aboutsummaryrefslogtreecommitdiff
path: root/gcc/config/ia64/lib1funcs.asm
blob: 68ee421ff6575757e1dca556cb0f727b1c53dbfc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
#ifdef L__divxf3
// Compute a 80-bit IEEE double-extended quotient.
//
// From the Intel IA-64 Optimization Guide, choose the minimum latency
// alternative.
//
// farg0 holds the dividend.  farg1 holds the divisor.
//
// __divtf3 is an alternate symbol name for backward compatibility.

	.text
	.align 16
	.global __divxf3
	.global __divtf3
	.proc __divxf3
__divxf3:
__divtf3:
	cmp.eq p7, p0 = r0, r0
	frcpa.s0 f10, p6 = farg0, farg1
	;;
(p6)	cmp.ne p7, p0 = r0, r0
	.pred.rel.mutex p6, p7
(p6)	fnma.s1 f11 = farg1, f10, f1
(p6)	fma.s1 f12 = farg0, f10, f0
	;;
(p6)	fma.s1 f13 = f11, f11, f0
(p6)	fma.s1 f14 = f11, f11, f11
	;;
(p6)	fma.s1 f11 = f13, f13, f11
(p6)	fma.s1 f13 = f14, f10, f10
	;;
(p6)	fma.s1 f10 = f13, f11, f10
(p6)	fnma.s1 f11 = farg1, f12, farg0
	;;
(p6)	fma.s1 f11 = f11, f10, f12
(p6)	fnma.s1 f12 = farg1, f10, f1
	;;
(p6)	fma.s1 f10 = f12, f10, f10
(p6)	fnma.s1 f12 = farg1, f11, farg0
	;;
(p6)	fma.s0 fret0 = f12, f10, f11
(p7)	mov fret0 = f10
	br.ret.sptk rp
	.endp __divxf3
#endif

#ifdef L__divdf3
// Compute a 64-bit IEEE double quotient.
//
// From the Intel IA-64 Optimization Guide, choose the minimum latency
// alternative.
//
// farg0 holds the dividend.  farg1 holds the divisor.

	.text
	.align 16
	.global __divdf3
	.proc __divdf3
__divdf3:
	cmp.eq p7, p0 = r0, r0
	frcpa.s0 f10, p6 = farg0, farg1
	;;
(p6)	cmp.ne p7, p0 = r0, r0
	.pred.rel.mutex p6, p7
(p6)	fmpy.s1 f11 = farg0, f10
(p6)	fnma.s1 f12 = farg1, f10, f1
	;;
(p6)	fma.s1 f11 = f12, f11, f11
(p6)	fmpy.s1 f13 = f12, f12
	;;
(p6)	fma.s1 f10 = f12, f10, f10
(p6)	fma.s1 f11 = f13, f11, f11
	;;
(p6)	fmpy.s1 f12 = f13, f13
(p6)	fma.s1 f10 = f13, f10, f10
	;;
(p6)	fma.d.s1 f11 = f12, f11, f11
(p6)	fma.s1 f10 = f12, f10, f10
	;;
(p6)	fnma.d.s1 f8 = farg1, f11, farg0
	;;
(p6)	fma.d fret0 = f8, f10, f11
(p7)	mov fret0 = f10
	br.ret.sptk rp
	;;
	.endp __divdf3
#endif

#ifdef L__divsf3
// Compute a 32-bit IEEE float quotient.
//
// From the Intel IA-64 Optimization Guide, choose the minimum latency
// alternative.
//
// farg0 holds the dividend.  farg1 holds the divisor.

	.text
	.align 16
	.global __divsf3
	.proc __divsf3
__divsf3:
	cmp.eq p7, p0 = r0, r0
	frcpa.s0 f10, p6 = farg0, farg1
	;;
(p6)	cmp.ne p7, p0 = r0, r0
	.pred.rel.mutex p6, p7
(p6)	fmpy.s1 f8 = farg0, f10
(p6)	fnma.s1 f9 = farg1, f10, f1
	;;
(p6)	fma.s1 f8 = f9, f8, f8
(p6)	fmpy.s1 f9 = f9, f9
	;;
(p6)	fma.s1 f8 = f9, f8, f8
(p6)	fmpy.s1 f9 = f9, f9
	;;
(p6)	fma.d.s1 f10 = f9, f8, f8
	;;
(p6)	fnorm.s.s0 fret0 = f10
(p7)	mov fret0 = f10
	br.ret.sptk rp
	;;
	.endp __divsf3
#endif

#ifdef L__divdi3
// Compute a 64-bit integer quotient.
//
// From the Intel IA-64 Optimization Guide, choose the minimum latency
// alternative.
//
// in0 holds the dividend.  in1 holds the divisor.

	.text
	.align 16
	.global __divdi3
	.proc __divdi3
__divdi3:
	.regstk 2,0,0,0
	// Transfer inputs to FP registers.
	setf.sig f8 = in0
	setf.sig f9 = in1
	;;
	// Convert the inputs to FP, so that they won't be treated as unsigned.
	fcvt.xf f8 = f8
	fcvt.xf f9 = f9
	;;
	// Compute the reciprocal approximation.
	frcpa.s1 f10, p6 = f8, f9
	;;
	// 3 Newton-Raphson iterations.
(p6)	fnma.s1 f11 = f9, f10, f1
(p6)	fmpy.s1 f12 = f8, f10
	;;
(p6)	fmpy.s1 f13 = f11, f11
(p6)	fma.s1 f12 = f11, f12, f12
	;;
(p6)	fma.s1 f10 = f11, f10, f10
(p6)	fma.s1 f11 = f13, f12, f12
	;;
(p6)	fma.s1 f10 = f13, f10, f10
(p6)	fnma.s1 f12 = f9, f11, f8
	;;
(p6)	fma.s1 f10 = f12, f10, f11
	;;
	// Round quotient to an integer.
	fcvt.fx.trunc.s1 f10 = f10
	;;
	// Transfer result to GP registers.
	getf.sig ret0 = f10
	br.ret.sptk rp
	;;
	.endp __divdi3
#endif

#ifdef L__moddi3
// Compute a 64-bit integer modulus.
//
// From the Intel IA-64 Optimization Guide, choose the minimum latency
// alternative.
//
// in0 holds the dividend (a).  in1 holds the divisor (b).

	.text
	.align 16
	.global __moddi3
	.proc __moddi3
__moddi3:
	.regstk 2,0,0,0
	// Transfer inputs to FP registers.
	setf.sig f14 = in0
	setf.sig f9 = in1
	;;
	// Convert the inputs to FP, so that they won't be treated as unsigned.
	fcvt.xf f8 = f14
	fcvt.xf f9 = f9
	;;
	// Compute the reciprocal approximation.
	frcpa.s1 f10, p6 = f8, f9
	;;
	// 3 Newton-Raphson iterations.
(p6)	fmpy.s1 f12 = f8, f10
(p6)	fnma.s1 f11 = f9, f10, f1
	;;
(p6)	fma.s1 f12 = f11, f12, f12
(p6)	fmpy.s1 f13 = f11, f11
	;;
(p6)	fma.s1 f10 = f11, f10, f10
(p6)	fma.s1 f11 = f13, f12, f12
	;;
	sub in1 = r0, in1
(p6)	fma.s1 f10 = f13, f10, f10
(p6)	fnma.s1 f12 = f9, f11, f8
	;;
	setf.sig f9 = in1
(p6)	fma.s1 f10 = f12, f10, f11
	;;
	fcvt.fx.trunc.s1 f10 = f10
	;;
	// r = q * (-b) + a
	xma.l f10 = f10, f9, f14
	;;
	// Transfer result to GP registers.
	getf.sig ret0 = f10
	br.ret.sptk rp
	;;
	.endp __moddi3
#endif

#ifdef L__udivdi3
// Compute a 64-bit unsigned integer quotient.
//
// From the Intel IA-64 Optimization Guide, choose the minimum latency
// alternative.
//
// in0 holds the dividend.  in1 holds the divisor.

	.text
	.align 16
	.global __udivdi3
	.proc __udivdi3
__udivdi3:
	.regstk 2,0,0,0
	// Transfer inputs to FP registers.
	setf.sig f8 = in0
	setf.sig f9 = in1
	;;
	// Convert the inputs to FP, to avoid FP software-assist faults.
	fcvt.xuf.s1 f8 = f8
	fcvt.xuf.s1 f9 = f9
	;;
	// Compute the reciprocal approximation.
	frcpa.s1 f10, p6 = f8, f9
	;;
	// 3 Newton-Raphson iterations.
(p6)	fnma.s1 f11 = f9, f10, f1
(p6)	fmpy.s1 f12 = f8, f10
	;;
(p6)	fmpy.s1 f13 = f11, f11
(p6)	fma.s1 f12 = f11, f12, f12
	;;
(p6)	fma.s1 f10 = f11, f10, f10
(p6)	fma.s1 f11 = f13, f12, f12
	;;
(p6)	fma.s1 f10 = f13, f10, f10
(p6)	fnma.s1 f12 = f9, f11, f8
	;;
(p6)	fma.s1 f10 = f12, f10, f11
	;;
	// Round quotient to an unsigned integer.
	fcvt.fxu.trunc.s1 f10 = f10
	;;
	// Transfer result to GP registers.
	getf.sig ret0 = f10
	br.ret.sptk rp
	;;
	.endp __udivdi3
#endif

#ifdef L__umoddi3
// Compute a 64-bit unsigned integer modulus.
//
// From the Intel IA-64 Optimization Guide, choose the minimum latency
// alternative.
//
// in0 holds the dividend (a).  in1 holds the divisor (b).

	.text
	.align 16
	.global __umoddi3
	.proc __umoddi3
__umoddi3:
	.regstk 2,0,0,0
	// Transfer inputs to FP registers.
	setf.sig f14 = in0
	setf.sig f9 = in1
	;;
	// Convert the inputs to FP, to avoid FP software assist faults.
	fcvt.xuf.s1 f8 = f14
	fcvt.xuf.s1 f9 = f9
	;;
	// Compute the reciprocal approximation.
	frcpa.s1 f10, p6 = f8, f9
	;;
	// 3 Newton-Raphson iterations.
(p6)	fmpy.s1 f12 = f8, f10
(p6)	fnma.s1 f11 = f9, f10, f1
	;;
(p6)	fma.s1 f12 = f11, f12, f12
(p6)	fmpy.s1 f13 = f11, f11
	;;
(p6)	fma.s1 f10 = f11, f10, f10
(p6)	fma.s1 f11 = f13, f12, f12
	;;
	sub in1 = r0, in1
(p6)	fma.s1 f10 = f13, f10, f10
(p6)	fnma.s1 f12 = f9, f11, f8
	;;
	setf.sig f9 = in1
(p6)	fma.s1 f10 = f12, f10, f11
	;;
	// Round quotient to an unsigned integer.
	fcvt.fxu.trunc.s1 f10 = f10
	;;
	// r = q * (-b) + a
	xma.l f10 = f10, f9, f14
	;;
	// Transfer result to GP registers.
	getf.sig ret0 = f10
	br.ret.sptk rp
	;;
	.endp __umoddi3
#endif

#ifdef L__divsi3
// Compute a 32-bit integer quotient.
//
// From the Intel IA-64 Optimization Guide, choose the minimum latency
// alternative.
//
// in0 holds the dividend.  in1 holds the divisor.

	.text
	.align 16
	.global __divsi3
	.proc __divsi3
__divsi3:
	.regstk 2,0,0,0
	sxt4 in0 = in0
	sxt4 in1 = in1
	;;
	setf.sig f8 = in0
	setf.sig f9 = in1
	;;
	mov r2 = 0x0ffdd
	fcvt.xf f8 = f8
	fcvt.xf f9 = f9
	;;
	setf.exp f11 = r2
	frcpa.s1 f10, p6 = f8, f9
	;;
(p6)	fmpy.s1 f8 = f8, f10
(p6)	fnma.s1 f9 = f9, f10, f1
	;;
(p6)	fma.s1 f8 = f9, f8, f8
(p6)	fma.s1 f9 = f9, f9, f11
	;;
(p6)	fma.s1 f10 = f9, f8, f8
	;;
	fcvt.fx.trunc.s1 f10 = f10
	;;
	getf.sig ret0 = f10
	br.ret.sptk rp
	;;
	.endp __divsi3
#endif

#ifdef L__modsi3
// Compute a 32-bit integer modulus.
//
// From the Intel IA-64 Optimization Guide, choose the minimum latency
// alternative.
//
// in0 holds the dividend.  in1 holds the divisor.

	.text
	.align 16
	.global __modsi3
	.proc __modsi3
__modsi3:
	.regstk 2,0,0,0
	mov r2 = 0x0ffdd
	sxt4 in0 = in0
	sxt4 in1 = in1
	;;
	setf.sig f13 = r32
	setf.sig f9 = r33
	;;
	sub in1 = r0, in1
	fcvt.xf f8 = f13
	fcvt.xf f9 = f9
	;;
	setf.exp f11 = r2
	frcpa.s1 f10, p6 = f8, f9
	;;
(p6)	fmpy.s1 f12 = f8, f10
(p6)	fnma.s1 f10 = f9, f10, f1
	;;
	setf.sig f9 = in1
(p6)	fma.s1 f12 = f10, f12, f12
(p6)	fma.s1 f10 = f10, f10, f11	
	;;
(p6)	fma.s1 f10 = f10, f12, f12
	;;
	fcvt.fx.trunc.s1 f10 = f10
	;;
	xma.l f10 = f10, f9, f13
	;;
	getf.sig ret0 = f10
	br.ret.sptk rp
	;;
	.endp __modsi3
#endif

#ifdef L__udivsi3
// Compute a 32-bit unsigned integer quotient.
//
// From the Intel IA-64 Optimization Guide, choose the minimum latency
// alternative.
//
// in0 holds the dividend.  in1 holds the divisor.

	.text
	.align 16
	.global __udivsi3
	.proc __udivsi3
__udivsi3:
	.regstk 2,0,0,0
	mov r2 = 0x0ffdd
	zxt4 in0 = in0
	zxt4 in1 = in1
	;;
	setf.sig f8 = in0
	setf.sig f9 = in1
	;;
	fcvt.xf f8 = f8
	fcvt.xf f9 = f9
	;;
	setf.exp f11 = r2
	frcpa.s1 f10, p6 = f8, f9
	;;
(p6)	fmpy.s1 f8 = f8, f10
(p6)	fnma.s1 f9 = f9, f10, f1
	;;
(p6)	fma.s1 f8 = f9, f8, f8
(p6)	fma.s1 f9 = f9, f9, f11
	;;
(p6)	fma.s1 f10 = f9, f8, f8
	;;
	fcvt.fxu.trunc.s1 f10 = f10
	;;
	getf.sig ret0 = f10
	br.ret.sptk rp
	;;
	.endp __udivsi3
#endif

#ifdef L__umodsi3
// Compute a 32-bit unsigned integer modulus.
//
// From the Intel IA-64 Optimization Guide, choose the minimum latency
// alternative.
//
// in0 holds the dividend.  in1 holds the divisor.

	.text
	.align 16
	.global __umodsi3
	.proc __umodsi3
__umodsi3:
	.regstk 2,0,0,0
	mov r2 = 0x0ffdd
	zxt4 in0 = in0
	zxt4 in1 = in1
	;;
	setf.sig f13 = in0
	setf.sig f9 = in1
	;;
	sub in1 = r0, in1
	fcvt.xf f8 = f13
	fcvt.xf f9 = f9
	;;
	setf.exp f11 = r2
	frcpa.s1 f10, p6 = f8, f9
	;;
(p6)	fmpy.s1 f12 = f8, f10
(p6)	fnma.s1 f10 = f9, f10, f1
	;;
	setf.sig f9 = in1
(p6)	fma.s1 f12 = f10, f12, f12
(p6)	fma.s1 f10 = f10, f10, f11
	;;
(p6)	fma.s1 f10 = f10, f12, f12
	;;
	fcvt.fxu.trunc.s1 f10 = f10
	;;
	xma.l f10 = f10, f9, f13
	;;
	getf.sig ret0 = f10
	br.ret.sptk rp
	;;
	.endp __umodsi3
#endif

#ifdef L__save_stack_nonlocal
// Notes on save/restore stack nonlocal: We read ar.bsp but write
// ar.bspstore.  This is because ar.bsp can be read at all times
// (independent of the RSE mode) but since it's read-only we need to
// restore the value via ar.bspstore.  This is OK because
// ar.bsp==ar.bspstore after executing "flushrs".

// void __ia64_save_stack_nonlocal(void *save_area, void *stack_pointer)

	.text
	.align 16
	.global __ia64_save_stack_nonlocal
	.proc __ia64_save_stack_nonlocal
__ia64_save_stack_nonlocal:
	{ .mmf
	  alloc r18 = ar.pfs, 2, 0, 0, 0
	  mov r19 = ar.rsc
	  ;;
	}
	{ .mmi
	  flushrs
	  st8 [in0] = in1, 24
	  and r19 = 0x1c, r19
	  ;;
	}
	{ .mmi
	  st8 [in0] = r18, -16
	  mov ar.rsc = r19
	  or r19 = 0x3, r19
	  ;;
	}
	{ .mmi
	  mov r16 = ar.bsp
	  mov r17 = ar.rnat
	  adds r2 = 8, in0
	  ;;
	}
	{ .mmi
	  st8 [in0] = r16
	  st8 [r2] = r17
	}
	{ .mib
	  mov ar.rsc = r19
	  br.ret.sptk.few rp
	  ;;
	}
	.endp __ia64_save_stack_nonlocal
#endif

#ifdef L__nonlocal_goto
// void __ia64_nonlocal_goto(void *target_label, void *save_area,
//			     void *static_chain);

	.text
	.align 16
	.global __ia64_nonlocal_goto
	.proc __ia64_nonlocal_goto
__ia64_nonlocal_goto:
	{ .mmi
	  alloc r20 = ar.pfs, 3, 0, 0, 0
	  ld8 r12 = [in1], 8
	  mov.ret.sptk rp = in0, .L0
	  ;;
	}
	{ .mmf
	  ld8 r16 = [in1], 8
	  mov r19 = ar.rsc
	  ;;
	}
	{ .mmi
	  flushrs
	  ld8 r17 = [in1], 8
	  and r19 = 0x1c, r19
	  ;;
	}
	{ .mmi
	  ld8 r18 = [in1]
	  mov ar.rsc = r19
	  or r19 = 0x3, r19
	  ;;
	}
	{ .mmi
	  mov ar.bspstore = r16
	  ;;
	  mov ar.rnat = r17
	  ;;
	}
	{ .mmi
	  loadrs
	  invala
	  mov r15 = in2
	  ;;
	}
.L0:	{ .mib
	  mov ar.rsc = r19
	  mov ar.pfs = r18
	  br.ret.sptk.few rp
	  ;;
	}
	.endp __ia64_nonlocal_goto
#endif

#ifdef L__restore_stack_nonlocal
// This is mostly the same as nonlocal_goto above.
// ??? This has not been tested yet.

// void __ia64_restore_stack_nonlocal(void *save_area)

	.text
	.align 16
	.global __ia64_restore_stack_nonlocal
	.proc __ia64_restore_stack_nonlocal
__ia64_restore_stack_nonlocal:
	{ .mmf
	  alloc r20 = ar.pfs, 4, 0, 0, 0
	  ld8 r12 = [in0], 8
	  ;;
	}
	{ .mmb
	  ld8 r16=[in0], 8
	  mov r19 = ar.rsc
	  ;;
	}
	{ .mmi
	  flushrs
	  ld8 r17 = [in0], 8
	  and r19 = 0x1c, r19
	  ;;
	}
	{ .mmf
	  ld8 r18 = [in0]
	  mov ar.rsc = r19
	  ;;
	}
	{ .mmi
	  mov ar.bspstore = r16
	  ;;
	  mov ar.rnat = r17
	  or r19 = 0x3, r19
	  ;;
	}
	{ .mmf
	  loadrs
	  invala
	  ;;
	}
.L0:	{ .mib
	  mov ar.rsc = r19
	  mov ar.pfs = r18
	  br.ret.sptk.few rp
	  ;;
	}
	.endp __ia64_restore_stack_nonlocal
#endif

#ifdef L__trampoline
// Implement the nested function trampoline.  This is out of line
// so that we don't have to bother with flushing the icache, as
// well as making the on-stack trampoline smaller.
//
// The trampoline has the following form:
//
//		+-------------------+ >
//	TRAMP:	| __ia64_trampoline | |
//		+-------------------+  > fake function descriptor
//		| TRAMP+16          | |
//		+-------------------+ >
//		| target descriptor |
//		+-------------------+
//		| static link	    |
//		+-------------------+

	.text
	.align 16
	.global __ia64_trampoline
	.proc __ia64_trampoline
__ia64_trampoline:
	{ .mmi
	  ld8 r2 = [r1], 8
	  ;;
	  ld8 r15 = [r1]
	}
	{ .mmi
	  ld8 r3 = [r2], 8
	  ;;
	  ld8 r1 = [r2]
	  mov b6 = r3
	}
	{ .bbb
	  br.sptk.many b6
	  ;;
	}
	.endp __ia64_trampoline
#endif

// Thunks for backward compatibility.
#ifdef L_fixtfdi
	.text
	.align 16
	.global __fixtfti
	.proc __fixtfti
__fixtfti:
	{ .bbb
	  br.sptk.many __fixxfti
	  ;;
	}
	.endp __fixtfti
#endif
#ifdef L_fixunstfdi
	.align 16
	.global __fixunstfti
	.proc __fixunstfti
__fixunstfti:
	{ .bbb
	  br.sptk.many __fixunsxfti
	  ;;
	}
	.endp __fixunstfti
#endif
#if L_floatditf
	.align 16
	.global __floattitf
	.proc __floattitf
__floattitf:
	{ .bbb
	  br.sptk.many __floattixf
	  ;;
	}
	.endp __floattitf
#endif