aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/tree.c')
-rw-r--r--gcc/tree.c4523
1 files changed, 0 insertions, 4523 deletions
diff --git a/gcc/tree.c b/gcc/tree.c
deleted file mode 100644
index a1c7e3e3e99..00000000000
--- a/gcc/tree.c
+++ /dev/null
@@ -1,4523 +0,0 @@
-/* Language-independent node constructors for parse phase of GNU compiler.
- Copyright (C) 1987, 88, 92, 93, 94, 95, 1996 Free Software Foundation, Inc.
-
-This file is part of GNU CC.
-
-GNU CC is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2, or (at your option)
-any later version.
-
-GNU CC is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GNU CC; see the file COPYING. If not, write to
-the Free Software Foundation, 59 Temple Place - Suite 330,
-Boston, MA 02111-1307, USA. */
-
-
-/* This file contains the low level primitives for operating on tree nodes,
- including allocation, list operations, interning of identifiers,
- construction of data type nodes and statement nodes,
- and construction of type conversion nodes. It also contains
- tables index by tree code that describe how to take apart
- nodes of that code.
-
- It is intended to be language-independent, but occasionally
- calls language-dependent routines defined (for C) in typecheck.c.
-
- The low-level allocation routines oballoc and permalloc
- are used also for allocating many other kinds of objects
- by all passes of the compiler. */
-
-#include <setjmp.h>
-#include "config.h"
-#include "flags.h"
-#include "tree.h"
-#include "function.h"
-#include "obstack.h"
-#ifdef __STDC__
-#include <stdarg.h>
-#else
-#include <varargs.h>
-#endif
-#include <stdio.h>
-
-#define obstack_chunk_alloc xmalloc
-#define obstack_chunk_free free
-
-/* Tree nodes of permanent duration are allocated in this obstack.
- They are the identifier nodes, and everything outside of
- the bodies and parameters of function definitions. */
-
-struct obstack permanent_obstack;
-
-/* The initial RTL, and all ..._TYPE nodes, in a function
- are allocated in this obstack. Usually they are freed at the
- end of the function, but if the function is inline they are saved.
- For top-level functions, this is maybepermanent_obstack.
- Separate obstacks are made for nested functions. */
-
-struct obstack *function_maybepermanent_obstack;
-
-/* This is the function_maybepermanent_obstack for top-level functions. */
-
-struct obstack maybepermanent_obstack;
-
-/* This is a list of function_maybepermanent_obstacks for top-level inline
- functions that are compiled in the middle of compiling other functions. */
-
-struct simple_obstack_stack *toplev_inline_obstacks;
-
-/* This is a list of function_maybepermanent_obstacks for inline functions
- nested in the current function that were compiled in the middle of
- compiling other functions. */
-
-struct simple_obstack_stack *inline_obstacks;
-
-/* The contents of the current function definition are allocated
- in this obstack, and all are freed at the end of the function.
- For top-level functions, this is temporary_obstack.
- Separate obstacks are made for nested functions. */
-
-struct obstack *function_obstack;
-
-/* This is used for reading initializers of global variables. */
-
-struct obstack temporary_obstack;
-
-/* The tree nodes of an expression are allocated
- in this obstack, and all are freed at the end of the expression. */
-
-struct obstack momentary_obstack;
-
-/* The tree nodes of a declarator are allocated
- in this obstack, and all are freed when the declarator
- has been parsed. */
-
-static struct obstack temp_decl_obstack;
-
-/* This points at either permanent_obstack
- or the current function_maybepermanent_obstack. */
-
-struct obstack *saveable_obstack;
-
-/* This is same as saveable_obstack during parse and expansion phase;
- it points to the current function's obstack during optimization.
- This is the obstack to be used for creating rtl objects. */
-
-struct obstack *rtl_obstack;
-
-/* This points at either permanent_obstack or the current function_obstack. */
-
-struct obstack *current_obstack;
-
-/* This points at either permanent_obstack or the current function_obstack
- or momentary_obstack. */
-
-struct obstack *expression_obstack;
-
-/* Stack of obstack selections for push_obstacks and pop_obstacks. */
-
-struct obstack_stack
-{
- struct obstack_stack *next;
- struct obstack *current;
- struct obstack *saveable;
- struct obstack *expression;
- struct obstack *rtl;
-};
-
-struct obstack_stack *obstack_stack;
-
-/* Obstack for allocating struct obstack_stack entries. */
-
-static struct obstack obstack_stack_obstack;
-
-/* Addresses of first objects in some obstacks.
- This is for freeing their entire contents. */
-char *maybepermanent_firstobj;
-char *temporary_firstobj;
-char *momentary_firstobj;
-char *temp_decl_firstobj;
-
-/* This is used to preserve objects (mainly array initializers) that need to
- live until the end of the current function, but no further. */
-char *momentary_function_firstobj;
-
-/* Nonzero means all ..._TYPE nodes should be allocated permanently. */
-
-int all_types_permanent;
-
-/* Stack of places to restore the momentary obstack back to. */
-
-struct momentary_level
-{
- /* Pointer back to previous such level. */
- struct momentary_level *prev;
- /* First object allocated within this level. */
- char *base;
- /* Value of expression_obstack saved at entry to this level. */
- struct obstack *obstack;
-};
-
-struct momentary_level *momentary_stack;
-
-/* Table indexed by tree code giving a string containing a character
- classifying the tree code. Possibilities are
- t, d, s, c, r, <, 1, 2 and e. See tree.def for details. */
-
-#define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
-
-char *standard_tree_code_type[] = {
-#include "tree.def"
-};
-#undef DEFTREECODE
-
-/* Table indexed by tree code giving number of expression
- operands beyond the fixed part of the node structure.
- Not used for types or decls. */
-
-#define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
-
-int standard_tree_code_length[] = {
-#include "tree.def"
-};
-#undef DEFTREECODE
-
-/* Names of tree components.
- Used for printing out the tree and error messages. */
-#define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
-
-char *standard_tree_code_name[] = {
-#include "tree.def"
-};
-#undef DEFTREECODE
-
-/* Table indexed by tree code giving a string containing a character
- classifying the tree code. Possibilities are
- t, d, s, c, r, e, <, 1 and 2. See tree.def for details. */
-
-char **tree_code_type;
-
-/* Table indexed by tree code giving number of expression
- operands beyond the fixed part of the node structure.
- Not used for types or decls. */
-
-int *tree_code_length;
-
-/* Table indexed by tree code giving name of tree code, as a string. */
-
-char **tree_code_name;
-
-/* Statistics-gathering stuff. */
-typedef enum
-{
- d_kind,
- t_kind,
- b_kind,
- s_kind,
- r_kind,
- e_kind,
- c_kind,
- id_kind,
- op_id_kind,
- perm_list_kind,
- temp_list_kind,
- vec_kind,
- x_kind,
- lang_decl,
- lang_type,
- all_kinds
-} tree_node_kind;
-
-int tree_node_counts[(int)all_kinds];
-int tree_node_sizes[(int)all_kinds];
-int id_string_size = 0;
-
-char *tree_node_kind_names[] = {
- "decls",
- "types",
- "blocks",
- "stmts",
- "refs",
- "exprs",
- "constants",
- "identifiers",
- "op_identifiers",
- "perm_tree_lists",
- "temp_tree_lists",
- "vecs",
- "random kinds",
- "lang_decl kinds",
- "lang_type kinds"
-};
-
-/* Hash table for uniquizing IDENTIFIER_NODEs by name. */
-
-#define MAX_HASH_TABLE 1009
-static tree hash_table[MAX_HASH_TABLE]; /* id hash buckets */
-
-/* 0 while creating built-in identifiers. */
-static int do_identifier_warnings;
-
-/* Unique id for next decl created. */
-static int next_decl_uid;
-/* Unique id for next type created. */
-static int next_type_uid = 1;
-
-/* Here is how primitive or already-canonicalized types' hash
- codes are made. */
-#define TYPE_HASH(TYPE) ((HOST_WIDE_INT) (TYPE) & 0777777)
-
-extern char *mode_name[];
-
-void gcc_obstack_init ();
-
-/* Init the principal obstacks. */
-
-void
-init_obstacks ()
-{
- gcc_obstack_init (&obstack_stack_obstack);
- gcc_obstack_init (&permanent_obstack);
-
- gcc_obstack_init (&temporary_obstack);
- temporary_firstobj = (char *) obstack_alloc (&temporary_obstack, 0);
- gcc_obstack_init (&momentary_obstack);
- momentary_firstobj = (char *) obstack_alloc (&momentary_obstack, 0);
- momentary_function_firstobj = momentary_firstobj;
- gcc_obstack_init (&maybepermanent_obstack);
- maybepermanent_firstobj
- = (char *) obstack_alloc (&maybepermanent_obstack, 0);
- gcc_obstack_init (&temp_decl_obstack);
- temp_decl_firstobj = (char *) obstack_alloc (&temp_decl_obstack, 0);
-
- function_obstack = &temporary_obstack;
- function_maybepermanent_obstack = &maybepermanent_obstack;
- current_obstack = &permanent_obstack;
- expression_obstack = &permanent_obstack;
- rtl_obstack = saveable_obstack = &permanent_obstack;
-
- /* Init the hash table of identifiers. */
- bzero ((char *) hash_table, sizeof hash_table);
-}
-
-void
-gcc_obstack_init (obstack)
- struct obstack *obstack;
-{
- /* Let particular systems override the size of a chunk. */
-#ifndef OBSTACK_CHUNK_SIZE
-#define OBSTACK_CHUNK_SIZE 0
-#endif
- /* Let them override the alloc and free routines too. */
-#ifndef OBSTACK_CHUNK_ALLOC
-#define OBSTACK_CHUNK_ALLOC xmalloc
-#endif
-#ifndef OBSTACK_CHUNK_FREE
-#define OBSTACK_CHUNK_FREE free
-#endif
- _obstack_begin (obstack, OBSTACK_CHUNK_SIZE, 0,
- (void *(*) ()) OBSTACK_CHUNK_ALLOC,
- (void (*) ()) OBSTACK_CHUNK_FREE);
-}
-
-/* Save all variables describing the current status into the structure *P.
- This is used before starting a nested function.
-
- CONTEXT is the decl_function_context for the function we're about to
- compile; if it isn't current_function_decl, we have to play some games. */
-
-void
-save_tree_status (p, context)
- struct function *p;
- tree context;
-{
- p->all_types_permanent = all_types_permanent;
- p->momentary_stack = momentary_stack;
- p->maybepermanent_firstobj = maybepermanent_firstobj;
- p->temporary_firstobj = temporary_firstobj;
- p->momentary_firstobj = momentary_firstobj;
- p->momentary_function_firstobj = momentary_function_firstobj;
- p->function_obstack = function_obstack;
- p->function_maybepermanent_obstack = function_maybepermanent_obstack;
- p->current_obstack = current_obstack;
- p->expression_obstack = expression_obstack;
- p->saveable_obstack = saveable_obstack;
- p->rtl_obstack = rtl_obstack;
- p->inline_obstacks = inline_obstacks;
-
- if (context == current_function_decl)
- /* Objects that need to be saved in this function can be in the nonsaved
- obstack of the enclosing function since they can't possibly be needed
- once it has returned. */
- function_maybepermanent_obstack = function_obstack;
- else
- {
- /* We're compiling a function which isn't nested in the current
- function. We need to create a new maybepermanent_obstack for this
- function, since it can't go onto any of the existing obstacks. */
- struct simple_obstack_stack **head;
- struct simple_obstack_stack *current;
-
- if (context == NULL_TREE)
- head = &toplev_inline_obstacks;
- else
- {
- struct function *f = find_function_data (context);
- head = &f->inline_obstacks;
- }
-
- current = ((struct simple_obstack_stack *)
- xmalloc (sizeof (struct simple_obstack_stack)));
-
- current->obstack = (struct obstack *) xmalloc (sizeof (struct obstack));
- function_maybepermanent_obstack = current->obstack;
- gcc_obstack_init (function_maybepermanent_obstack);
-
- current->next = *head;
- *head = current;
- }
-
- maybepermanent_firstobj
- = (char *) obstack_finish (function_maybepermanent_obstack);
-
- function_obstack = (struct obstack *) xmalloc (sizeof (struct obstack));
- gcc_obstack_init (function_obstack);
-
- current_obstack = &permanent_obstack;
- expression_obstack = &permanent_obstack;
- rtl_obstack = saveable_obstack = &permanent_obstack;
-
- temporary_firstobj = (char *) obstack_alloc (&temporary_obstack, 0);
- momentary_firstobj = (char *) obstack_finish (&momentary_obstack);
- momentary_function_firstobj = momentary_firstobj;
-}
-
-/* Restore all variables describing the current status from the structure *P.
- This is used after a nested function. */
-
-void
-restore_tree_status (p)
- struct function *p;
-{
- all_types_permanent = p->all_types_permanent;
- momentary_stack = p->momentary_stack;
-
- obstack_free (&momentary_obstack, momentary_function_firstobj);
-
- /* Free saveable storage used by the function just compiled and not
- saved.
-
- CAUTION: This is in function_obstack of the containing function.
- So we must be sure that we never allocate from that obstack during
- the compilation of a nested function if we expect it to survive
- past the nested function's end. */
- obstack_free (function_maybepermanent_obstack, maybepermanent_firstobj);
-
- obstack_free (function_obstack, 0);
- free (function_obstack);
-
- temporary_firstobj = p->temporary_firstobj;
- momentary_firstobj = p->momentary_firstobj;
- momentary_function_firstobj = p->momentary_function_firstobj;
- maybepermanent_firstobj = p->maybepermanent_firstobj;
- function_obstack = p->function_obstack;
- function_maybepermanent_obstack = p->function_maybepermanent_obstack;
- current_obstack = p->current_obstack;
- expression_obstack = p->expression_obstack;
- saveable_obstack = p->saveable_obstack;
- rtl_obstack = p->rtl_obstack;
- inline_obstacks = p->inline_obstacks;
-}
-
-/* Start allocating on the temporary (per function) obstack.
- This is done in start_function before parsing the function body,
- and before each initialization at top level, and to go back
- to temporary allocation after doing permanent_allocation. */
-
-void
-temporary_allocation ()
-{
- /* Note that function_obstack at top level points to temporary_obstack.
- But within a nested function context, it is a separate obstack. */
- current_obstack = function_obstack;
- expression_obstack = function_obstack;
- rtl_obstack = saveable_obstack = function_maybepermanent_obstack;
- momentary_stack = 0;
- inline_obstacks = 0;
-}
-
-/* Start allocating on the permanent obstack but don't
- free the temporary data. After calling this, call
- `permanent_allocation' to fully resume permanent allocation status. */
-
-void
-end_temporary_allocation ()
-{
- current_obstack = &permanent_obstack;
- expression_obstack = &permanent_obstack;
- rtl_obstack = saveable_obstack = &permanent_obstack;
-}
-
-/* Resume allocating on the temporary obstack, undoing
- effects of `end_temporary_allocation'. */
-
-void
-resume_temporary_allocation ()
-{
- current_obstack = function_obstack;
- expression_obstack = function_obstack;
- rtl_obstack = saveable_obstack = function_maybepermanent_obstack;
-}
-
-/* While doing temporary allocation, switch to allocating in such a
- way as to save all nodes if the function is inlined. Call
- resume_temporary_allocation to go back to ordinary temporary
- allocation. */
-
-void
-saveable_allocation ()
-{
- /* Note that function_obstack at top level points to temporary_obstack.
- But within a nested function context, it is a separate obstack. */
- expression_obstack = current_obstack = saveable_obstack;
-}
-
-/* Switch to current obstack CURRENT and maybepermanent obstack SAVEABLE,
- recording the previously current obstacks on a stack.
- This does not free any storage in any obstack. */
-
-void
-push_obstacks (current, saveable)
- struct obstack *current, *saveable;
-{
- struct obstack_stack *p
- = (struct obstack_stack *) obstack_alloc (&obstack_stack_obstack,
- (sizeof (struct obstack_stack)));
-
- p->current = current_obstack;
- p->saveable = saveable_obstack;
- p->expression = expression_obstack;
- p->rtl = rtl_obstack;
- p->next = obstack_stack;
- obstack_stack = p;
-
- current_obstack = current;
- expression_obstack = current;
- rtl_obstack = saveable_obstack = saveable;
-}
-
-/* Save the current set of obstacks, but don't change them. */
-
-void
-push_obstacks_nochange ()
-{
- struct obstack_stack *p
- = (struct obstack_stack *) obstack_alloc (&obstack_stack_obstack,
- (sizeof (struct obstack_stack)));
-
- p->current = current_obstack;
- p->saveable = saveable_obstack;
- p->expression = expression_obstack;
- p->rtl = rtl_obstack;
- p->next = obstack_stack;
- obstack_stack = p;
-}
-
-/* Pop the obstack selection stack. */
-
-void
-pop_obstacks ()
-{
- struct obstack_stack *p = obstack_stack;
- obstack_stack = p->next;
-
- current_obstack = p->current;
- saveable_obstack = p->saveable;
- expression_obstack = p->expression;
- rtl_obstack = p->rtl;
-
- obstack_free (&obstack_stack_obstack, p);
-}
-
-/* Nonzero if temporary allocation is currently in effect.
- Zero if currently doing permanent allocation. */
-
-int
-allocation_temporary_p ()
-{
- return current_obstack != &permanent_obstack;
-}
-
-/* Go back to allocating on the permanent obstack
- and free everything in the temporary obstack.
-
- FUNCTION_END is true only if we have just finished compiling a function.
- In that case, we also free preserved initial values on the momentary
- obstack. */
-
-void
-permanent_allocation (function_end)
- int function_end;
-{
- /* Free up previous temporary obstack data */
- obstack_free (&temporary_obstack, temporary_firstobj);
- if (function_end)
- {
- obstack_free (&momentary_obstack, momentary_function_firstobj);
- momentary_firstobj = momentary_function_firstobj;
- }
- else
- obstack_free (&momentary_obstack, momentary_firstobj);
- obstack_free (function_maybepermanent_obstack, maybepermanent_firstobj);
- obstack_free (&temp_decl_obstack, temp_decl_firstobj);
-
- /* Free up the maybepermanent_obstacks for any of our nested functions
- which were compiled at a lower level. */
- while (inline_obstacks)
- {
- struct simple_obstack_stack *current = inline_obstacks;
- inline_obstacks = current->next;
- obstack_free (current->obstack, 0);
- free (current->obstack);
- free (current);
- }
-
- current_obstack = &permanent_obstack;
- expression_obstack = &permanent_obstack;
- rtl_obstack = saveable_obstack = &permanent_obstack;
-}
-
-/* Save permanently everything on the maybepermanent_obstack. */
-
-void
-preserve_data ()
-{
- maybepermanent_firstobj
- = (char *) obstack_alloc (function_maybepermanent_obstack, 0);
-}
-
-void
-preserve_initializer ()
-{
- struct momentary_level *tem;
- char *old_momentary;
-
- temporary_firstobj
- = (char *) obstack_alloc (&temporary_obstack, 0);
- maybepermanent_firstobj
- = (char *) obstack_alloc (function_maybepermanent_obstack, 0);
-
- old_momentary = momentary_firstobj;
- momentary_firstobj
- = (char *) obstack_alloc (&momentary_obstack, 0);
- if (momentary_firstobj != old_momentary)
- for (tem = momentary_stack; tem; tem = tem->prev)
- tem->base = momentary_firstobj;
-}
-
-/* Start allocating new rtl in current_obstack.
- Use resume_temporary_allocation
- to go back to allocating rtl in saveable_obstack. */
-
-void
-rtl_in_current_obstack ()
-{
- rtl_obstack = current_obstack;
-}
-
-/* Start allocating rtl from saveable_obstack. Intended to be used after
- a call to push_obstacks_nochange. */
-
-void
-rtl_in_saveable_obstack ()
-{
- rtl_obstack = saveable_obstack;
-}
-
-/* Allocate SIZE bytes in the current obstack
- and return a pointer to them.
- In practice the current obstack is always the temporary one. */
-
-char *
-oballoc (size)
- int size;
-{
- return (char *) obstack_alloc (current_obstack, size);
-}
-
-/* Free the object PTR in the current obstack
- as well as everything allocated since PTR.
- In practice the current obstack is always the temporary one. */
-
-void
-obfree (ptr)
- char *ptr;
-{
- obstack_free (current_obstack, ptr);
-}
-
-/* Allocate SIZE bytes in the permanent obstack
- and return a pointer to them. */
-
-char *
-permalloc (size)
- int size;
-{
- return (char *) obstack_alloc (&permanent_obstack, size);
-}
-
-/* Allocate NELEM items of SIZE bytes in the permanent obstack
- and return a pointer to them. The storage is cleared before
- returning the value. */
-
-char *
-perm_calloc (nelem, size)
- int nelem;
- long size;
-{
- char *rval = (char *) obstack_alloc (&permanent_obstack, nelem * size);
- bzero (rval, nelem * size);
- return rval;
-}
-
-/* Allocate SIZE bytes in the saveable obstack
- and return a pointer to them. */
-
-char *
-savealloc (size)
- int size;
-{
- return (char *) obstack_alloc (saveable_obstack, size);
-}
-
-/* Print out which obstack an object is in. */
-
-void
-print_obstack_name (object, file, prefix)
- char *object;
- FILE *file;
- char *prefix;
-{
- struct obstack *obstack = NULL;
- char *obstack_name = NULL;
- struct function *p;
-
- for (p = outer_function_chain; p; p = p->next)
- {
- if (_obstack_allocated_p (p->function_obstack, object))
- {
- obstack = p->function_obstack;
- obstack_name = "containing function obstack";
- }
- if (_obstack_allocated_p (p->function_maybepermanent_obstack, object))
- {
- obstack = p->function_maybepermanent_obstack;
- obstack_name = "containing function maybepermanent obstack";
- }
- }
-
- if (_obstack_allocated_p (&obstack_stack_obstack, object))
- {
- obstack = &obstack_stack_obstack;
- obstack_name = "obstack_stack_obstack";
- }
- else if (_obstack_allocated_p (function_obstack, object))
- {
- obstack = function_obstack;
- obstack_name = "function obstack";
- }
- else if (_obstack_allocated_p (&permanent_obstack, object))
- {
- obstack = &permanent_obstack;
- obstack_name = "permanent_obstack";
- }
- else if (_obstack_allocated_p (&momentary_obstack, object))
- {
- obstack = &momentary_obstack;
- obstack_name = "momentary_obstack";
- }
- else if (_obstack_allocated_p (function_maybepermanent_obstack, object))
- {
- obstack = function_maybepermanent_obstack;
- obstack_name = "function maybepermanent obstack";
- }
- else if (_obstack_allocated_p (&temp_decl_obstack, object))
- {
- obstack = &temp_decl_obstack;
- obstack_name = "temp_decl_obstack";
- }
-
- /* Check to see if the object is in the free area of the obstack. */
- if (obstack != NULL)
- {
- if (object >= obstack->next_free
- && object < obstack->chunk_limit)
- fprintf (file, "%s in free portion of obstack %s",
- prefix, obstack_name);
- else
- fprintf (file, "%s allocated from %s", prefix, obstack_name);
- }
- else
- fprintf (file, "%s not allocated from any obstack", prefix);
-}
-
-void
-debug_obstack (object)
- char *object;
-{
- print_obstack_name (object, stderr, "object");
- fprintf (stderr, ".\n");
-}
-
-/* Return 1 if OBJ is in the permanent obstack.
- This is slow, and should be used only for debugging.
- Use TREE_PERMANENT for other purposes. */
-
-int
-object_permanent_p (obj)
- tree obj;
-{
- return _obstack_allocated_p (&permanent_obstack, obj);
-}
-
-/* Start a level of momentary allocation.
- In C, each compound statement has its own level
- and that level is freed at the end of each statement.
- All expression nodes are allocated in the momentary allocation level. */
-
-void
-push_momentary ()
-{
- struct momentary_level *tem
- = (struct momentary_level *) obstack_alloc (&momentary_obstack,
- sizeof (struct momentary_level));
- tem->prev = momentary_stack;
- tem->base = (char *) obstack_base (&momentary_obstack);
- tem->obstack = expression_obstack;
- momentary_stack = tem;
- expression_obstack = &momentary_obstack;
-}
-
-/* Set things up so the next clear_momentary will only clear memory
- past our present position in momentary_obstack. */
-
-void
-preserve_momentary ()
-{
- momentary_stack->base = (char *) obstack_base (&momentary_obstack);
-}
-
-/* Free all the storage in the current momentary-allocation level.
- In C, this happens at the end of each statement. */
-
-void
-clear_momentary ()
-{
- obstack_free (&momentary_obstack, momentary_stack->base);
-}
-
-/* Discard a level of momentary allocation.
- In C, this happens at the end of each compound statement.
- Restore the status of expression node allocation
- that was in effect before this level was created. */
-
-void
-pop_momentary ()
-{
- struct momentary_level *tem = momentary_stack;
- momentary_stack = tem->prev;
- expression_obstack = tem->obstack;
- /* We can't free TEM from the momentary_obstack, because there might
- be objects above it which have been saved. We can free back to the
- stack of the level we are popping off though. */
- obstack_free (&momentary_obstack, tem->base);
-}
-
-/* Pop back to the previous level of momentary allocation,
- but don't free any momentary data just yet. */
-
-void
-pop_momentary_nofree ()
-{
- struct momentary_level *tem = momentary_stack;
- momentary_stack = tem->prev;
- expression_obstack = tem->obstack;
-}
-
-/* Call when starting to parse a declaration:
- make expressions in the declaration last the length of the function.
- Returns an argument that should be passed to resume_momentary later. */
-
-int
-suspend_momentary ()
-{
- register int tem = expression_obstack == &momentary_obstack;
- expression_obstack = saveable_obstack;
- return tem;
-}
-
-/* Call when finished parsing a declaration:
- restore the treatment of node-allocation that was
- in effect before the suspension.
- YES should be the value previously returned by suspend_momentary. */
-
-void
-resume_momentary (yes)
- int yes;
-{
- if (yes)
- expression_obstack = &momentary_obstack;
-}
-
-/* Init the tables indexed by tree code.
- Note that languages can add to these tables to define their own codes. */
-
-void
-init_tree_codes ()
-{
- tree_code_type = (char **) xmalloc (sizeof (standard_tree_code_type));
- tree_code_length = (int *) xmalloc (sizeof (standard_tree_code_length));
- tree_code_name = (char **) xmalloc (sizeof (standard_tree_code_name));
- bcopy ((char *) standard_tree_code_type, (char *) tree_code_type,
- sizeof (standard_tree_code_type));
- bcopy ((char *) standard_tree_code_length, (char *) tree_code_length,
- sizeof (standard_tree_code_length));
- bcopy ((char *) standard_tree_code_name, (char *) tree_code_name,
- sizeof (standard_tree_code_name));
-}
-
-/* Return a newly allocated node of code CODE.
- Initialize the node's unique id and its TREE_PERMANENT flag.
- For decl and type nodes, some other fields are initialized.
- The rest of the node is initialized to zero.
-
- Achoo! I got a code in the node. */
-
-tree
-make_node (code)
- enum tree_code code;
-{
- register tree t;
- register int type = TREE_CODE_CLASS (code);
- register int length;
- register struct obstack *obstack = current_obstack;
- register int i;
- register tree_node_kind kind;
-
- switch (type)
- {
- case 'd': /* A decl node */
-#ifdef GATHER_STATISTICS
- kind = d_kind;
-#endif
- length = sizeof (struct tree_decl);
- /* All decls in an inline function need to be saved. */
- if (obstack != &permanent_obstack)
- obstack = saveable_obstack;
-
- /* PARM_DECLs go on the context of the parent. If this is a nested
- function, then we must allocate the PARM_DECL on the parent's
- obstack, so that they will live to the end of the parent's
- closing brace. This is necessary in case we try to inline the
- function into its parent.
-
- PARM_DECLs of top-level functions do not have this problem. However,
- we allocate them where we put the FUNCTION_DECL for languages such as
- Ada that need to consult some flags in the PARM_DECLs of the function
- when calling it.
-
- See comment in restore_tree_status for why we can't put this
- in function_obstack. */
- if (code == PARM_DECL && obstack != &permanent_obstack)
- {
- tree context = 0;
- if (current_function_decl)
- context = decl_function_context (current_function_decl);
-
- if (context)
- obstack
- = find_function_data (context)->function_maybepermanent_obstack;
- }
- break;
-
- case 't': /* a type node */
-#ifdef GATHER_STATISTICS
- kind = t_kind;
-#endif
- length = sizeof (struct tree_type);
- /* All data types are put where we can preserve them if nec. */
- if (obstack != &permanent_obstack)
- obstack = all_types_permanent ? &permanent_obstack : saveable_obstack;
- break;
-
- case 'b': /* a lexical block */
-#ifdef GATHER_STATISTICS
- kind = b_kind;
-#endif
- length = sizeof (struct tree_block);
- /* All BLOCK nodes are put where we can preserve them if nec. */
- if (obstack != &permanent_obstack)
- obstack = saveable_obstack;
- break;
-
- case 's': /* an expression with side effects */
-#ifdef GATHER_STATISTICS
- kind = s_kind;
- goto usual_kind;
-#endif
- case 'r': /* a reference */
-#ifdef GATHER_STATISTICS
- kind = r_kind;
- goto usual_kind;
-#endif
- case 'e': /* an expression */
- case '<': /* a comparison expression */
- case '1': /* a unary arithmetic expression */
- case '2': /* a binary arithmetic expression */
-#ifdef GATHER_STATISTICS
- kind = e_kind;
- usual_kind:
-#endif
- obstack = expression_obstack;
- /* All BIND_EXPR nodes are put where we can preserve them if nec. */
- if (code == BIND_EXPR && obstack != &permanent_obstack)
- obstack = saveable_obstack;
- length = sizeof (struct tree_exp)
- + (tree_code_length[(int) code] - 1) * sizeof (char *);
- break;
-
- case 'c': /* a constant */
-#ifdef GATHER_STATISTICS
- kind = c_kind;
-#endif
- obstack = expression_obstack;
-
- /* We can't use tree_code_length for INTEGER_CST, since the number of
- words is machine-dependent due to varying length of HOST_WIDE_INT,
- which might be wider than a pointer (e.g., long long). Similarly
- for REAL_CST, since the number of words is machine-dependent due
- to varying size and alignment of `double'. */
-
- if (code == INTEGER_CST)
- length = sizeof (struct tree_int_cst);
- else if (code == REAL_CST)
- length = sizeof (struct tree_real_cst);
- else
- length = sizeof (struct tree_common)
- + tree_code_length[(int) code] * sizeof (char *);
- break;
-
- case 'x': /* something random, like an identifier. */
-#ifdef GATHER_STATISTICS
- if (code == IDENTIFIER_NODE)
- kind = id_kind;
- else if (code == OP_IDENTIFIER)
- kind = op_id_kind;
- else if (code == TREE_VEC)
- kind = vec_kind;
- else
- kind = x_kind;
-#endif
- length = sizeof (struct tree_common)
- + tree_code_length[(int) code] * sizeof (char *);
- /* Identifier nodes are always permanent since they are
- unique in a compiler run. */
- if (code == IDENTIFIER_NODE) obstack = &permanent_obstack;
- break;
-
- default:
- abort ();
- }
-
- t = (tree) obstack_alloc (obstack, length);
-
-#ifdef GATHER_STATISTICS
- tree_node_counts[(int)kind]++;
- tree_node_sizes[(int)kind] += length;
-#endif
-
- /* Clear a word at a time. */
- for (i = (length / sizeof (int)) - 1; i >= 0; i--)
- ((int *) t)[i] = 0;
- /* Clear any extra bytes. */
- for (i = length / sizeof (int) * sizeof (int); i < length; i++)
- ((char *) t)[i] = 0;
-
- TREE_SET_CODE (t, code);
- if (obstack == &permanent_obstack)
- TREE_PERMANENT (t) = 1;
-
- switch (type)
- {
- case 's':
- TREE_SIDE_EFFECTS (t) = 1;
- TREE_TYPE (t) = void_type_node;
- break;
-
- case 'd':
- if (code != FUNCTION_DECL)
- DECL_ALIGN (t) = 1;
- DECL_IN_SYSTEM_HEADER (t)
- = in_system_header && (obstack == &permanent_obstack);
- DECL_SOURCE_LINE (t) = lineno;
- DECL_SOURCE_FILE (t) = (input_filename) ? input_filename : "<built-in>";
- DECL_UID (t) = next_decl_uid++;
- break;
-
- case 't':
- TYPE_UID (t) = next_type_uid++;
- TYPE_ALIGN (t) = 1;
- TYPE_MAIN_VARIANT (t) = t;
- TYPE_OBSTACK (t) = obstack;
- TYPE_ATTRIBUTES (t) = NULL_TREE;
-#ifdef SET_DEFAULT_TYPE_ATTRIBUTES
- SET_DEFAULT_TYPE_ATTRIBUTES (t);
-#endif
- break;
-
- case 'c':
- TREE_CONSTANT (t) = 1;
- break;
- }
-
- return t;
-}
-
-/* Return a new node with the same contents as NODE
- except that its TREE_CHAIN is zero and it has a fresh uid. */
-
-tree
-copy_node (node)
- tree node;
-{
- register tree t;
- register enum tree_code code = TREE_CODE (node);
- register int length;
- register int i;
-
- switch (TREE_CODE_CLASS (code))
- {
- case 'd': /* A decl node */
- length = sizeof (struct tree_decl);
- break;
-
- case 't': /* a type node */
- length = sizeof (struct tree_type);
- break;
-
- case 'b': /* a lexical block node */
- length = sizeof (struct tree_block);
- break;
-
- case 'r': /* a reference */
- case 'e': /* an expression */
- case 's': /* an expression with side effects */
- case '<': /* a comparison expression */
- case '1': /* a unary arithmetic expression */
- case '2': /* a binary arithmetic expression */
- length = sizeof (struct tree_exp)
- + (tree_code_length[(int) code] - 1) * sizeof (char *);
- break;
-
- case 'c': /* a constant */
- /* We can't use tree_code_length for INTEGER_CST, since the number of
- words is machine-dependent due to varying length of HOST_WIDE_INT,
- which might be wider than a pointer (e.g., long long). Similarly
- for REAL_CST, since the number of words is machine-dependent due
- to varying size and alignment of `double'. */
- if (code == INTEGER_CST)
- {
- length = sizeof (struct tree_int_cst);
- break;
- }
- else if (code == REAL_CST)
- {
- length = sizeof (struct tree_real_cst);
- break;
- }
-
- case 'x': /* something random, like an identifier. */
- length = sizeof (struct tree_common)
- + tree_code_length[(int) code] * sizeof (char *);
- if (code == TREE_VEC)
- length += (TREE_VEC_LENGTH (node) - 1) * sizeof (char *);
- }
-
- t = (tree) obstack_alloc (current_obstack, length);
-
- for (i = (length / sizeof (int)) - 1; i >= 0; i--)
- ((int *) t)[i] = ((int *) node)[i];
- /* Clear any extra bytes. */
- for (i = length / sizeof (int) * sizeof (int); i < length; i++)
- ((char *) t)[i] = ((char *) node)[i];
-
- TREE_CHAIN (t) = 0;
-
- if (TREE_CODE_CLASS (code) == 'd')
- DECL_UID (t) = next_decl_uid++;
- else if (TREE_CODE_CLASS (code) == 't')
- {
- TYPE_UID (t) = next_type_uid++;
- TYPE_OBSTACK (t) = current_obstack;
-
- /* The following is so that the debug code for
- the copy is different from the original type.
- The two statements usually duplicate each other
- (because they clear fields of the same union),
- but the optimizer should catch that. */
- TYPE_SYMTAB_POINTER (t) = 0;
- TYPE_SYMTAB_ADDRESS (t) = 0;
- }
-
- TREE_PERMANENT (t) = (current_obstack == &permanent_obstack);
-
- return t;
-}
-
-/* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
- For example, this can copy a list made of TREE_LIST nodes. */
-
-tree
-copy_list (list)
- tree list;
-{
- tree head;
- register tree prev, next;
-
- if (list == 0)
- return 0;
-
- head = prev = copy_node (list);
- next = TREE_CHAIN (list);
- while (next)
- {
- TREE_CHAIN (prev) = copy_node (next);
- prev = TREE_CHAIN (prev);
- next = TREE_CHAIN (next);
- }
- return head;
-}
-
-#define HASHBITS 30
-
-/* Return an IDENTIFIER_NODE whose name is TEXT (a null-terminated string).
- If an identifier with that name has previously been referred to,
- the same node is returned this time. */
-
-tree
-get_identifier (text)
- register char *text;
-{
- register int hi;
- register int i;
- register tree idp;
- register int len, hash_len;
-
- /* Compute length of text in len. */
- for (len = 0; text[len]; len++);
-
- /* Decide how much of that length to hash on */
- hash_len = len;
- if (warn_id_clash && len > id_clash_len)
- hash_len = id_clash_len;
-
- /* Compute hash code */
- hi = hash_len * 613 + (unsigned)text[0];
- for (i = 1; i < hash_len; i += 2)
- hi = ((hi * 613) + (unsigned)(text[i]));
-
- hi &= (1 << HASHBITS) - 1;
- hi %= MAX_HASH_TABLE;
-
- /* Search table for identifier */
- for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
- if (IDENTIFIER_LENGTH (idp) == len
- && IDENTIFIER_POINTER (idp)[0] == text[0]
- && !bcmp (IDENTIFIER_POINTER (idp), text, len))
- return idp; /* <-- return if found */
-
- /* Not found; optionally warn about a similar identifier */
- if (warn_id_clash && do_identifier_warnings && len >= id_clash_len)
- for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
- if (!strncmp (IDENTIFIER_POINTER (idp), text, id_clash_len))
- {
- warning ("`%s' and `%s' identical in first %d characters",
- IDENTIFIER_POINTER (idp), text, id_clash_len);
- break;
- }
-
- if (tree_code_length[(int) IDENTIFIER_NODE] < 0)
- abort (); /* set_identifier_size hasn't been called. */
-
- /* Not found, create one, add to chain */
- idp = make_node (IDENTIFIER_NODE);
- IDENTIFIER_LENGTH (idp) = len;
-#ifdef GATHER_STATISTICS
- id_string_size += len;
-#endif
-
- IDENTIFIER_POINTER (idp) = obstack_copy0 (&permanent_obstack, text, len);
-
- TREE_CHAIN (idp) = hash_table[hi];
- hash_table[hi] = idp;
- return idp; /* <-- return if created */
-}
-
-/* Enable warnings on similar identifiers (if requested).
- Done after the built-in identifiers are created. */
-
-void
-start_identifier_warnings ()
-{
- do_identifier_warnings = 1;
-}
-
-/* Record the size of an identifier node for the language in use.
- SIZE is the total size in bytes.
- This is called by the language-specific files. This must be
- called before allocating any identifiers. */
-
-void
-set_identifier_size (size)
- int size;
-{
- tree_code_length[(int) IDENTIFIER_NODE]
- = (size - sizeof (struct tree_common)) / sizeof (tree);
-}
-
-/* Return a newly constructed INTEGER_CST node whose constant value
- is specified by the two ints LOW and HI.
- The TREE_TYPE is set to `int'.
-
- This function should be used via the `build_int_2' macro. */
-
-tree
-build_int_2_wide (low, hi)
- HOST_WIDE_INT low, hi;
-{
- register tree t = make_node (INTEGER_CST);
- TREE_INT_CST_LOW (t) = low;
- TREE_INT_CST_HIGH (t) = hi;
- TREE_TYPE (t) = integer_type_node;
- return t;
-}
-
-/* Return a new REAL_CST node whose type is TYPE and value is D. */
-
-tree
-build_real (type, d)
- tree type;
- REAL_VALUE_TYPE d;
-{
- tree v;
- int overflow = 0;
-
- /* Check for valid float value for this type on this target machine;
- if not, can print error message and store a valid value in D. */
-#ifdef CHECK_FLOAT_VALUE
- CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
-#endif
-
- v = make_node (REAL_CST);
- TREE_TYPE (v) = type;
- TREE_REAL_CST (v) = d;
- TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
- return v;
-}
-
-/* Return a new REAL_CST node whose type is TYPE
- and whose value is the integer value of the INTEGER_CST node I. */
-
-#if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
-
-REAL_VALUE_TYPE
-real_value_from_int_cst (i)
- tree i;
-{
- REAL_VALUE_TYPE d;
- REAL_VALUE_TYPE e;
- /* Some 386 compilers mishandle unsigned int to float conversions,
- so introduce a temporary variable E to avoid those bugs. */
-
-#ifdef REAL_ARITHMETIC
- if (! TREE_UNSIGNED (TREE_TYPE (i)))
- REAL_VALUE_FROM_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i));
- else
- REAL_VALUE_FROM_UNSIGNED_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i));
-#else /* not REAL_ARITHMETIC */
- if (TREE_INT_CST_HIGH (i) < 0 && ! TREE_UNSIGNED (TREE_TYPE (i)))
- {
- d = (double) (~ TREE_INT_CST_HIGH (i));
- e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
- * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
- d *= e;
- e = (double) (unsigned HOST_WIDE_INT) (~ TREE_INT_CST_LOW (i));
- d += e;
- d = (- d - 1.0);
- }
- else
- {
- d = (double) (unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (i);
- e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
- * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
- d *= e;
- e = (double) (unsigned HOST_WIDE_INT) TREE_INT_CST_LOW (i);
- d += e;
- }
-#endif /* not REAL_ARITHMETIC */
- return d;
-}
-
-/* This function can't be implemented if we can't do arithmetic
- on the float representation. */
-
-tree
-build_real_from_int_cst (type, i)
- tree type;
- tree i;
-{
- tree v;
- int overflow = TREE_OVERFLOW (i);
- REAL_VALUE_TYPE d;
- jmp_buf float_error;
-
- v = make_node (REAL_CST);
- TREE_TYPE (v) = type;
-
- if (setjmp (float_error))
- {
- d = dconst0;
- overflow = 1;
- goto got_it;
- }
-
- set_float_handler (float_error);
-
- d = REAL_VALUE_TRUNCATE (TYPE_MODE (type), real_value_from_int_cst (i));
-
- /* Check for valid float value for this type on this target machine. */
-
- got_it:
- set_float_handler (NULL_PTR);
-
-#ifdef CHECK_FLOAT_VALUE
- CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
-#endif
-
- TREE_REAL_CST (v) = d;
- TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
- return v;
-}
-
-#endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
-
-/* Return a newly constructed STRING_CST node whose value is
- the LEN characters at STR.
- The TREE_TYPE is not initialized. */
-
-tree
-build_string (len, str)
- int len;
- char *str;
-{
- /* Put the string in saveable_obstack since it will be placed in the RTL
- for an "asm" statement and will also be kept around a while if
- deferring constant output in varasm.c. */
-
- register tree s = make_node (STRING_CST);
- TREE_STRING_LENGTH (s) = len;
- TREE_STRING_POINTER (s) = obstack_copy0 (saveable_obstack, str, len);
- return s;
-}
-
-/* Return a newly constructed COMPLEX_CST node whose value is
- specified by the real and imaginary parts REAL and IMAG.
- Both REAL and IMAG should be constant nodes.
- The TREE_TYPE is not initialized. */
-
-tree
-build_complex (real, imag)
- tree real, imag;
-{
- register tree t = make_node (COMPLEX_CST);
-
- TREE_REALPART (t) = real;
- TREE_IMAGPART (t) = imag;
- TREE_TYPE (t) = build_complex_type (TREE_TYPE (real));
- TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
- TREE_CONSTANT_OVERFLOW (t)
- = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
- return t;
-}
-
-/* Build a newly constructed TREE_VEC node of length LEN. */
-tree
-make_tree_vec (len)
- int len;
-{
- register tree t;
- register int length = (len-1) * sizeof (tree) + sizeof (struct tree_vec);
- register struct obstack *obstack = current_obstack;
- register int i;
-
-#ifdef GATHER_STATISTICS
- tree_node_counts[(int)vec_kind]++;
- tree_node_sizes[(int)vec_kind] += length;
-#endif
-
- t = (tree) obstack_alloc (obstack, length);
-
- for (i = (length / sizeof (int)) - 1; i >= 0; i--)
- ((int *) t)[i] = 0;
-
- TREE_SET_CODE (t, TREE_VEC);
- TREE_VEC_LENGTH (t) = len;
- if (obstack == &permanent_obstack)
- TREE_PERMANENT (t) = 1;
-
- return t;
-}
-
-/* Return 1 if EXPR is the integer constant zero or a complex constant
- of zero. */
-
-int
-integer_zerop (expr)
- tree expr;
-{
- STRIP_NOPS (expr);
-
- return ((TREE_CODE (expr) == INTEGER_CST
- && TREE_INT_CST_LOW (expr) == 0
- && TREE_INT_CST_HIGH (expr) == 0)
- || (TREE_CODE (expr) == COMPLEX_CST
- && integer_zerop (TREE_REALPART (expr))
- && integer_zerop (TREE_IMAGPART (expr))));
-}
-
-/* Return 1 if EXPR is the integer constant one or the corresponding
- complex constant. */
-
-int
-integer_onep (expr)
- tree expr;
-{
- STRIP_NOPS (expr);
-
- return ((TREE_CODE (expr) == INTEGER_CST
- && TREE_INT_CST_LOW (expr) == 1
- && TREE_INT_CST_HIGH (expr) == 0)
- || (TREE_CODE (expr) == COMPLEX_CST
- && integer_onep (TREE_REALPART (expr))
- && integer_zerop (TREE_IMAGPART (expr))));
-}
-
-/* Return 1 if EXPR is an integer containing all 1's in as much precision as
- it contains. Likewise for the corresponding complex constant. */
-
-int
-integer_all_onesp (expr)
- tree expr;
-{
- register int prec;
- register int uns;
-
- STRIP_NOPS (expr);
-
- if (TREE_CODE (expr) == COMPLEX_CST
- && integer_all_onesp (TREE_REALPART (expr))
- && integer_zerop (TREE_IMAGPART (expr)))
- return 1;
-
- else if (TREE_CODE (expr) != INTEGER_CST)
- return 0;
-
- uns = TREE_UNSIGNED (TREE_TYPE (expr));
- if (!uns)
- return TREE_INT_CST_LOW (expr) == -1 && TREE_INT_CST_HIGH (expr) == -1;
-
- /* Note that using TYPE_PRECISION here is wrong. We care about the
- actual bits, not the (arbitrary) range of the type. */
- prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
- if (prec >= HOST_BITS_PER_WIDE_INT)
- {
- int high_value, shift_amount;
-
- shift_amount = prec - HOST_BITS_PER_WIDE_INT;
-
- if (shift_amount > HOST_BITS_PER_WIDE_INT)
- /* Can not handle precisions greater than twice the host int size. */
- abort ();
- else if (shift_amount == HOST_BITS_PER_WIDE_INT)
- /* Shifting by the host word size is undefined according to the ANSI
- standard, so we must handle this as a special case. */
- high_value = -1;
- else
- high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
-
- return TREE_INT_CST_LOW (expr) == -1
- && TREE_INT_CST_HIGH (expr) == high_value;
- }
- else
- return TREE_INT_CST_LOW (expr) == ((HOST_WIDE_INT) 1 << prec) - 1;
-}
-
-/* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
- one bit on). */
-
-int
-integer_pow2p (expr)
- tree expr;
-{
- HOST_WIDE_INT high, low;
-
- STRIP_NOPS (expr);
-
- if (TREE_CODE (expr) == COMPLEX_CST
- && integer_pow2p (TREE_REALPART (expr))
- && integer_zerop (TREE_IMAGPART (expr)))
- return 1;
-
- if (TREE_CODE (expr) != INTEGER_CST)
- return 0;
-
- high = TREE_INT_CST_HIGH (expr);
- low = TREE_INT_CST_LOW (expr);
-
- if (high == 0 && low == 0)
- return 0;
-
- return ((high == 0 && (low & (low - 1)) == 0)
- || (low == 0 && (high & (high - 1)) == 0));
-}
-
-/* Return 1 if EXPR is the real constant zero. */
-
-int
-real_zerop (expr)
- tree expr;
-{
- STRIP_NOPS (expr);
-
- return ((TREE_CODE (expr) == REAL_CST
- && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
- || (TREE_CODE (expr) == COMPLEX_CST
- && real_zerop (TREE_REALPART (expr))
- && real_zerop (TREE_IMAGPART (expr))));
-}
-
-/* Return 1 if EXPR is the real constant one in real or complex form. */
-
-int
-real_onep (expr)
- tree expr;
-{
- STRIP_NOPS (expr);
-
- return ((TREE_CODE (expr) == REAL_CST
- && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
- || (TREE_CODE (expr) == COMPLEX_CST
- && real_onep (TREE_REALPART (expr))
- && real_zerop (TREE_IMAGPART (expr))));
-}
-
-/* Return 1 if EXPR is the real constant two. */
-
-int
-real_twop (expr)
- tree expr;
-{
- STRIP_NOPS (expr);
-
- return ((TREE_CODE (expr) == REAL_CST
- && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
- || (TREE_CODE (expr) == COMPLEX_CST
- && real_twop (TREE_REALPART (expr))
- && real_zerop (TREE_IMAGPART (expr))));
-}
-
-/* Nonzero if EXP is a constant or a cast of a constant. */
-
-int
-really_constant_p (exp)
- tree exp;
-{
- /* This is not quite the same as STRIP_NOPS. It does more. */
- while (TREE_CODE (exp) == NOP_EXPR
- || TREE_CODE (exp) == CONVERT_EXPR
- || TREE_CODE (exp) == NON_LVALUE_EXPR)
- exp = TREE_OPERAND (exp, 0);
- return TREE_CONSTANT (exp);
-}
-
-/* Return first list element whose TREE_VALUE is ELEM.
- Return 0 if ELEM is not in LIST. */
-
-tree
-value_member (elem, list)
- tree elem, list;
-{
- while (list)
- {
- if (elem == TREE_VALUE (list))
- return list;
- list = TREE_CHAIN (list);
- }
- return NULL_TREE;
-}
-
-/* Return first list element whose TREE_PURPOSE is ELEM.
- Return 0 if ELEM is not in LIST. */
-
-tree
-purpose_member (elem, list)
- tree elem, list;
-{
- while (list)
- {
- if (elem == TREE_PURPOSE (list))
- return list;
- list = TREE_CHAIN (list);
- }
- return NULL_TREE;
-}
-
-/* Return first list element whose BINFO_TYPE is ELEM.
- Return 0 if ELEM is not in LIST. */
-
-tree
-binfo_member (elem, list)
- tree elem, list;
-{
- while (list)
- {
- if (elem == BINFO_TYPE (list))
- return list;
- list = TREE_CHAIN (list);
- }
- return NULL_TREE;
-}
-
-/* Return nonzero if ELEM is part of the chain CHAIN. */
-
-int
-chain_member (elem, chain)
- tree elem, chain;
-{
- while (chain)
- {
- if (elem == chain)
- return 1;
- chain = TREE_CHAIN (chain);
- }
-
- return 0;
-}
-
-/* Return nonzero if ELEM is equal to TREE_VALUE (CHAIN) for any piece of
- chain CHAIN. */
-/* ??? This function was added for machine specific attributes but is no
- longer used. It could be deleted if we could confirm all front ends
- don't use it. */
-
-int
-chain_member_value (elem, chain)
- tree elem, chain;
-{
- while (chain)
- {
- if (elem == TREE_VALUE (chain))
- return 1;
- chain = TREE_CHAIN (chain);
- }
-
- return 0;
-}
-
-/* Return nonzero if ELEM is equal to TREE_PURPOSE (CHAIN)
- for any piece of chain CHAIN. */
-/* ??? This function was added for machine specific attributes but is no
- longer used. It could be deleted if we could confirm all front ends
- don't use it. */
-
-int
-chain_member_purpose (elem, chain)
- tree elem, chain;
-{
- while (chain)
- {
- if (elem == TREE_PURPOSE (chain))
- return 1;
- chain = TREE_CHAIN (chain);
- }
-
- return 0;
-}
-
-/* Return the length of a chain of nodes chained through TREE_CHAIN.
- We expect a null pointer to mark the end of the chain.
- This is the Lisp primitive `length'. */
-
-int
-list_length (t)
- tree t;
-{
- register tree tail;
- register int len = 0;
-
- for (tail = t; tail; tail = TREE_CHAIN (tail))
- len++;
-
- return len;
-}
-
-/* Concatenate two chains of nodes (chained through TREE_CHAIN)
- by modifying the last node in chain 1 to point to chain 2.
- This is the Lisp primitive `nconc'. */
-
-tree
-chainon (op1, op2)
- tree op1, op2;
-{
-
- if (op1)
- {
- register tree t1;
- register tree t2;
-
- for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
- ;
- TREE_CHAIN (t1) = op2;
- for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
- if (t2 == t1)
- abort (); /* Circularity created. */
- return op1;
- }
- else return op2;
-}
-
-/* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
-
-tree
-tree_last (chain)
- register tree chain;
-{
- register tree next;
- if (chain)
- while (next = TREE_CHAIN (chain))
- chain = next;
- return chain;
-}
-
-/* Reverse the order of elements in the chain T,
- and return the new head of the chain (old last element). */
-
-tree
-nreverse (t)
- tree t;
-{
- register tree prev = 0, decl, next;
- for (decl = t; decl; decl = next)
- {
- next = TREE_CHAIN (decl);
- TREE_CHAIN (decl) = prev;
- prev = decl;
- }
- return prev;
-}
-
-/* Given a chain CHAIN of tree nodes,
- construct and return a list of those nodes. */
-
-tree
-listify (chain)
- tree chain;
-{
- tree result = NULL_TREE;
- tree in_tail = chain;
- tree out_tail = NULL_TREE;
-
- while (in_tail)
- {
- tree next = tree_cons (NULL_TREE, in_tail, NULL_TREE);
- if (out_tail)
- TREE_CHAIN (out_tail) = next;
- else
- result = next;
- out_tail = next;
- in_tail = TREE_CHAIN (in_tail);
- }
-
- return result;
-}
-
-/* Return a newly created TREE_LIST node whose
- purpose and value fields are PARM and VALUE. */
-
-tree
-build_tree_list (parm, value)
- tree parm, value;
-{
- register tree t = make_node (TREE_LIST);
- TREE_PURPOSE (t) = parm;
- TREE_VALUE (t) = value;
- return t;
-}
-
-/* Similar, but build on the temp_decl_obstack. */
-
-tree
-build_decl_list (parm, value)
- tree parm, value;
-{
- register tree node;
- register struct obstack *ambient_obstack = current_obstack;
- current_obstack = &temp_decl_obstack;
- node = build_tree_list (parm, value);
- current_obstack = ambient_obstack;
- return node;
-}
-
-/* Return a newly created TREE_LIST node whose
- purpose and value fields are PARM and VALUE
- and whose TREE_CHAIN is CHAIN. */
-
-tree
-tree_cons (purpose, value, chain)
- tree purpose, value, chain;
-{
-#if 0
- register tree node = make_node (TREE_LIST);
-#else
- register int i;
- register tree node = (tree) obstack_alloc (current_obstack, sizeof (struct tree_list));
-#ifdef GATHER_STATISTICS
- tree_node_counts[(int)x_kind]++;
- tree_node_sizes[(int)x_kind] += sizeof (struct tree_list);
-#endif
-
- for (i = (sizeof (struct tree_common) / sizeof (int)) - 1; i >= 0; i--)
- ((int *) node)[i] = 0;
-
- TREE_SET_CODE (node, TREE_LIST);
- if (current_obstack == &permanent_obstack)
- TREE_PERMANENT (node) = 1;
-#endif
-
- TREE_CHAIN (node) = chain;
- TREE_PURPOSE (node) = purpose;
- TREE_VALUE (node) = value;
- return node;
-}
-
-/* Similar, but build on the temp_decl_obstack. */
-
-tree
-decl_tree_cons (purpose, value, chain)
- tree purpose, value, chain;
-{
- register tree node;
- register struct obstack *ambient_obstack = current_obstack;
- current_obstack = &temp_decl_obstack;
- node = tree_cons (purpose, value, chain);
- current_obstack = ambient_obstack;
- return node;
-}
-
-/* Same as `tree_cons' but make a permanent object. */
-
-tree
-perm_tree_cons (purpose, value, chain)
- tree purpose, value, chain;
-{
- register tree node;
- register struct obstack *ambient_obstack = current_obstack;
- current_obstack = &permanent_obstack;
-
- node = tree_cons (purpose, value, chain);
- current_obstack = ambient_obstack;
- return node;
-}
-
-/* Same as `tree_cons', but make this node temporary, regardless. */
-
-tree
-temp_tree_cons (purpose, value, chain)
- tree purpose, value, chain;
-{
- register tree node;
- register struct obstack *ambient_obstack = current_obstack;
- current_obstack = &temporary_obstack;
-
- node = tree_cons (purpose, value, chain);
- current_obstack = ambient_obstack;
- return node;
-}
-
-/* Same as `tree_cons', but save this node if the function's RTL is saved. */
-
-tree
-saveable_tree_cons (purpose, value, chain)
- tree purpose, value, chain;
-{
- register tree node;
- register struct obstack *ambient_obstack = current_obstack;
- current_obstack = saveable_obstack;
-
- node = tree_cons (purpose, value, chain);
- current_obstack = ambient_obstack;
- return node;
-}
-
-/* Return the size nominally occupied by an object of type TYPE
- when it resides in memory. The value is measured in units of bytes,
- and its data type is that normally used for type sizes
- (which is the first type created by make_signed_type or
- make_unsigned_type). */
-
-tree
-size_in_bytes (type)
- tree type;
-{
- tree t;
-
- if (type == error_mark_node)
- return integer_zero_node;
- type = TYPE_MAIN_VARIANT (type);
- if (TYPE_SIZE (type) == 0)
- {
- incomplete_type_error (NULL_TREE, type);
- return integer_zero_node;
- }
- t = size_binop (CEIL_DIV_EXPR, TYPE_SIZE (type),
- size_int (BITS_PER_UNIT));
- if (TREE_CODE (t) == INTEGER_CST)
- force_fit_type (t, 0);
- return t;
-}
-
-/* Return the size of TYPE (in bytes) as an integer,
- or return -1 if the size can vary. */
-
-int
-int_size_in_bytes (type)
- tree type;
-{
- unsigned int size;
- if (type == error_mark_node)
- return 0;
- type = TYPE_MAIN_VARIANT (type);
- if (TYPE_SIZE (type) == 0)
- return -1;
- if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
- return -1;
- if (TREE_INT_CST_HIGH (TYPE_SIZE (type)) != 0)
- {
- tree t = size_binop (CEIL_DIV_EXPR, TYPE_SIZE (type),
- size_int (BITS_PER_UNIT));
- return TREE_INT_CST_LOW (t);
- }
- size = TREE_INT_CST_LOW (TYPE_SIZE (type));
- return (size + BITS_PER_UNIT - 1) / BITS_PER_UNIT;
-}
-
-/* Return, as a tree node, the number of elements for TYPE (which is an
- ARRAY_TYPE) minus one. This counts only elements of the top array. */
-
-tree
-array_type_nelts (type)
- tree type;
-{
- tree index_type = TYPE_DOMAIN (type);
-
- return (integer_zerop (TYPE_MIN_VALUE (index_type))
- ? TYPE_MAX_VALUE (index_type)
- : fold (build (MINUS_EXPR, TREE_TYPE (TYPE_MAX_VALUE (index_type)),
- TYPE_MAX_VALUE (index_type),
- TYPE_MIN_VALUE (index_type))));
-}
-
-/* Return nonzero if arg is static -- a reference to an object in
- static storage. This is not the same as the C meaning of `static'. */
-
-int
-staticp (arg)
- tree arg;
-{
- switch (TREE_CODE (arg))
- {
- case FUNCTION_DECL:
- /* Nested functions aren't static, since taking their address
- involves a trampoline. */
- return decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg);
- case VAR_DECL:
- return TREE_STATIC (arg) || DECL_EXTERNAL (arg);
-
- case CONSTRUCTOR:
- return TREE_STATIC (arg);
-
- case STRING_CST:
- return 1;
-
- case COMPONENT_REF:
- case BIT_FIELD_REF:
- return staticp (TREE_OPERAND (arg, 0));
-
-#if 0
- /* This case is technically correct, but results in setting
- TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
- compile time. */
- case INDIRECT_REF:
- return TREE_CONSTANT (TREE_OPERAND (arg, 0));
-#endif
-
- case ARRAY_REF:
- if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
- && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
- return staticp (TREE_OPERAND (arg, 0));
- }
-
- return 0;
-}
-
-/* Wrap a SAVE_EXPR around EXPR, if appropriate.
- Do this to any expression which may be used in more than one place,
- but must be evaluated only once.
-
- Normally, expand_expr would reevaluate the expression each time.
- Calling save_expr produces something that is evaluated and recorded
- the first time expand_expr is called on it. Subsequent calls to
- expand_expr just reuse the recorded value.
-
- The call to expand_expr that generates code that actually computes
- the value is the first call *at compile time*. Subsequent calls
- *at compile time* generate code to use the saved value.
- This produces correct result provided that *at run time* control
- always flows through the insns made by the first expand_expr
- before reaching the other places where the save_expr was evaluated.
- You, the caller of save_expr, must make sure this is so.
-
- Constants, and certain read-only nodes, are returned with no
- SAVE_EXPR because that is safe. Expressions containing placeholders
- are not touched; see tree.def for an explanation of what these
- are used for. */
-
-tree
-save_expr (expr)
- tree expr;
-{
- register tree t = fold (expr);
-
- /* We don't care about whether this can be used as an lvalue in this
- context. */
- while (TREE_CODE (t) == NON_LVALUE_EXPR)
- t = TREE_OPERAND (t, 0);
-
- /* If the tree evaluates to a constant, then we don't want to hide that
- fact (i.e. this allows further folding, and direct checks for constants).
- However, a read-only object that has side effects cannot be bypassed.
- Since it is no problem to reevaluate literals, we just return the
- literal node. */
-
- if (TREE_CONSTANT (t) || (TREE_READONLY (t) && ! TREE_SIDE_EFFECTS (t))
- || TREE_CODE (t) == SAVE_EXPR || TREE_CODE (t) == ERROR_MARK)
- return t;
-
- /* If T contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
- it means that the size or offset of some field of an object depends on
- the value within another field.
-
- Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
- and some variable since it would then need to be both evaluated once and
- evaluated more than once. Front-ends must assure this case cannot
- happen by surrounding any such subexpressions in their own SAVE_EXPR
- and forcing evaluation at the proper time. */
- if (contains_placeholder_p (t))
- return t;
-
- t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
-
- /* This expression might be placed ahead of a jump to ensure that the
- value was computed on both sides of the jump. So make sure it isn't
- eliminated as dead. */
- TREE_SIDE_EFFECTS (t) = 1;
- return t;
-}
-
-/* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
- or offset that depends on a field within a record.
-
- Note that we only allow such expressions within simple arithmetic
- or a COND_EXPR. */
-
-int
-contains_placeholder_p (exp)
- tree exp;
-{
- register enum tree_code code = TREE_CODE (exp);
- tree inner;
-
- /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
- in it since it is supplying a value for it. */
- if (code == WITH_RECORD_EXPR)
- return 0;
-
- switch (TREE_CODE_CLASS (code))
- {
- case 'r':
- for (inner = TREE_OPERAND (exp, 0);
- TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
- inner = TREE_OPERAND (inner, 0))
- ;
- return TREE_CODE (inner) == PLACEHOLDER_EXPR;
-
- case '1':
- case '2': case '<':
- case 'e':
- switch (tree_code_length[(int) code])
- {
- case 1:
- return contains_placeholder_p (TREE_OPERAND (exp, 0));
- case 2:
- return (code != RTL_EXPR
- && code != CONSTRUCTOR
- && ! (code == SAVE_EXPR && SAVE_EXPR_RTL (exp) != 0)
- && code != WITH_RECORD_EXPR
- && (contains_placeholder_p (TREE_OPERAND (exp, 0))
- || contains_placeholder_p (TREE_OPERAND (exp, 1))));
- case 3:
- return (code == COND_EXPR
- && (contains_placeholder_p (TREE_OPERAND (exp, 0))
- || contains_placeholder_p (TREE_OPERAND (exp, 1))
- || contains_placeholder_p (TREE_OPERAND (exp, 2))));
- }
- }
-
- return 0;
-}
-
-/* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
- return a tree with all occurrences of references to F in a
- PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
- contains only arithmetic expressions. */
-
-tree
-substitute_in_expr (exp, f, r)
- tree exp;
- tree f;
- tree r;
-{
- enum tree_code code = TREE_CODE (exp);
- tree new = 0;
- tree inner;
-
- switch (TREE_CODE_CLASS (code))
- {
- case 'c':
- case 'd':
- return exp;
-
- case 'x':
- if (code == PLACEHOLDER_EXPR)
- return exp;
- break;
-
- case '1':
- case '2':
- case '<':
- case 'e':
- switch (tree_code_length[(int) code])
- {
- case 1:
- new = fold (build1 (code, TREE_TYPE (exp),
- substitute_in_expr (TREE_OPERAND (exp, 0),
- f, r)));
- break;
-
- case 2:
- /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
- could, but we don't support it. */
- if (code == RTL_EXPR)
- return exp;
- else if (code == CONSTRUCTOR)
- abort ();
-
- new = fold (build (code, TREE_TYPE (exp),
- substitute_in_expr (TREE_OPERAND (exp, 0), f, r),
- substitute_in_expr (TREE_OPERAND (exp, 1),
- f, r)));
- break;
-
- case 3:
- /* It cannot be that anything inside a SAVE_EXPR contains a
- PLACEHOLDER_EXPR. */
- if (code == SAVE_EXPR)
- return exp;
-
- if (code != COND_EXPR)
- abort ();
-
- new = fold (build (code, TREE_TYPE (exp),
- substitute_in_expr (TREE_OPERAND (exp, 0), f, r),
- substitute_in_expr (TREE_OPERAND (exp, 1), f, r),
- substitute_in_expr (TREE_OPERAND (exp, 2),
- f, r)));
- }
-
- break;
-
- case 'r':
- switch (code)
- {
- case COMPONENT_REF:
- /* If this expression is getting a value from a PLACEHOLDER_EXPR
- and it is the right field, replace it with R. */
- for (inner = TREE_OPERAND (exp, 0);
- TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
- inner = TREE_OPERAND (inner, 0))
- ;
- if (TREE_CODE (inner) == PLACEHOLDER_EXPR
- && TREE_OPERAND (exp, 1) == f)
- return r;
-
- /* If this expression hasn't been completed let, leave it
- alone. */
- if (TREE_CODE (inner) == PLACEHOLDER_EXPR
- && TREE_TYPE (inner) == 0)
- return exp;
-
- new = fold (build (code, TREE_TYPE (exp),
- substitute_in_expr (TREE_OPERAND (exp, 0), f, r),
- TREE_OPERAND (exp, 1)));
- break;
-
- case BIT_FIELD_REF:
- new = fold (build (code, TREE_TYPE (exp),
- substitute_in_expr (TREE_OPERAND (exp, 0), f, r),
- substitute_in_expr (TREE_OPERAND (exp, 1), f, r),
- substitute_in_expr (TREE_OPERAND (exp, 2), f, r)));
- break;
-
- case INDIRECT_REF:
- case BUFFER_REF:
- new = fold (build1 (code, TREE_TYPE (exp),
- substitute_in_expr (TREE_OPERAND (exp, 0),
- f, r)));
- break;
-
- case OFFSET_REF:
- new = fold (build (code, TREE_TYPE (exp),
- substitute_in_expr (TREE_OPERAND (exp, 0), f, r),
- substitute_in_expr (TREE_OPERAND (exp, 1), f, r)));
- break;
- }
- }
-
- /* If it wasn't one of the cases we handle, give up. */
- if (new == 0)
- abort ();
-
- TREE_READONLY (new) = TREE_READONLY (exp);
- return new;
-}
-
-/* Given a type T, a FIELD_DECL F, and a replacement value R,
- return a new type with all size expressions that contain F
- updated by replacing F with R. */
-
-tree
-substitute_in_type (t, f, r)
- tree t, f, r;
-{
- switch (TREE_CODE (t))
- {
- case POINTER_TYPE:
- case VOID_TYPE:
- return t;
- case INTEGER_TYPE:
- case ENUMERAL_TYPE:
- case BOOLEAN_TYPE:
- case CHAR_TYPE:
- if ((TREE_CODE (TYPE_MIN_VALUE (t)) != INTEGER_CST
- && contains_placeholder_p (TYPE_MIN_VALUE (t)))
- || (TREE_CODE (TYPE_MAX_VALUE (t)) != INTEGER_CST
- && contains_placeholder_p (TYPE_MAX_VALUE (t))))
- return build_range_type (t,
- substitute_in_expr (TYPE_MIN_VALUE (t), f, r),
- substitute_in_expr (TYPE_MAX_VALUE (t), f, r));
- return t;
-
- case REAL_TYPE:
- if ((TYPE_MIN_VALUE (t) != 0
- && TREE_CODE (TYPE_MIN_VALUE (t)) != REAL_CST
- && contains_placeholder_p (TYPE_MIN_VALUE (t)))
- || (TYPE_MAX_VALUE (t) != 0
- && TREE_CODE (TYPE_MAX_VALUE (t)) != REAL_CST
- && contains_placeholder_p (TYPE_MAX_VALUE (t))))
- {
- t = build_type_copy (t);
-
- if (TYPE_MIN_VALUE (t))
- TYPE_MIN_VALUE (t) = substitute_in_expr (TYPE_MIN_VALUE (t), f, r);
- if (TYPE_MAX_VALUE (t))
- TYPE_MAX_VALUE (t) = substitute_in_expr (TYPE_MAX_VALUE (t), f, r);
- }
- return t;
-
- case COMPLEX_TYPE:
- return build_complex_type (substitute_in_type (TREE_TYPE (t), f, r));
-
- case OFFSET_TYPE:
- case METHOD_TYPE:
- case REFERENCE_TYPE:
- case FILE_TYPE:
- case SET_TYPE:
- case FUNCTION_TYPE:
- case LANG_TYPE:
- /* Don't know how to do these yet. */
- abort ();
-
- case ARRAY_TYPE:
- t = build_array_type (substitute_in_type (TREE_TYPE (t), f, r),
- substitute_in_type (TYPE_DOMAIN (t), f, r));
- TYPE_SIZE (t) = 0;
- layout_type (t);
- return t;
-
- case RECORD_TYPE:
- case UNION_TYPE:
- case QUAL_UNION_TYPE:
- {
- tree new = copy_node (t);
- tree field;
- tree last_field = 0;
-
- /* Start out with no fields, make new fields, and chain them
- in. */
-
- TYPE_FIELDS (new) = 0;
- TYPE_SIZE (new) = 0;
-
- for (field = TYPE_FIELDS (t); field;
- field = TREE_CHAIN (field))
- {
- tree new_field = copy_node (field);
-
- TREE_TYPE (new_field)
- = substitute_in_type (TREE_TYPE (new_field), f, r);
-
- /* If this is an anonymous field and the type of this field is
- a UNION_TYPE or RECORD_TYPE with no elements, ignore it. If
- the type just has one element, treat that as the field.
- But don't do this if we are processing a QUAL_UNION_TYPE. */
- if (TREE_CODE (t) != QUAL_UNION_TYPE && DECL_NAME (new_field) == 0
- && (TREE_CODE (TREE_TYPE (new_field)) == UNION_TYPE
- || TREE_CODE (TREE_TYPE (new_field)) == RECORD_TYPE))
- {
- if (TYPE_FIELDS (TREE_TYPE (new_field)) == 0)
- continue;
-
- if (TREE_CHAIN (TYPE_FIELDS (TREE_TYPE (new_field))) == 0)
- new_field = TYPE_FIELDS (TREE_TYPE (new_field));
- }
-
- DECL_CONTEXT (new_field) = new;
- DECL_SIZE (new_field) = 0;
-
- if (TREE_CODE (t) == QUAL_UNION_TYPE)
- {
- /* Do the substitution inside the qualifier and if we find
- that this field will not be present, omit it. */
- DECL_QUALIFIER (new_field)
- = substitute_in_expr (DECL_QUALIFIER (field), f, r);
- if (integer_zerop (DECL_QUALIFIER (new_field)))
- continue;
- }
-
- if (last_field == 0)
- TYPE_FIELDS (new) = new_field;
- else
- TREE_CHAIN (last_field) = new_field;
-
- last_field = new_field;
-
- /* If this is a qualified type and this field will always be
- present, we are done. */
- if (TREE_CODE (t) == QUAL_UNION_TYPE
- && integer_onep (DECL_QUALIFIER (new_field)))
- break;
- }
-
- /* If this used to be a qualified union type, but we now know what
- field will be present, make this a normal union. */
- if (TREE_CODE (new) == QUAL_UNION_TYPE
- && (TYPE_FIELDS (new) == 0
- || integer_onep (DECL_QUALIFIER (TYPE_FIELDS (new)))))
- TREE_SET_CODE (new, UNION_TYPE);
-
- layout_type (new);
- return new;
- }
- }
-}
-
-/* Stabilize a reference so that we can use it any number of times
- without causing its operands to be evaluated more than once.
- Returns the stabilized reference. This works by means of save_expr,
- so see the caveats in the comments about save_expr.
-
- Also allows conversion expressions whose operands are references.
- Any other kind of expression is returned unchanged. */
-
-tree
-stabilize_reference (ref)
- tree ref;
-{
- register tree result;
- register enum tree_code code = TREE_CODE (ref);
-
- switch (code)
- {
- case VAR_DECL:
- case PARM_DECL:
- case RESULT_DECL:
- /* No action is needed in this case. */
- return ref;
-
- case NOP_EXPR:
- case CONVERT_EXPR:
- case FLOAT_EXPR:
- case FIX_TRUNC_EXPR:
- case FIX_FLOOR_EXPR:
- case FIX_ROUND_EXPR:
- case FIX_CEIL_EXPR:
- result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
- break;
-
- case INDIRECT_REF:
- result = build_nt (INDIRECT_REF,
- stabilize_reference_1 (TREE_OPERAND (ref, 0)));
- break;
-
- case COMPONENT_REF:
- result = build_nt (COMPONENT_REF,
- stabilize_reference (TREE_OPERAND (ref, 0)),
- TREE_OPERAND (ref, 1));
- break;
-
- case BIT_FIELD_REF:
- result = build_nt (BIT_FIELD_REF,
- stabilize_reference (TREE_OPERAND (ref, 0)),
- stabilize_reference_1 (TREE_OPERAND (ref, 1)),
- stabilize_reference_1 (TREE_OPERAND (ref, 2)));
- break;
-
- case ARRAY_REF:
- result = build_nt (ARRAY_REF,
- stabilize_reference (TREE_OPERAND (ref, 0)),
- stabilize_reference_1 (TREE_OPERAND (ref, 1)));
- break;
-
- case COMPOUND_EXPR:
- result = build_nt (COMPOUND_EXPR,
- stabilize_reference_1 (TREE_OPERAND (ref, 0)),
- stabilize_reference (TREE_OPERAND (ref, 1)));
- break;
-
- case RTL_EXPR:
- result = build1 (INDIRECT_REF, TREE_TYPE (ref),
- save_expr (build1 (ADDR_EXPR,
- build_pointer_type (TREE_TYPE (ref)),
- ref)));
- break;
-
-
- /* If arg isn't a kind of lvalue we recognize, make no change.
- Caller should recognize the error for an invalid lvalue. */
- default:
- return ref;
-
- case ERROR_MARK:
- return error_mark_node;
- }
-
- TREE_TYPE (result) = TREE_TYPE (ref);
- TREE_READONLY (result) = TREE_READONLY (ref);
- TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
- TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
- TREE_RAISES (result) = TREE_RAISES (ref);
-
- return result;
-}
-
-/* Subroutine of stabilize_reference; this is called for subtrees of
- references. Any expression with side-effects must be put in a SAVE_EXPR
- to ensure that it is only evaluated once.
-
- We don't put SAVE_EXPR nodes around everything, because assigning very
- simple expressions to temporaries causes us to miss good opportunities
- for optimizations. Among other things, the opportunity to fold in the
- addition of a constant into an addressing mode often gets lost, e.g.
- "y[i+1] += x;". In general, we take the approach that we should not make
- an assignment unless we are forced into it - i.e., that any non-side effect
- operator should be allowed, and that cse should take care of coalescing
- multiple utterances of the same expression should that prove fruitful. */
-
-tree
-stabilize_reference_1 (e)
- tree e;
-{
- register tree result;
- register enum tree_code code = TREE_CODE (e);
-
- /* We cannot ignore const expressions because it might be a reference
- to a const array but whose index contains side-effects. But we can
- ignore things that are actual constant or that already have been
- handled by this function. */
-
- if (TREE_CONSTANT (e) || code == SAVE_EXPR)
- return e;
-
- switch (TREE_CODE_CLASS (code))
- {
- case 'x':
- case 't':
- case 'd':
- case 'b':
- case '<':
- case 's':
- case 'e':
- case 'r':
- /* If the expression has side-effects, then encase it in a SAVE_EXPR
- so that it will only be evaluated once. */
- /* The reference (r) and comparison (<) classes could be handled as
- below, but it is generally faster to only evaluate them once. */
- if (TREE_SIDE_EFFECTS (e))
- return save_expr (e);
- return e;
-
- case 'c':
- /* Constants need no processing. In fact, we should never reach
- here. */
- return e;
-
- case '2':
- /* Division is slow and tends to be compiled with jumps,
- especially the division by powers of 2 that is often
- found inside of an array reference. So do it just once. */
- if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
- || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
- || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
- || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
- return save_expr (e);
- /* Recursively stabilize each operand. */
- result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
- stabilize_reference_1 (TREE_OPERAND (e, 1)));
- break;
-
- case '1':
- /* Recursively stabilize each operand. */
- result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
- break;
-
- default:
- abort ();
- }
-
- TREE_TYPE (result) = TREE_TYPE (e);
- TREE_READONLY (result) = TREE_READONLY (e);
- TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
- TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
- TREE_RAISES (result) = TREE_RAISES (e);
-
- return result;
-}
-
-/* Low-level constructors for expressions. */
-
-/* Build an expression of code CODE, data type TYPE,
- and operands as specified by the arguments ARG1 and following arguments.
- Expressions and reference nodes can be created this way.
- Constants, decls, types and misc nodes cannot be. */
-
-tree
-build VPROTO((enum tree_code code, tree tt, ...))
-{
-#ifndef __STDC__
- enum tree_code code;
- tree tt;
-#endif
- va_list p;
- register tree t;
- register int length;
- register int i;
-
- VA_START (p, tt);
-
-#ifndef __STDC__
- code = va_arg (p, enum tree_code);
- tt = va_arg (p, tree);
-#endif
-
- t = make_node (code);
- length = tree_code_length[(int) code];
- TREE_TYPE (t) = tt;
-
- if (length == 2)
- {
- /* This is equivalent to the loop below, but faster. */
- register tree arg0 = va_arg (p, tree);
- register tree arg1 = va_arg (p, tree);
- TREE_OPERAND (t, 0) = arg0;
- TREE_OPERAND (t, 1) = arg1;
- if ((arg0 && TREE_SIDE_EFFECTS (arg0))
- || (arg1 && TREE_SIDE_EFFECTS (arg1)))
- TREE_SIDE_EFFECTS (t) = 1;
- TREE_RAISES (t)
- = (arg0 && TREE_RAISES (arg0)) || (arg1 && TREE_RAISES (arg1));
- }
- else if (length == 1)
- {
- register tree arg0 = va_arg (p, tree);
-
- /* Call build1 for this! */
- if (TREE_CODE_CLASS (code) != 's')
- abort ();
- TREE_OPERAND (t, 0) = arg0;
- if (arg0 && TREE_SIDE_EFFECTS (arg0))
- TREE_SIDE_EFFECTS (t) = 1;
- TREE_RAISES (t) = (arg0 && TREE_RAISES (arg0));
- }
- else
- {
- for (i = 0; i < length; i++)
- {
- register tree operand = va_arg (p, tree);
- TREE_OPERAND (t, i) = operand;
- if (operand)
- {
- if (TREE_SIDE_EFFECTS (operand))
- TREE_SIDE_EFFECTS (t) = 1;
- if (TREE_RAISES (operand))
- TREE_RAISES (t) = 1;
- }
- }
- }
- va_end (p);
- return t;
-}
-
-/* Same as above, but only builds for unary operators.
- Saves lions share of calls to `build'; cuts down use
- of varargs, which is expensive for RISC machines. */
-tree
-build1 (code, type, node)
- enum tree_code code;
- tree type;
- tree node;
-{
- register struct obstack *obstack = current_obstack;
- register int i, length;
- register tree_node_kind kind;
- register tree t;
-
-#ifdef GATHER_STATISTICS
- if (TREE_CODE_CLASS (code) == 'r')
- kind = r_kind;
- else
- kind = e_kind;
-#endif
-
- obstack = expression_obstack;
- length = sizeof (struct tree_exp);
-
- t = (tree) obstack_alloc (obstack, length);
-
-#ifdef GATHER_STATISTICS
- tree_node_counts[(int)kind]++;
- tree_node_sizes[(int)kind] += length;
-#endif
-
- for (i = (length / sizeof (int)) - 1; i >= 0; i--)
- ((int *) t)[i] = 0;
-
- TREE_TYPE (t) = type;
- TREE_SET_CODE (t, code);
-
- if (obstack == &permanent_obstack)
- TREE_PERMANENT (t) = 1;
-
- TREE_OPERAND (t, 0) = node;
- if (node)
- {
- if (TREE_SIDE_EFFECTS (node))
- TREE_SIDE_EFFECTS (t) = 1;
- if (TREE_RAISES (node))
- TREE_RAISES (t) = 1;
- }
-
- return t;
-}
-
-/* Similar except don't specify the TREE_TYPE
- and leave the TREE_SIDE_EFFECTS as 0.
- It is permissible for arguments to be null,
- or even garbage if their values do not matter. */
-
-tree
-build_nt VPROTO((enum tree_code code, ...))
-{
-#ifndef __STDC__
- enum tree_code code;
-#endif
- va_list p;
- register tree t;
- register int length;
- register int i;
-
- VA_START (p, code);
-
-#ifndef __STDC__
- code = va_arg (p, enum tree_code);
-#endif
-
- t = make_node (code);
- length = tree_code_length[(int) code];
-
- for (i = 0; i < length; i++)
- TREE_OPERAND (t, i) = va_arg (p, tree);
-
- va_end (p);
- return t;
-}
-
-/* Similar to `build_nt', except we build
- on the temp_decl_obstack, regardless. */
-
-tree
-build_parse_node VPROTO((enum tree_code code, ...))
-{
-#ifndef __STDC__
- enum tree_code code;
-#endif
- register struct obstack *ambient_obstack = expression_obstack;
- va_list p;
- register tree t;
- register int length;
- register int i;
-
- VA_START (p, code);
-
-#ifndef __STDC__
- code = va_arg (p, enum tree_code);
-#endif
-
- expression_obstack = &temp_decl_obstack;
-
- t = make_node (code);
- length = tree_code_length[(int) code];
-
- for (i = 0; i < length; i++)
- TREE_OPERAND (t, i) = va_arg (p, tree);
-
- va_end (p);
- expression_obstack = ambient_obstack;
- return t;
-}
-
-#if 0
-/* Commented out because this wants to be done very
- differently. See cp-lex.c. */
-tree
-build_op_identifier (op1, op2)
- tree op1, op2;
-{
- register tree t = make_node (OP_IDENTIFIER);
- TREE_PURPOSE (t) = op1;
- TREE_VALUE (t) = op2;
- return t;
-}
-#endif
-
-/* Create a DECL_... node of code CODE, name NAME and data type TYPE.
- We do NOT enter this node in any sort of symbol table.
-
- layout_decl is used to set up the decl's storage layout.
- Other slots are initialized to 0 or null pointers. */
-
-tree
-build_decl (code, name, type)
- enum tree_code code;
- tree name, type;
-{
- register tree t;
-
- t = make_node (code);
-
-/* if (type == error_mark_node)
- type = integer_type_node; */
-/* That is not done, deliberately, so that having error_mark_node
- as the type can suppress useless errors in the use of this variable. */
-
- DECL_NAME (t) = name;
- DECL_ASSEMBLER_NAME (t) = name;
- TREE_TYPE (t) = type;
-
- if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
- layout_decl (t, 0);
- else if (code == FUNCTION_DECL)
- DECL_MODE (t) = FUNCTION_MODE;
-
- return t;
-}
-
-/* BLOCK nodes are used to represent the structure of binding contours
- and declarations, once those contours have been exited and their contents
- compiled. This information is used for outputting debugging info. */
-
-tree
-build_block (vars, tags, subblocks, supercontext, chain)
- tree vars, tags, subblocks, supercontext, chain;
-{
- register tree block = make_node (BLOCK);
- BLOCK_VARS (block) = vars;
- BLOCK_TYPE_TAGS (block) = tags;
- BLOCK_SUBBLOCKS (block) = subblocks;
- BLOCK_SUPERCONTEXT (block) = supercontext;
- BLOCK_CHAIN (block) = chain;
- return block;
-}
-
-/* Return a declaration like DDECL except that its DECL_MACHINE_ATTRIBUTE
- is ATTRIBUTE. */
-
-tree
-build_decl_attribute_variant (ddecl, attribute)
- tree ddecl, attribute;
-{
- DECL_MACHINE_ATTRIBUTES (ddecl) = attribute;
- return ddecl;
-}
-
-/* Return a type like TTYPE except that its TYPE_ATTRIBUTE
- is ATTRIBUTE.
-
- Record such modified types already made so we don't make duplicates. */
-
-tree
-build_type_attribute_variant (ttype, attribute)
- tree ttype, attribute;
-{
- if ( ! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
- {
- register int hashcode;
- register struct obstack *ambient_obstack = current_obstack;
- tree ntype;
-
- if (ambient_obstack != &permanent_obstack)
- current_obstack = TYPE_OBSTACK (ttype);
-
- ntype = copy_node (ttype);
- current_obstack = ambient_obstack;
-
- TYPE_POINTER_TO (ntype) = 0;
- TYPE_REFERENCE_TO (ntype) = 0;
- TYPE_ATTRIBUTES (ntype) = attribute;
-
- /* Create a new main variant of TYPE. */
- TYPE_MAIN_VARIANT (ntype) = ntype;
- TYPE_NEXT_VARIANT (ntype) = 0;
- TYPE_READONLY (ntype) = TYPE_VOLATILE (ntype) = 0;
-
- hashcode = TYPE_HASH (TREE_CODE (ntype))
- + TYPE_HASH (TREE_TYPE (ntype))
- + attribute_hash_list (attribute);
-
- switch (TREE_CODE (ntype))
- {
- case FUNCTION_TYPE:
- hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
- break;
- case ARRAY_TYPE:
- hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
- break;
- case INTEGER_TYPE:
- hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
- break;
- case REAL_TYPE:
- hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
- break;
- }
-
- ntype = type_hash_canon (hashcode, ntype);
- ttype = build_type_variant (ntype, TYPE_READONLY (ttype),
- TYPE_VOLATILE (ttype));
- }
-
- return ttype;
-}
-
-/* Return a 1 if ATTR_NAME and ATTR_ARGS is valid for either declaration DECL
- or type TYPE and 0 otherwise. Validity is determined the configuration
- macros VALID_MACHINE_DECL_ATTRIBUTE and VALID_MACHINE_TYPE_ATTRIBUTE. */
-
-int
-valid_machine_attribute (attr_name, attr_args, decl, type)
- tree attr_name, attr_args;
- tree decl;
- tree type;
-{
- int valid = 0;
- tree decl_attr_list = decl != 0 ? DECL_MACHINE_ATTRIBUTES (decl) : 0;
- tree type_attr_list = TYPE_ATTRIBUTES (type);
-
- if (TREE_CODE (attr_name) != IDENTIFIER_NODE)
- abort ();
-
-#ifdef VALID_MACHINE_DECL_ATTRIBUTE
- if (decl != 0
- && VALID_MACHINE_DECL_ATTRIBUTE (decl, decl_attr_list, attr_name, attr_args))
- {
- tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
- decl_attr_list);
-
- if (attr != NULL_TREE)
- {
- /* Override existing arguments. Declarations are unique so we can
- modify this in place. */
- TREE_VALUE (attr) = attr_args;
- }
- else
- {
- decl_attr_list = tree_cons (attr_name, attr_args, decl_attr_list);
- decl = build_decl_attribute_variant (decl, decl_attr_list);
- }
-
- valid = 1;
- }
-#endif
-
-#ifdef VALID_MACHINE_TYPE_ATTRIBUTE
- if (VALID_MACHINE_TYPE_ATTRIBUTE (type, type_attr_list, attr_name, attr_args))
- {
- tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
- type_attr_list);
-
- if (attr != NULL_TREE)
- {
- /* Override existing arguments.
- ??? This currently works since attribute arguments are not
- included in `attribute_hash_list'. Something more complicated
- may be needed in the future. */
- TREE_VALUE (attr) = attr_args;
- }
- else
- {
- type_attr_list = tree_cons (attr_name, attr_args, type_attr_list);
- type = build_type_attribute_variant (type, type_attr_list);
- }
- if (decl != 0)
- TREE_TYPE (decl) = type;
- valid = 1;
- }
-
- /* Handle putting a type attribute on pointer-to-function-type by putting
- the attribute on the function type. */
- else if (TREE_CODE (type) == POINTER_TYPE
- && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
- && VALID_MACHINE_TYPE_ATTRIBUTE (TREE_TYPE (type), type_attr_list,
- attr_name, attr_args))
- {
- tree inner_type = TREE_TYPE (type);
- tree inner_attr_list = TYPE_ATTRIBUTES (inner_type);
- tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
- type_attr_list);
-
- if (attr != NULL_TREE)
- TREE_VALUE (attr) = attr_args;
- else
- {
- inner_attr_list = tree_cons (attr_name, attr_args, inner_attr_list);
- inner_type = build_type_attribute_variant (inner_type,
- inner_attr_list);
- }
-
- if (decl != 0)
- TREE_TYPE (decl) = build_pointer_type (inner_type);
-
- valid = 1;
- }
-#endif
-
- return valid;
-}
-
-/* Return non-zero if IDENT is a valid name for attribute ATTR,
- or zero if not.
-
- We try both `text' and `__text__', ATTR may be either one. */
-/* ??? It might be a reasonable simplification to require ATTR to be only
- `text'. One might then also require attribute lists to be stored in
- their canonicalized form. */
-
-int
-is_attribute_p (attr, ident)
- char *attr;
- tree ident;
-{
- int ident_len, attr_len;
- char *p;
-
- if (TREE_CODE (ident) != IDENTIFIER_NODE)
- return 0;
-
- if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
- return 1;
-
- p = IDENTIFIER_POINTER (ident);
- ident_len = strlen (p);
- attr_len = strlen (attr);
-
- /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
- if (attr[0] == '_')
- {
- if (attr[1] != '_'
- || attr[attr_len - 2] != '_'
- || attr[attr_len - 1] != '_')
- abort ();
- if (ident_len == attr_len - 4
- && strncmp (attr + 2, p, attr_len - 4) == 0)
- return 1;
- }
- else
- {
- if (ident_len == attr_len + 4
- && p[0] == '_' && p[1] == '_'
- && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
- && strncmp (attr, p + 2, attr_len) == 0)
- return 1;
- }
-
- return 0;
-}
-
-/* Given an attribute name and a list of attributes, return a pointer to the
- attribute's list element if the attribute is part of the list, or NULL_TREE
- if not found. */
-
-tree
-lookup_attribute (attr_name, list)
- char *attr_name;
- tree list;
-{
- tree l;
-
- for (l = list; l; l = TREE_CHAIN (l))
- {
- if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
- abort ();
- if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
- return l;
- }
-
- return NULL_TREE;
-}
-
-/* Return an attribute list that is the union of a1 and a2. */
-
-tree
-merge_attributes (a1, a2)
- register tree a1, a2;
-{
- tree attributes;
-
- /* Either one unset? Take the set one. */
-
- if (! (attributes = a1))
- attributes = a2;
-
- /* One that completely contains the other? Take it. */
-
- else if (a2 && ! attribute_list_contained (a1, a2))
- if (attribute_list_contained (a2, a1))
- attributes = a2;
- else
- {
- /* Pick the longest list, and hang on the other list. */
- /* ??? For the moment we punt on the issue of attrs with args. */
-
- if (list_length (a1) < list_length (a2))
- attributes = a2, a2 = a1;
-
- for (; a2; a2 = TREE_CHAIN (a2))
- if (lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
- attributes) == NULL_TREE)
- {
- a1 = copy_node (a2);
- TREE_CHAIN (a1) = attributes;
- attributes = a1;
- }
- }
- return attributes;
-}
-
-/* Return a type like TYPE except that its TYPE_READONLY is CONSTP
- and its TYPE_VOLATILE is VOLATILEP.
-
- Such variant types already made are recorded so that duplicates
- are not made.
-
- A variant types should never be used as the type of an expression.
- Always copy the variant information into the TREE_READONLY
- and TREE_THIS_VOLATILE of the expression, and then give the expression
- as its type the "main variant", the variant whose TYPE_READONLY
- and TYPE_VOLATILE are zero. Use TYPE_MAIN_VARIANT to find the
- main variant. */
-
-tree
-build_type_variant (type, constp, volatilep)
- tree type;
- int constp, volatilep;
-{
- register tree t;
-
- /* Treat any nonzero argument as 1. */
- constp = !!constp;
- volatilep = !!volatilep;
-
- /* Search the chain of variants to see if there is already one there just
- like the one we need to have. If so, use that existing one. We must
- preserve the TYPE_NAME, since there is code that depends on this. */
-
- for (t = TYPE_MAIN_VARIANT(type); t; t = TYPE_NEXT_VARIANT (t))
- if (constp == TYPE_READONLY (t) && volatilep == TYPE_VOLATILE (t)
- && TYPE_NAME (t) == TYPE_NAME (type))
- return t;
-
- /* We need a new one. */
-
- t = build_type_copy (type);
- TYPE_READONLY (t) = constp;
- TYPE_VOLATILE (t) = volatilep;
-
- return t;
-}
-
-/* Give TYPE a new main variant: NEW_MAIN.
- This is the right thing to do only when something else
- about TYPE is modified in place. */
-
-void
-change_main_variant (type, new_main)
- tree type, new_main;
-{
- tree t;
- tree omain = TYPE_MAIN_VARIANT (type);
-
- /* Remove TYPE from the TYPE_NEXT_VARIANT chain of its main variant. */
- if (TYPE_NEXT_VARIANT (omain) == type)
- TYPE_NEXT_VARIANT (omain) = TYPE_NEXT_VARIANT (type);
- else
- for (t = TYPE_NEXT_VARIANT (omain); t && TYPE_NEXT_VARIANT (t);
- t = TYPE_NEXT_VARIANT (t))
- if (TYPE_NEXT_VARIANT (t) == type)
- {
- TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (type);
- break;
- }
-
- TYPE_MAIN_VARIANT (type) = new_main;
- TYPE_NEXT_VARIANT (type) = TYPE_NEXT_VARIANT (new_main);
- TYPE_NEXT_VARIANT (new_main) = type;
-}
-
-/* Create a new variant of TYPE, equivalent but distinct.
- This is so the caller can modify it. */
-
-tree
-build_type_copy (type)
- tree type;
-{
- register tree t, m = TYPE_MAIN_VARIANT (type);
- register struct obstack *ambient_obstack = current_obstack;
-
- current_obstack = TYPE_OBSTACK (type);
- t = copy_node (type);
- current_obstack = ambient_obstack;
-
- TYPE_POINTER_TO (t) = 0;
- TYPE_REFERENCE_TO (t) = 0;
-
- /* Add this type to the chain of variants of TYPE. */
- TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
- TYPE_NEXT_VARIANT (m) = t;
-
- return t;
-}
-
-/* Hashing of types so that we don't make duplicates.
- The entry point is `type_hash_canon'. */
-
-/* Each hash table slot is a bucket containing a chain
- of these structures. */
-
-struct type_hash
-{
- struct type_hash *next; /* Next structure in the bucket. */
- int hashcode; /* Hash code of this type. */
- tree type; /* The type recorded here. */
-};
-
-/* Now here is the hash table. When recording a type, it is added
- to the slot whose index is the hash code mod the table size.
- Note that the hash table is used for several kinds of types
- (function types, array types and array index range types, for now).
- While all these live in the same table, they are completely independent,
- and the hash code is computed differently for each of these. */
-
-#define TYPE_HASH_SIZE 59
-struct type_hash *type_hash_table[TYPE_HASH_SIZE];
-
-/* Compute a hash code for a list of types (chain of TREE_LIST nodes
- with types in the TREE_VALUE slots), by adding the hash codes
- of the individual types. */
-
-int
-type_hash_list (list)
- tree list;
-{
- register int hashcode;
- register tree tail;
- for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
- hashcode += TYPE_HASH (TREE_VALUE (tail));
- return hashcode;
-}
-
-/* Look in the type hash table for a type isomorphic to TYPE.
- If one is found, return it. Otherwise return 0. */
-
-tree
-type_hash_lookup (hashcode, type)
- int hashcode;
- tree type;
-{
- register struct type_hash *h;
- for (h = type_hash_table[hashcode % TYPE_HASH_SIZE]; h; h = h->next)
- if (h->hashcode == hashcode
- && TREE_CODE (h->type) == TREE_CODE (type)
- && TREE_TYPE (h->type) == TREE_TYPE (type)
- && attribute_list_equal (TYPE_ATTRIBUTES (h->type),
- TYPE_ATTRIBUTES (type))
- && (TYPE_MAX_VALUE (h->type) == TYPE_MAX_VALUE (type)
- || tree_int_cst_equal (TYPE_MAX_VALUE (h->type),
- TYPE_MAX_VALUE (type)))
- && (TYPE_MIN_VALUE (h->type) == TYPE_MIN_VALUE (type)
- || tree_int_cst_equal (TYPE_MIN_VALUE (h->type),
- TYPE_MIN_VALUE (type)))
- /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
- && (TYPE_DOMAIN (h->type) == TYPE_DOMAIN (type)
- || (TYPE_DOMAIN (h->type)
- && TREE_CODE (TYPE_DOMAIN (h->type)) == TREE_LIST
- && TYPE_DOMAIN (type)
- && TREE_CODE (TYPE_DOMAIN (type)) == TREE_LIST
- && type_list_equal (TYPE_DOMAIN (h->type),
- TYPE_DOMAIN (type)))))
- return h->type;
- return 0;
-}
-
-/* Add an entry to the type-hash-table
- for a type TYPE whose hash code is HASHCODE. */
-
-void
-type_hash_add (hashcode, type)
- int hashcode;
- tree type;
-{
- register struct type_hash *h;
-
- h = (struct type_hash *) oballoc (sizeof (struct type_hash));
- h->hashcode = hashcode;
- h->type = type;
- h->next = type_hash_table[hashcode % TYPE_HASH_SIZE];
- type_hash_table[hashcode % TYPE_HASH_SIZE] = h;
-}
-
-/* Given TYPE, and HASHCODE its hash code, return the canonical
- object for an identical type if one already exists.
- Otherwise, return TYPE, and record it as the canonical object
- if it is a permanent object.
-
- To use this function, first create a type of the sort you want.
- Then compute its hash code from the fields of the type that
- make it different from other similar types.
- Then call this function and use the value.
- This function frees the type you pass in if it is a duplicate. */
-
-/* Set to 1 to debug without canonicalization. Never set by program. */
-int debug_no_type_hash = 0;
-
-tree
-type_hash_canon (hashcode, type)
- int hashcode;
- tree type;
-{
- tree t1;
-
- if (debug_no_type_hash)
- return type;
-
- t1 = type_hash_lookup (hashcode, type);
- if (t1 != 0)
- {
- obstack_free (TYPE_OBSTACK (type), type);
-#ifdef GATHER_STATISTICS
- tree_node_counts[(int)t_kind]--;
- tree_node_sizes[(int)t_kind] -= sizeof (struct tree_type);
-#endif
- return t1;
- }
-
- /* If this is a permanent type, record it for later reuse. */
- if (TREE_PERMANENT (type))
- type_hash_add (hashcode, type);
-
- return type;
-}
-
-/* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
- with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
- by adding the hash codes of the individual attributes. */
-
-int
-attribute_hash_list (list)
- tree list;
-{
- register int hashcode;
- register tree tail;
- for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
- /* ??? Do we want to add in TREE_VALUE too? */
- hashcode += TYPE_HASH (TREE_PURPOSE (tail));
- return hashcode;
-}
-
-/* Given two lists of attributes, return true if list l2 is
- equivalent to l1. */
-
-int
-attribute_list_equal (l1, l2)
- tree l1, l2;
-{
- return attribute_list_contained (l1, l2)
- && attribute_list_contained (l2, l1);
-}
-
-/* Given two lists of attributes, return true if list L2 is
- completely contained within L1. */
-/* ??? This would be faster if attribute names were stored in a canonicalized
- form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
- must be used to show these elements are equivalent (which they are). */
-/* ??? It's not clear that attributes with arguments will always be handled
- correctly. */
-
-int
-attribute_list_contained (l1, l2)
- tree l1, l2;
-{
- register tree t1, t2;
-
- /* First check the obvious, maybe the lists are identical. */
- if (l1 == l2)
- return 1;
-
- /* Maybe the lists are similar. */
- for (t1 = l1, t2 = l2;
- t1 && t2
- && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
- && TREE_VALUE (t1) == TREE_VALUE (t2);
- t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
-
- /* Maybe the lists are equal. */
- if (t1 == 0 && t2 == 0)
- return 1;
-
- for (; t2; t2 = TREE_CHAIN (t2))
- {
- tree attr
- = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
-
- if (attr == NULL_TREE)
- return 0;
- if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
- return 0;
- }
-
- return 1;
-}
-
-/* Given two lists of types
- (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
- return 1 if the lists contain the same types in the same order.
- Also, the TREE_PURPOSEs must match. */
-
-int
-type_list_equal (l1, l2)
- tree l1, l2;
-{
- register tree t1, t2;
-
- for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
- if (TREE_VALUE (t1) != TREE_VALUE (t2)
- || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
- && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
- && (TREE_TYPE (TREE_PURPOSE (t1))
- == TREE_TYPE (TREE_PURPOSE (t2))))))
- return 0;
-
- return t1 == t2;
-}
-
-/* Nonzero if integer constants T1 and T2
- represent the same constant value. */
-
-int
-tree_int_cst_equal (t1, t2)
- tree t1, t2;
-{
- if (t1 == t2)
- return 1;
- if (t1 == 0 || t2 == 0)
- return 0;
- if (TREE_CODE (t1) == INTEGER_CST
- && TREE_CODE (t2) == INTEGER_CST
- && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
- && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
- return 1;
- return 0;
-}
-
-/* Nonzero if integer constants T1 and T2 represent values that satisfy <.
- The precise way of comparison depends on their data type. */
-
-int
-tree_int_cst_lt (t1, t2)
- tree t1, t2;
-{
- if (t1 == t2)
- return 0;
-
- if (!TREE_UNSIGNED (TREE_TYPE (t1)))
- return INT_CST_LT (t1, t2);
- return INT_CST_LT_UNSIGNED (t1, t2);
-}
-
-/* Return an indication of the sign of the integer constant T.
- The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
- Note that -1 will never be returned it T's type is unsigned. */
-
-int
-tree_int_cst_sgn (t)
- tree t;
-{
- if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
- return 0;
- else if (TREE_UNSIGNED (TREE_TYPE (t)))
- return 1;
- else if (TREE_INT_CST_HIGH (t) < 0)
- return -1;
- else
- return 1;
-}
-
-/* Compare two constructor-element-type constants. Return 1 if the lists
- are known to be equal; otherwise return 0. */
-
-int
-simple_cst_list_equal (l1, l2)
- tree l1, l2;
-{
- while (l1 != NULL_TREE && l2 != NULL_TREE)
- {
- if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
- return 0;
-
- l1 = TREE_CHAIN (l1);
- l2 = TREE_CHAIN (l2);
- }
-
- return (l1 == l2);
-}
-
-/* Return truthvalue of whether T1 is the same tree structure as T2.
- Return 1 if they are the same.
- Return 0 if they are understandably different.
- Return -1 if either contains tree structure not understood by
- this function. */
-
-int
-simple_cst_equal (t1, t2)
- tree t1, t2;
-{
- register enum tree_code code1, code2;
- int cmp;
-
- if (t1 == t2)
- return 1;
- if (t1 == 0 || t2 == 0)
- return 0;
-
- code1 = TREE_CODE (t1);
- code2 = TREE_CODE (t2);
-
- if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
- if (code2 == NOP_EXPR || code2 == CONVERT_EXPR || code2 == NON_LVALUE_EXPR)
- return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
- else
- return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
- else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
- || code2 == NON_LVALUE_EXPR)
- return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
-
- if (code1 != code2)
- return 0;
-
- switch (code1)
- {
- case INTEGER_CST:
- return TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
- && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2);
-
- case REAL_CST:
- return REAL_VALUES_EQUAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
-
- case STRING_CST:
- return TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
- && !bcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
- TREE_STRING_LENGTH (t1));
-
- case CONSTRUCTOR:
- abort ();
-
- case SAVE_EXPR:
- return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
-
- case CALL_EXPR:
- cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
- if (cmp <= 0)
- return cmp;
- return simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
-
- case TARGET_EXPR:
- /* Special case: if either target is an unallocated VAR_DECL,
- it means that it's going to be unified with whatever the
- TARGET_EXPR is really supposed to initialize, so treat it
- as being equivalent to anything. */
- if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
- && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
- && DECL_RTL (TREE_OPERAND (t1, 0)) == 0)
- || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
- && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
- && DECL_RTL (TREE_OPERAND (t2, 0)) == 0))
- cmp = 1;
- else
- cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
- if (cmp <= 0)
- return cmp;
- return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
-
- case WITH_CLEANUP_EXPR:
- cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
- if (cmp <= 0)
- return cmp;
- return simple_cst_equal (TREE_OPERAND (t1, 2), TREE_OPERAND (t1, 2));
-
- case COMPONENT_REF:
- if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
- return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
- return 0;
-
- case VAR_DECL:
- case PARM_DECL:
- case CONST_DECL:
- case FUNCTION_DECL:
- return 0;
- }
-
- /* This general rule works for most tree codes. All exceptions should be
- handled above. If this is a language-specific tree code, we can't
- trust what might be in the operand, so say we don't know
- the situation. */
- if ((int) code1
- >= sizeof standard_tree_code_type / sizeof standard_tree_code_type[0])
- return -1;
-
- switch (TREE_CODE_CLASS (code1))
- {
- int i;
- case '1':
- case '2':
- case '<':
- case 'e':
- case 'r':
- case 's':
- cmp = 1;
- for (i=0; i<tree_code_length[(int) code1]; ++i)
- {
- cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
- if (cmp <= 0)
- return cmp;
- }
- return cmp;
- }
-
- return -1;
-}
-
-/* Constructors for pointer, array and function types.
- (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
- constructed by language-dependent code, not here.) */
-
-/* Construct, lay out and return the type of pointers to TO_TYPE.
- If such a type has already been constructed, reuse it. */
-
-tree
-build_pointer_type (to_type)
- tree to_type;
-{
- register tree t = TYPE_POINTER_TO (to_type);
-
- /* First, if we already have a type for pointers to TO_TYPE, use it. */
-
- if (t)
- return t;
-
- /* We need a new one. Put this in the same obstack as TO_TYPE. */
- push_obstacks (TYPE_OBSTACK (to_type), TYPE_OBSTACK (to_type));
- t = make_node (POINTER_TYPE);
- pop_obstacks ();
-
- TREE_TYPE (t) = to_type;
-
- /* Record this type as the pointer to TO_TYPE. */
- TYPE_POINTER_TO (to_type) = t;
-
- /* Lay out the type. This function has many callers that are concerned
- with expression-construction, and this simplifies them all.
- Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
- layout_type (t);
-
- return t;
-}
-
-/* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
- MAXVAL should be the maximum value in the domain
- (one less than the length of the array). */
-
-tree
-build_index_type (maxval)
- tree maxval;
-{
- register tree itype = make_node (INTEGER_TYPE);
- TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
- TYPE_MIN_VALUE (itype) = build_int_2 (0, 0);
- TREE_TYPE (TYPE_MIN_VALUE (itype)) = sizetype;
- TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
- TYPE_MODE (itype) = TYPE_MODE (sizetype);
- TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
- TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
- if (TREE_CODE (maxval) == INTEGER_CST)
- {
- int maxint = (int) TREE_INT_CST_LOW (maxval);
- /* If the domain should be empty, make sure the maxval
- remains -1 and is not spoiled by truncation. */
- if (INT_CST_LT (maxval, integer_zero_node))
- {
- TYPE_MAX_VALUE (itype) = build_int_2 (-1, -1);
- TREE_TYPE (TYPE_MAX_VALUE (itype)) = sizetype;
- }
- return type_hash_canon (maxint < 0 ? ~maxint : maxint, itype);
- }
- else
- return itype;
-}
-
-/* Create a range of some discrete type TYPE (an INTEGER_TYPE,
- ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
- low bound LOWVAL and high bound HIGHVAL.
- if TYPE==NULL_TREE, sizetype is used. */
-
-tree
-build_range_type (type, lowval, highval)
- tree type, lowval, highval;
-{
- register tree itype = make_node (INTEGER_TYPE);
- TREE_TYPE (itype) = type;
- if (type == NULL_TREE)
- type = sizetype;
- TYPE_PRECISION (itype) = TYPE_PRECISION (type);
- TYPE_MIN_VALUE (itype) = convert (type, lowval);
- TYPE_MAX_VALUE (itype) = convert (type, highval);
- TYPE_MODE (itype) = TYPE_MODE (type);
- TYPE_SIZE (itype) = TYPE_SIZE (type);
- TYPE_ALIGN (itype) = TYPE_ALIGN (type);
- if ((TREE_CODE (lowval) == INTEGER_CST)
- && (TREE_CODE (highval) == INTEGER_CST))
- {
- HOST_WIDE_INT highint = TREE_INT_CST_LOW (highval);
- HOST_WIDE_INT lowint = TREE_INT_CST_LOW (lowval);
- int maxint = (int) (highint - lowint);
- return type_hash_canon (maxint < 0 ? ~maxint : maxint, itype);
- }
- else
- return itype;
-}
-
-/* Just like build_index_type, but takes lowval and highval instead
- of just highval (maxval). */
-
-tree
-build_index_2_type (lowval,highval)
- tree lowval, highval;
-{
- return build_range_type (NULL_TREE, lowval, highval);
-}
-
-/* Return nonzero iff ITYPE1 and ITYPE2 are equal (in the LISP sense).
- Needed because when index types are not hashed, equal index types
- built at different times appear distinct, even though structurally,
- they are not. */
-
-int
-index_type_equal (itype1, itype2)
- tree itype1, itype2;
-{
- if (TREE_CODE (itype1) != TREE_CODE (itype2))
- return 0;
- if (TREE_CODE (itype1) == INTEGER_TYPE)
- {
- if (TYPE_PRECISION (itype1) != TYPE_PRECISION (itype2)
- || TYPE_MODE (itype1) != TYPE_MODE (itype2)
- || simple_cst_equal (TYPE_SIZE (itype1), TYPE_SIZE (itype2)) != 1
- || TYPE_ALIGN (itype1) != TYPE_ALIGN (itype2))
- return 0;
- if (1 == simple_cst_equal (TYPE_MIN_VALUE (itype1),
- TYPE_MIN_VALUE (itype2))
- && 1 == simple_cst_equal (TYPE_MAX_VALUE (itype1),
- TYPE_MAX_VALUE (itype2)))
- return 1;
- }
-
- return 0;
-}
-
-/* Construct, lay out and return the type of arrays of elements with ELT_TYPE
- and number of elements specified by the range of values of INDEX_TYPE.
- If such a type has already been constructed, reuse it. */
-
-tree
-build_array_type (elt_type, index_type)
- tree elt_type, index_type;
-{
- register tree t;
- int hashcode;
-
- if (TREE_CODE (elt_type) == FUNCTION_TYPE)
- {
- error ("arrays of functions are not meaningful");
- elt_type = integer_type_node;
- }
-
- /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
- build_pointer_type (elt_type);
-
- /* Allocate the array after the pointer type,
- in case we free it in type_hash_canon. */
- t = make_node (ARRAY_TYPE);
- TREE_TYPE (t) = elt_type;
- TYPE_DOMAIN (t) = index_type;
-
- if (index_type == 0)
- {
- return t;
- }
-
- hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
- t = type_hash_canon (hashcode, t);
-
-#if 0 /* This led to crashes, because it could put a temporary node
- on the TYPE_NEXT_VARIANT chain of a permanent one. */
- /* The main variant of an array type should always
- be an array whose element type is the main variant. */
- if (elt_type != TYPE_MAIN_VARIANT (elt_type))
- change_main_variant (t, build_array_type (TYPE_MAIN_VARIANT (elt_type),
- index_type));
-#endif
-
- if (TYPE_SIZE (t) == 0)
- layout_type (t);
- return t;
-}
-
-/* Construct, lay out and return
- the type of functions returning type VALUE_TYPE
- given arguments of types ARG_TYPES.
- ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
- are data type nodes for the arguments of the function.
- If such a type has already been constructed, reuse it. */
-
-tree
-build_function_type (value_type, arg_types)
- tree value_type, arg_types;
-{
- register tree t;
- int hashcode;
-
- if (TREE_CODE (value_type) == FUNCTION_TYPE)
- {
- error ("function return type cannot be function");
- value_type = integer_type_node;
- }
-
- /* Make a node of the sort we want. */
- t = make_node (FUNCTION_TYPE);
- TREE_TYPE (t) = value_type;
- TYPE_ARG_TYPES (t) = arg_types;
-
- /* If we already have such a type, use the old one and free this one. */
- hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
- t = type_hash_canon (hashcode, t);
-
- if (TYPE_SIZE (t) == 0)
- layout_type (t);
- return t;
-}
-
-/* Build the node for the type of references-to-TO_TYPE. */
-
-tree
-build_reference_type (to_type)
- tree to_type;
-{
- register tree t = TYPE_REFERENCE_TO (to_type);
- register struct obstack *ambient_obstack = current_obstack;
- register struct obstack *ambient_saveable_obstack = saveable_obstack;
-
- /* First, if we already have a type for pointers to TO_TYPE, use it. */
-
- if (t)
- return t;
-
- /* We need a new one. If TO_TYPE is permanent, make this permanent too. */
- if (TREE_PERMANENT (to_type))
- {
- current_obstack = &permanent_obstack;
- saveable_obstack = &permanent_obstack;
- }
-
- t = make_node (REFERENCE_TYPE);
- TREE_TYPE (t) = to_type;
-
- /* Record this type as the pointer to TO_TYPE. */
- TYPE_REFERENCE_TO (to_type) = t;
-
- layout_type (t);
-
- current_obstack = ambient_obstack;
- saveable_obstack = ambient_saveable_obstack;
- return t;
-}
-
-/* Construct, lay out and return the type of methods belonging to class
- BASETYPE and whose arguments and values are described by TYPE.
- If that type exists already, reuse it.
- TYPE must be a FUNCTION_TYPE node. */
-
-tree
-build_method_type (basetype, type)
- tree basetype, type;
-{
- register tree t;
- int hashcode;
-
- /* Make a node of the sort we want. */
- t = make_node (METHOD_TYPE);
-
- if (TREE_CODE (type) != FUNCTION_TYPE)
- abort ();
-
- TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
- TREE_TYPE (t) = TREE_TYPE (type);
-
- /* The actual arglist for this function includes a "hidden" argument
- which is "this". Put it into the list of argument types. */
-
- TYPE_ARG_TYPES (t)
- = tree_cons (NULL_TREE,
- build_pointer_type (basetype), TYPE_ARG_TYPES (type));
-
- /* If we already have such a type, use the old one and free this one. */
- hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
- t = type_hash_canon (hashcode, t);
-
- if (TYPE_SIZE (t) == 0)
- layout_type (t);
-
- return t;
-}
-
-/* Construct, lay out and return the type of offsets to a value
- of type TYPE, within an object of type BASETYPE.
- If a suitable offset type exists already, reuse it. */
-
-tree
-build_offset_type (basetype, type)
- tree basetype, type;
-{
- register tree t;
- int hashcode;
-
- /* Make a node of the sort we want. */
- t = make_node (OFFSET_TYPE);
-
- TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
- TREE_TYPE (t) = type;
-
- /* If we already have such a type, use the old one and free this one. */
- hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
- t = type_hash_canon (hashcode, t);
-
- if (TYPE_SIZE (t) == 0)
- layout_type (t);
-
- return t;
-}
-
-/* Create a complex type whose components are COMPONENT_TYPE. */
-
-tree
-build_complex_type (component_type)
- tree component_type;
-{
- register tree t;
- int hashcode;
-
- /* Make a node of the sort we want. */
- t = make_node (COMPLEX_TYPE);
-
- TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
- TYPE_VOLATILE (t) = TYPE_VOLATILE (component_type);
- TYPE_READONLY (t) = TYPE_READONLY (component_type);
-
- /* If we already have such a type, use the old one and free this one. */
- hashcode = TYPE_HASH (component_type);
- t = type_hash_canon (hashcode, t);
-
- if (TYPE_SIZE (t) == 0)
- layout_type (t);
-
- return t;
-}
-
-/* Return OP, stripped of any conversions to wider types as much as is safe.
- Converting the value back to OP's type makes a value equivalent to OP.
-
- If FOR_TYPE is nonzero, we return a value which, if converted to
- type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
-
- If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
- narrowest type that can hold the value, even if they don't exactly fit.
- Otherwise, bit-field references are changed to a narrower type
- only if they can be fetched directly from memory in that type.
-
- OP must have integer, real or enumeral type. Pointers are not allowed!
-
- There are some cases where the obvious value we could return
- would regenerate to OP if converted to OP's type,
- but would not extend like OP to wider types.
- If FOR_TYPE indicates such extension is contemplated, we eschew such values.
- For example, if OP is (unsigned short)(signed char)-1,
- we avoid returning (signed char)-1 if FOR_TYPE is int,
- even though extending that to an unsigned short would regenerate OP,
- since the result of extending (signed char)-1 to (int)
- is different from (int) OP. */
-
-tree
-get_unwidened (op, for_type)
- register tree op;
- tree for_type;
-{
- /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
- /* TYPE_PRECISION is safe in place of type_precision since
- pointer types are not allowed. */
- register tree type = TREE_TYPE (op);
- register unsigned final_prec
- = TYPE_PRECISION (for_type != 0 ? for_type : type);
- register int uns
- = (for_type != 0 && for_type != type
- && final_prec > TYPE_PRECISION (type)
- && TREE_UNSIGNED (type));
- register tree win = op;
-
- while (TREE_CODE (op) == NOP_EXPR)
- {
- register int bitschange
- = TYPE_PRECISION (TREE_TYPE (op))
- - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
-
- /* Truncations are many-one so cannot be removed.
- Unless we are later going to truncate down even farther. */
- if (bitschange < 0
- && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
- break;
-
- /* See what's inside this conversion. If we decide to strip it,
- we will set WIN. */
- op = TREE_OPERAND (op, 0);
-
- /* If we have not stripped any zero-extensions (uns is 0),
- we can strip any kind of extension.
- If we have previously stripped a zero-extension,
- only zero-extensions can safely be stripped.
- Any extension can be stripped if the bits it would produce
- are all going to be discarded later by truncating to FOR_TYPE. */
-
- if (bitschange > 0)
- {
- if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
- win = op;
- /* TREE_UNSIGNED says whether this is a zero-extension.
- Let's avoid computing it if it does not affect WIN
- and if UNS will not be needed again. */
- if ((uns || TREE_CODE (op) == NOP_EXPR)
- && TREE_UNSIGNED (TREE_TYPE (op)))
- {
- uns = 1;
- win = op;
- }
- }
- }
-
- if (TREE_CODE (op) == COMPONENT_REF
- /* Since type_for_size always gives an integer type. */
- && TREE_CODE (type) != REAL_TYPE)
- {
- unsigned innerprec = TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (op, 1)));
- type = type_for_size (innerprec, TREE_UNSIGNED (TREE_OPERAND (op, 1)));
-
- /* We can get this structure field in the narrowest type it fits in.
- If FOR_TYPE is 0, do this only for a field that matches the
- narrower type exactly and is aligned for it
- The resulting extension to its nominal type (a fullword type)
- must fit the same conditions as for other extensions. */
-
- if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
- && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
- && (! uns || final_prec <= innerprec
- || TREE_UNSIGNED (TREE_OPERAND (op, 1)))
- && type != 0)
- {
- win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
- TREE_OPERAND (op, 1));
- TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
- TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
- TREE_RAISES (win) = TREE_RAISES (op);
- }
- }
- return win;
-}
-
-/* Return OP or a simpler expression for a narrower value
- which can be sign-extended or zero-extended to give back OP.
- Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
- or 0 if the value should be sign-extended. */
-
-tree
-get_narrower (op, unsignedp_ptr)
- register tree op;
- int *unsignedp_ptr;
-{
- register int uns = 0;
- int first = 1;
- register tree win = op;
-
- while (TREE_CODE (op) == NOP_EXPR)
- {
- register int bitschange
- = TYPE_PRECISION (TREE_TYPE (op))
- - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
-
- /* Truncations are many-one so cannot be removed. */
- if (bitschange < 0)
- break;
-
- /* See what's inside this conversion. If we decide to strip it,
- we will set WIN. */
- op = TREE_OPERAND (op, 0);
-
- if (bitschange > 0)
- {
- /* An extension: the outermost one can be stripped,
- but remember whether it is zero or sign extension. */
- if (first)
- uns = TREE_UNSIGNED (TREE_TYPE (op));
- /* Otherwise, if a sign extension has been stripped,
- only sign extensions can now be stripped;
- if a zero extension has been stripped, only zero-extensions. */
- else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
- break;
- first = 0;
- }
- else /* bitschange == 0 */
- {
- /* A change in nominal type can always be stripped, but we must
- preserve the unsignedness. */
- if (first)
- uns = TREE_UNSIGNED (TREE_TYPE (op));
- first = 0;
- }
-
- win = op;
- }
-
- if (TREE_CODE (op) == COMPONENT_REF
- /* Since type_for_size always gives an integer type. */
- && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE)
- {
- unsigned innerprec = TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (op, 1)));
- tree type = type_for_size (innerprec, TREE_UNSIGNED (op));
-
- /* We can get this structure field in a narrower type that fits it,
- but the resulting extension to its nominal type (a fullword type)
- must satisfy the same conditions as for other extensions.
-
- Do this only for fields that are aligned (not bit-fields),
- because when bit-field insns will be used there is no
- advantage in doing this. */
-
- if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
- && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
- && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
- && type != 0)
- {
- if (first)
- uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
- win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
- TREE_OPERAND (op, 1));
- TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
- TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
- TREE_RAISES (win) = TREE_RAISES (op);
- }
- }
- *unsignedp_ptr = uns;
- return win;
-}
-
-/* Return the precision of a type, for arithmetic purposes.
- Supports all types on which arithmetic is possible
- (including pointer types).
- It's not clear yet what will be right for complex types. */
-
-int
-type_precision (type)
- register tree type;
-{
- return ((TREE_CODE (type) == INTEGER_TYPE
- || TREE_CODE (type) == ENUMERAL_TYPE
- || TREE_CODE (type) == REAL_TYPE)
- ? TYPE_PRECISION (type) : POINTER_SIZE);
-}
-
-/* Nonzero if integer constant C has a value that is permissible
- for type TYPE (an INTEGER_TYPE). */
-
-int
-int_fits_type_p (c, type)
- tree c, type;
-{
- if (TREE_UNSIGNED (type))
- return (! (TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
- && INT_CST_LT_UNSIGNED (TYPE_MAX_VALUE (type), c))
- && ! (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
- && INT_CST_LT_UNSIGNED (c, TYPE_MIN_VALUE (type))));
- else
- return (! (TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
- && INT_CST_LT (TYPE_MAX_VALUE (type), c))
- && ! (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
- && INT_CST_LT (c, TYPE_MIN_VALUE (type))));
-}
-
-/* Return the innermost context enclosing DECL that is
- a FUNCTION_DECL, or zero if none. */
-
-tree
-decl_function_context (decl)
- tree decl;
-{
- tree context;
-
- if (TREE_CODE (decl) == ERROR_MARK)
- return 0;
-
- if (TREE_CODE (decl) == SAVE_EXPR)
- context = SAVE_EXPR_CONTEXT (decl);
- else
- context = DECL_CONTEXT (decl);
-
- while (context && TREE_CODE (context) != FUNCTION_DECL)
- {
- if (TREE_CODE (context) == RECORD_TYPE
- || TREE_CODE (context) == UNION_TYPE)
- context = TYPE_CONTEXT (context);
- else if (TREE_CODE (context) == TYPE_DECL)
- context = DECL_CONTEXT (context);
- else if (TREE_CODE (context) == BLOCK)
- context = BLOCK_SUPERCONTEXT (context);
- else
- /* Unhandled CONTEXT !? */
- abort ();
- }
-
- return context;
-}
-
-/* Return the innermost context enclosing DECL that is
- a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
- TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
-
-tree
-decl_type_context (decl)
- tree decl;
-{
- tree context = DECL_CONTEXT (decl);
-
- while (context)
- {
- if (TREE_CODE (context) == RECORD_TYPE
- || TREE_CODE (context) == UNION_TYPE
- || TREE_CODE (context) == QUAL_UNION_TYPE)
- return context;
- if (TREE_CODE (context) == TYPE_DECL
- || TREE_CODE (context) == FUNCTION_DECL)
- context = DECL_CONTEXT (context);
- else if (TREE_CODE (context) == BLOCK)
- context = BLOCK_SUPERCONTEXT (context);
- else
- /* Unhandled CONTEXT!? */
- abort ();
- }
- return NULL_TREE;
-}
-
-void
-print_obstack_statistics (str, o)
- char *str;
- struct obstack *o;
-{
- struct _obstack_chunk *chunk = o->chunk;
- int n_chunks = 0;
- int n_alloc = 0;
-
- while (chunk)
- {
- n_chunks += 1;
- n_alloc += chunk->limit - &chunk->contents[0];
- chunk = chunk->prev;
- }
- fprintf (stderr, "obstack %s: %d bytes, %d chunks\n",
- str, n_alloc, n_chunks);
-}
-void
-dump_tree_statistics ()
-{
- int i;
- int total_nodes, total_bytes;
-
- fprintf (stderr, "\n??? tree nodes created\n\n");
-#ifdef GATHER_STATISTICS
- fprintf (stderr, "Kind Nodes Bytes\n");
- fprintf (stderr, "-------------------------------------\n");
- total_nodes = total_bytes = 0;
- for (i = 0; i < (int) all_kinds; i++)
- {
- fprintf (stderr, "%-20s %6d %9d\n", tree_node_kind_names[i],
- tree_node_counts[i], tree_node_sizes[i]);
- total_nodes += tree_node_counts[i];
- total_bytes += tree_node_sizes[i];
- }
- fprintf (stderr, "%-20s %9d\n", "identifier names", id_string_size);
- fprintf (stderr, "-------------------------------------\n");
- fprintf (stderr, "%-20s %6d %9d\n", "Total", total_nodes, total_bytes);
- fprintf (stderr, "-------------------------------------\n");
-#else
- fprintf (stderr, "(No per-node statistics)\n");
-#endif
- print_lang_statistics ();
-}
-
-#define FILE_FUNCTION_PREFIX_LEN 9
-
-#ifndef NO_DOLLAR_IN_LABEL
-#define FILE_FUNCTION_FORMAT "_GLOBAL_$D$%s"
-#else /* NO_DOLLAR_IN_LABEL */
-#ifndef NO_DOT_IN_LABEL
-#define FILE_FUNCTION_FORMAT "_GLOBAL_.D.%s"
-#else /* NO_DOT_IN_LABEL */
-#define FILE_FUNCTION_FORMAT "_GLOBAL__D_%s"
-#endif /* NO_DOT_IN_LABEL */
-#endif /* NO_DOLLAR_IN_LABEL */
-
-extern char * first_global_object_name;
-
-/* If KIND=='I', return a suitable global initializer (constructor) name.
- If KIND=='D', return a suitable global clean-up (destructor) name. */
-
-tree
-get_file_function_name (kind)
- int kind;
-{
- char *buf;
- register char *p;
-
- if (first_global_object_name)
- p = first_global_object_name;
- else if (main_input_filename)
- p = main_input_filename;
- else
- p = input_filename;
-
- buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p));
-
- /* Set up the name of the file-level functions we may need. */
- /* Use a global object (which is already required to be unique over
- the program) rather than the file name (which imposes extra
- constraints). -- Raeburn@MIT.EDU, 10 Jan 1990. */
- sprintf (buf, FILE_FUNCTION_FORMAT, p);
-
- /* Don't need to pull weird characters out of global names. */
- if (p != first_global_object_name)
- {
- for (p = buf+11; *p; p++)
- if (! ((*p >= '0' && *p <= '9')
-#if 0 /* we always want labels, which are valid C++ identifiers (+ `$') */
-#ifndef ASM_IDENTIFY_GCC /* this is required if `.' is invalid -- k. raeburn */
- || *p == '.'
-#endif
-#endif
-#ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
- || *p == '$'
-#endif
-#ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
- || *p == '.'
-#endif
- || (*p >= 'A' && *p <= 'Z')
- || (*p >= 'a' && *p <= 'z')))
- *p = '_';
- }
-
- buf[FILE_FUNCTION_PREFIX_LEN] = kind;
-
- return get_identifier (buf);
-}
-
-/* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
- The result is placed in BUFFER (which has length BIT_SIZE),
- with one bit in each char ('\000' or '\001').
-
- If the constructor is constant, NULL_TREE is returned.
- Otherwise, a TREE_LIST of the non-constant elements is emitted. */
-
-tree
-get_set_constructor_bits (init, buffer, bit_size)
- tree init;
- char *buffer;
- int bit_size;
-{
- int i;
- tree vals;
- HOST_WIDE_INT domain_min
- = TREE_INT_CST_LOW (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))));
- tree non_const_bits = NULL_TREE;
- for (i = 0; i < bit_size; i++)
- buffer[i] = 0;
-
- for (vals = TREE_OPERAND (init, 1);
- vals != NULL_TREE; vals = TREE_CHAIN (vals))
- {
- if (TREE_CODE (TREE_VALUE (vals)) != INTEGER_CST
- || (TREE_PURPOSE (vals) != NULL_TREE
- && TREE_CODE (TREE_PURPOSE (vals)) != INTEGER_CST))
- non_const_bits =
- tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
- else if (TREE_PURPOSE (vals) != NULL_TREE)
- {
- /* Set a range of bits to ones. */
- HOST_WIDE_INT lo_index
- = TREE_INT_CST_LOW (TREE_PURPOSE (vals)) - domain_min;
- HOST_WIDE_INT hi_index
- = TREE_INT_CST_LOW (TREE_VALUE (vals)) - domain_min;
- if (lo_index < 0 || lo_index >= bit_size
- || hi_index < 0 || hi_index >= bit_size)
- abort ();
- for ( ; lo_index <= hi_index; lo_index++)
- buffer[lo_index] = 1;
- }
- else
- {
- /* Set a single bit to one. */
- HOST_WIDE_INT index
- = TREE_INT_CST_LOW (TREE_VALUE (vals)) - domain_min;
- if (index < 0 || index >= bit_size)
- {
- error ("invalid initializer for bit string");
- return NULL_TREE;
- }
- buffer[index] = 1;
- }
- }
- return non_const_bits;
-}
-
-/* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
- The result is placed in BUFFER (which is an array of bytes).
- If the constructor is constant, NULL_TREE is returned.
- Otherwise, a TREE_LIST of the non-constant elements is emitted. */
-
-tree
-get_set_constructor_bytes (init, buffer, wd_size)
- tree init;
- unsigned char *buffer;
- int wd_size;
-{
- int i;
- tree vals = TREE_OPERAND (init, 1);
- int set_word_size = BITS_PER_UNIT;
- int bit_size = wd_size * set_word_size;
- int bit_pos = 0;
- unsigned char *bytep = buffer;
- char *bit_buffer = (char*)alloca(bit_size);
- tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
-
- for (i = 0; i < wd_size; i++)
- buffer[i] = 0;
-
- for (i = 0; i < bit_size; i++)
- {
- if (bit_buffer[i])
- {
- if (BYTES_BIG_ENDIAN)
- *bytep |= (1 << (set_word_size - 1 - bit_pos));
- else
- *bytep |= 1 << bit_pos;
- }
- bit_pos++;
- if (bit_pos >= set_word_size)
- bit_pos = 0, bytep++;
- }
- return non_const_bits;
-}