aboutsummaryrefslogtreecommitdiff
path: root/gcc/config/arm/lib1funcs.asm
blob: f80af2dd60e03e9b8b4e58fa88e4def45c447994 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
@ libgcc routines for ARM cpu.
@ Division routines, written by Richard Earnshaw, (rearnsha@armltd.co.uk)

/* Copyright 1995, 1996, 1998, 1999, 2000 Free Software Foundation, Inc.

This file is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file.  (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)

This file is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */
/* ------------------------------------------------------------------------ */

/* We need to know what prefix to add to function names.  */

#ifndef __USER_LABEL_PREFIX__
#error  __USER_LABEL_PREFIX__ not defined
#endif

/* ANSI concatenation macros.  */

#define CONCAT1(a, b) CONCAT2(a, b)
#define CONCAT2(a, b) a ## b

/* Use the right prefix for global labels.  */

#define SYM(x) CONCAT1 (__USER_LABEL_PREFIX__, x)

#ifdef __ELF__
#ifdef __thumb__
#define __PLT__  /* Not supported in Thumb assembler (for now).  */
#else
#define __PLT__ (PLT)
#endif
#define TYPE(x) .type SYM(x),function
#define SIZE(x) .size SYM(x), . - SYM(x)
#define LSYM(x) .x
#else
#define __PLT__
#define TYPE(x)
#define SIZE(x)
#define LSYM(x) x
#endif

/* Function end macros.  Variants for 26 bit APCS and interworking.  */

#ifdef __APCS_26__
# define RET		movs	pc, lr
# define RETc(x)	mov##x##s	pc, lr
# define RETCOND 	^
.macro ARM_LDIV0
LSYM(Ldiv0):
	str	lr, [sp, #-4]!
	bl	SYM (__div0) __PLT__
	mov	r0, #0			@ About as wrong as it could be.
	ldmia	sp!, {pc}^
.endm
#else
# ifdef __THUMB_INTERWORK__
#  define RET		bx	lr
#  define RETc(x)	bx##x	lr
.macro THUMB_LDIV0
LSYM(Ldiv0):
	push	{ lr }
	bl	SYM (__div0)
	mov	r0, #0			@ About as wrong as it could be.
	pop	{ r1 }
	bx	r1
.endm
.macro ARM_LDIV0
LSYM(Ldiv0):
	str	lr, [sp, #-4]!
	bl	SYM (__div0) __PLT__
	mov	r0, #0			@ About as wrong as it could be.
	ldr	lr, [sp], #4
	bx	lr
.endm	
# else
#  define RET		mov	pc, lr
#  define RETc(x)	mov##x	pc, lr
.macro THUMB_LDIV0
LSYM(Ldiv0):
	push	{ lr }
	bl	SYM (__div0)
	mov	r0, #0			@ About as wrong as it could be.
	pop	{ pc }
.endm
.macro ARM_LDIV0
LSYM(Ldiv0):
	str	lr, [sp, #-4]!
	bl	SYM (__div0) __PLT__
	mov	r0, #0			@ About as wrong as it could be.
	ldmia	sp!, {pc}
.endm	
# endif
# define RETCOND
#endif

.macro FUNC_END name
LSYM(Ldiv0):
#ifdef __thumb__
	THUMB_LDIV0
#else
	ARM_LDIV0
#endif
	SIZE (__\name)	
.endm

.macro THUMB_FUNC_START name
	.globl	SYM (\name)
	TYPE	(\name)
	.thumb_func
SYM (\name):
.endm

/* Function start macros.  Variants for ARM and Thumb.  */

#ifdef __thumb__
#define THUMB_FUNC .thumb_func
#define THUMB_CODE .force_thumb
#else
#define THUMB_FUNC
#define THUMB_CODE
#endif
	
.macro FUNC_START name
	.text
	.globl SYM (__\name)
	TYPE (__\name)
	.align 0
	THUMB_CODE
	THUMB_FUNC
SYM (__\name):
.endm
		
/* Register aliases.  */

work		.req	r4	@ XXXX is this safe ?
dividend	.req	r0
divisor		.req	r1
overdone	.req	r2
result		.req	r2
curbit		.req	r3
#if 0
ip		.req	r12
sp		.req	r13
lr		.req	r14
pc		.req	r15
#endif
/* ------------------------------------------------------------------------ */
/*		Bodies of the divsion and modulo routines.		    */
/* ------------------------------------------------------------------------ */	
.macro ARM_DIV_MOD_BODY modulo
LSYM(Loop1):
	@ Unless the divisor is very big, shift it up in multiples of
	@ four bits, since this is the amount of unwinding in the main
	@ division loop.  Continue shifting until the divisor is 
	@ larger than the dividend.
	cmp	divisor, #0x10000000
	cmplo	divisor, dividend
	movlo	divisor, divisor, lsl #4
	movlo	curbit,  curbit,  lsl #4
	blo	LSYM(Loop1)

LSYM(Lbignum):
	@ For very big divisors, we must shift it a bit at a time, or
	@ we will be in danger of overflowing.
	cmp	divisor, #0x80000000
	cmplo	divisor, dividend
	movlo	divisor, divisor, lsl #1
	movlo	curbit,  curbit,  lsl #1
	blo	LSYM(Lbignum)

LSYM(Loop3):
	@ Test for possible subtractions.  On the final pass, this may 
	@ subtract too much from the dividend ...
	
  .if \modulo
	@ ... so keep track of which subtractions are done in OVERDONE.
	@ We can fix them up afterwards.
	mov	overdone, #0
	cmp	dividend, divisor
	subhs	dividend, dividend, divisor
	cmp	dividend, divisor,  lsr #1
	subhs	dividend, dividend, divisor, lsr #1
	orrhs	overdone, overdone, curbit,  ror #1
	cmp	dividend, divisor,  lsr #2
	subhs	dividend, dividend, divisor, lsr #2
	orrhs	overdone, overdone, curbit,  ror #2
	cmp	dividend, divisor,  lsr #3
	subhs	dividend, dividend, divisor, lsr #3
	orrhs	overdone, overdone, curbit,  ror #3
	mov	ip,       curbit
  .else
	@ ... so keep track of which subtractions are done in RESULT.
	@ The result will be ok, since the "bit" will have been 
	@ shifted out at the bottom.
	cmp	dividend, divisor
	subhs	dividend, dividend, divisor
	orrhs	result,   result,   curbit
	cmp	dividend, divisor,  lsr #1
	subhs	dividend, dividend, divisor, lsr #1
	orrhs	result,   result,   curbit,  lsr #1
	cmp	dividend, divisor,  lsr #2
	subhs	dividend, dividend, divisor, lsr #2
	orrhs	result,   result,   curbit,  lsr #2
	cmp	dividend, divisor,  lsr #3
	subhs	dividend, dividend, divisor, lsr #3
	orrhs	result,   result,   curbit,  lsr #3
  .endif

	cmp	dividend, #0			@ Early termination?
	movnes	curbit,   curbit,  lsr #4	@ No, any more bits to do?
	movne	divisor,  divisor, lsr #4
	bne	LSYM(Loop3)

  .if \modulo
LSYM(Lfixup_dividend):	
	@ Any subtractions that we should not have done will be recorded in
	@ the top three bits of OVERDONE.  Exactly which were not needed
	@ are governed by the position of the bit, stored in IP.
	ands	overdone, overdone, #0xe0000000
	@ If we terminated early, because dividend became zero, then the 
	@ bit in ip will not be in the bottom nibble, and we should not
	@ perform the additions below.  We must test for this though
	@ (rather relying upon the TSTs to prevent the additions) since
	@ the bit in ip could be in the top two bits which might then match
	@ with one of the smaller RORs.
	tstne	ip, #0x7
	beq	LSYM(Lgot_result)
	tst	overdone, ip, ror #3
	addne	dividend, dividend, divisor, lsr #3
	tst	overdone, ip, ror #2
	addne	dividend, dividend, divisor, lsr #2
	tst	overdone, ip, ror #1
	addne	dividend, dividend, divisor, lsr #1
  .endif

LSYM(Lgot_result):
.endm
/* ------------------------------------------------------------------------ */
.macro THUMB_DIV_MOD_BODY modulo
	@ Load the constant 0x10000000 into our work register.
	mov	work, #1
	lsl	work, #28
LSYM(Loop1):
	@ Unless the divisor is very big, shift it up in multiples of
	@ four bits, since this is the amount of unwinding in the main
	@ division loop.  Continue shifting until the divisor is 
	@ larger than the dividend.
	cmp	divisor, work
	bhs	LSYM(Lbignum)
	cmp	divisor, dividend
	bhs	LSYM(Lbignum)
	lsl	divisor, #4
	lsl	curbit,  #4
	b	LSYM(Loop1)
LSYM(Lbignum):
	@ Set work to 0x80000000
	lsl	work, #3
LSYM(Loop2):
	@ For very big divisors, we must shift it a bit at a time, or
	@ we will be in danger of overflowing.
	cmp	divisor, work
	bhs	LSYM(Loop3)
	cmp	divisor, dividend
	bhs	LSYM(Loop3)
	lsl	divisor, #1
	lsl	curbit,  #1
	b	LSYM(Loop2)
LSYM(Loop3):
	@ Test for possible subtractions ...
  .if \modulo
	@ ... On the final pass, this may subtract too much from the dividend, 
	@ so keep track of which subtractions are done, we can fix them up 
	@ afterwards.
	mov	overdone, #0
	cmp	dividend, divisor
	blo	LSYM(Lover1)
	sub	dividend, dividend, divisor
LSYM(Lover1):
	lsr	work, divisor, #1
	cmp	dividend, work
	blo	LSYM(Lover2)
	sub	dividend, dividend, work
	mov	ip, curbit
	mov	work, #1
	ror	curbit, work
	orr	overdone, curbit
	mov	curbit, ip
LSYM(Lover2):
	lsr	work, divisor, #2
	cmp	dividend, work
	blo	LSYM(Lover3)
	sub	dividend, dividend, work
	mov	ip, curbit
	mov	work, #2
	ror	curbit, work
	orr	overdone, curbit
	mov	curbit, ip
LSYM(Lover3):
	lsr	work, divisor, #3
	cmp	dividend, work
	blo	LSYM(Lover4)
	sub	dividend, dividend, work
	mov	ip, curbit
	mov	work, #3
	ror	curbit, work
	orr	overdone, curbit
	mov	curbit, ip
LSYM(Lover4):
	mov	ip, curbit
  .else
	@ ... and note which bits are done in the result.  On the final pass,
	@ this may subtract too much from the dividend, but the result will be ok,
	@ since the "bit" will have been shifted out at the bottom.
	cmp	dividend, divisor
	blo	LSYM(Lover1)
	sub	dividend, dividend, divisor
	orr	result, result, curbit
LSYM(Lover1):
	lsr	work, divisor, #1
	cmp	dividend, work
	blo	LSYM(Lover2)
	sub	dividend, dividend, work
	lsr	work, curbit, #1
	orr	result, work
LSYM(Lover2):
	lsr	work, divisor, #2
	cmp	dividend, work
	blo	LSYM(Lover3)
	sub	dividend, dividend, work
	lsr	work, curbit, #2
	orr	result, work
LSYM(Lover3):
	lsr	work, divisor, #3
	cmp	dividend, work
	blo	LSYM(Lover4)
	sub	dividend, dividend, work
	lsr	work, curbit, #3
	orr	result, work
LSYM(Lover4):
  .endif
	
	cmp	dividend, #0			@ Early termination?
	beq	LSYM(Lover5)
	lsr	curbit,  #4			@ No, any more bits to do?
	beq	LSYM(Lover5)
	lsr	divisor, #4
	b	LSYM(Loop3)
LSYM(Lover5):
  .if \modulo
	@ Any subtractions that we should not have done will be recorded in
	@ the top three bits of "overdone".  Exactly which were not needed
	@ are governed by the position of the bit, stored in ip.
	mov	work, #0xe
	lsl	work, #28
	and	overdone, work
	beq	LSYM(Lgot_result)
	
	@ If we terminated early, because dividend became zero, then the 
	@ bit in ip will not be in the bottom nibble, and we should not
	@ perform the additions below.  We must test for this though
	@ (rather relying upon the TSTs to prevent the additions) since
	@ the bit in ip could be in the top two bits which might then match
	@ with one of the smaller RORs.
	mov	curbit, ip
	mov	work, #0x7
	tst	curbit, work
	beq	LSYM(Lgot_result)
	
	mov	curbit, ip
	mov	work, #3
	ror	curbit, work
	tst	overdone, curbit
	beq	LSYM(Lover6)
	lsr	work, divisor, #3
	add	dividend, work
LSYM(Lover6):
	mov	curbit, ip
	mov	work, #2
	ror	curbit, work
	tst	overdone, curbit
	beq	LSYM(Lover7)
	lsr	work, divisor, #2
	add	dividend, work
LSYM(Lover7):
	mov	curbit, ip
	mov	work, #1
	ror	curbit, work
	tst	overdone, curbit
	beq	LSYM(Lgot_result)
	lsr	work, divisor, #1
	add	dividend, work
  .endif
LSYM(Lgot_result):
.endm	
/* ------------------------------------------------------------------------ */
/*		Start of the Real Functions				    */
/* ------------------------------------------------------------------------ */
#ifdef L_udivsi3

	FUNC_START udivsi3

#ifdef __thumb__

	cmp	divisor, #0
	beq	LSYM(Ldiv0)
	mov	curbit, #1
	mov	result, #0
	
	push	{ work }
	cmp	dividend, divisor
	blo	LSYM(Lgot_result)

	THUMB_DIV_MOD_BODY 0
	
	mov	r0, result
	pop	{ work }
	RET

#else /* ARM version.  */
	
	cmp	divisor, #0
	beq	LSYM(Ldiv0)
	mov	curbit, #1
	mov	result, #0
	cmp	dividend, divisor
	blo	LSYM(Lgot_result)
	
	ARM_DIV_MOD_BODY 0
	
	mov	r0, result
	RET	

#endif /* ARM version */

	FUNC_END udivsi3

#endif /* L_udivsi3 */
/* ------------------------------------------------------------------------ */
#ifdef L_umodsi3

	FUNC_START umodsi3

#ifdef __thumb__

	cmp	divisor, #0
	beq	LSYM(Ldiv0)
	mov	curbit, #1
	cmp	dividend, divisor
	bhs	LSYM(Lover10)
	RET	

LSYM(Lover10):
	push	{ work }

	THUMB_DIV_MOD_BODY 1
	
	pop	{ work }
	RET
	
#else  /* ARM version.  */
	
	cmp	divisor, #0
	beq	LSYM(Ldiv0)
	cmp     divisor, #1
	cmpne	dividend, divisor
	moveq   dividend, #0
	RETc(lo)
	mov	curbit, #1

	ARM_DIV_MOD_BODY 1
	
	RET	

#endif /* ARM version.  */
	
	FUNC_END umodsi3

#endif /* L_umodsi3 */
/* ------------------------------------------------------------------------ */
#ifdef L_divsi3

	FUNC_START divsi3	

#ifdef __thumb__
	cmp	divisor, #0
	beq	LSYM(Ldiv0)
	
	push	{ work }
	mov	work, dividend
	eor	work, divisor		@ Save the sign of the result.
	mov	ip, work
	mov	curbit, #1
	mov	result, #0
	cmp	divisor, #0
	bpl	LSYM(Lover10)
	neg	divisor, divisor	@ Loops below use unsigned.
LSYM(Lover10):
	cmp	dividend, #0
	bpl	LSYM(Lover11)
	neg	dividend, dividend
LSYM(Lover11):
	cmp	dividend, divisor
	blo	LSYM(Lgot_result)

	THUMB_DIV_MOD_BODY 0
	
	mov	r0, result
	mov	work, ip
	cmp	work, #0
	bpl	LSYM(Lover12)
	neg	r0, r0
LSYM(Lover12):
	pop	{ work }
	RET

#else /* ARM version.  */
	
	eor	ip, dividend, divisor		@ Save the sign of the result.
	mov	curbit, #1
	mov	result, #0
	cmp	divisor, #0
	rsbmi	divisor, divisor, #0		@ Loops below use unsigned.
	beq	LSYM(Ldiv0)
	cmp	dividend, #0
	rsbmi	dividend, dividend, #0
	cmp	dividend, divisor
	blo	LSYM(Lgot_result)

	ARM_DIV_MOD_BODY 0
	
	mov	r0, result
	cmp	ip, #0
	rsbmi	r0, r0, #0
	RET	

#endif /* ARM version */
	
	FUNC_END divsi3

#endif /* L_divsi3 */
/* ------------------------------------------------------------------------ */
#ifdef L_modsi3

	FUNC_START modsi3

#ifdef __thumb__

	mov	curbit, #1
	cmp	divisor, #0
	beq	LSYM(Ldiv0)
	bpl	LSYM(Lover10)
	neg	divisor, divisor		@ Loops below use unsigned.
LSYM(Lover10):
	push	{ work }
	@ Need to save the sign of the dividend, unfortunately, we need
	@ work later on.  Must do this after saving the original value of
	@ the work register, because we will pop this value off first.
	push	{ dividend }
	cmp	dividend, #0
	bpl	LSYM(Lover11)
	neg	dividend, dividend
LSYM(Lover11):
	cmp	dividend, divisor
	blo	LSYM(Lgot_result)

	THUMB_DIV_MOD_BODY 1
		
	pop	{ work }
	cmp	work, #0
	bpl	LSYM(Lover12)
	neg	dividend, dividend
LSYM(Lover12):
	pop	{ work }
	RET	

#else /* ARM version.  */
	
	cmp	divisor, #0
	rsbmi	divisor, divisor, #0		@ Loops below use unsigned.
	beq	LSYM(Ldiv0)
	@ Need to save the sign of the dividend, unfortunately, we need
	@ ip later on; this is faster than pushing lr and using that.
	str	dividend, [sp, #-4]!
	cmp	dividend, #0			@ Test dividend against zero
	rsbmi	dividend, dividend, #0		@ If negative make positive
	cmp	dividend, divisor		@ else if zero return zero
	blo	LSYM(Lgot_result)		@ if smaller return dividend
	mov	curbit, #1

	ARM_DIV_MOD_BODY 1

	ldr	ip, [sp], #4
	cmp	ip, #0
	rsbmi	dividend, dividend, #0
	RET	

#endif /* ARM version */
	
	FUNC_END modsi3

#endif /* L_modsi3 */
/* ------------------------------------------------------------------------ */
#ifdef L_dvmd_tls

	FUNC_START div0

	RET

	SIZE	(__div0)
	
#endif /* L_divmodsi_tools */
/* ------------------------------------------------------------------------ */
#ifdef L_dvmd_lnx
@ GNU/Linux division-by zero handler.  Used in place of L_dvmd_tls

/* Constants taken from <asm/unistd.h> and <asm/signal.h> */
#define SIGFPE	8
#define __NR_SYSCALL_BASE	0x900000
#define __NR_getpid			(__NR_SYSCALL_BASE+ 20)
#define __NR_kill			(__NR_SYSCALL_BASE+ 37)

	FUNC_START div0

	stmfd	sp!, {r1, lr}
	swi	__NR_getpid
	cmn	r0, #1000
	ldmhsfd	sp!, {r1, pc}RETCOND	@ not much we can do
	mov	r1, #SIGFPE
	swi	__NR_kill
#ifdef __THUMB_INTERWORK__
	ldmfd	sp!, {r1, lr}
	bx	lr
#else
	ldmfd	sp!, {r1, pc}RETCOND
#endif

	SIZE 	(__div0)
	
#endif /* L_dvmd_lnx */
/* ------------------------------------------------------------------------ */
/* These next two sections are here despite the fact that they contain Thumb 
   assembler because their presence allows interworked code to be linked even
   when the GCC library is this one.  */
		
/* Do not build the interworking functions when the target architecture does 
   not support Thumb instructions.  (This can be a multilib option).  */
#if defined L_call_via_rX && (defined __ARM_ARCH_4T__ || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__)

/* These labels & instructions are used by the Arm/Thumb interworking code. 
   The address of function to be called is loaded into a register and then 
   one of these labels is called via a BL instruction.  This puts the 
   return address into the link register with the bottom bit set, and the 
   code here switches to the correct mode before executing the function.  */
	
	.text
	.align 0
        .force_thumb

.macro call_via register
	THUMB_FUNC_START _call_via_\register

	bx	\register
	nop

	SIZE	(_call_via_\register)
.endm

	call_via r0
	call_via r1
	call_via r2
	call_via r3
	call_via r4
	call_via r5
	call_via r6
	call_via r7
	call_via r8
	call_via r9
	call_via sl
	call_via fp
	call_via ip
	call_via sp
	call_via lr

#endif /* L_call_via_rX */
/* ------------------------------------------------------------------------ */
/* Do not build the interworking functions when the target architecture does 
   not support Thumb instructions.  (This can be a multilib option).  */
#if defined L_interwork_call_via_rX && (defined __ARM_ARCH_4T__ || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__)

/* These labels & instructions are used by the Arm/Thumb interworking code,
   when the target address is in an unknown instruction set.  The address 
   of function to be called is loaded into a register and then one of these
   labels is called via a BL instruction.  This puts the return address 
   into the link register with the bottom bit set, and the code here 
   switches to the correct mode before executing the function.  Unfortunately
   the target code cannot be relied upon to return via a BX instruction, so
   instead we have to store the resturn address on the stack and allow the
   called function to return here instead.  Upon return we recover the real
   return address and use a BX to get back to Thumb mode.  */
	
	.text
	.align 0

	.code   32
	.globl _arm_return
_arm_return:		
	ldmia 	r13!, {r12}
	bx 	r12
	.code   16

.macro interwork register					
	.code   16

	THUMB_FUNC_START _interwork_call_via_\register

	bx 	pc
	nop
	
	.code   32
	.globl .Lchange_\register
.Lchange_\register:
	tst	\register, #1
	stmeqdb	r13!, {lr}
	adreq	lr, _arm_return
	bx	\register

	SIZE	(_interwork_call_via_\register)
.endm
	
	interwork r0
	interwork r1
	interwork r2
	interwork r3
	interwork r4
	interwork r5
	interwork r6
	interwork r7
	interwork r8
	interwork r9
	interwork sl
	interwork fp
	interwork ip
	interwork sp
	
	/* The LR case has to be handled a little differently...  */
	.code 16

	THUMB_FUNC_START _interwork_call_via_lr

	bx 	pc
	nop
	
	.code 32
	.globl .Lchange_lr
.Lchange_lr:
	tst	lr, #1
	stmeqdb	r13!, {lr}
	mov	ip, lr
	adreq	lr, _arm_return
	bx	ip
	
	SIZE	(_interwork_call_via_lr)
	
#endif /* L_interwork_call_via_rX */