aboutsummaryrefslogtreecommitdiff
path: root/libjava/gnu/gcj/io/shs.cc
blob: 96b4f5603529477ed3d579d490b273b4051560ed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

/* --------------------------------- SHS.CC ------------------------------- */

/*
 * NIST proposed Secure Hash Standard.
 *
 * Written 2 September 1992, Peter C. Gutmann.
 * This implementation placed in the public domain.
 *
 * Comments to pgut1@cs.aukuni.ac.nz
 */

#include <string.h>
#include "shs.h"

/* The SHS f()-functions */

#define f1(x,y,z)   ( ( x & y ) | ( ~x & z ) )		  /* Rounds  0-19 */
#define f2(x,y,z)   ( x ^ y ^ z )			  /* Rounds 20-39 */
#define f3(x,y,z)   ( ( x & y ) | ( x & z ) | ( y & z ) ) /* Rounds 40-59 */
#define f4(x,y,z)   ( x ^ y ^ z )			  /* Rounds 60-79 */

/* The SHS Mysterious Constants */

#define K1  0x5A827999L 	/* Rounds  0-19 */
#define K2  0x6ED9EBA1L 	/* Rounds 20-39 */
#define K3  0x8F1BBCDCL 	/* Rounds 40-59 */
#define K4  0xCA62C1D6L 	/* Rounds 60-79 */

/* SHS initial values */

#define h0init	0x67452301L
#define h1init	0xEFCDAB89L
#define h2init	0x98BADCFEL
#define h3init	0x10325476L
#define h4init	0xC3D2E1F0L

/* 32-bit rotate - kludged with shifts */

#define S(n,X)	((X << n) | (X >> (32 - n)))

/* The initial expanding function */

#define expand(count)	W [count] = W [count - 3] ^ W [count - 8] ^ W [count - 14] ^ W [count - 16]

/* The four SHS sub-rounds */

#define subRound1(count)    \
	{ \
		temp = S (5, A) + f1 (B, C, D) + E + W [count] + K1; \
		E = D; \
		D = C; \
		C = S (30, B); \
		B = A; \
		A = temp; \
	}

#define subRound2(count)    \
	{ \
		temp = S (5, A) + f2 (B, C, D) + E + W [count] + K2; \
		E = D; \
		D = C; \
		C = S (30, B); \
		B = A; \
		A = temp; \
	}

#define subRound3(count)    \
	{ \
		temp = S (5, A) + f3 (B, C, D) + E + W [count] + K3; \
		E = D; \
		D = C; \
		C = S (30, B); \
		B = A; \
		A = temp; \
	}

#define subRound4(count)    \
	{ \
		temp = S (5, A) + f4 (B, C, D) + E + W [count] + K4; \
		E = D; \
		D = C; \
		C = S (30, B); \
		B = A; \
		A = temp; \
	}

/* The two buffers of 5 32-bit words */

LONG h0, h1, h2, h3, h4;
LONG A, B, C, D, E;

local void byteReverse OF((LONG *buffer, int byteCount));
void shsTransform OF((SHS_INFO *shsInfo));

/* Initialize the SHS values */

void shsInit (SHS_INFO *shsInfo)
{
	/* Set the h-vars to their initial values */
	shsInfo->digest [0] = h0init;
	shsInfo->digest [1] = h1init;
	shsInfo->digest [2] = h2init;
	shsInfo->digest [3] = h3init;
	shsInfo->digest [4] = h4init;

	/* Initialise bit count */
	shsInfo->countLo = shsInfo->countHi = 0L;
}

/*
 * Perform the SHS transformation.  Note that this code, like MD5, seems to
 * break some optimizing compilers - it may be necessary to split it into
 * sections, eg based on the four subrounds
 */

void shsTransform (SHS_INFO *shsInfo)
{
	LONG W [80], temp;
	int i;

	/* Step A.	Copy the data buffer into the local work buffer */
	for (i = 0; i < 16; i++)
		W [i] = shsInfo->data [i];

	/* Step B.	Expand the 16 words into 64 temporary data words */
	expand (16); expand (17); expand (18); expand (19); expand (20);
	expand (21); expand (22); expand (23); expand (24); expand (25);
	expand (26); expand (27); expand (28); expand (29); expand (30);
	expand (31); expand (32); expand (33); expand (34); expand (35);
	expand (36); expand (37); expand (38); expand (39); expand (40);
	expand (41); expand (42); expand (43); expand (44); expand (45);
	expand (46); expand (47); expand (48); expand (49); expand (50);
	expand (51); expand (52); expand (53); expand (54); expand (55);
	expand (56); expand (57); expand (58); expand (59); expand (60);
	expand (61); expand (62); expand (63); expand (64); expand (65);
	expand (66); expand (67); expand (68); expand (69); expand (70);
	expand (71); expand (72); expand (73); expand (74); expand (75);
	expand (76); expand (77); expand (78); expand (79);

	/* Step C.	Set up first buffer */
	A = shsInfo->digest [0];
	B = shsInfo->digest [1];
	C = shsInfo->digest [2];
	D = shsInfo->digest [3];
	E = shsInfo->digest [4];

	/* Step D.	Serious mangling, divided into four sub-rounds */
	subRound1  (0); subRound1  (1); subRound1  (2); subRound1  (3);
	subRound1  (4); subRound1  (5); subRound1  (6); subRound1  (7);
	subRound1  (8); subRound1  (9); subRound1 (10); subRound1 (11);
	subRound1 (12); subRound1 (13); subRound1 (14); subRound1 (15);
	subRound1 (16); subRound1 (17); subRound1 (18); subRound1 (19);

	subRound2 (20); subRound2 (21); subRound2 (22); subRound2 (23);
	subRound2 (24); subRound2 (25); subRound2 (26); subRound2 (27);
	subRound2 (28); subRound2 (29); subRound2 (30); subRound2 (31);
	subRound2 (32); subRound2 (33); subRound2 (34); subRound2 (35);
	subRound2 (36); subRound2 (37); subRound2 (38); subRound2 (39);

	subRound3 (40); subRound3 (41); subRound3 (42); subRound3 (43);
	subRound3 (44); subRound3 (45); subRound3 (46); subRound3 (47);
	subRound3 (48); subRound3 (49); subRound3 (50); subRound3 (51);
	subRound3 (52); subRound3 (53); subRound3 (54); subRound3 (55);
	subRound3 (56); subRound3 (57); subRound3 (58); subRound3 (59);

	subRound4 (60); subRound4 (61); subRound4 (62); subRound4 (63);
	subRound4 (64); subRound4 (65); subRound4 (66); subRound4 (67);
	subRound4 (68); subRound4 (69); subRound4 (70); subRound4 (71);
	subRound4 (72); subRound4 (73); subRound4 (74); subRound4 (75);
	subRound4 (76); subRound4 (77); subRound4 (78); subRound4 (79);

	/* Step E.	Build message digest */
	shsInfo->digest [0] += A;
	shsInfo->digest [1] += B;
	shsInfo->digest [2] += C;
	shsInfo->digest [3] += D;
	shsInfo->digest [4] += E;
}

local void byteReverse (LONG *buffer, int byteCount)
{
	LONG value;
	int count;

	/*
	 * Find out what the byte order is on this machine.
	 * Big endian is for machines that place the most significant byte
	 * first (eg. Sun SPARC). Little endian is for machines that place
	 * the least significant byte first (eg. VAX).
	 *
	 * We figure out the byte order by stuffing a 2 byte string into a
	 * short and examining the left byte. '@' = 0x40  and  'P' = 0x50
	 * If the left byte is the 'high' byte, then it is 'big endian'.
	 * If the left byte is the 'low' byte, then the machine is 'little
	 * endian'.
	 *
	 *                          -- Shawn A. Clifford (sac@eng.ufl.edu)
	 */

	/*
	 * Several bugs fixed       -- Pat Myrto (pat@rwing.uucp)
	 */

	if ((*(unsigned short *) ("@P") >> 8) == '@')
		return;

	byteCount /= sizeof (LONG);
	for (count = 0; count < byteCount; count++) {
		value = (buffer [count] << 16) | (buffer [count] >> 16);
		buffer [count] = ((value & 0xFF00FF00L) >> 8) | ((value & 0x00FF00FFL) << 8);
	}
}

/*
 * Update SHS for a block of data.  This code assumes that the buffer size is
 * a multiple of SHS_BLOCKSIZE bytes long, which makes the code a lot more
 * efficient since it does away with the need to handle partial blocks
 * between calls to shsUpdate()
 */

void shsUpdate (SHS_INFO *shsInfo, BYTE *buffer, int count)
{
	/* Update bitcount */
	if ((shsInfo->countLo + ((LONG) count << 3)) < shsInfo->countLo)
		 shsInfo->countHi++;	/* Carry from low to high bitCount */
	shsInfo->countLo += ((LONG) count << 3);
	shsInfo->countHi += ((LONG) count >> 29);

	/* Process data in SHS_BLOCKSIZE chunks */
	while (count >= SHS_BLOCKSIZE) {
		memcpy (shsInfo->data, buffer, SHS_BLOCKSIZE);
		byteReverse (shsInfo->data, SHS_BLOCKSIZE);
		shsTransform (shsInfo);
		buffer += SHS_BLOCKSIZE;
		count -= SHS_BLOCKSIZE;
	}

	/*
	 * Handle any remaining bytes of data.
	 * This should only happen once on the final lot of data
	 */
	memcpy (shsInfo->data, buffer, count);
}

void shsFinal (SHS_INFO *shsInfo)
{
	int count;
	LONG lowBitcount = shsInfo->countLo, highBitcount = shsInfo->countHi;

	/* Compute number of bytes mod 64 */
	count = (int) ((shsInfo->countLo >> 3) & 0x3F);

	/*
	 * Set the first char of padding to 0x80.
	 * This is safe since there is always at least one byte free
	 */
	((BYTE *) shsInfo->data) [count++] = 0x80;

	/* Pad out to 56 mod 64 */
	if (count > 56) {
		/* Two lots of padding:  Pad the first block to 64 bytes */
		memset ((BYTE *) shsInfo->data + count, 0, 64 - count);
		byteReverse (shsInfo->data, SHS_BLOCKSIZE);
		shsTransform (shsInfo);

		/* Now fill the next block with 56 bytes */
		memset (shsInfo->data, 0, 56);
	} else
		/* Pad block to 56 bytes */
		memset ((BYTE *) shsInfo->data + count, 0, 56 - count);
	byteReverse (shsInfo->data, SHS_BLOCKSIZE);

	/* Append length in bits and transform */
	shsInfo->data [14] = highBitcount;
	shsInfo->data [15] = lowBitcount;

	shsTransform (shsInfo);
	byteReverse (shsInfo->data, SHS_DIGESTSIZE);
}