aboutsummaryrefslogtreecommitdiff
path: root/gcc/reload1.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/reload1.c')
-rw-r--r--gcc/reload1.c8186
1 files changed, 0 insertions, 8186 deletions
diff --git a/gcc/reload1.c b/gcc/reload1.c
deleted file mode 100644
index a7b4238d1b5..00000000000
--- a/gcc/reload1.c
+++ /dev/null
@@ -1,8186 +0,0 @@
-/* Reload pseudo regs into hard regs for insns that require hard regs.
- Copyright (C) 1987, 88, 89, 92-6, 1997 Free Software Foundation, Inc.
-
-This file is part of GNU CC.
-
-GNU CC is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2, or (at your option)
-any later version.
-
-GNU CC is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GNU CC; see the file COPYING. If not, write to
-the Free Software Foundation, 59 Temple Place - Suite 330,
-Boston, MA 02111-1307, USA. */
-
-
-#include <stdio.h>
-#include "config.h"
-#include "rtl.h"
-#include "obstack.h"
-#include "insn-config.h"
-#include "insn-flags.h"
-#include "insn-codes.h"
-#include "flags.h"
-#include "expr.h"
-#include "regs.h"
-#include "hard-reg-set.h"
-#include "reload.h"
-#include "recog.h"
-#include "basic-block.h"
-#include "output.h"
-#include "real.h"
-
-/* This file contains the reload pass of the compiler, which is
- run after register allocation has been done. It checks that
- each insn is valid (operands required to be in registers really
- are in registers of the proper class) and fixes up invalid ones
- by copying values temporarily into registers for the insns
- that need them.
-
- The results of register allocation are described by the vector
- reg_renumber; the insns still contain pseudo regs, but reg_renumber
- can be used to find which hard reg, if any, a pseudo reg is in.
-
- The technique we always use is to free up a few hard regs that are
- called ``reload regs'', and for each place where a pseudo reg
- must be in a hard reg, copy it temporarily into one of the reload regs.
-
- All the pseudos that were formerly allocated to the hard regs that
- are now in use as reload regs must be ``spilled''. This means
- that they go to other hard regs, or to stack slots if no other
- available hard regs can be found. Spilling can invalidate more
- insns, requiring additional need for reloads, so we must keep checking
- until the process stabilizes.
-
- For machines with different classes of registers, we must keep track
- of the register class needed for each reload, and make sure that
- we allocate enough reload registers of each class.
-
- The file reload.c contains the code that checks one insn for
- validity and reports the reloads that it needs. This file
- is in charge of scanning the entire rtl code, accumulating the
- reload needs, spilling, assigning reload registers to use for
- fixing up each insn, and generating the new insns to copy values
- into the reload registers. */
-
-
-#ifndef REGISTER_MOVE_COST
-#define REGISTER_MOVE_COST(x, y) 2
-#endif
-
-#ifndef MEMORY_MOVE_COST
-#define MEMORY_MOVE_COST(x) 4
-#endif
-
-/* During reload_as_needed, element N contains a REG rtx for the hard reg
- into which reg N has been reloaded (perhaps for a previous insn). */
-static rtx *reg_last_reload_reg;
-
-/* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
- for an output reload that stores into reg N. */
-static char *reg_has_output_reload;
-
-/* Indicates which hard regs are reload-registers for an output reload
- in the current insn. */
-static HARD_REG_SET reg_is_output_reload;
-
-/* Element N is the constant value to which pseudo reg N is equivalent,
- or zero if pseudo reg N is not equivalent to a constant.
- find_reloads looks at this in order to replace pseudo reg N
- with the constant it stands for. */
-rtx *reg_equiv_constant;
-
-/* Element N is a memory location to which pseudo reg N is equivalent,
- prior to any register elimination (such as frame pointer to stack
- pointer). Depending on whether or not it is a valid address, this value
- is transferred to either reg_equiv_address or reg_equiv_mem. */
-rtx *reg_equiv_memory_loc;
-
-/* Element N is the address of stack slot to which pseudo reg N is equivalent.
- This is used when the address is not valid as a memory address
- (because its displacement is too big for the machine.) */
-rtx *reg_equiv_address;
-
-/* Element N is the memory slot to which pseudo reg N is equivalent,
- or zero if pseudo reg N is not equivalent to a memory slot. */
-rtx *reg_equiv_mem;
-
-/* Widest width in which each pseudo reg is referred to (via subreg). */
-static int *reg_max_ref_width;
-
-/* Element N is the insn that initialized reg N from its equivalent
- constant or memory slot. */
-static rtx *reg_equiv_init;
-
-/* During reload_as_needed, element N contains the last pseudo regno
- reloaded into the Nth reload register. This vector is in parallel
- with spill_regs. If that pseudo reg occupied more than one register,
- reg_reloaded_contents points to that pseudo for each spill register in
- use; all of these must remain set for an inheritance to occur. */
-static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
-
-/* During reload_as_needed, element N contains the insn for which
- the Nth reload register was last used. This vector is in parallel
- with spill_regs, and its contents are significant only when
- reg_reloaded_contents is significant. */
-static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
-
-/* Number of spill-regs so far; number of valid elements of spill_regs. */
-static int n_spills;
-
-/* In parallel with spill_regs, contains REG rtx's for those regs.
- Holds the last rtx used for any given reg, or 0 if it has never
- been used for spilling yet. This rtx is reused, provided it has
- the proper mode. */
-static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
-
-/* In parallel with spill_regs, contains nonzero for a spill reg
- that was stored after the last time it was used.
- The precise value is the insn generated to do the store. */
-static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
-
-/* This table is the inverse mapping of spill_regs:
- indexed by hard reg number,
- it contains the position of that reg in spill_regs,
- or -1 for something that is not in spill_regs. */
-static short spill_reg_order[FIRST_PSEUDO_REGISTER];
-
-/* This reg set indicates registers that may not be used for retrying global
- allocation. The registers that may not be used include all spill registers
- and the frame pointer (if we are using one). */
-HARD_REG_SET forbidden_regs;
-
-/* This reg set indicates registers that are not good for spill registers.
- They will not be used to complete groups of spill registers. This includes
- all fixed registers, registers that may be eliminated, and, if
- SMALL_REGISTER_CLASSES is not defined, registers explicitly used in the rtl.
-
- (spill_reg_order prevents these registers from being used to start a
- group.) */
-static HARD_REG_SET bad_spill_regs;
-
-/* Describes order of use of registers for reloading
- of spilled pseudo-registers. `spills' is the number of
- elements that are actually valid; new ones are added at the end. */
-static short spill_regs[FIRST_PSEUDO_REGISTER];
-
-/* This reg set indicates those registers that have been used a spill
- registers. This information is used in reorg.c, to help figure out
- what registers are live at any point. It is assumed that all spill_regs
- are dead at every CODE_LABEL. */
-
-HARD_REG_SET used_spill_regs;
-
-/* Index of last register assigned as a spill register. We allocate in
- a round-robin fashion. */
-
-static int last_spill_reg;
-
-/* Describes order of preference for putting regs into spill_regs.
- Contains the numbers of all the hard regs, in order most preferred first.
- This order is different for each function.
- It is set up by order_regs_for_reload.
- Empty elements at the end contain -1. */
-static short potential_reload_regs[FIRST_PSEUDO_REGISTER];
-
-/* 1 for a hard register that appears explicitly in the rtl
- (for example, function value registers, special registers
- used by insns, structure value pointer registers). */
-static char regs_explicitly_used[FIRST_PSEUDO_REGISTER];
-
-/* Indicates if a register was counted against the need for
- groups. 0 means it can count against max_nongroup instead. */
-static HARD_REG_SET counted_for_groups;
-
-/* Indicates if a register was counted against the need for
- non-groups. 0 means it can become part of a new group.
- During choose_reload_regs, 1 here means don't use this reg
- as part of a group, even if it seems to be otherwise ok. */
-static HARD_REG_SET counted_for_nongroups;
-
-/* Indexed by pseudo reg number N,
- says may not delete stores into the real (memory) home of pseudo N.
- This is set if we already substituted a memory equivalent in some uses,
- which happens when we have to eliminate the fp from it. */
-static char *cannot_omit_stores;
-
-/* Nonzero if indirect addressing is supported on the machine; this means
- that spilling (REG n) does not require reloading it into a register in
- order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
- value indicates the level of indirect addressing supported, e.g., two
- means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
- a hard register. */
-
-static char spill_indirect_levels;
-
-/* Nonzero if indirect addressing is supported when the innermost MEM is
- of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
- which these are valid is the same as spill_indirect_levels, above. */
-
-char indirect_symref_ok;
-
-/* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
-
-char double_reg_address_ok;
-
-/* Record the stack slot for each spilled hard register. */
-
-static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
-
-/* Width allocated so far for that stack slot. */
-
-static int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
-
-/* Indexed by register class and basic block number, nonzero if there is
- any need for a spill register of that class in that basic block.
- The pointer is 0 if we did stupid allocation and don't know
- the structure of basic blocks. */
-
-char *basic_block_needs[N_REG_CLASSES];
-
-/* First uid used by insns created by reload in this function.
- Used in find_equiv_reg. */
-int reload_first_uid;
-
-/* Flag set by local-alloc or global-alloc if anything is live in
- a call-clobbered reg across calls. */
-
-int caller_save_needed;
-
-/* The register class to use for a base register when reloading an
- address. This is normally BASE_REG_CLASS, but it may be different
- when using SMALL_REGISTER_CLASSES and passing parameters in
- registers. */
-enum reg_class reload_address_base_reg_class;
-
-/* The register class to use for an index register when reloading an
- address. This is normally INDEX_REG_CLASS, but it may be different
- when using SMALL_REGISTER_CLASSES and passing parameters in
- registers. */
-enum reg_class reload_address_index_reg_class;
-
-/* Set to 1 while reload_as_needed is operating.
- Required by some machines to handle any generated moves differently. */
-
-int reload_in_progress = 0;
-
-/* These arrays record the insn_code of insns that may be needed to
- perform input and output reloads of special objects. They provide a
- place to pass a scratch register. */
-
-enum insn_code reload_in_optab[NUM_MACHINE_MODES];
-enum insn_code reload_out_optab[NUM_MACHINE_MODES];
-
-/* This obstack is used for allocation of rtl during register elimination.
- The allocated storage can be freed once find_reloads has processed the
- insn. */
-
-struct obstack reload_obstack;
-char *reload_firstobj;
-
-#define obstack_chunk_alloc xmalloc
-#define obstack_chunk_free free
-
-/* List of labels that must never be deleted. */
-extern rtx forced_labels;
-
-/* Allocation number table from global register allocation. */
-extern int *reg_allocno;
-
-/* This structure is used to record information about register eliminations.
- Each array entry describes one possible way of eliminating a register
- in favor of another. If there is more than one way of eliminating a
- particular register, the most preferred should be specified first. */
-
-static struct elim_table
-{
- int from; /* Register number to be eliminated. */
- int to; /* Register number used as replacement. */
- int initial_offset; /* Initial difference between values. */
- int can_eliminate; /* Non-zero if this elimination can be done. */
- int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
- insns made by reload. */
- int offset; /* Current offset between the two regs. */
- int max_offset; /* Maximum offset between the two regs. */
- int previous_offset; /* Offset at end of previous insn. */
- int ref_outside_mem; /* "to" has been referenced outside a MEM. */
- rtx from_rtx; /* REG rtx for the register to be eliminated.
- We cannot simply compare the number since
- we might then spuriously replace a hard
- register corresponding to a pseudo
- assigned to the reg to be eliminated. */
- rtx to_rtx; /* REG rtx for the replacement. */
-} reg_eliminate[] =
-
-/* If a set of eliminable registers was specified, define the table from it.
- Otherwise, default to the normal case of the frame pointer being
- replaced by the stack pointer. */
-
-#ifdef ELIMINABLE_REGS
- ELIMINABLE_REGS;
-#else
- {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
-#endif
-
-#define NUM_ELIMINABLE_REGS (sizeof reg_eliminate / sizeof reg_eliminate[0])
-
-/* Record the number of pending eliminations that have an offset not equal
- to their initial offset. If non-zero, we use a new copy of each
- replacement result in any insns encountered. */
-static int num_not_at_initial_offset;
-
-/* Count the number of registers that we may be able to eliminate. */
-static int num_eliminable;
-
-/* For each label, we record the offset of each elimination. If we reach
- a label by more than one path and an offset differs, we cannot do the
- elimination. This information is indexed by the number of the label.
- The first table is an array of flags that records whether we have yet
- encountered a label and the second table is an array of arrays, one
- entry in the latter array for each elimination. */
-
-static char *offsets_known_at;
-static int (*offsets_at)[NUM_ELIMINABLE_REGS];
-
-/* Number of labels in the current function. */
-
-static int num_labels;
-
-struct hard_reg_n_uses { int regno; int uses; };
-
-static int possible_group_p PROTO((int, int *));
-static void count_possible_groups PROTO((int *, enum machine_mode *,
- int *, int));
-static int modes_equiv_for_class_p PROTO((enum machine_mode,
- enum machine_mode,
- enum reg_class));
-static void spill_failure PROTO((rtx));
-static int new_spill_reg PROTO((int, int, int *, int *, int,
- FILE *));
-static void delete_dead_insn PROTO((rtx));
-static void alter_reg PROTO((int, int));
-static void mark_scratch_live PROTO((rtx));
-static void set_label_offsets PROTO((rtx, rtx, int));
-static int eliminate_regs_in_insn PROTO((rtx, int));
-static void mark_not_eliminable PROTO((rtx, rtx));
-static int spill_hard_reg PROTO((int, int, FILE *, int));
-static void scan_paradoxical_subregs PROTO((rtx));
-static int hard_reg_use_compare PROTO((const GENERIC_PTR, const GENERIC_PTR));
-static void order_regs_for_reload PROTO((int));
-static int compare_spill_regs PROTO((const GENERIC_PTR, const GENERIC_PTR));
-static void reload_as_needed PROTO((rtx, int));
-static void forget_old_reloads_1 PROTO((rtx, rtx));
-static int reload_reg_class_lower PROTO((const GENERIC_PTR, const GENERIC_PTR));
-static void mark_reload_reg_in_use PROTO((int, int, enum reload_type,
- enum machine_mode));
-static void clear_reload_reg_in_use PROTO((int, int, enum reload_type,
- enum machine_mode));
-static int reload_reg_free_p PROTO((int, int, enum reload_type));
-static int reload_reg_free_before_p PROTO((int, int, enum reload_type));
-static int reload_reg_reaches_end_p PROTO((int, int, enum reload_type));
-static int reloads_conflict PROTO((int, int));
-static int allocate_reload_reg PROTO((int, rtx, int, int));
-static void choose_reload_regs PROTO((rtx, rtx));
-static void merge_assigned_reloads PROTO((rtx));
-static void emit_reload_insns PROTO((rtx));
-static void delete_output_reload PROTO((rtx, int, rtx));
-static void inc_for_reload PROTO((rtx, rtx, int));
-static int constraint_accepts_reg_p PROTO((char *, rtx));
-static int count_occurrences PROTO((rtx, rtx));
-static void reload_cse_invalidate_regno PROTO((int, enum machine_mode, int));
-static int reload_cse_mem_conflict_p PROTO((rtx, rtx, enum machine_mode,
- rtx));
-static void reload_cse_invalidate_mem PROTO((rtx));
-static void reload_cse_invalidate_rtx PROTO((rtx, rtx));
-static void reload_cse_regs PROTO((rtx));
-static int reload_cse_regno_equal_p PROTO((int, rtx, enum machine_mode));
-static int reload_cse_noop_set_p PROTO((rtx));
-static void reload_cse_simplify_set PROTO((rtx, rtx));
-static void reload_cse_check_clobber PROTO((rtx, rtx));
-static void reload_cse_record_set PROTO((rtx, rtx));
-
-/* Initialize the reload pass once per compilation. */
-
-void
-init_reload ()
-{
- register int i;
-
- /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
- Set spill_indirect_levels to the number of levels such addressing is
- permitted, zero if it is not permitted at all. */
-
- register rtx tem
- = gen_rtx (MEM, Pmode,
- gen_rtx (PLUS, Pmode,
- gen_rtx (REG, Pmode, LAST_VIRTUAL_REGISTER + 1),
- GEN_INT (4)));
- spill_indirect_levels = 0;
-
- while (memory_address_p (QImode, tem))
- {
- spill_indirect_levels++;
- tem = gen_rtx (MEM, Pmode, tem);
- }
-
- /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
-
- tem = gen_rtx (MEM, Pmode, gen_rtx (SYMBOL_REF, Pmode, "foo"));
- indirect_symref_ok = memory_address_p (QImode, tem);
-
- /* See if reg+reg is a valid (and offsettable) address. */
-
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- {
- tem = gen_rtx (PLUS, Pmode,
- gen_rtx (REG, Pmode, HARD_FRAME_POINTER_REGNUM),
- gen_rtx (REG, Pmode, i));
- /* This way, we make sure that reg+reg is an offsettable address. */
- tem = plus_constant (tem, 4);
-
- if (memory_address_p (QImode, tem))
- {
- double_reg_address_ok = 1;
- break;
- }
- }
-
- /* Initialize obstack for our rtl allocation. */
- gcc_obstack_init (&reload_obstack);
- reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
-
- /* Decide which register class should be used when reloading
- addresses. If we are using SMALL_REGISTER_CLASSES, and any
- parameters are passed in registers, then we do not want to use
- those registers when reloading an address. Otherwise, if a
- function argument needs a reload, we may wind up clobbering
- another argument to the function which was already computed. If
- we find a subset class which simply avoids those registers, we
- use it instead. ??? It would be better to only use the
- restricted class when we actually are loading function arguments,
- but that is hard to determine. */
- reload_address_base_reg_class = BASE_REG_CLASS;
- reload_address_index_reg_class = INDEX_REG_CLASS;
-#ifdef SMALL_REGISTER_CLASSES
- if (SMALL_REGISTER_CLASSES)
- {
- int regno;
- HARD_REG_SET base, index;
- enum reg_class *p;
-
- COPY_HARD_REG_SET (base, reg_class_contents[BASE_REG_CLASS]);
- COPY_HARD_REG_SET (index, reg_class_contents[INDEX_REG_CLASS]);
- for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
- {
- if (FUNCTION_ARG_REGNO_P (regno))
- {
- CLEAR_HARD_REG_BIT (base, regno);
- CLEAR_HARD_REG_BIT (index, regno);
- }
- }
-
- GO_IF_HARD_REG_EQUAL (base, reg_class_contents[BASE_REG_CLASS],
- baseok);
- for (p = reg_class_subclasses[BASE_REG_CLASS];
- *p != LIM_REG_CLASSES;
- p++)
- {
- GO_IF_HARD_REG_EQUAL (base, reg_class_contents[*p], usebase);
- continue;
- usebase:
- reload_address_base_reg_class = *p;
- break;
- }
- baseok:;
-
- GO_IF_HARD_REG_EQUAL (index, reg_class_contents[INDEX_REG_CLASS],
- indexok);
- for (p = reg_class_subclasses[INDEX_REG_CLASS];
- *p != LIM_REG_CLASSES;
- p++)
- {
- GO_IF_HARD_REG_EQUAL (index, reg_class_contents[*p], useindex);
- continue;
- useindex:
- reload_address_index_reg_class = *p;
- break;
- }
- indexok:;
- }
-#endif /* SMALL_REGISTER_CLASSES */
-}
-
-/* Main entry point for the reload pass.
-
- FIRST is the first insn of the function being compiled.
-
- GLOBAL nonzero means we were called from global_alloc
- and should attempt to reallocate any pseudoregs that we
- displace from hard regs we will use for reloads.
- If GLOBAL is zero, we do not have enough information to do that,
- so any pseudo reg that is spilled must go to the stack.
-
- DUMPFILE is the global-reg debugging dump file stream, or 0.
- If it is nonzero, messages are written to it to describe
- which registers are seized as reload regs, which pseudo regs
- are spilled from them, and where the pseudo regs are reallocated to.
-
- Return value is nonzero if reload failed
- and we must not do any more for this function. */
-
-int
-reload (first, global, dumpfile)
- rtx first;
- int global;
- FILE *dumpfile;
-{
- register int class;
- register int i, j, k;
- register rtx insn;
- register struct elim_table *ep;
-
- int something_changed;
- int something_needs_reloads;
- int something_needs_elimination;
- int new_basic_block_needs;
- enum reg_class caller_save_spill_class = NO_REGS;
- int caller_save_group_size = 1;
-
- /* Nonzero means we couldn't get enough spill regs. */
- int failure = 0;
-
- /* The basic block number currently being processed for INSN. */
- int this_block;
-
- /* Make sure even insns with volatile mem refs are recognizable. */
- init_recog ();
-
- /* Enable find_equiv_reg to distinguish insns made by reload. */
- reload_first_uid = get_max_uid ();
-
- for (i = 0; i < N_REG_CLASSES; i++)
- basic_block_needs[i] = 0;
-
-#ifdef SECONDARY_MEMORY_NEEDED
- /* Initialize the secondary memory table. */
- clear_secondary_mem ();
-#endif
-
- /* Remember which hard regs appear explicitly
- before we merge into `regs_ever_live' the ones in which
- pseudo regs have been allocated. */
- bcopy (regs_ever_live, regs_explicitly_used, sizeof regs_ever_live);
-
- /* We don't have a stack slot for any spill reg yet. */
- bzero ((char *) spill_stack_slot, sizeof spill_stack_slot);
- bzero ((char *) spill_stack_slot_width, sizeof spill_stack_slot_width);
-
- /* Initialize the save area information for caller-save, in case some
- are needed. */
- init_save_areas ();
-
- /* Compute which hard registers are now in use
- as homes for pseudo registers.
- This is done here rather than (eg) in global_alloc
- because this point is reached even if not optimizing. */
-
- for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
- mark_home_live (i);
-
- for (i = 0; i < scratch_list_length; i++)
- if (scratch_list[i])
- mark_scratch_live (scratch_list[i]);
-
- /* Make sure that the last insn in the chain
- is not something that needs reloading. */
- emit_note (NULL_PTR, NOTE_INSN_DELETED);
-
- /* Find all the pseudo registers that didn't get hard regs
- but do have known equivalent constants or memory slots.
- These include parameters (known equivalent to parameter slots)
- and cse'd or loop-moved constant memory addresses.
-
- Record constant equivalents in reg_equiv_constant
- so they will be substituted by find_reloads.
- Record memory equivalents in reg_mem_equiv so they can
- be substituted eventually by altering the REG-rtx's. */
-
- reg_equiv_constant = (rtx *) alloca (max_regno * sizeof (rtx));
- bzero ((char *) reg_equiv_constant, max_regno * sizeof (rtx));
- reg_equiv_memory_loc = (rtx *) alloca (max_regno * sizeof (rtx));
- bzero ((char *) reg_equiv_memory_loc, max_regno * sizeof (rtx));
- reg_equiv_mem = (rtx *) alloca (max_regno * sizeof (rtx));
- bzero ((char *) reg_equiv_mem, max_regno * sizeof (rtx));
- reg_equiv_init = (rtx *) alloca (max_regno * sizeof (rtx));
- bzero ((char *) reg_equiv_init, max_regno * sizeof (rtx));
- reg_equiv_address = (rtx *) alloca (max_regno * sizeof (rtx));
- bzero ((char *) reg_equiv_address, max_regno * sizeof (rtx));
- reg_max_ref_width = (int *) alloca (max_regno * sizeof (int));
- bzero ((char *) reg_max_ref_width, max_regno * sizeof (int));
- cannot_omit_stores = (char *) alloca (max_regno);
- bzero (cannot_omit_stores, max_regno);
-
-#ifdef SMALL_REGISTER_CLASSES
- if (SMALL_REGISTER_CLASSES)
- CLEAR_HARD_REG_SET (forbidden_regs);
-#endif
-
- /* Look for REG_EQUIV notes; record what each pseudo is equivalent to.
- Also find all paradoxical subregs and find largest such for each pseudo.
- On machines with small register classes, record hard registers that
- are used for user variables. These can never be used for spills.
- Also look for a "constant" NOTE_INSN_SETJMP. This means that all
- caller-saved registers must be marked live. */
-
- for (insn = first; insn; insn = NEXT_INSN (insn))
- {
- rtx set = single_set (insn);
-
- if (GET_CODE (insn) == NOTE && CONST_CALL_P (insn)
- && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- if (! call_used_regs[i])
- regs_ever_live[i] = 1;
-
- if (set != 0 && GET_CODE (SET_DEST (set)) == REG)
- {
- rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
- if (note
-#ifdef LEGITIMATE_PIC_OPERAND_P
- && (! CONSTANT_P (XEXP (note, 0)) || ! flag_pic
- || LEGITIMATE_PIC_OPERAND_P (XEXP (note, 0)))
-#endif
- )
- {
- rtx x = XEXP (note, 0);
- i = REGNO (SET_DEST (set));
- if (i > LAST_VIRTUAL_REGISTER)
- {
- if (GET_CODE (x) == MEM)
- reg_equiv_memory_loc[i] = x;
- else if (CONSTANT_P (x))
- {
- if (LEGITIMATE_CONSTANT_P (x))
- reg_equiv_constant[i] = x;
- else
- reg_equiv_memory_loc[i]
- = force_const_mem (GET_MODE (SET_DEST (set)), x);
- }
- else
- continue;
-
- /* If this register is being made equivalent to a MEM
- and the MEM is not SET_SRC, the equivalencing insn
- is one with the MEM as a SET_DEST and it occurs later.
- So don't mark this insn now. */
- if (GET_CODE (x) != MEM
- || rtx_equal_p (SET_SRC (set), x))
- reg_equiv_init[i] = insn;
- }
- }
- }
-
- /* If this insn is setting a MEM from a register equivalent to it,
- this is the equivalencing insn. */
- else if (set && GET_CODE (SET_DEST (set)) == MEM
- && GET_CODE (SET_SRC (set)) == REG
- && reg_equiv_memory_loc[REGNO (SET_SRC (set))]
- && rtx_equal_p (SET_DEST (set),
- reg_equiv_memory_loc[REGNO (SET_SRC (set))]))
- reg_equiv_init[REGNO (SET_SRC (set))] = insn;
-
- if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
- scan_paradoxical_subregs (PATTERN (insn));
- }
-
- /* Does this function require a frame pointer? */
-
- frame_pointer_needed = (! flag_omit_frame_pointer
-#ifdef EXIT_IGNORE_STACK
- /* ?? If EXIT_IGNORE_STACK is set, we will not save
- and restore sp for alloca. So we can't eliminate
- the frame pointer in that case. At some point,
- we should improve this by emitting the
- sp-adjusting insns for this case. */
- || (current_function_calls_alloca
- && EXIT_IGNORE_STACK)
-#endif
- || FRAME_POINTER_REQUIRED);
-
- num_eliminable = 0;
-
- /* Initialize the table of registers to eliminate. The way we do this
- depends on how the eliminable registers were defined. */
-#ifdef ELIMINABLE_REGS
- for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
- {
- ep->can_eliminate = ep->can_eliminate_previous
- = (CAN_ELIMINATE (ep->from, ep->to)
- && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
- }
-#else
- reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
- = ! frame_pointer_needed;
-#endif
-
- /* Count the number of eliminable registers and build the FROM and TO
- REG rtx's. Note that code in gen_rtx will cause, e.g.,
- gen_rtx (REG, Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
- We depend on this. */
- for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
- {
- num_eliminable += ep->can_eliminate;
- ep->from_rtx = gen_rtx (REG, Pmode, ep->from);
- ep->to_rtx = gen_rtx (REG, Pmode, ep->to);
- }
-
- num_labels = max_label_num () - get_first_label_num ();
-
- /* Allocate the tables used to store offset information at labels. */
- offsets_known_at = (char *) alloca (num_labels);
- offsets_at
- = (int (*)[NUM_ELIMINABLE_REGS])
- alloca (num_labels * NUM_ELIMINABLE_REGS * sizeof (int));
-
- offsets_known_at -= get_first_label_num ();
- offsets_at -= get_first_label_num ();
-
- /* Alter each pseudo-reg rtx to contain its hard reg number.
- Assign stack slots to the pseudos that lack hard regs or equivalents.
- Do not touch virtual registers. */
-
- for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
- alter_reg (i, -1);
-
- /* If we have some registers we think can be eliminated, scan all insns to
- see if there is an insn that sets one of these registers to something
- other than itself plus a constant. If so, the register cannot be
- eliminated. Doing this scan here eliminates an extra pass through the
- main reload loop in the most common case where register elimination
- cannot be done. */
- for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
- if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
- || GET_CODE (insn) == CALL_INSN)
- note_stores (PATTERN (insn), mark_not_eliminable);
-
-#ifndef REGISTER_CONSTRAINTS
- /* If all the pseudo regs have hard regs,
- except for those that are never referenced,
- we know that no reloads are needed. */
- /* But that is not true if there are register constraints, since
- in that case some pseudos might be in the wrong kind of hard reg. */
-
- for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
- if (reg_renumber[i] == -1 && reg_n_refs[i] != 0)
- break;
-
- if (i == max_regno && num_eliminable == 0 && ! caller_save_needed)
- return;
-#endif
-
- /* Compute the order of preference for hard registers to spill.
- Store them by decreasing preference in potential_reload_regs. */
-
- order_regs_for_reload (global);
-
- /* So far, no hard regs have been spilled. */
- n_spills = 0;
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- spill_reg_order[i] = -1;
-
- /* Initialize to -1, which means take the first spill register. */
- last_spill_reg = -1;
-
- /* On most machines, we can't use any register explicitly used in the
- rtl as a spill register. But on some, we have to. Those will have
- taken care to keep the life of hard regs as short as possible. */
-
-#ifdef SMALL_REGISTER_CLASSES
- if (! SMALL_REGISTER_CLASSES)
-#endif
- COPY_HARD_REG_SET (forbidden_regs, bad_spill_regs);
-
- /* Spill any hard regs that we know we can't eliminate. */
- for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
- if (! ep->can_eliminate)
- spill_hard_reg (ep->from, global, dumpfile, 1);
-
-#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
- if (frame_pointer_needed)
- spill_hard_reg (HARD_FRAME_POINTER_REGNUM, global, dumpfile, 1);
-#endif
-
- if (global)
- for (i = 0; i < N_REG_CLASSES; i++)
- {
- basic_block_needs[i] = (char *) alloca (n_basic_blocks);
- bzero (basic_block_needs[i], n_basic_blocks);
- }
-
- /* From now on, we need to emit any moves without making new pseudos. */
- reload_in_progress = 1;
-
- /* This loop scans the entire function each go-round
- and repeats until one repetition spills no additional hard regs. */
-
- /* This flag is set when a pseudo reg is spilled,
- to require another pass. Note that getting an additional reload
- reg does not necessarily imply any pseudo reg was spilled;
- sometimes we find a reload reg that no pseudo reg was allocated in. */
- something_changed = 1;
- /* This flag is set if there are any insns that require reloading. */
- something_needs_reloads = 0;
- /* This flag is set if there are any insns that require register
- eliminations. */
- something_needs_elimination = 0;
- while (something_changed)
- {
- rtx after_call = 0;
-
- /* For each class, number of reload regs needed in that class.
- This is the maximum over all insns of the needs in that class
- of the individual insn. */
- int max_needs[N_REG_CLASSES];
- /* For each class, size of group of consecutive regs
- that is needed for the reloads of this class. */
- int group_size[N_REG_CLASSES];
- /* For each class, max number of consecutive groups needed.
- (Each group contains group_size[CLASS] consecutive registers.) */
- int max_groups[N_REG_CLASSES];
- /* For each class, max number needed of regs that don't belong
- to any of the groups. */
- int max_nongroups[N_REG_CLASSES];
- /* For each class, the machine mode which requires consecutive
- groups of regs of that class.
- If two different modes ever require groups of one class,
- they must be the same size and equally restrictive for that class,
- otherwise we can't handle the complexity. */
- enum machine_mode group_mode[N_REG_CLASSES];
- /* Record the insn where each maximum need is first found. */
- rtx max_needs_insn[N_REG_CLASSES];
- rtx max_groups_insn[N_REG_CLASSES];
- rtx max_nongroups_insn[N_REG_CLASSES];
- rtx x;
- HOST_WIDE_INT starting_frame_size;
- int previous_frame_pointer_needed = frame_pointer_needed;
- static char *reg_class_names[] = REG_CLASS_NAMES;
-
- something_changed = 0;
- bzero ((char *) max_needs, sizeof max_needs);
- bzero ((char *) max_groups, sizeof max_groups);
- bzero ((char *) max_nongroups, sizeof max_nongroups);
- bzero ((char *) max_needs_insn, sizeof max_needs_insn);
- bzero ((char *) max_groups_insn, sizeof max_groups_insn);
- bzero ((char *) max_nongroups_insn, sizeof max_nongroups_insn);
- bzero ((char *) group_size, sizeof group_size);
- for (i = 0; i < N_REG_CLASSES; i++)
- group_mode[i] = VOIDmode;
-
- /* Keep track of which basic blocks are needing the reloads. */
- this_block = 0;
-
- /* Remember whether any element of basic_block_needs
- changes from 0 to 1 in this pass. */
- new_basic_block_needs = 0;
-
- /* Round size of stack frame to BIGGEST_ALIGNMENT. This must be done
- here because the stack size may be a part of the offset computation
- for register elimination, and there might have been new stack slots
- created in the last iteration of this loop. */
- assign_stack_local (BLKmode, 0, 0);
-
- starting_frame_size = get_frame_size ();
-
- /* Reset all offsets on eliminable registers to their initial values. */
-#ifdef ELIMINABLE_REGS
- for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
- {
- INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
- ep->previous_offset = ep->offset
- = ep->max_offset = ep->initial_offset;
- }
-#else
-#ifdef INITIAL_FRAME_POINTER_OFFSET
- INITIAL_FRAME_POINTER_OFFSET (reg_eliminate[0].initial_offset);
-#else
- if (!FRAME_POINTER_REQUIRED)
- abort ();
- reg_eliminate[0].initial_offset = 0;
-#endif
- reg_eliminate[0].previous_offset = reg_eliminate[0].max_offset
- = reg_eliminate[0].offset = reg_eliminate[0].initial_offset;
-#endif
-
- num_not_at_initial_offset = 0;
-
- bzero ((char *) &offsets_known_at[get_first_label_num ()], num_labels);
-
- /* Set a known offset for each forced label to be at the initial offset
- of each elimination. We do this because we assume that all
- computed jumps occur from a location where each elimination is
- at its initial offset. */
-
- for (x = forced_labels; x; x = XEXP (x, 1))
- if (XEXP (x, 0))
- set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
-
- /* For each pseudo register that has an equivalent location defined,
- try to eliminate any eliminable registers (such as the frame pointer)
- assuming initial offsets for the replacement register, which
- is the normal case.
-
- If the resulting location is directly addressable, substitute
- the MEM we just got directly for the old REG.
-
- If it is not addressable but is a constant or the sum of a hard reg
- and constant, it is probably not addressable because the constant is
- out of range, in that case record the address; we will generate
- hairy code to compute the address in a register each time it is
- needed. Similarly if it is a hard register, but one that is not
- valid as an address register.
-
- If the location is not addressable, but does not have one of the
- above forms, assign a stack slot. We have to do this to avoid the
- potential of producing lots of reloads if, e.g., a location involves
- a pseudo that didn't get a hard register and has an equivalent memory
- location that also involves a pseudo that didn't get a hard register.
-
- Perhaps at some point we will improve reload_when_needed handling
- so this problem goes away. But that's very hairy. */
-
- for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
- if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
- {
- rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX, 0);
-
- if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
- XEXP (x, 0)))
- reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
- else if (CONSTANT_P (XEXP (x, 0))
- || (GET_CODE (XEXP (x, 0)) == REG
- && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
- || (GET_CODE (XEXP (x, 0)) == PLUS
- && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
- && (REGNO (XEXP (XEXP (x, 0), 0))
- < FIRST_PSEUDO_REGISTER)
- && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
- reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
- else
- {
- /* Make a new stack slot. Then indicate that something
- changed so we go back and recompute offsets for
- eliminable registers because the allocation of memory
- below might change some offset. reg_equiv_{mem,address}
- will be set up for this pseudo on the next pass around
- the loop. */
- reg_equiv_memory_loc[i] = 0;
- reg_equiv_init[i] = 0;
- alter_reg (i, -1);
- something_changed = 1;
- }
- }
-
- /* If we allocated another pseudo to the stack, redo elimination
- bookkeeping. */
- if (something_changed)
- continue;
-
- /* If caller-saves needs a group, initialize the group to include
- the size and mode required for caller-saves. */
-
- if (caller_save_group_size > 1)
- {
- group_mode[(int) caller_save_spill_class] = Pmode;
- group_size[(int) caller_save_spill_class] = caller_save_group_size;
- }
-
- /* Compute the most additional registers needed by any instruction.
- Collect information separately for each class of regs. */
-
- for (insn = first; insn; insn = NEXT_INSN (insn))
- {
- if (global && this_block + 1 < n_basic_blocks
- && insn == basic_block_head[this_block+1])
- ++this_block;
-
- /* If this is a label, a JUMP_INSN, or has REG_NOTES (which
- might include REG_LABEL), we need to see what effects this
- has on the known offsets at labels. */
-
- if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN
- || (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
- && REG_NOTES (insn) != 0))
- set_label_offsets (insn, insn, 0);
-
- if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
- {
- /* Nonzero means don't use a reload reg that overlaps
- the place where a function value can be returned. */
- rtx avoid_return_reg = 0;
-
- rtx old_body = PATTERN (insn);
- int old_code = INSN_CODE (insn);
- rtx old_notes = REG_NOTES (insn);
- int did_elimination = 0;
-
- /* To compute the number of reload registers of each class
- needed for an insn, we must simulate what choose_reload_regs
- can do. We do this by splitting an insn into an "input" and
- an "output" part. RELOAD_OTHER reloads are used in both.
- The input part uses those reloads, RELOAD_FOR_INPUT reloads,
- which must be live over the entire input section of reloads,
- and the maximum of all the RELOAD_FOR_INPUT_ADDRESS and
- RELOAD_FOR_OPERAND_ADDRESS reloads, which conflict with the
- inputs.
-
- The registers needed for output are RELOAD_OTHER and
- RELOAD_FOR_OUTPUT, which are live for the entire output
- portion, and the maximum of all the RELOAD_FOR_OUTPUT_ADDRESS
- reloads for each operand.
-
- The total number of registers needed is the maximum of the
- inputs and outputs. */
-
- struct needs
- {
- /* [0] is normal, [1] is nongroup. */
- int regs[2][N_REG_CLASSES];
- int groups[N_REG_CLASSES];
- };
-
- /* Each `struct needs' corresponds to one RELOAD_... type. */
- struct {
- struct needs other;
- struct needs input;
- struct needs output;
- struct needs insn;
- struct needs other_addr;
- struct needs op_addr;
- struct needs op_addr_reload;
- struct needs in_addr[MAX_RECOG_OPERANDS];
- struct needs in_addr_addr[MAX_RECOG_OPERANDS];
- struct needs out_addr[MAX_RECOG_OPERANDS];
- struct needs out_addr_addr[MAX_RECOG_OPERANDS];
- } insn_needs;
-
- /* If needed, eliminate any eliminable registers. */
- if (num_eliminable)
- did_elimination = eliminate_regs_in_insn (insn, 0);
-
-#ifdef SMALL_REGISTER_CLASSES
- /* Set avoid_return_reg if this is an insn
- that might use the value of a function call. */
- if (SMALL_REGISTER_CLASSES && GET_CODE (insn) == CALL_INSN)
- {
- if (GET_CODE (PATTERN (insn)) == SET)
- after_call = SET_DEST (PATTERN (insn));
- else if (GET_CODE (PATTERN (insn)) == PARALLEL
- && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
- after_call = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
- else
- after_call = 0;
- }
- else if (SMALL_REGISTER_CLASSES
- && after_call != 0
- && !(GET_CODE (PATTERN (insn)) == SET
- && SET_DEST (PATTERN (insn)) == stack_pointer_rtx))
- {
- if (reg_referenced_p (after_call, PATTERN (insn)))
- avoid_return_reg = after_call;
- after_call = 0;
- }
-#endif /* SMALL_REGISTER_CLASSES */
-
- /* Analyze the instruction. */
- find_reloads (insn, 0, spill_indirect_levels, global,
- spill_reg_order);
-
- /* Remember for later shortcuts which insns had any reloads or
- register eliminations.
-
- One might think that it would be worthwhile to mark insns
- that need register replacements but not reloads, but this is
- not safe because find_reloads may do some manipulation of
- the insn (such as swapping commutative operands), which would
- be lost when we restore the old pattern after register
- replacement. So the actions of find_reloads must be redone in
- subsequent passes or in reload_as_needed.
-
- However, it is safe to mark insns that need reloads
- but not register replacement. */
-
- PUT_MODE (insn, (did_elimination ? QImode
- : n_reloads ? HImode
- : GET_MODE (insn) == DImode ? DImode
- : VOIDmode));
-
- /* Discard any register replacements done. */
- if (did_elimination)
- {
- obstack_free (&reload_obstack, reload_firstobj);
- PATTERN (insn) = old_body;
- INSN_CODE (insn) = old_code;
- REG_NOTES (insn) = old_notes;
- something_needs_elimination = 1;
- }
-
- /* If this insn has no reloads, we need not do anything except
- in the case of a CALL_INSN when we have caller-saves and
- caller-save needs reloads. */
-
- if (n_reloads == 0
- && ! (GET_CODE (insn) == CALL_INSN
- && caller_save_spill_class != NO_REGS))
- continue;
-
- something_needs_reloads = 1;
- bzero ((char *) &insn_needs, sizeof insn_needs);
-
- /* Count each reload once in every class
- containing the reload's own class. */
-
- for (i = 0; i < n_reloads; i++)
- {
- register enum reg_class *p;
- enum reg_class class = reload_reg_class[i];
- int size;
- enum machine_mode mode;
- int nongroup_need;
- struct needs *this_needs;
-
- /* Don't count the dummy reloads, for which one of the
- regs mentioned in the insn can be used for reloading.
- Don't count optional reloads.
- Don't count reloads that got combined with others. */
- if (reload_reg_rtx[i] != 0
- || reload_optional[i] != 0
- || (reload_out[i] == 0 && reload_in[i] == 0
- && ! reload_secondary_p[i]))
- continue;
-
- /* Show that a reload register of this class is needed
- in this basic block. We do not use insn_needs and
- insn_groups because they are overly conservative for
- this purpose. */
- if (global && ! basic_block_needs[(int) class][this_block])
- {
- basic_block_needs[(int) class][this_block] = 1;
- new_basic_block_needs = 1;
- }
-
-
- mode = reload_inmode[i];
- if (GET_MODE_SIZE (reload_outmode[i]) > GET_MODE_SIZE (mode))
- mode = reload_outmode[i];
- size = CLASS_MAX_NREGS (class, mode);
-
- /* If this class doesn't want a group, determine if we have
- a nongroup need or a regular need. We have a nongroup
- need if this reload conflicts with a group reload whose
- class intersects with this reload's class. */
-
- nongroup_need = 0;
- if (size == 1)
- for (j = 0; j < n_reloads; j++)
- if ((CLASS_MAX_NREGS (reload_reg_class[j],
- (GET_MODE_SIZE (reload_outmode[j])
- > GET_MODE_SIZE (reload_inmode[j]))
- ? reload_outmode[j]
- : reload_inmode[j])
- > 1)
- && (!reload_optional[j])
- && (reload_in[j] != 0 || reload_out[j] != 0
- || reload_secondary_p[j])
- && reloads_conflict (i, j)
- && reg_classes_intersect_p (class,
- reload_reg_class[j]))
- {
- nongroup_need = 1;
- break;
- }
-
- /* Decide which time-of-use to count this reload for. */
- switch (reload_when_needed[i])
- {
- case RELOAD_OTHER:
- this_needs = &insn_needs.other;
- break;
- case RELOAD_FOR_INPUT:
- this_needs = &insn_needs.input;
- break;
- case RELOAD_FOR_OUTPUT:
- this_needs = &insn_needs.output;
- break;
- case RELOAD_FOR_INSN:
- this_needs = &insn_needs.insn;
- break;
- case RELOAD_FOR_OTHER_ADDRESS:
- this_needs = &insn_needs.other_addr;
- break;
- case RELOAD_FOR_INPUT_ADDRESS:
- this_needs = &insn_needs.in_addr[reload_opnum[i]];
- break;
- case RELOAD_FOR_INPADDR_ADDRESS:
- this_needs = &insn_needs.in_addr_addr[reload_opnum[i]];
- break;
- case RELOAD_FOR_OUTPUT_ADDRESS:
- this_needs = &insn_needs.out_addr[reload_opnum[i]];
- break;
- case RELOAD_FOR_OUTADDR_ADDRESS:
- this_needs = &insn_needs.out_addr_addr[reload_opnum[i]];
- break;
- case RELOAD_FOR_OPERAND_ADDRESS:
- this_needs = &insn_needs.op_addr;
- break;
- case RELOAD_FOR_OPADDR_ADDR:
- this_needs = &insn_needs.op_addr_reload;
- break;
- }
-
- if (size > 1)
- {
- enum machine_mode other_mode, allocate_mode;
-
- /* Count number of groups needed separately from
- number of individual regs needed. */
- this_needs->groups[(int) class]++;
- p = reg_class_superclasses[(int) class];
- while (*p != LIM_REG_CLASSES)
- this_needs->groups[(int) *p++]++;
-
- /* Record size and mode of a group of this class. */
- /* If more than one size group is needed,
- make all groups the largest needed size. */
- if (group_size[(int) class] < size)
- {
- other_mode = group_mode[(int) class];
- allocate_mode = mode;
-
- group_size[(int) class] = size;
- group_mode[(int) class] = mode;
- }
- else
- {
- other_mode = mode;
- allocate_mode = group_mode[(int) class];
- }
-
- /* Crash if two dissimilar machine modes both need
- groups of consecutive regs of the same class. */
-
- if (other_mode != VOIDmode && other_mode != allocate_mode
- && ! modes_equiv_for_class_p (allocate_mode,
- other_mode, class))
- fatal_insn ("Two dissimilar machine modes both need groups of consecutive regs of the same class",
- insn);
- }
- else if (size == 1)
- {
- this_needs->regs[nongroup_need][(int) class] += 1;
- p = reg_class_superclasses[(int) class];
- while (*p != LIM_REG_CLASSES)
- this_needs->regs[nongroup_need][(int) *p++] += 1;
- }
- else
- abort ();
- }
-
- /* All reloads have been counted for this insn;
- now merge the various times of use.
- This sets insn_needs, etc., to the maximum total number
- of registers needed at any point in this insn. */
-
- for (i = 0; i < N_REG_CLASSES; i++)
- {
- int in_max, out_max;
-
- /* Compute normal and nongroup needs. */
- for (j = 0; j <= 1; j++)
- {
- for (in_max = 0, out_max = 0, k = 0;
- k < reload_n_operands; k++)
- {
- in_max
- = MAX (in_max, insn_needs.in_addr[k].regs[j][i]);
- in_max
- = MAX (in_max,
- insn_needs.in_addr_addr[k].regs[j][i]);
- out_max
- = MAX (out_max, insn_needs.out_addr[k].regs[j][i]);
- out_max
- = MAX (out_max,
- insn_needs.out_addr_addr[k].regs[j][i]);
- }
-
- /* RELOAD_FOR_INSN reloads conflict with inputs, outputs,
- and operand addresses but not things used to reload
- them. Similarly, RELOAD_FOR_OPERAND_ADDRESS reloads
- don't conflict with things needed to reload inputs or
- outputs. */
-
- in_max = MAX (MAX (insn_needs.op_addr.regs[j][i],
- insn_needs.op_addr_reload.regs[j][i]),
- in_max);
-
- out_max = MAX (out_max, insn_needs.insn.regs[j][i]);
-
- insn_needs.input.regs[j][i]
- = MAX (insn_needs.input.regs[j][i]
- + insn_needs.op_addr.regs[j][i]
- + insn_needs.insn.regs[j][i],
- in_max + insn_needs.input.regs[j][i]);
-
- insn_needs.output.regs[j][i] += out_max;
- insn_needs.other.regs[j][i]
- += MAX (MAX (insn_needs.input.regs[j][i],
- insn_needs.output.regs[j][i]),
- insn_needs.other_addr.regs[j][i]);
-
- }
-
- /* Now compute group needs. */
- for (in_max = 0, out_max = 0, j = 0;
- j < reload_n_operands; j++)
- {
- in_max = MAX (in_max, insn_needs.in_addr[j].groups[i]);
- in_max = MAX (in_max,
- insn_needs.in_addr_addr[j].groups[i]);
- out_max
- = MAX (out_max, insn_needs.out_addr[j].groups[i]);
- out_max
- = MAX (out_max, insn_needs.out_addr_addr[j].groups[i]);
- }
-
- in_max = MAX (MAX (insn_needs.op_addr.groups[i],
- insn_needs.op_addr_reload.groups[i]),
- in_max);
- out_max = MAX (out_max, insn_needs.insn.groups[i]);
-
- insn_needs.input.groups[i]
- = MAX (insn_needs.input.groups[i]
- + insn_needs.op_addr.groups[i]
- + insn_needs.insn.groups[i],
- in_max + insn_needs.input.groups[i]);
-
- insn_needs.output.groups[i] += out_max;
- insn_needs.other.groups[i]
- += MAX (MAX (insn_needs.input.groups[i],
- insn_needs.output.groups[i]),
- insn_needs.other_addr.groups[i]);
- }
-
- /* If this is a CALL_INSN and caller-saves will need
- a spill register, act as if the spill register is
- needed for this insn. However, the spill register
- can be used by any reload of this insn, so we only
- need do something if no need for that class has
- been recorded.
-
- The assumption that every CALL_INSN will trigger a
- caller-save is highly conservative, however, the number
- of cases where caller-saves will need a spill register but
- a block containing a CALL_INSN won't need a spill register
- of that class should be quite rare.
-
- If a group is needed, the size and mode of the group will
- have been set up at the beginning of this loop. */
-
- if (GET_CODE (insn) == CALL_INSN
- && caller_save_spill_class != NO_REGS)
- {
- /* See if this register would conflict with any reload
- that needs a group. */
- int nongroup_need = 0;
- int *caller_save_needs;
-
- for (j = 0; j < n_reloads; j++)
- if ((CLASS_MAX_NREGS (reload_reg_class[j],
- (GET_MODE_SIZE (reload_outmode[j])
- > GET_MODE_SIZE (reload_inmode[j]))
- ? reload_outmode[j]
- : reload_inmode[j])
- > 1)
- && reg_classes_intersect_p (caller_save_spill_class,
- reload_reg_class[j]))
- {
- nongroup_need = 1;
- break;
- }
-
- caller_save_needs
- = (caller_save_group_size > 1
- ? insn_needs.other.groups
- : insn_needs.other.regs[nongroup_need]);
-
- if (caller_save_needs[(int) caller_save_spill_class] == 0)
- {
- register enum reg_class *p
- = reg_class_superclasses[(int) caller_save_spill_class];
-
- caller_save_needs[(int) caller_save_spill_class]++;
-
- while (*p != LIM_REG_CLASSES)
- caller_save_needs[(int) *p++] += 1;
- }
-
- /* Show that this basic block will need a register of
- this class. */
-
- if (global
- && ! (basic_block_needs[(int) caller_save_spill_class]
- [this_block]))
- {
- basic_block_needs[(int) caller_save_spill_class]
- [this_block] = 1;
- new_basic_block_needs = 1;
- }
- }
-
-#ifdef SMALL_REGISTER_CLASSES
- /* If this insn stores the value of a function call,
- and that value is in a register that has been spilled,
- and if the insn needs a reload in a class
- that might use that register as the reload register,
- then add add an extra need in that class.
- This makes sure we have a register available that does
- not overlap the return value. */
-
- if (SMALL_REGISTER_CLASSES && avoid_return_reg)
- {
- int regno = REGNO (avoid_return_reg);
- int nregs
- = HARD_REGNO_NREGS (regno, GET_MODE (avoid_return_reg));
- int r;
- int basic_needs[N_REG_CLASSES], basic_groups[N_REG_CLASSES];
-
- /* First compute the "basic needs", which counts a
- need only in the smallest class in which it
- is required. */
-
- bcopy ((char *) insn_needs.other.regs[0],
- (char *) basic_needs, sizeof basic_needs);
- bcopy ((char *) insn_needs.other.groups,
- (char *) basic_groups, sizeof basic_groups);
-
- for (i = 0; i < N_REG_CLASSES; i++)
- {
- enum reg_class *p;
-
- if (basic_needs[i] >= 0)
- for (p = reg_class_superclasses[i];
- *p != LIM_REG_CLASSES; p++)
- basic_needs[(int) *p] -= basic_needs[i];
-
- if (basic_groups[i] >= 0)
- for (p = reg_class_superclasses[i];
- *p != LIM_REG_CLASSES; p++)
- basic_groups[(int) *p] -= basic_groups[i];
- }
-
- /* Now count extra regs if there might be a conflict with
- the return value register. */
-
- for (r = regno; r < regno + nregs; r++)
- if (spill_reg_order[r] >= 0)
- for (i = 0; i < N_REG_CLASSES; i++)
- if (TEST_HARD_REG_BIT (reg_class_contents[i], r))
- {
- if (basic_needs[i] > 0)
- {
- enum reg_class *p;
-
- insn_needs.other.regs[0][i]++;
- p = reg_class_superclasses[i];
- while (*p != LIM_REG_CLASSES)
- insn_needs.other.regs[0][(int) *p++]++;
- }
- if (basic_groups[i] > 0)
- {
- enum reg_class *p;
-
- insn_needs.other.groups[i]++;
- p = reg_class_superclasses[i];
- while (*p != LIM_REG_CLASSES)
- insn_needs.other.groups[(int) *p++]++;
- }
- }
- }
-#endif /* SMALL_REGISTER_CLASSES */
-
- /* For each class, collect maximum need of any insn. */
-
- for (i = 0; i < N_REG_CLASSES; i++)
- {
- if (max_needs[i] < insn_needs.other.regs[0][i])
- {
- max_needs[i] = insn_needs.other.regs[0][i];
- max_needs_insn[i] = insn;
- }
- if (max_groups[i] < insn_needs.other.groups[i])
- {
- max_groups[i] = insn_needs.other.groups[i];
- max_groups_insn[i] = insn;
- }
- if (max_nongroups[i] < insn_needs.other.regs[1][i])
- {
- max_nongroups[i] = insn_needs.other.regs[1][i];
- max_nongroups_insn[i] = insn;
- }
- }
- }
- /* Note that there is a continue statement above. */
- }
-
- /* If we allocated any new memory locations, make another pass
- since it might have changed elimination offsets. */
- if (starting_frame_size != get_frame_size ())
- something_changed = 1;
-
- if (dumpfile)
- for (i = 0; i < N_REG_CLASSES; i++)
- {
- if (max_needs[i] > 0)
- fprintf (dumpfile,
- ";; Need %d reg%s of class %s (for insn %d).\n",
- max_needs[i], max_needs[i] == 1 ? "" : "s",
- reg_class_names[i], INSN_UID (max_needs_insn[i]));
- if (max_nongroups[i] > 0)
- fprintf (dumpfile,
- ";; Need %d nongroup reg%s of class %s (for insn %d).\n",
- max_nongroups[i], max_nongroups[i] == 1 ? "" : "s",
- reg_class_names[i], INSN_UID (max_nongroups_insn[i]));
- if (max_groups[i] > 0)
- fprintf (dumpfile,
- ";; Need %d group%s (%smode) of class %s (for insn %d).\n",
- max_groups[i], max_groups[i] == 1 ? "" : "s",
- mode_name[(int) group_mode[i]],
- reg_class_names[i], INSN_UID (max_groups_insn[i]));
- }
-
- /* If we have caller-saves, set up the save areas and see if caller-save
- will need a spill register. */
-
- if (caller_save_needed)
- {
- /* Set the offsets for setup_save_areas. */
- for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
- ep++)
- ep->previous_offset = ep->max_offset;
-
- if ( ! setup_save_areas (&something_changed)
- && caller_save_spill_class == NO_REGS)
- {
- /* The class we will need depends on whether the machine
- supports the sum of two registers for an address; see
- find_address_reloads for details. */
-
- caller_save_spill_class
- = double_reg_address_ok ? INDEX_REG_CLASS : BASE_REG_CLASS;
- caller_save_group_size
- = CLASS_MAX_NREGS (caller_save_spill_class, Pmode);
- something_changed = 1;
- }
- }
-
- /* See if anything that happened changes which eliminations are valid.
- For example, on the Sparc, whether or not the frame pointer can
- be eliminated can depend on what registers have been used. We need
- not check some conditions again (such as flag_omit_frame_pointer)
- since they can't have changed. */
-
- for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
- if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
-#ifdef ELIMINABLE_REGS
- || ! CAN_ELIMINATE (ep->from, ep->to)
-#endif
- )
- ep->can_eliminate = 0;
-
- /* Look for the case where we have discovered that we can't replace
- register A with register B and that means that we will now be
- trying to replace register A with register C. This means we can
- no longer replace register C with register B and we need to disable
- such an elimination, if it exists. This occurs often with A == ap,
- B == sp, and C == fp. */
-
- for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
- {
- struct elim_table *op;
- register int new_to = -1;
-
- if (! ep->can_eliminate && ep->can_eliminate_previous)
- {
- /* Find the current elimination for ep->from, if there is a
- new one. */
- for (op = reg_eliminate;
- op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
- if (op->from == ep->from && op->can_eliminate)
- {
- new_to = op->to;
- break;
- }
-
- /* See if there is an elimination of NEW_TO -> EP->TO. If so,
- disable it. */
- for (op = reg_eliminate;
- op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
- if (op->from == new_to && op->to == ep->to)
- op->can_eliminate = 0;
- }
- }
-
- /* See if any registers that we thought we could eliminate the previous
- time are no longer eliminable. If so, something has changed and we
- must spill the register. Also, recompute the number of eliminable
- registers and see if the frame pointer is needed; it is if there is
- no elimination of the frame pointer that we can perform. */
-
- frame_pointer_needed = 1;
- for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
- {
- if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
- && ep->to != HARD_FRAME_POINTER_REGNUM)
- frame_pointer_needed = 0;
-
- if (! ep->can_eliminate && ep->can_eliminate_previous)
- {
- ep->can_eliminate_previous = 0;
- spill_hard_reg (ep->from, global, dumpfile, 1);
- something_changed = 1;
- num_eliminable--;
- }
- }
-
-#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
- /* If we didn't need a frame pointer last time, but we do now, spill
- the hard frame pointer. */
- if (frame_pointer_needed && ! previous_frame_pointer_needed)
- {
- spill_hard_reg (HARD_FRAME_POINTER_REGNUM, global, dumpfile, 1);
- something_changed = 1;
- }
-#endif
-
- /* If all needs are met, we win. */
-
- for (i = 0; i < N_REG_CLASSES; i++)
- if (max_needs[i] > 0 || max_groups[i] > 0 || max_nongroups[i] > 0)
- break;
- if (i == N_REG_CLASSES && !new_basic_block_needs && ! something_changed)
- break;
-
- /* Not all needs are met; must spill some hard regs. */
-
- /* Put all registers spilled so far back in potential_reload_regs, but
- put them at the front, since we've already spilled most of the
- pseudos in them (we might have left some pseudos unspilled if they
- were in a block that didn't need any spill registers of a conflicting
- class. We used to try to mark off the need for those registers,
- but doing so properly is very complex and reallocating them is the
- simpler approach. First, "pack" potential_reload_regs by pushing
- any nonnegative entries towards the end. That will leave room
- for the registers we already spilled.
-
- Also, undo the marking of the spill registers from the last time
- around in FORBIDDEN_REGS since we will be probably be allocating
- them again below.
-
- ??? It is theoretically possible that we might end up not using one
- of our previously-spilled registers in this allocation, even though
- they are at the head of the list. It's not clear what to do about
- this, but it was no better before, when we marked off the needs met
- by the previously-spilled registers. With the current code, globals
- can be allocated into these registers, but locals cannot. */
-
- if (n_spills)
- {
- for (i = j = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
- if (potential_reload_regs[i] != -1)
- potential_reload_regs[j--] = potential_reload_regs[i];
-
- for (i = 0; i < n_spills; i++)
- {
- potential_reload_regs[i] = spill_regs[i];
- spill_reg_order[spill_regs[i]] = -1;
- CLEAR_HARD_REG_BIT (forbidden_regs, spill_regs[i]);
- }
-
- n_spills = 0;
- }
-
- /* Now find more reload regs to satisfy the remaining need
- Do it by ascending class number, since otherwise a reg
- might be spilled for a big class and might fail to count
- for a smaller class even though it belongs to that class.
-
- Count spilled regs in `spills', and add entries to
- `spill_regs' and `spill_reg_order'.
-
- ??? Note there is a problem here.
- When there is a need for a group in a high-numbered class,
- and also need for non-group regs that come from a lower class,
- the non-group regs are chosen first. If there aren't many regs,
- they might leave no room for a group.
-
- This was happening on the 386. To fix it, we added the code
- that calls possible_group_p, so that the lower class won't
- break up the last possible group.
-
- Really fixing the problem would require changes above
- in counting the regs already spilled, and in choose_reload_regs.
- It might be hard to avoid introducing bugs there. */
-
- CLEAR_HARD_REG_SET (counted_for_groups);
- CLEAR_HARD_REG_SET (counted_for_nongroups);
-
- for (class = 0; class < N_REG_CLASSES; class++)
- {
- /* First get the groups of registers.
- If we got single registers first, we might fragment
- possible groups. */
- while (max_groups[class] > 0)
- {
- /* If any single spilled regs happen to form groups,
- count them now. Maybe we don't really need
- to spill another group. */
- count_possible_groups (group_size, group_mode, max_groups,
- class);
-
- if (max_groups[class] <= 0)
- break;
-
- /* Groups of size 2 (the only groups used on most machines)
- are treated specially. */
- if (group_size[class] == 2)
- {
- /* First, look for a register that will complete a group. */
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- {
- int other;
-
- j = potential_reload_regs[i];
- if (j >= 0 && ! TEST_HARD_REG_BIT (bad_spill_regs, j)
- &&
- ((j > 0 && (other = j - 1, spill_reg_order[other] >= 0)
- && TEST_HARD_REG_BIT (reg_class_contents[class], j)
- && TEST_HARD_REG_BIT (reg_class_contents[class], other)
- && HARD_REGNO_MODE_OK (other, group_mode[class])
- && ! TEST_HARD_REG_BIT (counted_for_nongroups,
- other)
- /* We don't want one part of another group.
- We could get "two groups" that overlap! */
- && ! TEST_HARD_REG_BIT (counted_for_groups, other))
- ||
- (j < FIRST_PSEUDO_REGISTER - 1
- && (other = j + 1, spill_reg_order[other] >= 0)
- && TEST_HARD_REG_BIT (reg_class_contents[class], j)
- && TEST_HARD_REG_BIT (reg_class_contents[class], other)
- && HARD_REGNO_MODE_OK (j, group_mode[class])
- && ! TEST_HARD_REG_BIT (counted_for_nongroups,
- other)
- && ! TEST_HARD_REG_BIT (counted_for_groups,
- other))))
- {
- register enum reg_class *p;
-
- /* We have found one that will complete a group,
- so count off one group as provided. */
- max_groups[class]--;
- p = reg_class_superclasses[class];
- while (*p != LIM_REG_CLASSES)
- {
- if (group_size [(int) *p] <= group_size [class])
- max_groups[(int) *p]--;
- p++;
- }
-
- /* Indicate both these regs are part of a group. */
- SET_HARD_REG_BIT (counted_for_groups, j);
- SET_HARD_REG_BIT (counted_for_groups, other);
- break;
- }
- }
- /* We can't complete a group, so start one. */
-#ifdef SMALL_REGISTER_CLASSES
- /* Look for a pair neither of which is explicitly used. */
- if (SMALL_REGISTER_CLASSES && i == FIRST_PSEUDO_REGISTER)
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- {
- int k;
- j = potential_reload_regs[i];
- /* Verify that J+1 is a potential reload reg. */
- for (k = 0; k < FIRST_PSEUDO_REGISTER; k++)
- if (potential_reload_regs[k] == j + 1)
- break;
- if (j >= 0 && j + 1 < FIRST_PSEUDO_REGISTER
- && k < FIRST_PSEUDO_REGISTER
- && spill_reg_order[j] < 0 && spill_reg_order[j + 1] < 0
- && TEST_HARD_REG_BIT (reg_class_contents[class], j)
- && TEST_HARD_REG_BIT (reg_class_contents[class], j + 1)
- && HARD_REGNO_MODE_OK (j, group_mode[class])
- && ! TEST_HARD_REG_BIT (counted_for_nongroups,
- j + 1)
- && ! TEST_HARD_REG_BIT (bad_spill_regs, j + 1)
- /* Reject J at this stage
- if J+1 was explicitly used. */
- && ! regs_explicitly_used[j + 1])
- break;
- }
-#endif
- /* Now try any group at all
- whose registers are not in bad_spill_regs. */
- if (i == FIRST_PSEUDO_REGISTER)
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- {
- int k;
- j = potential_reload_regs[i];
- /* Verify that J+1 is a potential reload reg. */
- for (k = 0; k < FIRST_PSEUDO_REGISTER; k++)
- if (potential_reload_regs[k] == j + 1)
- break;
- if (j >= 0 && j + 1 < FIRST_PSEUDO_REGISTER
- && k < FIRST_PSEUDO_REGISTER
- && spill_reg_order[j] < 0 && spill_reg_order[j + 1] < 0
- && TEST_HARD_REG_BIT (reg_class_contents[class], j)
- && TEST_HARD_REG_BIT (reg_class_contents[class], j + 1)
- && HARD_REGNO_MODE_OK (j, group_mode[class])
- && ! TEST_HARD_REG_BIT (counted_for_nongroups,
- j + 1)
- && ! TEST_HARD_REG_BIT (bad_spill_regs, j + 1))
- break;
- }
-
- /* I should be the index in potential_reload_regs
- of the new reload reg we have found. */
-
- if (i >= FIRST_PSEUDO_REGISTER)
- {
- /* There are no groups left to spill. */
- spill_failure (max_groups_insn[class]);
- failure = 1;
- goto failed;
- }
- else
- something_changed
- |= new_spill_reg (i, class, max_needs, NULL_PTR,
- global, dumpfile);
- }
- else
- {
- /* For groups of more than 2 registers,
- look for a sufficient sequence of unspilled registers,
- and spill them all at once. */
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- {
- int k;
-
- j = potential_reload_regs[i];
- if (j >= 0
- && j + group_size[class] <= FIRST_PSEUDO_REGISTER
- && HARD_REGNO_MODE_OK (j, group_mode[class]))
- {
- /* Check each reg in the sequence. */
- for (k = 0; k < group_size[class]; k++)
- if (! (spill_reg_order[j + k] < 0
- && ! TEST_HARD_REG_BIT (bad_spill_regs, j + k)
- && TEST_HARD_REG_BIT (reg_class_contents[class], j + k)))
- break;
- /* We got a full sequence, so spill them all. */
- if (k == group_size[class])
- {
- register enum reg_class *p;
- for (k = 0; k < group_size[class]; k++)
- {
- int idx;
- SET_HARD_REG_BIT (counted_for_groups, j + k);
- for (idx = 0; idx < FIRST_PSEUDO_REGISTER; idx++)
- if (potential_reload_regs[idx] == j + k)
- break;
- something_changed
- |= new_spill_reg (idx, class,
- max_needs, NULL_PTR,
- global, dumpfile);
- }
-
- /* We have found one that will complete a group,
- so count off one group as provided. */
- max_groups[class]--;
- p = reg_class_superclasses[class];
- while (*p != LIM_REG_CLASSES)
- {
- if (group_size [(int) *p]
- <= group_size [class])
- max_groups[(int) *p]--;
- p++;
- }
- break;
- }
- }
- }
- /* We couldn't find any registers for this reload.
- Avoid going into an infinite loop. */
- if (i >= FIRST_PSEUDO_REGISTER)
- {
- /* There are no groups left. */
- spill_failure (max_groups_insn[class]);
- failure = 1;
- goto failed;
- }
- }
- }
-
- /* Now similarly satisfy all need for single registers. */
-
- while (max_needs[class] > 0 || max_nongroups[class] > 0)
- {
- /* If we spilled enough regs, but they weren't counted
- against the non-group need, see if we can count them now.
- If so, we can avoid some actual spilling. */
- if (max_needs[class] <= 0 && max_nongroups[class] > 0)
- for (i = 0; i < n_spills; i++)
- if (TEST_HARD_REG_BIT (reg_class_contents[class],
- spill_regs[i])
- && !TEST_HARD_REG_BIT (counted_for_groups,
- spill_regs[i])
- && !TEST_HARD_REG_BIT (counted_for_nongroups,
- spill_regs[i])
- && max_nongroups[class] > 0)
- {
- register enum reg_class *p;
-
- SET_HARD_REG_BIT (counted_for_nongroups, spill_regs[i]);
- max_nongroups[class]--;
- p = reg_class_superclasses[class];
- while (*p != LIM_REG_CLASSES)
- max_nongroups[(int) *p++]--;
- }
- if (max_needs[class] <= 0 && max_nongroups[class] <= 0)
- break;
-
- /* Consider the potential reload regs that aren't
- yet in use as reload regs, in order of preference.
- Find the most preferred one that's in this class. */
-
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- if (potential_reload_regs[i] >= 0
- && TEST_HARD_REG_BIT (reg_class_contents[class],
- potential_reload_regs[i])
- /* If this reg will not be available for groups,
- pick one that does not foreclose possible groups.
- This is a kludge, and not very general,
- but it should be sufficient to make the 386 work,
- and the problem should not occur on machines with
- more registers. */
- && (max_nongroups[class] == 0
- || possible_group_p (potential_reload_regs[i], max_groups)))
- break;
-
- /* If we couldn't get a register, try to get one even if we
- might foreclose possible groups. This may cause problems
- later, but that's better than aborting now, since it is
- possible that we will, in fact, be able to form the needed
- group even with this allocation. */
-
- if (i >= FIRST_PSEUDO_REGISTER
- && (asm_noperands (max_needs[class] > 0
- ? max_needs_insn[class]
- : max_nongroups_insn[class])
- < 0))
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- if (potential_reload_regs[i] >= 0
- && TEST_HARD_REG_BIT (reg_class_contents[class],
- potential_reload_regs[i]))
- break;
-
- /* I should be the index in potential_reload_regs
- of the new reload reg we have found. */
-
- if (i >= FIRST_PSEUDO_REGISTER)
- {
- /* There are no possible registers left to spill. */
- spill_failure (max_needs[class] > 0 ? max_needs_insn[class]
- : max_nongroups_insn[class]);
- failure = 1;
- goto failed;
- }
- else
- something_changed
- |= new_spill_reg (i, class, max_needs, max_nongroups,
- global, dumpfile);
- }
- }
- }
-
- /* If global-alloc was run, notify it of any register eliminations we have
- done. */
- if (global)
- for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
- if (ep->can_eliminate)
- mark_elimination (ep->from, ep->to);
-
- /* Insert code to save and restore call-clobbered hard regs
- around calls. Tell if what mode to use so that we will process
- those insns in reload_as_needed if we have to. */
-
- if (caller_save_needed)
- save_call_clobbered_regs (num_eliminable ? QImode
- : caller_save_spill_class != NO_REGS ? HImode
- : VOIDmode);
-
- /* If a pseudo has no hard reg, delete the insns that made the equivalence.
- If that insn didn't set the register (i.e., it copied the register to
- memory), just delete that insn instead of the equivalencing insn plus
- anything now dead. If we call delete_dead_insn on that insn, we may
- delete the insn that actually sets the register if the register die
- there and that is incorrect. */
-
- for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
- if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0
- && GET_CODE (reg_equiv_init[i]) != NOTE)
- {
- if (reg_set_p (regno_reg_rtx[i], PATTERN (reg_equiv_init[i])))
- delete_dead_insn (reg_equiv_init[i]);
- else
- {
- PUT_CODE (reg_equiv_init[i], NOTE);
- NOTE_SOURCE_FILE (reg_equiv_init[i]) = 0;
- NOTE_LINE_NUMBER (reg_equiv_init[i]) = NOTE_INSN_DELETED;
- }
- }
-
- /* Use the reload registers where necessary
- by generating move instructions to move the must-be-register
- values into or out of the reload registers. */
-
- if (something_needs_reloads || something_needs_elimination
- || (caller_save_needed && num_eliminable)
- || caller_save_spill_class != NO_REGS)
- reload_as_needed (first, global);
-
- /* If we were able to eliminate the frame pointer, show that it is no
- longer live at the start of any basic block. If it ls live by
- virtue of being in a pseudo, that pseudo will be marked live
- and hence the frame pointer will be known to be live via that
- pseudo. */
-
- if (! frame_pointer_needed)
- for (i = 0; i < n_basic_blocks; i++)
- basic_block_live_at_start[i][HARD_FRAME_POINTER_REGNUM / REGSET_ELT_BITS]
- &= ~ ((REGSET_ELT_TYPE) 1 << (HARD_FRAME_POINTER_REGNUM
- % REGSET_ELT_BITS));
-
- /* Come here (with failure set nonzero) if we can't get enough spill regs
- and we decide not to abort about it. */
- failed:
-
- reload_in_progress = 0;
-
- /* Now eliminate all pseudo regs by modifying them into
- their equivalent memory references.
- The REG-rtx's for the pseudos are modified in place,
- so all insns that used to refer to them now refer to memory.
-
- For a reg that has a reg_equiv_address, all those insns
- were changed by reloading so that no insns refer to it any longer;
- but the DECL_RTL of a variable decl may refer to it,
- and if so this causes the debugging info to mention the variable. */
-
- for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
- {
- rtx addr = 0;
- int in_struct = 0;
- if (reg_equiv_mem[i])
- {
- addr = XEXP (reg_equiv_mem[i], 0);
- in_struct = MEM_IN_STRUCT_P (reg_equiv_mem[i]);
- }
- if (reg_equiv_address[i])
- addr = reg_equiv_address[i];
- if (addr)
- {
- if (reg_renumber[i] < 0)
- {
- rtx reg = regno_reg_rtx[i];
- XEXP (reg, 0) = addr;
- REG_USERVAR_P (reg) = 0;
- MEM_IN_STRUCT_P (reg) = in_struct;
- PUT_CODE (reg, MEM);
- }
- else if (reg_equiv_mem[i])
- XEXP (reg_equiv_mem[i], 0) = addr;
- }
- }
-
- /* Do a very simple CSE pass over just the hard registers. */
- if (optimize > 0)
- reload_cse_regs (first);
-
-#ifdef PRESERVE_DEATH_INFO_REGNO_P
- /* Make a pass over all the insns and remove death notes for things that
- are no longer registers or no longer die in the insn (e.g., an input
- and output pseudo being tied). */
-
- for (insn = first; insn; insn = NEXT_INSN (insn))
- if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
- {
- rtx note, next;
-
- for (note = REG_NOTES (insn); note; note = next)
- {
- next = XEXP (note, 1);
- if (REG_NOTE_KIND (note) == REG_DEAD
- && (GET_CODE (XEXP (note, 0)) != REG
- || reg_set_p (XEXP (note, 0), PATTERN (insn))))
- remove_note (insn, note);
- }
- }
-#endif
-
- /* Indicate that we no longer have known memory locations or constants. */
- reg_equiv_constant = 0;
- reg_equiv_memory_loc = 0;
-
- if (scratch_list)
- free (scratch_list);
- scratch_list = 0;
- if (scratch_block)
- free (scratch_block);
- scratch_block = 0;
-
- CLEAR_HARD_REG_SET (used_spill_regs);
- for (i = 0; i < n_spills; i++)
- SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
-
- return failure;
-}
-
-/* Nonzero if, after spilling reg REGNO for non-groups,
- it will still be possible to find a group if we still need one. */
-
-static int
-possible_group_p (regno, max_groups)
- int regno;
- int *max_groups;
-{
- int i;
- int class = (int) NO_REGS;
-
- for (i = 0; i < (int) N_REG_CLASSES; i++)
- if (max_groups[i] > 0)
- {
- class = i;
- break;
- }
-
- if (class == (int) NO_REGS)
- return 1;
-
- /* Consider each pair of consecutive registers. */
- for (i = 0; i < FIRST_PSEUDO_REGISTER - 1; i++)
- {
- /* Ignore pairs that include reg REGNO. */
- if (i == regno || i + 1 == regno)
- continue;
-
- /* Ignore pairs that are outside the class that needs the group.
- ??? Here we fail to handle the case where two different classes
- independently need groups. But this never happens with our
- current machine descriptions. */
- if (! (TEST_HARD_REG_BIT (reg_class_contents[class], i)
- && TEST_HARD_REG_BIT (reg_class_contents[class], i + 1)))
- continue;
-
- /* A pair of consecutive regs we can still spill does the trick. */
- if (spill_reg_order[i] < 0 && spill_reg_order[i + 1] < 0
- && ! TEST_HARD_REG_BIT (bad_spill_regs, i)
- && ! TEST_HARD_REG_BIT (bad_spill_regs, i + 1))
- return 1;
-
- /* A pair of one already spilled and one we can spill does it
- provided the one already spilled is not otherwise reserved. */
- if (spill_reg_order[i] < 0
- && ! TEST_HARD_REG_BIT (bad_spill_regs, i)
- && spill_reg_order[i + 1] >= 0
- && ! TEST_HARD_REG_BIT (counted_for_groups, i + 1)
- && ! TEST_HARD_REG_BIT (counted_for_nongroups, i + 1))
- return 1;
- if (spill_reg_order[i + 1] < 0
- && ! TEST_HARD_REG_BIT (bad_spill_regs, i + 1)
- && spill_reg_order[i] >= 0
- && ! TEST_HARD_REG_BIT (counted_for_groups, i)
- && ! TEST_HARD_REG_BIT (counted_for_nongroups, i))
- return 1;
- }
-
- return 0;
-}
-
-/* Count any groups of CLASS that can be formed from the registers recently
- spilled. */
-
-static void
-count_possible_groups (group_size, group_mode, max_groups, class)
- int *group_size;
- enum machine_mode *group_mode;
- int *max_groups;
- int class;
-{
- HARD_REG_SET new;
- int i, j;
-
- /* Now find all consecutive groups of spilled registers
- and mark each group off against the need for such groups.
- But don't count them against ordinary need, yet. */
-
- if (group_size[class] == 0)
- return;
-
- CLEAR_HARD_REG_SET (new);
-
- /* Make a mask of all the regs that are spill regs in class I. */
- for (i = 0; i < n_spills; i++)
- if (TEST_HARD_REG_BIT (reg_class_contents[class], spill_regs[i])
- && ! TEST_HARD_REG_BIT (counted_for_groups, spill_regs[i])
- && ! TEST_HARD_REG_BIT (counted_for_nongroups, spill_regs[i]))
- SET_HARD_REG_BIT (new, spill_regs[i]);
-
- /* Find each consecutive group of them. */
- for (i = 0; i < FIRST_PSEUDO_REGISTER && max_groups[class] > 0; i++)
- if (TEST_HARD_REG_BIT (new, i)
- && i + group_size[class] <= FIRST_PSEUDO_REGISTER
- && HARD_REGNO_MODE_OK (i, group_mode[class]))
- {
- for (j = 1; j < group_size[class]; j++)
- if (! TEST_HARD_REG_BIT (new, i + j))
- break;
-
- if (j == group_size[class])
- {
- /* We found a group. Mark it off against this class's need for
- groups, and against each superclass too. */
- register enum reg_class *p;
-
- max_groups[class]--;
- p = reg_class_superclasses[class];
- while (*p != LIM_REG_CLASSES)
- {
- if (group_size [(int) *p] <= group_size [class])
- max_groups[(int) *p]--;
- p++;
- }
-
- /* Don't count these registers again. */
- for (j = 0; j < group_size[class]; j++)
- SET_HARD_REG_BIT (counted_for_groups, i + j);
- }
-
- /* Skip to the last reg in this group. When i is incremented above,
- it will then point to the first reg of the next possible group. */
- i += j - 1;
- }
-}
-
-/* ALLOCATE_MODE is a register mode that needs to be reloaded. OTHER_MODE is
- another mode that needs to be reloaded for the same register class CLASS.
- If any reg in CLASS allows ALLOCATE_MODE but not OTHER_MODE, fail.
- ALLOCATE_MODE will never be smaller than OTHER_MODE.
-
- This code used to also fail if any reg in CLASS allows OTHER_MODE but not
- ALLOCATE_MODE. This test is unnecessary, because we will never try to put
- something of mode ALLOCATE_MODE into an OTHER_MODE register. Testing this
- causes unnecessary failures on machines requiring alignment of register
- groups when the two modes are different sizes, because the larger mode has
- more strict alignment rules than the smaller mode. */
-
-static int
-modes_equiv_for_class_p (allocate_mode, other_mode, class)
- enum machine_mode allocate_mode, other_mode;
- enum reg_class class;
-{
- register int regno;
- for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
- {
- if (TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno)
- && HARD_REGNO_MODE_OK (regno, allocate_mode)
- && ! HARD_REGNO_MODE_OK (regno, other_mode))
- return 0;
- }
- return 1;
-}
-
-/* Handle the failure to find a register to spill.
- INSN should be one of the insns which needed this particular spill reg. */
-
-static void
-spill_failure (insn)
- rtx insn;
-{
- if (asm_noperands (PATTERN (insn)) >= 0)
- error_for_asm (insn, "`asm' needs too many reloads");
- else
- fatal_insn ("Unable to find a register to spill.", insn);
-}
-
-/* Add a new register to the tables of available spill-registers
- (as well as spilling all pseudos allocated to the register).
- I is the index of this register in potential_reload_regs.
- CLASS is the regclass whose need is being satisfied.
- MAX_NEEDS and MAX_NONGROUPS are the vectors of needs,
- so that this register can count off against them.
- MAX_NONGROUPS is 0 if this register is part of a group.
- GLOBAL and DUMPFILE are the same as the args that `reload' got. */
-
-static int
-new_spill_reg (i, class, max_needs, max_nongroups, global, dumpfile)
- int i;
- int class;
- int *max_needs;
- int *max_nongroups;
- int global;
- FILE *dumpfile;
-{
- register enum reg_class *p;
- int val;
- int regno = potential_reload_regs[i];
-
- if (i >= FIRST_PSEUDO_REGISTER)
- abort (); /* Caller failed to find any register. */
-
- if (fixed_regs[regno] || TEST_HARD_REG_BIT (forbidden_regs, regno))
- fatal ("fixed or forbidden register was spilled.\n\
-This may be due to a compiler bug or to impossible asm\n\
-statements or clauses.");
-
- /* Make reg REGNO an additional reload reg. */
-
- potential_reload_regs[i] = -1;
- spill_regs[n_spills] = regno;
- spill_reg_order[regno] = n_spills;
- if (dumpfile)
- fprintf (dumpfile, "Spilling reg %d.\n", spill_regs[n_spills]);
-
- /* Clear off the needs we just satisfied. */
-
- max_needs[class]--;
- p = reg_class_superclasses[class];
- while (*p != LIM_REG_CLASSES)
- max_needs[(int) *p++]--;
-
- if (max_nongroups && max_nongroups[class] > 0)
- {
- SET_HARD_REG_BIT (counted_for_nongroups, regno);
- max_nongroups[class]--;
- p = reg_class_superclasses[class];
- while (*p != LIM_REG_CLASSES)
- max_nongroups[(int) *p++]--;
- }
-
- /* Spill every pseudo reg that was allocated to this reg
- or to something that overlaps this reg. */
-
- val = spill_hard_reg (spill_regs[n_spills], global, dumpfile, 0);
-
- /* If there are some registers still to eliminate and this register
- wasn't ever used before, additional stack space may have to be
- allocated to store this register. Thus, we may have changed the offset
- between the stack and frame pointers, so mark that something has changed.
- (If new pseudos were spilled, thus requiring more space, VAL would have
- been set non-zero by the call to spill_hard_reg above since additional
- reloads may be needed in that case.
-
- One might think that we need only set VAL to 1 if this is a call-used
- register. However, the set of registers that must be saved by the
- prologue is not identical to the call-used set. For example, the
- register used by the call insn for the return PC is a call-used register,
- but must be saved by the prologue. */
- if (num_eliminable && ! regs_ever_live[spill_regs[n_spills]])
- val = 1;
-
- regs_ever_live[spill_regs[n_spills]] = 1;
- n_spills++;
-
- return val;
-}
-
-/* Delete an unneeded INSN and any previous insns who sole purpose is loading
- data that is dead in INSN. */
-
-static void
-delete_dead_insn (insn)
- rtx insn;
-{
- rtx prev = prev_real_insn (insn);
- rtx prev_dest;
-
- /* If the previous insn sets a register that dies in our insn, delete it
- too. */
- if (prev && GET_CODE (PATTERN (prev)) == SET
- && (prev_dest = SET_DEST (PATTERN (prev)), GET_CODE (prev_dest) == REG)
- && reg_mentioned_p (prev_dest, PATTERN (insn))
- && find_regno_note (insn, REG_DEAD, REGNO (prev_dest)))
- delete_dead_insn (prev);
-
- PUT_CODE (insn, NOTE);
- NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
- NOTE_SOURCE_FILE (insn) = 0;
-}
-
-/* Modify the home of pseudo-reg I.
- The new home is present in reg_renumber[I].
-
- FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
- or it may be -1, meaning there is none or it is not relevant.
- This is used so that all pseudos spilled from a given hard reg
- can share one stack slot. */
-
-static void
-alter_reg (i, from_reg)
- register int i;
- int from_reg;
-{
- /* When outputting an inline function, this can happen
- for a reg that isn't actually used. */
- if (regno_reg_rtx[i] == 0)
- return;
-
- /* If the reg got changed to a MEM at rtl-generation time,
- ignore it. */
- if (GET_CODE (regno_reg_rtx[i]) != REG)
- return;
-
- /* Modify the reg-rtx to contain the new hard reg
- number or else to contain its pseudo reg number. */
- REGNO (regno_reg_rtx[i])
- = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
-
- /* If we have a pseudo that is needed but has no hard reg or equivalent,
- allocate a stack slot for it. */
-
- if (reg_renumber[i] < 0
- && reg_n_refs[i] > 0
- && reg_equiv_constant[i] == 0
- && reg_equiv_memory_loc[i] == 0)
- {
- register rtx x;
- int inherent_size = PSEUDO_REGNO_BYTES (i);
- int total_size = MAX (inherent_size, reg_max_ref_width[i]);
- int adjust = 0;
-
- /* Each pseudo reg has an inherent size which comes from its own mode,
- and a total size which provides room for paradoxical subregs
- which refer to the pseudo reg in wider modes.
-
- We can use a slot already allocated if it provides both
- enough inherent space and enough total space.
- Otherwise, we allocate a new slot, making sure that it has no less
- inherent space, and no less total space, then the previous slot. */
- if (from_reg == -1)
- {
- /* No known place to spill from => no slot to reuse. */
- x = assign_stack_local (GET_MODE (regno_reg_rtx[i]), total_size,
- inherent_size == total_size ? 0 : -1);
- if (BYTES_BIG_ENDIAN)
- /* Cancel the big-endian correction done in assign_stack_local.
- Get the address of the beginning of the slot.
- This is so we can do a big-endian correction unconditionally
- below. */
- adjust = inherent_size - total_size;
-
- RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]);
- }
- /* Reuse a stack slot if possible. */
- else if (spill_stack_slot[from_reg] != 0
- && spill_stack_slot_width[from_reg] >= total_size
- && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
- >= inherent_size))
- x = spill_stack_slot[from_reg];
- /* Allocate a bigger slot. */
- else
- {
- /* Compute maximum size needed, both for inherent size
- and for total size. */
- enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
- rtx stack_slot;
- if (spill_stack_slot[from_reg])
- {
- if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
- > inherent_size)
- mode = GET_MODE (spill_stack_slot[from_reg]);
- if (spill_stack_slot_width[from_reg] > total_size)
- total_size = spill_stack_slot_width[from_reg];
- }
- /* Make a slot with that size. */
- x = assign_stack_local (mode, total_size,
- inherent_size == total_size ? 0 : -1);
- stack_slot = x;
- if (BYTES_BIG_ENDIAN)
- {
- /* Cancel the big-endian correction done in assign_stack_local.
- Get the address of the beginning of the slot.
- This is so we can do a big-endian correction unconditionally
- below. */
- adjust = GET_MODE_SIZE (mode) - total_size;
- if (adjust)
- stack_slot = gen_rtx (MEM, mode_for_size (total_size
- * BITS_PER_UNIT,
- MODE_INT, 1),
- plus_constant (XEXP (x, 0), adjust));
- }
- spill_stack_slot[from_reg] = stack_slot;
- spill_stack_slot_width[from_reg] = total_size;
- }
-
- /* On a big endian machine, the "address" of the slot
- is the address of the low part that fits its inherent mode. */
- if (BYTES_BIG_ENDIAN && inherent_size < total_size)
- adjust += (total_size - inherent_size);
-
- /* If we have any adjustment to make, or if the stack slot is the
- wrong mode, make a new stack slot. */
- if (adjust != 0 || GET_MODE (x) != GET_MODE (regno_reg_rtx[i]))
- {
- x = gen_rtx (MEM, GET_MODE (regno_reg_rtx[i]),
- plus_constant (XEXP (x, 0), adjust));
- RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]);
- }
-
- /* Save the stack slot for later. */
- reg_equiv_memory_loc[i] = x;
- }
-}
-
-/* Mark the slots in regs_ever_live for the hard regs
- used by pseudo-reg number REGNO. */
-
-void
-mark_home_live (regno)
- int regno;
-{
- register int i, lim;
- i = reg_renumber[regno];
- if (i < 0)
- return;
- lim = i + HARD_REGNO_NREGS (i, PSEUDO_REGNO_MODE (regno));
- while (i < lim)
- regs_ever_live[i++] = 1;
-}
-
-/* Mark the registers used in SCRATCH as being live. */
-
-static void
-mark_scratch_live (scratch)
- rtx scratch;
-{
- register int i;
- int regno = REGNO (scratch);
- int lim = regno + HARD_REGNO_NREGS (regno, GET_MODE (scratch));
-
- for (i = regno; i < lim; i++)
- regs_ever_live[i] = 1;
-}
-
-/* This function handles the tracking of elimination offsets around branches.
-
- X is a piece of RTL being scanned.
-
- INSN is the insn that it came from, if any.
-
- INITIAL_P is non-zero if we are to set the offset to be the initial
- offset and zero if we are setting the offset of the label to be the
- current offset. */
-
-static void
-set_label_offsets (x, insn, initial_p)
- rtx x;
- rtx insn;
- int initial_p;
-{
- enum rtx_code code = GET_CODE (x);
- rtx tem;
- int i;
- struct elim_table *p;
-
- switch (code)
- {
- case LABEL_REF:
- if (LABEL_REF_NONLOCAL_P (x))
- return;
-
- x = XEXP (x, 0);
-
- /* ... fall through ... */
-
- case CODE_LABEL:
- /* If we know nothing about this label, set the desired offsets. Note
- that this sets the offset at a label to be the offset before a label
- if we don't know anything about the label. This is not correct for
- the label after a BARRIER, but is the best guess we can make. If
- we guessed wrong, we will suppress an elimination that might have
- been possible had we been able to guess correctly. */
-
- if (! offsets_known_at[CODE_LABEL_NUMBER (x)])
- {
- for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
- offsets_at[CODE_LABEL_NUMBER (x)][i]
- = (initial_p ? reg_eliminate[i].initial_offset
- : reg_eliminate[i].offset);
- offsets_known_at[CODE_LABEL_NUMBER (x)] = 1;
- }
-
- /* Otherwise, if this is the definition of a label and it is
- preceded by a BARRIER, set our offsets to the known offset of
- that label. */
-
- else if (x == insn
- && (tem = prev_nonnote_insn (insn)) != 0
- && GET_CODE (tem) == BARRIER)
- {
- num_not_at_initial_offset = 0;
- for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
- {
- reg_eliminate[i].offset = reg_eliminate[i].previous_offset
- = offsets_at[CODE_LABEL_NUMBER (x)][i];
- if (reg_eliminate[i].can_eliminate
- && (reg_eliminate[i].offset
- != reg_eliminate[i].initial_offset))
- num_not_at_initial_offset++;
- }
- }
-
- else
- /* If neither of the above cases is true, compare each offset
- with those previously recorded and suppress any eliminations
- where the offsets disagree. */
-
- for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
- if (offsets_at[CODE_LABEL_NUMBER (x)][i]
- != (initial_p ? reg_eliminate[i].initial_offset
- : reg_eliminate[i].offset))
- reg_eliminate[i].can_eliminate = 0;
-
- return;
-
- case JUMP_INSN:
- set_label_offsets (PATTERN (insn), insn, initial_p);
-
- /* ... fall through ... */
-
- case INSN:
- case CALL_INSN:
- /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
- and hence must have all eliminations at their initial offsets. */
- for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
- if (REG_NOTE_KIND (tem) == REG_LABEL)
- set_label_offsets (XEXP (tem, 0), insn, 1);
- return;
-
- case ADDR_VEC:
- case ADDR_DIFF_VEC:
- /* Each of the labels in the address vector must be at their initial
- offsets. We want the first first for ADDR_VEC and the second
- field for ADDR_DIFF_VEC. */
-
- for (i = 0; i < XVECLEN (x, code == ADDR_DIFF_VEC); i++)
- set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
- insn, initial_p);
- return;
-
- case SET:
- /* We only care about setting PC. If the source is not RETURN,
- IF_THEN_ELSE, or a label, disable any eliminations not at
- their initial offsets. Similarly if any arm of the IF_THEN_ELSE
- isn't one of those possibilities. For branches to a label,
- call ourselves recursively.
-
- Note that this can disable elimination unnecessarily when we have
- a non-local goto since it will look like a non-constant jump to
- someplace in the current function. This isn't a significant
- problem since such jumps will normally be when all elimination
- pairs are back to their initial offsets. */
-
- if (SET_DEST (x) != pc_rtx)
- return;
-
- switch (GET_CODE (SET_SRC (x)))
- {
- case PC:
- case RETURN:
- return;
-
- case LABEL_REF:
- set_label_offsets (XEXP (SET_SRC (x), 0), insn, initial_p);
- return;
-
- case IF_THEN_ELSE:
- tem = XEXP (SET_SRC (x), 1);
- if (GET_CODE (tem) == LABEL_REF)
- set_label_offsets (XEXP (tem, 0), insn, initial_p);
- else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
- break;
-
- tem = XEXP (SET_SRC (x), 2);
- if (GET_CODE (tem) == LABEL_REF)
- set_label_offsets (XEXP (tem, 0), insn, initial_p);
- else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
- break;
- return;
- }
-
- /* If we reach here, all eliminations must be at their initial
- offset because we are doing a jump to a variable address. */
- for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
- if (p->offset != p->initial_offset)
- p->can_eliminate = 0;
- }
-}
-
-/* Used for communication between the next two function to properly share
- the vector for an ASM_OPERANDS. */
-
-static struct rtvec_def *old_asm_operands_vec, *new_asm_operands_vec;
-
-/* Scan X and replace any eliminable registers (such as fp) with a
- replacement (such as sp), plus an offset.
-
- MEM_MODE is the mode of an enclosing MEM. We need this to know how
- much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
- MEM, we are allowed to replace a sum of a register and the constant zero
- with the register, which we cannot do outside a MEM. In addition, we need
- to record the fact that a register is referenced outside a MEM.
-
- If INSN is an insn, it is the insn containing X. If we replace a REG
- in a SET_DEST with an equivalent MEM and INSN is non-zero, write a
- CLOBBER of the pseudo after INSN so find_equiv_regs will know that
- that the REG is being modified.
-
- Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
- That's used when we eliminate in expressions stored in notes.
- This means, do not set ref_outside_mem even if the reference
- is outside of MEMs.
-
- If we see a modification to a register we know about, take the
- appropriate action (see case SET, below).
-
- REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
- replacements done assuming all offsets are at their initial values. If
- they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
- encounter, return the actual location so that find_reloads will do
- the proper thing. */
-
-rtx
-eliminate_regs (x, mem_mode, insn, storing)
- rtx x;
- enum machine_mode mem_mode;
- rtx insn;
- int storing;
-{
- enum rtx_code code = GET_CODE (x);
- struct elim_table *ep;
- int regno;
- rtx new;
- int i, j;
- char *fmt;
- int copied = 0;
-
- switch (code)
- {
- case CONST_INT:
- case CONST_DOUBLE:
- case CONST:
- case SYMBOL_REF:
- case CODE_LABEL:
- case PC:
- case CC0:
- case ASM_INPUT:
- case ADDR_VEC:
- case ADDR_DIFF_VEC:
- case RETURN:
- return x;
-
- case REG:
- regno = REGNO (x);
-
- /* First handle the case where we encounter a bare register that
- is eliminable. Replace it with a PLUS. */
- if (regno < FIRST_PSEUDO_REGISTER)
- {
- for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
- ep++)
- if (ep->from_rtx == x && ep->can_eliminate)
- {
- if (! mem_mode
- /* Refs inside notes don't count for this purpose. */
- && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
- || GET_CODE (insn) == INSN_LIST)))
- ep->ref_outside_mem = 1;
- return plus_constant (ep->to_rtx, ep->previous_offset);
- }
-
- }
- else if (reg_equiv_memory_loc && reg_equiv_memory_loc[regno]
- && (reg_equiv_address[regno] || num_not_at_initial_offset))
- {
- /* In this case, find_reloads would attempt to either use an
- incorrect address (if something is not at its initial offset)
- or substitute an replaced address into an insn (which loses
- if the offset is changed by some later action). So we simply
- return the replaced stack slot (assuming it is changed by
- elimination) and ignore the fact that this is actually a
- reference to the pseudo. Ensure we make a copy of the
- address in case it is shared. */
- new = eliminate_regs (reg_equiv_memory_loc[regno],
- mem_mode, insn, 0);
- if (new != reg_equiv_memory_loc[regno])
- {
- cannot_omit_stores[regno] = 1;
- return copy_rtx (new);
- }
- }
- return x;
-
- case PLUS:
- /* If this is the sum of an eliminable register and a constant, rework
- the sum. */
- if (GET_CODE (XEXP (x, 0)) == REG
- && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
- && CONSTANT_P (XEXP (x, 1)))
- {
- for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
- ep++)
- if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
- {
- if (! mem_mode
- /* Refs inside notes don't count for this purpose. */
- && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
- || GET_CODE (insn) == INSN_LIST)))
- ep->ref_outside_mem = 1;
-
- /* The only time we want to replace a PLUS with a REG (this
- occurs when the constant operand of the PLUS is the negative
- of the offset) is when we are inside a MEM. We won't want
- to do so at other times because that would change the
- structure of the insn in a way that reload can't handle.
- We special-case the commonest situation in
- eliminate_regs_in_insn, so just replace a PLUS with a
- PLUS here, unless inside a MEM. */
- if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
- && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
- return ep->to_rtx;
- else
- return gen_rtx (PLUS, Pmode, ep->to_rtx,
- plus_constant (XEXP (x, 1),
- ep->previous_offset));
- }
-
- /* If the register is not eliminable, we are done since the other
- operand is a constant. */
- return x;
- }
-
- /* If this is part of an address, we want to bring any constant to the
- outermost PLUS. We will do this by doing register replacement in
- our operands and seeing if a constant shows up in one of them.
-
- We assume here this is part of an address (or a "load address" insn)
- since an eliminable register is not likely to appear in any other
- context.
-
- If we have (plus (eliminable) (reg)), we want to produce
- (plus (plus (replacement) (reg) (const))). If this was part of a
- normal add insn, (plus (replacement) (reg)) will be pushed as a
- reload. This is the desired action. */
-
- {
- rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn, 0);
- rtx new1 = eliminate_regs (XEXP (x, 1), mem_mode, insn, 0);
-
- if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
- {
- /* If one side is a PLUS and the other side is a pseudo that
- didn't get a hard register but has a reg_equiv_constant,
- we must replace the constant here since it may no longer
- be in the position of any operand. */
- if (GET_CODE (new0) == PLUS && GET_CODE (new1) == REG
- && REGNO (new1) >= FIRST_PSEUDO_REGISTER
- && reg_renumber[REGNO (new1)] < 0
- && reg_equiv_constant != 0
- && reg_equiv_constant[REGNO (new1)] != 0)
- new1 = reg_equiv_constant[REGNO (new1)];
- else if (GET_CODE (new1) == PLUS && GET_CODE (new0) == REG
- && REGNO (new0) >= FIRST_PSEUDO_REGISTER
- && reg_renumber[REGNO (new0)] < 0
- && reg_equiv_constant[REGNO (new0)] != 0)
- new0 = reg_equiv_constant[REGNO (new0)];
-
- new = form_sum (new0, new1);
-
- /* As above, if we are not inside a MEM we do not want to
- turn a PLUS into something else. We might try to do so here
- for an addition of 0 if we aren't optimizing. */
- if (! mem_mode && GET_CODE (new) != PLUS)
- return gen_rtx (PLUS, GET_MODE (x), new, const0_rtx);
- else
- return new;
- }
- }
- return x;
-
- case MULT:
- /* If this is the product of an eliminable register and a
- constant, apply the distribute law and move the constant out
- so that we have (plus (mult ..) ..). This is needed in order
- to keep load-address insns valid. This case is pathological.
- We ignore the possibility of overflow here. */
- if (GET_CODE (XEXP (x, 0)) == REG
- && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
- && GET_CODE (XEXP (x, 1)) == CONST_INT)
- for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
- ep++)
- if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
- {
- if (! mem_mode
- /* Refs inside notes don't count for this purpose. */
- && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
- || GET_CODE (insn) == INSN_LIST)))
- ep->ref_outside_mem = 1;
-
- return
- plus_constant (gen_rtx (MULT, Pmode, ep->to_rtx, XEXP (x, 1)),
- ep->previous_offset * INTVAL (XEXP (x, 1)));
- }
-
- /* ... fall through ... */
-
- case CALL:
- case COMPARE:
- case MINUS:
- case DIV: case UDIV:
- case MOD: case UMOD:
- case AND: case IOR: case XOR:
- case ROTATERT: case ROTATE:
- case ASHIFTRT: case LSHIFTRT: case ASHIFT:
- case NE: case EQ:
- case GE: case GT: case GEU: case GTU:
- case LE: case LT: case LEU: case LTU:
- {
- rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn, 0);
- rtx new1
- = XEXP (x, 1) ? eliminate_regs (XEXP (x, 1), mem_mode, insn, 0) : 0;
-
- if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
- return gen_rtx (code, GET_MODE (x), new0, new1);
- }
- return x;
-
- case EXPR_LIST:
- /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
- if (XEXP (x, 0))
- {
- new = eliminate_regs (XEXP (x, 0), mem_mode, insn, 0);
- if (new != XEXP (x, 0))
- x = gen_rtx (EXPR_LIST, REG_NOTE_KIND (x), new, XEXP (x, 1));
- }
-
- /* ... fall through ... */
-
- case INSN_LIST:
- /* Now do eliminations in the rest of the chain. If this was
- an EXPR_LIST, this might result in allocating more memory than is
- strictly needed, but it simplifies the code. */
- if (XEXP (x, 1))
- {
- new = eliminate_regs (XEXP (x, 1), mem_mode, insn, 0);
- if (new != XEXP (x, 1))
- return gen_rtx (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
- }
- return x;
-
- case PRE_INC:
- case POST_INC:
- case PRE_DEC:
- case POST_DEC:
- for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
- if (ep->to_rtx == XEXP (x, 0))
- {
- int size = GET_MODE_SIZE (mem_mode);
-
- /* If more bytes than MEM_MODE are pushed, account for them. */
-#ifdef PUSH_ROUNDING
- if (ep->to_rtx == stack_pointer_rtx)
- size = PUSH_ROUNDING (size);
-#endif
- if (code == PRE_DEC || code == POST_DEC)
- ep->offset += size;
- else
- ep->offset -= size;
- }
-
- /* Fall through to generic unary operation case. */
- case STRICT_LOW_PART:
- case NEG: case NOT:
- case SIGN_EXTEND: case ZERO_EXTEND:
- case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
- case FLOAT: case FIX:
- case UNSIGNED_FIX: case UNSIGNED_FLOAT:
- case ABS:
- case SQRT:
- case FFS:
- new = eliminate_regs (XEXP (x, 0), mem_mode, insn, 0);
- if (new != XEXP (x, 0))
- return gen_rtx (code, GET_MODE (x), new);
- return x;
-
- case SUBREG:
- /* Similar to above processing, but preserve SUBREG_WORD.
- Convert (subreg (mem)) to (mem) if not paradoxical.
- Also, if we have a non-paradoxical (subreg (pseudo)) and the
- pseudo didn't get a hard reg, we must replace this with the
- eliminated version of the memory location because push_reloads
- may do the replacement in certain circumstances. */
- if (GET_CODE (SUBREG_REG (x)) == REG
- && (GET_MODE_SIZE (GET_MODE (x))
- <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
- && reg_equiv_memory_loc != 0
- && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
- {
- new = eliminate_regs (reg_equiv_memory_loc[REGNO (SUBREG_REG (x))],
- mem_mode, insn, 0);
-
- /* If we didn't change anything, we must retain the pseudo. */
- if (new == reg_equiv_memory_loc[REGNO (SUBREG_REG (x))])
- new = SUBREG_REG (x);
- else
- {
- /* Otherwise, ensure NEW isn't shared in case we have to reload
- it. */
- new = copy_rtx (new);
-
- /* In this case, we must show that the pseudo is used in this
- insn so that delete_output_reload will do the right thing. */
- if (insn != 0 && GET_CODE (insn) != EXPR_LIST
- && GET_CODE (insn) != INSN_LIST)
- emit_insn_before (gen_rtx (USE, VOIDmode, SUBREG_REG (x)),
- insn);
- }
- }
- else
- new = eliminate_regs (SUBREG_REG (x), mem_mode, insn, 0);
-
- if (new != XEXP (x, 0))
- {
- int x_size = GET_MODE_SIZE (GET_MODE (x));
- int new_size = GET_MODE_SIZE (GET_MODE (new));
-
- /* When asked to spill a partial word subreg, we need to go
- ahead and spill the whole thing against the possibility
- that we reload the whole reg and find garbage at the top. */
- if (storing
- && GET_CODE (new) == MEM
- && x_size < new_size
- && ((x_size + UNITS_PER_WORD-1) / UNITS_PER_WORD
- == (new_size + UNITS_PER_WORD-1) / UNITS_PER_WORD))
- return new;
- else if (GET_CODE (new) == MEM
- && x_size <= new_size
-#ifdef LOAD_EXTEND_OP
- /* On these machines we will be reloading what is
- inside the SUBREG if it originally was a pseudo and
- the inner and outer modes are both a word or
- smaller. So leave the SUBREG then. */
- && ! (GET_CODE (SUBREG_REG (x)) == REG
- && x_size <= UNITS_PER_WORD
- && new_size <= UNITS_PER_WORD
- && x_size > new_size
- && INTEGRAL_MODE_P (GET_MODE (new))
- && LOAD_EXTEND_OP (GET_MODE (new)) != NIL)
-#endif
- )
- {
- int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
- enum machine_mode mode = GET_MODE (x);
-
- if (BYTES_BIG_ENDIAN)
- offset += (MIN (UNITS_PER_WORD,
- GET_MODE_SIZE (GET_MODE (new)))
- - MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));
-
- PUT_MODE (new, mode);
- XEXP (new, 0) = plus_constant (XEXP (new, 0), offset);
- return new;
- }
- else
- return gen_rtx (SUBREG, GET_MODE (x), new, SUBREG_WORD (x));
- }
-
- return x;
-
- case USE:
- /* If using a register that is the source of an eliminate we still
- think can be performed, note it cannot be performed since we don't
- know how this register is used. */
- for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
- if (ep->from_rtx == XEXP (x, 0))
- ep->can_eliminate = 0;
-
- new = eliminate_regs (XEXP (x, 0), mem_mode, insn, 0);
- if (new != XEXP (x, 0))
- return gen_rtx (code, GET_MODE (x), new);
- return x;
-
- case CLOBBER:
- /* If clobbering a register that is the replacement register for an
- elimination we still think can be performed, note that it cannot
- be performed. Otherwise, we need not be concerned about it. */
- for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
- if (ep->to_rtx == XEXP (x, 0))
- ep->can_eliminate = 0;
-
- new = eliminate_regs (XEXP (x, 0), mem_mode, insn, 0);
- if (new != XEXP (x, 0))
- return gen_rtx (code, GET_MODE (x), new);
- return x;
-
- case ASM_OPERANDS:
- {
- rtx *temp_vec;
- /* Properly handle sharing input and constraint vectors. */
- if (ASM_OPERANDS_INPUT_VEC (x) != old_asm_operands_vec)
- {
- /* When we come to a new vector not seen before,
- scan all its elements; keep the old vector if none
- of them changes; otherwise, make a copy. */
- old_asm_operands_vec = ASM_OPERANDS_INPUT_VEC (x);
- temp_vec = (rtx *) alloca (XVECLEN (x, 3) * sizeof (rtx));
- for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
- temp_vec[i] = eliminate_regs (ASM_OPERANDS_INPUT (x, i),
- mem_mode, insn, 0);
-
- for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
- if (temp_vec[i] != ASM_OPERANDS_INPUT (x, i))
- break;
-
- if (i == ASM_OPERANDS_INPUT_LENGTH (x))
- new_asm_operands_vec = old_asm_operands_vec;
- else
- new_asm_operands_vec
- = gen_rtvec_v (ASM_OPERANDS_INPUT_LENGTH (x), temp_vec);
- }
-
- /* If we had to copy the vector, copy the entire ASM_OPERANDS. */
- if (new_asm_operands_vec == old_asm_operands_vec)
- return x;
-
- new = gen_rtx (ASM_OPERANDS, VOIDmode, ASM_OPERANDS_TEMPLATE (x),
- ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
- ASM_OPERANDS_OUTPUT_IDX (x), new_asm_operands_vec,
- ASM_OPERANDS_INPUT_CONSTRAINT_VEC (x),
- ASM_OPERANDS_SOURCE_FILE (x),
- ASM_OPERANDS_SOURCE_LINE (x));
- new->volatil = x->volatil;
- return new;
- }
-
- case SET:
- /* Check for setting a register that we know about. */
- if (GET_CODE (SET_DEST (x)) == REG)
- {
- /* See if this is setting the replacement register for an
- elimination.
-
- If DEST is the hard frame pointer, we do nothing because we
- assume that all assignments to the frame pointer are for
- non-local gotos and are being done at a time when they are valid
- and do not disturb anything else. Some machines want to
- eliminate a fake argument pointer (or even a fake frame pointer)
- with either the real frame or the stack pointer. Assignments to
- the hard frame pointer must not prevent this elimination. */
-
- for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
- ep++)
- if (ep->to_rtx == SET_DEST (x)
- && SET_DEST (x) != hard_frame_pointer_rtx)
- {
- /* If it is being incremented, adjust the offset. Otherwise,
- this elimination can't be done. */
- rtx src = SET_SRC (x);
-
- if (GET_CODE (src) == PLUS
- && XEXP (src, 0) == SET_DEST (x)
- && GET_CODE (XEXP (src, 1)) == CONST_INT)
- ep->offset -= INTVAL (XEXP (src, 1));
- else
- ep->can_eliminate = 0;
- }
-
- /* Now check to see we are assigning to a register that can be
- eliminated. If so, it must be as part of a PARALLEL, since we
- will not have been called if this is a single SET. So indicate
- that we can no longer eliminate this reg. */
- for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
- ep++)
- if (ep->from_rtx == SET_DEST (x) && ep->can_eliminate)
- ep->can_eliminate = 0;
- }
-
- /* Now avoid the loop below in this common case. */
- {
- rtx new0 = eliminate_regs (SET_DEST (x), 0, insn, 1);
- rtx new1 = eliminate_regs (SET_SRC (x), 0, insn, 0);
-
- /* If SET_DEST changed from a REG to a MEM and INSN is an insn,
- write a CLOBBER insn. */
- if (GET_CODE (SET_DEST (x)) == REG && GET_CODE (new0) == MEM
- && insn != 0 && GET_CODE (insn) != EXPR_LIST
- && GET_CODE (insn) != INSN_LIST)
- emit_insn_after (gen_rtx (CLOBBER, VOIDmode, SET_DEST (x)), insn);
-
- if (new0 != SET_DEST (x) || new1 != SET_SRC (x))
- return gen_rtx (SET, VOIDmode, new0, new1);
- }
-
- return x;
-
- case MEM:
- /* Our only special processing is to pass the mode of the MEM to our
- recursive call and copy the flags. While we are here, handle this
- case more efficiently. */
- new = eliminate_regs (XEXP (x, 0), GET_MODE (x), insn, 0);
- if (new != XEXP (x, 0))
- {
- new = gen_rtx (MEM, GET_MODE (x), new);
- new->volatil = x->volatil;
- new->unchanging = x->unchanging;
- new->in_struct = x->in_struct;
- return new;
- }
- else
- return x;
- }
-
- /* Process each of our operands recursively. If any have changed, make a
- copy of the rtx. */
- fmt = GET_RTX_FORMAT (code);
- for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
- {
- if (*fmt == 'e')
- {
- new = eliminate_regs (XEXP (x, i), mem_mode, insn, 0);
- if (new != XEXP (x, i) && ! copied)
- {
- rtx new_x = rtx_alloc (code);
- bcopy ((char *) x, (char *) new_x,
- (sizeof (*new_x) - sizeof (new_x->fld)
- + sizeof (new_x->fld[0]) * GET_RTX_LENGTH (code)));
- x = new_x;
- copied = 1;
- }
- XEXP (x, i) = new;
- }
- else if (*fmt == 'E')
- {
- int copied_vec = 0;
- for (j = 0; j < XVECLEN (x, i); j++)
- {
- new = eliminate_regs (XVECEXP (x, i, j), mem_mode, insn, 0);
- if (new != XVECEXP (x, i, j) && ! copied_vec)
- {
- rtvec new_v = gen_rtvec_vv (XVECLEN (x, i),
- XVEC (x, i)->elem);
- if (! copied)
- {
- rtx new_x = rtx_alloc (code);
- bcopy ((char *) x, (char *) new_x,
- (sizeof (*new_x) - sizeof (new_x->fld)
- + (sizeof (new_x->fld[0])
- * GET_RTX_LENGTH (code))));
- x = new_x;
- copied = 1;
- }
- XVEC (x, i) = new_v;
- copied_vec = 1;
- }
- XVECEXP (x, i, j) = new;
- }
- }
- }
-
- return x;
-}
-
-/* Scan INSN and eliminate all eliminable registers in it.
-
- If REPLACE is nonzero, do the replacement destructively. Also
- delete the insn as dead it if it is setting an eliminable register.
-
- If REPLACE is zero, do all our allocations in reload_obstack.
-
- If no eliminations were done and this insn doesn't require any elimination
- processing (these are not identical conditions: it might be updating sp,
- but not referencing fp; this needs to be seen during reload_as_needed so
- that the offset between fp and sp can be taken into consideration), zero
- is returned. Otherwise, 1 is returned. */
-
-static int
-eliminate_regs_in_insn (insn, replace)
- rtx insn;
- int replace;
-{
- rtx old_body = PATTERN (insn);
- rtx old_set = single_set (insn);
- rtx new_body;
- int val = 0;
- struct elim_table *ep;
-
- if (! replace)
- push_obstacks (&reload_obstack, &reload_obstack);
-
- if (old_set != 0 && GET_CODE (SET_DEST (old_set)) == REG
- && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
- {
- /* Check for setting an eliminable register. */
- for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
- if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
- {
-#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
- /* If this is setting the frame pointer register to the
- hardware frame pointer register and this is an elimination
- that will be done (tested above), this insn is really
- adjusting the frame pointer downward to compensate for
- the adjustment done before a nonlocal goto. */
- if (ep->from == FRAME_POINTER_REGNUM
- && ep->to == HARD_FRAME_POINTER_REGNUM)
- {
- rtx src = SET_SRC (old_set);
- int offset, ok = 0;
- rtx prev_insn, prev_set;
-
- if (src == ep->to_rtx)
- offset = 0, ok = 1;
- else if (GET_CODE (src) == PLUS
- && GET_CODE (XEXP (src, 0)) == CONST_INT)
- offset = INTVAL (XEXP (src, 0)), ok = 1;
- else if ((prev_insn = prev_nonnote_insn (insn)) != 0
- && (prev_set = single_set (prev_insn)) != 0
- && rtx_equal_p (SET_DEST (prev_set), src))
- {
- src = SET_SRC (prev_set);
- if (src == ep->to_rtx)
- offset = 0, ok = 1;
- else if (GET_CODE (src) == PLUS
- && GET_CODE (XEXP (src, 0)) == CONST_INT
- && XEXP (src, 1) == ep->to_rtx)
- offset = INTVAL (XEXP (src, 0)), ok = 1;
- else if (GET_CODE (src) == PLUS
- && GET_CODE (XEXP (src, 1)) == CONST_INT
- && XEXP (src, 0) == ep->to_rtx)
- offset = INTVAL (XEXP (src, 1)), ok = 1;
- }
-
- if (ok)
- {
- if (replace)
- {
- rtx src
- = plus_constant (ep->to_rtx, offset - ep->offset);
-
- /* First see if this insn remains valid when we
- make the change. If not, keep the INSN_CODE
- the same and let reload fit it up. */
- validate_change (insn, &SET_SRC (old_set), src, 1);
- validate_change (insn, &SET_DEST (old_set),
- ep->to_rtx, 1);
- if (! apply_change_group ())
- {
- SET_SRC (old_set) = src;
- SET_DEST (old_set) = ep->to_rtx;
- }
- }
-
- val = 1;
- goto done;
- }
- }
-#endif
-
- /* In this case this insn isn't serving a useful purpose. We
- will delete it in reload_as_needed once we know that this
- elimination is, in fact, being done.
-
- If REPLACE isn't set, we can't delete this insn, but needn't
- process it since it won't be used unless something changes. */
- if (replace)
- delete_dead_insn (insn);
- val = 1;
- goto done;
- }
-
- /* Check for (set (reg) (plus (reg from) (offset))) where the offset
- in the insn is the negative of the offset in FROM. Substitute
- (set (reg) (reg to)) for the insn and change its code.
-
- We have to do this here, rather than in eliminate_regs, do that we can
- change the insn code. */
-
- if (GET_CODE (SET_SRC (old_set)) == PLUS
- && GET_CODE (XEXP (SET_SRC (old_set), 0)) == REG
- && GET_CODE (XEXP (SET_SRC (old_set), 1)) == CONST_INT)
- for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
- ep++)
- if (ep->from_rtx == XEXP (SET_SRC (old_set), 0)
- && ep->can_eliminate)
- {
- /* We must stop at the first elimination that will be used.
- If this one would replace the PLUS with a REG, do it
- now. Otherwise, quit the loop and let eliminate_regs
- do its normal replacement. */
- if (ep->offset == - INTVAL (XEXP (SET_SRC (old_set), 1)))
- {
- /* We assume here that we don't need a PARALLEL of
- any CLOBBERs for this assignment. There's not
- much we can do if we do need it. */
- PATTERN (insn) = gen_rtx (SET, VOIDmode,
- SET_DEST (old_set), ep->to_rtx);
- INSN_CODE (insn) = -1;
- val = 1;
- goto done;
- }
-
- break;
- }
- }
-
- old_asm_operands_vec = 0;
-
- /* Replace the body of this insn with a substituted form. If we changed
- something, return non-zero.
-
- If we are replacing a body that was a (set X (plus Y Z)), try to
- re-recognize the insn. We do this in case we had a simple addition
- but now can do this as a load-address. This saves an insn in this
- common case. */
-
- new_body = eliminate_regs (old_body, 0, replace ? insn : NULL_RTX, 0);
- if (new_body != old_body)
- {
- /* If we aren't replacing things permanently and we changed something,
- make another copy to ensure that all the RTL is new. Otherwise
- things can go wrong if find_reload swaps commutative operands
- and one is inside RTL that has been copied while the other is not. */
-
- /* Don't copy an asm_operands because (1) there's no need and (2)
- copy_rtx can't do it properly when there are multiple outputs. */
- if (! replace && asm_noperands (old_body) < 0)
- new_body = copy_rtx (new_body);
-
- /* If we had a move insn but now we don't, rerecognize it. This will
- cause spurious re-recognition if the old move had a PARALLEL since
- the new one still will, but we can't call single_set without
- having put NEW_BODY into the insn and the re-recognition won't
- hurt in this rare case. */
- if (old_set != 0
- && ((GET_CODE (SET_SRC (old_set)) == REG
- && (GET_CODE (new_body) != SET
- || GET_CODE (SET_SRC (new_body)) != REG))
- /* If this was a load from or store to memory, compare
- the MEM in recog_operand to the one in the insn. If they
- are not equal, then rerecognize the insn. */
- || (old_set != 0
- && ((GET_CODE (SET_SRC (old_set)) == MEM
- && SET_SRC (old_set) != recog_operand[1])
- || (GET_CODE (SET_DEST (old_set)) == MEM
- && SET_DEST (old_set) != recog_operand[0])))
- /* If this was an add insn before, rerecognize. */
- || GET_CODE (SET_SRC (old_set)) == PLUS))
- {
- if (! validate_change (insn, &PATTERN (insn), new_body, 0))
- /* If recognition fails, store the new body anyway.
- It's normal to have recognition failures here
- due to bizarre memory addresses; reloading will fix them. */
- PATTERN (insn) = new_body;
- }
- else
- PATTERN (insn) = new_body;
-
- val = 1;
- }
-
- /* Loop through all elimination pairs. See if any have changed and
- recalculate the number not at initial offset.
-
- Compute the maximum offset (minimum offset if the stack does not
- grow downward) for each elimination pair.
-
- We also detect a cases where register elimination cannot be done,
- namely, if a register would be both changed and referenced outside a MEM
- in the resulting insn since such an insn is often undefined and, even if
- not, we cannot know what meaning will be given to it. Note that it is
- valid to have a register used in an address in an insn that changes it
- (presumably with a pre- or post-increment or decrement).
-
- If anything changes, return nonzero. */
-
- num_not_at_initial_offset = 0;
- for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
- {
- if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
- ep->can_eliminate = 0;
-
- ep->ref_outside_mem = 0;
-
- if (ep->previous_offset != ep->offset)
- val = 1;
-
- ep->previous_offset = ep->offset;
- if (ep->can_eliminate && ep->offset != ep->initial_offset)
- num_not_at_initial_offset++;
-
-#ifdef STACK_GROWS_DOWNWARD
- ep->max_offset = MAX (ep->max_offset, ep->offset);
-#else
- ep->max_offset = MIN (ep->max_offset, ep->offset);
-#endif
- }
-
- done:
- /* If we changed something, perform elimination in REG_NOTES. This is
- needed even when REPLACE is zero because a REG_DEAD note might refer
- to a register that we eliminate and could cause a different number
- of spill registers to be needed in the final reload pass than in
- the pre-passes. */
- if (val && REG_NOTES (insn) != 0)
- REG_NOTES (insn) = eliminate_regs (REG_NOTES (insn), 0, REG_NOTES (insn), 0);
-
- if (! replace)
- pop_obstacks ();
-
- return val;
-}
-
-/* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
- replacement we currently believe is valid, mark it as not eliminable if X
- modifies DEST in any way other than by adding a constant integer to it.
-
- If DEST is the frame pointer, we do nothing because we assume that
- all assignments to the hard frame pointer are nonlocal gotos and are being
- done at a time when they are valid and do not disturb anything else.
- Some machines want to eliminate a fake argument pointer with either the
- frame or stack pointer. Assignments to the hard frame pointer must not
- prevent this elimination.
-
- Called via note_stores from reload before starting its passes to scan
- the insns of the function. */
-
-static void
-mark_not_eliminable (dest, x)
- rtx dest;
- rtx x;
-{
- register int i;
-
- /* A SUBREG of a hard register here is just changing its mode. We should
- not see a SUBREG of an eliminable hard register, but check just in
- case. */
- if (GET_CODE (dest) == SUBREG)
- dest = SUBREG_REG (dest);
-
- if (dest == hard_frame_pointer_rtx)
- return;
-
- for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
- if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
- && (GET_CODE (x) != SET
- || GET_CODE (SET_SRC (x)) != PLUS
- || XEXP (SET_SRC (x), 0) != dest
- || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
- {
- reg_eliminate[i].can_eliminate_previous
- = reg_eliminate[i].can_eliminate = 0;
- num_eliminable--;
- }
-}
-
-/* Kick all pseudos out of hard register REGNO.
- If GLOBAL is nonzero, try to find someplace else to put them.
- If DUMPFILE is nonzero, log actions taken on that file.
-
- If CANT_ELIMINATE is nonzero, it means that we are doing this spill
- because we found we can't eliminate some register. In the case, no pseudos
- are allowed to be in the register, even if they are only in a block that
- doesn't require spill registers, unlike the case when we are spilling this
- hard reg to produce another spill register.
-
- Return nonzero if any pseudos needed to be kicked out. */
-
-static int
-spill_hard_reg (regno, global, dumpfile, cant_eliminate)
- register int regno;
- int global;
- FILE *dumpfile;
- int cant_eliminate;
-{
- enum reg_class class = REGNO_REG_CLASS (regno);
- int something_changed = 0;
- register int i;
-
- SET_HARD_REG_BIT (forbidden_regs, regno);
-
- if (cant_eliminate)
- regs_ever_live[regno] = 1;
-
- /* Spill every pseudo reg that was allocated to this reg
- or to something that overlaps this reg. */
-
- for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
- if (reg_renumber[i] >= 0
- && reg_renumber[i] <= regno
- && (reg_renumber[i]
- + HARD_REGNO_NREGS (reg_renumber[i],
- PSEUDO_REGNO_MODE (i))
- > regno))
- {
- /* If this register belongs solely to a basic block which needed no
- spilling of any class that this register is contained in,
- leave it be, unless we are spilling this register because
- it was a hard register that can't be eliminated. */
-
- if (! cant_eliminate
- && basic_block_needs[0]
- && reg_basic_block[i] >= 0
- && basic_block_needs[(int) class][reg_basic_block[i]] == 0)
- {
- enum reg_class *p;
-
- for (p = reg_class_superclasses[(int) class];
- *p != LIM_REG_CLASSES; p++)
- if (basic_block_needs[(int) *p][reg_basic_block[i]] > 0)
- break;
-
- if (*p == LIM_REG_CLASSES)
- continue;
- }
-
- /* Mark it as no longer having a hard register home. */
- reg_renumber[i] = -1;
- /* We will need to scan everything again. */
- something_changed = 1;
- if (global)
- retry_global_alloc (i, forbidden_regs);
-
- alter_reg (i, regno);
- if (dumpfile)
- {
- if (reg_renumber[i] == -1)
- fprintf (dumpfile, " Register %d now on stack.\n\n", i);
- else
- fprintf (dumpfile, " Register %d now in %d.\n\n",
- i, reg_renumber[i]);
- }
- }
- for (i = 0; i < scratch_list_length; i++)
- {
- if (scratch_list[i] && REGNO (scratch_list[i]) == regno)
- {
- if (! cant_eliminate && basic_block_needs[0]
- && ! basic_block_needs[(int) class][scratch_block[i]])
- {
- enum reg_class *p;
-
- for (p = reg_class_superclasses[(int) class];
- *p != LIM_REG_CLASSES; p++)
- if (basic_block_needs[(int) *p][scratch_block[i]] > 0)
- break;
-
- if (*p == LIM_REG_CLASSES)
- continue;
- }
- PUT_CODE (scratch_list[i], SCRATCH);
- scratch_list[i] = 0;
- something_changed = 1;
- continue;
- }
- }
-
- return something_changed;
-}
-
-/* Find all paradoxical subregs within X and update reg_max_ref_width.
- Also mark any hard registers used to store user variables as
- forbidden from being used for spill registers. */
-
-static void
-scan_paradoxical_subregs (x)
- register rtx x;
-{
- register int i;
- register char *fmt;
- register enum rtx_code code = GET_CODE (x);
-
- switch (code)
- {
- case REG:
-#ifdef SMALL_REGISTER_CLASSES
- if (SMALL_REGISTER_CLASSES
- && REGNO (x) < FIRST_PSEUDO_REGISTER
- && REG_USERVAR_P (x))
- SET_HARD_REG_BIT (forbidden_regs, REGNO (x));
-#endif
- return;
-
- case CONST_INT:
- case CONST:
- case SYMBOL_REF:
- case LABEL_REF:
- case CONST_DOUBLE:
- case CC0:
- case PC:
- case USE:
- case CLOBBER:
- return;
-
- case SUBREG:
- if (GET_CODE (SUBREG_REG (x)) == REG
- && GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
- reg_max_ref_width[REGNO (SUBREG_REG (x))]
- = GET_MODE_SIZE (GET_MODE (x));
- return;
- }
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- scan_paradoxical_subregs (XEXP (x, i));
- else if (fmt[i] == 'E')
- {
- register int j;
- for (j = XVECLEN (x, i) - 1; j >=0; j--)
- scan_paradoxical_subregs (XVECEXP (x, i, j));
- }
- }
-}
-
-static int
-hard_reg_use_compare (p1p, p2p)
- const GENERIC_PTR p1p;
- const GENERIC_PTR p2p;
-{
- struct hard_reg_n_uses *p1 = (struct hard_reg_n_uses *)p1p,
- *p2 = (struct hard_reg_n_uses *)p2p;
- int tem = p1->uses - p2->uses;
- if (tem != 0) return tem;
- /* If regs are equally good, sort by regno,
- so that the results of qsort leave nothing to chance. */
- return p1->regno - p2->regno;
-}
-
-/* Choose the order to consider regs for use as reload registers
- based on how much trouble would be caused by spilling one.
- Store them in order of decreasing preference in potential_reload_regs. */
-
-static void
-order_regs_for_reload (global)
- int global;
-{
- register int i;
- register int o = 0;
- int large = 0;
-
- struct hard_reg_n_uses hard_reg_n_uses[FIRST_PSEUDO_REGISTER];
-
- CLEAR_HARD_REG_SET (bad_spill_regs);
-
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- potential_reload_regs[i] = -1;
-
- /* Count number of uses of each hard reg by pseudo regs allocated to it
- and then order them by decreasing use. */
-
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- {
- hard_reg_n_uses[i].uses = 0;
- hard_reg_n_uses[i].regno = i;
- }
-
- for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
- {
- int regno = reg_renumber[i];
- if (regno >= 0)
- {
- int lim = regno + HARD_REGNO_NREGS (regno, PSEUDO_REGNO_MODE (i));
- while (regno < lim)
- {
- /* If allocated by local-alloc, show more uses since
- we're not going to be able to reallocate it, but
- we might if allocated by global alloc. */
- if (global && reg_allocno[i] < 0)
- hard_reg_n_uses[regno].uses += (reg_n_refs[i] + 1) / 2;
-
- hard_reg_n_uses[regno++].uses += reg_n_refs[i];
- }
- }
- large += reg_n_refs[i];
- }
-
- /* Now fixed registers (which cannot safely be used for reloading)
- get a very high use count so they will be considered least desirable.
- Registers used explicitly in the rtl code are almost as bad. */
-
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- {
- if (fixed_regs[i])
- {
- hard_reg_n_uses[i].uses += 2 * large + 2;
- SET_HARD_REG_BIT (bad_spill_regs, i);
- }
- else if (regs_explicitly_used[i])
- {
- hard_reg_n_uses[i].uses += large + 1;
- /* ??? We are doing this here because of the potential that
- bad code may be generated if a register explicitly used in
- an insn was used as a spill register for that insn. But
- not using these are spill registers may lose on some machine.
- We'll have to see how this works out. */
-#ifdef SMALL_REGISTER_CLASSES
- if (! SMALL_REGISTER_CLASSES)
-#endif
- SET_HARD_REG_BIT (bad_spill_regs, i);
- }
- }
- hard_reg_n_uses[HARD_FRAME_POINTER_REGNUM].uses += 2 * large + 2;
- SET_HARD_REG_BIT (bad_spill_regs, HARD_FRAME_POINTER_REGNUM);
-
-#ifdef ELIMINABLE_REGS
- /* If registers other than the frame pointer are eliminable, mark them as
- poor choices. */
- for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
- {
- hard_reg_n_uses[reg_eliminate[i].from].uses += 2 * large + 2;
- SET_HARD_REG_BIT (bad_spill_regs, reg_eliminate[i].from);
- }
-#endif
-
- /* Prefer registers not so far used, for use in temporary loading.
- Among them, if REG_ALLOC_ORDER is defined, use that order.
- Otherwise, prefer registers not preserved by calls. */
-
-#ifdef REG_ALLOC_ORDER
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- {
- int regno = reg_alloc_order[i];
-
- if (hard_reg_n_uses[regno].uses == 0)
- potential_reload_regs[o++] = regno;
- }
-#else
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- {
- if (hard_reg_n_uses[i].uses == 0 && call_used_regs[i])
- potential_reload_regs[o++] = i;
- }
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- {
- if (hard_reg_n_uses[i].uses == 0 && ! call_used_regs[i])
- potential_reload_regs[o++] = i;
- }
-#endif
-
- qsort (hard_reg_n_uses, FIRST_PSEUDO_REGISTER,
- sizeof hard_reg_n_uses[0], hard_reg_use_compare);
-
- /* Now add the regs that are already used,
- preferring those used less often. The fixed and otherwise forbidden
- registers will be at the end of this list. */
-
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- if (hard_reg_n_uses[i].uses != 0)
- potential_reload_regs[o++] = hard_reg_n_uses[i].regno;
-}
-
-/* Used in reload_as_needed to sort the spilled regs. */
-
-static int
-compare_spill_regs (r1p, r2p)
- const GENERIC_PTR r1p;
- const GENERIC_PTR r2p;
-{
- short r1 = *(short *)r1p, r2 = *(short *)r2p;
- return r1 - r2;
-}
-
-/* Reload pseudo-registers into hard regs around each insn as needed.
- Additional register load insns are output before the insn that needs it
- and perhaps store insns after insns that modify the reloaded pseudo reg.
-
- reg_last_reload_reg and reg_reloaded_contents keep track of
- which registers are already available in reload registers.
- We update these for the reloads that we perform,
- as the insns are scanned. */
-
-static void
-reload_as_needed (first, live_known)
- rtx first;
- int live_known;
-{
- register rtx insn;
- register int i;
- int this_block = 0;
- rtx x;
- rtx after_call = 0;
-
- bzero ((char *) spill_reg_rtx, sizeof spill_reg_rtx);
- bzero ((char *) spill_reg_store, sizeof spill_reg_store);
- reg_last_reload_reg = (rtx *) alloca (max_regno * sizeof (rtx));
- bzero ((char *) reg_last_reload_reg, max_regno * sizeof (rtx));
- reg_has_output_reload = (char *) alloca (max_regno);
- for (i = 0; i < n_spills; i++)
- {
- reg_reloaded_contents[i] = -1;
- reg_reloaded_insn[i] = 0;
- }
-
- /* Reset all offsets on eliminable registers to their initial values. */
-#ifdef ELIMINABLE_REGS
- for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
- {
- INITIAL_ELIMINATION_OFFSET (reg_eliminate[i].from, reg_eliminate[i].to,
- reg_eliminate[i].initial_offset);
- reg_eliminate[i].previous_offset
- = reg_eliminate[i].offset = reg_eliminate[i].initial_offset;
- }
-#else
- INITIAL_FRAME_POINTER_OFFSET (reg_eliminate[0].initial_offset);
- reg_eliminate[0].previous_offset
- = reg_eliminate[0].offset = reg_eliminate[0].initial_offset;
-#endif
-
- num_not_at_initial_offset = 0;
-
- /* Order the spilled regs, so that allocate_reload_regs can guarantee to
- pack registers with group needs. */
- if (n_spills > 1)
- {
- qsort (spill_regs, n_spills, sizeof (short), compare_spill_regs);
- for (i = 0; i < n_spills; i++)
- spill_reg_order[spill_regs[i]] = i;
- }
-
- for (insn = first; insn;)
- {
- register rtx next = NEXT_INSN (insn);
-
- /* Notice when we move to a new basic block. */
- if (live_known && this_block + 1 < n_basic_blocks
- && insn == basic_block_head[this_block+1])
- ++this_block;
-
- /* If we pass a label, copy the offsets from the label information
- into the current offsets of each elimination. */
- if (GET_CODE (insn) == CODE_LABEL)
- {
- num_not_at_initial_offset = 0;
- for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
- {
- reg_eliminate[i].offset = reg_eliminate[i].previous_offset
- = offsets_at[CODE_LABEL_NUMBER (insn)][i];
- if (reg_eliminate[i].can_eliminate
- && (reg_eliminate[i].offset
- != reg_eliminate[i].initial_offset))
- num_not_at_initial_offset++;
- }
- }
-
- else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
- {
- rtx avoid_return_reg = 0;
- rtx oldpat = PATTERN (insn);
-
-#ifdef SMALL_REGISTER_CLASSES
- /* Set avoid_return_reg if this is an insn
- that might use the value of a function call. */
- if (SMALL_REGISTER_CLASSES && GET_CODE (insn) == CALL_INSN)
- {
- if (GET_CODE (PATTERN (insn)) == SET)
- after_call = SET_DEST (PATTERN (insn));
- else if (GET_CODE (PATTERN (insn)) == PARALLEL
- && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
- after_call = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
- else
- after_call = 0;
- }
- else if (SMALL_REGISTER_CLASSES
- && after_call != 0
- && !(GET_CODE (PATTERN (insn)) == SET
- && SET_DEST (PATTERN (insn)) == stack_pointer_rtx))
- {
- if (reg_referenced_p (after_call, PATTERN (insn)))
- avoid_return_reg = after_call;
- after_call = 0;
- }
-#endif /* SMALL_REGISTER_CLASSES */
-
- /* If this is a USE and CLOBBER of a MEM, ensure that any
- references to eliminable registers have been removed. */
-
- if ((GET_CODE (PATTERN (insn)) == USE
- || GET_CODE (PATTERN (insn)) == CLOBBER)
- && GET_CODE (XEXP (PATTERN (insn), 0)) == MEM)
- XEXP (XEXP (PATTERN (insn), 0), 0)
- = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
- GET_MODE (XEXP (PATTERN (insn), 0)),
- NULL_RTX, 0);
-
- /* If we need to do register elimination processing, do so.
- This might delete the insn, in which case we are done. */
- if (num_eliminable && GET_MODE (insn) == QImode)
- {
- eliminate_regs_in_insn (insn, 1);
- if (GET_CODE (insn) == NOTE)
- {
- insn = next;
- continue;
- }
- }
-
- if (GET_MODE (insn) == VOIDmode)
- n_reloads = 0;
- /* First find the pseudo regs that must be reloaded for this insn.
- This info is returned in the tables reload_... (see reload.h).
- Also modify the body of INSN by substituting RELOAD
- rtx's for those pseudo regs. */
- else
- {
- bzero (reg_has_output_reload, max_regno);
- CLEAR_HARD_REG_SET (reg_is_output_reload);
-
- find_reloads (insn, 1, spill_indirect_levels, live_known,
- spill_reg_order);
- }
-
- if (n_reloads > 0)
- {
- rtx prev = PREV_INSN (insn), next = NEXT_INSN (insn);
- rtx p;
- int class;
-
- /* If this block has not had spilling done for a
- particular clas and we have any non-optionals that need a
- spill reg in that class, abort. */
-
- for (class = 0; class < N_REG_CLASSES; class++)
- if (basic_block_needs[class] != 0
- && basic_block_needs[class][this_block] == 0)
- for (i = 0; i < n_reloads; i++)
- if (class == (int) reload_reg_class[i]
- && reload_reg_rtx[i] == 0
- && ! reload_optional[i]
- && (reload_in[i] != 0 || reload_out[i] != 0
- || reload_secondary_p[i] != 0))
- fatal_insn ("Non-optional registers need a spill register", insn);
-
- /* Now compute which reload regs to reload them into. Perhaps
- reusing reload regs from previous insns, or else output
- load insns to reload them. Maybe output store insns too.
- Record the choices of reload reg in reload_reg_rtx. */
- choose_reload_regs (insn, avoid_return_reg);
-
-#ifdef SMALL_REGISTER_CLASSES
- /* Merge any reloads that we didn't combine for fear of
- increasing the number of spill registers needed but now
- discover can be safely merged. */
- if (SMALL_REGISTER_CLASSES)
- merge_assigned_reloads (insn);
-#endif
-
- /* Generate the insns to reload operands into or out of
- their reload regs. */
- emit_reload_insns (insn);
-
- /* Substitute the chosen reload regs from reload_reg_rtx
- into the insn's body (or perhaps into the bodies of other
- load and store insn that we just made for reloading
- and that we moved the structure into). */
- subst_reloads ();
-
- /* If this was an ASM, make sure that all the reload insns
- we have generated are valid. If not, give an error
- and delete them. */
-
- if (asm_noperands (PATTERN (insn)) >= 0)
- for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
- if (p != insn && GET_RTX_CLASS (GET_CODE (p)) == 'i'
- && (recog_memoized (p) < 0
- || (insn_extract (p),
- ! constrain_operands (INSN_CODE (p), 1))))
- {
- error_for_asm (insn,
- "`asm' operand requires impossible reload");
- PUT_CODE (p, NOTE);
- NOTE_SOURCE_FILE (p) = 0;
- NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
- }
- }
- /* Any previously reloaded spilled pseudo reg, stored in this insn,
- is no longer validly lying around to save a future reload.
- Note that this does not detect pseudos that were reloaded
- for this insn in order to be stored in
- (obeying register constraints). That is correct; such reload
- registers ARE still valid. */
- note_stores (oldpat, forget_old_reloads_1);
-
- /* There may have been CLOBBER insns placed after INSN. So scan
- between INSN and NEXT and use them to forget old reloads. */
- for (x = NEXT_INSN (insn); x != next; x = NEXT_INSN (x))
- if (GET_CODE (x) == INSN && GET_CODE (PATTERN (x)) == CLOBBER)
- note_stores (PATTERN (x), forget_old_reloads_1);
-
-#ifdef AUTO_INC_DEC
- /* Likewise for regs altered by auto-increment in this insn.
- But note that the reg-notes are not changed by reloading:
- they still contain the pseudo-regs, not the spill regs. */
- for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
- if (REG_NOTE_KIND (x) == REG_INC)
- {
- /* See if this pseudo reg was reloaded in this insn.
- If so, its last-reload info is still valid
- because it is based on this insn's reload. */
- for (i = 0; i < n_reloads; i++)
- if (reload_out[i] == XEXP (x, 0))
- break;
-
- if (i == n_reloads)
- forget_old_reloads_1 (XEXP (x, 0), NULL_RTX);
- }
-#endif
- }
- /* A reload reg's contents are unknown after a label. */
- if (GET_CODE (insn) == CODE_LABEL)
- for (i = 0; i < n_spills; i++)
- {
- reg_reloaded_contents[i] = -1;
- reg_reloaded_insn[i] = 0;
- }
-
- /* Don't assume a reload reg is still good after a call insn
- if it is a call-used reg. */
- else if (GET_CODE (insn) == CALL_INSN)
- for (i = 0; i < n_spills; i++)
- if (call_used_regs[spill_regs[i]])
- {
- reg_reloaded_contents[i] = -1;
- reg_reloaded_insn[i] = 0;
- }
-
- /* In case registers overlap, allow certain insns to invalidate
- particular hard registers. */
-
-#ifdef INSN_CLOBBERS_REGNO_P
- for (i = 0 ; i < n_spills ; i++)
- if (INSN_CLOBBERS_REGNO_P (insn, spill_regs[i]))
- {
- reg_reloaded_contents[i] = -1;
- reg_reloaded_insn[i] = 0;
- }
-#endif
-
- insn = next;
-
-#ifdef USE_C_ALLOCA
- alloca (0);
-#endif
- }
-}
-
-/* Discard all record of any value reloaded from X,
- or reloaded in X from someplace else;
- unless X is an output reload reg of the current insn.
-
- X may be a hard reg (the reload reg)
- or it may be a pseudo reg that was reloaded from. */
-
-static void
-forget_old_reloads_1 (x, ignored)
- rtx x;
- rtx ignored;
-{
- register int regno;
- int nr;
- int offset = 0;
-
- /* note_stores does give us subregs of hard regs. */
- while (GET_CODE (x) == SUBREG)
- {
- offset += SUBREG_WORD (x);
- x = SUBREG_REG (x);
- }
-
- if (GET_CODE (x) != REG)
- return;
-
- regno = REGNO (x) + offset;
-
- if (regno >= FIRST_PSEUDO_REGISTER)
- nr = 1;
- else
- {
- int i;
- nr = HARD_REGNO_NREGS (regno, GET_MODE (x));
- /* Storing into a spilled-reg invalidates its contents.
- This can happen if a block-local pseudo is allocated to that reg
- and it wasn't spilled because this block's total need is 0.
- Then some insn might have an optional reload and use this reg. */
- for (i = 0; i < nr; i++)
- if (spill_reg_order[regno + i] >= 0
- /* But don't do this if the reg actually serves as an output
- reload reg in the current instruction. */
- && (n_reloads == 0
- || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i)))
- {
- reg_reloaded_contents[spill_reg_order[regno + i]] = -1;
- reg_reloaded_insn[spill_reg_order[regno + i]] = 0;
- }
- }
-
- /* Since value of X has changed,
- forget any value previously copied from it. */
-
- while (nr-- > 0)
- /* But don't forget a copy if this is the output reload
- that establishes the copy's validity. */
- if (n_reloads == 0 || reg_has_output_reload[regno + nr] == 0)
- reg_last_reload_reg[regno + nr] = 0;
-}
-
-/* For each reload, the mode of the reload register. */
-static enum machine_mode reload_mode[MAX_RELOADS];
-
-/* For each reload, the largest number of registers it will require. */
-static int reload_nregs[MAX_RELOADS];
-
-/* Comparison function for qsort to decide which of two reloads
- should be handled first. *P1 and *P2 are the reload numbers. */
-
-static int
-reload_reg_class_lower (r1p, r2p)
- const GENERIC_PTR r1p;
- const GENERIC_PTR r2p;
-{
- register int r1 = *(short *)r1p, r2 = *(short *)r2p;
- register int t;
-
- /* Consider required reloads before optional ones. */
- t = reload_optional[r1] - reload_optional[r2];
- if (t != 0)
- return t;
-
- /* Count all solitary classes before non-solitary ones. */
- t = ((reg_class_size[(int) reload_reg_class[r2]] == 1)
- - (reg_class_size[(int) reload_reg_class[r1]] == 1));
- if (t != 0)
- return t;
-
- /* Aside from solitaires, consider all multi-reg groups first. */
- t = reload_nregs[r2] - reload_nregs[r1];
- if (t != 0)
- return t;
-
- /* Consider reloads in order of increasing reg-class number. */
- t = (int) reload_reg_class[r1] - (int) reload_reg_class[r2];
- if (t != 0)
- return t;
-
- /* If reloads are equally urgent, sort by reload number,
- so that the results of qsort leave nothing to chance. */
- return r1 - r2;
-}
-
-/* The following HARD_REG_SETs indicate when each hard register is
- used for a reload of various parts of the current insn. */
-
-/* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
-static HARD_REG_SET reload_reg_used;
-/* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
-static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
-/* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
-static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
-/* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
-static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
-/* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
-static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
-/* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
-static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
-/* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
-static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
-/* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
-static HARD_REG_SET reload_reg_used_in_op_addr;
-/* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
-static HARD_REG_SET reload_reg_used_in_op_addr_reload;
-/* If reg is in use for a RELOAD_FOR_INSN reload. */
-static HARD_REG_SET reload_reg_used_in_insn;
-/* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
-static HARD_REG_SET reload_reg_used_in_other_addr;
-
-/* If reg is in use as a reload reg for any sort of reload. */
-static HARD_REG_SET reload_reg_used_at_all;
-
-/* If reg is use as an inherited reload. We just mark the first register
- in the group. */
-static HARD_REG_SET reload_reg_used_for_inherit;
-
-/* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
- TYPE. MODE is used to indicate how many consecutive regs are
- actually used. */
-
-static void
-mark_reload_reg_in_use (regno, opnum, type, mode)
- int regno;
- int opnum;
- enum reload_type type;
- enum machine_mode mode;
-{
- int nregs = HARD_REGNO_NREGS (regno, mode);
- int i;
-
- for (i = regno; i < nregs + regno; i++)
- {
- switch (type)
- {
- case RELOAD_OTHER:
- SET_HARD_REG_BIT (reload_reg_used, i);
- break;
-
- case RELOAD_FOR_INPUT_ADDRESS:
- SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
- break;
-
- case RELOAD_FOR_INPADDR_ADDRESS:
- SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
- break;
-
- case RELOAD_FOR_OUTPUT_ADDRESS:
- SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
- break;
-
- case RELOAD_FOR_OUTADDR_ADDRESS:
- SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
- break;
-
- case RELOAD_FOR_OPERAND_ADDRESS:
- SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
- break;
-
- case RELOAD_FOR_OPADDR_ADDR:
- SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
- break;
-
- case RELOAD_FOR_OTHER_ADDRESS:
- SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
- break;
-
- case RELOAD_FOR_INPUT:
- SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
- break;
-
- case RELOAD_FOR_OUTPUT:
- SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
- break;
-
- case RELOAD_FOR_INSN:
- SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
- break;
- }
-
- SET_HARD_REG_BIT (reload_reg_used_at_all, i);
- }
-}
-
-/* Similarly, but show REGNO is no longer in use for a reload. */
-
-static void
-clear_reload_reg_in_use (regno, opnum, type, mode)
- int regno;
- int opnum;
- enum reload_type type;
- enum machine_mode mode;
-{
- int nregs = HARD_REGNO_NREGS (regno, mode);
- int i;
-
- for (i = regno; i < nregs + regno; i++)
- {
- switch (type)
- {
- case RELOAD_OTHER:
- CLEAR_HARD_REG_BIT (reload_reg_used, i);
- break;
-
- case RELOAD_FOR_INPUT_ADDRESS:
- CLEAR_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
- break;
-
- case RELOAD_FOR_INPADDR_ADDRESS:
- CLEAR_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
- break;
-
- case RELOAD_FOR_OUTPUT_ADDRESS:
- CLEAR_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
- break;
-
- case RELOAD_FOR_OUTADDR_ADDRESS:
- CLEAR_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
- break;
-
- case RELOAD_FOR_OPERAND_ADDRESS:
- CLEAR_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
- break;
-
- case RELOAD_FOR_OPADDR_ADDR:
- CLEAR_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
- break;
-
- case RELOAD_FOR_OTHER_ADDRESS:
- CLEAR_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
- break;
-
- case RELOAD_FOR_INPUT:
- CLEAR_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
- break;
-
- case RELOAD_FOR_OUTPUT:
- CLEAR_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
- break;
-
- case RELOAD_FOR_INSN:
- CLEAR_HARD_REG_BIT (reload_reg_used_in_insn, i);
- break;
- }
- }
-}
-
-/* 1 if reg REGNO is free as a reload reg for a reload of the sort
- specified by OPNUM and TYPE. */
-
-static int
-reload_reg_free_p (regno, opnum, type)
- int regno;
- int opnum;
- enum reload_type type;
-{
- int i;
-
- /* In use for a RELOAD_OTHER means it's not available for anything. */
- if (TEST_HARD_REG_BIT (reload_reg_used, regno))
- return 0;
-
- switch (type)
- {
- case RELOAD_OTHER:
- /* In use for anything means we can't use it for RELOAD_OTHER. */
- if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
- || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
- || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
- return 0;
-
- for (i = 0; i < reload_n_operands; i++)
- if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
- || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
- || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
- || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
- || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
- || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
- return 0;
-
- return 1;
-
- case RELOAD_FOR_INPUT:
- if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
- || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
- return 0;
-
- if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
- return 0;
-
- /* If it is used for some other input, can't use it. */
- for (i = 0; i < reload_n_operands; i++)
- if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
- return 0;
-
- /* If it is used in a later operand's address, can't use it. */
- for (i = opnum + 1; i < reload_n_operands; i++)
- if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
- || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
- return 0;
-
- return 1;
-
- case RELOAD_FOR_INPUT_ADDRESS:
- /* Can't use a register if it is used for an input address for this
- operand or used as an input in an earlier one. */
- if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
- || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
- return 0;
-
- for (i = 0; i < opnum; i++)
- if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
- return 0;
-
- return 1;
-
- case RELOAD_FOR_INPADDR_ADDRESS:
- /* Can't use a register if it is used for an input address
- address for this operand or used as an input in an earlier
- one. */
- if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
- return 0;
-
- for (i = 0; i < opnum; i++)
- if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
- return 0;
-
- return 1;
-
- case RELOAD_FOR_OUTPUT_ADDRESS:
- /* Can't use a register if it is used for an output address for this
- operand or used as an output in this or a later operand. */
- if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
- return 0;
-
- for (i = opnum; i < reload_n_operands; i++)
- if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
- return 0;
-
- return 1;
-
- case RELOAD_FOR_OUTADDR_ADDRESS:
- /* Can't use a register if it is used for an output address
- address for this operand or used as an output in this or a
- later operand. */
- if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
- return 0;
-
- for (i = opnum; i < reload_n_operands; i++)
- if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
- return 0;
-
- return 1;
-
- case RELOAD_FOR_OPERAND_ADDRESS:
- for (i = 0; i < reload_n_operands; i++)
- if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
- return 0;
-
- return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
- && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
-
- case RELOAD_FOR_OPADDR_ADDR:
- for (i = 0; i < reload_n_operands; i++)
- if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
- return 0;
-
- return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
-
- case RELOAD_FOR_OUTPUT:
- /* This cannot share a register with RELOAD_FOR_INSN reloads, other
- outputs, or an operand address for this or an earlier output. */
- if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
- return 0;
-
- for (i = 0; i < reload_n_operands; i++)
- if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
- return 0;
-
- for (i = 0; i <= opnum; i++)
- if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
- || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
- return 0;
-
- return 1;
-
- case RELOAD_FOR_INSN:
- for (i = 0; i < reload_n_operands; i++)
- if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
- || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
- return 0;
-
- return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
- && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
-
- case RELOAD_FOR_OTHER_ADDRESS:
- return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
- }
- abort ();
-}
-
-/* Return 1 if the value in reload reg REGNO, as used by a reload
- needed for the part of the insn specified by OPNUM and TYPE,
- is not in use for a reload in any prior part of the insn.
-
- We can assume that the reload reg was already tested for availability
- at the time it is needed, and we should not check this again,
- in case the reg has already been marked in use. */
-
-static int
-reload_reg_free_before_p (regno, opnum, type)
- int regno;
- int opnum;
- enum reload_type type;
-{
- int i;
-
- switch (type)
- {
- case RELOAD_FOR_OTHER_ADDRESS:
- /* These always come first. */
- return 1;
-
- case RELOAD_OTHER:
- return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
-
- /* If this use is for part of the insn,
- check the reg is not in use for any prior part. It is tempting
- to try to do this by falling through from objecs that occur
- later in the insn to ones that occur earlier, but that will not
- correctly take into account the fact that here we MUST ignore
- things that would prevent the register from being allocated in
- the first place, since we know that it was allocated. */
-
- case RELOAD_FOR_OUTPUT_ADDRESS:
- case RELOAD_FOR_OUTADDR_ADDRESS:
- /* Earlier reloads are for earlier outputs or their addresses,
- any RELOAD_FOR_INSN reloads, any inputs or their addresses, or any
- RELOAD_FOR_OTHER_ADDRESS reloads (we know it can't conflict with
- RELOAD_OTHER).. */
- for (i = 0; i < opnum; i++)
- if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
- || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
- || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
- return 0;
-
- if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
- return 0;
-
- for (i = 0; i < reload_n_operands; i++)
- if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
- || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
- || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
- return 0;
-
- return (! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
- && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
- && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
-
- case RELOAD_FOR_OUTPUT:
- /* This can't be used in the output address for this operand and
- anything that can't be used for it, except that we've already
- tested for RELOAD_FOR_INSN objects. */
-
- if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno)
- || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
- return 0;
-
- for (i = 0; i < opnum; i++)
- if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
- || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
- || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
- return 0;
-
- for (i = 0; i < reload_n_operands; i++)
- if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
- || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
- || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
- || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
- return 0;
-
- return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
-
- case RELOAD_FOR_OPERAND_ADDRESS:
- /* Earlier reloads include RELOAD_FOR_OPADDR_ADDR reloads. */
- if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
- return 0;
-
- /* ... fall through ... */
-
- case RELOAD_FOR_OPADDR_ADDR:
- case RELOAD_FOR_INSN:
- /* These can't conflict with inputs, or each other, so all we have to
- test is input addresses and the addresses of OTHER items. */
-
- for (i = 0; i < reload_n_operands; i++)
- if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
- || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
- return 0;
-
- return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
-
- case RELOAD_FOR_INPUT:
- /* The only things earlier are the address for this and
- earlier inputs, other inputs (which we know we don't conflict
- with), and addresses of RELOAD_OTHER objects. */
-
- for (i = 0; i <= opnum; i++)
- if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
- || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
- return 0;
-
- return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
-
- case RELOAD_FOR_INPUT_ADDRESS:
- case RELOAD_FOR_INPADDR_ADDRESS:
- /* Similarly, all we have to check is for use in earlier inputs'
- addresses. */
- for (i = 0; i < opnum; i++)
- if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
- || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
- return 0;
-
- return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
- }
- abort ();
-}
-
-/* Return 1 if the value in reload reg REGNO, as used by a reload
- needed for the part of the insn specified by OPNUM and TYPE,
- is still available in REGNO at the end of the insn.
-
- We can assume that the reload reg was already tested for availability
- at the time it is needed, and we should not check this again,
- in case the reg has already been marked in use. */
-
-static int
-reload_reg_reaches_end_p (regno, opnum, type)
- int regno;
- int opnum;
- enum reload_type type;
-{
- int i;
-
- switch (type)
- {
- case RELOAD_OTHER:
- /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
- its value must reach the end. */
- return 1;
-
- /* If this use is for part of the insn,
- its value reaches if no subsequent part uses the same register.
- Just like the above function, don't try to do this with lots
- of fallthroughs. */
-
- case RELOAD_FOR_OTHER_ADDRESS:
- /* Here we check for everything else, since these don't conflict
- with anything else and everything comes later. */
-
- for (i = 0; i < reload_n_operands; i++)
- if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
- || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
- || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
- || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
- || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
- || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
- return 0;
-
- return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
- && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
- && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
-
- case RELOAD_FOR_INPUT_ADDRESS:
- case RELOAD_FOR_INPADDR_ADDRESS:
- /* Similar, except that we check only for this and subsequent inputs
- and the address of only subsequent inputs and we do not need
- to check for RELOAD_OTHER objects since they are known not to
- conflict. */
-
- for (i = opnum; i < reload_n_operands; i++)
- if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
- return 0;
-
- for (i = opnum + 1; i < reload_n_operands; i++)
- if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
- || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
- return 0;
-
- for (i = 0; i < reload_n_operands; i++)
- if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
- || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
- || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
- return 0;
-
- if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
- return 0;
-
- return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
- && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno));
-
- case RELOAD_FOR_INPUT:
- /* Similar to input address, except we start at the next operand for
- both input and input address and we do not check for
- RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
- would conflict. */
-
- for (i = opnum + 1; i < reload_n_operands; i++)
- if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
- || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
- || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
- return 0;
-
- /* ... fall through ... */
-
- case RELOAD_FOR_OPERAND_ADDRESS:
- /* Check outputs and their addresses. */
-
- for (i = 0; i < reload_n_operands; i++)
- if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
- || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
- || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
- return 0;
-
- return 1;
-
- case RELOAD_FOR_OPADDR_ADDR:
- for (i = 0; i < reload_n_operands; i++)
- if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
- || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
- || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
- return 0;
-
- return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
- && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno));
-
- case RELOAD_FOR_INSN:
- /* These conflict with other outputs with RELOAD_OTHER. So
- we need only check for output addresses. */
-
- opnum = -1;
-
- /* ... fall through ... */
-
- case RELOAD_FOR_OUTPUT:
- case RELOAD_FOR_OUTPUT_ADDRESS:
- case RELOAD_FOR_OUTADDR_ADDRESS:
- /* We already know these can't conflict with a later output. So the
- only thing to check are later output addresses. */
- for (i = opnum + 1; i < reload_n_operands; i++)
- if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
- || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
- return 0;
-
- return 1;
- }
-
- abort ();
-}
-
-/* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
- Return 0 otherwise.
-
- This function uses the same algorithm as reload_reg_free_p above. */
-
-static int
-reloads_conflict (r1, r2)
- int r1, r2;
-{
- enum reload_type r1_type = reload_when_needed[r1];
- enum reload_type r2_type = reload_when_needed[r2];
- int r1_opnum = reload_opnum[r1];
- int r2_opnum = reload_opnum[r2];
-
- /* RELOAD_OTHER conflicts with everything. */
- if (r2_type == RELOAD_OTHER)
- return 1;
-
- /* Otherwise, check conflicts differently for each type. */
-
- switch (r1_type)
- {
- case RELOAD_FOR_INPUT:
- return (r2_type == RELOAD_FOR_INSN
- || r2_type == RELOAD_FOR_OPERAND_ADDRESS
- || r2_type == RELOAD_FOR_OPADDR_ADDR
- || r2_type == RELOAD_FOR_INPUT
- || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
- || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
- && r2_opnum > r1_opnum));
-
- case RELOAD_FOR_INPUT_ADDRESS:
- return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
- || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
-
- case RELOAD_FOR_INPADDR_ADDRESS:
- return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
- || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
-
- case RELOAD_FOR_OUTPUT_ADDRESS:
- return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
- || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum >= r1_opnum));
-
- case RELOAD_FOR_OUTADDR_ADDRESS:
- return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
- || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum >= r1_opnum));
-
- case RELOAD_FOR_OPERAND_ADDRESS:
- return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
- || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
-
- case RELOAD_FOR_OPADDR_ADDR:
- return (r2_type == RELOAD_FOR_INPUT
- || r2_type == RELOAD_FOR_OPADDR_ADDR);
-
- case RELOAD_FOR_OUTPUT:
- return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
- || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
- || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
- && r2_opnum >= r1_opnum));
-
- case RELOAD_FOR_INSN:
- return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
- || r2_type == RELOAD_FOR_INSN
- || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
-
- case RELOAD_FOR_OTHER_ADDRESS:
- return r2_type == RELOAD_FOR_OTHER_ADDRESS;
-
- case RELOAD_OTHER:
- return 1;
-
- default:
- abort ();
- }
-}
-
-/* Vector of reload-numbers showing the order in which the reloads should
- be processed. */
-short reload_order[MAX_RELOADS];
-
-/* Indexed by reload number, 1 if incoming value
- inherited from previous insns. */
-char reload_inherited[MAX_RELOADS];
-
-/* For an inherited reload, this is the insn the reload was inherited from,
- if we know it. Otherwise, this is 0. */
-rtx reload_inheritance_insn[MAX_RELOADS];
-
-/* If non-zero, this is a place to get the value of the reload,
- rather than using reload_in. */
-rtx reload_override_in[MAX_RELOADS];
-
-/* For each reload, the index in spill_regs of the spill register used,
- or -1 if we did not need one of the spill registers for this reload. */
-int reload_spill_index[MAX_RELOADS];
-
-/* Find a spill register to use as a reload register for reload R.
- LAST_RELOAD is non-zero if this is the last reload for the insn being
- processed.
-
- Set reload_reg_rtx[R] to the register allocated.
-
- If NOERROR is nonzero, we return 1 if successful,
- or 0 if we couldn't find a spill reg and we didn't change anything. */
-
-static int
-allocate_reload_reg (r, insn, last_reload, noerror)
- int r;
- rtx insn;
- int last_reload;
- int noerror;
-{
- int i;
- int pass;
- int count;
- rtx new;
- int regno;
-
- /* If we put this reload ahead, thinking it is a group,
- then insist on finding a group. Otherwise we can grab a
- reg that some other reload needs.
- (That can happen when we have a 68000 DATA_OR_FP_REG
- which is a group of data regs or one fp reg.)
- We need not be so restrictive if there are no more reloads
- for this insn.
-
- ??? Really it would be nicer to have smarter handling
- for that kind of reg class, where a problem like this is normal.
- Perhaps those classes should be avoided for reloading
- by use of more alternatives. */
-
- int force_group = reload_nregs[r] > 1 && ! last_reload;
-
- /* If we want a single register and haven't yet found one,
- take any reg in the right class and not in use.
- If we want a consecutive group, here is where we look for it.
-
- We use two passes so we can first look for reload regs to
- reuse, which are already in use for other reloads in this insn,
- and only then use additional registers.
- I think that maximizing reuse is needed to make sure we don't
- run out of reload regs. Suppose we have three reloads, and
- reloads A and B can share regs. These need two regs.
- Suppose A and B are given different regs.
- That leaves none for C. */
- for (pass = 0; pass < 2; pass++)
- {
- /* I is the index in spill_regs.
- We advance it round-robin between insns to use all spill regs
- equally, so that inherited reloads have a chance
- of leapfrogging each other. Don't do this, however, when we have
- group needs and failure would be fatal; if we only have a relatively
- small number of spill registers, and more than one of them has
- group needs, then by starting in the middle, we may end up
- allocating the first one in such a way that we are not left with
- sufficient groups to handle the rest. */
-
- if (noerror || ! force_group)
- i = last_spill_reg;
- else
- i = -1;
-
- for (count = 0; count < n_spills; count++)
- {
- int class = (int) reload_reg_class[r];
-
- i = (i + 1) % n_spills;
-
- if (reload_reg_free_p (spill_regs[i], reload_opnum[r],
- reload_when_needed[r])
- && TEST_HARD_REG_BIT (reg_class_contents[class], spill_regs[i])
- && HARD_REGNO_MODE_OK (spill_regs[i], reload_mode[r])
- /* Look first for regs to share, then for unshared. But
- don't share regs used for inherited reloads; they are
- the ones we want to preserve. */
- && (pass
- || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
- spill_regs[i])
- && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
- spill_regs[i]))))
- {
- int nr = HARD_REGNO_NREGS (spill_regs[i], reload_mode[r]);
- /* Avoid the problem where spilling a GENERAL_OR_FP_REG
- (on 68000) got us two FP regs. If NR is 1,
- we would reject both of them. */
- if (force_group)
- nr = CLASS_MAX_NREGS (reload_reg_class[r], reload_mode[r]);
- /* If we need only one reg, we have already won. */
- if (nr == 1)
- {
- /* But reject a single reg if we demand a group. */
- if (force_group)
- continue;
- break;
- }
- /* Otherwise check that as many consecutive regs as we need
- are available here.
- Also, don't use for a group registers that are
- needed for nongroups. */
- if (! TEST_HARD_REG_BIT (counted_for_nongroups, spill_regs[i]))
- while (nr > 1)
- {
- regno = spill_regs[i] + nr - 1;
- if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
- && spill_reg_order[regno] >= 0
- && reload_reg_free_p (regno, reload_opnum[r],
- reload_when_needed[r])
- && ! TEST_HARD_REG_BIT (counted_for_nongroups,
- regno)))
- break;
- nr--;
- }
- if (nr == 1)
- break;
- }
- }
-
- /* If we found something on pass 1, omit pass 2. */
- if (count < n_spills)
- break;
- }
-
- /* We should have found a spill register by now. */
- if (count == n_spills)
- {
- if (noerror)
- return 0;
- goto failure;
- }
-
- /* I is the index in SPILL_REG_RTX of the reload register we are to
- allocate. Get an rtx for it and find its register number. */
-
- new = spill_reg_rtx[i];
-
- if (new == 0 || GET_MODE (new) != reload_mode[r])
- spill_reg_rtx[i] = new
- = gen_rtx (REG, reload_mode[r], spill_regs[i]);
-
- regno = true_regnum (new);
-
- /* Detect when the reload reg can't hold the reload mode.
- This used to be one `if', but Sequent compiler can't handle that. */
- if (HARD_REGNO_MODE_OK (regno, reload_mode[r]))
- {
- enum machine_mode test_mode = VOIDmode;
- if (reload_in[r])
- test_mode = GET_MODE (reload_in[r]);
- /* If reload_in[r] has VOIDmode, it means we will load it
- in whatever mode the reload reg has: to wit, reload_mode[r].
- We have already tested that for validity. */
- /* Aside from that, we need to test that the expressions
- to reload from or into have modes which are valid for this
- reload register. Otherwise the reload insns would be invalid. */
- if (! (reload_in[r] != 0 && test_mode != VOIDmode
- && ! HARD_REGNO_MODE_OK (regno, test_mode)))
- if (! (reload_out[r] != 0
- && ! HARD_REGNO_MODE_OK (regno, GET_MODE (reload_out[r]))))
- {
- /* The reg is OK. */
- last_spill_reg = i;
-
- /* Mark as in use for this insn the reload regs we use
- for this. */
- mark_reload_reg_in_use (spill_regs[i], reload_opnum[r],
- reload_when_needed[r], reload_mode[r]);
-
- reload_reg_rtx[r] = new;
- reload_spill_index[r] = i;
- return 1;
- }
- }
-
- /* The reg is not OK. */
- if (noerror)
- return 0;
-
- failure:
- if (asm_noperands (PATTERN (insn)) < 0)
- /* It's the compiler's fault. */
- fatal_insn ("Could not find a spill register", insn);
-
- /* It's the user's fault; the operand's mode and constraint
- don't match. Disable this reload so we don't crash in final. */
- error_for_asm (insn,
- "`asm' operand constraint incompatible with operand size");
- reload_in[r] = 0;
- reload_out[r] = 0;
- reload_reg_rtx[r] = 0;
- reload_optional[r] = 1;
- reload_secondary_p[r] = 1;
-
- return 1;
-}
-
-/* Assign hard reg targets for the pseudo-registers we must reload
- into hard regs for this insn.
- Also output the instructions to copy them in and out of the hard regs.
-
- For machines with register classes, we are responsible for
- finding a reload reg in the proper class. */
-
-static void
-choose_reload_regs (insn, avoid_return_reg)
- rtx insn;
- rtx avoid_return_reg;
-{
- register int i, j;
- int max_group_size = 1;
- enum reg_class group_class = NO_REGS;
- int inheritance;
-
- rtx save_reload_reg_rtx[MAX_RELOADS];
- char save_reload_inherited[MAX_RELOADS];
- rtx save_reload_inheritance_insn[MAX_RELOADS];
- rtx save_reload_override_in[MAX_RELOADS];
- int save_reload_spill_index[MAX_RELOADS];
- HARD_REG_SET save_reload_reg_used;
- HARD_REG_SET save_reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
- HARD_REG_SET save_reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
- HARD_REG_SET save_reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
- HARD_REG_SET save_reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
- HARD_REG_SET save_reload_reg_used_in_input[MAX_RECOG_OPERANDS];
- HARD_REG_SET save_reload_reg_used_in_output[MAX_RECOG_OPERANDS];
- HARD_REG_SET save_reload_reg_used_in_op_addr;
- HARD_REG_SET save_reload_reg_used_in_op_addr_reload;
- HARD_REG_SET save_reload_reg_used_in_insn;
- HARD_REG_SET save_reload_reg_used_in_other_addr;
- HARD_REG_SET save_reload_reg_used_at_all;
-
- bzero (reload_inherited, MAX_RELOADS);
- bzero ((char *) reload_inheritance_insn, MAX_RELOADS * sizeof (rtx));
- bzero ((char *) reload_override_in, MAX_RELOADS * sizeof (rtx));
-
- CLEAR_HARD_REG_SET (reload_reg_used);
- CLEAR_HARD_REG_SET (reload_reg_used_at_all);
- CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
- CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
- CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
- CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
-
- for (i = 0; i < reload_n_operands; i++)
- {
- CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
- CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
- CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
- CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
- CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
- CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
- }
-
-#ifdef SMALL_REGISTER_CLASSES
- /* Don't bother with avoiding the return reg
- if we have no mandatory reload that could use it. */
- if (SMALL_REGISTER_CLASSES && avoid_return_reg)
- {
- int do_avoid = 0;
- int regno = REGNO (avoid_return_reg);
- int nregs
- = HARD_REGNO_NREGS (regno, GET_MODE (avoid_return_reg));
- int r;
-
- for (r = regno; r < regno + nregs; r++)
- if (spill_reg_order[r] >= 0)
- for (j = 0; j < n_reloads; j++)
- if (!reload_optional[j] && reload_reg_rtx[j] == 0
- && (reload_in[j] != 0 || reload_out[j] != 0
- || reload_secondary_p[j])
- &&
- TEST_HARD_REG_BIT (reg_class_contents[(int) reload_reg_class[j]], r))
- do_avoid = 1;
- if (!do_avoid)
- avoid_return_reg = 0;
- }
-#endif /* SMALL_REGISTER_CLASSES */
-
-#if 0 /* Not needed, now that we can always retry without inheritance. */
- /* See if we have more mandatory reloads than spill regs.
- If so, then we cannot risk optimizations that could prevent
- reloads from sharing one spill register.
-
- Since we will try finding a better register than reload_reg_rtx
- unless it is equal to reload_in or reload_out, count such reloads. */
-
- {
- int tem = 0;
-#ifdef SMALL_REGISTER_CLASSES
- if (SMALL_REGISTER_CLASSES)
- tem = (avoid_return_reg != 0);
-#endif
- for (j = 0; j < n_reloads; j++)
- if (! reload_optional[j]
- && (reload_in[j] != 0 || reload_out[j] != 0 || reload_secondary_p[j])
- && (reload_reg_rtx[j] == 0
- || (! rtx_equal_p (reload_reg_rtx[j], reload_in[j])
- && ! rtx_equal_p (reload_reg_rtx[j], reload_out[j]))))
- tem++;
- if (tem > n_spills)
- must_reuse = 1;
- }
-#endif
-
-#ifdef SMALL_REGISTER_CLASSES
- /* Don't use the subroutine call return reg for a reload
- if we are supposed to avoid it. */
- if (SMALL_REGISTER_CLASSES && avoid_return_reg)
- {
- int regno = REGNO (avoid_return_reg);
- int nregs
- = HARD_REGNO_NREGS (regno, GET_MODE (avoid_return_reg));
- int r;
-
- for (r = regno; r < regno + nregs; r++)
- if (spill_reg_order[r] >= 0)
- SET_HARD_REG_BIT (reload_reg_used, r);
- }
-#endif /* SMALL_REGISTER_CLASSES */
-
- /* In order to be certain of getting the registers we need,
- we must sort the reloads into order of increasing register class.
- Then our grabbing of reload registers will parallel the process
- that provided the reload registers.
-
- Also note whether any of the reloads wants a consecutive group of regs.
- If so, record the maximum size of the group desired and what
- register class contains all the groups needed by this insn. */
-
- for (j = 0; j < n_reloads; j++)
- {
- reload_order[j] = j;
- reload_spill_index[j] = -1;
-
- reload_mode[j]
- = (reload_inmode[j] == VOIDmode
- || (GET_MODE_SIZE (reload_outmode[j])
- > GET_MODE_SIZE (reload_inmode[j])))
- ? reload_outmode[j] : reload_inmode[j];
-
- reload_nregs[j] = CLASS_MAX_NREGS (reload_reg_class[j], reload_mode[j]);
-
- if (reload_nregs[j] > 1)
- {
- max_group_size = MAX (reload_nregs[j], max_group_size);
- group_class = reg_class_superunion[(int)reload_reg_class[j]][(int)group_class];
- }
-
- /* If we have already decided to use a certain register,
- don't use it in another way. */
- if (reload_reg_rtx[j])
- mark_reload_reg_in_use (REGNO (reload_reg_rtx[j]), reload_opnum[j],
- reload_when_needed[j], reload_mode[j]);
- }
-
- if (n_reloads > 1)
- qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
-
- bcopy ((char *) reload_reg_rtx, (char *) save_reload_reg_rtx,
- sizeof reload_reg_rtx);
- bcopy (reload_inherited, save_reload_inherited, sizeof reload_inherited);
- bcopy ((char *) reload_inheritance_insn,
- (char *) save_reload_inheritance_insn,
- sizeof reload_inheritance_insn);
- bcopy ((char *) reload_override_in, (char *) save_reload_override_in,
- sizeof reload_override_in);
- bcopy ((char *) reload_spill_index, (char *) save_reload_spill_index,
- sizeof reload_spill_index);
- COPY_HARD_REG_SET (save_reload_reg_used, reload_reg_used);
- COPY_HARD_REG_SET (save_reload_reg_used_at_all, reload_reg_used_at_all);
- COPY_HARD_REG_SET (save_reload_reg_used_in_op_addr,
- reload_reg_used_in_op_addr);
-
- COPY_HARD_REG_SET (save_reload_reg_used_in_op_addr_reload,
- reload_reg_used_in_op_addr_reload);
-
- COPY_HARD_REG_SET (save_reload_reg_used_in_insn,
- reload_reg_used_in_insn);
- COPY_HARD_REG_SET (save_reload_reg_used_in_other_addr,
- reload_reg_used_in_other_addr);
-
- for (i = 0; i < reload_n_operands; i++)
- {
- COPY_HARD_REG_SET (save_reload_reg_used_in_output[i],
- reload_reg_used_in_output[i]);
- COPY_HARD_REG_SET (save_reload_reg_used_in_input[i],
- reload_reg_used_in_input[i]);
- COPY_HARD_REG_SET (save_reload_reg_used_in_input_addr[i],
- reload_reg_used_in_input_addr[i]);
- COPY_HARD_REG_SET (save_reload_reg_used_in_inpaddr_addr[i],
- reload_reg_used_in_inpaddr_addr[i]);
- COPY_HARD_REG_SET (save_reload_reg_used_in_output_addr[i],
- reload_reg_used_in_output_addr[i]);
- COPY_HARD_REG_SET (save_reload_reg_used_in_outaddr_addr[i],
- reload_reg_used_in_outaddr_addr[i]);
- }
-
- /* If -O, try first with inheritance, then turning it off.
- If not -O, don't do inheritance.
- Using inheritance when not optimizing leads to paradoxes
- with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
- because one side of the comparison might be inherited. */
-
- for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
- {
- /* Process the reloads in order of preference just found.
- Beyond this point, subregs can be found in reload_reg_rtx.
-
- This used to look for an existing reloaded home for all
- of the reloads, and only then perform any new reloads.
- But that could lose if the reloads were done out of reg-class order
- because a later reload with a looser constraint might have an old
- home in a register needed by an earlier reload with a tighter constraint.
-
- To solve this, we make two passes over the reloads, in the order
- described above. In the first pass we try to inherit a reload
- from a previous insn. If there is a later reload that needs a
- class that is a proper subset of the class being processed, we must
- also allocate a spill register during the first pass.
-
- Then make a second pass over the reloads to allocate any reloads
- that haven't been given registers yet. */
-
- CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
-
- for (j = 0; j < n_reloads; j++)
- {
- register int r = reload_order[j];
-
- /* Ignore reloads that got marked inoperative. */
- if (reload_out[r] == 0 && reload_in[r] == 0 && ! reload_secondary_p[r])
- continue;
-
- /* If find_reloads chose a to use reload_in or reload_out as a reload
- register, we don't need to chose one. Otherwise, try even if it found
- one since we might save an insn if we find the value lying around. */
- if (reload_in[r] != 0 && reload_reg_rtx[r] != 0
- && (rtx_equal_p (reload_in[r], reload_reg_rtx[r])
- || rtx_equal_p (reload_out[r], reload_reg_rtx[r])))
- continue;
-
-#if 0 /* No longer needed for correct operation.
- It might give better code, or might not; worth an experiment? */
- /* If this is an optional reload, we can't inherit from earlier insns
- until we are sure that any non-optional reloads have been allocated.
- The following code takes advantage of the fact that optional reloads
- are at the end of reload_order. */
- if (reload_optional[r] != 0)
- for (i = 0; i < j; i++)
- if ((reload_out[reload_order[i]] != 0
- || reload_in[reload_order[i]] != 0
- || reload_secondary_p[reload_order[i]])
- && ! reload_optional[reload_order[i]]
- && reload_reg_rtx[reload_order[i]] == 0)
- allocate_reload_reg (reload_order[i], insn, 0, inheritance);
-#endif
-
- /* First see if this pseudo is already available as reloaded
- for a previous insn. We cannot try to inherit for reloads
- that are smaller than the maximum number of registers needed
- for groups unless the register we would allocate cannot be used
- for the groups.
-
- We could check here to see if this is a secondary reload for
- an object that is already in a register of the desired class.
- This would avoid the need for the secondary reload register.
- But this is complex because we can't easily determine what
- objects might want to be loaded via this reload. So let a register
- be allocated here. In `emit_reload_insns' we suppress one of the
- loads in the case described above. */
-
- if (inheritance)
- {
- register int regno = -1;
- enum machine_mode mode;
-
- if (reload_in[r] == 0)
- ;
- else if (GET_CODE (reload_in[r]) == REG)
- {
- regno = REGNO (reload_in[r]);
- mode = GET_MODE (reload_in[r]);
- }
- else if (GET_CODE (reload_in_reg[r]) == REG)
- {
- regno = REGNO (reload_in_reg[r]);
- mode = GET_MODE (reload_in_reg[r]);
- }
-#if 0
- /* This won't work, since REGNO can be a pseudo reg number.
- Also, it takes much more hair to keep track of all the things
- that can invalidate an inherited reload of part of a pseudoreg. */
- else if (GET_CODE (reload_in[r]) == SUBREG
- && GET_CODE (SUBREG_REG (reload_in[r])) == REG)
- regno = REGNO (SUBREG_REG (reload_in[r])) + SUBREG_WORD (reload_in[r]);
-#endif
-
- if (regno >= 0 && reg_last_reload_reg[regno] != 0)
- {
- i = spill_reg_order[REGNO (reg_last_reload_reg[regno])];
-
- if (reg_reloaded_contents[i] == regno
- && (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno]))
- >= GET_MODE_SIZE (mode))
- && HARD_REGNO_MODE_OK (spill_regs[i], reload_mode[r])
- && TEST_HARD_REG_BIT (reg_class_contents[(int) reload_reg_class[r]],
- spill_regs[i])
- && (reload_nregs[r] == max_group_size
- || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
- spill_regs[i]))
- && reload_reg_free_p (spill_regs[i], reload_opnum[r],
- reload_when_needed[r])
- && reload_reg_free_before_p (spill_regs[i],
- reload_opnum[r],
- reload_when_needed[r]))
- {
- /* If a group is needed, verify that all the subsequent
- registers still have their values intact. */
- int nr
- = HARD_REGNO_NREGS (spill_regs[i], reload_mode[r]);
- int k;
-
- for (k = 1; k < nr; k++)
- if (reg_reloaded_contents[spill_reg_order[spill_regs[i] + k]]
- != regno)
- break;
-
- if (k == nr)
- {
- int i1;
-
- /* We found a register that contains the
- value we need. If this register is the
- same as an `earlyclobber' operand of the
- current insn, just mark it as a place to
- reload from since we can't use it as the
- reload register itself. */
-
- for (i1 = 0; i1 < n_earlyclobbers; i1++)
- if (reg_overlap_mentioned_for_reload_p
- (reg_last_reload_reg[regno],
- reload_earlyclobbers[i1]))
- break;
-
- if (i1 != n_earlyclobbers
- /* Don't really use the inherited spill reg
- if we need it wider than we've got it. */
- || (GET_MODE_SIZE (reload_mode[r])
- > GET_MODE_SIZE (mode)))
- reload_override_in[r] = reg_last_reload_reg[regno];
- else
- {
- int k;
- /* We can use this as a reload reg. */
- /* Mark the register as in use for this part of
- the insn. */
- mark_reload_reg_in_use (spill_regs[i],
- reload_opnum[r],
- reload_when_needed[r],
- reload_mode[r]);
- reload_reg_rtx[r] = reg_last_reload_reg[regno];
- reload_inherited[r] = 1;
- reload_inheritance_insn[r]
- = reg_reloaded_insn[i];
- reload_spill_index[r] = i;
- for (k = 0; k < nr; k++)
- SET_HARD_REG_BIT (reload_reg_used_for_inherit,
- spill_regs[i + k]);
- }
- }
- }
- }
- }
-
- /* Here's another way to see if the value is already lying around. */
- if (inheritance
- && reload_in[r] != 0
- && ! reload_inherited[r]
- && reload_out[r] == 0
- && (CONSTANT_P (reload_in[r])
- || GET_CODE (reload_in[r]) == PLUS
- || GET_CODE (reload_in[r]) == REG
- || GET_CODE (reload_in[r]) == MEM)
- && (reload_nregs[r] == max_group_size
- || ! reg_classes_intersect_p (reload_reg_class[r], group_class)))
- {
- register rtx equiv
- = find_equiv_reg (reload_in[r], insn, reload_reg_class[r],
- -1, NULL_PTR, 0, reload_mode[r]);
- int regno;
-
- if (equiv != 0)
- {
- if (GET_CODE (equiv) == REG)
- regno = REGNO (equiv);
- else if (GET_CODE (equiv) == SUBREG)
- {
- /* This must be a SUBREG of a hard register.
- Make a new REG since this might be used in an
- address and not all machines support SUBREGs
- there. */
- regno = REGNO (SUBREG_REG (equiv)) + SUBREG_WORD (equiv);
- equiv = gen_rtx (REG, reload_mode[r], regno);
- }
- else
- abort ();
- }
-
- /* If we found a spill reg, reject it unless it is free
- and of the desired class. */
- if (equiv != 0
- && ((spill_reg_order[regno] >= 0
- && ! reload_reg_free_before_p (regno, reload_opnum[r],
- reload_when_needed[r]))
- || ! TEST_HARD_REG_BIT (reg_class_contents[(int) reload_reg_class[r]],
- regno)))
- equiv = 0;
-
- if (equiv != 0 && TEST_HARD_REG_BIT (reload_reg_used_at_all, regno))
- equiv = 0;
-
- if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, reload_mode[r]))
- equiv = 0;
-
- /* We found a register that contains the value we need.
- If this register is the same as an `earlyclobber' operand
- of the current insn, just mark it as a place to reload from
- since we can't use it as the reload register itself. */
-
- if (equiv != 0)
- for (i = 0; i < n_earlyclobbers; i++)
- if (reg_overlap_mentioned_for_reload_p (equiv,
- reload_earlyclobbers[i]))
- {
- reload_override_in[r] = equiv;
- equiv = 0;
- break;
- }
-
- /* JRV: If the equiv register we have found is
- explicitly clobbered in the current insn, mark but
- don't use, as above. */
-
- if (equiv != 0 && regno_clobbered_p (regno, insn))
- {
- reload_override_in[r] = equiv;
- equiv = 0;
- }
-
- /* If we found an equivalent reg, say no code need be generated
- to load it, and use it as our reload reg. */
- if (equiv != 0 && regno != HARD_FRAME_POINTER_REGNUM)
- {
- int nr = HARD_REGNO_NREGS (regno, reload_mode[r]);
- int k;
- reload_reg_rtx[r] = equiv;
- reload_inherited[r] = 1;
-
- /* If any of the hard registers in EQUIV are spill
- registers, mark them as in use for this insn. */
- for (k = 0; k < nr; k++)
- {
- i = spill_reg_order[regno + k];
- if (i >= 0)
- {
- mark_reload_reg_in_use (regno, reload_opnum[r],
- reload_when_needed[r],
- reload_mode[r]);
- SET_HARD_REG_BIT (reload_reg_used_for_inherit,
- regno + k);
- }
- }
- }
- }
-
- /* If we found a register to use already, or if this is an optional
- reload, we are done. */
- if (reload_reg_rtx[r] != 0 || reload_optional[r] != 0)
- continue;
-
-#if 0 /* No longer needed for correct operation. Might or might not
- give better code on the average. Want to experiment? */
-
- /* See if there is a later reload that has a class different from our
- class that intersects our class or that requires less register
- than our reload. If so, we must allocate a register to this
- reload now, since that reload might inherit a previous reload
- and take the only available register in our class. Don't do this
- for optional reloads since they will force all previous reloads
- to be allocated. Also don't do this for reloads that have been
- turned off. */
-
- for (i = j + 1; i < n_reloads; i++)
- {
- int s = reload_order[i];
-
- if ((reload_in[s] == 0 && reload_out[s] == 0
- && ! reload_secondary_p[s])
- || reload_optional[s])
- continue;
-
- if ((reload_reg_class[s] != reload_reg_class[r]
- && reg_classes_intersect_p (reload_reg_class[r],
- reload_reg_class[s]))
- || reload_nregs[s] < reload_nregs[r])
- break;
- }
-
- if (i == n_reloads)
- continue;
-
- allocate_reload_reg (r, insn, j == n_reloads - 1, inheritance);
-#endif
- }
-
- /* Now allocate reload registers for anything non-optional that
- didn't get one yet. */
- for (j = 0; j < n_reloads; j++)
- {
- register int r = reload_order[j];
-
- /* Ignore reloads that got marked inoperative. */
- if (reload_out[r] == 0 && reload_in[r] == 0 && ! reload_secondary_p[r])
- continue;
-
- /* Skip reloads that already have a register allocated or are
- optional. */
- if (reload_reg_rtx[r] != 0 || reload_optional[r])
- continue;
-
- if (! allocate_reload_reg (r, insn, j == n_reloads - 1, inheritance))
- break;
- }
-
- /* If that loop got all the way, we have won. */
- if (j == n_reloads)
- break;
-
- fail:
- /* Loop around and try without any inheritance. */
- /* First undo everything done by the failed attempt
- to allocate with inheritance. */
- bcopy ((char *) save_reload_reg_rtx, (char *) reload_reg_rtx,
- sizeof reload_reg_rtx);
- bcopy ((char *) save_reload_inherited, (char *) reload_inherited,
- sizeof reload_inherited);
- bcopy ((char *) save_reload_inheritance_insn,
- (char *) reload_inheritance_insn,
- sizeof reload_inheritance_insn);
- bcopy ((char *) save_reload_override_in, (char *) reload_override_in,
- sizeof reload_override_in);
- bcopy ((char *) save_reload_spill_index, (char *) reload_spill_index,
- sizeof reload_spill_index);
- COPY_HARD_REG_SET (reload_reg_used, save_reload_reg_used);
- COPY_HARD_REG_SET (reload_reg_used_at_all, save_reload_reg_used_at_all);
- COPY_HARD_REG_SET (reload_reg_used_in_op_addr,
- save_reload_reg_used_in_op_addr);
- COPY_HARD_REG_SET (reload_reg_used_in_op_addr_reload,
- save_reload_reg_used_in_op_addr_reload);
- COPY_HARD_REG_SET (reload_reg_used_in_insn,
- save_reload_reg_used_in_insn);
- COPY_HARD_REG_SET (reload_reg_used_in_other_addr,
- save_reload_reg_used_in_other_addr);
-
- for (i = 0; i < reload_n_operands; i++)
- {
- COPY_HARD_REG_SET (reload_reg_used_in_input[i],
- save_reload_reg_used_in_input[i]);
- COPY_HARD_REG_SET (reload_reg_used_in_output[i],
- save_reload_reg_used_in_output[i]);
- COPY_HARD_REG_SET (reload_reg_used_in_input_addr[i],
- save_reload_reg_used_in_input_addr[i]);
- COPY_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i],
- save_reload_reg_used_in_inpaddr_addr[i]);
- COPY_HARD_REG_SET (reload_reg_used_in_output_addr[i],
- save_reload_reg_used_in_output_addr[i]);
- COPY_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i],
- save_reload_reg_used_in_outaddr_addr[i]);
- }
- }
-
- /* If we thought we could inherit a reload, because it seemed that
- nothing else wanted the same reload register earlier in the insn,
- verify that assumption, now that all reloads have been assigned. */
-
- for (j = 0; j < n_reloads; j++)
- {
- register int r = reload_order[j];
-
- if (reload_inherited[r] && reload_reg_rtx[r] != 0
- && ! reload_reg_free_before_p (true_regnum (reload_reg_rtx[r]),
- reload_opnum[r],
- reload_when_needed[r]))
- reload_inherited[r] = 0;
-
- /* If we found a better place to reload from,
- validate it in the same fashion, if it is a reload reg. */
- if (reload_override_in[r]
- && (GET_CODE (reload_override_in[r]) == REG
- || GET_CODE (reload_override_in[r]) == SUBREG))
- {
- int regno = true_regnum (reload_override_in[r]);
- if (spill_reg_order[regno] >= 0
- && ! reload_reg_free_before_p (regno, reload_opnum[r],
- reload_when_needed[r]))
- reload_override_in[r] = 0;
- }
- }
-
- /* Now that reload_override_in is known valid,
- actually override reload_in. */
- for (j = 0; j < n_reloads; j++)
- if (reload_override_in[j])
- reload_in[j] = reload_override_in[j];
-
- /* If this reload won't be done because it has been cancelled or is
- optional and not inherited, clear reload_reg_rtx so other
- routines (such as subst_reloads) don't get confused. */
- for (j = 0; j < n_reloads; j++)
- if (reload_reg_rtx[j] != 0
- && ((reload_optional[j] && ! reload_inherited[j])
- || (reload_in[j] == 0 && reload_out[j] == 0
- && ! reload_secondary_p[j])))
- {
- int regno = true_regnum (reload_reg_rtx[j]);
-
- if (spill_reg_order[regno] >= 0)
- clear_reload_reg_in_use (regno, reload_opnum[j],
- reload_when_needed[j], reload_mode[j]);
- reload_reg_rtx[j] = 0;
- }
-
- /* Record which pseudos and which spill regs have output reloads. */
- for (j = 0; j < n_reloads; j++)
- {
- register int r = reload_order[j];
-
- i = reload_spill_index[r];
-
- /* I is nonneg if this reload used one of the spill regs.
- If reload_reg_rtx[r] is 0, this is an optional reload
- that we opted to ignore. */
- if (reload_out[r] != 0 && GET_CODE (reload_out[r]) == REG
- && reload_reg_rtx[r] != 0)
- {
- register int nregno = REGNO (reload_out[r]);
- int nr = 1;
-
- if (nregno < FIRST_PSEUDO_REGISTER)
- nr = HARD_REGNO_NREGS (nregno, reload_mode[r]);
-
- while (--nr >= 0)
- reg_has_output_reload[nregno + nr] = 1;
-
- if (i >= 0)
- {
- nr = HARD_REGNO_NREGS (spill_regs[i], reload_mode[r]);
- while (--nr >= 0)
- SET_HARD_REG_BIT (reg_is_output_reload, spill_regs[i] + nr);
- }
-
- if (reload_when_needed[r] != RELOAD_OTHER
- && reload_when_needed[r] != RELOAD_FOR_OUTPUT
- && reload_when_needed[r] != RELOAD_FOR_INSN)
- abort ();
- }
- }
-}
-
-/* If SMALL_REGISTER_CLASSES are defined, we may not have merged two
- reloads of the same item for fear that we might not have enough reload
- registers. However, normally they will get the same reload register
- and hence actually need not be loaded twice.
-
- Here we check for the most common case of this phenomenon: when we have
- a number of reloads for the same object, each of which were allocated
- the same reload_reg_rtx, that reload_reg_rtx is not used for any other
- reload, and is not modified in the insn itself. If we find such,
- merge all the reloads and set the resulting reload to RELOAD_OTHER.
- This will not increase the number of spill registers needed and will
- prevent redundant code. */
-
-#ifdef SMALL_REGISTER_CLASSES
-
-static void
-merge_assigned_reloads (insn)
- rtx insn;
-{
- int i, j;
-
- /* Scan all the reloads looking for ones that only load values and
- are not already RELOAD_OTHER and ones whose reload_reg_rtx are
- assigned and not modified by INSN. */
-
- for (i = 0; i < n_reloads; i++)
- {
- if (reload_in[i] == 0 || reload_when_needed[i] == RELOAD_OTHER
- || reload_out[i] != 0 || reload_reg_rtx[i] == 0
- || reg_set_p (reload_reg_rtx[i], insn))
- continue;
-
- /* Look at all other reloads. Ensure that the only use of this
- reload_reg_rtx is in a reload that just loads the same value
- as we do. Note that any secondary reloads must be of the identical
- class since the values, modes, and result registers are the
- same, so we need not do anything with any secondary reloads. */
-
- for (j = 0; j < n_reloads; j++)
- {
- if (i == j || reload_reg_rtx[j] == 0
- || ! reg_overlap_mentioned_p (reload_reg_rtx[j],
- reload_reg_rtx[i]))
- continue;
-
- /* If the reload regs aren't exactly the same (e.g, different modes)
- or if the values are different, we can't merge anything with this
- reload register. */
-
- if (! rtx_equal_p (reload_reg_rtx[i], reload_reg_rtx[j])
- || reload_out[j] != 0 || reload_in[j] == 0
- || ! rtx_equal_p (reload_in[i], reload_in[j]))
- break;
- }
-
- /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
- we, in fact, found any matching reloads. */
-
- if (j == n_reloads)
- {
- for (j = 0; j < n_reloads; j++)
- if (i != j && reload_reg_rtx[j] != 0
- && rtx_equal_p (reload_reg_rtx[i], reload_reg_rtx[j]))
- {
- reload_when_needed[i] = RELOAD_OTHER;
- reload_in[j] = 0;
- transfer_replacements (i, j);
- }
-
- /* If this is now RELOAD_OTHER, look for any reloads that load
- parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
- if they were for inputs, RELOAD_OTHER for outputs. Note that
- this test is equivalent to looking for reloads for this operand
- number. */
-
- if (reload_when_needed[i] == RELOAD_OTHER)
- for (j = 0; j < n_reloads; j++)
- if (reload_in[j] != 0
- && reload_when_needed[i] != RELOAD_OTHER
- && reg_overlap_mentioned_for_reload_p (reload_in[j],
- reload_in[i]))
- reload_when_needed[j]
- = ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
- || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS)
- ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
- }
- }
-}
-#endif /* SMALL_RELOAD_CLASSES */
-
-/* Output insns to reload values in and out of the chosen reload regs. */
-
-static void
-emit_reload_insns (insn)
- rtx insn;
-{
- register int j;
- rtx input_reload_insns[MAX_RECOG_OPERANDS];
- rtx other_input_address_reload_insns = 0;
- rtx other_input_reload_insns = 0;
- rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
- rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
- rtx output_reload_insns[MAX_RECOG_OPERANDS];
- rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
- rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
- rtx operand_reload_insns = 0;
- rtx other_operand_reload_insns = 0;
- rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
- rtx following_insn = NEXT_INSN (insn);
- rtx before_insn = insn;
- int special;
- /* Values to be put in spill_reg_store are put here first. */
- rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
-
- for (j = 0; j < reload_n_operands; j++)
- input_reload_insns[j] = input_address_reload_insns[j]
- = inpaddr_address_reload_insns[j]
- = output_reload_insns[j] = output_address_reload_insns[j]
- = outaddr_address_reload_insns[j]
- = other_output_reload_insns[j] = 0;
-
- /* Now output the instructions to copy the data into and out of the
- reload registers. Do these in the order that the reloads were reported,
- since reloads of base and index registers precede reloads of operands
- and the operands may need the base and index registers reloaded. */
-
- for (j = 0; j < n_reloads; j++)
- {
- register rtx old;
- rtx oldequiv_reg = 0;
- rtx this_reload_insn = 0;
-
- if (reload_spill_index[j] >= 0)
- new_spill_reg_store[reload_spill_index[j]] = 0;
-
- old = reload_in[j];
- if (old != 0 && ! reload_inherited[j]
- && ! rtx_equal_p (reload_reg_rtx[j], old)
- && reload_reg_rtx[j] != 0)
- {
- register rtx reloadreg = reload_reg_rtx[j];
- rtx oldequiv = 0;
- enum machine_mode mode;
- rtx *where;
-
- /* Determine the mode to reload in.
- This is very tricky because we have three to choose from.
- There is the mode the insn operand wants (reload_inmode[J]).
- There is the mode of the reload register RELOADREG.
- There is the intrinsic mode of the operand, which we could find
- by stripping some SUBREGs.
- It turns out that RELOADREG's mode is irrelevant:
- we can change that arbitrarily.
-
- Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
- then the reload reg may not support QImode moves, so use SImode.
- If foo is in memory due to spilling a pseudo reg, this is safe,
- because the QImode value is in the least significant part of a
- slot big enough for a SImode. If foo is some other sort of
- memory reference, then it is impossible to reload this case,
- so previous passes had better make sure this never happens.
-
- Then consider a one-word union which has SImode and one of its
- members is a float, being fetched as (SUBREG:SF union:SI).
- We must fetch that as SFmode because we could be loading into
- a float-only register. In this case OLD's mode is correct.
-
- Consider an immediate integer: it has VOIDmode. Here we need
- to get a mode from something else.
-
- In some cases, there is a fourth mode, the operand's
- containing mode. If the insn specifies a containing mode for
- this operand, it overrides all others.
-
- I am not sure whether the algorithm here is always right,
- but it does the right things in those cases. */
-
- mode = GET_MODE (old);
- if (mode == VOIDmode)
- mode = reload_inmode[j];
-
-#ifdef SECONDARY_INPUT_RELOAD_CLASS
- /* If we need a secondary register for this operation, see if
- the value is already in a register in that class. Don't
- do this if the secondary register will be used as a scratch
- register. */
-
- if (reload_secondary_in_reload[j] >= 0
- && reload_secondary_in_icode[j] == CODE_FOR_nothing
- && optimize)
- oldequiv
- = find_equiv_reg (old, insn,
- reload_reg_class[reload_secondary_in_reload[j]],
- -1, NULL_PTR, 0, mode);
-#endif
-
- /* If reloading from memory, see if there is a register
- that already holds the same value. If so, reload from there.
- We can pass 0 as the reload_reg_p argument because
- any other reload has either already been emitted,
- in which case find_equiv_reg will see the reload-insn,
- or has yet to be emitted, in which case it doesn't matter
- because we will use this equiv reg right away. */
-
- if (oldequiv == 0 && optimize
- && (GET_CODE (old) == MEM
- || (GET_CODE (old) == REG
- && REGNO (old) >= FIRST_PSEUDO_REGISTER
- && reg_renumber[REGNO (old)] < 0)))
- oldequiv = find_equiv_reg (old, insn, ALL_REGS,
- -1, NULL_PTR, 0, mode);
-
- if (oldequiv)
- {
- int regno = true_regnum (oldequiv);
-
- /* If OLDEQUIV is a spill register, don't use it for this
- if any other reload needs it at an earlier stage of this insn
- or at this stage. */
- if (spill_reg_order[regno] >= 0
- && (! reload_reg_free_p (regno, reload_opnum[j],
- reload_when_needed[j])
- || ! reload_reg_free_before_p (regno, reload_opnum[j],
- reload_when_needed[j])))
- oldequiv = 0;
-
- /* If OLDEQUIV is not a spill register,
- don't use it if any other reload wants it. */
- if (spill_reg_order[regno] < 0)
- {
- int k;
- for (k = 0; k < n_reloads; k++)
- if (reload_reg_rtx[k] != 0 && k != j
- && reg_overlap_mentioned_for_reload_p (reload_reg_rtx[k],
- oldequiv))
- {
- oldequiv = 0;
- break;
- }
- }
-
- /* If it is no cheaper to copy from OLDEQUIV into the
- reload register than it would be to move from memory,
- don't use it. Likewise, if we need a secondary register
- or memory. */
-
- if (oldequiv != 0
- && ((REGNO_REG_CLASS (regno) != reload_reg_class[j]
- && (REGISTER_MOVE_COST (REGNO_REG_CLASS (regno),
- reload_reg_class[j])
- >= MEMORY_MOVE_COST (mode)))
-#ifdef SECONDARY_INPUT_RELOAD_CLASS
- || (SECONDARY_INPUT_RELOAD_CLASS (reload_reg_class[j],
- mode, oldequiv)
- != NO_REGS)
-#endif
-#ifdef SECONDARY_MEMORY_NEEDED
- || SECONDARY_MEMORY_NEEDED (reload_reg_class[j],
- REGNO_REG_CLASS (regno),
- mode)
-#endif
- ))
- oldequiv = 0;
- }
-
- if (oldequiv == 0)
- oldequiv = old;
- else if (GET_CODE (oldequiv) == REG)
- oldequiv_reg = oldequiv;
- else if (GET_CODE (oldequiv) == SUBREG)
- oldequiv_reg = SUBREG_REG (oldequiv);
-
- /* If we are reloading from a register that was recently stored in
- with an output-reload, see if we can prove there was
- actually no need to store the old value in it. */
-
- if (optimize && GET_CODE (oldequiv) == REG
- && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
- && spill_reg_order[REGNO (oldequiv)] >= 0
- && spill_reg_store[spill_reg_order[REGNO (oldequiv)]] != 0
- && find_reg_note (insn, REG_DEAD, reload_in[j])
- /* This is unsafe if operand occurs more than once in current
- insn. Perhaps some occurrences weren't reloaded. */
- && count_occurrences (PATTERN (insn), reload_in[j]) == 1)
- delete_output_reload
- (insn, j, spill_reg_store[spill_reg_order[REGNO (oldequiv)]]);
-
- /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
- then load RELOADREG from OLDEQUIV. Note that we cannot use
- gen_lowpart_common since it can do the wrong thing when
- RELOADREG has a multi-word mode. Note that RELOADREG
- must always be a REG here. */
-
- if (GET_MODE (reloadreg) != mode)
- reloadreg = gen_rtx (REG, mode, REGNO (reloadreg));
- while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
- oldequiv = SUBREG_REG (oldequiv);
- if (GET_MODE (oldequiv) != VOIDmode
- && mode != GET_MODE (oldequiv))
- oldequiv = gen_rtx (SUBREG, mode, oldequiv, 0);
-
- /* Switch to the right place to emit the reload insns. */
- switch (reload_when_needed[j])
- {
- case RELOAD_OTHER:
- where = &other_input_reload_insns;
- break;
- case RELOAD_FOR_INPUT:
- where = &input_reload_insns[reload_opnum[j]];
- break;
- case RELOAD_FOR_INPUT_ADDRESS:
- where = &input_address_reload_insns[reload_opnum[j]];
- break;
- case RELOAD_FOR_INPADDR_ADDRESS:
- where = &inpaddr_address_reload_insns[reload_opnum[j]];
- break;
- case RELOAD_FOR_OUTPUT_ADDRESS:
- where = &output_address_reload_insns[reload_opnum[j]];
- break;
- case RELOAD_FOR_OUTADDR_ADDRESS:
- where = &outaddr_address_reload_insns[reload_opnum[j]];
- break;
- case RELOAD_FOR_OPERAND_ADDRESS:
- where = &operand_reload_insns;
- break;
- case RELOAD_FOR_OPADDR_ADDR:
- where = &other_operand_reload_insns;
- break;
- case RELOAD_FOR_OTHER_ADDRESS:
- where = &other_input_address_reload_insns;
- break;
- default:
- abort ();
- }
-
- push_to_sequence (*where);
- special = 0;
-
- /* Auto-increment addresses must be reloaded in a special way. */
- if (GET_CODE (oldequiv) == POST_INC
- || GET_CODE (oldequiv) == POST_DEC
- || GET_CODE (oldequiv) == PRE_INC
- || GET_CODE (oldequiv) == PRE_DEC)
- {
- /* We are not going to bother supporting the case where a
- incremented register can't be copied directly from
- OLDEQUIV since this seems highly unlikely. */
- if (reload_secondary_in_reload[j] >= 0)
- abort ();
- /* Prevent normal processing of this reload. */
- special = 1;
- /* Output a special code sequence for this case. */
- inc_for_reload (reloadreg, oldequiv, reload_inc[j]);
- }
-
- /* If we are reloading a pseudo-register that was set by the previous
- insn, see if we can get rid of that pseudo-register entirely
- by redirecting the previous insn into our reload register. */
-
- else if (optimize && GET_CODE (old) == REG
- && REGNO (old) >= FIRST_PSEUDO_REGISTER
- && dead_or_set_p (insn, old)
- /* This is unsafe if some other reload
- uses the same reg first. */
- && reload_reg_free_before_p (REGNO (reloadreg),
- reload_opnum[j],
- reload_when_needed[j]))
- {
- rtx temp = PREV_INSN (insn);
- while (temp && GET_CODE (temp) == NOTE)
- temp = PREV_INSN (temp);
- if (temp
- && GET_CODE (temp) == INSN
- && GET_CODE (PATTERN (temp)) == SET
- && SET_DEST (PATTERN (temp)) == old
- /* Make sure we can access insn_operand_constraint. */
- && asm_noperands (PATTERN (temp)) < 0
- /* This is unsafe if prev insn rejects our reload reg. */
- && constraint_accepts_reg_p (insn_operand_constraint[recog_memoized (temp)][0],
- reloadreg)
- /* This is unsafe if operand occurs more than once in current
- insn. Perhaps some occurrences aren't reloaded. */
- && count_occurrences (PATTERN (insn), old) == 1
- /* Don't risk splitting a matching pair of operands. */
- && ! reg_mentioned_p (old, SET_SRC (PATTERN (temp))))
- {
- /* Store into the reload register instead of the pseudo. */
- SET_DEST (PATTERN (temp)) = reloadreg;
- /* If these are the only uses of the pseudo reg,
- pretend for GDB it lives in the reload reg we used. */
- if (reg_n_deaths[REGNO (old)] == 1
- && reg_n_sets[REGNO (old)] == 1)
- {
- reg_renumber[REGNO (old)] = REGNO (reload_reg_rtx[j]);
- alter_reg (REGNO (old), -1);
- }
- special = 1;
- }
- }
-
- /* We can't do that, so output an insn to load RELOADREG. */
-
- if (! special)
- {
-#ifdef SECONDARY_INPUT_RELOAD_CLASS
- rtx second_reload_reg = 0;
- enum insn_code icode;
-
- /* If we have a secondary reload, pick up the secondary register
- and icode, if any. If OLDEQUIV and OLD are different or
- if this is an in-out reload, recompute whether or not we
- still need a secondary register and what the icode should
- be. If we still need a secondary register and the class or
- icode is different, go back to reloading from OLD if using
- OLDEQUIV means that we got the wrong type of register. We
- cannot have different class or icode due to an in-out reload
- because we don't make such reloads when both the input and
- output need secondary reload registers. */
-
- if (reload_secondary_in_reload[j] >= 0)
- {
- int secondary_reload = reload_secondary_in_reload[j];
- rtx real_oldequiv = oldequiv;
- rtx real_old = old;
-
- /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
- and similarly for OLD.
- See comments in get_secondary_reload in reload.c. */
- if (GET_CODE (oldequiv) == REG
- && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
- && reg_equiv_mem[REGNO (oldequiv)] != 0)
- real_oldequiv = reg_equiv_mem[REGNO (oldequiv)];
-
- if (GET_CODE (old) == REG
- && REGNO (old) >= FIRST_PSEUDO_REGISTER
- && reg_equiv_mem[REGNO (old)] != 0)
- real_old = reg_equiv_mem[REGNO (old)];
-
- second_reload_reg = reload_reg_rtx[secondary_reload];
- icode = reload_secondary_in_icode[j];
-
- if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
- || (reload_in[j] != 0 && reload_out[j] != 0))
- {
- enum reg_class new_class
- = SECONDARY_INPUT_RELOAD_CLASS (reload_reg_class[j],
- mode, real_oldequiv);
-
- if (new_class == NO_REGS)
- second_reload_reg = 0;
- else
- {
- enum insn_code new_icode;
- enum machine_mode new_mode;
-
- if (! TEST_HARD_REG_BIT (reg_class_contents[(int) new_class],
- REGNO (second_reload_reg)))
- oldequiv = old, real_oldequiv = real_old;
- else
- {
- new_icode = reload_in_optab[(int) mode];
- if (new_icode != CODE_FOR_nothing
- && ((insn_operand_predicate[(int) new_icode][0]
- && ! ((*insn_operand_predicate[(int) new_icode][0])
- (reloadreg, mode)))
- || (insn_operand_predicate[(int) new_icode][1]
- && ! ((*insn_operand_predicate[(int) new_icode][1])
- (real_oldequiv, mode)))))
- new_icode = CODE_FOR_nothing;
-
- if (new_icode == CODE_FOR_nothing)
- new_mode = mode;
- else
- new_mode = insn_operand_mode[(int) new_icode][2];
-
- if (GET_MODE (second_reload_reg) != new_mode)
- {
- if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg),
- new_mode))
- oldequiv = old, real_oldequiv = real_old;
- else
- second_reload_reg
- = gen_rtx (REG, new_mode,
- REGNO (second_reload_reg));
- }
- }
- }
- }
-
- /* If we still need a secondary reload register, check
- to see if it is being used as a scratch or intermediate
- register and generate code appropriately. If we need
- a scratch register, use REAL_OLDEQUIV since the form of
- the insn may depend on the actual address if it is
- a MEM. */
-
- if (second_reload_reg)
- {
- if (icode != CODE_FOR_nothing)
- {
- emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
- second_reload_reg));
- special = 1;
- }
- else
- {
- /* See if we need a scratch register to load the
- intermediate register (a tertiary reload). */
- enum insn_code tertiary_icode
- = reload_secondary_in_icode[secondary_reload];
-
- if (tertiary_icode != CODE_FOR_nothing)
- {
- rtx third_reload_reg
- = reload_reg_rtx[reload_secondary_in_reload[secondary_reload]];
-
- emit_insn ((GEN_FCN (tertiary_icode)
- (second_reload_reg, real_oldequiv,
- third_reload_reg)));
- }
- else
- gen_reload (second_reload_reg, oldequiv,
- reload_opnum[j],
- reload_when_needed[j]);
-
- oldequiv = second_reload_reg;
- }
- }
- }
-#endif
-
- if (! special && ! rtx_equal_p (reloadreg, oldequiv))
- gen_reload (reloadreg, oldequiv, reload_opnum[j],
- reload_when_needed[j]);
-
-#if defined(SECONDARY_INPUT_RELOAD_CLASS) && defined(PRESERVE_DEATH_INFO_REGNO_P)
- /* We may have to make a REG_DEAD note for the secondary reload
- register in the insns we just made. Find the last insn that
- mentioned the register. */
- if (! special && second_reload_reg
- && PRESERVE_DEATH_INFO_REGNO_P (REGNO (second_reload_reg)))
- {
- rtx prev;
-
- for (prev = get_last_insn (); prev;
- prev = PREV_INSN (prev))
- if (GET_RTX_CLASS (GET_CODE (prev) == 'i')
- && reg_overlap_mentioned_for_reload_p (second_reload_reg,
- PATTERN (prev)))
- {
- REG_NOTES (prev) = gen_rtx (EXPR_LIST, REG_DEAD,
- second_reload_reg,
- REG_NOTES (prev));
- break;
- }
- }
-#endif
- }
-
- this_reload_insn = get_last_insn ();
- /* End this sequence. */
- *where = get_insns ();
- end_sequence ();
- }
-
- /* Add a note saying the input reload reg
- dies in this insn, if anyone cares. */
-#ifdef PRESERVE_DEATH_INFO_REGNO_P
- if (old != 0
- && reload_reg_rtx[j] != old
- && reload_reg_rtx[j] != 0
- && reload_out[j] == 0
- && ! reload_inherited[j]
- && PRESERVE_DEATH_INFO_REGNO_P (REGNO (reload_reg_rtx[j])))
- {
- register rtx reloadreg = reload_reg_rtx[j];
-
-#if 0
- /* We can't abort here because we need to support this for sched.c.
- It's not terrible to miss a REG_DEAD note, but we should try
- to figure out how to do this correctly. */
- /* The code below is incorrect for address-only reloads. */
- if (reload_when_needed[j] != RELOAD_OTHER
- && reload_when_needed[j] != RELOAD_FOR_INPUT)
- abort ();
-#endif
-
- /* Add a death note to this insn, for an input reload. */
-
- if ((reload_when_needed[j] == RELOAD_OTHER
- || reload_when_needed[j] == RELOAD_FOR_INPUT)
- && ! dead_or_set_p (insn, reloadreg))
- REG_NOTES (insn)
- = gen_rtx (EXPR_LIST, REG_DEAD,
- reloadreg, REG_NOTES (insn));
- }
-
- /* When we inherit a reload, the last marked death of the reload reg
- may no longer really be a death. */
- if (reload_reg_rtx[j] != 0
- && PRESERVE_DEATH_INFO_REGNO_P (REGNO (reload_reg_rtx[j]))
- && reload_inherited[j])
- {
- /* Handle inheriting an output reload.
- Remove the death note from the output reload insn. */
- if (reload_spill_index[j] >= 0
- && GET_CODE (reload_in[j]) == REG
- && spill_reg_store[reload_spill_index[j]] != 0
- && find_regno_note (spill_reg_store[reload_spill_index[j]],
- REG_DEAD, REGNO (reload_reg_rtx[j])))
- remove_death (REGNO (reload_reg_rtx[j]),
- spill_reg_store[reload_spill_index[j]]);
- /* Likewise for input reloads that were inherited. */
- else if (reload_spill_index[j] >= 0
- && GET_CODE (reload_in[j]) == REG
- && spill_reg_store[reload_spill_index[j]] == 0
- && reload_inheritance_insn[j] != 0
- && find_regno_note (reload_inheritance_insn[j], REG_DEAD,
- REGNO (reload_reg_rtx[j])))
- remove_death (REGNO (reload_reg_rtx[j]),
- reload_inheritance_insn[j]);
- else
- {
- rtx prev;
-
- /* We got this register from find_equiv_reg.
- Search back for its last death note and get rid of it.
- But don't search back too far.
- Don't go past a place where this reg is set,
- since a death note before that remains valid. */
- for (prev = PREV_INSN (insn);
- prev && GET_CODE (prev) != CODE_LABEL;
- prev = PREV_INSN (prev))
- if (GET_RTX_CLASS (GET_CODE (prev)) == 'i'
- && dead_or_set_p (prev, reload_reg_rtx[j]))
- {
- if (find_regno_note (prev, REG_DEAD,
- REGNO (reload_reg_rtx[j])))
- remove_death (REGNO (reload_reg_rtx[j]), prev);
- break;
- }
- }
- }
-
- /* We might have used find_equiv_reg above to choose an alternate
- place from which to reload. If so, and it died, we need to remove
- that death and move it to one of the insns we just made. */
-
- if (oldequiv_reg != 0
- && PRESERVE_DEATH_INFO_REGNO_P (true_regnum (oldequiv_reg)))
- {
- rtx prev, prev1;
-
- for (prev = PREV_INSN (insn); prev && GET_CODE (prev) != CODE_LABEL;
- prev = PREV_INSN (prev))
- if (GET_RTX_CLASS (GET_CODE (prev)) == 'i'
- && dead_or_set_p (prev, oldequiv_reg))
- {
- if (find_regno_note (prev, REG_DEAD, REGNO (oldequiv_reg)))
- {
- for (prev1 = this_reload_insn;
- prev1; prev1 = PREV_INSN (prev1))
- if (GET_RTX_CLASS (GET_CODE (prev1) == 'i')
- && reg_overlap_mentioned_for_reload_p (oldequiv_reg,
- PATTERN (prev1)))
- {
- REG_NOTES (prev1) = gen_rtx (EXPR_LIST, REG_DEAD,
- oldequiv_reg,
- REG_NOTES (prev1));
- break;
- }
- remove_death (REGNO (oldequiv_reg), prev);
- }
- break;
- }
- }
-#endif
-
- /* If we are reloading a register that was recently stored in with an
- output-reload, see if we can prove there was
- actually no need to store the old value in it. */
-
- if (optimize && reload_inherited[j] && reload_spill_index[j] >= 0
- && reload_in[j] != 0
- && GET_CODE (reload_in[j]) == REG
-#if 0
- /* There doesn't seem to be any reason to restrict this to pseudos
- and doing so loses in the case where we are copying from a
- register of the wrong class. */
- && REGNO (reload_in[j]) >= FIRST_PSEUDO_REGISTER
-#endif
- && spill_reg_store[reload_spill_index[j]] != 0
- /* This is unsafe if some other reload uses the same reg first. */
- && reload_reg_free_before_p (spill_regs[reload_spill_index[j]],
- reload_opnum[j], reload_when_needed[j])
- && dead_or_set_p (insn, reload_in[j])
- /* This is unsafe if operand occurs more than once in current
- insn. Perhaps some occurrences weren't reloaded. */
- && count_occurrences (PATTERN (insn), reload_in[j]) == 1)
- delete_output_reload (insn, j,
- spill_reg_store[reload_spill_index[j]]);
-
- /* Input-reloading is done. Now do output-reloading,
- storing the value from the reload-register after the main insn
- if reload_out[j] is nonzero.
-
- ??? At some point we need to support handling output reloads of
- JUMP_INSNs or insns that set cc0. */
- old = reload_out[j];
- if (old != 0
- && reload_reg_rtx[j] != old
- && reload_reg_rtx[j] != 0)
- {
- register rtx reloadreg = reload_reg_rtx[j];
- register rtx second_reloadreg = 0;
- rtx note, p;
- enum machine_mode mode;
- int special = 0;
-
- /* An output operand that dies right away does need a reload,
- but need not be copied from it. Show the new location in the
- REG_UNUSED note. */
- if ((GET_CODE (old) == REG || GET_CODE (old) == SCRATCH)
- && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
- {
- XEXP (note, 0) = reload_reg_rtx[j];
- continue;
- }
- /* Likewise for a SUBREG of an operand that dies. */
- else if (GET_CODE (old) == SUBREG
- && GET_CODE (SUBREG_REG (old)) == REG
- && 0 != (note = find_reg_note (insn, REG_UNUSED,
- SUBREG_REG (old))))
- {
- XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
- reload_reg_rtx[j]);
- continue;
- }
- else if (GET_CODE (old) == SCRATCH)
- /* If we aren't optimizing, there won't be a REG_UNUSED note,
- but we don't want to make an output reload. */
- continue;
-
-#if 0
- /* Strip off of OLD any size-increasing SUBREGs such as
- (SUBREG:SI foo:QI 0). */
-
- while (GET_CODE (old) == SUBREG && SUBREG_WORD (old) == 0
- && (GET_MODE_SIZE (GET_MODE (old))
- > GET_MODE_SIZE (GET_MODE (SUBREG_REG (old)))))
- old = SUBREG_REG (old);
-#endif
-
- /* If is a JUMP_INSN, we can't support output reloads yet. */
- if (GET_CODE (insn) == JUMP_INSN)
- abort ();
-
- if (reload_when_needed[j] == RELOAD_OTHER)
- start_sequence ();
- else
- push_to_sequence (output_reload_insns[reload_opnum[j]]);
-
- /* Determine the mode to reload in.
- See comments above (for input reloading). */
-
- mode = GET_MODE (old);
- if (mode == VOIDmode)
- {
- /* VOIDmode should never happen for an output. */
- if (asm_noperands (PATTERN (insn)) < 0)
- /* It's the compiler's fault. */
- fatal_insn ("VOIDmode on an output", insn);
- error_for_asm (insn, "output operand is constant in `asm'");
- /* Prevent crash--use something we know is valid. */
- mode = word_mode;
- old = gen_rtx (REG, mode, REGNO (reloadreg));
- }
-
- if (GET_MODE (reloadreg) != mode)
- reloadreg = gen_rtx (REG, mode, REGNO (reloadreg));
-
-#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
-
- /* If we need two reload regs, set RELOADREG to the intermediate
- one, since it will be stored into OLD. We might need a secondary
- register only for an input reload, so check again here. */
-
- if (reload_secondary_out_reload[j] >= 0)
- {
- rtx real_old = old;
-
- if (GET_CODE (old) == REG && REGNO (old) >= FIRST_PSEUDO_REGISTER
- && reg_equiv_mem[REGNO (old)] != 0)
- real_old = reg_equiv_mem[REGNO (old)];
-
- if((SECONDARY_OUTPUT_RELOAD_CLASS (reload_reg_class[j],
- mode, real_old)
- != NO_REGS))
- {
- second_reloadreg = reloadreg;
- reloadreg = reload_reg_rtx[reload_secondary_out_reload[j]];
-
- /* See if RELOADREG is to be used as a scratch register
- or as an intermediate register. */
- if (reload_secondary_out_icode[j] != CODE_FOR_nothing)
- {
- emit_insn ((GEN_FCN (reload_secondary_out_icode[j])
- (real_old, second_reloadreg, reloadreg)));
- special = 1;
- }
- else
- {
- /* See if we need both a scratch and intermediate reload
- register. */
-
- int secondary_reload = reload_secondary_out_reload[j];
- enum insn_code tertiary_icode
- = reload_secondary_out_icode[secondary_reload];
-
- if (GET_MODE (reloadreg) != mode)
- reloadreg = gen_rtx (REG, mode, REGNO (reloadreg));
-
- if (tertiary_icode != CODE_FOR_nothing)
- {
- rtx third_reloadreg
- = reload_reg_rtx[reload_secondary_out_reload[secondary_reload]];
- rtx tem;
-
- /* Copy primary reload reg to secondary reload reg.
- (Note that these have been swapped above, then
- secondary reload reg to OLD using our insn. */
-
- /* If REAL_OLD is a paradoxical SUBREG, remove it
- and try to put the opposite SUBREG on
- RELOADREG. */
- if (GET_CODE (real_old) == SUBREG
- && (GET_MODE_SIZE (GET_MODE (real_old))
- > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
- && 0 != (tem = gen_lowpart_common
- (GET_MODE (SUBREG_REG (real_old)),
- reloadreg)))
- real_old = SUBREG_REG (real_old), reloadreg = tem;
-
- gen_reload (reloadreg, second_reloadreg,
- reload_opnum[j], reload_when_needed[j]);
- emit_insn ((GEN_FCN (tertiary_icode)
- (real_old, reloadreg, third_reloadreg)));
- special = 1;
- }
-
- else
- /* Copy between the reload regs here and then to
- OUT later. */
-
- gen_reload (reloadreg, second_reloadreg,
- reload_opnum[j], reload_when_needed[j]);
- }
- }
- }
-#endif
-
- /* Output the last reload insn. */
- if (! special)
- gen_reload (old, reloadreg, reload_opnum[j],
- reload_when_needed[j]);
-
-#ifdef PRESERVE_DEATH_INFO_REGNO_P
- /* If final will look at death notes for this reg,
- put one on the last output-reload insn to use it. Similarly
- for any secondary register. */
- if (PRESERVE_DEATH_INFO_REGNO_P (REGNO (reloadreg)))
- for (p = get_last_insn (); p; p = PREV_INSN (p))
- if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
- && reg_overlap_mentioned_for_reload_p (reloadreg,
- PATTERN (p)))
- REG_NOTES (p) = gen_rtx (EXPR_LIST, REG_DEAD,
- reloadreg, REG_NOTES (p));
-
-#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
- if (! special && second_reloadreg
- && PRESERVE_DEATH_INFO_REGNO_P (REGNO (second_reloadreg)))
- for (p = get_last_insn (); p; p = PREV_INSN (p))
- if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
- && reg_overlap_mentioned_for_reload_p (second_reloadreg,
- PATTERN (p)))
- REG_NOTES (p) = gen_rtx (EXPR_LIST, REG_DEAD,
- second_reloadreg, REG_NOTES (p));
-#endif
-#endif
- /* Look at all insns we emitted, just to be safe. */
- for (p = get_insns (); p; p = NEXT_INSN (p))
- if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
- {
- /* If this output reload doesn't come from a spill reg,
- clear any memory of reloaded copies of the pseudo reg.
- If this output reload comes from a spill reg,
- reg_has_output_reload will make this do nothing. */
- note_stores (PATTERN (p), forget_old_reloads_1);
-
- if (reg_mentioned_p (reload_reg_rtx[j], PATTERN (p))
- && reload_spill_index[j] >= 0)
- new_spill_reg_store[reload_spill_index[j]] = p;
- }
-
- if (reload_when_needed[j] == RELOAD_OTHER)
- {
- emit_insns (other_output_reload_insns[reload_opnum[j]]);
- other_output_reload_insns[reload_opnum[j]] = get_insns ();
- }
- else
- output_reload_insns[reload_opnum[j]] = get_insns ();
-
- end_sequence ();
- }
- }
-
- /* Now write all the insns we made for reloads in the order expected by
- the allocation functions. Prior to the insn being reloaded, we write
- the following reloads:
-
- RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
-
- RELOAD_OTHER reloads.
-
- For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
- by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
- RELOAD_FOR_INPUT reload for the operand.
-
- RELOAD_FOR_OPADDR_ADDRS reloads.
-
- RELOAD_FOR_OPERAND_ADDRESS reloads.
-
- After the insn being reloaded, we write the following:
-
- For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
- by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
- RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
- reloads for the operand. The RELOAD_OTHER output reloads are
- output in descending order by reload number. */
-
- emit_insns_before (other_input_address_reload_insns, before_insn);
- emit_insns_before (other_input_reload_insns, before_insn);
-
- for (j = 0; j < reload_n_operands; j++)
- {
- emit_insns_before (inpaddr_address_reload_insns[j], before_insn);
- emit_insns_before (input_address_reload_insns[j], before_insn);
- emit_insns_before (input_reload_insns[j], before_insn);
- }
-
- emit_insns_before (other_operand_reload_insns, before_insn);
- emit_insns_before (operand_reload_insns, before_insn);
-
- for (j = 0; j < reload_n_operands; j++)
- {
- emit_insns_before (outaddr_address_reload_insns[j], following_insn);
- emit_insns_before (output_address_reload_insns[j], following_insn);
- emit_insns_before (output_reload_insns[j], following_insn);
- emit_insns_before (other_output_reload_insns[j], following_insn);
- }
-
- /* Move death notes from INSN
- to output-operand-address and output reload insns. */
-#ifdef PRESERVE_DEATH_INFO_REGNO_P
- {
- rtx insn1;
- /* Loop over those insns, last ones first. */
- for (insn1 = PREV_INSN (following_insn); insn1 != insn;
- insn1 = PREV_INSN (insn1))
- if (GET_CODE (insn1) == INSN && GET_CODE (PATTERN (insn1)) == SET)
- {
- rtx source = SET_SRC (PATTERN (insn1));
- rtx dest = SET_DEST (PATTERN (insn1));
-
- /* The note we will examine next. */
- rtx reg_notes = REG_NOTES (insn);
- /* The place that pointed to this note. */
- rtx *prev_reg_note = &REG_NOTES (insn);
-
- /* If the note is for something used in the source of this
- reload insn, or in the output address, move the note. */
- while (reg_notes)
- {
- rtx next_reg_notes = XEXP (reg_notes, 1);
- if (REG_NOTE_KIND (reg_notes) == REG_DEAD
- && GET_CODE (XEXP (reg_notes, 0)) == REG
- && ((GET_CODE (dest) != REG
- && reg_overlap_mentioned_for_reload_p (XEXP (reg_notes, 0),
- dest))
- || reg_overlap_mentioned_for_reload_p (XEXP (reg_notes, 0),
- source)))
- {
- *prev_reg_note = next_reg_notes;
- XEXP (reg_notes, 1) = REG_NOTES (insn1);
- REG_NOTES (insn1) = reg_notes;
- }
- else
- prev_reg_note = &XEXP (reg_notes, 1);
-
- reg_notes = next_reg_notes;
- }
- }
- }
-#endif
-
- /* For all the spill regs newly reloaded in this instruction,
- record what they were reloaded from, so subsequent instructions
- can inherit the reloads.
-
- Update spill_reg_store for the reloads of this insn.
- Copy the elements that were updated in the loop above. */
-
- for (j = 0; j < n_reloads; j++)
- {
- register int r = reload_order[j];
- register int i = reload_spill_index[r];
-
- /* I is nonneg if this reload used one of the spill regs.
- If reload_reg_rtx[r] is 0, this is an optional reload
- that we opted to ignore. */
-
- if (i >= 0 && reload_reg_rtx[r] != 0)
- {
- int nr
- = HARD_REGNO_NREGS (spill_regs[i], GET_MODE (reload_reg_rtx[r]));
- int k;
- int part_reaches_end = 0;
- int all_reaches_end = 1;
-
- /* For a multi register reload, we need to check if all or part
- of the value lives to the end. */
- for (k = 0; k < nr; k++)
- {
- if (reload_reg_reaches_end_p (spill_regs[i] + k, reload_opnum[r],
- reload_when_needed[r]))
- part_reaches_end = 1;
- else
- all_reaches_end = 0;
- }
-
- /* Ignore reloads that don't reach the end of the insn in
- entirety. */
- if (all_reaches_end)
- {
- /* First, clear out memory of what used to be in this spill reg.
- If consecutive registers are used, clear them all. */
-
- for (k = 0; k < nr; k++)
- {
- reg_reloaded_contents[spill_reg_order[spill_regs[i] + k]] = -1;
- reg_reloaded_insn[spill_reg_order[spill_regs[i] + k]] = 0;
- }
-
- /* Maybe the spill reg contains a copy of reload_out. */
- if (reload_out[r] != 0 && GET_CODE (reload_out[r]) == REG)
- {
- register int nregno = REGNO (reload_out[r]);
- int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
- : HARD_REGNO_NREGS (nregno,
- GET_MODE (reload_reg_rtx[r])));
-
- spill_reg_store[i] = new_spill_reg_store[i];
- reg_last_reload_reg[nregno] = reload_reg_rtx[r];
-
- /* If NREGNO is a hard register, it may occupy more than
- one register. If it does, say what is in the
- rest of the registers assuming that both registers
- agree on how many words the object takes. If not,
- invalidate the subsequent registers. */
-
- if (nregno < FIRST_PSEUDO_REGISTER)
- for (k = 1; k < nnr; k++)
- reg_last_reload_reg[nregno + k]
- = (nr == nnr
- ? gen_rtx (REG,
- reg_raw_mode[REGNO (reload_reg_rtx[r]) + k],
- REGNO (reload_reg_rtx[r]) + k)
- : 0);
-
- /* Now do the inverse operation. */
- for (k = 0; k < nr; k++)
- {
- reg_reloaded_contents[spill_reg_order[spill_regs[i] + k]]
- = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
- ? nregno
- : nregno + k);
- reg_reloaded_insn[spill_reg_order[spill_regs[i] + k]] = insn;
- }
- }
-
- /* Maybe the spill reg contains a copy of reload_in. Only do
- something if there will not be an output reload for
- the register being reloaded. */
- else if (reload_out[r] == 0
- && reload_in[r] != 0
- && ((GET_CODE (reload_in[r]) == REG
- && ! reg_has_output_reload[REGNO (reload_in[r])])
- || (GET_CODE (reload_in_reg[r]) == REG
- && ! reg_has_output_reload[REGNO (reload_in_reg[r])])))
- {
- register int nregno;
- int nnr;
-
- if (GET_CODE (reload_in[r]) == REG)
- nregno = REGNO (reload_in[r]);
- else
- nregno = REGNO (reload_in_reg[r]);
-
- nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
- : HARD_REGNO_NREGS (nregno,
- GET_MODE (reload_reg_rtx[r])));
-
- reg_last_reload_reg[nregno] = reload_reg_rtx[r];
-
- if (nregno < FIRST_PSEUDO_REGISTER)
- for (k = 1; k < nnr; k++)
- reg_last_reload_reg[nregno + k]
- = (nr == nnr
- ? gen_rtx (REG,
- reg_raw_mode[REGNO (reload_reg_rtx[r]) + k],
- REGNO (reload_reg_rtx[r]) + k)
- : 0);
-
- /* Unless we inherited this reload, show we haven't
- recently done a store. */
- if (! reload_inherited[r])
- spill_reg_store[i] = 0;
-
- for (k = 0; k < nr; k++)
- {
- reg_reloaded_contents[spill_reg_order[spill_regs[i] + k]]
- = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
- ? nregno
- : nregno + k);
- reg_reloaded_insn[spill_reg_order[spill_regs[i] + k]]
- = insn;
- }
- }
- }
-
- /* However, if part of the reload reaches the end, then we must
- invalidate the old info for the part that survives to the end. */
- else if (part_reaches_end)
- {
- for (k = 0; k < nr; k++)
- if (reload_reg_reaches_end_p (spill_regs[i] + k,
- reload_opnum[r],
- reload_when_needed[r]))
- {
- reg_reloaded_contents[spill_reg_order[spill_regs[i] + k]] = -1;
- reg_reloaded_insn[spill_reg_order[spill_regs[i] + k]] = 0;
- }
- }
- }
-
- /* The following if-statement was #if 0'd in 1.34 (or before...).
- It's reenabled in 1.35 because supposedly nothing else
- deals with this problem. */
-
- /* If a register gets output-reloaded from a non-spill register,
- that invalidates any previous reloaded copy of it.
- But forget_old_reloads_1 won't get to see it, because
- it thinks only about the original insn. So invalidate it here. */
- if (i < 0 && reload_out[r] != 0 && GET_CODE (reload_out[r]) == REG)
- {
- register int nregno = REGNO (reload_out[r]);
- if (nregno >= FIRST_PSEUDO_REGISTER)
- reg_last_reload_reg[nregno] = 0;
- else
- {
- int num_regs = HARD_REGNO_NREGS (nregno,GET_MODE (reload_out[r]));
-
- while (num_regs-- > 0)
- reg_last_reload_reg[nregno + num_regs] = 0;
- }
- }
- }
-}
-
-/* Emit code to perform a reload from IN (which may be a reload register) to
- OUT (which may also be a reload register). IN or OUT is from operand
- OPNUM with reload type TYPE.
-
- Returns first insn emitted. */
-
-rtx
-gen_reload (out, in, opnum, type)
- rtx out;
- rtx in;
- int opnum;
- enum reload_type type;
-{
- rtx last = get_last_insn ();
- rtx tem;
-
- /* If IN is a paradoxical SUBREG, remove it and try to put the
- opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
- if (GET_CODE (in) == SUBREG
- && (GET_MODE_SIZE (GET_MODE (in))
- > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
- && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
- in = SUBREG_REG (in), out = tem;
- else if (GET_CODE (out) == SUBREG
- && (GET_MODE_SIZE (GET_MODE (out))
- > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
- && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
- out = SUBREG_REG (out), in = tem;
-
- /* How to do this reload can get quite tricky. Normally, we are being
- asked to reload a simple operand, such as a MEM, a constant, or a pseudo
- register that didn't get a hard register. In that case we can just
- call emit_move_insn.
-
- We can also be asked to reload a PLUS that adds a register or a MEM to
- another register, constant or MEM. This can occur during frame pointer
- elimination and while reloading addresses. This case is handled by
- trying to emit a single insn to perform the add. If it is not valid,
- we use a two insn sequence.
-
- Finally, we could be called to handle an 'o' constraint by putting
- an address into a register. In that case, we first try to do this
- with a named pattern of "reload_load_address". If no such pattern
- exists, we just emit a SET insn and hope for the best (it will normally
- be valid on machines that use 'o').
-
- This entire process is made complex because reload will never
- process the insns we generate here and so we must ensure that
- they will fit their constraints and also by the fact that parts of
- IN might be being reloaded separately and replaced with spill registers.
- Because of this, we are, in some sense, just guessing the right approach
- here. The one listed above seems to work.
-
- ??? At some point, this whole thing needs to be rethought. */
-
- if (GET_CODE (in) == PLUS
- && (GET_CODE (XEXP (in, 0)) == REG
- || GET_CODE (XEXP (in, 0)) == SUBREG
- || GET_CODE (XEXP (in, 0)) == MEM)
- && (GET_CODE (XEXP (in, 1)) == REG
- || GET_CODE (XEXP (in, 1)) == SUBREG
- || CONSTANT_P (XEXP (in, 1))
- || GET_CODE (XEXP (in, 1)) == MEM))
- {
- /* We need to compute the sum of a register or a MEM and another
- register, constant, or MEM, and put it into the reload
- register. The best possible way of doing this is if the machine
- has a three-operand ADD insn that accepts the required operands.
-
- The simplest approach is to try to generate such an insn and see if it
- is recognized and matches its constraints. If so, it can be used.
-
- It might be better not to actually emit the insn unless it is valid,
- but we need to pass the insn as an operand to `recog' and
- `insn_extract' and it is simpler to emit and then delete the insn if
- not valid than to dummy things up. */
-
- rtx op0, op1, tem, insn;
- int code;
-
- op0 = find_replacement (&XEXP (in, 0));
- op1 = find_replacement (&XEXP (in, 1));
-
- /* Since constraint checking is strict, commutativity won't be
- checked, so we need to do that here to avoid spurious failure
- if the add instruction is two-address and the second operand
- of the add is the same as the reload reg, which is frequently
- the case. If the insn would be A = B + A, rearrange it so
- it will be A = A + B as constrain_operands expects. */
-
- if (GET_CODE (XEXP (in, 1)) == REG
- && REGNO (out) == REGNO (XEXP (in, 1)))
- tem = op0, op0 = op1, op1 = tem;
-
- if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
- in = gen_rtx (PLUS, GET_MODE (in), op0, op1);
-
- insn = emit_insn (gen_rtx (SET, VOIDmode, out, in));
- code = recog_memoized (insn);
-
- if (code >= 0)
- {
- insn_extract (insn);
- /* We want constrain operands to treat this insn strictly in
- its validity determination, i.e., the way it would after reload
- has completed. */
- if (constrain_operands (code, 1))
- return insn;
- }
-
- delete_insns_since (last);
-
- /* If that failed, we must use a conservative two-insn sequence.
- use move to copy constant, MEM, or pseudo register to the reload
- register since "move" will be able to handle an arbitrary operand,
- unlike add which can't, in general. Then add the registers.
-
- If there is another way to do this for a specific machine, a
- DEFINE_PEEPHOLE should be specified that recognizes the sequence
- we emit below. */
-
- if (CONSTANT_P (op1) || GET_CODE (op1) == MEM || GET_CODE (op1) == SUBREG
- || (GET_CODE (op1) == REG
- && REGNO (op1) >= FIRST_PSEUDO_REGISTER))
- tem = op0, op0 = op1, op1 = tem;
-
- gen_reload (out, op0, opnum, type);
-
- /* If OP0 and OP1 are the same, we can use OUT for OP1.
- This fixes a problem on the 32K where the stack pointer cannot
- be used as an operand of an add insn. */
-
- if (rtx_equal_p (op0, op1))
- op1 = out;
-
- insn = emit_insn (gen_add2_insn (out, op1));
-
- /* If that failed, copy the address register to the reload register.
- Then add the constant to the reload register. */
-
- code = recog_memoized (insn);
-
- if (code >= 0)
- {
- insn_extract (insn);
- /* We want constrain operands to treat this insn strictly in
- its validity determination, i.e., the way it would after reload
- has completed. */
- if (constrain_operands (code, 1))
- return insn;
- }
-
- delete_insns_since (last);
-
- gen_reload (out, op1, opnum, type);
- emit_insn (gen_add2_insn (out, op0));
- }
-
-#ifdef SECONDARY_MEMORY_NEEDED
- /* If we need a memory location to do the move, do it that way. */
- else if (GET_CODE (in) == REG && REGNO (in) < FIRST_PSEUDO_REGISTER
- && GET_CODE (out) == REG && REGNO (out) < FIRST_PSEUDO_REGISTER
- && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
- REGNO_REG_CLASS (REGNO (out)),
- GET_MODE (out)))
- {
- /* Get the memory to use and rewrite both registers to its mode. */
- rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
-
- if (GET_MODE (loc) != GET_MODE (out))
- out = gen_rtx (REG, GET_MODE (loc), REGNO (out));
-
- if (GET_MODE (loc) != GET_MODE (in))
- in = gen_rtx (REG, GET_MODE (loc), REGNO (in));
-
- gen_reload (loc, in, opnum, type);
- gen_reload (out, loc, opnum, type);
- }
-#endif
-
- /* If IN is a simple operand, use gen_move_insn. */
- else if (GET_RTX_CLASS (GET_CODE (in)) == 'o' || GET_CODE (in) == SUBREG)
- emit_insn (gen_move_insn (out, in));
-
-#ifdef HAVE_reload_load_address
- else if (HAVE_reload_load_address)
- emit_insn (gen_reload_load_address (out, in));
-#endif
-
- /* Otherwise, just write (set OUT IN) and hope for the best. */
- else
- emit_insn (gen_rtx (SET, VOIDmode, out, in));
-
- /* Return the first insn emitted.
- We can not just return get_last_insn, because there may have
- been multiple instructions emitted. Also note that gen_move_insn may
- emit more than one insn itself, so we can not assume that there is one
- insn emitted per emit_insn_before call. */
-
- return last ? NEXT_INSN (last) : get_insns ();
-}
-
-/* Delete a previously made output-reload
- whose result we now believe is not needed.
- First we double-check.
-
- INSN is the insn now being processed.
- OUTPUT_RELOAD_INSN is the insn of the output reload.
- J is the reload-number for this insn. */
-
-static void
-delete_output_reload (insn, j, output_reload_insn)
- rtx insn;
- int j;
- rtx output_reload_insn;
-{
- register rtx i1;
-
- /* Get the raw pseudo-register referred to. */
-
- rtx reg = reload_in[j];
- while (GET_CODE (reg) == SUBREG)
- reg = SUBREG_REG (reg);
-
- /* If the pseudo-reg we are reloading is no longer referenced
- anywhere between the store into it and here,
- and no jumps or labels intervene, then the value can get
- here through the reload reg alone.
- Otherwise, give up--return. */
- for (i1 = NEXT_INSN (output_reload_insn);
- i1 != insn; i1 = NEXT_INSN (i1))
- {
- if (GET_CODE (i1) == CODE_LABEL || GET_CODE (i1) == JUMP_INSN)
- return;
- if ((GET_CODE (i1) == INSN || GET_CODE (i1) == CALL_INSN)
- && reg_mentioned_p (reg, PATTERN (i1)))
- return;
- }
-
- if (cannot_omit_stores[REGNO (reg)])
- return;
-
- /* If this insn will store in the pseudo again,
- the previous store can be removed. */
- if (reload_out[j] == reload_in[j])
- delete_insn (output_reload_insn);
-
- /* See if the pseudo reg has been completely replaced
- with reload regs. If so, delete the store insn
- and forget we had a stack slot for the pseudo. */
- else if (reg_n_deaths[REGNO (reg)] == 1
- && reg_basic_block[REGNO (reg)] >= 0
- && find_regno_note (insn, REG_DEAD, REGNO (reg)))
- {
- rtx i2;
-
- /* We know that it was used only between here
- and the beginning of the current basic block.
- (We also know that the last use before INSN was
- the output reload we are thinking of deleting, but never mind that.)
- Search that range; see if any ref remains. */
- for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
- {
- rtx set = single_set (i2);
-
- /* Uses which just store in the pseudo don't count,
- since if they are the only uses, they are dead. */
- if (set != 0 && SET_DEST (set) == reg)
- continue;
- if (GET_CODE (i2) == CODE_LABEL
- || GET_CODE (i2) == JUMP_INSN)
- break;
- if ((GET_CODE (i2) == INSN || GET_CODE (i2) == CALL_INSN)
- && reg_mentioned_p (reg, PATTERN (i2)))
- /* Some other ref remains;
- we can't do anything. */
- return;
- }
-
- /* Delete the now-dead stores into this pseudo. */
- for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
- {
- rtx set = single_set (i2);
-
- if (set != 0 && SET_DEST (set) == reg)
- {
- /* This might be a basic block head,
- thus don't use delete_insn. */
- PUT_CODE (i2, NOTE);
- NOTE_SOURCE_FILE (i2) = 0;
- NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
- }
- if (GET_CODE (i2) == CODE_LABEL
- || GET_CODE (i2) == JUMP_INSN)
- break;
- }
-
- /* For the debugging info,
- say the pseudo lives in this reload reg. */
- reg_renumber[REGNO (reg)] = REGNO (reload_reg_rtx[j]);
- alter_reg (REGNO (reg), -1);
- }
-}
-
-/* Output reload-insns to reload VALUE into RELOADREG.
- VALUE is an autoincrement or autodecrement RTX whose operand
- is a register or memory location;
- so reloading involves incrementing that location.
-
- INC_AMOUNT is the number to increment or decrement by (always positive).
- This cannot be deduced from VALUE. */
-
-static void
-inc_for_reload (reloadreg, value, inc_amount)
- rtx reloadreg;
- rtx value;
- int inc_amount;
-{
- /* REG or MEM to be copied and incremented. */
- rtx incloc = XEXP (value, 0);
- /* Nonzero if increment after copying. */
- int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC);
- rtx last;
- rtx inc;
- rtx add_insn;
- int code;
-
- /* No hard register is equivalent to this register after
- inc/dec operation. If REG_LAST_RELOAD_REG were non-zero,
- we could inc/dec that register as well (maybe even using it for
- the source), but I'm not sure it's worth worrying about. */
- if (GET_CODE (incloc) == REG)
- reg_last_reload_reg[REGNO (incloc)] = 0;
-
- if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
- inc_amount = - inc_amount;
-
- inc = GEN_INT (inc_amount);
-
- /* If this is post-increment, first copy the location to the reload reg. */
- if (post)
- emit_insn (gen_move_insn (reloadreg, incloc));
-
- /* See if we can directly increment INCLOC. Use a method similar to that
- in gen_reload. */
-
- last = get_last_insn ();
- add_insn = emit_insn (gen_rtx (SET, VOIDmode, incloc,
- gen_rtx (PLUS, GET_MODE (incloc),
- incloc, inc)));
-
- code = recog_memoized (add_insn);
- if (code >= 0)
- {
- insn_extract (add_insn);
- if (constrain_operands (code, 1))
- {
- /* If this is a pre-increment and we have incremented the value
- where it lives, copy the incremented value to RELOADREG to
- be used as an address. */
-
- if (! post)
- emit_insn (gen_move_insn (reloadreg, incloc));
-
- return;
- }
- }
-
- delete_insns_since (last);
-
- /* If couldn't do the increment directly, must increment in RELOADREG.
- The way we do this depends on whether this is pre- or post-increment.
- For pre-increment, copy INCLOC to the reload register, increment it
- there, then save back. */
-
- if (! post)
- {
- emit_insn (gen_move_insn (reloadreg, incloc));
- emit_insn (gen_add2_insn (reloadreg, inc));
- emit_insn (gen_move_insn (incloc, reloadreg));
- }
- else
- {
- /* Postincrement.
- Because this might be a jump insn or a compare, and because RELOADREG
- may not be available after the insn in an input reload, we must do
- the incrementation before the insn being reloaded for.
-
- We have already copied INCLOC to RELOADREG. Increment the copy in
- RELOADREG, save that back, then decrement RELOADREG so it has
- the original value. */
-
- emit_insn (gen_add2_insn (reloadreg, inc));
- emit_insn (gen_move_insn (incloc, reloadreg));
- emit_insn (gen_add2_insn (reloadreg, GEN_INT (-inc_amount)));
- }
-
- return;
-}
-
-/* Return 1 if we are certain that the constraint-string STRING allows
- the hard register REG. Return 0 if we can't be sure of this. */
-
-static int
-constraint_accepts_reg_p (string, reg)
- char *string;
- rtx reg;
-{
- int value = 0;
- int regno = true_regnum (reg);
- int c;
-
- /* Initialize for first alternative. */
- value = 0;
- /* Check that each alternative contains `g' or `r'. */
- while (1)
- switch (c = *string++)
- {
- case 0:
- /* If an alternative lacks `g' or `r', we lose. */
- return value;
- case ',':
- /* If an alternative lacks `g' or `r', we lose. */
- if (value == 0)
- return 0;
- /* Initialize for next alternative. */
- value = 0;
- break;
- case 'g':
- case 'r':
- /* Any general reg wins for this alternative. */
- if (TEST_HARD_REG_BIT (reg_class_contents[(int) GENERAL_REGS], regno))
- value = 1;
- break;
- default:
- /* Any reg in specified class wins for this alternative. */
- {
- enum reg_class class = REG_CLASS_FROM_LETTER (c);
-
- if (TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno))
- value = 1;
- }
- }
-}
-
-/* Return the number of places FIND appears within X, but don't count
- an occurrence if some SET_DEST is FIND. */
-
-static int
-count_occurrences (x, find)
- register rtx x, find;
-{
- register int i, j;
- register enum rtx_code code;
- register char *format_ptr;
- int count;
-
- if (x == find)
- return 1;
- if (x == 0)
- return 0;
-
- code = GET_CODE (x);
-
- switch (code)
- {
- case REG:
- case QUEUED:
- case CONST_INT:
- case CONST_DOUBLE:
- case SYMBOL_REF:
- case CODE_LABEL:
- case PC:
- case CC0:
- return 0;
-
- case SET:
- if (SET_DEST (x) == find)
- return count_occurrences (SET_SRC (x), find);
- break;
- }
-
- format_ptr = GET_RTX_FORMAT (code);
- count = 0;
-
- for (i = 0; i < GET_RTX_LENGTH (code); i++)
- {
- switch (*format_ptr++)
- {
- case 'e':
- count += count_occurrences (XEXP (x, i), find);
- break;
-
- case 'E':
- if (XVEC (x, i) != NULL)
- {
- for (j = 0; j < XVECLEN (x, i); j++)
- count += count_occurrences (XVECEXP (x, i, j), find);
- }
- break;
- }
- }
- return count;
-}
-
-/* This array holds values which are equivalent to a hard register
- during reload_cse_regs. Each array element is an EXPR_LIST of
- values. Each time a hard register is set, we set the corresponding
- array element to the value. Each time a hard register is copied
- into memory, we add the memory location to the corresponding array
- element. We don't store values or memory addresses with side
- effects in this array.
-
- If the value is a CONST_INT, then the mode of the containing
- EXPR_LIST is the mode in which that CONST_INT was referenced.
-
- We sometimes clobber a specific entry in a list. In that case, we
- just set XEXP (list-entry, 0) to 0. */
-
-static rtx *reg_values;
-
-/* Invalidate any entries in reg_values which depend on REGNO,
- including those for REGNO itself. This is called if REGNO is
- changing. If CLOBBER is true, then always forget anything we
- currently know about REGNO. MODE is the mode of the assignment to
- REGNO, which is used to determine how many hard registers are being
- changed. If MODE is VOIDmode, then only REGNO is being changed;
- this is used when invalidating call clobbered registers across a
- call. */
-
-static void
-reload_cse_invalidate_regno (regno, mode, clobber)
- int regno;
- enum machine_mode mode;
- int clobber;
-{
- int endregno;
- register int i;
-
- /* Our callers don't always go through true_regnum; we may see a
- pseudo-register here from a CLOBBER or the like. We probably
- won't ever see a pseudo-register that has a real register number,
- for we check anyhow for safety. */
- if (regno >= FIRST_PSEUDO_REGISTER)
- regno = reg_renumber[regno];
- if (regno < 0)
- return;
-
- if (mode == VOIDmode)
- endregno = regno + 1;
- else
- endregno = regno + HARD_REGNO_NREGS (regno, mode);
-
- if (clobber)
- for (i = regno; i < endregno; i++)
- reg_values[i] = 0;
-
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- {
- rtx x;
-
- for (x = reg_values[i]; x; x = XEXP (x, 1))
- {
- if (XEXP (x, 0) != 0
- && refers_to_regno_p (regno, endregno, XEXP (x, 0), NULL_RTX))
- {
- /* If this is the only entry on the list, clear
- reg_values[i]. Otherwise, just clear this entry on
- the list. */
- if (XEXP (x, 1) == 0 && x == reg_values[i])
- {
- reg_values[i] = 0;
- break;
- }
- XEXP (x, 0) = 0;
- }
- }
- }
-}
-
-/* The memory at address (plus MEM_BASE MEM_OFFSET), where MEM_OFFSET
- is a CONST_INT, is being changed. MEM_MODE is the mode of the
- memory reference. Return whether this change will invalidate VAL. */
-
-static int
-reload_cse_mem_conflict_p (mem_base, mem_offset, mem_mode, val)
- rtx mem_base;
- rtx mem_offset;
- enum machine_mode mem_mode;
- rtx val;
-{
- enum rtx_code code;
- char *fmt;
- int i;
-
- code = GET_CODE (val);
- switch (code)
- {
- /* Get rid of a few simple cases quickly. */
- case REG:
- case SUBREG:
- case PC:
- case CC0:
- case SCRATCH:
- case CONST:
- case CONST_INT:
- case CONST_DOUBLE:
- case SYMBOL_REF:
- case LABEL_REF:
- return 0;
-
- case MEM:
- {
- rtx val_base, val_offset;
-
- if (mem_mode == BLKmode || GET_MODE (val) == BLKmode)
- return 1;
-
- val_offset = const0_rtx;
- val_base = eliminate_constant_term (XEXP (val, 0), &val_offset);
-
- /* If MEM_BASE and VAL_BASE are the same, but the offsets do
- not overlap, then we do not have a conflict on this MEM.
- For complete safety, we still need to check that VAL_BASE
- itself does not contain an overlapping MEM.
-
- We can't simplify the check to just OFFSET + SIZE <=
- OTHER_OFFSET, because SIZE might cause OFFSET to wrap from
- positive to negative. If we used unsigned arithmetic, we
- would have the same problem wrapping around zero. */
-
- if (rtx_equal_p (mem_base, val_base)
- && ((INTVAL (mem_offset) < INTVAL (val_offset)
- && (INTVAL (mem_offset) + GET_MODE_SIZE (mem_mode)
- <= INTVAL (val_offset)))
- || (INTVAL (val_offset) < INTVAL (mem_offset)
- && (INTVAL (val_offset) + GET_MODE_SIZE (GET_MODE (val))
- <= INTVAL (mem_offset)))))
- return reload_cse_mem_conflict_p (mem_base, mem_offset, mem_mode,
- val_base);
-
- return 1;
- }
-
- default:
- break;
- }
-
- fmt = GET_RTX_FORMAT (code);
-
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- {
- if (reload_cse_mem_conflict_p (mem_base, mem_offset, mem_mode,
- XEXP (val, i)))
- return 1;
- }
- else if (fmt[i] == 'E')
- {
- int j;
-
- for (j = 0; j < XVECLEN (val, i); j++)
- if (reload_cse_mem_conflict_p (mem_base, mem_offset, mem_mode,
- XVECEXP (val, i, j)))
- return 1;
- }
- }
-
- return 0;
-}
-
-/* Invalidate any entries in reg_values which are changed because of a
- store to MEM_RTX. If this is called because of a non-const call
- instruction, MEM_RTX is (mem:BLK const0_rtx). */
-
-static void
-reload_cse_invalidate_mem (mem_rtx)
- rtx mem_rtx;
-{
- register int i;
- rtx mem_base, mem_offset;
- enum machine_mode mem_mode;
-
- /* We detect certain cases where memory addresses can not conflict:
- if they use the same register, and the offsets do not overlap. */
-
- mem_offset = const0_rtx;
- mem_base = eliminate_constant_term (XEXP (mem_rtx, 0), &mem_offset);
- mem_mode = GET_MODE (mem_rtx);
-
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- {
- rtx x;
-
- for (x = reg_values[i]; x; x = XEXP (x, 1))
- {
- if (XEXP (x, 0) != 0
- && reload_cse_mem_conflict_p (mem_base, mem_offset, mem_mode,
- XEXP (x, 0)))
- {
- /* If this is the only entry on the list, clear
- reg_values[i]. Otherwise, just clear this entry on
- the list. */
- if (XEXP (x, 1) == 0 && x == reg_values[i])
- {
- reg_values[i] = 0;
- break;
- }
- XEXP (x, 0) = 0;
- }
- }
- }
-}
-
-/* Invalidate DEST, which is being assigned to or clobbered. The
- second parameter exists so that this function can be passed to
- note_stores; it is ignored. */
-
-static void
-reload_cse_invalidate_rtx (dest, ignore)
- rtx dest;
- rtx ignore;
-{
- while (GET_CODE (dest) == STRICT_LOW_PART
- || GET_CODE (dest) == SIGN_EXTRACT
- || GET_CODE (dest) == ZERO_EXTRACT
- || GET_CODE (dest) == SUBREG)
- dest = XEXP (dest, 0);
-
- if (GET_CODE (dest) == REG)
- reload_cse_invalidate_regno (REGNO (dest), GET_MODE (dest), 1);
- else if (GET_CODE (dest) == MEM)
- reload_cse_invalidate_mem (dest);
-}
-
-/* Do a very simple CSE pass over the hard registers.
-
- This function detects no-op moves where we happened to assign two
- different pseudo-registers to the same hard register, and then
- copied one to the other. Reload will generate a useless
- instruction copying a register to itself.
-
- This function also detects cases where we load a value from memory
- into two different registers, and (if memory is more expensive than
- registers) changes it to simply copy the first register into the
- second register. */
-
-static void
-reload_cse_regs (first)
- rtx first;
-{
- char *firstobj;
- rtx callmem;
- register int i;
- rtx insn;
-
- reg_values = (rtx *) alloca (FIRST_PSEUDO_REGISTER * sizeof (rtx));
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- reg_values[i] = 0;
-
- /* Create our EXPR_LIST structures on reload_obstack, so that we can
- free them when we are done. */
- push_obstacks (&reload_obstack, &reload_obstack);
- firstobj = (char *) obstack_alloc (&reload_obstack, 0);
-
- /* We pass this to reload_cse_invalidate_mem to invalidate all of
- memory for a non-const call instruction. */
- callmem = gen_rtx (MEM, BLKmode, const0_rtx);
-
- for (insn = first; insn; insn = NEXT_INSN (insn))
- {
- rtx body;
-
- if (GET_CODE (insn) == CODE_LABEL)
- {
- /* Forget all the register values at a code label. We don't
- try to do anything clever around jumps. */
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- reg_values[i] = 0;
-
- continue;
- }
-
-#ifdef NON_SAVING_SETJMP
- if (NON_SAVING_SETJMP && GET_CODE (insn) == NOTE
- && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
- {
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- reg_values[i] = 0;
-
- continue;
- }
-#endif
-
- if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
- continue;
-
- /* If this is a call instruction, forget anything stored in a
- call clobbered register, or, if this is not a const call, in
- memory. */
- if (GET_CODE (insn) == CALL_INSN)
- {
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- if (call_used_regs[i])
- reload_cse_invalidate_regno (i, VOIDmode, 1);
-
- if (! CONST_CALL_P (insn))
- reload_cse_invalidate_mem (callmem);
- }
-
- body = PATTERN (insn);
- if (GET_CODE (body) == SET)
- {
- if (reload_cse_noop_set_p (body))
- {
- /* If we were preserving death notes, then we would want
- to remove any existing death note for the register
- being set. */
- PUT_CODE (insn, NOTE);
- NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
- NOTE_SOURCE_FILE (insn) = 0;
-
- /* We're done with this insn. */
- continue;
- }
-
- reload_cse_simplify_set (body, insn);
- reload_cse_record_set (body, body);
- }
- else if (GET_CODE (body) == PARALLEL)
- {
- int delete;
-
- /* If every action in a PARALLEL is a noop, we can delete
- the entire PARALLEL. */
- for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
- if (GET_CODE (XVECEXP (body, 0, i)) != SET
- || ! reload_cse_noop_set_p (XVECEXP (body, 0, i)))
- break;
- if (i < 0)
- {
- /* If we were preserving death notes, then we would want
- to remove any existing death notes for the registers
- being set. */
- PUT_CODE (insn, NOTE);
- NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
- NOTE_SOURCE_FILE (insn) = 0;
-
- /* We're done with this insn. */
- continue;
- }
-
- /* Look through the PARALLEL and record the values being
- set, if possible. Also handle any CLOBBERs. */
- for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
- {
- rtx x = XVECEXP (body, 0, i);
-
- if (GET_CODE (x) == SET)
- reload_cse_record_set (x, body);
- else
- note_stores (x, reload_cse_invalidate_rtx);
- }
- }
- else
- note_stores (body, reload_cse_invalidate_rtx);
-
-#ifdef AUTO_INC_DEC
- /* Clobber any registers which appear in REG_INC notes. We
- could keep track of the changes to their values, but it is
- unlikely to help. */
- {
- rtx x;
-
- for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
- if (REG_NOTE_KIND (x) == REG_INC)
- reload_cse_invalidate_rtx (XEXP (x, 0), NULL_RTX);
- }
-#endif
-
- /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
- after we have processed the insn. */
- if (GET_CODE (insn) == CALL_INSN)
- {
- rtx x;
-
- for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
- if (GET_CODE (XEXP (x, 0)) == CLOBBER)
- reload_cse_invalidate_rtx (XEXP (XEXP (x, 0), 0), NULL_RTX);
- }
- }
-
- /* Free all the temporary structures we created, and go back to the
- regular obstacks. */
- obstack_free (&reload_obstack, firstobj);
- pop_obstacks ();
-}
-
-/* Return whether the values known for REGNO are equal to VAL. MODE
- is the mode of the object that VAL is being copied to; this matters
- if VAL is a CONST_INT. */
-
-static int
-reload_cse_regno_equal_p (regno, val, mode)
- int regno;
- rtx val;
- enum machine_mode mode;
-{
- rtx x;
-
- if (val == 0)
- return 0;
-
- for (x = reg_values[regno]; x; x = XEXP (x, 1))
- if (XEXP (x, 0) != 0
- && rtx_equal_p (XEXP (x, 0), val)
- && (GET_CODE (val) != CONST_INT
- || mode == GET_MODE (x)
- || (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
- && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
- GET_MODE_BITSIZE (GET_MODE (x))))))
- return 1;
-
- return 0;
-}
-
-/* See whether a single SET instruction is a nooop. */
-
-static int
-reload_cse_noop_set_p (set)
- rtx set;
-{
- rtx src, dest;
- enum machine_mode dest_mode;
- int dreg, sreg;
-
- src = SET_SRC (set);
- dest = SET_DEST (set);
- dest_mode = GET_MODE (dest);
-
- if (side_effects_p (src))
- return 0;
-
- dreg = true_regnum (dest);
- sreg = true_regnum (src);
-
- if (dreg >= 0)
- {
- /* Check for setting a register to itself. */
- if (dreg == sreg)
- return 1;
-
- /* Check for setting a register to a value which we already know
- is in the register. */
- if (reload_cse_regno_equal_p (dreg, src, dest_mode))
- return 1;
-
- /* Check for setting a register DREG to another register SREG
- where SREG is equal to a value which is already in DREG. */
- if (sreg >= 0)
- {
- rtx x;
-
- for (x = reg_values[sreg]; x; x = XEXP (x, 1))
- if (XEXP (x, 0) != 0
- && reload_cse_regno_equal_p (dreg, XEXP (x, 0), dest_mode))
- return 1;
- }
- }
- else if (GET_CODE (dest) == MEM)
- {
- /* Check for storing a register to memory when we know that the
- register is equivalent to the memory location. */
- if (sreg >= 0
- && reload_cse_regno_equal_p (sreg, dest, dest_mode)
- && ! side_effects_p (dest))
- return 1;
- }
-
- return 0;
-}
-
-/* Try to simplify a single SET instruction. SET is the set pattern.
- INSN is the instruction it came from. */
-
-static void
-reload_cse_simplify_set (set, insn)
- rtx set;
- rtx insn;
-{
- int dreg;
- rtx src;
- enum machine_mode dest_mode;
- enum reg_class dclass;
- register int i;
-
- /* We only handle one case: if we set a register to a value which is
- not a register, we try to find that value in some other register
- and change the set into a register copy. */
-
- dreg = true_regnum (SET_DEST (set));
- if (dreg < 0)
- return;
-
- src = SET_SRC (set);
- if (side_effects_p (src) || true_regnum (src) >= 0)
- return;
-
- /* If memory loads are cheaper than register copies, don't change
- them. */
- if (GET_CODE (src) == MEM && MEMORY_MOVE_COST (GET_MODE (src)) < 2)
- return;
-
- dest_mode = GET_MODE (SET_DEST (set));
- dclass = REGNO_REG_CLASS (dreg);
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- {
- if (i != dreg
- && REGISTER_MOVE_COST (REGNO_REG_CLASS (i), dclass) == 2
- && reload_cse_regno_equal_p (i, src, dest_mode))
- {
- int validated;
-
- /* Pop back to the real obstacks while changing the insn. */
- pop_obstacks ();
-
- validated = validate_change (insn, &SET_SRC (set),
- gen_rtx (REG, dest_mode, i), 0);
-
- /* Go back to the obstack we are using for temporary
- storage. */
- push_obstacks (&reload_obstack, &reload_obstack);
-
- if (validated)
- return;
- }
- }
-}
-
-/* These two variables are used to pass information from
- reload_cse_record_set to reload_cse_check_clobber. */
-
-static int reload_cse_check_clobbered;
-static rtx reload_cse_check_src;
-
-/* See if DEST overlaps with RELOAD_CSE_CHECK_SRC. If it does, set
- RELOAD_CSE_CHECK_CLOBBERED. This is called via note_stores. The
- second argument, which is passed by note_stores, is ignored. */
-
-static void
-reload_cse_check_clobber (dest, ignore)
- rtx dest;
- rtx ignore;
-{
- if (reg_overlap_mentioned_p (dest, reload_cse_check_src))
- reload_cse_check_clobbered = 1;
-}
-
-/* Record the result of a SET instruction. SET is the set pattern.
- BODY is the pattern of the insn that it came from. */
-
-static void
-reload_cse_record_set (set, body)
- rtx set;
- rtx body;
-{
- rtx dest, src;
- int dreg, sreg;
- enum machine_mode dest_mode;
-
- dest = SET_DEST (set);
- src = SET_SRC (set);
- dreg = true_regnum (dest);
- sreg = true_regnum (src);
- dest_mode = GET_MODE (dest);
-
- /* We can only handle an assignment to a register, or a store of a
- register to a memory location. For other cases, we just clobber
- the destination. We also have to just clobber if there are side
- effects in SRC or DEST. */
- if ((dreg < 0 && GET_CODE (dest) != MEM)
- || side_effects_p (src)
- || side_effects_p (dest))
- {
- reload_cse_invalidate_rtx (dest, NULL_RTX);
- return;
- }
-
-#ifdef HAVE_cc0
- /* We don't try to handle values involving CC, because it's a pain
- to keep track of when they have to be invalidated. */
- if (reg_mentioned_p (cc0_rtx, src)
- || reg_mentioned_p (cc0_rtx, dest))
- {
- reload_cse_invalidate_rtx (dest, NULL_RTX);
- return;
- }
-#endif
-
- /* If BODY is a PARALLEL, then we need to see whether the source of
- SET is clobbered by some other instruction in the PARALLEL. */
- if (GET_CODE (body) == PARALLEL)
- {
- int i;
-
- for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
- {
- rtx x;
-
- x = XVECEXP (body, 0, i);
- if (x == set)
- continue;
-
- reload_cse_check_clobbered = 0;
- reload_cse_check_src = src;
- note_stores (x, reload_cse_check_clobber);
- if (reload_cse_check_clobbered)
- {
- reload_cse_invalidate_rtx (dest, NULL_RTX);
- return;
- }
- }
- }
-
- if (dreg >= 0)
- {
- int i;
-
- /* This is an assignment to a register. Update the value we
- have stored for the register. */
- if (sreg >= 0)
- reg_values[dreg] = reg_values[sreg];
- else
- reg_values[dreg] = gen_rtx (EXPR_LIST, dest_mode, src, NULL_RTX);
-
- /* We've changed DREG, so invalidate any values held by other
- registers that depend upon it. */
- reload_cse_invalidate_regno (dreg, dest_mode, 0);
-
- /* If this assignment changes more than one hard register,
- forget anything we know about the others. */
- for (i = 1; i < HARD_REGNO_NREGS (dreg, dest_mode); i++)
- reg_values[dreg + i] = 0;
- }
- else if (GET_CODE (dest) == MEM)
- {
- /* Invalidate conflicting memory locations. */
- reload_cse_invalidate_mem (dest);
-
- /* If we're storing a register to memory, add DEST to the list
- in REG_VALUES. */
- if (sreg >= 0 && ! side_effects_p (dest))
- reg_values[sreg] = gen_rtx (EXPR_LIST, dest_mode, dest,
- reg_values[sreg]);
- }
- else
- {
- /* We should have bailed out earlier. */
- abort ();
- }
-}