aboutsummaryrefslogtreecommitdiff
path: root/gcc/stor-layout.c
blob: 857c64777d85e0f57dfe8515b796e961fe9b4bc6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
/* C-compiler utilities for types and variables storage layout
   Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1996, 1998,
   1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */


#include "config.h"
#include "system.h"
#include "tree.h"
#include "rtl.h"
#include "tm_p.h"
#include "flags.h"
#include "function.h"
#include "expr.h"
#include "toplev.h"
#include "ggc.h"
#include "target.h"
#include "langhooks.h"

/* Set to one when set_sizetype has been called.  */
static int sizetype_set;

/* List of types created before set_sizetype has been called.  We do not
   make this a GGC root since we want these nodes to be reclaimed.  */
static tree early_type_list;

/* Data type for the expressions representing sizes of data types.
   It is the first integer type laid out.  */
tree sizetype_tab[(int) TYPE_KIND_LAST];

/* If nonzero, this is an upper limit on alignment of structure fields.
   The value is measured in bits.  */
unsigned int maximum_field_alignment;

/* If nonzero, the alignment of a bitstring or (power-)set value, in bits.
   May be overridden by front-ends.  */
unsigned int set_alignment = 0;

/* Nonzero if all REFERENCE_TYPEs are internal and hence should be
   allocated in Pmode, not ptr_mode.   Set only by internal_reference_types
   called only by a front end.  */
static int reference_types_internal = 0;

static void finalize_record_size	PARAMS ((record_layout_info));
static void finalize_type_size		PARAMS ((tree));
static void place_union_field		PARAMS ((record_layout_info, tree));
static unsigned int update_alignment_for_field
                                        PARAMS ((record_layout_info, tree, 
						 unsigned int));
extern void debug_rli			PARAMS ((record_layout_info));

/* SAVE_EXPRs for sizes of types and decls, waiting to be expanded.  */

static GTY(()) tree pending_sizes;

/* Nonzero means cannot safely call expand_expr now,
   so put variable sizes onto `pending_sizes' instead.  */

int immediate_size_expand;

/* Show that REFERENCE_TYPES are internal and should be Pmode.  Called only
   by front end.  */

void
internal_reference_types ()
{
  reference_types_internal = 1;
}

/* Get a list of all the objects put on the pending sizes list.  */

tree
get_pending_sizes ()
{
  tree chain = pending_sizes;
  tree t;

  /* Put each SAVE_EXPR into the current function.  */
  for (t = chain; t; t = TREE_CHAIN (t))
    SAVE_EXPR_CONTEXT (TREE_VALUE (t)) = current_function_decl;

  pending_sizes = 0;
  return chain;
}

/* Return nonzero if EXPR is present on the pending sizes list.  */

int
is_pending_size (expr)
     tree expr;
{
  tree t;

  for (t = pending_sizes; t; t = TREE_CHAIN (t))
    if (TREE_VALUE (t) == expr)
      return 1;
  return 0;
}

/* Add EXPR to the pending sizes list.  */

void
put_pending_size (expr)
     tree expr;
{
  /* Strip any simple arithmetic from EXPR to see if it has an underlying
     SAVE_EXPR.  */
  while (TREE_CODE_CLASS (TREE_CODE (expr)) == '1'
	 || (TREE_CODE_CLASS (TREE_CODE (expr)) == '2'
	    && TREE_CONSTANT (TREE_OPERAND (expr, 1))))
    expr = TREE_OPERAND (expr, 0);

  if (TREE_CODE (expr) == SAVE_EXPR)
    pending_sizes = tree_cons (NULL_TREE, expr, pending_sizes);
}

/* Put a chain of objects into the pending sizes list, which must be
   empty.  */

void
put_pending_sizes (chain)
     tree chain;
{
  if (pending_sizes)
    abort ();

  pending_sizes = chain;
}

/* Given a size SIZE that may not be a constant, return a SAVE_EXPR
   to serve as the actual size-expression for a type or decl.  */

tree
variable_size (size)
     tree size;
{
  /* If the language-processor is to take responsibility for variable-sized
     items (e.g., languages which have elaboration procedures like Ada),
     just return SIZE unchanged.  Likewise for self-referential sizes and
     constant sizes.  */
  if (TREE_CONSTANT (size)
      || (*lang_hooks.decls.global_bindings_p) () < 0
      || contains_placeholder_p (size))
    return size;

  size = save_expr (size);

  /* If an array with a variable number of elements is declared, and
     the elements require destruction, we will emit a cleanup for the
     array.  That cleanup is run both on normal exit from the block
     and in the exception-handler for the block.  Normally, when code
     is used in both ordinary code and in an exception handler it is
     `unsaved', i.e., all SAVE_EXPRs are recalculated.  However, we do
     not wish to do that here; the array-size is the same in both
     places.  */
  if (TREE_CODE (size) == SAVE_EXPR)
    SAVE_EXPR_PERSISTENT_P (size) = 1;

  if ((*lang_hooks.decls.global_bindings_p) ())
    {
      if (TREE_CONSTANT (size))
	error ("type size can't be explicitly evaluated");
      else
	error ("variable-size type declared outside of any function");

      return size_one_node;
    }

  if (immediate_size_expand)
    /* NULL_RTX is not defined; neither is the rtx type.
       Also, we would like to pass const0_rtx here, but don't have it.  */
    expand_expr (size, expand_expr (integer_zero_node, NULL_RTX, VOIDmode, 0),
		 VOIDmode, 0);
  else if (cfun != 0 && cfun->x_dont_save_pending_sizes_p)
    /* The front-end doesn't want us to keep a list of the expressions
       that determine sizes for variable size objects.  */
    ;
  else
    put_pending_size (size);

  return size;
}

#ifndef MAX_FIXED_MODE_SIZE
#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode)
#endif

/* Return the machine mode to use for a nonscalar of SIZE bits.
   The mode must be in class CLASS, and have exactly that many bits.
   If LIMIT is nonzero, modes of wider than MAX_FIXED_MODE_SIZE will not
   be used.  */

enum machine_mode
mode_for_size (size, class, limit)
     unsigned int size;
     enum mode_class class;
     int limit;
{
  enum machine_mode mode;

  if (limit && size > MAX_FIXED_MODE_SIZE)
    return BLKmode;

  /* Get the first mode which has this size, in the specified class.  */
  for (mode = GET_CLASS_NARROWEST_MODE (class); mode != VOIDmode;
       mode = GET_MODE_WIDER_MODE (mode))
    if (GET_MODE_BITSIZE (mode) == size)
      return mode;

  return BLKmode;
}

/* Similar, except passed a tree node.  */

enum machine_mode
mode_for_size_tree (size, class, limit)
     tree size;
     enum mode_class class;
     int limit;
{
  if (TREE_CODE (size) != INTEGER_CST
      /* What we really want to say here is that the size can fit in a
	 host integer, but we know there's no way we'd find a mode for
	 this many bits, so there's no point in doing the precise test.  */
      || compare_tree_int (size, 1000) > 0)
    return BLKmode;
  else
    return mode_for_size (TREE_INT_CST_LOW (size), class, limit);
}

/* Similar, but never return BLKmode; return the narrowest mode that
   contains at least the requested number of bits.  */

enum machine_mode
smallest_mode_for_size (size, class)
     unsigned int size;
     enum mode_class class;
{
  enum machine_mode mode;

  /* Get the first mode which has at least this size, in the
     specified class.  */
  for (mode = GET_CLASS_NARROWEST_MODE (class); mode != VOIDmode;
       mode = GET_MODE_WIDER_MODE (mode))
    if (GET_MODE_BITSIZE (mode) >= size)
      return mode;

  abort ();
}

/* Find an integer mode of the exact same size, or BLKmode on failure.  */

enum machine_mode
int_mode_for_mode (mode)
     enum machine_mode mode;
{
  switch (GET_MODE_CLASS (mode))
    {
    case MODE_INT:
    case MODE_PARTIAL_INT:
      break;

    case MODE_COMPLEX_INT:
    case MODE_COMPLEX_FLOAT:
    case MODE_FLOAT:
    case MODE_VECTOR_INT:
    case MODE_VECTOR_FLOAT:
      mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
      break;

    case MODE_RANDOM:
      if (mode == BLKmode)
	break;

      /* ... fall through ...  */

    case MODE_CC:
    default:
      abort ();
    }

  return mode;
}

/* Return the alignment of MODE. This will be bounded by 1 and
   BIGGEST_ALIGNMENT.  */

unsigned int
get_mode_alignment (mode)
     enum machine_mode mode;
{
  unsigned int alignment;

  if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
      || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT)
    alignment = GET_MODE_UNIT_SIZE (mode);
  else
    alignment = GET_MODE_SIZE (mode);

  /* Extract the LSB of the size.  */
  alignment = alignment & -alignment;
  alignment *= BITS_PER_UNIT;

  alignment = MIN (BIGGEST_ALIGNMENT, MAX (1, alignment));
  return alignment;
}

/* Return the value of VALUE, rounded up to a multiple of DIVISOR.
   This can only be applied to objects of a sizetype.  */

tree
round_up (value, divisor)
     tree value;
     int divisor;
{
  tree arg = size_int_type (divisor, TREE_TYPE (value));

  return size_binop (MULT_EXPR, size_binop (CEIL_DIV_EXPR, value, arg), arg);
}

/* Likewise, but round down.  */

tree
round_down (value, divisor)
     tree value;
     int divisor;
{
  tree arg = size_int_type (divisor, TREE_TYPE (value));

  return size_binop (MULT_EXPR, size_binop (FLOOR_DIV_EXPR, value, arg), arg);
}

/* Set the size, mode and alignment of a ..._DECL node.
   TYPE_DECL does need this for C++.
   Note that LABEL_DECL and CONST_DECL nodes do not need this,
   and FUNCTION_DECL nodes have them set up in a special (and simple) way.
   Don't call layout_decl for them.

   KNOWN_ALIGN is the amount of alignment we can assume this
   decl has with no special effort.  It is relevant only for FIELD_DECLs
   and depends on the previous fields.
   All that matters about KNOWN_ALIGN is which powers of 2 divide it.
   If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
   the record will be aligned to suit.  */

void
layout_decl (decl, known_align)
     tree decl;
     unsigned int known_align;
{
  tree type = TREE_TYPE (decl);
  enum tree_code code = TREE_CODE (decl);

  if (code == CONST_DECL)
    return;
  else if (code != VAR_DECL && code != PARM_DECL && code != RESULT_DECL
	   && code != TYPE_DECL && code != FIELD_DECL)
    abort ();

  if (type == error_mark_node)
    type = void_type_node;

  /* Usually the size and mode come from the data type without change,
     however, the front-end may set the explicit width of the field, so its
     size may not be the same as the size of its type.  This happens with
     bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
     also happens with other fields.  For example, the C++ front-end creates
     zero-sized fields corresponding to empty base classes, and depends on
     layout_type setting DECL_FIELD_BITPOS correctly for the field.  Set the
     size in bytes from the size in bits.  If we have already set the mode,
     don't set it again since we can be called twice for FIELD_DECLs.  */

  TREE_UNSIGNED (decl) = TREE_UNSIGNED (type);
  if (DECL_MODE (decl) == VOIDmode)
    DECL_MODE (decl) = TYPE_MODE (type);

  if (DECL_SIZE (decl) == 0)
    {
      DECL_SIZE (decl) = TYPE_SIZE (type);
      DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
    }
  else
    DECL_SIZE_UNIT (decl)
      = convert (sizetype, size_binop (CEIL_DIV_EXPR, DECL_SIZE (decl),
				       bitsize_unit_node));

  /* Force alignment required for the data type.
     But if the decl itself wants greater alignment, don't override that.
     Likewise, if the decl is packed, don't override it.  */
  if (! (code == FIELD_DECL && DECL_BIT_FIELD (decl))
      && (DECL_ALIGN (decl) == 0
	  || (! (code == FIELD_DECL && DECL_PACKED (decl))
	      && TYPE_ALIGN (type) > DECL_ALIGN (decl))))
    {
      DECL_ALIGN (decl) = TYPE_ALIGN (type);
      DECL_USER_ALIGN (decl) = 0;
    }

  /* For fields, set the bit field type and update the alignment.  */
  if (code == FIELD_DECL)
    {
      DECL_BIT_FIELD_TYPE (decl) = DECL_BIT_FIELD (decl) ? type : 0;
      if (maximum_field_alignment != 0)
	DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), maximum_field_alignment);

      /* If the field is of variable size, we can't misalign it since we
	 have no way to make a temporary to align the result.  But this
	 isn't an issue if the decl is not addressable.  Likewise if it
	 is of unknown size.  */
      else if (DECL_PACKED (decl)
	       && (DECL_NONADDRESSABLE_P (decl)
		   || DECL_SIZE_UNIT (decl) == 0
		   || TREE_CODE (DECL_SIZE_UNIT (decl)) == INTEGER_CST))
	{
	  DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
	  DECL_USER_ALIGN (decl) = 0;
	}
    }

  /* See if we can use an ordinary integer mode for a bit-field.
     Conditions are: a fixed size that is correct for another mode
     and occupying a complete byte or bytes on proper boundary.  */
  if (code == FIELD_DECL && DECL_BIT_FIELD (decl)
      && TYPE_SIZE (type) != 0
      && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
      && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
    {
      enum machine_mode xmode
	= mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);

      if (xmode != BLKmode && known_align >= GET_MODE_ALIGNMENT (xmode))
	{
	  DECL_ALIGN (decl) = MAX (GET_MODE_ALIGNMENT (xmode),
				   DECL_ALIGN (decl));
	  DECL_MODE (decl) = xmode;
	  DECL_BIT_FIELD (decl) = 0;
	}
    }

  /* Turn off DECL_BIT_FIELD if we won't need it set.  */
  if (code == FIELD_DECL && DECL_BIT_FIELD (decl)
      && TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
      && known_align >= TYPE_ALIGN (type)
      && DECL_ALIGN (decl) >= TYPE_ALIGN (type)
      && DECL_SIZE_UNIT (decl) != 0)
    DECL_BIT_FIELD (decl) = 0;

  /* Evaluate nonconstant size only once, either now or as soon as safe.  */
  if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
    DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
  if (DECL_SIZE_UNIT (decl) != 0
      && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
    DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));

  /* If requested, warn about definitions of large data objects.  */
  if (warn_larger_than
      && (code == VAR_DECL || code == PARM_DECL)
      && ! DECL_EXTERNAL (decl))
    {
      tree size = DECL_SIZE_UNIT (decl);

      if (size != 0 && TREE_CODE (size) == INTEGER_CST
	  && compare_tree_int (size, larger_than_size) > 0)
	{
	  unsigned int size_as_int = TREE_INT_CST_LOW (size);

	  if (compare_tree_int (size, size_as_int) == 0)
	    warning_with_decl (decl, "size of `%s' is %d bytes", size_as_int);
	  else
	    warning_with_decl (decl, "size of `%s' is larger than %d bytes",
			       larger_than_size);
	}
    }
}

/* Hook for a front-end function that can modify the record layout as needed
   immediately before it is finalized.  */

void (*lang_adjust_rli) PARAMS ((record_layout_info)) = 0;

void
set_lang_adjust_rli (f)
     void (*f) PARAMS ((record_layout_info));
{
  lang_adjust_rli = f;
}

/* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
   QUAL_UNION_TYPE.  Return a pointer to a struct record_layout_info which
   is to be passed to all other layout functions for this record.  It is the
   responsibility of the caller to call `free' for the storage returned.
   Note that garbage collection is not permitted until we finish laying
   out the record.  */

record_layout_info
start_record_layout (t)
     tree t;
{
  record_layout_info rli
    = (record_layout_info) xmalloc (sizeof (struct record_layout_info_s));

  rli->t = t;

  /* If the type has a minimum specified alignment (via an attribute
     declaration, for example) use it -- otherwise, start with a
     one-byte alignment.  */
  rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
  rli->unpacked_align = rli->unpadded_align = rli->record_align;
  rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);

#ifdef STRUCTURE_SIZE_BOUNDARY
  /* Packed structures don't need to have minimum size.  */
  if (! TYPE_PACKED (t))
    rli->record_align = MAX (rli->record_align, STRUCTURE_SIZE_BOUNDARY);
#endif

  rli->offset = size_zero_node;
  rli->bitpos = bitsize_zero_node;
  rli->prev_field = 0;
  rli->pending_statics = 0;
  rli->packed_maybe_necessary = 0;

  return rli;
}

/* These four routines perform computations that convert between
   the offset/bitpos forms and byte and bit offsets.  */

tree
bit_from_pos (offset, bitpos)
     tree offset, bitpos;
{
  return size_binop (PLUS_EXPR, bitpos,
		     size_binop (MULT_EXPR, convert (bitsizetype, offset),
				 bitsize_unit_node));
}

tree
byte_from_pos (offset, bitpos)
     tree offset, bitpos;
{
  return size_binop (PLUS_EXPR, offset,
		     convert (sizetype,
			      size_binop (TRUNC_DIV_EXPR, bitpos,
					  bitsize_unit_node)));
}

void
pos_from_byte (poffset, pbitpos, off_align, pos)
     tree *poffset, *pbitpos;
     unsigned int off_align;
     tree pos;
{
  *poffset
    = size_binop (MULT_EXPR,
		  convert (sizetype,
			   size_binop (FLOOR_DIV_EXPR, pos,
				       bitsize_int (off_align
						    / BITS_PER_UNIT))),
		  size_int (off_align / BITS_PER_UNIT));
  *pbitpos = size_binop (MULT_EXPR,
			 size_binop (FLOOR_MOD_EXPR, pos,
				     bitsize_int (off_align / BITS_PER_UNIT)),
			 bitsize_unit_node);
}

void
pos_from_bit (poffset, pbitpos, off_align, pos)
     tree *poffset, *pbitpos;
     unsigned int off_align;
     tree pos;
{
  *poffset = size_binop (MULT_EXPR,
			 convert (sizetype,
				  size_binop (FLOOR_DIV_EXPR, pos,
					      bitsize_int (off_align))),
			 size_int (off_align / BITS_PER_UNIT));
  *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, bitsize_int (off_align));
}

/* Given a pointer to bit and byte offsets and an offset alignment,
   normalize the offsets so they are within the alignment.  */

void
normalize_offset (poffset, pbitpos, off_align)
     tree *poffset, *pbitpos;
     unsigned int off_align;
{
  /* If the bit position is now larger than it should be, adjust it
     downwards.  */
  if (compare_tree_int (*pbitpos, off_align) >= 0)
    {
      tree extra_aligns = size_binop (FLOOR_DIV_EXPR, *pbitpos,
				      bitsize_int (off_align));

      *poffset
	= size_binop (PLUS_EXPR, *poffset,
		      size_binop (MULT_EXPR, convert (sizetype, extra_aligns),
				  size_int (off_align / BITS_PER_UNIT)));

      *pbitpos
	= size_binop (FLOOR_MOD_EXPR, *pbitpos, bitsize_int (off_align));
    }
}

/* Print debugging information about the information in RLI.  */

void
debug_rli (rli)
     record_layout_info rli;
{
  print_node_brief (stderr, "type", rli->t, 0);
  print_node_brief (stderr, "\noffset", rli->offset, 0);
  print_node_brief (stderr, " bitpos", rli->bitpos, 0);

  fprintf (stderr, "\naligns: rec = %u, unpack = %u, unpad = %u, off = %u\n",
	   rli->record_align, rli->unpacked_align, rli->unpadded_align,
	   rli->offset_align);
  if (rli->packed_maybe_necessary)
    fprintf (stderr, "packed may be necessary\n");

  if (rli->pending_statics)
    {
      fprintf (stderr, "pending statics:\n");
      debug_tree (rli->pending_statics);
    }
}

/* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
   BITPOS if necessary to keep BITPOS below OFFSET_ALIGN.  */

void
normalize_rli (rli)
     record_layout_info rli;
{
  normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
}

/* Returns the size in bytes allocated so far.  */

tree
rli_size_unit_so_far (rli)
     record_layout_info rli;
{
  return byte_from_pos (rli->offset, rli->bitpos);
}

/* Returns the size in bits allocated so far.  */

tree
rli_size_so_far (rli)
     record_layout_info rli;
{
  return bit_from_pos (rli->offset, rli->bitpos);
}

/* FIELD is about to be added to RLI->T.  The alignment (in bits) of
   the next available location is given by KNOWN_ALIGN.  Update the
   variable alignment fields in RLI, and return the alignment to give
   the FIELD.  */

static unsigned int
update_alignment_for_field (rli, field, known_align)
     record_layout_info rli;
     tree field;
     unsigned int known_align;
{
  /* The alignment required for FIELD.  */
  unsigned int desired_align;
  /* The type of this field.  */
  tree type = TREE_TYPE (field);
  /* True if the field was explicitly aligned by the user.  */
  bool user_align;

  /* Lay out the field so we know what alignment it needs.  For a
     packed field, use the alignment as specified, disregarding what
     the type would want.  */
  desired_align = DECL_ALIGN (field);
  user_align = DECL_USER_ALIGN (field);
  layout_decl (field, known_align);
  if (! DECL_PACKED (field))
    {
      desired_align = DECL_ALIGN (field);
      user_align = DECL_USER_ALIGN (field);
    }

  /* Some targets (i.e. i386, VMS) limit struct field alignment
     to a lower boundary than alignment of variables unless
     it was overridden by attribute aligned.  */
#ifdef BIGGEST_FIELD_ALIGNMENT
  if (!user_align)
    desired_align
      = MIN (desired_align, (unsigned) BIGGEST_FIELD_ALIGNMENT);
#endif

#ifdef ADJUST_FIELD_ALIGN
  if (!user_align)
    desired_align = ADJUST_FIELD_ALIGN (field, desired_align);
#endif

  /* Record must have at least as much alignment as any field.
     Otherwise, the alignment of the field within the record is
     meaningless.  */
  if ((* targetm.ms_bitfield_layout_p) (rli->t)
      && type != error_mark_node
      && DECL_BIT_FIELD_TYPE (field)
      && ! integer_zerop (TYPE_SIZE (type)))
    {
      /* Here, the alignment of the underlying type of a bitfield can
	 affect the alignment of a record; even a zero-sized field
	 can do this.  The alignment should be to the alignment of
	 the type, except that for zero-size bitfields this only
	 applies if there was an immediately prior, nonzero-size
	 bitfield.  (That's the way it is, experimentally.) */
      if (! integer_zerop (DECL_SIZE (field))
 	  ? ! DECL_PACKED (field)
 	  : (rli->prev_field
 	     && DECL_BIT_FIELD_TYPE (rli->prev_field)
 	     && ! integer_zerop (DECL_SIZE (rli->prev_field))))
	{
	  unsigned int type_align = TYPE_ALIGN (type);
	  type_align = MAX (type_align, desired_align);
	  if (maximum_field_alignment != 0)
	    type_align = MIN (type_align, maximum_field_alignment);
	  rli->record_align = MAX (rli->record_align, type_align);
	  rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
	  rli->unpadded_align = MAX (rli->unpadded_align, DECL_ALIGN (field));
	}
      else
	desired_align = 1;
    }
  else
#ifdef PCC_BITFIELD_TYPE_MATTERS
  if (PCC_BITFIELD_TYPE_MATTERS && type != error_mark_node
      && ! (* targetm.ms_bitfield_layout_p) (rli->t)
      && DECL_BIT_FIELD_TYPE (field)
      && ! integer_zerop (TYPE_SIZE (type)))
    {
      /* For these machines, a zero-length field does not
	 affect the alignment of the structure as a whole.
	 It does, however, affect the alignment of the next field
	 within the structure.  */
      if (! integer_zerop (DECL_SIZE (field)))
	rli->record_align = MAX (rli->record_align, desired_align);
      else if (! DECL_PACKED (field) && !user_align)
	desired_align = TYPE_ALIGN (type);

      /* A named bit field of declared type `int'
	 forces the entire structure to have `int' alignment.  */
      if (DECL_NAME (field) != 0)
	{
	  unsigned int type_align = TYPE_ALIGN (type);

#ifdef ADJUST_FIELD_ALIGN
	  if (! TYPE_USER_ALIGN (type))
	    type_align = ADJUST_FIELD_ALIGN (field, type_align);
#endif

	  if (maximum_field_alignment != 0)
	    type_align = MIN (type_align, maximum_field_alignment);
	  else if (DECL_PACKED (field))
	    type_align = MIN (type_align, BITS_PER_UNIT);

	  rli->record_align = MAX (rli->record_align, type_align);
	  rli->unpadded_align = MAX (rli->unpadded_align, DECL_ALIGN (field));
	  if (warn_packed)
	    rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
	  user_align |= TYPE_USER_ALIGN (type);
	}
    }
  else
#endif
    {
      rli->record_align = MAX (rli->record_align, desired_align);
      rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
      rli->unpadded_align = MAX (rli->unpadded_align, DECL_ALIGN (field));
    }

  TYPE_USER_ALIGN (rli->t) |= user_align;

  return desired_align;
}

/* Called from place_field to handle unions.  */

static void
place_union_field (rli, field)
     record_layout_info rli;
     tree field;
{
  update_alignment_for_field (rli, field, /*known_align=*/0);

  DECL_FIELD_OFFSET (field) = size_zero_node;
  DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
  SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);

  /* We assume the union's size will be a multiple of a byte so we don't
     bother with BITPOS.  */
  if (TREE_CODE (rli->t) == UNION_TYPE)
    rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
  else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
    rli->offset = fold (build (COND_EXPR, sizetype,
			       DECL_QUALIFIER (field),
			       DECL_SIZE_UNIT (field), rli->offset));
}

/* RLI contains information about the layout of a RECORD_TYPE.  FIELD
   is a FIELD_DECL to be added after those fields already present in
   T.  (FIELD is not actually added to the TYPE_FIELDS list here;
   callers that desire that behavior must manually perform that step.)  */

void
place_field (rli, field)
     record_layout_info rli;
     tree field;
{
  /* The alignment required for FIELD.  */
  unsigned int desired_align;
  /* The alignment FIELD would have if we just dropped it into the
     record as it presently stands.  */
  unsigned int known_align;
  unsigned int actual_align;
  /* The type of this field.  */
  tree type = TREE_TYPE (field);

  if (TREE_CODE (field) == ERROR_MARK || TREE_CODE (type) == ERROR_MARK)
      return;

  /* If FIELD is static, then treat it like a separate variable, not
     really like a structure field.  If it is a FUNCTION_DECL, it's a
     method.  In both cases, all we do is lay out the decl, and we do
     it *after* the record is laid out.  */
  if (TREE_CODE (field) == VAR_DECL)
    {
      rli->pending_statics = tree_cons (NULL_TREE, field,
					rli->pending_statics);
      return;
    }

  /* Enumerators and enum types which are local to this class need not
     be laid out.  Likewise for initialized constant fields.  */
  else if (TREE_CODE (field) != FIELD_DECL)
    return;

  /* Unions are laid out very differently than records, so split
     that code off to another function.  */
  else if (TREE_CODE (rli->t) != RECORD_TYPE)
    {
      place_union_field (rli, field);
      return;
    }

  /* Work out the known alignment so far.  Note that A & (-A) is the
     value of the least-significant bit in A that is one.  */
  if (! integer_zerop (rli->bitpos))
    known_align = (tree_low_cst (rli->bitpos, 1)
		   & - tree_low_cst (rli->bitpos, 1));
  else if (integer_zerop (rli->offset))
    known_align = BIGGEST_ALIGNMENT;
  else if (host_integerp (rli->offset, 1))
    known_align = (BITS_PER_UNIT
		   * (tree_low_cst (rli->offset, 1)
		      & - tree_low_cst (rli->offset, 1)));
  else
    known_align = rli->offset_align;
  
  desired_align = update_alignment_for_field (rli, field, known_align);

  if (warn_packed && DECL_PACKED (field))
    {
      if (known_align > TYPE_ALIGN (type))
	{
	  if (TYPE_ALIGN (type) > desired_align)
	    {
	      if (STRICT_ALIGNMENT)
		warning_with_decl (field, "packed attribute causes inefficient alignment for `%s'");
	      else
		warning_with_decl (field, "packed attribute is unnecessary for `%s'");
	    }
	}
      else
	rli->packed_maybe_necessary = 1;
    }

  /* Does this field automatically have alignment it needs by virtue
     of the fields that precede it and the record's own alignment?  */
  if (known_align < desired_align)
    {
      /* No, we need to skip space before this field.
	 Bump the cumulative size to multiple of field alignment.  */

      if (warn_padded)
	warning_with_decl (field, "padding struct to align `%s'");

      /* If the alignment is still within offset_align, just align
	 the bit position.  */
      if (desired_align < rli->offset_align)
	rli->bitpos = round_up (rli->bitpos, desired_align);
      else
	{
	  /* First adjust OFFSET by the partial bits, then align.  */
	  rli->offset
	    = size_binop (PLUS_EXPR, rli->offset,
			  convert (sizetype,
				   size_binop (CEIL_DIV_EXPR, rli->bitpos,
					       bitsize_unit_node)));
	  rli->bitpos = bitsize_zero_node;

	  rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
	}

      if (! TREE_CONSTANT (rli->offset))
	rli->offset_align = desired_align;

    }

  /* Handle compatibility with PCC.  Note that if the record has any
     variable-sized fields, we need not worry about compatibility.  */
#ifdef PCC_BITFIELD_TYPE_MATTERS
  if (PCC_BITFIELD_TYPE_MATTERS
      && ! (* targetm.ms_bitfield_layout_p) (rli->t)
      && TREE_CODE (field) == FIELD_DECL
      && type != error_mark_node
      && DECL_BIT_FIELD (field)
      && ! DECL_PACKED (field)
      && maximum_field_alignment == 0
      && ! integer_zerop (DECL_SIZE (field))
      && host_integerp (DECL_SIZE (field), 1)
      && host_integerp (rli->offset, 1)
      && host_integerp (TYPE_SIZE (type), 1))
    {
      unsigned int type_align = TYPE_ALIGN (type);
      tree dsize = DECL_SIZE (field);
      HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
      HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
      HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);

#ifdef ADJUST_FIELD_ALIGN
      if (! TYPE_USER_ALIGN (type))
	type_align = ADJUST_FIELD_ALIGN (field, type_align);
#endif

      /* A bit field may not span more units of alignment of its type
	 than its type itself.  Advance to next boundary if necessary.  */
      if ((((offset * BITS_PER_UNIT + bit_offset + field_size +
	     type_align - 1)
	    / type_align)
	   - (offset * BITS_PER_UNIT + bit_offset) / type_align)
	  > tree_low_cst (TYPE_SIZE (type), 1) / type_align)
	rli->bitpos = round_up (rli->bitpos, type_align);

      TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
    }
#endif

#ifdef BITFIELD_NBYTES_LIMITED
  if (BITFIELD_NBYTES_LIMITED
      && ! (* targetm.ms_bitfield_layout_p) (rli->t)
      && TREE_CODE (field) == FIELD_DECL
      && type != error_mark_node
      && DECL_BIT_FIELD_TYPE (field)
      && ! DECL_PACKED (field)
      && ! integer_zerop (DECL_SIZE (field))
      && host_integerp (DECL_SIZE (field), 1)
      && host_integerp (rli->offset, 1)
      && host_integerp (TYPE_SIZE (type), 1))
    {
      unsigned int type_align = TYPE_ALIGN (type);
      tree dsize = DECL_SIZE (field);
      HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
      HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
      HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);

#ifdef ADJUST_FIELD_ALIGN
      if (! TYPE_USER_ALIGN (type))
	type_align = ADJUST_FIELD_ALIGN (field, type_align);
#endif

      if (maximum_field_alignment != 0)
	type_align = MIN (type_align, maximum_field_alignment);
      /* ??? This test is opposite the test in the containing if
	 statement, so this code is unreachable currently.  */
      else if (DECL_PACKED (field))
	type_align = MIN (type_align, BITS_PER_UNIT);

      /* A bit field may not span the unit of alignment of its type.
	 Advance to next boundary if necessary.  */
      /* ??? This code should match the code above for the
	 PCC_BITFIELD_TYPE_MATTERS case.  */
      if ((offset * BITS_PER_UNIT + bit_offset) / type_align
	  != ((offset * BITS_PER_UNIT + bit_offset + field_size - 1)
	      / type_align))
	rli->bitpos = round_up (rli->bitpos, type_align);

      TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
    }
#endif

  /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
     A subtlety:
	When a bit field is inserted into a packed record, the whole
	size of the underlying type is used by one or more same-size
	adjacent bitfields.  (That is, if its long:3, 32 bits is 
	used in the record, and any additional adjacent long bitfields are
	packed into the same chunk of 32 bits. However, if the size
	changes, a new field of that size is allocated.)  In an unpacked
	record, this is the same as using alignment, but not eqivalent
	when packing. 

     Note: for compatability, we use the type size, not the type alignment
     to determine alignment, since that matches the documentation */

  if ((* targetm.ms_bitfield_layout_p) (rli->t)
       && ((DECL_BIT_FIELD_TYPE (field) && ! DECL_PACKED (field))
 	  || (rli->prev_field && ! DECL_PACKED (rli->prev_field))))
    {
      /* At this point, either the prior or current are bitfields,
	 (possibly both), and we're dealing with MS packing.  */
      tree prev_saved = rli->prev_field;

      /* Is the prior field a bitfield?  If so, handle "runs" of same
	 type size fields.  */
      if (rli->prev_field /* necessarily a bitfield if it exists.  */)
	{
	  /* If both are bitfields, nonzero, and the same size, this is
	     the middle of a run.  Zero declared size fields are special
	     and handled as "end of run". (Note: it's nonzero declared
	     size, but equal type sizes!) (Since we know that both
	     the current and previous fields are bitfields by the
	     time we check it, DECL_SIZE must be present for both.) */
	  if (DECL_BIT_FIELD_TYPE (field)
	      && !integer_zerop (DECL_SIZE (field))
	      && !integer_zerop (DECL_SIZE (rli->prev_field))
	      && simple_cst_equal (TYPE_SIZE (type),
		   TYPE_SIZE (TREE_TYPE (rli->prev_field))) )
	    {
	      /* We're in the middle of a run of equal type size fields; make
		 sure we realign if we run out of bits.  (Not decl size,
		 type size!) */
	      int bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
	      tree type_size = TYPE_SIZE(TREE_TYPE(rli->prev_field));

	      if (rli->remaining_in_alignment < bitsize)
		{
		  /* out of bits; bump up to next 'word'.  */
		  rli->offset = DECL_FIELD_OFFSET (rli->prev_field);
		  rli->bitpos = size_binop (PLUS_EXPR,
				      type_size,
				      DECL_FIELD_BIT_OFFSET(rli->prev_field));
		  rli->prev_field = field;
		  rli->remaining_in_alignment = TREE_INT_CST_LOW (type_size);
		}
	      rli->remaining_in_alignment -= bitsize;
	    }
	  else
	    {
	      /* End of a run: if leaving a run of bitfields of the same type 
		 size, we have to "use up" the rest of the bits of the type 
		 size.

		 Compute the new position as the sum of the size for the prior
		 type and where we first started working on that type.
		 Note: since the beginning of the field was aligned then
		 of course the end will be too.  No round needed.  */

	      if (!integer_zerop (DECL_SIZE (rli->prev_field)))
		{
		  tree type_size = TYPE_SIZE(TREE_TYPE(rli->prev_field));
		  rli->bitpos = size_binop (PLUS_EXPR,
				      type_size,
				      DECL_FIELD_BIT_OFFSET(rli->prev_field));
		}
	      else
		{
		  /* We "use up" size zero fields; the code below should behave
		     as if the prior field was not a bitfield.  */
		  prev_saved = NULL;
		}

	      /* Cause a new bitfield to be captured, either this time (if 
		 currently a bitfield) or next time we see one.  */
	      if (!DECL_BIT_FIELD_TYPE(field)
		 || integer_zerop (DECL_SIZE (field)))
		{
		  rli->prev_field = NULL;
		}
	    }
	  normalize_rli (rli);
        }

      /* If we're starting a new run of same size type bitfields
	 (or a run of non-bitfields), set up the "first of the run"
	 fields. 

	 That is, if the current field is not a bitfield, or if there
	 was a prior bitfield the type sizes differ, or if there wasn't
	 a prior bitfield the size of the current field is nonzero.

	 Note: we must be sure to test ONLY the type size if there was
	 a prior bitfield and ONLY for the current field being zero if
	 there wasn't.  */

      if (!DECL_BIT_FIELD_TYPE (field)
	  || ( prev_saved != NULL 
	       ? !simple_cst_equal (TYPE_SIZE (type),
	              TYPE_SIZE (TREE_TYPE (prev_saved)))
	       : !integer_zerop (DECL_SIZE (field)) ))
	{
	  unsigned int type_align = 8;  /* Never below 8 for compatability */

	  /* (When not a bitfield), we could be seeing a flex array (with 
	     no DECL_SIZE).  Since we won't be using remaining_in_alignment
	     until we see a bitfield (and come by here again) we just skip 
	     calculating it.  */
	     
	  if (DECL_SIZE (field) != NULL)
	      rli->remaining_in_alignment 
		  = TREE_INT_CST_LOW (TYPE_SIZE(TREE_TYPE(field)))
		    - TREE_INT_CST_LOW (DECL_SIZE (field));

	  /* Now align (conventionally) for the new type.  */
	  if (!DECL_PACKED(field))
	      type_align = MAX(TYPE_ALIGN (type), type_align);

	  if (prev_saved
	      && DECL_BIT_FIELD_TYPE (prev_saved)
	      /* If the previous bit-field is zero-sized, we've already
		 accounted for its alignment needs (or ignored it, if
		 appropriate) while placing it.  */
	      && ! integer_zerop (DECL_SIZE (prev_saved)))
	    type_align = MAX (type_align,
			      TYPE_ALIGN (TREE_TYPE (prev_saved)));

	  if (maximum_field_alignment != 0)
	    type_align = MIN (type_align, maximum_field_alignment);

	  rli->bitpos = round_up (rli->bitpos, type_align);
          /* If we really aligned, don't allow subsequent bitfields
	     to undo that.  */
	  rli->prev_field = NULL;
	}
    }

  /* Offset so far becomes the position of this field after normalizing.  */
  normalize_rli (rli);
  DECL_FIELD_OFFSET (field) = rli->offset;
  DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
  SET_DECL_OFFSET_ALIGN (field, rli->offset_align);

  /* If this field ended up more aligned than we thought it would be (we
     approximate this by seeing if its position changed), lay out the field
     again; perhaps we can use an integral mode for it now.  */
  if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
    actual_align = (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
		    & - tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1));
  else if (integer_zerop (DECL_FIELD_OFFSET (field)))
    actual_align = BIGGEST_ALIGNMENT;
  else if (host_integerp (DECL_FIELD_OFFSET (field), 1))
    actual_align = (BITS_PER_UNIT
		   * (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
		      & - tree_low_cst (DECL_FIELD_OFFSET (field), 1)));
  else
    actual_align = DECL_OFFSET_ALIGN (field);

  if (known_align != actual_align)
    layout_decl (field, actual_align);

  /* Only the MS bitfields use this.  */
  if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE(field))
      rli->prev_field = field;

  /* Now add size of this field to the size of the record.  If the size is
     not constant, treat the field as being a multiple of bytes and just
     adjust the offset, resetting the bit position.  Otherwise, apportion the
     size amongst the bit position and offset.  First handle the case of an
     unspecified size, which can happen when we have an invalid nested struct
     definition, such as struct j { struct j { int i; } }.  The error message
     is printed in finish_struct.  */
  if (DECL_SIZE (field) == 0)
    /* Do nothing.  */;
  else if (TREE_CODE (DECL_SIZE_UNIT (field)) != INTEGER_CST
	   || TREE_CONSTANT_OVERFLOW (DECL_SIZE_UNIT (field)))
    {
      rli->offset
	= size_binop (PLUS_EXPR, rli->offset,
		      convert (sizetype,
			       size_binop (CEIL_DIV_EXPR, rli->bitpos,
					   bitsize_unit_node)));
      rli->offset
	= size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
      rli->bitpos = bitsize_zero_node;
      rli->offset_align = MIN (rli->offset_align, DECL_ALIGN (field));
    }
  else
    {
      rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
      normalize_rli (rli);
    }
}

/* Assuming that all the fields have been laid out, this function uses
   RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
   inidicated by RLI.  */

static void
finalize_record_size (rli)
     record_layout_info rli;
{
  tree unpadded_size, unpadded_size_unit;

  /* Now we want just byte and bit offsets, so set the offset alignment
     to be a byte and then normalize.  */
  rli->offset_align = BITS_PER_UNIT;
  normalize_rli (rli);

  /* Determine the desired alignment.  */
#ifdef ROUND_TYPE_ALIGN
  TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
					  rli->record_align);
#else
  TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
#endif

  /* Compute the size so far.  Be sure to allow for extra bits in the
     size in bytes.  We have guaranteed above that it will be no more
     than a single byte.  */
  unpadded_size = rli_size_so_far (rli);
  unpadded_size_unit = rli_size_unit_so_far (rli);
  if (! integer_zerop (rli->bitpos))
    unpadded_size_unit
      = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);

  /* Record the un-rounded size in the binfo node.  But first we check
     the size of TYPE_BINFO to make sure that BINFO_SIZE is available.  */
  if (TYPE_BINFO (rli->t) && TREE_VEC_LENGTH (TYPE_BINFO (rli->t)) > 6)
    {
      TYPE_BINFO_SIZE (rli->t) = unpadded_size;
      TYPE_BINFO_SIZE_UNIT (rli->t) = unpadded_size_unit;
    }

    /* Round the size up to be a multiple of the required alignment */
#ifdef ROUND_TYPE_SIZE
  TYPE_SIZE (rli->t) = ROUND_TYPE_SIZE (rli->t, unpadded_size,
					TYPE_ALIGN (rli->t));
  TYPE_SIZE_UNIT (rli->t)
    = ROUND_TYPE_SIZE_UNIT (rli->t, unpadded_size_unit,
			    TYPE_ALIGN (rli->t) / BITS_PER_UNIT);
#else
  TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
  TYPE_SIZE_UNIT (rli->t) = round_up (unpadded_size_unit,
				      TYPE_ALIGN (rli->t) / BITS_PER_UNIT);
#endif

  if (warn_padded && TREE_CONSTANT (unpadded_size)
      && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0)
    warning ("padding struct size to alignment boundary");

  if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
      && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
      && TREE_CONSTANT (unpadded_size))
    {
      tree unpacked_size;

#ifdef ROUND_TYPE_ALIGN
      rli->unpacked_align
	= ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
#else
      rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
#endif

#ifdef ROUND_TYPE_SIZE
      unpacked_size = ROUND_TYPE_SIZE (rli->t, TYPE_SIZE (rli->t),
				       rli->unpacked_align);
#else
      unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
#endif

      if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
	{
	  TYPE_PACKED (rli->t) = 0;

	  if (TYPE_NAME (rli->t))
	    {
	      const char *name;

	      if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
		name = IDENTIFIER_POINTER (TYPE_NAME (rli->t));
	      else
		name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (rli->t)));

	      if (STRICT_ALIGNMENT)
		warning ("packed attribute causes inefficient alignment for `%s'", name);
	      else
		warning ("packed attribute is unnecessary for `%s'", name);
	    }
	  else
	    {
	      if (STRICT_ALIGNMENT)
		warning ("packed attribute causes inefficient alignment");
	      else
		warning ("packed attribute is unnecessary");
	    }
	}
    }
}

/* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE).  */

void
compute_record_mode (type)
     tree type;
{
  tree field;
  enum machine_mode mode = VOIDmode;

  /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
     However, if possible, we use a mode that fits in a register
     instead, in order to allow for better optimization down the
     line.  */
  TYPE_MODE (type) = BLKmode;

  if (! host_integerp (TYPE_SIZE (type), 1))
    return;

  /* A record which has any BLKmode members must itself be
     BLKmode; it can't go in a register.  Unless the member is
     BLKmode only because it isn't aligned.  */
  for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
    {
      unsigned HOST_WIDE_INT bitpos;

      if (TREE_CODE (field) != FIELD_DECL)
	continue;

      if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
	  || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
	      && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field)))
	  || ! host_integerp (bit_position (field), 1)
	  || DECL_SIZE (field) == 0
	  || ! host_integerp (DECL_SIZE (field), 1))
	return;

      bitpos = int_bit_position (field);

      /* Must be BLKmode if any field crosses a word boundary,
	 since extract_bit_field can't handle that in registers.  */
      if (bitpos / BITS_PER_WORD
	  != ((tree_low_cst (DECL_SIZE (field), 1) + bitpos - 1)
	      / BITS_PER_WORD)
	  /* But there is no problem if the field is entire words.  */
	  && tree_low_cst (DECL_SIZE (field), 1) % BITS_PER_WORD != 0)
	return;

      /* If this field is the whole struct, remember its mode so
	 that, say, we can put a double in a class into a DF
	 register instead of forcing it to live in the stack.  */
      if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
	mode = DECL_MODE (field);

#ifdef MEMBER_TYPE_FORCES_BLK
      /* With some targets, eg. c4x, it is sub-optimal
	 to access an aligned BLKmode structure as a scalar.  */

      if (MEMBER_TYPE_FORCES_BLK (field, mode))
	return;
#endif /* MEMBER_TYPE_FORCES_BLK  */
    }

  /* If we only have one real field; use its mode.  This only applies to
     RECORD_TYPE.  This does not apply to unions.  */
  if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode)
    TYPE_MODE (type) = mode;
  else
    TYPE_MODE (type) = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1);

  /* If structure's known alignment is less than what the scalar
     mode would need, and it matters, then stick with BLKmode.  */
  if (TYPE_MODE (type) != BLKmode
      && STRICT_ALIGNMENT
      && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
	    || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
    {
      /* If this is the only reason this type is BLKmode, then
	 don't force containing types to be BLKmode.  */
      TYPE_NO_FORCE_BLK (type) = 1;
      TYPE_MODE (type) = BLKmode;
    }
}

/* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
   out.  */

static void
finalize_type_size (type)
     tree type;
{
  /* Normally, use the alignment corresponding to the mode chosen.
     However, where strict alignment is not required, avoid
     over-aligning structures, since most compilers do not do this
     alignment.  */

  if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
      && (STRICT_ALIGNMENT
	  || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
	      && TREE_CODE (type) != QUAL_UNION_TYPE
	      && TREE_CODE (type) != ARRAY_TYPE)))
    {
      TYPE_ALIGN (type) = GET_MODE_ALIGNMENT (TYPE_MODE (type));
      TYPE_USER_ALIGN (type) = 0;
    }

  /* Do machine-dependent extra alignment.  */
#ifdef ROUND_TYPE_ALIGN
  TYPE_ALIGN (type)
    = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
#endif

  /* If we failed to find a simple way to calculate the unit size
     of the type, find it by division.  */
  if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
    /* TYPE_SIZE (type) is computed in bitsizetype.  After the division, the
       result will fit in sizetype.  We will get more efficient code using
       sizetype, so we force a conversion.  */
    TYPE_SIZE_UNIT (type)
      = convert (sizetype,
		 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
			     bitsize_unit_node));

  if (TYPE_SIZE (type) != 0)
    {
#ifdef ROUND_TYPE_SIZE
      TYPE_SIZE (type)
	= ROUND_TYPE_SIZE (type, TYPE_SIZE (type), TYPE_ALIGN (type));
      TYPE_SIZE_UNIT (type)
	= ROUND_TYPE_SIZE_UNIT (type, TYPE_SIZE_UNIT (type),
				TYPE_ALIGN (type) / BITS_PER_UNIT);
#else
      TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
      TYPE_SIZE_UNIT (type)
	= round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN (type) / BITS_PER_UNIT);
#endif
    }

  /* Evaluate nonconstant sizes only once, either now or as soon as safe.  */
  if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
    TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
  if (TYPE_SIZE_UNIT (type) != 0
      && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
    TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));

  /* Also layout any other variants of the type.  */
  if (TYPE_NEXT_VARIANT (type)
      || type != TYPE_MAIN_VARIANT (type))
    {
      tree variant;
      /* Record layout info of this variant.  */
      tree size = TYPE_SIZE (type);
      tree size_unit = TYPE_SIZE_UNIT (type);
      unsigned int align = TYPE_ALIGN (type);
      unsigned int user_align = TYPE_USER_ALIGN (type);
      enum machine_mode mode = TYPE_MODE (type);

      /* Copy it into all variants.  */
      for (variant = TYPE_MAIN_VARIANT (type);
	   variant != 0;
	   variant = TYPE_NEXT_VARIANT (variant))
	{
	  TYPE_SIZE (variant) = size;
	  TYPE_SIZE_UNIT (variant) = size_unit;
	  TYPE_ALIGN (variant) = align;
	  TYPE_USER_ALIGN (variant) = user_align;
	  TYPE_MODE (variant) = mode;
	}
    }
}

/* Do all of the work required to layout the type indicated by RLI,
   once the fields have been laid out.  This function will call `free'
   for RLI, unless FREE_P is false.  Passing a value other than false
   for FREE_P is bad practice; this option only exists to support the
   G++ 3.2 ABI.  */

void
finish_record_layout (rli, free_p)
     record_layout_info rli;
     int free_p;
{
  /* Compute the final size.  */
  finalize_record_size (rli);

  /* Compute the TYPE_MODE for the record.  */
  compute_record_mode (rli->t);

  /* Perform any last tweaks to the TYPE_SIZE, etc.  */
  finalize_type_size (rli->t);

  /* Lay out any static members.  This is done now because their type
     may use the record's type.  */
  while (rli->pending_statics)
    {
      layout_decl (TREE_VALUE (rli->pending_statics), 0);
      rli->pending_statics = TREE_CHAIN (rli->pending_statics);
    }

  /* Clean up.  */
  if (free_p)
    free (rli);
}

/* Calculate the mode, size, and alignment for TYPE.
   For an array type, calculate the element separation as well.
   Record TYPE on the chain of permanent or temporary types
   so that dbxout will find out about it.

   TYPE_SIZE of a type is nonzero if the type has been laid out already.
   layout_type does nothing on such a type.

   If the type is incomplete, its TYPE_SIZE remains zero.  */

void
layout_type (type)
     tree type;
{
  if (type == 0)
    abort ();

  /* Do nothing if type has been laid out before.  */
  if (TYPE_SIZE (type))
    return;

  switch (TREE_CODE (type))
    {
    case LANG_TYPE:
      /* This kind of type is the responsibility
	 of the language-specific code.  */
      abort ();

    case BOOLEAN_TYPE:  /* Used for Java, Pascal, and Chill.  */
      if (TYPE_PRECISION (type) == 0)
	TYPE_PRECISION (type) = 1; /* default to one byte/boolean.  */

      /* ... fall through ...  */

    case INTEGER_TYPE:
    case ENUMERAL_TYPE:
    case CHAR_TYPE:
      if (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
	  && tree_int_cst_sgn (TYPE_MIN_VALUE (type)) >= 0)
	TREE_UNSIGNED (type) = 1;

      TYPE_MODE (type) = smallest_mode_for_size (TYPE_PRECISION (type),
						 MODE_INT);
      TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
      TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
      break;

    case REAL_TYPE:
      TYPE_MODE (type) = mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0);
      TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
      TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
      break;

    case COMPLEX_TYPE:
      TREE_UNSIGNED (type) = TREE_UNSIGNED (TREE_TYPE (type));
      TYPE_MODE (type)
	= mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
			 (TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE
			  ? MODE_COMPLEX_INT : MODE_COMPLEX_FLOAT),
			 0);
      TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
      TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
      break;

    case VECTOR_TYPE:
      {
	tree subtype;

	subtype = TREE_TYPE (type);
	TREE_UNSIGNED (type) = TREE_UNSIGNED (subtype);
	TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
	TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
      }
      break;

    case VOID_TYPE:
      /* This is an incomplete type and so doesn't have a size.  */
      TYPE_ALIGN (type) = 1;
      TYPE_USER_ALIGN (type) = 0;
      TYPE_MODE (type) = VOIDmode;
      break;

    case OFFSET_TYPE:
      TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
      TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE / BITS_PER_UNIT);
      /* A pointer might be MODE_PARTIAL_INT,
	 but ptrdiff_t must be integral.  */
      TYPE_MODE (type) = mode_for_size (POINTER_SIZE, MODE_INT, 0);
      break;

    case FUNCTION_TYPE:
    case METHOD_TYPE:
      TYPE_MODE (type) = mode_for_size (2 * POINTER_SIZE, MODE_INT, 0);
      TYPE_SIZE (type) = bitsize_int (2 * POINTER_SIZE);
      TYPE_SIZE_UNIT (type) = size_int ((2 * POINTER_SIZE) / BITS_PER_UNIT);
      break;

    case POINTER_TYPE:
    case REFERENCE_TYPE:
      {
	int nbits = ((TREE_CODE (type) == REFERENCE_TYPE
		      && reference_types_internal)
		     ? GET_MODE_BITSIZE (Pmode) : POINTER_SIZE);

	TYPE_MODE (type) = nbits == POINTER_SIZE ? ptr_mode : Pmode;
	TYPE_SIZE (type) = bitsize_int (nbits);
	TYPE_SIZE_UNIT (type) = size_int (nbits / BITS_PER_UNIT);
	TREE_UNSIGNED (type) = 1;
	TYPE_PRECISION (type) = nbits;
      }
      break;

    case ARRAY_TYPE:
      {
	tree index = TYPE_DOMAIN (type);
	tree element = TREE_TYPE (type);

	build_pointer_type (element);

	/* We need to know both bounds in order to compute the size.  */
	if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
	    && TYPE_SIZE (element))
	  {
	    tree ub = TYPE_MAX_VALUE (index);
	    tree lb = TYPE_MIN_VALUE (index);
	    tree length;
	    tree element_size;

	    /* The initial subtraction should happen in the original type so
	       that (possible) negative values are handled appropriately.  */
	    length = size_binop (PLUS_EXPR, size_one_node,
				 convert (sizetype,
					  fold (build (MINUS_EXPR,
						       TREE_TYPE (lb),
						       ub, lb))));

	    /* Special handling for arrays of bits (for Chill).  */
	    element_size = TYPE_SIZE (element);
	    if (TYPE_PACKED (type) && INTEGRAL_TYPE_P (element)
		&& (integer_zerop (TYPE_MAX_VALUE (element))
		    || integer_onep (TYPE_MAX_VALUE (element)))
		&& host_integerp (TYPE_MIN_VALUE (element), 1))
	      {
		HOST_WIDE_INT maxvalue
		  = tree_low_cst (TYPE_MAX_VALUE (element), 1);
		HOST_WIDE_INT minvalue
		  = tree_low_cst (TYPE_MIN_VALUE (element), 1);

		if (maxvalue - minvalue == 1
		    && (maxvalue == 1 || maxvalue == 0))
		  element_size = integer_one_node;
	      }

	    TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
					   convert (bitsizetype, length));

	    /* If we know the size of the element, calculate the total
	       size directly, rather than do some division thing below.
	       This optimization helps Fortran assumed-size arrays
	       (where the size of the array is determined at runtime)
	       substantially.
	       Note that we can't do this in the case where the size of
	       the elements is one bit since TYPE_SIZE_UNIT cannot be
	       set correctly in that case.  */
	    if (TYPE_SIZE_UNIT (element) != 0 && ! integer_onep (element_size))
	      TYPE_SIZE_UNIT (type)
		= size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
	  }

	/* Now round the alignment and size,
	   using machine-dependent criteria if any.  */

#ifdef ROUND_TYPE_ALIGN
	TYPE_ALIGN (type)
	  = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
#else
	TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
#endif
	TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);

#ifdef ROUND_TYPE_SIZE
	if (TYPE_SIZE (type) != 0)
	  {
	    tree tmp
	      = ROUND_TYPE_SIZE (type, TYPE_SIZE (type), TYPE_ALIGN (type));

	    /* If the rounding changed the size of the type, remove any
	       pre-calculated TYPE_SIZE_UNIT.  */
	    if (simple_cst_equal (TYPE_SIZE (type), tmp) != 1)
	      TYPE_SIZE_UNIT (type) = NULL;

	    TYPE_SIZE (type) = tmp;
	  }
#endif

	TYPE_MODE (type) = BLKmode;
	if (TYPE_SIZE (type) != 0
#ifdef MEMBER_TYPE_FORCES_BLK
	    && ! MEMBER_TYPE_FORCES_BLK (type, VOIDmode)
#endif
	    /* BLKmode elements force BLKmode aggregate;
	       else extract/store fields may lose.  */
	    && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
		|| TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
	  {
	    /* One-element arrays get the component type's mode.  */
	    if (simple_cst_equal (TYPE_SIZE (type),
				  TYPE_SIZE (TREE_TYPE (type))))
	      TYPE_MODE (type) = TYPE_MODE (TREE_TYPE (type));
	    else
	      TYPE_MODE (type)
		= mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1);

	    if (TYPE_MODE (type) != BLKmode
		&& STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
		&& TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type))
		&& TYPE_MODE (type) != BLKmode)
	      {
		TYPE_NO_FORCE_BLK (type) = 1;
		TYPE_MODE (type) = BLKmode;
	      }
	  }
	break;
      }

    case RECORD_TYPE:
    case UNION_TYPE:
    case QUAL_UNION_TYPE:
      {
	tree field;
	record_layout_info rli;

	/* Initialize the layout information.  */
	rli = start_record_layout (type);

	/* If this is a QUAL_UNION_TYPE, we want to process the fields
	   in the reverse order in building the COND_EXPR that denotes
	   its size.  We reverse them again later.  */
	if (TREE_CODE (type) == QUAL_UNION_TYPE)
	  TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));

	/* Place all the fields.  */
	for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
	  place_field (rli, field);

	if (TREE_CODE (type) == QUAL_UNION_TYPE)
	  TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));

	if (lang_adjust_rli)
	  (*lang_adjust_rli) (rli);

	/* Finish laying out the record.  */
	finish_record_layout (rli, /*free_p=*/true);
      }
      break;

    case SET_TYPE:  /* Used by Chill and Pascal.  */
      if (TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (type))) != INTEGER_CST
	  || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (type))) != INTEGER_CST)
	abort ();
      else
	{
#ifndef SET_WORD_SIZE
#define SET_WORD_SIZE BITS_PER_WORD
#endif
	  unsigned int alignment
	    = set_alignment ? set_alignment : SET_WORD_SIZE;
	  int size_in_bits
	    = (TREE_INT_CST_LOW (TYPE_MAX_VALUE (TYPE_DOMAIN (type)))
	       - TREE_INT_CST_LOW (TYPE_MIN_VALUE (TYPE_DOMAIN (type))) + 1);
	  int rounded_size
	    = ((size_in_bits + alignment - 1) / alignment) * alignment;

	  if (rounded_size > (int) alignment)
	    TYPE_MODE (type) = BLKmode;
	  else
	    TYPE_MODE (type) = mode_for_size (alignment, MODE_INT, 1);

	  TYPE_SIZE (type) = bitsize_int (rounded_size);
	  TYPE_SIZE_UNIT (type) = size_int (rounded_size / BITS_PER_UNIT);
	  TYPE_ALIGN (type) = alignment;
	  TYPE_USER_ALIGN (type) = 0;
	  TYPE_PRECISION (type) = size_in_bits;
	}
      break;

    case FILE_TYPE:
      /* The size may vary in different languages, so the language front end
	 should fill in the size.  */
      TYPE_ALIGN (type) = BIGGEST_ALIGNMENT;
      TYPE_USER_ALIGN (type) = 0;
      TYPE_MODE  (type) = BLKmode;
      break;

    default:
      abort ();
    }

  /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE.  For
     records and unions, finish_record_layout already called this
     function.  */
  if (TREE_CODE (type) != RECORD_TYPE
      && TREE_CODE (type) != UNION_TYPE
      && TREE_CODE (type) != QUAL_UNION_TYPE)
    finalize_type_size (type);

  /* If this type is created before sizetype has been permanently set,
     record it so set_sizetype can fix it up.  */
  if (! sizetype_set)
    early_type_list = tree_cons (NULL_TREE, type, early_type_list);

  /* If an alias set has been set for this aggregate when it was incomplete,
     force it into alias set 0.
     This is too conservative, but we cannot call record_component_aliases
     here because some frontends still change the aggregates after
     layout_type.  */
  if (AGGREGATE_TYPE_P (type) && TYPE_ALIAS_SET_KNOWN_P (type))
    TYPE_ALIAS_SET (type) = 0;
}

/* Create and return a type for signed integers of PRECISION bits.  */

tree
make_signed_type (precision)
     int precision;
{
  tree type = make_node (INTEGER_TYPE);

  TYPE_PRECISION (type) = precision;

  fixup_signed_type (type);
  return type;
}

/* Create and return a type for unsigned integers of PRECISION bits.  */

tree
make_unsigned_type (precision)
     int precision;
{
  tree type = make_node (INTEGER_TYPE);

  TYPE_PRECISION (type) = precision;

  fixup_unsigned_type (type);
  return type;
}

/* Initialize sizetype and bitsizetype to a reasonable and temporary
   value to enable integer types to be created.  */

void
initialize_sizetypes ()
{
  tree t = make_node (INTEGER_TYPE);

  /* Set this so we do something reasonable for the build_int_2 calls
     below.  */
  integer_type_node = t;

  TYPE_MODE (t) = SImode;
  TYPE_ALIGN (t) = GET_MODE_ALIGNMENT (SImode);
  TYPE_USER_ALIGN (t) = 0;
  TYPE_SIZE (t) = build_int_2 (GET_MODE_BITSIZE (SImode), 0);
  TYPE_SIZE_UNIT (t) = build_int_2 (GET_MODE_SIZE (SImode), 0);
  TREE_UNSIGNED (t) = 1;
  TYPE_PRECISION (t) = GET_MODE_BITSIZE (SImode);
  TYPE_MIN_VALUE (t) = build_int_2 (0, 0);
  TYPE_IS_SIZETYPE (t) = 1;

  /* 1000 avoids problems with possible overflow and is certainly
     larger than any size value we'd want to be storing.  */
  TYPE_MAX_VALUE (t) = build_int_2 (1000, 0);

  /* These two must be different nodes because of the caching done in
     size_int_wide.  */
  sizetype = t;
  bitsizetype = copy_node (t);
  integer_type_node = 0;
}

/* Set sizetype to TYPE, and initialize *sizetype accordingly.
   Also update the type of any standard type's sizes made so far.  */

void
set_sizetype (type)
     tree type;
{
  int oprecision = TYPE_PRECISION (type);
  /* The *bitsizetype types use a precision that avoids overflows when
     calculating signed sizes / offsets in bits.  However, when
     cross-compiling from a 32 bit to a 64 bit host, we are limited to 64 bit
     precision.  */
  int precision = MIN (oprecision + BITS_PER_UNIT_LOG + 1,
		       2 * HOST_BITS_PER_WIDE_INT);
  unsigned int i;
  tree t;

  if (sizetype_set)
    abort ();

  /* Make copies of nodes since we'll be setting TYPE_IS_SIZETYPE.  */
  sizetype = copy_node (type);
  TYPE_DOMAIN (sizetype) = type;
  TYPE_IS_SIZETYPE (sizetype) = 1;
  bitsizetype = make_node (INTEGER_TYPE);
  TYPE_NAME (bitsizetype) = TYPE_NAME (type);
  TYPE_PRECISION (bitsizetype) = precision;
  TYPE_IS_SIZETYPE (bitsizetype) = 1;

  if (TREE_UNSIGNED (type))
    fixup_unsigned_type (bitsizetype);
  else
    fixup_signed_type (bitsizetype);

  layout_type (bitsizetype);

  if (TREE_UNSIGNED (type))
    {
      usizetype = sizetype;
      ubitsizetype = bitsizetype;
      ssizetype = copy_node (make_signed_type (oprecision));
      sbitsizetype = copy_node (make_signed_type (precision));
    }
  else
    {
      ssizetype = sizetype;
      sbitsizetype = bitsizetype;
      usizetype = copy_node (make_unsigned_type (oprecision));
      ubitsizetype = copy_node (make_unsigned_type (precision));
    }

  TYPE_NAME (bitsizetype) = get_identifier ("bit_size_type");

  /* Show is a sizetype, is a main type, and has no pointers to it.  */
  for (i = 0; i < ARRAY_SIZE (sizetype_tab); i++)
    {
      TYPE_IS_SIZETYPE (sizetype_tab[i]) = 1;
      TYPE_MAIN_VARIANT (sizetype_tab[i]) = sizetype_tab[i];
      TYPE_NEXT_VARIANT (sizetype_tab[i]) = 0;
      TYPE_POINTER_TO (sizetype_tab[i]) = 0;
      TYPE_REFERENCE_TO (sizetype_tab[i]) = 0;
    }

  /* Go down each of the types we already made and set the proper type
     for the sizes in them.  */
  for (t = early_type_list; t != 0; t = TREE_CHAIN (t))
    {
      if (TREE_CODE (TREE_VALUE (t)) != INTEGER_TYPE)
	abort ();

      TREE_TYPE (TYPE_SIZE (TREE_VALUE (t))) = bitsizetype;
      TREE_TYPE (TYPE_SIZE_UNIT (TREE_VALUE (t))) = sizetype;
    }

  early_type_list = 0;
  sizetype_set = 1;
}

/* Set the extreme values of TYPE based on its precision in bits,
   then lay it out.  Used when make_signed_type won't do
   because the tree code is not INTEGER_TYPE.
   E.g. for Pascal, when the -fsigned-char option is given.  */

void
fixup_signed_type (type)
     tree type;
{
  int precision = TYPE_PRECISION (type);

  /* We can not represent properly constants greater then
     2 * HOST_BITS_PER_WIDE_INT, still we need the types
     as they are used by i386 vector extensions and friends.  */
  if (precision > HOST_BITS_PER_WIDE_INT * 2)
    precision = HOST_BITS_PER_WIDE_INT * 2;

  TYPE_MIN_VALUE (type)
    = build_int_2 ((precision - HOST_BITS_PER_WIDE_INT > 0
		    ? 0 : (HOST_WIDE_INT) (-1) << (precision - 1)),
		   (((HOST_WIDE_INT) (-1)
		     << (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
			 ? precision - HOST_BITS_PER_WIDE_INT - 1
			 : 0))));
  TYPE_MAX_VALUE (type)
    = build_int_2 ((precision - HOST_BITS_PER_WIDE_INT > 0
		    ? -1 : ((HOST_WIDE_INT) 1 << (precision - 1)) - 1),
		   (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
		    ? (((HOST_WIDE_INT) 1
			<< (precision - HOST_BITS_PER_WIDE_INT - 1))) - 1
		    : 0));

  TREE_TYPE (TYPE_MIN_VALUE (type)) = type;
  TREE_TYPE (TYPE_MAX_VALUE (type)) = type;

  /* Lay out the type: set its alignment, size, etc.  */
  layout_type (type);
}

/* Set the extreme values of TYPE based on its precision in bits,
   then lay it out.  This is used both in `make_unsigned_type'
   and for enumeral types.  */

void
fixup_unsigned_type (type)
     tree type;
{
  int precision = TYPE_PRECISION (type);

  /* We can not represent properly constants greater then
     2 * HOST_BITS_PER_WIDE_INT, still we need the types
     as they are used by i386 vector extensions and friends.  */
  if (precision > HOST_BITS_PER_WIDE_INT * 2)
    precision = HOST_BITS_PER_WIDE_INT * 2;

  TYPE_MIN_VALUE (type) = build_int_2 (0, 0);
  TYPE_MAX_VALUE (type)
    = build_int_2 (precision - HOST_BITS_PER_WIDE_INT >= 0
		   ? -1 : ((HOST_WIDE_INT) 1 << precision) - 1,
		   precision - HOST_BITS_PER_WIDE_INT > 0
		   ? ((unsigned HOST_WIDE_INT) ~0
		      >> (HOST_BITS_PER_WIDE_INT
			  - (precision - HOST_BITS_PER_WIDE_INT)))
		   : 0);
  TREE_TYPE (TYPE_MIN_VALUE (type)) = type;
  TREE_TYPE (TYPE_MAX_VALUE (type)) = type;

  /* Lay out the type: set its alignment, size, etc.  */
  layout_type (type);
}

/* Find the best machine mode to use when referencing a bit field of length
   BITSIZE bits starting at BITPOS.

   The underlying object is known to be aligned to a boundary of ALIGN bits.
   If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
   larger than LARGEST_MODE (usually SImode).

   If no mode meets all these conditions, we return VOIDmode.  Otherwise, if
   VOLATILEP is true or SLOW_BYTE_ACCESS is false, we return the smallest
   mode meeting these conditions.

   Otherwise (VOLATILEP is false and SLOW_BYTE_ACCESS is true), we return
   the largest mode (but a mode no wider than UNITS_PER_WORD) that meets
   all the conditions.  */

enum machine_mode
get_best_mode (bitsize, bitpos, align, largest_mode, volatilep)
     int bitsize, bitpos;
     unsigned int align;
     enum machine_mode largest_mode;
     int volatilep;
{
  enum machine_mode mode;
  unsigned int unit = 0;

  /* Find the narrowest integer mode that contains the bit field.  */
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
       mode = GET_MODE_WIDER_MODE (mode))
    {
      unit = GET_MODE_BITSIZE (mode);
      if ((bitpos % unit) + bitsize <= unit)
	break;
    }

  if (mode == VOIDmode
      /* It is tempting to omit the following line
	 if STRICT_ALIGNMENT is true.
	 But that is incorrect, since if the bitfield uses part of 3 bytes
	 and we use a 4-byte mode, we could get a spurious segv
	 if the extra 4th byte is past the end of memory.
	 (Though at least one Unix compiler ignores this problem:
	 that on the Sequent 386 machine.  */
      || MIN (unit, BIGGEST_ALIGNMENT) > align
      || (largest_mode != VOIDmode && unit > GET_MODE_BITSIZE (largest_mode)))
    return VOIDmode;

  if (SLOW_BYTE_ACCESS && ! volatilep)
    {
      enum machine_mode wide_mode = VOIDmode, tmode;

      for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT); tmode != VOIDmode;
	   tmode = GET_MODE_WIDER_MODE (tmode))
	{
	  unit = GET_MODE_BITSIZE (tmode);
	  if (bitpos / unit == (bitpos + bitsize - 1) / unit
	      && unit <= BITS_PER_WORD
	      && unit <= MIN (align, BIGGEST_ALIGNMENT)
	      && (largest_mode == VOIDmode
		  || unit <= GET_MODE_BITSIZE (largest_mode)))
	    wide_mode = tmode;
	}

      if (wide_mode != VOIDmode)
	return wide_mode;
    }

  return mode;
}

#include "gt-stor-layout.h"