/C3). */
- t = fold (build (PLUS_EXPR, type,
- fold (build (MULT_EXPR, type,
- TREE_OPERAND (xarg0, 0),
- const_binop (code, c1, c3, 1))),
- const_binop (code, c2, c3, 1)));
-
- if (! integer_onep (outer_div))
- t = fold (build (code, type, t, convert (type, outer_div)));
-
- if (have_save_expr)
- t = save_expr (t);
-
- return t;
- }
- }
-
- goto binary;
-
- case CEIL_MOD_EXPR:
- case FLOOR_MOD_EXPR:
- case ROUND_MOD_EXPR:
- case TRUNC_MOD_EXPR:
- if (integer_onep (arg1))
- return omit_one_operand (type, integer_zero_node, arg0);
- if (integer_zerop (arg1))
- return t;
-
- /* Look for ((a * C1) % C3) or (((a * C1) + C2) % C3),
- where C1 % C3 == 0. Handle similarly to the division case,
- but don't bother with SAVE_EXPRs. */
-
- if (TREE_CODE (arg1) == INTEGER_CST
- && ! integer_zerop (arg1))
- {
- tree c2 = integer_zero_node;
- tree xarg0 = arg0;
-
- if (TREE_CODE (xarg0) == PLUS_EXPR
- && TREE_CODE (TREE_OPERAND (xarg0, 1)) == INTEGER_CST)
- c2 = TREE_OPERAND (xarg0, 1), xarg0 = TREE_OPERAND (xarg0, 0);
- else if (TREE_CODE (xarg0) == MINUS_EXPR
- && TREE_CODE (TREE_OPERAND (xarg0, 1)) == INTEGER_CST
- && ! TREE_UNSIGNED (type))
- {
- c2 = fold (build1 (NEGATE_EXPR, type, TREE_OPERAND (xarg0, 1)));
- xarg0 = TREE_OPERAND (xarg0, 0);
- }
-
- STRIP_NOPS (xarg0);
-
- if (TREE_CODE (xarg0) == MULT_EXPR
- && TREE_CODE (TREE_OPERAND (xarg0, 1)) == INTEGER_CST
- && integer_zerop (const_binop (TRUNC_MOD_EXPR,
- TREE_OPERAND (xarg0, 1),
- arg1, 1))
- && tree_int_cst_sgn (c2) >= 0)
- /* The result is (C2%C3). */
- return omit_one_operand (type, const_binop (code, c2, arg1, 1),
- TREE_OPERAND (xarg0, 0));
- }
-
- goto binary;
-
- case LSHIFT_EXPR:
- case RSHIFT_EXPR:
- case LROTATE_EXPR:
- case RROTATE_EXPR:
- if (integer_zerop (arg1))
- return non_lvalue (convert (type, arg0));
- /* Since negative shift count is not well-defined,
- don't try to compute it in the compiler. */
- if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
- return t;
- /* Rewrite an LROTATE_EXPR by a constant into an
- RROTATE_EXPR by a new constant. */
- if (code == LROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST)
- {
- TREE_SET_CODE (t, RROTATE_EXPR);
- code = RROTATE_EXPR;
- TREE_OPERAND (t, 1) = arg1
- = const_binop
- (MINUS_EXPR,
- convert (TREE_TYPE (arg1),
- build_int_2 (GET_MODE_BITSIZE (TYPE_MODE (type)), 0)),
- arg1, 0);
- if (tree_int_cst_sgn (arg1) < 0)
- return t;
- }
-
- /* If we have a rotate of a bit operation with the rotate count and
- the second operand of the bit operation both constant,
- permute the two operations. */
- if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
- && (TREE_CODE (arg0) == BIT_AND_EXPR
- || TREE_CODE (arg0) == BIT_ANDTC_EXPR
- || TREE_CODE (arg0) == BIT_IOR_EXPR
- || TREE_CODE (arg0) == BIT_XOR_EXPR)
- && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
- return fold (build (TREE_CODE (arg0), type,
- fold (build (code, type,
- TREE_OPERAND (arg0, 0), arg1)),
- fold (build (code, type,
- TREE_OPERAND (arg0, 1), arg1))));
-
- /* Two consecutive rotates adding up to the width of the mode can
- be ignored. */
- if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
- && TREE_CODE (arg0) == RROTATE_EXPR
- && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
- && TREE_INT_CST_HIGH (arg1) == 0
- && TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1)) == 0
- && ((TREE_INT_CST_LOW (arg1)
- + TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)))
- == GET_MODE_BITSIZE (TYPE_MODE (type))))
- return TREE_OPERAND (arg0, 0);
-
- goto binary;
-
- case MIN_EXPR:
- if (operand_equal_p (arg0, arg1, 0))
- return arg0;
- if (INTEGRAL_TYPE_P (type)
- && operand_equal_p (arg1, TYPE_MIN_VALUE (type), 1))
- return omit_one_operand (type, arg1, arg0);
- goto associate;
-
- case MAX_EXPR:
- if (operand_equal_p (arg0, arg1, 0))
- return arg0;
- if (INTEGRAL_TYPE_P (type)
- && operand_equal_p (arg1, TYPE_MAX_VALUE (type), 1))
- return omit_one_operand (type, arg1, arg0);
- goto associate;
-
- case TRUTH_NOT_EXPR:
- /* Note that the operand of this must be an int
- and its values must be 0 or 1.
- ("true" is a fixed value perhaps depending on the language,
- but we don't handle values other than 1 correctly yet.) */
- tem = invert_truthvalue (arg0);
- /* Avoid infinite recursion. */
- if (TREE_CODE (tem) == TRUTH_NOT_EXPR)
- return t;
- return convert (type, tem);
-
- case TRUTH_ANDIF_EXPR:
- /* Note that the operands of this must be ints
- and their values must be 0 or 1.
- ("true" is a fixed value perhaps depending on the language.) */
- /* If first arg is constant zero, return it. */
- if (integer_zerop (arg0))
- return arg0;
- case TRUTH_AND_EXPR:
- /* If either arg is constant true, drop it. */
- if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
- return non_lvalue (arg1);
- if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
- return non_lvalue (arg0);
- /* If second arg is constant zero, result is zero, but first arg
- must be evaluated. */
- if (integer_zerop (arg1))
- return omit_one_operand (type, arg1, arg0);
- /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
- case will be handled here. */
- if (integer_zerop (arg0))
- return omit_one_operand (type, arg0, arg1);
-
- truth_andor:
- /* We only do these simplifications if we are optimizing. */
- if (!optimize)
- return t;
-
- /* Check for things like (A || B) && (A || C). We can convert this
- to A || (B && C). Note that either operator can be any of the four
- truth and/or operations and the transformation will still be
- valid. Also note that we only care about order for the
- ANDIF and ORIF operators. */
- if (TREE_CODE (arg0) == TREE_CODE (arg1)
- && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
- || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
- || TREE_CODE (arg0) == TRUTH_AND_EXPR
- || TREE_CODE (arg0) == TRUTH_OR_EXPR))
- {
- tree a00 = TREE_OPERAND (arg0, 0);
- tree a01 = TREE_OPERAND (arg0, 1);
- tree a10 = TREE_OPERAND (arg1, 0);
- tree a11 = TREE_OPERAND (arg1, 1);
- int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
- || TREE_CODE (arg0) == TRUTH_AND_EXPR)
- && (code == TRUTH_AND_EXPR
- || code == TRUTH_OR_EXPR));
-
- if (operand_equal_p (a00, a10, 0))
- return fold (build (TREE_CODE (arg0), type, a00,
- fold (build (code, type, a01, a11))));
- else if (commutative && operand_equal_p (a00, a11, 0))
- return fold (build (TREE_CODE (arg0), type, a00,
- fold (build (code, type, a01, a10))));
- else if (commutative && operand_equal_p (a01, a10, 0))
- return fold (build (TREE_CODE (arg0), type, a01,
- fold (build (code, type, a00, a11))));
-
- /* This case if tricky because we must either have commutative
- operators or else A10 must not have side-effects. */
-
- else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
- && operand_equal_p (a01, a11, 0))
- return fold (build (TREE_CODE (arg0), type,
- fold (build (code, type, a00, a10)),
- a01));
- }
-
- /* See if we can build a range comparison. */
- if (0 != (tem = fold_range_test (t)))
- return tem;
-
- /* Check for the possibility of merging component references. If our
- lhs is another similar operation, try to merge its rhs with our
- rhs. Then try to merge our lhs and rhs. */
- if (TREE_CODE (arg0) == code
- && 0 != (tem = fold_truthop (code, type,
- TREE_OPERAND (arg0, 1), arg1)))
- return fold (build (code, type, TREE_OPERAND (arg0, 0), tem));
-
- if ((tem = fold_truthop (code, type, arg0, arg1)) != 0)
- return tem;
-
- return t;
-
- case TRUTH_ORIF_EXPR:
- /* Note that the operands of this must be ints
- and their values must be 0 or true.
- ("true" is a fixed value perhaps depending on the language.) */
- /* If first arg is constant true, return it. */
- if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
- return arg0;
- case TRUTH_OR_EXPR:
- /* If either arg is constant zero, drop it. */
- if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
- return non_lvalue (arg1);
- if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1))
- return non_lvalue (arg0);
- /* If second arg is constant true, result is true, but we must
- evaluate first arg. */
- if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
- return omit_one_operand (type, arg1, arg0);
- /* Likewise for first arg, but note this only occurs here for
- TRUTH_OR_EXPR. */
- if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
- return omit_one_operand (type, arg0, arg1);
- goto truth_andor;
-
- case TRUTH_XOR_EXPR:
- /* If either arg is constant zero, drop it. */
- if (integer_zerop (arg0))
- return non_lvalue (arg1);
- if (integer_zerop (arg1))
- return non_lvalue (arg0);
- /* If either arg is constant true, this is a logical inversion. */
- if (integer_onep (arg0))
- return non_lvalue (invert_truthvalue (arg1));
- if (integer_onep (arg1))
- return non_lvalue (invert_truthvalue (arg0));
- return t;
-
- case EQ_EXPR:
- case NE_EXPR:
- case LT_EXPR:
- case GT_EXPR:
- case LE_EXPR:
- case GE_EXPR:
- /* If one arg is a constant integer, put it last. */
- if (TREE_CODE (arg0) == INTEGER_CST
- && TREE_CODE (arg1) != INTEGER_CST)
- {
- TREE_OPERAND (t, 0) = arg1;
- TREE_OPERAND (t, 1) = arg0;
- arg0 = TREE_OPERAND (t, 0);
- arg1 = TREE_OPERAND (t, 1);
- code = swap_tree_comparison (code);
- TREE_SET_CODE (t, code);
- }
-
- /* Convert foo++ == CONST into ++foo == CONST + INCR.
- First, see if one arg is constant; find the constant arg
- and the other one. */
- {
- tree constop = 0, varop;
- int constopnum = -1;
-
- if (TREE_CONSTANT (arg1))
- constopnum = 1, constop = arg1, varop = arg0;
- if (TREE_CONSTANT (arg0))
- constopnum = 0, constop = arg0, varop = arg1;
-
- if (constop && TREE_CODE (varop) == POSTINCREMENT_EXPR)
- {
- /* This optimization is invalid for ordered comparisons
- if CONST+INCR overflows or if foo+incr might overflow.
- This optimization is invalid for floating point due to rounding.
- For pointer types we assume overflow doesn't happen. */
- if (TREE_CODE (TREE_TYPE (varop)) == POINTER_TYPE
- || (! FLOAT_TYPE_P (TREE_TYPE (varop))
- && (code == EQ_EXPR || code == NE_EXPR)))
- {
- tree newconst
- = fold (build (PLUS_EXPR, TREE_TYPE (varop),
- constop, TREE_OPERAND (varop, 1)));
- TREE_SET_CODE (varop, PREINCREMENT_EXPR);
-
- /* If VAROP is a reference to a bitfield, we must mask
- the constant by the width of the field. */
- if (TREE_CODE (TREE_OPERAND (varop, 0)) == COMPONENT_REF
- && DECL_BIT_FIELD(TREE_OPERAND
- (TREE_OPERAND (varop, 0), 1)))
- {
- int size
- = TREE_INT_CST_LOW (DECL_SIZE
- (TREE_OPERAND
- (TREE_OPERAND (varop, 0), 1)));
-
- newconst = fold (build (BIT_AND_EXPR,
- TREE_TYPE (varop), newconst,
- convert (TREE_TYPE (varop),
- build_int_2 (size, 0))));
- }
-
-
- t = build (code, type, TREE_OPERAND (t, 0),
- TREE_OPERAND (t, 1));
- TREE_OPERAND (t, constopnum) = newconst;
- return t;
- }
- }
- else if (constop && TREE_CODE (varop) == POSTDECREMENT_EXPR)
- {
- if (TREE_CODE (TREE_TYPE (varop)) == POINTER_TYPE
- || (! FLOAT_TYPE_P (TREE_TYPE (varop))
- && (code == EQ_EXPR || code == NE_EXPR)))
- {
- tree newconst
- = fold (build (MINUS_EXPR, TREE_TYPE (varop),
- constop, TREE_OPERAND (varop, 1)));
- TREE_SET_CODE (varop, PREDECREMENT_EXPR);
-
- if (TREE_CODE (TREE_OPERAND (varop, 0)) == COMPONENT_REF
- && DECL_BIT_FIELD(TREE_OPERAND
- (TREE_OPERAND (varop, 0), 1)))
- {
- int size
- = TREE_INT_CST_LOW (DECL_SIZE
- (TREE_OPERAND
- (TREE_OPERAND (varop, 0), 1)));
-
- newconst = fold (build (BIT_AND_EXPR,
- TREE_TYPE (varop), newconst,
- convert (TREE_TYPE (varop),
- build_int_2 (size, 0))));
- }
-
-
- t = build (code, type, TREE_OPERAND (t, 0),
- TREE_OPERAND (t, 1));
- TREE_OPERAND (t, constopnum) = newconst;
- return t;
- }
- }
- }
-
- /* Change X >= CST to X > (CST - 1) if CST is positive. */
- if (TREE_CODE (arg1) == INTEGER_CST
- && TREE_CODE (arg0) != INTEGER_CST
- && tree_int_cst_sgn (arg1) > 0)
- {
- switch (TREE_CODE (t))
- {
- case GE_EXPR:
- code = GT_EXPR;
- arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
- t = build (code, type, TREE_OPERAND (t, 0), arg1);
- break;
-
- case LT_EXPR:
- code = LE_EXPR;
- arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
- t = build (code, type, TREE_OPERAND (t, 0), arg1);
- break;
- }
- }
-
- /* If this is an EQ or NE comparison with zero and ARG0 is
- (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
- two operations, but the latter can be done in one less insn
- one machine that have only two-operand insns or on which a
- constant cannot be the first operand. */
- if (integer_zerop (arg1) && (code == EQ_EXPR || code == NE_EXPR)
- && TREE_CODE (arg0) == BIT_AND_EXPR)
- {
- if (TREE_CODE (TREE_OPERAND (arg0, 0)) == LSHIFT_EXPR
- && integer_onep (TREE_OPERAND (TREE_OPERAND (arg0, 0), 0)))
- return
- fold (build (code, type,
- build (BIT_AND_EXPR, TREE_TYPE (arg0),
- build (RSHIFT_EXPR,
- TREE_TYPE (TREE_OPERAND (arg0, 0)),
- TREE_OPERAND (arg0, 1),
- TREE_OPERAND (TREE_OPERAND (arg0, 0), 1)),
- convert (TREE_TYPE (arg0),
- integer_one_node)),
- arg1));
- else if (TREE_CODE (TREE_OPERAND (arg0, 1)) == LSHIFT_EXPR
- && integer_onep (TREE_OPERAND (TREE_OPERAND (arg0, 1), 0)))
- return
- fold (build (code, type,
- build (BIT_AND_EXPR, TREE_TYPE (arg0),
- build (RSHIFT_EXPR,
- TREE_TYPE (TREE_OPERAND (arg0, 1)),
- TREE_OPERAND (arg0, 0),
- TREE_OPERAND (TREE_OPERAND (arg0, 1), 1)),
- convert (TREE_TYPE (arg0),
- integer_one_node)),
- arg1));
- }
-
- /* If this is an NE or EQ comparison of zero against the result of a
- signed MOD operation whose second operand is a power of 2, make
- the MOD operation unsigned since it is simpler and equivalent. */
- if ((code == NE_EXPR || code == EQ_EXPR)
- && integer_zerop (arg1)
- && ! TREE_UNSIGNED (TREE_TYPE (arg0))
- && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
- || TREE_CODE (arg0) == CEIL_MOD_EXPR
- || TREE_CODE (arg0) == FLOOR_MOD_EXPR
- || TREE_CODE (arg0) == ROUND_MOD_EXPR)
- && integer_pow2p (TREE_OPERAND (arg0, 1)))
- {
- tree newtype = unsigned_type (TREE_TYPE (arg0));
- tree newmod = build (TREE_CODE (arg0), newtype,
- convert (newtype, TREE_OPERAND (arg0, 0)),
- convert (newtype, TREE_OPERAND (arg0, 1)));
-
- return build (code, type, newmod, convert (newtype, arg1));
- }
-
- /* If this is an NE comparison of zero with an AND of one, remove the
- comparison since the AND will give the correct value. */
- if (code == NE_EXPR && integer_zerop (arg1)
- && TREE_CODE (arg0) == BIT_AND_EXPR
- && integer_onep (TREE_OPERAND (arg0, 1)))
- return convert (type, arg0);
-
- /* If we have (A & C) == C where C is a power of 2, convert this into
- (A & C) != 0. Similarly for NE_EXPR. */
- if ((code == EQ_EXPR || code == NE_EXPR)
- && TREE_CODE (arg0) == BIT_AND_EXPR
- && integer_pow2p (TREE_OPERAND (arg0, 1))
- && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
- return build (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
- arg0, integer_zero_node);
-
- /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
- and similarly for >= into !=. */
- if ((code == LT_EXPR || code == GE_EXPR)
- && TREE_UNSIGNED (TREE_TYPE (arg0))
- && TREE_CODE (arg1) == LSHIFT_EXPR
- && integer_onep (TREE_OPERAND (arg1, 0)))
- return build (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
- build (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
- TREE_OPERAND (arg1, 1)),
- convert (TREE_TYPE (arg0), integer_zero_node));
-
- else if ((code == LT_EXPR || code == GE_EXPR)
- && TREE_UNSIGNED (TREE_TYPE (arg0))
- && (TREE_CODE (arg1) == NOP_EXPR
- || TREE_CODE (arg1) == CONVERT_EXPR)
- && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
- && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
- return
- build (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
- convert (TREE_TYPE (arg0),
- build (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
- TREE_OPERAND (TREE_OPERAND (arg1, 0), 1))),
- convert (TREE_TYPE (arg0), integer_zero_node));
-
- /* Simplify comparison of something with itself. (For IEEE
- floating-point, we can only do some of these simplifications.) */
- if (operand_equal_p (arg0, arg1, 0))
- {
- switch (code)
- {
- case EQ_EXPR:
- case GE_EXPR:
- case LE_EXPR:
- if (INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
- {
- if (type == integer_type_node)
- return integer_one_node;
-
- t = build_int_2 (1, 0);
- TREE_TYPE (t) = type;
- return t;
- }
- code = EQ_EXPR;
- TREE_SET_CODE (t, code);
- break;
-
- case NE_EXPR:
- /* For NE, we can only do this simplification if integer. */
- if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
- break;
- /* ... fall through ... */
- case GT_EXPR:
- case LT_EXPR:
- if (type == integer_type_node)
- return integer_zero_node;
-
- t = build_int_2 (0, 0);
- TREE_TYPE (t) = type;
- return t;
- }
- }
-
- /* An unsigned comparison against 0 can be simplified. */
- if (integer_zerop (arg1)
- && (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
- || TREE_CODE (TREE_TYPE (arg1)) == POINTER_TYPE)
- && TREE_UNSIGNED (TREE_TYPE (arg1)))
- {
- switch (TREE_CODE (t))
- {
- case GT_EXPR:
- code = NE_EXPR;
- TREE_SET_CODE (t, NE_EXPR);
- break;
- case LE_EXPR:
- code = EQ_EXPR;
- TREE_SET_CODE (t, EQ_EXPR);
- break;
- case GE_EXPR:
- return omit_one_operand (type,
- convert (type, integer_one_node),
- arg0);
- case LT_EXPR:
- return omit_one_operand (type,
- convert (type, integer_zero_node),
- arg0);
- }
- }
-
- /* If we are comparing an expression that just has comparisons
- of two integer values, arithmetic expressions of those comparisons,
- and constants, we can simplify it. There are only three cases
- to check: the two values can either be equal, the first can be
- greater, or the second can be greater. Fold the expression for
- those three values. Since each value must be 0 or 1, we have
- eight possibilities, each of which corresponds to the constant 0
- or 1 or one of the six possible comparisons.
-
- This handles common cases like (a > b) == 0 but also handles
- expressions like ((x > y) - (y > x)) > 0, which supposedly
- occur in macroized code. */
-
- if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
- {
- tree cval1 = 0, cval2 = 0;
- int save_p = 0;
-
- if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
- /* Don't handle degenerate cases here; they should already
- have been handled anyway. */
- && cval1 != 0 && cval2 != 0
- && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
- && TREE_TYPE (cval1) == TREE_TYPE (cval2)
- && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
- && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
- TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
- {
- tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
- tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
-
- /* We can't just pass T to eval_subst in case cval1 or cval2
- was the same as ARG1. */
-
- tree high_result
- = fold (build (code, type,
- eval_subst (arg0, cval1, maxval, cval2, minval),
- arg1));
- tree equal_result
- = fold (build (code, type,
- eval_subst (arg0, cval1, maxval, cval2, maxval),
- arg1));
- tree low_result
- = fold (build (code, type,
- eval_subst (arg0, cval1, minval, cval2, maxval),
- arg1));
-
- /* All three of these results should be 0 or 1. Confirm they
- are. Then use those values to select the proper code
- to use. */
-
- if ((integer_zerop (high_result)
- || integer_onep (high_result))
- && (integer_zerop (equal_result)
- || integer_onep (equal_result))
- && (integer_zerop (low_result)
- || integer_onep (low_result)))
- {
- /* Make a 3-bit mask with the high-order bit being the
- value for `>', the next for '=', and the low for '<'. */
- switch ((integer_onep (high_result) * 4)
- + (integer_onep (equal_result) * 2)
- + integer_onep (low_result))
- {
- case 0:
- /* Always false. */
- return omit_one_operand (type, integer_zero_node, arg0);
- case 1:
- code = LT_EXPR;
- break;
- case 2:
- code = EQ_EXPR;
- break;
- case 3:
- code = LE_EXPR;
- break;
- case 4:
- code = GT_EXPR;
- break;
- case 5:
- code = NE_EXPR;
- break;
- case 6:
- code = GE_EXPR;
- break;
- case 7:
- /* Always true. */
- return omit_one_operand (type, integer_one_node, arg0);
- }
-
- t = build (code, type, cval1, cval2);
- if (save_p)
- return save_expr (t);
- else
- return fold (t);
- }
- }
- }
-
- /* If this is a comparison of a field, we may be able to simplify it. */
- if ((TREE_CODE (arg0) == COMPONENT_REF
- || TREE_CODE (arg0) == BIT_FIELD_REF)
- && (code == EQ_EXPR || code == NE_EXPR)
- /* Handle the constant case even without -O
- to make sure the warnings are given. */
- && (optimize || TREE_CODE (arg1) == INTEGER_CST))
- {
- t1 = optimize_bit_field_compare (code, type, arg0, arg1);
- return t1 ? t1 : t;
- }
-
- /* If this is a comparison of complex values and either or both
- sizes are a COMPLEX_EXPR, it is best to split up the comparisons
- and join them with a TRUTH_ANDIF_EXPR or TRUTH_ORIF_EXPR. This
- may prevent needless evaluations. */
- if ((code == EQ_EXPR || code == NE_EXPR)
- && TREE_CODE (TREE_TYPE (arg0)) == COMPLEX_TYPE
- && (TREE_CODE (arg0) == COMPLEX_EXPR
- || TREE_CODE (arg1) == COMPLEX_EXPR))
- {
- tree subtype = TREE_TYPE (TREE_TYPE (arg0));
- tree real0 = fold (build1 (REALPART_EXPR, subtype, arg0));
- tree imag0 = fold (build1 (IMAGPART_EXPR, subtype, arg0));
- tree real1 = fold (build1 (REALPART_EXPR, subtype, arg1));
- tree imag1 = fold (build1 (IMAGPART_EXPR, subtype, arg1));
-
- return fold (build ((code == EQ_EXPR ? TRUTH_ANDIF_EXPR
- : TRUTH_ORIF_EXPR),
- type,
- fold (build (code, type, real0, real1)),
- fold (build (code, type, imag0, imag1))));
- }
-
- /* From here on, the only cases we handle are when the result is
- known to be a constant.
-
- To compute GT, swap the arguments and do LT.
- To compute GE, do LT and invert the result.
- To compute LE, swap the arguments, do LT and invert the result.
- To compute NE, do EQ and invert the result.
-
- Therefore, the code below must handle only EQ and LT. */
-
- if (code == LE_EXPR || code == GT_EXPR)
- {
- tem = arg0, arg0 = arg1, arg1 = tem;
- code = swap_tree_comparison (code);
- }
-
- /* Note that it is safe to invert for real values here because we
- will check below in the one case that it matters. */
-
- invert = 0;
- if (code == NE_EXPR || code == GE_EXPR)
- {
- invert = 1;
- code = invert_tree_comparison (code);
- }
-
- /* Compute a result for LT or EQ if args permit;
- otherwise return T. */
- if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
- {
- if (code == EQ_EXPR)
- t1 = build_int_2 ((TREE_INT_CST_LOW (arg0)
- == TREE_INT_CST_LOW (arg1))
- && (TREE_INT_CST_HIGH (arg0)
- == TREE_INT_CST_HIGH (arg1)),
- 0);
- else
- t1 = build_int_2 ((TREE_UNSIGNED (TREE_TYPE (arg0))
- ? INT_CST_LT_UNSIGNED (arg0, arg1)
- : INT_CST_LT (arg0, arg1)),
- 0);
- }
-
-#if 0 /* This is no longer useful, but breaks some real code. */
- /* Assume a nonexplicit constant cannot equal an explicit one,
- since such code would be undefined anyway.
- Exception: on sysvr4, using #pragma weak,
- a label can come out as 0. */
- else if (TREE_CODE (arg1) == INTEGER_CST
- && !integer_zerop (arg1)
- && TREE_CONSTANT (arg0)
- && TREE_CODE (arg0) == ADDR_EXPR
- && code == EQ_EXPR)
- t1 = build_int_2 (0, 0);
-#endif
- /* Two real constants can be compared explicitly. */
- else if (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
- {
- /* If either operand is a NaN, the result is false with two
- exceptions: First, an NE_EXPR is true on NaNs, but that case
- is already handled correctly since we will be inverting the
- result for NE_EXPR. Second, if we had inverted a LE_EXPR
- or a GE_EXPR into a LT_EXPR, we must return true so that it
- will be inverted into false. */
-
- if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg0))
- || REAL_VALUE_ISNAN (TREE_REAL_CST (arg1)))
- t1 = build_int_2 (invert && code == LT_EXPR, 0);
-
- else if (code == EQ_EXPR)
- t1 = build_int_2 (REAL_VALUES_EQUAL (TREE_REAL_CST (arg0),
- TREE_REAL_CST (arg1)),
- 0);
- else
- t1 = build_int_2 (REAL_VALUES_LESS (TREE_REAL_CST (arg0),
- TREE_REAL_CST (arg1)),
- 0);
- }
-
- if (t1 == NULL_TREE)
- return t;
-
- if (invert)
- TREE_INT_CST_LOW (t1) ^= 1;
-
- TREE_TYPE (t1) = type;
- return t1;
-
- case COND_EXPR:
- /* Pedantic ANSI C says that a conditional expression is never an lvalue,
- so all simple results must be passed through pedantic_non_lvalue. */
- if (TREE_CODE (arg0) == INTEGER_CST)
- return pedantic_non_lvalue
- (TREE_OPERAND (t, (integer_zerop (arg0) ? 2 : 1)));
- else if (operand_equal_p (arg1, TREE_OPERAND (expr, 2), 0))
- return pedantic_omit_one_operand (type, arg1, arg0);
-
- /* If the second operand is zero, invert the comparison and swap
- the second and third operands. Likewise if the second operand
- is constant and the third is not or if the third operand is
- equivalent to the first operand of the comparison. */
-
- if (integer_zerop (arg1)
- || (TREE_CONSTANT (arg1) && ! TREE_CONSTANT (TREE_OPERAND (t, 2)))
- || (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<'
- && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
- TREE_OPERAND (t, 2),
- TREE_OPERAND (arg0, 1))))
- {
- /* See if this can be inverted. If it can't, possibly because
- it was a floating-point inequality comparison, don't do
- anything. */
- tem = invert_truthvalue (arg0);
-
- if (TREE_CODE (tem) != TRUTH_NOT_EXPR)
- {
- t = build (code, type, tem,
- TREE_OPERAND (t, 2), TREE_OPERAND (t, 1));
- arg0 = tem;
- arg1 = TREE_OPERAND (t, 2);
- STRIP_NOPS (arg1);
- }
- }
-
- /* If we have A op B ? A : C, we may be able to convert this to a
- simpler expression, depending on the operation and the values
- of B and C. IEEE floating point prevents this though,
- because A or B might be -0.0 or a NaN. */
-
- if (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<'
- && (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
- || ! FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (arg0, 0)))
- || flag_fast_math)
- && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
- arg1, TREE_OPERAND (arg0, 1)))
- {
- tree arg2 = TREE_OPERAND (t, 2);
- enum tree_code comp_code = TREE_CODE (arg0);
-
- STRIP_NOPS (arg2);
-
- /* If we have A op 0 ? A : -A, this is A, -A, abs (A), or abs (-A),
- depending on the comparison operation. */
- if ((FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (arg0, 1)))
- ? real_zerop (TREE_OPERAND (arg0, 1))
- : integer_zerop (TREE_OPERAND (arg0, 1)))
- && TREE_CODE (arg2) == NEGATE_EXPR
- && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
- switch (comp_code)
- {
- case EQ_EXPR:
- return pedantic_non_lvalue
- (fold (build1 (NEGATE_EXPR, type, arg1)));
- case NE_EXPR:
- return pedantic_non_lvalue (convert (type, arg1));
- case GE_EXPR:
- case GT_EXPR:
- return pedantic_non_lvalue
- (convert (type, fold (build1 (ABS_EXPR,
- TREE_TYPE (arg1), arg1))));
- case LE_EXPR:
- case LT_EXPR:
- return pedantic_non_lvalue
- (fold (build1 (NEGATE_EXPR, type,
- convert (type,
- fold (build1 (ABS_EXPR,
- TREE_TYPE (arg1),
- arg1))))));
- }
-
- /* If this is A != 0 ? A : 0, this is simply A. For ==, it is
- always zero. */
-
- if (integer_zerop (TREE_OPERAND (arg0, 1)) && integer_zerop (arg2))
- {
- if (comp_code == NE_EXPR)
- return pedantic_non_lvalue (convert (type, arg1));
- else if (comp_code == EQ_EXPR)
- return pedantic_non_lvalue (convert (type, integer_zero_node));
- }
-
- /* If this is A op B ? A : B, this is either A, B, min (A, B),
- or max (A, B), depending on the operation. */
-
- if (operand_equal_for_comparison_p (TREE_OPERAND (arg0, 1),
- arg2, TREE_OPERAND (arg0, 0)))
- {
- tree comp_op0 = TREE_OPERAND (arg0, 0);
- tree comp_op1 = TREE_OPERAND (arg0, 1);
- tree comp_type = TREE_TYPE (comp_op0);
-
- switch (comp_code)
- {
- case EQ_EXPR:
- return pedantic_non_lvalue (convert (type, arg2));
- case NE_EXPR:
- return pedantic_non_lvalue (convert (type, arg1));
- case LE_EXPR:
- case LT_EXPR:
- return pedantic_non_lvalue
- (convert (type, (fold (build (MIN_EXPR, comp_type,
- comp_op0, comp_op1)))));
- case GE_EXPR:
- case GT_EXPR:
- return pedantic_non_lvalue
- (convert (type, fold (build (MAX_EXPR, comp_type,
- comp_op0, comp_op1))));
- }
- }
-
- /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
- we might still be able to simplify this. For example,
- if C1 is one less or one more than C2, this might have started
- out as a MIN or MAX and been transformed by this function.
- Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE. */
-
- if (INTEGRAL_TYPE_P (type)
- && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
- && TREE_CODE (arg2) == INTEGER_CST)
- switch (comp_code)
- {
- case EQ_EXPR:
- /* We can replace A with C1 in this case. */
- arg1 = convert (type, TREE_OPERAND (arg0, 1));
- t = build (code, type, TREE_OPERAND (t, 0), arg1,
- TREE_OPERAND (t, 2));
- break;
-
- case LT_EXPR:
- /* If C1 is C2 + 1, this is min(A, C2). */
- if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type), 1)
- && operand_equal_p (TREE_OPERAND (arg0, 1),
- const_binop (PLUS_EXPR, arg2,
- integer_one_node, 0), 1))
- return pedantic_non_lvalue
- (fold (build (MIN_EXPR, type, arg1, arg2)));
- break;
-
- case LE_EXPR:
- /* If C1 is C2 - 1, this is min(A, C2). */
- if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type), 1)
- && operand_equal_p (TREE_OPERAND (arg0, 1),
- const_binop (MINUS_EXPR, arg2,
- integer_one_node, 0), 1))
- return pedantic_non_lvalue
- (fold (build (MIN_EXPR, type, arg1, arg2)));
- break;
-
- case GT_EXPR:
- /* If C1 is C2 - 1, this is max(A, C2). */
- if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type), 1)
- && operand_equal_p (TREE_OPERAND (arg0, 1),
- const_binop (MINUS_EXPR, arg2,
- integer_one_node, 0), 1))
- return pedantic_non_lvalue
- (fold (build (MAX_EXPR, type, arg1, arg2)));
- break;
-
- case GE_EXPR:
- /* If C1 is C2 + 1, this is max(A, C2). */
- if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type), 1)
- && operand_equal_p (TREE_OPERAND (arg0, 1),
- const_binop (PLUS_EXPR, arg2,
- integer_one_node, 0), 1))
- return pedantic_non_lvalue
- (fold (build (MAX_EXPR, type, arg1, arg2)));
- break;
- }
- }
-
- /* If the second operand is simpler than the third, swap them
- since that produces better jump optimization results. */
- if ((TREE_CONSTANT (arg1) || TREE_CODE_CLASS (TREE_CODE (arg1)) == 'd'
- || TREE_CODE (arg1) == SAVE_EXPR)
- && ! (TREE_CONSTANT (TREE_OPERAND (t, 2))
- || TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (t, 2))) == 'd'
- || TREE_CODE (TREE_OPERAND (t, 2)) == SAVE_EXPR))
- {
- /* See if this can be inverted. If it can't, possibly because
- it was a floating-point inequality comparison, don't do
- anything. */
- tem = invert_truthvalue (arg0);
-
- if (TREE_CODE (tem) != TRUTH_NOT_EXPR)
- {
- t = build (code, type, tem,
- TREE_OPERAND (t, 2), TREE_OPERAND (t, 1));
- arg0 = tem;
- arg1 = TREE_OPERAND (t, 2);
- STRIP_NOPS (arg1);
- }
- }
-
- /* Convert A ? 1 : 0 to simply A. */
- if (integer_onep (TREE_OPERAND (t, 1))
- && integer_zerop (TREE_OPERAND (t, 2))
- /* If we try to convert TREE_OPERAND (t, 0) to our type, the
- call to fold will try to move the conversion inside
- a COND, which will recurse. In that case, the COND_EXPR
- is probably the best choice, so leave it alone. */
- && type == TREE_TYPE (arg0))
- return pedantic_non_lvalue (arg0);
-
- /* Look for expressions of the form A & 2 ? 2 : 0. The result of this
- operation is simply A & 2. */
-
- if (integer_zerop (TREE_OPERAND (t, 2))
- && TREE_CODE (arg0) == NE_EXPR
- && integer_zerop (TREE_OPERAND (arg0, 1))
- && integer_pow2p (arg1)
- && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
- && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
- arg1, 1))
- return pedantic_non_lvalue (convert (type, TREE_OPERAND (arg0, 0)));
-
- return t;
-
- case COMPOUND_EXPR:
- /* When pedantic, a compound expression can be neither an lvalue
- nor an integer constant expression. */
- if (TREE_SIDE_EFFECTS (arg0) || pedantic)
- return t;
- /* Don't let (0, 0) be null pointer constant. */
- if (integer_zerop (arg1))
- return non_lvalue (arg1);
- return arg1;
-
- case COMPLEX_EXPR:
- if (wins)
- return build_complex (type, arg0, arg1);
- return t;
-
- case REALPART_EXPR:
- if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
- return t;
- else if (TREE_CODE (arg0) == COMPLEX_EXPR)
- return omit_one_operand (type, TREE_OPERAND (arg0, 0),
- TREE_OPERAND (arg0, 1));
- else if (TREE_CODE (arg0) == COMPLEX_CST)
- return TREE_REALPART (arg0);
- else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
- return fold (build (TREE_CODE (arg0), type,
- fold (build1 (REALPART_EXPR, type,
- TREE_OPERAND (arg0, 0))),
- fold (build1 (REALPART_EXPR,
- type, TREE_OPERAND (arg0, 1)))));
- return t;
-
- case IMAGPART_EXPR:
- if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
- return convert (type, integer_zero_node);
- else if (TREE_CODE (arg0) == COMPLEX_EXPR)
- return omit_one_operand (type, TREE_OPERAND (arg0, 1),
- TREE_OPERAND (arg0, 0));
- else if (TREE_CODE (arg0) == COMPLEX_CST)
- return TREE_IMAGPART (arg0);
- else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
- return fold (build (TREE_CODE (arg0), type,
- fold (build1 (IMAGPART_EXPR, type,
- TREE_OPERAND (arg0, 0))),
- fold (build1 (IMAGPART_EXPR, type,
- TREE_OPERAND (arg0, 1)))));
- return t;
-
- /* Pull arithmetic ops out of the CLEANUP_POINT_EXPR where
- appropriate. */
- case CLEANUP_POINT_EXPR:
- if (! TREE_SIDE_EFFECTS (arg0))
- return TREE_OPERAND (t, 0);
-
- {
- enum tree_code code0 = TREE_CODE (arg0);
- int kind0 = TREE_CODE_CLASS (code0);
- tree arg00 = TREE_OPERAND (arg0, 0);
- tree arg01;
-
- if (kind0 == '1' || code0 == TRUTH_NOT_EXPR)
- return fold (build1 (code0, type,
- fold (build1 (CLEANUP_POINT_EXPR,
- TREE_TYPE (arg00), arg00))));
-
- if (kind0 == '<' || kind0 == '2'
- || code0 == TRUTH_ANDIF_EXPR || code0 == TRUTH_ORIF_EXPR
- || code0 == TRUTH_AND_EXPR || code0 == TRUTH_OR_EXPR
- || code0 == TRUTH_XOR_EXPR)
- {
- arg01 = TREE_OPERAND (arg0, 1);
-
- if (! TREE_SIDE_EFFECTS (arg00))
- return fold (build (code0, type, arg00,
- fold (build1 (CLEANUP_POINT_EXPR,
- TREE_TYPE (arg01), arg01))));
-
- if (! TREE_SIDE_EFFECTS (arg01))
- return fold (build (code0, type,
- fold (build1 (CLEANUP_POINT_EXPR,
- TREE_TYPE (arg00), arg00)),
- arg01));
- }
-
- return t;
- }
-
- default:
- return t;
- } /* switch (code) */
-}