aboutsummaryrefslogtreecommitdiff
path: root/gcc/reg-stack.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/reg-stack.c')
-rw-r--r--gcc/reg-stack.c3235
1 files changed, 0 insertions, 3235 deletions
diff --git a/gcc/reg-stack.c b/gcc/reg-stack.c
deleted file mode 100644
index 8551e65e00a..00000000000
--- a/gcc/reg-stack.c
+++ /dev/null
@@ -1,3235 +0,0 @@
-/* Register to Stack convert for GNU compiler.
- Copyright (C) 1992, 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
-
-This file is part of GNU CC.
-
-GNU CC is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2, or (at your option)
-any later version.
-
-GNU CC is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GNU CC; see the file COPYING. If not, write to
-the Free Software Foundation, 59 Temple Place - Suite 330,
-Boston, MA 02111-1307, USA. */
-
-/* This pass converts stack-like registers from the "flat register
- file" model that gcc uses, to a stack convention that the 387 uses.
-
- * The form of the input:
-
- On input, the function consists of insn that have had their
- registers fully allocated to a set of "virtual" registers. Note that
- the word "virtual" is used differently here than elsewhere in gcc: for
- each virtual stack reg, there is a hard reg, but the mapping between
- them is not known until this pass is run. On output, hard register
- numbers have been substituted, and various pop and exchange insns have
- been emitted. The hard register numbers and the virtual register
- numbers completely overlap - before this pass, all stack register
- numbers are virtual, and afterward they are all hard.
-
- The virtual registers can be manipulated normally by gcc, and their
- semantics are the same as for normal registers. After the hard
- register numbers are substituted, the semantics of an insn containing
- stack-like regs are not the same as for an insn with normal regs: for
- instance, it is not safe to delete an insn that appears to be a no-op
- move. In general, no insn containing hard regs should be changed
- after this pass is done.
-
- * The form of the output:
-
- After this pass, hard register numbers represent the distance from
- the current top of stack to the desired register. A reference to
- FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
- represents the register just below that, and so forth. Also, REG_DEAD
- notes indicate whether or not a stack register should be popped.
-
- A "swap" insn looks like a parallel of two patterns, where each
- pattern is a SET: one sets A to B, the other B to A.
-
- A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
- and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
- will replace the existing stack top, not push a new value.
-
- A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
- SET_SRC is REG or MEM.
-
- The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
- appears ambiguous. As a special case, the presence of a REG_DEAD note
- for FIRST_STACK_REG differentiates between a load insn and a pop.
-
- If a REG_DEAD is present, the insn represents a "pop" that discards
- the top of the register stack. If there is no REG_DEAD note, then the
- insn represents a "dup" or a push of the current top of stack onto the
- stack.
-
- * Methodology:
-
- Existing REG_DEAD and REG_UNUSED notes for stack registers are
- deleted and recreated from scratch. REG_DEAD is never created for a
- SET_DEST, only REG_UNUSED.
-
- Before life analysis, the mode of each insn is set based on whether
- or not any stack registers are mentioned within that insn. VOIDmode
- means that no regs are mentioned anyway, and QImode means that at
- least one pattern within the insn mentions stack registers. This
- information is valid until after reg_to_stack returns, and is used
- from jump_optimize.
-
- * asm_operands:
-
- There are several rules on the usage of stack-like regs in
- asm_operands insns. These rules apply only to the operands that are
- stack-like regs:
-
- 1. Given a set of input regs that die in an asm_operands, it is
- necessary to know which are implicitly popped by the asm, and
- which must be explicitly popped by gcc.
-
- An input reg that is implicitly popped by the asm must be
- explicitly clobbered, unless it is constrained to match an
- output operand.
-
- 2. For any input reg that is implicitly popped by an asm, it is
- necessary to know how to adjust the stack to compensate for the pop.
- If any non-popped input is closer to the top of the reg-stack than
- the implicitly popped reg, it would not be possible to know what the
- stack looked like - it's not clear how the rest of the stack "slides
- up".
-
- All implicitly popped input regs must be closer to the top of
- the reg-stack than any input that is not implicitly popped.
-
- 3. It is possible that if an input dies in an insn, reload might
- use the input reg for an output reload. Consider this example:
-
- asm ("foo" : "=t" (a) : "f" (b));
-
- This asm says that input B is not popped by the asm, and that
- the asm pushes a result onto the reg-stack, ie, the stack is one
- deeper after the asm than it was before. But, it is possible that
- reload will think that it can use the same reg for both the input and
- the output, if input B dies in this insn.
-
- If any input operand uses the "f" constraint, all output reg
- constraints must use the "&" earlyclobber.
-
- The asm above would be written as
-
- asm ("foo" : "=&t" (a) : "f" (b));
-
- 4. Some operands need to be in particular places on the stack. All
- output operands fall in this category - there is no other way to
- know which regs the outputs appear in unless the user indicates
- this in the constraints.
-
- Output operands must specifically indicate which reg an output
- appears in after an asm. "=f" is not allowed: the operand
- constraints must select a class with a single reg.
-
- 5. Output operands may not be "inserted" between existing stack regs.
- Since no 387 opcode uses a read/write operand, all output operands
- are dead before the asm_operands, and are pushed by the asm_operands.
- It makes no sense to push anywhere but the top of the reg-stack.
-
- Output operands must start at the top of the reg-stack: output
- operands may not "skip" a reg.
-
- 6. Some asm statements may need extra stack space for internal
- calculations. This can be guaranteed by clobbering stack registers
- unrelated to the inputs and outputs.
-
- Here are a couple of reasonable asms to want to write. This asm
- takes one input, which is internally popped, and produces two outputs.
-
- asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
-
- This asm takes two inputs, which are popped by the fyl2xp1 opcode,
- and replaces them with one output. The user must code the "st(1)"
- clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
-
- asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
-
- */
-
-#include <stdio.h>
-#include "config.h"
-#include "tree.h"
-#include "rtl.h"
-#include "insn-config.h"
-#include "regs.h"
-#include "hard-reg-set.h"
-#include "flags.h"
-#include "insn-flags.h"
-
-#ifdef STACK_REGS
-
-#define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
-
-/* This is the basic stack record. TOP is an index into REG[] such
- that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
-
- If TOP is -2, REG[] is not yet initialized. Stack initialization
- consists of placing each live reg in array `reg' and setting `top'
- appropriately.
-
- REG_SET indicates which registers are live. */
-
-typedef struct stack_def
-{
- int top; /* index to top stack element */
- HARD_REG_SET reg_set; /* set of live registers */
- char reg[REG_STACK_SIZE]; /* register - stack mapping */
-} *stack;
-
-/* highest instruction uid */
-static int max_uid = 0;
-
-/* Number of basic blocks in the current function. */
-static int blocks;
-
-/* Element N is first insn in basic block N.
- This info lasts until we finish compiling the function. */
-static rtx *block_begin;
-
-/* Element N is last insn in basic block N.
- This info lasts until we finish compiling the function. */
-static rtx *block_end;
-
-/* Element N is nonzero if control can drop into basic block N */
-static char *block_drops_in;
-
-/* Element N says all about the stack at entry block N */
-static stack block_stack_in;
-
-/* Element N says all about the stack life at the end of block N */
-static HARD_REG_SET *block_out_reg_set;
-
-/* This is where the BLOCK_NUM values are really stored. This is set
- up by find_blocks and used there and in life_analysis. It can be used
- later, but only to look up an insn that is the head or tail of some
- block. life_analysis and the stack register conversion process can
- add insns within a block. */
-static int *block_number;
-
-/* This is the register file for all register after conversion */
-static rtx
- FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
-
-#define FP_MODE_REG(regno,mode) \
- (FP_mode_reg[(regno)-FIRST_STACK_REG][(int)(mode)])
-
-/* Get the basic block number of an insn. See note at block_number
- definition are validity of this information. */
-
-#define BLOCK_NUM(INSN) \
- ((INSN_UID (INSN) > max_uid) \
- ? (abort() , -1) : block_number[INSN_UID (INSN)])
-
-extern rtx forced_labels;
-
-/* Forward declarations */
-
-static void mark_regs_pat PROTO((rtx, HARD_REG_SET *));
-static void straighten_stack PROTO((rtx, stack));
-static void record_label_references PROTO((rtx, rtx));
-static rtx *get_true_reg PROTO((rtx *));
-static int constrain_asm_operands PROTO((int, rtx *, char **, int *,
- enum reg_class *));
-
-static void record_asm_reg_life PROTO((rtx,stack, rtx *, char **,
- int, int));
-static void record_reg_life_pat PROTO((rtx, HARD_REG_SET *,
- HARD_REG_SET *, int));
-static void get_asm_operand_length PROTO((rtx, int, int *, int *));
-static void record_reg_life PROTO((rtx, int, stack));
-static void find_blocks PROTO((rtx));
-static int uses_reg_or_mem PROTO((rtx));
-static rtx stack_result PROTO((tree));
-static void stack_reg_life_analysis PROTO((rtx, HARD_REG_SET *));
-static void replace_reg PROTO((rtx *, int));
-static void remove_regno_note PROTO((rtx, enum reg_note, int));
-static int get_hard_regnum PROTO((stack, rtx));
-static void delete_insn_for_stacker PROTO((rtx));
-static rtx emit_pop_insn PROTO((rtx, stack, rtx, rtx (*) ()));
-static void emit_swap_insn PROTO((rtx, stack, rtx));
-static void move_for_stack_reg PROTO((rtx, stack, rtx));
-static void swap_rtx_condition PROTO((rtx));
-static void compare_for_stack_reg PROTO((rtx, stack, rtx));
-static void subst_stack_regs_pat PROTO((rtx, stack, rtx));
-static void subst_asm_stack_regs PROTO((rtx, stack, rtx *, rtx **,
- char **, int, int));
-static void subst_stack_regs PROTO((rtx, stack));
-static void change_stack PROTO((rtx, stack, stack, rtx (*) ()));
-
-static void goto_block_pat PROTO((rtx, stack, rtx));
-static void convert_regs PROTO((void));
-static void print_blocks PROTO((FILE *, rtx, rtx));
-static void dump_stack_info PROTO((FILE *));
-
-/* Mark all registers needed for this pattern. */
-
-static void
-mark_regs_pat (pat, set)
- rtx pat;
- HARD_REG_SET *set;
-{
- enum machine_mode mode;
- register int regno;
- register int count;
-
- if (GET_CODE (pat) == SUBREG)
- {
- mode = GET_MODE (pat);
- regno = SUBREG_WORD (pat);
- regno += REGNO (SUBREG_REG (pat));
- }
- else
- regno = REGNO (pat), mode = GET_MODE (pat);
-
- for (count = HARD_REGNO_NREGS (regno, mode);
- count; count--, regno++)
- SET_HARD_REG_BIT (*set, regno);
-}
-
-/* Reorganise the stack into ascending numbers,
- after this insn. */
-
-static void
-straighten_stack (insn, regstack)
- rtx insn;
- stack regstack;
-{
- struct stack_def temp_stack;
- int top;
-
- temp_stack.reg_set = regstack->reg_set;
-
- for (top = temp_stack.top = regstack->top; top >= 0; top--)
- temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
-
- change_stack (insn, regstack, &temp_stack, emit_insn_after);
-}
-
-/* Return non-zero if any stack register is mentioned somewhere within PAT. */
-
-int
-stack_regs_mentioned_p (pat)
- rtx pat;
-{
- register char *fmt;
- register int i;
-
- if (STACK_REG_P (pat))
- return 1;
-
- fmt = GET_RTX_FORMAT (GET_CODE (pat));
- for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'E')
- {
- register int j;
-
- for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
- if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
- return 1;
- }
- else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
- return 1;
- }
-
- return 0;
-}
-
-/* Convert register usage from "flat" register file usage to a "stack
- register file. FIRST is the first insn in the function, FILE is the
- dump file, if used.
-
- First compute the beginning and end of each basic block. Do a
- register life analysis on the stack registers, recording the result
- for the head and tail of each basic block. The convert each insn one
- by one. Run a last jump_optimize() pass, if optimizing, to eliminate
- any cross-jumping created when the converter inserts pop insns.*/
-
-void
-reg_to_stack (first, file)
- rtx first;
- FILE *file;
-{
- register rtx insn;
- register int i;
- int stack_reg_seen = 0;
- enum machine_mode mode;
- HARD_REG_SET stackentry;
-
- CLEAR_HARD_REG_SET (stackentry);
-
- {
- static initialised;
- if (!initialised)
- {
-#if 0
- initialised = 1; /* This array can not have been previously
- initialised, because the rtx's are
- thrown away between compilations of
- functions. */
-#endif
- for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
- {
- for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
- mode = GET_MODE_WIDER_MODE (mode))
- FP_MODE_REG (i, mode) = gen_rtx (REG, mode, i);
- for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT); mode != VOIDmode;
- mode = GET_MODE_WIDER_MODE (mode))
- FP_MODE_REG (i, mode) = gen_rtx (REG, mode, i);
- }
- }
- }
-
- /* Count the basic blocks. Also find maximum insn uid. */
- {
- register RTX_CODE prev_code = BARRIER;
- register RTX_CODE code;
- register before_function_beg = 1;
-
- max_uid = 0;
- blocks = 0;
- for (insn = first; insn; insn = NEXT_INSN (insn))
- {
- /* Note that this loop must select the same block boundaries
- as code in find_blocks. Also note that this code is not the
- same as that used in flow.c. */
-
- if (INSN_UID (insn) > max_uid)
- max_uid = INSN_UID (insn);
-
- code = GET_CODE (insn);
-
- if (code == CODE_LABEL
- || (prev_code != INSN
- && prev_code != CALL_INSN
- && prev_code != CODE_LABEL
- && GET_RTX_CLASS (code) == 'i'))
- blocks++;
-
- if (code == NOTE && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
- before_function_beg = 0;
-
- /* Remember whether or not this insn mentions an FP regs.
- Check JUMP_INSNs too, in case someone creates a funny PARALLEL. */
-
- if (GET_RTX_CLASS (code) == 'i'
- && stack_regs_mentioned_p (PATTERN (insn)))
- {
- stack_reg_seen = 1;
- PUT_MODE (insn, QImode);
-
- /* Note any register passing parameters. */
-
- if (before_function_beg && code == INSN
- && GET_CODE (PATTERN (insn)) == USE)
- record_reg_life_pat (PATTERN (insn), (HARD_REG_SET *) 0,
- &stackentry, 1);
- }
- else
- PUT_MODE (insn, VOIDmode);
-
- if (code == CODE_LABEL)
- LABEL_REFS (insn) = insn; /* delete old chain */
-
- if (code != NOTE)
- prev_code = code;
- }
- }
-
- /* If no stack register reference exists in this insn, there isn't
- anything to convert. */
-
- if (! stack_reg_seen)
- return;
-
- /* If there are stack registers, there must be at least one block. */
-
- if (! blocks)
- abort ();
-
- /* Allocate some tables that last till end of compiling this function
- and some needed only in find_blocks and life_analysis. */
-
- block_begin = (rtx *) alloca (blocks * sizeof (rtx));
- block_end = (rtx *) alloca (blocks * sizeof (rtx));
- block_drops_in = (char *) alloca (blocks);
-
- block_stack_in = (stack) alloca (blocks * sizeof (struct stack_def));
- block_out_reg_set = (HARD_REG_SET *) alloca (blocks * sizeof (HARD_REG_SET));
- bzero ((char *) block_stack_in, blocks * sizeof (struct stack_def));
- bzero ((char *) block_out_reg_set, blocks * sizeof (HARD_REG_SET));
-
- block_number = (int *) alloca ((max_uid + 1) * sizeof (int));
-
- find_blocks (first);
- stack_reg_life_analysis (first, &stackentry);
-
- /* Dump the life analysis debug information before jump
- optimization, as that will destroy the LABEL_REFS we keep the
- information in. */
-
- if (file)
- dump_stack_info (file);
-
- convert_regs ();
-
- if (optimize)
- jump_optimize (first, 2, 0, 0);
-}
-
-/* Check PAT, which is in INSN, for LABEL_REFs. Add INSN to the
- label's chain of references, and note which insn contains each
- reference. */
-
-static void
-record_label_references (insn, pat)
- rtx insn, pat;
-{
- register enum rtx_code code = GET_CODE (pat);
- register int i;
- register char *fmt;
-
- if (code == LABEL_REF)
- {
- register rtx label = XEXP (pat, 0);
- register rtx ref;
-
- if (GET_CODE (label) != CODE_LABEL)
- abort ();
-
- /* If this is an undefined label, LABEL_REFS (label) contains
- garbage. */
- if (INSN_UID (label) == 0)
- return;
-
- /* Don't make a duplicate in the code_label's chain. */
-
- for (ref = LABEL_REFS (label);
- ref && ref != label;
- ref = LABEL_NEXTREF (ref))
- if (CONTAINING_INSN (ref) == insn)
- return;
-
- CONTAINING_INSN (pat) = insn;
- LABEL_NEXTREF (pat) = LABEL_REFS (label);
- LABEL_REFS (label) = pat;
-
- return;
- }
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- record_label_references (insn, XEXP (pat, i));
- if (fmt[i] == 'E')
- {
- register int j;
- for (j = 0; j < XVECLEN (pat, i); j++)
- record_label_references (insn, XVECEXP (pat, i, j));
- }
- }
-}
-
-/* Return a pointer to the REG expression within PAT. If PAT is not a
- REG, possible enclosed by a conversion rtx, return the inner part of
- PAT that stopped the search. */
-
-static rtx *
-get_true_reg (pat)
- rtx *pat;
-{
- for (;;)
- switch (GET_CODE (*pat))
- {
- case SUBREG:
- /* eliminate FP subregister accesses in favour of the
- actual FP register in use. */
- {
- rtx subreg;
- if (FP_REG_P (subreg = SUBREG_REG (*pat)))
- {
- *pat = FP_MODE_REG (REGNO (subreg) + SUBREG_WORD (*pat),
- GET_MODE (subreg));
- default:
- return pat;
- }
- }
- case FLOAT:
- case FIX:
- case FLOAT_EXTEND:
- pat = & XEXP (*pat, 0);
- }
-}
-
-/* Scan the OPERANDS and OPERAND_CONSTRAINTS of an asm_operands.
- N_OPERANDS is the total number of operands. Return which alternative
- matched, or -1 is no alternative matches.
-
- OPERAND_MATCHES is an array which indicates which operand this
- operand matches due to the constraints, or -1 if no match is required.
- If two operands match by coincidence, but are not required to match by
- the constraints, -1 is returned.
-
- OPERAND_CLASS is an array which indicates the smallest class
- required by the constraints. If the alternative that matches calls
- for some class `class', and the operand matches a subclass of `class',
- OPERAND_CLASS is set to `class' as required by the constraints, not to
- the subclass. If an alternative allows more than one class,
- OPERAND_CLASS is set to the smallest class that is a union of the
- allowed classes. */
-
-static int
-constrain_asm_operands (n_operands, operands, operand_constraints,
- operand_matches, operand_class)
- int n_operands;
- rtx *operands;
- char **operand_constraints;
- int *operand_matches;
- enum reg_class *operand_class;
-{
- char **constraints = (char **) alloca (n_operands * sizeof (char *));
- char *q;
- int this_alternative, this_operand;
- int n_alternatives;
- int j;
-
- for (j = 0; j < n_operands; j++)
- constraints[j] = operand_constraints[j];
-
- /* Compute the number of alternatives in the operands. reload has
- already guaranteed that all operands have the same number of
- alternatives. */
-
- n_alternatives = 1;
- for (q = constraints[0]; *q; q++)
- n_alternatives += (*q == ',');
-
- this_alternative = 0;
- while (this_alternative < n_alternatives)
- {
- int lose = 0;
- int i;
-
- /* No operands match, no narrow class requirements yet. */
- for (i = 0; i < n_operands; i++)
- {
- operand_matches[i] = -1;
- operand_class[i] = NO_REGS;
- }
-
- for (this_operand = 0; this_operand < n_operands; this_operand++)
- {
- rtx op = operands[this_operand];
- enum machine_mode mode = GET_MODE (op);
- char *p = constraints[this_operand];
- int offset = 0;
- int win = 0;
- int c;
-
- if (GET_CODE (op) == SUBREG)
- {
- if (GET_CODE (SUBREG_REG (op)) == REG
- && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
- offset = SUBREG_WORD (op);
- op = SUBREG_REG (op);
- }
-
- /* An empty constraint or empty alternative
- allows anything which matched the pattern. */
- if (*p == 0 || *p == ',')
- win = 1;
-
- while (*p && (c = *p++) != ',')
- switch (c)
- {
- case '=':
- case '+':
- case '?':
- case '&':
- case '!':
- case '*':
- case '%':
- /* Ignore these. */
- break;
-
- case '#':
- /* Ignore rest of this alternative. */
- while (*p && *p != ',') p++;
- break;
-
- case '0':
- case '1':
- case '2':
- case '3':
- case '4':
- case '5':
- /* This operand must be the same as a previous one.
- This kind of constraint is used for instructions such
- as add when they take only two operands.
-
- Note that the lower-numbered operand is passed first. */
-
- if (operands_match_p (operands[c - '0'],
- operands[this_operand]))
- {
- operand_matches[this_operand] = c - '0';
- win = 1;
- }
- break;
-
- case 'p':
- /* p is used for address_operands. Since this is an asm,
- just to make sure that the operand is valid for Pmode. */
-
- if (strict_memory_address_p (Pmode, op))
- win = 1;
- break;
-
- case 'g':
- /* Anything goes unless it is a REG and really has a hard reg
- but the hard reg is not in the class GENERAL_REGS. */
- if (GENERAL_REGS == ALL_REGS
- || GET_CODE (op) != REG
- || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
- {
- if (GET_CODE (op) == REG)
- operand_class[this_operand]
- = reg_class_subunion[(int) operand_class[this_operand]][(int) GENERAL_REGS];
- win = 1;
- }
- break;
-
- case 'r':
- if (GET_CODE (op) == REG
- && (GENERAL_REGS == ALL_REGS
- || reg_fits_class_p (op, GENERAL_REGS, offset, mode)))
- {
- operand_class[this_operand]
- = reg_class_subunion[(int) operand_class[this_operand]][(int) GENERAL_REGS];
- win = 1;
- }
- break;
-
- case 'X':
- /* This is used for a MATCH_SCRATCH in the cases when we
- don't actually need anything. So anything goes any time. */
- win = 1;
- break;
-
- case 'm':
- if (GET_CODE (op) == MEM)
- win = 1;
- break;
-
- case '<':
- if (GET_CODE (op) == MEM
- && (GET_CODE (XEXP (op, 0)) == PRE_DEC
- || GET_CODE (XEXP (op, 0)) == POST_DEC))
- win = 1;
- break;
-
- case '>':
- if (GET_CODE (op) == MEM
- && (GET_CODE (XEXP (op, 0)) == PRE_INC
- || GET_CODE (XEXP (op, 0)) == POST_INC))
- win = 1;
- break;
-
- case 'E':
- /* Match any CONST_DOUBLE, but only if
- we can examine the bits of it reliably. */
- if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
- || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
- && GET_CODE (op) != VOIDmode && ! flag_pretend_float)
- break;
- if (GET_CODE (op) == CONST_DOUBLE)
- win = 1;
- break;
-
- case 'F':
- if (GET_CODE (op) == CONST_DOUBLE)
- win = 1;
- break;
-
- case 'G':
- case 'H':
- if (GET_CODE (op) == CONST_DOUBLE
- && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
- win = 1;
- break;
-
- case 's':
- if (GET_CODE (op) == CONST_INT
- || (GET_CODE (op) == CONST_DOUBLE
- && GET_MODE (op) == VOIDmode))
- break;
- /* Fall through */
- case 'i':
- if (CONSTANT_P (op))
- win = 1;
- break;
-
- case 'n':
- if (GET_CODE (op) == CONST_INT
- || (GET_CODE (op) == CONST_DOUBLE
- && GET_MODE (op) == VOIDmode))
- win = 1;
- break;
-
- case 'I':
- case 'J':
- case 'K':
- case 'L':
- case 'M':
- case 'N':
- case 'O':
- case 'P':
- if (GET_CODE (op) == CONST_INT
- && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
- win = 1;
- break;
-
-#ifdef EXTRA_CONSTRAINT
- case 'Q':
- case 'R':
- case 'S':
- case 'T':
- case 'U':
- if (EXTRA_CONSTRAINT (op, c))
- win = 1;
- break;
-#endif
-
- case 'V':
- if (GET_CODE (op) == MEM && ! offsettable_memref_p (op))
- win = 1;
- break;
-
- case 'o':
- if (offsettable_memref_p (op))
- win = 1;
- break;
-
- default:
- if (GET_CODE (op) == REG
- && reg_fits_class_p (op, REG_CLASS_FROM_LETTER (c),
- offset, mode))
- {
- operand_class[this_operand]
- = reg_class_subunion[(int)operand_class[this_operand]][(int) REG_CLASS_FROM_LETTER (c)];
- win = 1;
- }
- }
-
- constraints[this_operand] = p;
- /* If this operand did not win somehow,
- this alternative loses. */
- if (! win)
- lose = 1;
- }
- /* This alternative won; the operands are ok.
- Change whichever operands this alternative says to change. */
- if (! lose)
- break;
-
- this_alternative++;
- }
-
- /* For operands constrained to match another operand, copy the other
- operand's class to this operand's class. */
- for (j = 0; j < n_operands; j++)
- if (operand_matches[j] >= 0)
- operand_class[j] = operand_class[operand_matches[j]];
-
- return this_alternative == n_alternatives ? -1 : this_alternative;
-}
-
-/* Record the life info of each stack reg in INSN, updating REGSTACK.
- N_INPUTS is the number of inputs; N_OUTPUTS the outputs. CONSTRAINTS
- is an array of the constraint strings used in the asm statement.
- OPERANDS is an array of all operands for the insn, and is assumed to
- contain all output operands, then all inputs operands.
-
- There are many rules that an asm statement for stack-like regs must
- follow. Those rules are explained at the top of this file: the rule
- numbers below refer to that explanation. */
-
-static void
-record_asm_reg_life (insn, regstack, operands, constraints,
- n_inputs, n_outputs)
- rtx insn;
- stack regstack;
- rtx *operands;
- char **constraints;
- int n_inputs, n_outputs;
-{
- int i;
- int n_operands = n_inputs + n_outputs;
- int first_input = n_outputs;
- int n_clobbers;
- int malformed_asm = 0;
- rtx body = PATTERN (insn);
-
- int *operand_matches = (int *) alloca (n_operands * sizeof (int *));
-
- enum reg_class *operand_class
- = (enum reg_class *) alloca (n_operands * sizeof (enum reg_class *));
-
- int reg_used_as_output[FIRST_PSEUDO_REGISTER];
- int implicitly_dies[FIRST_PSEUDO_REGISTER];
-
- rtx *clobber_reg;
-
- /* Find out what the constraints require. If no constraint
- alternative matches, this asm is malformed. */
- i = constrain_asm_operands (n_operands, operands, constraints,
- operand_matches, operand_class);
- if (i < 0)
- malformed_asm = 1;
-
- /* Strip SUBREGs here to make the following code simpler. */
- for (i = 0; i < n_operands; i++)
- if (GET_CODE (operands[i]) == SUBREG
- && GET_CODE (SUBREG_REG (operands[i])) == REG)
- operands[i] = SUBREG_REG (operands[i]);
-
- /* Set up CLOBBER_REG. */
-
- n_clobbers = 0;
-
- if (GET_CODE (body) == PARALLEL)
- {
- clobber_reg = (rtx *) alloca (XVECLEN (body, 0) * sizeof (rtx *));
-
- for (i = 0; i < XVECLEN (body, 0); i++)
- if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
- {
- rtx clobber = XVECEXP (body, 0, i);
- rtx reg = XEXP (clobber, 0);
-
- if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
- reg = SUBREG_REG (reg);
-
- if (STACK_REG_P (reg))
- {
- clobber_reg[n_clobbers] = reg;
- n_clobbers++;
- }
- }
- }
-
- /* Enforce rule #4: Output operands must specifically indicate which
- reg an output appears in after an asm. "=f" is not allowed: the
- operand constraints must select a class with a single reg.
-
- Also enforce rule #5: Output operands must start at the top of
- the reg-stack: output operands may not "skip" a reg. */
-
- bzero ((char *) reg_used_as_output, sizeof (reg_used_as_output));
- for (i = 0; i < n_outputs; i++)
- if (STACK_REG_P (operands[i]))
- if (reg_class_size[(int) operand_class[i]] != 1)
- {
- error_for_asm
- (insn, "Output constraint %d must specify a single register", i);
- malformed_asm = 1;
- }
- else
- reg_used_as_output[REGNO (operands[i])] = 1;
-
-
- /* Search for first non-popped reg. */
- for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
- if (! reg_used_as_output[i])
- break;
-
- /* If there are any other popped regs, that's an error. */
- for (; i < LAST_STACK_REG + 1; i++)
- if (reg_used_as_output[i])
- break;
-
- if (i != LAST_STACK_REG + 1)
- {
- error_for_asm (insn, "Output regs must be grouped at top of stack");
- malformed_asm = 1;
- }
-
- /* Enforce rule #2: All implicitly popped input regs must be closer
- to the top of the reg-stack than any input that is not implicitly
- popped. */
-
- bzero ((char *) implicitly_dies, sizeof (implicitly_dies));
- for (i = first_input; i < first_input + n_inputs; i++)
- if (STACK_REG_P (operands[i]))
- {
- /* An input reg is implicitly popped if it is tied to an
- output, or if there is a CLOBBER for it. */
- int j;
-
- for (j = 0; j < n_clobbers; j++)
- if (operands_match_p (clobber_reg[j], operands[i]))
- break;
-
- if (j < n_clobbers || operand_matches[i] >= 0)
- implicitly_dies[REGNO (operands[i])] = 1;
- }
-
- /* Search for first non-popped reg. */
- for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
- if (! implicitly_dies[i])
- break;
-
- /* If there are any other popped regs, that's an error. */
- for (; i < LAST_STACK_REG + 1; i++)
- if (implicitly_dies[i])
- break;
-
- if (i != LAST_STACK_REG + 1)
- {
- error_for_asm (insn,
- "Implicitly popped regs must be grouped at top of stack");
- malformed_asm = 1;
- }
-
- /* Enfore rule #3: If any input operand uses the "f" constraint, all
- output constraints must use the "&" earlyclobber.
-
- ??? Detect this more deterministically by having constraint_asm_operands
- record any earlyclobber. */
-
- for (i = first_input; i < first_input + n_inputs; i++)
- if (operand_matches[i] == -1)
- {
- int j;
-
- for (j = 0; j < n_outputs; j++)
- if (operands_match_p (operands[j], operands[i]))
- {
- error_for_asm (insn,
- "Output operand %d must use `&' constraint", j);
- malformed_asm = 1;
- }
- }
-
- if (malformed_asm)
- {
- /* Avoid further trouble with this insn. */
- PATTERN (insn) = gen_rtx (USE, VOIDmode, const0_rtx);
- PUT_MODE (insn, VOIDmode);
- return;
- }
-
- /* Process all outputs */
- for (i = 0; i < n_outputs; i++)
- {
- rtx op = operands[i];
-
- if (! STACK_REG_P (op))
- if (stack_regs_mentioned_p (op))
- abort ();
- else
- continue;
-
- /* Each destination is dead before this insn. If the
- destination is not used after this insn, record this with
- REG_UNUSED. */
-
- if (! TEST_HARD_REG_BIT (regstack->reg_set, REGNO (op)))
- REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_UNUSED, op,
- REG_NOTES (insn));
-
- CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (op));
- }
-
- /* Process all inputs */
- for (i = first_input; i < first_input + n_inputs; i++)
- {
- if (! STACK_REG_P (operands[i]))
- if (stack_regs_mentioned_p (operands[i]))
- abort ();
- else
- continue;
-
- /* If an input is dead after the insn, record a death note.
- But don't record a death note if there is already a death note,
- or if the input is also an output. */
-
- if (! TEST_HARD_REG_BIT (regstack->reg_set, REGNO (operands[i]))
- && operand_matches[i] == -1
- && find_regno_note (insn, REG_DEAD, REGNO (operands[i])) == NULL_RTX)
- REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_DEAD, operands[i],
- REG_NOTES (insn));
-
- SET_HARD_REG_BIT (regstack->reg_set, REGNO (operands[i]));
- }
-}
-
-/* Scan PAT, which is part of INSN, and record registers appearing in
- a SET_DEST in DEST, and other registers in SRC.
-
- This function does not know about SET_DESTs that are both input and
- output (such as ZERO_EXTRACT) - this cannot happen on a 387. */
-
-static void
-record_reg_life_pat (pat, src, dest, douse)
- rtx pat;
- HARD_REG_SET *src, *dest;
- int douse;
-{
- register char *fmt;
- register int i;
-
- if (STACK_REG_P (pat)
- || (GET_CODE (pat) == SUBREG && STACK_REG_P (SUBREG_REG (pat))))
- {
- if (src)
- mark_regs_pat (pat, src);
-
- if (dest)
- mark_regs_pat (pat, dest);
-
- return;
- }
-
- if (GET_CODE (pat) == SET)
- {
- record_reg_life_pat (XEXP (pat, 0), NULL_PTR, dest, 0);
- record_reg_life_pat (XEXP (pat, 1), src, NULL_PTR, 0);
- return;
- }
-
- /* We don't need to consider either of these cases. */
- if (GET_CODE (pat) == USE && !douse || GET_CODE (pat) == CLOBBER)
- return;
-
- fmt = GET_RTX_FORMAT (GET_CODE (pat));
- for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'E')
- {
- register int j;
-
- for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
- record_reg_life_pat (XVECEXP (pat, i, j), src, dest, 0);
- }
- else if (fmt[i] == 'e')
- record_reg_life_pat (XEXP (pat, i), src, dest, 0);
- }
-}
-
-/* Calculate the number of inputs and outputs in BODY, an
- asm_operands. N_OPERANDS is the total number of operands, and
- N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
- placed. */
-
-static void
-get_asm_operand_lengths (body, n_operands, n_inputs, n_outputs)
- rtx body;
- int n_operands;
- int *n_inputs, *n_outputs;
-{
- if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
- *n_inputs = ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body));
-
- else if (GET_CODE (body) == ASM_OPERANDS)
- *n_inputs = ASM_OPERANDS_INPUT_LENGTH (body);
-
- else if (GET_CODE (body) == PARALLEL
- && GET_CODE (XVECEXP (body, 0, 0)) == SET)
- *n_inputs = ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body, 0, 0)));
-
- else if (GET_CODE (body) == PARALLEL
- && GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
- *n_inputs = ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body, 0, 0));
- else
- abort ();
-
- *n_outputs = n_operands - *n_inputs;
-}
-
-/* Scan INSN, which is in BLOCK, and record the life & death of stack
- registers in REGSTACK. This function is called to process insns from
- the last insn in a block to the first. The actual scanning is done in
- record_reg_life_pat.
-
- If a register is live after a CALL_INSN, but is not a value return
- register for that CALL_INSN, then code is emitted to initialize that
- register. The block_end[] data is kept accurate.
-
- Existing death and unset notes for stack registers are deleted
- before processing the insn. */
-
-static void
-record_reg_life (insn, block, regstack)
- rtx insn;
- int block;
- stack regstack;
-{
- rtx note, *note_link;
- int n_operands;
-
- if ((GET_CODE (insn) != INSN && GET_CODE (insn) != CALL_INSN)
- || INSN_DELETED_P (insn))
- return;
-
- /* Strip death notes for stack regs from this insn */
-
- note_link = &REG_NOTES(insn);
- for (note = *note_link; note; note = XEXP (note, 1))
- if (STACK_REG_P (XEXP (note, 0))
- && (REG_NOTE_KIND (note) == REG_DEAD
- || REG_NOTE_KIND (note) == REG_UNUSED))
- *note_link = XEXP (note, 1);
- else
- note_link = &XEXP (note, 1);
-
- /* Process all patterns in the insn. */
-
- n_operands = asm_noperands (PATTERN (insn));
- if (n_operands >= 0)
- {
- /* This insn is an `asm' with operands. Decode the operands,
- decide how many are inputs, and record the life information. */
-
- rtx operands[MAX_RECOG_OPERANDS];
- rtx body = PATTERN (insn);
- int n_inputs, n_outputs;
- char **constraints = (char **) alloca (n_operands * sizeof (char *));
-
- decode_asm_operands (body, operands, NULL_PTR, constraints, NULL_PTR);
- get_asm_operand_lengths (body, n_operands, &n_inputs, &n_outputs);
- record_asm_reg_life (insn, regstack, operands, constraints,
- n_inputs, n_outputs);
- return;
- }
-
- {
- HARD_REG_SET src, dest;
- int regno;
-
- CLEAR_HARD_REG_SET (src);
- CLEAR_HARD_REG_SET (dest);
-
- if (GET_CODE (insn) == CALL_INSN)
- for (note = CALL_INSN_FUNCTION_USAGE (insn);
- note;
- note = XEXP (note, 1))
- if (GET_CODE (XEXP (note, 0)) == USE)
- record_reg_life_pat (SET_DEST (XEXP (note, 0)), &src, NULL_PTR, 0);
-
- record_reg_life_pat (PATTERN (insn), &src, &dest, 0);
- for (regno = FIRST_STACK_REG; regno <= LAST_STACK_REG; regno++)
- if (! TEST_HARD_REG_BIT (regstack->reg_set, regno))
- {
- if (TEST_HARD_REG_BIT (src, regno)
- && ! TEST_HARD_REG_BIT (dest, regno))
- REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_DEAD,
- FP_MODE_REG (regno, DFmode),
- REG_NOTES (insn));
- else if (TEST_HARD_REG_BIT (dest, regno))
- REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_UNUSED,
- FP_MODE_REG (regno, DFmode),
- REG_NOTES (insn));
- }
-
- if (GET_CODE (insn) == CALL_INSN)
- {
- int reg;
-
- /* There might be a reg that is live after a function call.
- Initialize it to zero so that the program does not crash. See
- comment towards the end of stack_reg_life_analysis(). */
-
- for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
- if (! TEST_HARD_REG_BIT (dest, reg)
- && TEST_HARD_REG_BIT (regstack->reg_set, reg))
- {
- rtx init, pat;
-
- /* The insn will use virtual register numbers, and so
- convert_regs is expected to process these. But BLOCK_NUM
- cannot be used on these insns, because they do not appear in
- block_number[]. */
-
- pat = gen_rtx (SET, VOIDmode, FP_MODE_REG (reg, DFmode),
- CONST0_RTX (DFmode));
- init = emit_insn_after (pat, insn);
- PUT_MODE (init, QImode);
-
- CLEAR_HARD_REG_BIT (regstack->reg_set, reg);
-
- /* If the CALL_INSN was the end of a block, move the
- block_end to point to the new insn. */
-
- if (block_end[block] == insn)
- block_end[block] = init;
- }
-
- /* Some regs do not survive a CALL */
- AND_COMPL_HARD_REG_SET (regstack->reg_set, call_used_reg_set);
- }
-
- AND_COMPL_HARD_REG_SET (regstack->reg_set, dest);
- IOR_HARD_REG_SET (regstack->reg_set, src);
- }
-}
-
-/* Find all basic blocks of the function, which starts with FIRST.
- For each JUMP_INSN, build the chain of LABEL_REFS on each CODE_LABEL. */
-
-static void
-find_blocks (first)
- rtx first;
-{
- register rtx insn;
- register int block;
- register RTX_CODE prev_code = BARRIER;
- register RTX_CODE code;
- rtx label_value_list = 0;
-
- /* Record where all the blocks start and end.
- Record which basic blocks control can drop in to. */
-
- block = -1;
- for (insn = first; insn; insn = NEXT_INSN (insn))
- {
- /* Note that this loop must select the same block boundaries
- as code in reg_to_stack, but that these are not the same
- as those selected in flow.c. */
-
- code = GET_CODE (insn);
-
- if (code == CODE_LABEL
- || (prev_code != INSN
- && prev_code != CALL_INSN
- && prev_code != CODE_LABEL
- && GET_RTX_CLASS (code) == 'i'))
- {
- block_begin[++block] = insn;
- block_end[block] = insn;
- block_drops_in[block] = prev_code != BARRIER;
- }
- else if (GET_RTX_CLASS (code) == 'i')
- block_end[block] = insn;
-
- if (GET_RTX_CLASS (code) == 'i')
- {
- rtx note;
-
- /* Make a list of all labels referred to other than by jumps. */
- for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
- if (REG_NOTE_KIND (note) == REG_LABEL)
- label_value_list = gen_rtx (EXPR_LIST, VOIDmode, XEXP (note, 0),
- label_value_list);
- }
-
- block_number[INSN_UID (insn)] = block;
-
- if (code != NOTE)
- prev_code = code;
- }
-
- if (block + 1 != blocks)
- abort ();
-
- /* generate all label references to the corresponding jump insn */
- for (block = 0; block < blocks; block++)
- {
- insn = block_end[block];
-
- if (GET_CODE (insn) == JUMP_INSN)
- {
- rtx pat = PATTERN (insn);
- int computed_jump = 0;
- rtx x;
-
- if (GET_CODE (pat) == PARALLEL)
- {
- int len = XVECLEN (pat, 0);
- int has_use_labelref = 0;
- int i;
-
- for (i = len - 1; i >= 0; i--)
- if (GET_CODE (XVECEXP (pat, 0, i)) == USE
- && GET_CODE (XEXP (XVECEXP (pat, 0, i), 0)) == LABEL_REF)
- has_use_labelref = 1;
-
- if (! has_use_labelref)
- for (i = len - 1; i >= 0; i--)
- if (GET_CODE (XVECEXP (pat, 0, i)) == SET
- && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
- && uses_reg_or_mem (SET_SRC (XVECEXP (pat, 0, i))))
- computed_jump = 1;
- }
- else if (GET_CODE (pat) == SET
- && SET_DEST (pat) == pc_rtx
- && uses_reg_or_mem (SET_SRC (pat)))
- computed_jump = 1;
-
- if (computed_jump)
- {
- for (x = label_value_list; x; x = XEXP (x, 1))
- record_label_references (insn,
- gen_rtx (LABEL_REF, VOIDmode,
- XEXP (x, 0)));
-
- for (x = forced_labels; x; x = XEXP (x, 1))
- record_label_references (insn,
- gen_rtx (LABEL_REF, VOIDmode,
- XEXP (x, 0)));
- }
-
- record_label_references (insn, pat);
- }
- }
-}
-
-/* Return 1 if X contain a REG or MEM that is not in the constant pool. */
-
-static int
-uses_reg_or_mem (x)
- rtx x;
-{
- enum rtx_code code = GET_CODE (x);
- int i, j;
- char *fmt;
-
- if (code == REG
- || (code == MEM
- && ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
- && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))))
- return 1;
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e'
- && uses_reg_or_mem (XEXP (x, i)))
- return 1;
-
- if (fmt[i] == 'E')
- for (j = 0; j < XVECLEN (x, i); j++)
- if (uses_reg_or_mem (XVECEXP (x, i, j)))
- return 1;
- }
-
- return 0;
-}
-
-/* If current function returns its result in an fp stack register,
- return the REG. Otherwise, return 0. */
-
-static rtx
-stack_result (decl)
- tree decl;
-{
- rtx result = DECL_RTL (DECL_RESULT (decl));
-
- if (result != 0
- && ! (GET_CODE (result) == REG
- && REGNO (result) < FIRST_PSEUDO_REGISTER))
- {
-#ifdef FUNCTION_OUTGOING_VALUE
- result
- = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
-#else
- result = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
-#endif
- }
-
- return result != 0 && STACK_REG_P (result) ? result : 0;
-}
-
-/* Determine the which registers are live at the start of each basic
- block of the function whose first insn is FIRST.
-
- First, if the function returns a real_type, mark the function
- return type as live at each return point, as the RTL may not give any
- hint that the register is live.
-
- Then, start with the last block and work back to the first block.
- Similarly, work backwards within each block, insn by insn, recording
- which regs are dead and which are used (and therefore live) in the
- hard reg set of block_stack_in[].
-
- After processing each basic block, if there is a label at the start
- of the block, propagate the live registers to all jumps to this block.
-
- As a special case, if there are regs live in this block, that are
- not live in a block containing a jump to this label, and the block
- containing the jump has already been processed, we must propagate this
- block's entry register life back to the block containing the jump, and
- restart life analysis from there.
-
- In the worst case, this function may traverse the insns
- REG_STACK_SIZE times. This is necessary, since a jump towards the end
- of the insns may not know that a reg is live at a target that is early
- in the insns. So we back up and start over with the new reg live.
-
- If there are registers that are live at the start of the function,
- insns are emitted to initialize these registers. Something similar is
- done after CALL_INSNs in record_reg_life. */
-
-static void
-stack_reg_life_analysis (first, stackentry)
- rtx first;
- HARD_REG_SET *stackentry;
-{
- int reg, block;
- struct stack_def regstack;
-
- {
- rtx retvalue;
-
- if (retvalue = stack_result (current_function_decl))
- {
- /* Find all RETURN insns and mark them. */
-
- for (block = blocks - 1; --block >= 0;)
- if (GET_CODE (block_end[block]) == JUMP_INSN
- && GET_CODE (PATTERN (block_end[block])) == RETURN)
- mark_regs_pat (retvalue, block_out_reg_set+block);
-
- /* Mark off the end of last block if we "fall off" the end of the
- function into the epilogue. */
-
- if (GET_CODE (block_end[blocks-1]) != JUMP_INSN
- || GET_CODE (PATTERN (block_end[blocks-1])) == RETURN)
- mark_regs_pat (retvalue, block_out_reg_set+blocks-1);
- }
- }
-
- /* now scan all blocks backward for stack register use */
-
- block = blocks - 1;
- while (block >= 0)
- {
- register rtx insn, prev;
-
- /* current register status at last instruction */
-
- COPY_HARD_REG_SET (regstack.reg_set, block_out_reg_set[block]);
-
- prev = block_end[block];
- do
- {
- insn = prev;
- prev = PREV_INSN (insn);
-
- /* If the insn is a CALL_INSN, we need to ensure that
- everything dies. But otherwise don't process unless there
- are some stack regs present. */
-
- if (GET_MODE (insn) == QImode || GET_CODE (insn) == CALL_INSN)
- record_reg_life (insn, block, &regstack);
-
- } while (insn != block_begin[block]);
-
- /* Set the state at the start of the block. Mark that no
- register mapping information known yet. */
-
- COPY_HARD_REG_SET (block_stack_in[block].reg_set, regstack.reg_set);
- block_stack_in[block].top = -2;
-
- /* If there is a label, propagate our register life to all jumps
- to this label. */
-
- if (GET_CODE (insn) == CODE_LABEL)
- {
- register rtx label;
- int must_restart = 0;
-
- for (label = LABEL_REFS (insn); label != insn;
- label = LABEL_NEXTREF (label))
- {
- int jump_block = BLOCK_NUM (CONTAINING_INSN (label));
-
- if (jump_block < block)
- IOR_HARD_REG_SET (block_out_reg_set[jump_block],
- block_stack_in[block].reg_set);
- else
- {
- /* The block containing the jump has already been
- processed. If there are registers that were not known
- to be live then, but are live now, we must back up
- and restart life analysis from that point with the new
- life information. */
-
- GO_IF_HARD_REG_SUBSET (block_stack_in[block].reg_set,
- block_out_reg_set[jump_block],
- win);
-
- IOR_HARD_REG_SET (block_out_reg_set[jump_block],
- block_stack_in[block].reg_set);
-
- block = jump_block;
- must_restart = 1;
-
- win:
- ;
- }
- }
- if (must_restart)
- continue;
- }
-
- if (block_drops_in[block])
- IOR_HARD_REG_SET (block_out_reg_set[block-1],
- block_stack_in[block].reg_set);
-
- block -= 1;
- }
-
- /* If any reg is live at the start of the first block of a
- function, then we must guarantee that the reg holds some value by
- generating our own "load" of that register. Otherwise a 387 would
- fault trying to access an empty register. */
-
- /* Load zero into each live register. The fact that a register
- appears live at the function start necessarily implies an error
- in the user program: it means that (unless the offending code is *never*
- executed) this program is using uninitialised floating point
- variables. In order to keep broken code like this happy, we initialise
- those variables with zero.
-
- Note that we are inserting virtual register references here:
- these insns must be processed by convert_regs later. Also, these
- insns will not be in block_number, so BLOCK_NUM() will fail for them. */
-
- for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; reg--)
- if (TEST_HARD_REG_BIT (block_stack_in[0].reg_set, reg)
- && ! TEST_HARD_REG_BIT (*stackentry, reg))
- {
- rtx init_rtx;
-
- init_rtx = gen_rtx (SET, VOIDmode, FP_MODE_REG(reg, DFmode),
- CONST0_RTX (DFmode));
- block_begin[0] = emit_insn_after (init_rtx, first);
- PUT_MODE (block_begin[0], QImode);
-
- CLEAR_HARD_REG_BIT (block_stack_in[0].reg_set, reg);
- }
-}
-
-/*****************************************************************************
- This section deals with stack register substitution, and forms the second
- pass over the RTL.
- *****************************************************************************/
-
-/* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
- the desired hard REGNO. */
-
-static void
-replace_reg (reg, regno)
- rtx *reg;
- int regno;
-{
- if (regno < FIRST_STACK_REG || regno > LAST_STACK_REG
- || ! STACK_REG_P (*reg))
- abort ();
-
- switch (GET_MODE_CLASS (GET_MODE (*reg)))
- {
- default: abort ();
- case MODE_FLOAT:
- case MODE_COMPLEX_FLOAT:;
- }
-
- *reg = FP_MODE_REG (regno, GET_MODE (*reg));
-}
-
-/* Remove a note of type NOTE, which must be found, for register
- number REGNO from INSN. Remove only one such note. */
-
-static void
-remove_regno_note (insn, note, regno)
- rtx insn;
- enum reg_note note;
- int regno;
-{
- register rtx *note_link, this;
-
- note_link = &REG_NOTES(insn);
- for (this = *note_link; this; this = XEXP (this, 1))
- if (REG_NOTE_KIND (this) == note
- && REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno)
- {
- *note_link = XEXP (this, 1);
- return;
- }
- else
- note_link = &XEXP (this, 1);
-
- abort ();
-}
-
-/* Find the hard register number of virtual register REG in REGSTACK.
- The hard register number is relative to the top of the stack. -1 is
- returned if the register is not found. */
-
-static int
-get_hard_regnum (regstack, reg)
- stack regstack;
- rtx reg;
-{
- int i;
-
- if (! STACK_REG_P (reg))
- abort ();
-
- for (i = regstack->top; i >= 0; i--)
- if (regstack->reg[i] == REGNO (reg))
- break;
-
- return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
-}
-
-/* Delete INSN from the RTL. Mark the insn, but don't remove it from
- the chain of insns. Doing so could confuse block_begin and block_end
- if this were the only insn in the block. */
-
-static void
-delete_insn_for_stacker (insn)
- rtx insn;
-{
- PUT_CODE (insn, NOTE);
- NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
- NOTE_SOURCE_FILE (insn) = 0;
-}
-
-/* Emit an insn to pop virtual register REG before or after INSN.
- REGSTACK is the stack state after INSN and is updated to reflect this
- pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
- is represented as a SET whose destination is the register to be popped
- and source is the top of stack. A death note for the top of stack
- cases the movdf pattern to pop. */
-
-static rtx
-emit_pop_insn (insn, regstack, reg, when)
- rtx insn;
- stack regstack;
- rtx reg;
- rtx (*when)();
-{
- rtx pop_insn, pop_rtx;
- int hard_regno;
-
- hard_regno = get_hard_regnum (regstack, reg);
-
- if (hard_regno < FIRST_STACK_REG)
- abort ();
-
- pop_rtx = gen_rtx (SET, VOIDmode, FP_MODE_REG (hard_regno, DFmode),
- FP_MODE_REG (FIRST_STACK_REG, DFmode));
-
- pop_insn = (*when) (pop_rtx, insn);
- /* ??? This used to be VOIDmode, but that seems wrong. */
- PUT_MODE (pop_insn, QImode);
-
- REG_NOTES (pop_insn) = gen_rtx (EXPR_LIST, REG_DEAD,
- FP_MODE_REG (FIRST_STACK_REG, DFmode),
- REG_NOTES (pop_insn));
-
- regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
- = regstack->reg[regstack->top];
- regstack->top -= 1;
- CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
-
- return pop_insn;
-}
-
-/* Emit an insn before or after INSN to swap virtual register REG with the
- top of stack. WHEN should be `emit_insn_before' or `emit_insn_before'
- REGSTACK is the stack state before the swap, and is updated to reflect
- the swap. A swap insn is represented as a PARALLEL of two patterns:
- each pattern moves one reg to the other.
-
- If REG is already at the top of the stack, no insn is emitted. */
-
-static void
-emit_swap_insn (insn, regstack, reg)
- rtx insn;
- stack regstack;
- rtx reg;
-{
- int hard_regno;
- rtx gen_swapdf();
- rtx swap_rtx, swap_insn;
- int tmp, other_reg; /* swap regno temps */
- rtx i1; /* the stack-reg insn prior to INSN */
- rtx i1set = NULL_RTX; /* the SET rtx within I1 */
-
- hard_regno = get_hard_regnum (regstack, reg);
-
- if (hard_regno < FIRST_STACK_REG)
- abort ();
- if (hard_regno == FIRST_STACK_REG)
- return;
-
- other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
-
- tmp = regstack->reg[other_reg];
- regstack->reg[other_reg] = regstack->reg[regstack->top];
- regstack->reg[regstack->top] = tmp;
-
- /* Find the previous insn involving stack regs, but don't go past
- any labels, calls or jumps. */
- i1 = prev_nonnote_insn (insn);
- while (i1 && GET_CODE (i1) == INSN && GET_MODE (i1) != QImode)
- i1 = prev_nonnote_insn (i1);
-
- if (i1)
- i1set = single_set (i1);
-
- if (i1set)
- {
- rtx i2; /* the stack-reg insn prior to I1 */
- rtx i1src = *get_true_reg (&SET_SRC (i1set));
- rtx i1dest = *get_true_reg (&SET_DEST (i1set));
-
- /* If the previous register stack push was from the reg we are to
- swap with, omit the swap. */
-
- if (GET_CODE (i1dest) == REG && REGNO (i1dest) == FIRST_STACK_REG
- && GET_CODE (i1src) == REG && REGNO (i1src) == hard_regno - 1
- && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
- return;
-
- /* If the previous insn wrote to the reg we are to swap with,
- omit the swap. */
-
- if (GET_CODE (i1dest) == REG && REGNO (i1dest) == hard_regno
- && GET_CODE (i1src) == REG && REGNO (i1src) == FIRST_STACK_REG
- && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
- return;
- }
-
- if (GET_RTX_CLASS (GET_CODE (i1)) == 'i' && sets_cc0_p (PATTERN (i1)))
- {
- i1 = next_nonnote_insn (i1);
- if (i1 == insn)
- abort ();
- }
-
- swap_rtx = gen_swapdf (FP_MODE_REG (hard_regno, DFmode),
- FP_MODE_REG (FIRST_STACK_REG, DFmode));
- swap_insn = emit_insn_after (swap_rtx, i1);
- /* ??? This used to be VOIDmode, but that seems wrong. */
- PUT_MODE (swap_insn, QImode);
-}
-
-/* Handle a move to or from a stack register in PAT, which is in INSN.
- REGSTACK is the current stack. */
-
-static void
-move_for_stack_reg (insn, regstack, pat)
- rtx insn;
- stack regstack;
- rtx pat;
-{
- rtx *psrc = get_true_reg (&SET_SRC (pat));
- rtx *pdest = get_true_reg (&SET_DEST (pat));
- rtx src, dest;
- rtx note;
-
- src = *psrc; dest = *pdest;
-
- if (STACK_REG_P (src) && STACK_REG_P (dest))
- {
- /* Write from one stack reg to another. If SRC dies here, then
- just change the register mapping and delete the insn. */
-
- note = find_regno_note (insn, REG_DEAD, REGNO (src));
- if (note)
- {
- int i;
-
- /* If this is a no-op move, there must not be a REG_DEAD note. */
- if (REGNO (src) == REGNO (dest))
- abort ();
-
- for (i = regstack->top; i >= 0; i--)
- if (regstack->reg[i] == REGNO (src))
- break;
-
- /* The source must be live, and the dest must be dead. */
- if (i < 0 || get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
- abort ();
-
- /* It is possible that the dest is unused after this insn.
- If so, just pop the src. */
-
- if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
- {
- emit_pop_insn (insn, regstack, src, emit_insn_after);
-
- delete_insn_for_stacker (insn);
- return;
- }
-
- regstack->reg[i] = REGNO (dest);
-
- SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
- CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
-
- delete_insn_for_stacker (insn);
-
- return;
- }
-
- /* The source reg does not die. */
-
- /* If this appears to be a no-op move, delete it, or else it
- will confuse the machine description output patterns. But if
- it is REG_UNUSED, we must pop the reg now, as per-insn processing
- for REG_UNUSED will not work for deleted insns. */
-
- if (REGNO (src) == REGNO (dest))
- {
- if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
- emit_pop_insn (insn, regstack, dest, emit_insn_after);
-
- delete_insn_for_stacker (insn);
- return;
- }
-
- /* The destination ought to be dead */
- if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
- abort ();
-
- replace_reg (psrc, get_hard_regnum (regstack, src));
-
- regstack->reg[++regstack->top] = REGNO (dest);
- SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
- replace_reg (pdest, FIRST_STACK_REG);
- }
- else if (STACK_REG_P (src))
- {
- /* Save from a stack reg to MEM, or possibly integer reg. Since
- only top of stack may be saved, emit an exchange first if
- needs be. */
-
- emit_swap_insn (insn, regstack, src);
-
- note = find_regno_note (insn, REG_DEAD, REGNO (src));
- if (note)
- {
- replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
- regstack->top--;
- CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
- }
- else if (GET_MODE (src) == XFmode && regstack->top < REG_STACK_SIZE - 1)
- {
- /* A 387 cannot write an XFmode value to a MEM without
- clobbering the source reg. The output code can handle
- this by reading back the value from the MEM.
- But it is more efficient to use a temp register if one is
- available. Push the source value here if the register
- stack is not full, and then write the value to memory via
- a pop. */
- rtx push_rtx, push_insn;
- rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, XFmode);
-
- push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
- push_insn = emit_insn_before (push_rtx, insn);
- PUT_MODE (push_insn, QImode);
- REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_DEAD, top_stack_reg,
- REG_NOTES (insn));
- }
-
- replace_reg (psrc, FIRST_STACK_REG);
- }
- else if (STACK_REG_P (dest))
- {
- /* Load from MEM, or possibly integer REG or constant, into the
- stack regs. The actual target is always the top of the
- stack. The stack mapping is changed to reflect that DEST is
- now at top of stack. */
-
- /* The destination ought to be dead */
- if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
- abort ();
-
- if (regstack->top >= REG_STACK_SIZE)
- abort ();
-
- regstack->reg[++regstack->top] = REGNO (dest);
- SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
- replace_reg (pdest, FIRST_STACK_REG);
- }
- else
- abort ();
-}
-
-static void
-swap_rtx_condition (pat)
- rtx pat;
-{
- register char *fmt;
- register int i;
-
- if (GET_RTX_CLASS (GET_CODE (pat)) == '<')
- {
- PUT_CODE (pat, swap_condition (GET_CODE (pat)));
- return;
- }
-
- fmt = GET_RTX_FORMAT (GET_CODE (pat));
- for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'E')
- {
- register int j;
-
- for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
- swap_rtx_condition (XVECEXP (pat, i, j));
- }
- else if (fmt[i] == 'e')
- swap_rtx_condition (XEXP (pat, i));
- }
-}
-
-/* Handle a comparison. Special care needs to be taken to avoid
- causing comparisons that a 387 cannot do correctly, such as EQ.
-
- Also, a pop insn may need to be emitted. The 387 does have an
- `fcompp' insn that can pop two regs, but it is sometimes too expensive
- to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
- set up. */
-
-static void
-compare_for_stack_reg (insn, regstack, pat)
- rtx insn;
- stack regstack;
- rtx pat;
-{
- rtx *src1, *src2;
- rtx src1_note, src2_note;
- rtx cc0_user;
-
- src1 = get_true_reg (&XEXP (SET_SRC (pat), 0));
- src2 = get_true_reg (&XEXP (SET_SRC (pat), 1));
- cc0_user = next_cc0_user (insn);
-
- /* If the insn that uses cc0 is a conditional move, then the destination
- must be the top of stack */
- if (GET_CODE (PATTERN (cc0_user)) == SET
- && SET_DEST (PATTERN (cc0_user)) != pc_rtx
- && GET_CODE (SET_SRC (PATTERN (cc0_user))) == IF_THEN_ELSE)
- {
- rtx *dest, src_note;
-
- dest = get_true_reg (&SET_DEST (PATTERN (cc0_user)));
- if (REGNO (*dest) != regstack->reg[regstack->top])
- {
- emit_swap_insn (insn, regstack, *dest);
- }
- }
-
- /* ??? If fxch turns out to be cheaper than fstp, give priority to
- registers that die in this insn - move those to stack top first. */
- if (! STACK_REG_P (*src1)
- || (STACK_REG_P (*src2)
- && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
- {
- rtx temp, next;
-
- temp = XEXP (SET_SRC (pat), 0);
- XEXP (SET_SRC (pat), 0) = XEXP (SET_SRC (pat), 1);
- XEXP (SET_SRC (pat), 1) = temp;
-
- src1 = get_true_reg (&XEXP (SET_SRC (pat), 0));
- src2 = get_true_reg (&XEXP (SET_SRC (pat), 1));
-
- next = next_cc0_user (insn);
- if (next == NULL_RTX)
- abort ();
-
- swap_rtx_condition (PATTERN (next));
- INSN_CODE (next) = -1;
- INSN_CODE (insn) = -1;
- }
-
- /* We will fix any death note later. */
-
- src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
-
- if (STACK_REG_P (*src2))
- src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
- else
- src2_note = NULL_RTX;
-
- emit_swap_insn (insn, regstack, *src1);
-
- replace_reg (src1, FIRST_STACK_REG);
-
- if (STACK_REG_P (*src2))
- replace_reg (src2, get_hard_regnum (regstack, *src2));
-
- if (src1_note)
- {
- CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (XEXP (src1_note, 0)));
- replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
- regstack->top--;
- }
-
- /* If the second operand dies, handle that. But if the operands are
- the same stack register, don't bother, because only one death is
- needed, and it was just handled. */
-
- if (src2_note
- && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
- && REGNO (*src1) == REGNO (*src2)))
- {
- /* As a special case, two regs may die in this insn if src2 is
- next to top of stack and the top of stack also dies. Since
- we have already popped src1, "next to top of stack" is really
- at top (FIRST_STACK_REG) now. */
-
- if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
- && src1_note)
- {
- CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (XEXP (src2_note, 0)));
- replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
- regstack->top--;
- }
- else
- {
- /* The 386 can only represent death of the first operand in
- the case handled above. In all other cases, emit a separate
- pop and remove the death note from here. */
-
- link_cc0_insns (insn);
-
- remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
-
- emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
- emit_insn_after);
- }
- }
-}
-
-/* Substitute new registers in PAT, which is part of INSN. REGSTACK
- is the current register layout. */
-
-static void
-subst_stack_regs_pat (insn, regstack, pat)
- rtx insn;
- stack regstack;
- rtx pat;
-{
- rtx *dest, *src;
- rtx *src1 = (rtx *) NULL_PTR, *src2;
- rtx src1_note, src2_note;
-
- if (GET_CODE (pat) != SET)
- return;
-
- dest = get_true_reg (&SET_DEST (pat));
- src = get_true_reg (&SET_SRC (pat));
-
- /* See if this is a `movM' pattern, and handle elsewhere if so. */
-
- if (*dest != cc0_rtx
- && (STACK_REG_P (*src)
- || (STACK_REG_P (*dest)
- && (GET_CODE (*src) == REG || GET_CODE (*src) == MEM
- || GET_CODE (*src) == CONST_DOUBLE))))
- move_for_stack_reg (insn, regstack, pat);
- else
- switch (GET_CODE (SET_SRC (pat)))
- {
- case COMPARE:
- compare_for_stack_reg (insn, regstack, pat);
- break;
-
- case CALL:
- {
- int count;
- for (count = HARD_REGNO_NREGS (REGNO (*dest), GET_MODE (*dest));
- --count >= 0;)
- {
- regstack->reg[++regstack->top] = REGNO (*dest) + count;
- SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
- }
- }
- replace_reg (dest, FIRST_STACK_REG);
- break;
-
- case REG:
- /* This is a `tstM2' case. */
- if (*dest != cc0_rtx)
- abort ();
-
- src1 = src;
-
- /* Fall through. */
-
- case FLOAT_TRUNCATE:
- case SQRT:
- case ABS:
- case NEG:
- /* These insns only operate on the top of the stack. DEST might
- be cc0_rtx if we're processing a tstM pattern. Also, it's
- possible that the tstM case results in a REG_DEAD note on the
- source. */
-
- if (src1 == 0)
- src1 = get_true_reg (&XEXP (SET_SRC (pat), 0));
-
- emit_swap_insn (insn, regstack, *src1);
-
- src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
-
- if (STACK_REG_P (*dest))
- replace_reg (dest, FIRST_STACK_REG);
-
- if (src1_note)
- {
- replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
- regstack->top--;
- CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
- }
-
- replace_reg (src1, FIRST_STACK_REG);
-
- break;
-
- case MINUS:
- case DIV:
- /* On i386, reversed forms of subM3 and divM3 exist for
- MODE_FLOAT, so the same code that works for addM3 and mulM3
- can be used. */
- case MULT:
- case PLUS:
- /* These insns can accept the top of stack as a destination
- from a stack reg or mem, or can use the top of stack as a
- source and some other stack register (possibly top of stack)
- as a destination. */
-
- src1 = get_true_reg (&XEXP (SET_SRC (pat), 0));
- src2 = get_true_reg (&XEXP (SET_SRC (pat), 1));
-
- /* We will fix any death note later. */
-
- if (STACK_REG_P (*src1))
- src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
- else
- src1_note = NULL_RTX;
- if (STACK_REG_P (*src2))
- src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
- else
- src2_note = NULL_RTX;
-
- /* If either operand is not a stack register, then the dest
- must be top of stack. */
-
- if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
- emit_swap_insn (insn, regstack, *dest);
- else
- {
- /* Both operands are REG. If neither operand is already
- at the top of stack, choose to make the one that is the dest
- the new top of stack. */
-
- int src1_hard_regnum, src2_hard_regnum;
-
- src1_hard_regnum = get_hard_regnum (regstack, *src1);
- src2_hard_regnum = get_hard_regnum (regstack, *src2);
- if (src1_hard_regnum == -1 || src2_hard_regnum == -1)
- abort ();
-
- if (src1_hard_regnum != FIRST_STACK_REG
- && src2_hard_regnum != FIRST_STACK_REG)
- emit_swap_insn (insn, regstack, *dest);
- }
-
- if (STACK_REG_P (*src1))
- replace_reg (src1, get_hard_regnum (regstack, *src1));
- if (STACK_REG_P (*src2))
- replace_reg (src2, get_hard_regnum (regstack, *src2));
-
- if (src1_note)
- {
- /* If the register that dies is at the top of stack, then
- the destination is somewhere else - merely substitute it.
- But if the reg that dies is not at top of stack, then
- move the top of stack to the dead reg, as though we had
- done the insn and then a store-with-pop. */
-
- if (REGNO (XEXP (src1_note, 0)) == regstack->reg[regstack->top])
- {
- SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
- replace_reg (dest, get_hard_regnum (regstack, *dest));
- }
- else
- {
- int regno = get_hard_regnum (regstack, XEXP (src1_note, 0));
-
- SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
- replace_reg (dest, regno);
-
- regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
- = regstack->reg[regstack->top];
- }
-
- CLEAR_HARD_REG_BIT (regstack->reg_set,
- REGNO (XEXP (src1_note, 0)));
- replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
- regstack->top--;
- }
- else if (src2_note)
- {
- if (REGNO (XEXP (src2_note, 0)) == regstack->reg[regstack->top])
- {
- SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
- replace_reg (dest, get_hard_regnum (regstack, *dest));
- }
- else
- {
- int regno = get_hard_regnum (regstack, XEXP (src2_note, 0));
-
- SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
- replace_reg (dest, regno);
-
- regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
- = regstack->reg[regstack->top];
- }
-
- CLEAR_HARD_REG_BIT (regstack->reg_set,
- REGNO (XEXP (src2_note, 0)));
- replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
- regstack->top--;
- }
- else
- {
- SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
- replace_reg (dest, get_hard_regnum (regstack, *dest));
- }
-
- break;
-
- case UNSPEC:
- switch (XINT (SET_SRC (pat), 1))
- {
- case 1: /* sin */
- case 2: /* cos */
- /* These insns only operate on the top of the stack. */
-
- src1 = get_true_reg (&XVECEXP (SET_SRC (pat), 0, 0));
-
- emit_swap_insn (insn, regstack, *src1);
-
- src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
-
- if (STACK_REG_P (*dest))
- replace_reg (dest, FIRST_STACK_REG);
-
- if (src1_note)
- {
- replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
- regstack->top--;
- CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
- }
-
- replace_reg (src1, FIRST_STACK_REG);
-
- break;
-
- default:
- abort ();
- }
- break;
-
- case IF_THEN_ELSE:
- /* This insn requires the top of stack to be the destination. */
-
- src1 = get_true_reg (&XEXP (SET_SRC (pat), 1));
- src2 = get_true_reg (&XEXP (SET_SRC (pat), 2));
-
- src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
- src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
-
- {
- rtx src_note [3];
- int i;
-
- src_note[0] = 0;
- src_note[1] = src1_note;
- src_note[2] = src2_note;
-
- if (STACK_REG_P (*src1))
- replace_reg (src1, get_hard_regnum (regstack, *src1));
- if (STACK_REG_P (*src2))
- replace_reg (src2, get_hard_regnum (regstack, *src2));
-
- for (i = 1; i <= 2; i++)
- if (src_note [i])
- {
- int regno = get_hard_regnum (regstack, XEXP (src_note [i], 0));
-
- /* If the register that dies is not at the top of stack, then
- move the top of stack to the dead reg */
- if (REGNO (XEXP (src_note[i], 0))
- != regstack->reg[regstack->top])
- {
- remove_regno_note (insn, REG_DEAD,
- REGNO (XEXP (src_note [i], 0)));
- emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
- emit_insn_after);
- }
- else
- {
- CLEAR_HARD_REG_BIT (regstack->reg_set,
- REGNO (XEXP (src_note[i], 0)));
- replace_reg (&XEXP (src_note[i], 0), FIRST_STACK_REG);
- regstack->top--;
- }
-
- }
-
- SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
- replace_reg (dest, FIRST_STACK_REG);
- }
-
- break;
-
- default:
- abort ();
- }
-}
-
-/* Substitute hard regnums for any stack regs in INSN, which has
- N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
- before the insn, and is updated with changes made here. CONSTRAINTS is
- an array of the constraint strings used in the asm statement.
-
- OPERANDS is an array of the operands, and OPERANDS_LOC is a
- parallel array of where the operands were found. The output operands
- all precede the input operands.
-
- There are several requirements and assumptions about the use of
- stack-like regs in asm statements. These rules are enforced by
- record_asm_stack_regs; see comments there for details. Any
- asm_operands left in the RTL at this point may be assume to meet the
- requirements, since record_asm_stack_regs removes any problem asm. */
-
-static void
-subst_asm_stack_regs (insn, regstack, operands, operands_loc, constraints,
- n_inputs, n_outputs)
- rtx insn;
- stack regstack;
- rtx *operands, **operands_loc;
- char **constraints;
- int n_inputs, n_outputs;
-{
- int n_operands = n_inputs + n_outputs;
- int first_input = n_outputs;
- rtx body = PATTERN (insn);
-
- int *operand_matches = (int *) alloca (n_operands * sizeof (int *));
- enum reg_class *operand_class
- = (enum reg_class *) alloca (n_operands * sizeof (enum reg_class *));
-
- rtx *note_reg; /* Array of note contents */
- rtx **note_loc; /* Address of REG field of each note */
- enum reg_note *note_kind; /* The type of each note */
-
- rtx *clobber_reg;
- rtx **clobber_loc;
-
- struct stack_def temp_stack;
- int n_notes;
- int n_clobbers;
- rtx note;
- int i;
-
- /* Find out what the constraints required. If no constraint
- alternative matches, that is a compiler bug: we should have caught
- such an insn during the life analysis pass (and reload should have
- caught it regardless). */
-
- i = constrain_asm_operands (n_operands, operands, constraints,
- operand_matches, operand_class);
- if (i < 0)
- abort ();
-
- /* Strip SUBREGs here to make the following code simpler. */
- for (i = 0; i < n_operands; i++)
- if (GET_CODE (operands[i]) == SUBREG
- && GET_CODE (SUBREG_REG (operands[i])) == REG)
- {
- operands_loc[i] = & SUBREG_REG (operands[i]);
- operands[i] = SUBREG_REG (operands[i]);
- }
-
- /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
-
- for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
- i++;
-
- note_reg = (rtx *) alloca (i * sizeof (rtx));
- note_loc = (rtx **) alloca (i * sizeof (rtx *));
- note_kind = (enum reg_note *) alloca (i * sizeof (enum reg_note));
-
- n_notes = 0;
- for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
- {
- rtx reg = XEXP (note, 0);
- rtx *loc = & XEXP (note, 0);
-
- if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
- {
- loc = & SUBREG_REG (reg);
- reg = SUBREG_REG (reg);
- }
-
- if (STACK_REG_P (reg)
- && (REG_NOTE_KIND (note) == REG_DEAD
- || REG_NOTE_KIND (note) == REG_UNUSED))
- {
- note_reg[n_notes] = reg;
- note_loc[n_notes] = loc;
- note_kind[n_notes] = REG_NOTE_KIND (note);
- n_notes++;
- }
- }
-
- /* Set up CLOBBER_REG and CLOBBER_LOC. */
-
- n_clobbers = 0;
-
- if (GET_CODE (body) == PARALLEL)
- {
- clobber_reg = (rtx *) alloca (XVECLEN (body, 0) * sizeof (rtx *));
- clobber_loc = (rtx **) alloca (XVECLEN (body, 0) * sizeof (rtx **));
-
- for (i = 0; i < XVECLEN (body, 0); i++)
- if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
- {
- rtx clobber = XVECEXP (body, 0, i);
- rtx reg = XEXP (clobber, 0);
- rtx *loc = & XEXP (clobber, 0);
-
- if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
- {
- loc = & SUBREG_REG (reg);
- reg = SUBREG_REG (reg);
- }
-
- if (STACK_REG_P (reg))
- {
- clobber_reg[n_clobbers] = reg;
- clobber_loc[n_clobbers] = loc;
- n_clobbers++;
- }
- }
- }
-
- bcopy ((char *) regstack, (char *) &temp_stack, sizeof (temp_stack));
-
- /* Put the input regs into the desired place in TEMP_STACK. */
-
- for (i = first_input; i < first_input + n_inputs; i++)
- if (STACK_REG_P (operands[i])
- && reg_class_subset_p (operand_class[i], FLOAT_REGS)
- && operand_class[i] != FLOAT_REGS)
- {
- /* If an operand needs to be in a particular reg in
- FLOAT_REGS, the constraint was either 't' or 'u'. Since
- these constraints are for single register classes, and reload
- guaranteed that operand[i] is already in that class, we can
- just use REGNO (operands[i]) to know which actual reg this
- operand needs to be in. */
-
- int regno = get_hard_regnum (&temp_stack, operands[i]);
-
- if (regno < 0)
- abort ();
-
- if (regno != REGNO (operands[i]))
- {
- /* operands[i] is not in the right place. Find it
- and swap it with whatever is already in I's place.
- K is where operands[i] is now. J is where it should
- be. */
- int j, k, temp;
-
- k = temp_stack.top - (regno - FIRST_STACK_REG);
- j = (temp_stack.top
- - (REGNO (operands[i]) - FIRST_STACK_REG));
-
- temp = temp_stack.reg[k];
- temp_stack.reg[k] = temp_stack.reg[j];
- temp_stack.reg[j] = temp;
- }
- }
-
- /* emit insns before INSN to make sure the reg-stack is in the right
- order. */
-
- change_stack (insn, regstack, &temp_stack, emit_insn_before);
-
- /* Make the needed input register substitutions. Do death notes and
- clobbers too, because these are for inputs, not outputs. */
-
- for (i = first_input; i < first_input + n_inputs; i++)
- if (STACK_REG_P (operands[i]))
- {
- int regnum = get_hard_regnum (regstack, operands[i]);
-
- if (regnum < 0)
- abort ();
-
- replace_reg (operands_loc[i], regnum);
- }
-
- for (i = 0; i < n_notes; i++)
- if (note_kind[i] == REG_DEAD)
- {
- int regnum = get_hard_regnum (regstack, note_reg[i]);
-
- if (regnum < 0)
- abort ();
-
- replace_reg (note_loc[i], regnum);
- }
-
- for (i = 0; i < n_clobbers; i++)
- {
- /* It's OK for a CLOBBER to reference a reg that is not live.
- Don't try to replace it in that case. */
- int regnum = get_hard_regnum (regstack, clobber_reg[i]);
-
- if (regnum >= 0)
- {
- /* Sigh - clobbers always have QImode. But replace_reg knows
- that these regs can't be MODE_INT and will abort. Just put
- the right reg there without calling replace_reg. */
-
- *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
- }
- }
-
- /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
-
- for (i = first_input; i < first_input + n_inputs; i++)
- if (STACK_REG_P (operands[i]))
- {
- /* An input reg is implicitly popped if it is tied to an
- output, or if there is a CLOBBER for it. */
- int j;
-
- for (j = 0; j < n_clobbers; j++)
- if (operands_match_p (clobber_reg[j], operands[i]))
- break;
-
- if (j < n_clobbers || operand_matches[i] >= 0)
- {
- /* operands[i] might not be at the top of stack. But that's OK,
- because all we need to do is pop the right number of regs
- off of the top of the reg-stack. record_asm_stack_regs
- guaranteed that all implicitly popped regs were grouped
- at the top of the reg-stack. */
-
- CLEAR_HARD_REG_BIT (regstack->reg_set,
- regstack->reg[regstack->top]);
- regstack->top--;
- }
- }
-
- /* Now add to REGSTACK any outputs that the asm implicitly pushed.
- Note that there isn't any need to substitute register numbers.
- ??? Explain why this is true. */
-
- for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
- {
- /* See if there is an output for this hard reg. */
- int j;
-
- for (j = 0; j < n_outputs; j++)
- if (STACK_REG_P (operands[j]) && REGNO (operands[j]) == i)
- {
- regstack->reg[++regstack->top] = i;
- SET_HARD_REG_BIT (regstack->reg_set, i);
- break;
- }
- }
-
- /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
- input that the asm didn't implicitly pop. If the asm didn't
- implicitly pop an input reg, that reg will still be live.
-
- Note that we can't use find_regno_note here: the register numbers
- in the death notes have already been substituted. */
-
- for (i = 0; i < n_outputs; i++)
- if (STACK_REG_P (operands[i]))
- {
- int j;
-
- for (j = 0; j < n_notes; j++)
- if (REGNO (operands[i]) == REGNO (note_reg[j])
- && note_kind[j] == REG_UNUSED)
- {
- insn = emit_pop_insn (insn, regstack, operands[i],
- emit_insn_after);
- break;
- }
- }
-
- for (i = first_input; i < first_input + n_inputs; i++)
- if (STACK_REG_P (operands[i]))
- {
- int j;
-
- for (j = 0; j < n_notes; j++)
- if (REGNO (operands[i]) == REGNO (note_reg[j])
- && note_kind[j] == REG_DEAD
- && TEST_HARD_REG_BIT (regstack->reg_set, REGNO (operands[i])))
- {
- insn = emit_pop_insn (insn, regstack, operands[i],
- emit_insn_after);
- break;
- }
- }
-}
-
-/* Substitute stack hard reg numbers for stack virtual registers in
- INSN. Non-stack register numbers are not changed. REGSTACK is the
- current stack content. Insns may be emitted as needed to arrange the
- stack for the 387 based on the contents of the insn. */
-
-static void
-subst_stack_regs (insn, regstack)
- rtx insn;
- stack regstack;
-{
- register rtx *note_link, note;
- register int i;
- int n_operands;
-
- if (GET_CODE (insn) == CALL_INSN)
- {
- int top = regstack->top;
-
- /* If there are any floating point parameters to be passed in
- registers for this call, make sure they are in the right
- order. */
-
- if (top >= 0)
- {
- straighten_stack (PREV_INSN (insn), regstack);
-
- /* Now mark the arguments as dead after the call. */
-
- while (regstack->top >= 0)
- {
- CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
- regstack->top--;
- }
- }
- }
-
- /* Do the actual substitution if any stack regs are mentioned.
- Since we only record whether entire insn mentions stack regs, and
- subst_stack_regs_pat only works for patterns that contain stack regs,
- we must check each pattern in a parallel here. A call_value_pop could
- fail otherwise. */
-
- if (GET_MODE (insn) == QImode)
- {
- n_operands = asm_noperands (PATTERN (insn));
- if (n_operands >= 0)
- {
- /* This insn is an `asm' with operands. Decode the operands,
- decide how many are inputs, and do register substitution.
- Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
-
- rtx operands[MAX_RECOG_OPERANDS];
- rtx *operands_loc[MAX_RECOG_OPERANDS];
- rtx body = PATTERN (insn);
- int n_inputs, n_outputs;
- char **constraints
- = (char **) alloca (n_operands * sizeof (char *));
-
- decode_asm_operands (body, operands, operands_loc,
- constraints, NULL_PTR);
- get_asm_operand_lengths (body, n_operands, &n_inputs, &n_outputs);
- subst_asm_stack_regs (insn, regstack, operands, operands_loc,
- constraints, n_inputs, n_outputs);
- return;
- }
-
- if (GET_CODE (PATTERN (insn)) == PARALLEL)
- for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
- {
- if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
- subst_stack_regs_pat (insn, regstack,
- XVECEXP (PATTERN (insn), 0, i));
- }
- else
- subst_stack_regs_pat (insn, regstack, PATTERN (insn));
- }
-
- /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
- REG_UNUSED will already have been dealt with, so just return. */
-
- if (GET_CODE (insn) == NOTE)
- return;
-
- /* If there is a REG_UNUSED note on a stack register on this insn,
- the indicated reg must be popped. The REG_UNUSED note is removed,
- since the form of the newly emitted pop insn references the reg,
- making it no longer `unset'. */
-
- note_link = &REG_NOTES(insn);
- for (note = *note_link; note; note = XEXP (note, 1))
- if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
- {
- *note_link = XEXP (note, 1);
- insn = emit_pop_insn (insn, regstack, XEXP (note, 0), emit_insn_after);
- }
- else
- note_link = &XEXP (note, 1);
-}
-
-/* Change the organization of the stack so that it fits a new basic
- block. Some registers might have to be popped, but there can never be
- a register live in the new block that is not now live.
-
- Insert any needed insns before or after INSN. WHEN is emit_insn_before
- or emit_insn_after. OLD is the original stack layout, and NEW is
- the desired form. OLD is updated to reflect the code emitted, ie, it
- will be the same as NEW upon return.
-
- This function will not preserve block_end[]. But that information
- is no longer needed once this has executed. */
-
-static void
-change_stack (insn, old, new, when)
- rtx insn;
- stack old;
- stack new;
- rtx (*when)();
-{
- int reg;
-
- /* We will be inserting new insns "backwards", by calling emit_insn_before.
- If we are to insert after INSN, find the next insn, and insert before
- it. */
-
- if (when == emit_insn_after)
- insn = NEXT_INSN (insn);
-
- /* Pop any registers that are not needed in the new block. */
-
- for (reg = old->top; reg >= 0; reg--)
- if (! TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
- emit_pop_insn (insn, old, FP_MODE_REG (old->reg[reg], DFmode),
- emit_insn_before);
-
- if (new->top == -2)
- {
- /* If the new block has never been processed, then it can inherit
- the old stack order. */
-
- new->top = old->top;
- bcopy (old->reg, new->reg, sizeof (new->reg));
- }
- else
- {
- /* This block has been entered before, and we must match the
- previously selected stack order. */
-
- /* By now, the only difference should be the order of the stack,
- not their depth or liveliness. */
-
- GO_IF_HARD_REG_EQUAL (old->reg_set, new->reg_set, win);
-
- abort ();
-
- win:
-
- if (old->top != new->top)
- abort ();
-
- /* Loop here emitting swaps until the stack is correct. The
- worst case number of swaps emitted is N + 2, where N is the
- depth of the stack. In some cases, the reg at the top of
- stack may be correct, but swapped anyway in order to fix
- other regs. But since we never swap any other reg away from
- its correct slot, this algorithm will converge. */
-
- do
- {
- /* Swap the reg at top of stack into the position it is
- supposed to be in, until the correct top of stack appears. */
-
- while (old->reg[old->top] != new->reg[new->top])
- {
- for (reg = new->top; reg >= 0; reg--)
- if (new->reg[reg] == old->reg[old->top])
- break;
-
- if (reg == -1)
- abort ();
-
- emit_swap_insn (insn, old,
- FP_MODE_REG (old->reg[reg], DFmode));
- }
-
- /* See if any regs remain incorrect. If so, bring an
- incorrect reg to the top of stack, and let the while loop
- above fix it. */
-
- for (reg = new->top; reg >= 0; reg--)
- if (new->reg[reg] != old->reg[reg])
- {
- emit_swap_insn (insn, old,
- FP_MODE_REG (old->reg[reg], DFmode));
- break;
- }
- } while (reg >= 0);
-
- /* At this point there must be no differences. */
-
- for (reg = old->top; reg >= 0; reg--)
- if (old->reg[reg] != new->reg[reg])
- abort ();
- }
-}
-
-/* Check PAT, which points to RTL in INSN, for a LABEL_REF. If it is
- found, ensure that a jump from INSN to the code_label to which the
- label_ref points ends up with the same stack as that at the
- code_label. Do this by inserting insns just before the code_label to
- pop and rotate the stack until it is in the correct order. REGSTACK
- is the order of the register stack in INSN.
-
- Any code that is emitted here must not be later processed as part
- of any block, as it will already contain hard register numbers. */
-
-static void
-goto_block_pat (insn, regstack, pat)
- rtx insn;
- stack regstack;
- rtx pat;
-{
- rtx label;
- rtx new_jump, new_label, new_barrier;
- rtx *ref;
- stack label_stack;
- struct stack_def temp_stack;
- int reg;
-
- switch (GET_CODE (pat))
- {
- case RETURN:
- straighten_stack (PREV_INSN (insn), regstack);
- return;
- default:
- {
- int i, j;
- char *fmt = GET_RTX_FORMAT (GET_CODE (pat));
-
- for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- goto_block_pat (insn, regstack, XEXP (pat, i));
- if (fmt[i] == 'E')
- for (j = 0; j < XVECLEN (pat, i); j++)
- goto_block_pat (insn, regstack, XVECEXP (pat, i, j));
- }
- return;
- }
- case LABEL_REF:;
- }
-
- label = XEXP (pat, 0);
- if (GET_CODE (label) != CODE_LABEL)
- abort ();
-
- /* First, see if in fact anything needs to be done to the stack at all. */
- if (INSN_UID (label) <= 0)
- return;
-
- label_stack = &block_stack_in[BLOCK_NUM (label)];
-
- if (label_stack->top == -2)
- {
- /* If the target block hasn't had a stack order selected, then
- we need merely ensure that no pops are needed. */
-
- for (reg = regstack->top; reg >= 0; reg--)
- if (! TEST_HARD_REG_BIT (label_stack->reg_set, regstack->reg[reg]))
- break;
-
- if (reg == -1)
- {
- /* change_stack will not emit any code in this case. */
-
- change_stack (label, regstack, label_stack, emit_insn_after);
- return;
- }
- }
- else if (label_stack->top == regstack->top)
- {
- for (reg = label_stack->top; reg >= 0; reg--)
- if (label_stack->reg[reg] != regstack->reg[reg])
- break;
-
- if (reg == -1)
- return;
- }
-
- /* At least one insn will need to be inserted before label. Insert
- a jump around the code we are about to emit. Emit a label for the new
- code, and point the original insn at this new label. We can't use
- redirect_jump here, because we're using fld[4] of the code labels as
- LABEL_REF chains, no NUSES counters. */
-
- new_jump = emit_jump_insn_before (gen_jump (label), label);
- record_label_references (new_jump, PATTERN (new_jump));
- JUMP_LABEL (new_jump) = label;
-
- new_barrier = emit_barrier_after (new_jump);
-
- new_label = gen_label_rtx ();
- emit_label_after (new_label, new_barrier);
- LABEL_REFS (new_label) = new_label;
-
- /* The old label_ref will no longer point to the code_label if now uses,
- so strip the label_ref from the code_label's chain of references. */
-
- for (ref = &LABEL_REFS (label); *ref != label; ref = &LABEL_NEXTREF (*ref))
- if (*ref == pat)
- break;
-
- if (*ref == label)
- abort ();
-
- *ref = LABEL_NEXTREF (*ref);
-
- XEXP (pat, 0) = new_label;
- record_label_references (insn, PATTERN (insn));
-
- if (JUMP_LABEL (insn) == label)
- JUMP_LABEL (insn) = new_label;
-
- /* Now emit the needed code. */
-
- temp_stack = *regstack;
-
- change_stack (new_label, &temp_stack, label_stack, emit_insn_after);
-}
-
-/* Traverse all basic blocks in a function, converting the register
- references in each insn from the "flat" register file that gcc uses, to
- the stack-like registers the 387 uses. */
-
-static void
-convert_regs ()
-{
- register int block, reg;
- register rtx insn, next;
- struct stack_def regstack;
-
- for (block = 0; block < blocks; block++)
- {
- if (block_stack_in[block].top == -2)
- {
- /* This block has not been previously encountered. Choose a
- default mapping for any stack regs live on entry */
-
- block_stack_in[block].top = -1;
-
- for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; reg--)
- if (TEST_HARD_REG_BIT (block_stack_in[block].reg_set, reg))
- block_stack_in[block].reg[++block_stack_in[block].top] = reg;
- }
-
- /* Process all insns in this block. Keep track of `next' here,
- so that we don't process any insns emitted while making
- substitutions in INSN. */
-
- next = block_begin[block];
- regstack = block_stack_in[block];
- do
- {
- insn = next;
- next = NEXT_INSN (insn);
-
- /* Don't bother processing unless there is a stack reg
- mentioned or if it's a CALL_INSN (register passing of
- floating point values). */
-
- if (GET_MODE (insn) == QImode || GET_CODE (insn) == CALL_INSN)
- subst_stack_regs (insn, &regstack);
-
- } while (insn != block_end[block]);
-
- /* Something failed if the stack life doesn't match. */
-
- GO_IF_HARD_REG_EQUAL (regstack.reg_set, block_out_reg_set[block], win);
-
- abort ();
-
- win:
-
- /* Adjust the stack of this block on exit to match the stack of
- the target block, or copy stack information into stack of
- jump target if the target block's stack order hasn't been set
- yet. */
-
- if (GET_CODE (insn) == JUMP_INSN)
- goto_block_pat (insn, &regstack, PATTERN (insn));
-
- /* Likewise handle the case where we fall into the next block. */
-
- if ((block < blocks - 1) && block_drops_in[block+1])
- change_stack (insn, &regstack, &block_stack_in[block+1],
- emit_insn_after);
- }
-
- /* If the last basic block is the end of a loop, and that loop has
- regs live at its start, then the last basic block will have regs live
- at its end that need to be popped before the function returns. */
-
- {
- int value_reg_low, value_reg_high;
- value_reg_low = value_reg_high = -1;
- {
- rtx retvalue;
- if (retvalue = stack_result (current_function_decl))
- {
- value_reg_low = REGNO (retvalue);
- value_reg_high = value_reg_low +
- HARD_REGNO_NREGS (value_reg_low, GET_MODE (retvalue)) - 1;
- }
-
- }
- for (reg = regstack.top; reg >= 0; reg--)
- if (regstack.reg[reg] < value_reg_low ||
- regstack.reg[reg] > value_reg_high)
- insn = emit_pop_insn (insn, &regstack,
- FP_MODE_REG (regstack.reg[reg], DFmode),
- emit_insn_after);
- }
- straighten_stack (insn, &regstack);
-}
-
-/* Check expression PAT, which is in INSN, for label references. if
- one is found, print the block number of destination to FILE. */
-
-static void
-print_blocks (file, insn, pat)
- FILE *file;
- rtx insn, pat;
-{
- register RTX_CODE code = GET_CODE (pat);
- register int i;
- register char *fmt;
-
- if (code == LABEL_REF)
- {
- register rtx label = XEXP (pat, 0);
-
- if (GET_CODE (label) != CODE_LABEL)
- abort ();
-
- fprintf (file, " %d", BLOCK_NUM (label));
-
- return;
- }
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- print_blocks (file, insn, XEXP (pat, i));
- if (fmt[i] == 'E')
- {
- register int j;
- for (j = 0; j < XVECLEN (pat, i); j++)
- print_blocks (file, insn, XVECEXP (pat, i, j));
- }
- }
-}
-
-/* Write information about stack registers and stack blocks into FILE.
- This is part of making a debugging dump. */
-
-static void
-dump_stack_info (file)
- FILE *file;
-{
- register int block;
-
- fprintf (file, "\n%d stack blocks.\n", blocks);
- for (block = 0; block < blocks; block++)
- {
- register rtx head, jump, end;
- register int regno;
-
- fprintf (file, "\nStack block %d: first insn %d, last %d.\n",
- block, INSN_UID (block_begin[block]),
- INSN_UID (block_end[block]));
-
- head = block_begin[block];
-
- fprintf (file, "Reached from blocks: ");
- if (GET_CODE (head) == CODE_LABEL)
- for (jump = LABEL_REFS (head);
- jump != head;
- jump = LABEL_NEXTREF (jump))
- {
- register int from_block = BLOCK_NUM (CONTAINING_INSN (jump));
- fprintf (file, " %d", from_block);
- }
- if (block_drops_in[block])
- fprintf (file, " previous");
-
- fprintf (file, "\nlive stack registers on block entry: ");
- for (regno = FIRST_STACK_REG; regno <= LAST_STACK_REG; regno++)
- {
- if (TEST_HARD_REG_BIT (block_stack_in[block].reg_set, regno))
- fprintf (file, "%d ", regno);
- }
-
- fprintf (file, "\nlive stack registers on block exit: ");
- for (regno = FIRST_STACK_REG; regno <= LAST_STACK_REG; regno++)
- {
- if (TEST_HARD_REG_BIT (block_out_reg_set[block], regno))
- fprintf (file, "%d ", regno);
- }
-
- end = block_end[block];
-
- fprintf (file, "\nJumps to blocks: ");
- if (GET_CODE (end) == JUMP_INSN)
- print_blocks (file, end, PATTERN (end));
-
- if (block + 1 < blocks && block_drops_in[block+1])
- fprintf (file, " next");
- else if (block + 1 == blocks
- || (GET_CODE (end) == JUMP_INSN
- && GET_CODE (PATTERN (end)) == RETURN))
- fprintf (file, " return");
-
- fprintf (file, "\n");
- }
-}
-#endif /* STACK_REGS */