aboutsummaryrefslogtreecommitdiff
path: root/libstdc++-v3/include/bits/stl_alloc.h
blob: 1f7e8e24ff6294847932221ba5066a945fbaa0e9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
// Allocators -*- C++ -*-

// Copyright (C) 2001, 2002, 2003 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING.  If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.

// As a special exception, you may use this file as part of a free software
// library without restriction.  Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License.  This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.

/*
 * Copyright (c) 1996-1997
 * Silicon Graphics Computer Systems, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Silicon Graphics makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 */

/** @file stl_alloc.h
 *  This is an internal header file, included by other library headers.
 *  You should not attempt to use it directly.
 */

#ifndef __GLIBCPP_INTERNAL_ALLOC_H
#define __GLIBCPP_INTERNAL_ALLOC_H

/**
 *  @defgroup Allocators Memory Allocators
 *  @if maint
 *  stl_alloc.h implements some node allocators.  These are NOT the same as
 *  allocators in the C++ standard, nor in the original H-P STL.  They do not
 *  encapsulate different pointer types; we assume that there is only one
 *  pointer type.  The C++ standard allocators are intended to allocate
 *  individual objects, not pools or arenas.
 *
 *  In this file allocators are of two different styles:  "standard" and
 *  "SGI" (quotes included).  "Standard" allocators conform to 20.4.  "SGI"
 *  allocators differ in AT LEAST the following ways (add to this list as you
 *  discover them):
 *
 *   - "Standard" allocate() takes two parameters (n_count,hint=0) but "SGI"
 *     allocate() takes one paramter (n_size).
 *   - Likewise, "standard" deallocate()'s argument is a count, but in "SGI"
 *     is a byte size.
 *   - max_size(), construct(), and destroy() are missing in "SGI" allocators.
 *   - reallocate(p,oldsz,newsz) is added in "SGI", and behaves as
 *     if p=realloc(p,newsz).
 *
 *  "SGI" allocators may be wrapped in __allocator to convert the interface
 *  into a "standard" one.
 *  @endif
 *
 *  @note The @c reallocate member functions have been deprecated for 3.2
 *        and will be removed in 3.4.  You must define @c _GLIBCPP_DEPRECATED
 *        to make this visible in 3.2; see c++config.h.
 *
 *  The canonical description of these classes is in docs/html/ext/howto.html
 *  or online at http://gcc.gnu.org/onlinedocs/libstdc++/ext/howto.html#3
*/

#include <cstddef>
#include <cstdlib>
#include <cstring>
#include <bits/functexcept.h>   // For __throw_bad_alloc
#include <bits/stl_threads.h>

#include <bits/atomicity.h>

namespace std
{
  /**
   *  @if maint
   *  A new-based allocator, as required by the standard.  Allocation and
   *  deallocation forward to global new and delete.  "SGI" style, minus
   *  reallocate().
   *  @endif
   *  (See @link Allocators allocators info @endlink for more.)
   */
  class __new_alloc
  {
  public:
    static void*
    allocate(size_t __n)
    { return ::operator new(__n); }

    static void
    deallocate(void* __p, size_t)
    { ::operator delete(__p); }
  };


  /**
   *  @if maint
   *  A malloc-based allocator.  Typically slower than the
   *  __default_alloc_template (below).  Typically thread-safe and more
   *  storage efficient.  The template argument is unused and is only present
   *  to permit multiple instantiations (but see __default_alloc_template
   *  for caveats).  "SGI" style, plus __set_malloc_handler for OOM conditions.
   *  @endif
   *  (See @link Allocators allocators info @endlink for more.)
   */
  template<int __inst>
    class __malloc_alloc_template
    {
    private:
      static void* _S_oom_malloc(size_t);
      static void* _S_oom_realloc(void*, size_t);
      static void (* __malloc_alloc_oom_handler)();

    public:
      static void*
      allocate(size_t __n)
      {
        void* __result = malloc(__n);
        if (__builtin_expect(__result == 0, 0))
	  __result = _S_oom_malloc(__n);
        return __result;
      }

      static void
      deallocate(void* __p, size_t /* __n */)
      { free(__p); }

      static void*
      reallocate(void* __p, size_t /* old_sz */, size_t __new_sz)
      {
        void* __result = realloc(__p, __new_sz);
        if (__builtin_expect(__result == 0, 0))
          __result = _S_oom_realloc(__p, __new_sz);
        return __result;
      }

      static void (* __set_malloc_handler(void (*__f)()))()
      {
        void (* __old)() = __malloc_alloc_oom_handler;
        __malloc_alloc_oom_handler = __f;
        return __old;
      }
    };

  // malloc_alloc out-of-memory handling
  template<int __inst>
    void (* __malloc_alloc_template<__inst>::__malloc_alloc_oom_handler)() = 0;

  template<int __inst>
    void*
    __malloc_alloc_template<__inst>::
    _S_oom_malloc(size_t __n)
    {
      void (* __my_malloc_handler)();
      void* __result;

      for (;;)
        {
          __my_malloc_handler = __malloc_alloc_oom_handler;
          if (__builtin_expect(__my_malloc_handler == 0, 0))
            __throw_bad_alloc();
          (*__my_malloc_handler)();
          __result = malloc(__n);
          if (__result)
            return __result;
        }
    }

  template<int __inst>
    void*
    __malloc_alloc_template<__inst>::
    _S_oom_realloc(void* __p, size_t __n)
    {
      void (* __my_malloc_handler)();
      void* __result;

      for (;;)
        {
          __my_malloc_handler = __malloc_alloc_oom_handler;
          if (__builtin_expect(__my_malloc_handler == 0, 0))
            __throw_bad_alloc();
          (*__my_malloc_handler)();
          __result = realloc(__p, __n);
          if (__result)
            return __result;
        }
    }

  // Should not be referenced within the library anymore.
  typedef __new_alloc                 __mem_interface;

  /**
   *  @if maint
   *  This is used primarily (only?) in _Alloc_traits and other places to
   *  help provide the _Alloc_type typedef.  All it does is forward the
   *  requests after some minimal checking.
   *
   *  This is neither "standard"-conforming nor "SGI".  The _Alloc parameter
   *  must be "SGI" style.
   *  @endif
   *  (See @link Allocators allocators info @endlink for more.)
   */
  template<typename _Tp, typename _Alloc>
    class __simple_alloc
    {
    public:
      static _Tp*
      allocate(size_t __n)
      {
	_Tp* __ret = 0;
	if (__n)
	  __ret = static_cast<_Tp*>(_Alloc::allocate(__n * sizeof(_Tp)));
	return __ret;
      }
  
      static _Tp*
      allocate()
      { return (_Tp*) _Alloc::allocate(sizeof (_Tp)); }
  
      static void
      deallocate(_Tp* __p, size_t __n)
      { if (0 != __n) _Alloc::deallocate(__p, __n * sizeof (_Tp)); }
  
      static void
      deallocate(_Tp* __p)
      { _Alloc::deallocate(__p, sizeof (_Tp)); }
    };


  /**
   *  @if maint
   *  An adaptor for an underlying allocator (_Alloc) to check the size
   *  arguments for debugging.
   *
   *  "There is some evidence that this can confuse Purify." - SGI comment
   *
   *  This adaptor is "SGI" style.  The _Alloc parameter must also be "SGI".
   *  @endif
   *  (See @link Allocators allocators info @endlink for more.)
   */
  template<typename _Alloc>
    class __debug_alloc
    {
    private:
      // Size of space used to store size.  Note that this must be
      // large enough to preserve alignment.
      enum {_S_extra = 8};

    public:
      static void*
      allocate(size_t __n)
      {
        char* __result = (char*)_Alloc::allocate(__n + (int) _S_extra);
        *(size_t*)__result = __n;
        return __result + (int) _S_extra;
      }

      static void
      deallocate(void* __p, size_t __n)
      {
        char* __real_p = (char*)__p - (int) _S_extra;
        if (*(size_t*)__real_p != __n)
	  abort();
        _Alloc::deallocate(__real_p, __n + (int) _S_extra);
      }

      static void*
      reallocate(void* __p, size_t __old_sz, size_t __new_sz)
      {
        char* __real_p = (char*)__p - (int) _S_extra;
        if (*(size_t*)__real_p != __old_sz)
	  abort();
        char* __result = (char*) _Alloc::reallocate(__real_p, 
						    __old_sz + (int) _S_extra,
						    __new_sz + (int) _S_extra);
        *(size_t*)__result = __new_sz;
        return __result + (int) _S_extra;
      }
    };


  /**
   *  @if maint
   *  Default node allocator.  "SGI" style.  Uses various allocators to
   *  fulfill underlying requests (and makes as few requests as possible
   *  when in default high-speed pool mode).
   *
   *  Important implementation properties:
   *  0. If globally mandated, then allocate objects from __new_alloc
   *  1. If the clients request an object of size > _MAX_BYTES, the resulting
   *     object will be obtained directly from __new_alloc
   *  2. In all other cases, we allocate an object of size exactly
   *     _S_round_up(requested_size).  Thus the client has enough size
   *     information that we can return the object to the proper free list
   *     without permanently losing part of the object.
   *
   *  The first template parameter specifies whether more than one thread may
   *  use this allocator.  It is safe to allocate an object from one instance
   *  of a default_alloc and deallocate it with another one.  This effectively
   *  transfers its ownership to the second one.  This may have undesirable
   *  effects on reference locality.
   *
   *  The second parameter is unused and serves only to allow the creation of
   *  multiple default_alloc instances.  Note that containers built on different
   *  allocator instances have different types, limiting the utility of this
   *  approach.  If you do not wish to share the free lists with the main
   *  default_alloc instance, instantiate this with a non-zero __inst.
   *
   *  @endif
   *  (See @link Allocators allocators info @endlink for more.)
   */
  template<bool __threads, int __inst>
    class __default_alloc_template
    {
    private:
      enum {_ALIGN = 8};
      enum {_MAX_BYTES = 128};
      enum {_NFREELISTS = _MAX_BYTES / _ALIGN};

      union _Obj
      {
        union _Obj* _M_free_list_link;
        char        _M_client_data[1];    // The client sees this.
      };

      static _Obj* volatile         _S_free_list[_NFREELISTS];

      // Chunk allocation state.
      static char*                  _S_start_free;
      static char*                  _S_end_free;
      static size_t                 _S_heap_size;

      static _STL_mutex_lock        _S_node_allocator_lock;

      static size_t
      _S_round_up(size_t __bytes)
      { return (((__bytes) + (size_t) _ALIGN-1) & ~((size_t) _ALIGN - 1)); }

      static size_t
      _S_freelist_index(size_t __bytes)
      { return (((__bytes) + (size_t)_ALIGN - 1)/(size_t)_ALIGN - 1); }

      // Returns an object of size __n, and optionally adds to size __n
      // free list.
      static void*
      _S_refill(size_t __n);

      // Allocates a chunk for nobjs of size size.  nobjs may be reduced
      // if it is inconvenient to allocate the requested number.
      static char*
      _S_chunk_alloc(size_t __size, int& __nobjs);

      // It would be nice to use _STL_auto_lock here.  But we need a
      // test whether threads are in use.
      struct _Lock
      {
        _Lock() { if (__threads) _S_node_allocator_lock._M_acquire_lock(); }
        ~_Lock() { if (__threads) _S_node_allocator_lock._M_release_lock(); }
      } __attribute__ ((__unused__));
      friend struct _Lock;

      static _Atomic_word _S_force_new;

    public:
      // __n must be > 0
      static void*
      allocate(size_t __n)
      {
	void* __ret = 0;

	// If there is a race through here, assume answer from getenv
	// will resolve in same direction.  Inspired by techniques
	// to efficiently support threading found in basic_string.h.
	if (_S_force_new == 0)
	  {
	    if (getenv("GLIBCPP_FORCE_NEW"))
	      __atomic_add(&_S_force_new, 1);
	    else
	      __atomic_add(&_S_force_new, -1);
	  }

	if ((__n > (size_t) _MAX_BYTES) || (_S_force_new > 0))
	  __ret = __new_alloc::allocate(__n);
	else
	  {
	    _Obj* volatile* __my_free_list = _S_free_list
	      + _S_freelist_index(__n);
	    // Acquire the lock here with a constructor call.  This
	    // ensures that it is released in exit or during stack
	    // unwinding.
	    _Lock __lock_instance;
	    _Obj* __restrict__ __result = *__my_free_list;
	    if (__builtin_expect(__result == 0, 0))
	      __ret = _S_refill(_S_round_up(__n));
	    else
	      {
		*__my_free_list = __result -> _M_free_list_link;
		__ret = __result;
	      }	    
	    if (__builtin_expect(__ret == 0, 0))
	      __throw_bad_alloc();
	  }
	return __ret;
      }

      // __p may not be 0
      static void
      deallocate(void* __p, size_t __n)
      {
	if ((__n > (size_t) _MAX_BYTES) || (_S_force_new > 0))
	  __new_alloc::deallocate(__p, __n);
	else
	  {
	    _Obj* volatile*  __my_free_list = _S_free_list
	      + _S_freelist_index(__n);
	    _Obj* __q = (_Obj*)__p;

	    // Acquire the lock here with a constructor call.  This
	    // ensures that it is released in exit or during stack
	    // unwinding.
	    _Lock __lock_instance;
	    __q -> _M_free_list_link = *__my_free_list;
	    *__my_free_list = __q;
	  }
      }

      static void*
      reallocate(void* __p, size_t __old_sz, size_t __new_sz);
    };

  template<bool __threads, int __inst> _Atomic_word
  __default_alloc_template<__threads, __inst>::_S_force_new = 0;

  template<bool __threads, int __inst>
    inline bool
    operator==(const __default_alloc_template<__threads,__inst>&,
               const __default_alloc_template<__threads,__inst>&)
    { return true; }

  template<bool __threads, int __inst>
    inline bool
    operator!=(const __default_alloc_template<__threads,__inst>&,
               const __default_alloc_template<__threads,__inst>&)
    { return false; }


  // We allocate memory in large chunks in order to avoid fragmenting the
  // heap too much.  We assume that __size is properly aligned.  We hold
  // the allocation lock.
  template<bool __threads, int __inst>
    char*
    __default_alloc_template<__threads, __inst>::
    _S_chunk_alloc(size_t __size, int& __nobjs)
    {
      char* __result;
      size_t __total_bytes = __size * __nobjs;
      size_t __bytes_left = _S_end_free - _S_start_free;

      if (__bytes_left >= __total_bytes)
        {
          __result = _S_start_free;
          _S_start_free += __total_bytes;
          return __result ;
        }
      else if (__bytes_left >= __size)
        {
          __nobjs = (int)(__bytes_left/__size);
          __total_bytes = __size * __nobjs;
          __result = _S_start_free;
          _S_start_free += __total_bytes;
          return __result;
        }
      else
        {
          size_t __bytes_to_get =
            2 * __total_bytes + _S_round_up(_S_heap_size >> 4);
          // Try to make use of the left-over piece.
          if (__bytes_left > 0)
            {
              _Obj* volatile* __my_free_list =
                _S_free_list + _S_freelist_index(__bytes_left);

              ((_Obj*)_S_start_free) -> _M_free_list_link = *__my_free_list;
              *__my_free_list = (_Obj*)_S_start_free;
            }
          _S_start_free = (char*) __new_alloc::allocate(__bytes_to_get);
          if (_S_start_free == 0)
            {
              size_t __i;
              _Obj* volatile* __my_free_list;
              _Obj* __p;
              // Try to make do with what we have.  That can't hurt.  We
              // do not try smaller requests, since that tends to result
              // in disaster on multi-process machines.
              __i = __size;
              for (; __i <= (size_t) _MAX_BYTES; __i += (size_t) _ALIGN)
                {
                  __my_free_list = _S_free_list + _S_freelist_index(__i);
                  __p = *__my_free_list;
                  if (__p != 0)
                    {
                      *__my_free_list = __p -> _M_free_list_link;
                      _S_start_free = (char*)__p;
                      _S_end_free = _S_start_free + __i;
                      return _S_chunk_alloc(__size, __nobjs);
                      // Any leftover piece will eventually make it to the
                      // right free list.
                    }
                }
              _S_end_free = 0;        // In case of exception.
              _S_start_free = (char*)__new_alloc::allocate(__bytes_to_get);
              // This should either throw an exception or remedy the situation.
              // Thus we assume it succeeded.
            }
          _S_heap_size += __bytes_to_get;
          _S_end_free = _S_start_free + __bytes_to_get;
          return _S_chunk_alloc(__size, __nobjs);
        }
    }


  // Returns an object of size __n, and optionally adds to "size
  // __n"'s free list.  We assume that __n is properly aligned.  We
  // hold the allocation lock.
  template<bool __threads, int __inst>
    void*
    __default_alloc_template<__threads, __inst>::_S_refill(size_t __n)
    {
      int __nobjs = 20;
      char* __chunk = _S_chunk_alloc(__n, __nobjs);
      _Obj* volatile* __my_free_list;
      _Obj* __result;
      _Obj* __current_obj;
      _Obj* __next_obj;
      int __i;

      if (1 == __nobjs)
        return __chunk;
      __my_free_list = _S_free_list + _S_freelist_index(__n);

      // Build free list in chunk.
      __result = (_Obj*)__chunk;
      *__my_free_list = __next_obj = (_Obj*)(__chunk + __n);
      for (__i = 1; ; __i++)
        {
	  __current_obj = __next_obj;
          __next_obj = (_Obj*)((char*)__next_obj + __n);
	  if (__nobjs - 1 == __i)
	    {
	      __current_obj -> _M_free_list_link = 0;
	      break;
	    }
	  else
	    __current_obj -> _M_free_list_link = __next_obj;
	}
      return __result;
    }


  template<bool threads, int inst>
    void*
    __default_alloc_template<threads, inst>::
    reallocate(void* __p, size_t __old_sz, size_t __new_sz)
    {
      void* __result;
      size_t __copy_sz;

      if (__old_sz > (size_t) _MAX_BYTES && __new_sz > (size_t) _MAX_BYTES)
        return(realloc(__p, __new_sz));
      if (_S_round_up(__old_sz) == _S_round_up(__new_sz))
        return(__p);
      __result = allocate(__new_sz);
      __copy_sz = __new_sz > __old_sz? __old_sz : __new_sz;
      memcpy(__result, __p, __copy_sz);
      deallocate(__p, __old_sz);
      return __result;
    }

  template<bool __threads, int __inst>
    _STL_mutex_lock
    __default_alloc_template<__threads,__inst>::_S_node_allocator_lock
    __STL_MUTEX_INITIALIZER;

  template<bool __threads, int __inst>
    char* __default_alloc_template<__threads,__inst>::_S_start_free = 0;

  template<bool __threads, int __inst>
    char* __default_alloc_template<__threads,__inst>::_S_end_free = 0;

  template<bool __threads, int __inst>
    size_t __default_alloc_template<__threads,__inst>::_S_heap_size = 0;

  template<bool __threads, int __inst>
    typename __default_alloc_template<__threads,__inst>::_Obj* volatile
    __default_alloc_template<__threads,__inst>::_S_free_list[_NFREELISTS];

  typedef __default_alloc_template<true,0>    __alloc;
  typedef __default_alloc_template<false,0>   __single_client_alloc;


  /**
   *  @brief  The "standard" allocator, as per [20.4].
   *
   *  The private _Alloc is "SGI" style.  (See comments at the top
   *  of stl_alloc.h.)
   *
   *  The underlying allocator behaves as follows.
   *    - __default_alloc_template is used via two typedefs
   *    - "__single_client_alloc" typedef does no locking for threads
   *    - "__alloc" typedef is threadsafe via the locks
   *    - __new_alloc is used for memory requests
   *
   *  (See @link Allocators allocators info @endlink for more.)
   */
  template<typename _Tp>
    class allocator
    {
      typedef __alloc _Alloc;          // The underlying allocator.
    public:
      typedef size_t     size_type;
      typedef ptrdiff_t  difference_type;
      typedef _Tp*       pointer;
      typedef const _Tp* const_pointer;
      typedef _Tp&       reference;
      typedef const _Tp& const_reference;
      typedef _Tp        value_type;

      template<typename _Tp1>
        struct rebind
        { typedef allocator<_Tp1> other; };

      allocator() throw() {}
      allocator(const allocator&) throw() {}
      template<typename _Tp1>
        allocator(const allocator<_Tp1>&) throw() {}
      ~allocator() throw() {}

      pointer
      address(reference __x) const { return &__x; }

      const_pointer
      address(const_reference __x) const { return &__x; }

      // NB: __n is permitted to be 0.  The C++ standard says nothing
      // about what the return value is when __n == 0.
      _Tp*
      allocate(size_type __n, const void* = 0)
      {
	_Tp* __ret = 0;
	if (__n)
	  {
	    if (__n <= this->max_size())
	      __ret = static_cast<_Tp*>(_Alloc::allocate(__n * sizeof(_Tp)));
	    else
	      __throw_bad_alloc();
	  }
	return __ret;
      }

      // __p is not permitted to be a null pointer.
      void
      deallocate(pointer __p, size_type __n)
      { _Alloc::deallocate(__p, __n * sizeof(_Tp)); }

      size_type
      max_size() const throw() { return size_t(-1) / sizeof(_Tp); }

      void construct(pointer __p, const _Tp& __val) { new(__p) _Tp(__val); }
      void destroy(pointer __p) { __p->~_Tp(); }
    };

  template<>
    class allocator<void>
    {
    public:
      typedef size_t      size_type;
      typedef ptrdiff_t   difference_type;
      typedef void*       pointer;
      typedef const void* const_pointer;
      typedef void        value_type;

      template<typename _Tp1>
        struct rebind
        { typedef allocator<_Tp1> other; };
    };


  template<typename _T1, typename _T2>
    inline bool
    operator==(const allocator<_T1>&, const allocator<_T2>&)
    { return true; }

  template<typename _T1, typename _T2>
    inline bool
    operator!=(const allocator<_T1>&, const allocator<_T2>&)
    { return false; }


  /**
   *  @if maint
   *  Allocator adaptor to turn an "SGI" style allocator (e.g.,
   *  __alloc, __malloc_alloc_template) into a "standard" conforming
   *  allocator.  Note that this adaptor does *not* assume that all
   *  objects of the underlying alloc class are identical, nor does it
   *  assume that all of the underlying alloc's member functions are
   *  static member functions.  Note, also, that __allocator<_Tp,
   *  __alloc> is essentially the same thing as allocator<_Tp>.
   *  @endif
   *  (See @link Allocators allocators info @endlink for more.)
   */
  template<typename _Tp, typename _Alloc>
    struct __allocator
    {
      _Alloc __underlying_alloc;
      
      typedef size_t    size_type;
      typedef ptrdiff_t difference_type;
      typedef _Tp*       pointer;
      typedef const _Tp* const_pointer;
      typedef _Tp&       reference;
      typedef const _Tp& const_reference;
      typedef _Tp        value_type;

      template<typename _Tp1>
        struct rebind
        { typedef __allocator<_Tp1, _Alloc> other; };

      __allocator() throw() {}
      __allocator(const __allocator& __a) throw()
      : __underlying_alloc(__a.__underlying_alloc) {}

      template<typename _Tp1>
        __allocator(const __allocator<_Tp1, _Alloc>& __a) throw()
        : __underlying_alloc(__a.__underlying_alloc) {}

      ~__allocator() throw() {}

      pointer
      address(reference __x) const { return &__x; }

      const_pointer
      address(const_reference __x) const { return &__x; }

      // NB: __n is permitted to be 0.  The C++ standard says nothing
      // about what the return value is when __n == 0.
      _Tp*
      allocate(size_type __n, const void* = 0)
      {
	_Tp* __ret = 0;
	if (__n)
	  __ret = static_cast<_Tp*>(_Alloc::allocate(__n * sizeof(_Tp)));
	return __ret;
      }

      // __p is not permitted to be a null pointer.
      void
      deallocate(pointer __p, size_type __n)
      { __underlying_alloc.deallocate(__p, __n * sizeof(_Tp)); }
      
      size_type
      max_size() const throw() { return size_t(-1) / sizeof(_Tp); }
      
      void
      construct(pointer __p, const _Tp& __val) { new(__p) _Tp(__val); }
      
      void
      destroy(pointer __p) { __p->~_Tp(); }
    };

  template<typename _Alloc>
    struct __allocator<void, _Alloc>
    {
      typedef size_t      size_type;
      typedef ptrdiff_t   difference_type;
      typedef void*       pointer;
      typedef const void* const_pointer;
      typedef void        value_type;

      template<typename _Tp1>
        struct rebind
        { typedef __allocator<_Tp1, _Alloc> other; };
    };

  template<typename _Tp, typename _Alloc>
    inline bool
    operator==(const __allocator<_Tp,_Alloc>& __a1,
               const __allocator<_Tp,_Alloc>& __a2)
    { return __a1.__underlying_alloc == __a2.__underlying_alloc; }

  template<typename _Tp, typename _Alloc>
    inline bool
    operator!=(const __allocator<_Tp, _Alloc>& __a1,
               const __allocator<_Tp, _Alloc>& __a2)
    { return __a1.__underlying_alloc != __a2.__underlying_alloc; }


  //@{
  /** Comparison operators for all of the predifined SGI-style allocators.
   *  This ensures that __allocator<malloc_alloc> (for example) will work
   *  correctly.  As required, all allocators compare equal.
   */
  template<int inst>
    inline bool
    operator==(const __malloc_alloc_template<inst>&,
               const __malloc_alloc_template<inst>&)
    { return true; }

  template<int __inst>
    inline bool
    operator!=(const __malloc_alloc_template<__inst>&,
               const __malloc_alloc_template<__inst>&)
    { return false; }

  template<typename _Alloc>
    inline bool
    operator==(const __debug_alloc<_Alloc>&, const __debug_alloc<_Alloc>&)
    { return true; }

  template<typename _Alloc>
    inline bool
    operator!=(const __debug_alloc<_Alloc>&, const __debug_alloc<_Alloc>&)
    { return false; }
  //@}


  /**
   *  @if maint
   *  Another allocator adaptor:  _Alloc_traits.  This serves two purposes.
   *  First, make it possible to write containers that can use either "SGI"
   *  style allocators or "standard" allocators.  Second, provide a mechanism
   *  so that containers can query whether or not the allocator has distinct
   *  instances.  If not, the container can avoid wasting a word of memory to
   *  store an empty object.  For examples of use, see stl_vector.h, etc, or
   *  any of the other classes derived from this one.
   *
   *  This adaptor uses partial specialization.  The general case of
   *  _Alloc_traits<_Tp, _Alloc> assumes that _Alloc is a
   *  standard-conforming allocator, possibly with non-equal instances and
   *  non-static members.  (It still behaves correctly even if _Alloc has
   *  static member and if all instances are equal.  Refinements affect
   *  performance, not correctness.)
   *
   *  There are always two members:  allocator_type, which is a standard-
   *  conforming allocator type for allocating objects of type _Tp, and
   *  _S_instanceless, a static const member of type bool.  If
   *  _S_instanceless is true, this means that there is no difference
   *  between any two instances of type allocator_type.  Furthermore, if
   *  _S_instanceless is true, then _Alloc_traits has one additional
   *  member:  _Alloc_type.  This type encapsulates allocation and
   *  deallocation of objects of type _Tp through a static interface; it
   *  has two member functions, whose signatures are
   *
   *  -  static _Tp* allocate(size_t)
   *  -  static void deallocate(_Tp*, size_t)
   *
   *  The size_t parameters are "standard" style (see top of stl_alloc.h) in
   *  that they take counts, not sizes.
   *
   *  @endif
   *  (See @link Allocators allocators info @endlink for more.)
   */
  //@{
  // The fully general version.
  template<typename _Tp, typename _Allocator>
    struct _Alloc_traits
    {
      static const bool _S_instanceless = false;
      typedef typename _Allocator::template rebind<_Tp>::other allocator_type;
    };

  template<typename _Tp, typename _Allocator>
    const bool _Alloc_traits<_Tp, _Allocator>::_S_instanceless;

  /// The version for the default allocator.
  template<typename _Tp, typename _Tp1>
    struct _Alloc_traits<_Tp, allocator<_Tp1> >
    {
      static const bool _S_instanceless = true;
      typedef __simple_alloc<_Tp, __alloc> _Alloc_type;
      typedef allocator<_Tp> allocator_type;
    };
  //@}

  //@{
  /// Versions for the predefined "SGI" style allocators.
  template<typename _Tp, int __inst>
    struct _Alloc_traits<_Tp, __malloc_alloc_template<__inst> >
    {
      static const bool _S_instanceless = true;
      typedef __simple_alloc<_Tp, __malloc_alloc_template<__inst> > _Alloc_type;
      typedef __allocator<_Tp, __malloc_alloc_template<__inst> > allocator_type;
    };

  template<typename _Tp, bool __threads, int __inst>
    struct _Alloc_traits<_Tp, __default_alloc_template<__threads, __inst> >
    {
      static const bool _S_instanceless = true;
      typedef __simple_alloc<_Tp, __default_alloc_template<__threads, __inst> >
      _Alloc_type;
      typedef __allocator<_Tp, __default_alloc_template<__threads, __inst> >
      allocator_type;
    };

  template<typename _Tp, typename _Alloc>
    struct _Alloc_traits<_Tp, __debug_alloc<_Alloc> >
    {
      static const bool _S_instanceless = true;
      typedef __simple_alloc<_Tp, __debug_alloc<_Alloc> > _Alloc_type;
      typedef __allocator<_Tp, __debug_alloc<_Alloc> > allocator_type;
    };
  //@}

  //@{
  /// Versions for the __allocator adaptor used with the predefined
  /// "SGI" style allocators.
  template<typename _Tp, typename _Tp1, int __inst>
    struct _Alloc_traits<_Tp,
                         __allocator<_Tp1, __malloc_alloc_template<__inst> > >
    {
      static const bool _S_instanceless = true;
      typedef __simple_alloc<_Tp, __malloc_alloc_template<__inst> > _Alloc_type;
      typedef __allocator<_Tp, __malloc_alloc_template<__inst> > allocator_type;
    };

  template<typename _Tp, typename _Tp1, bool __thr, int __inst>
    struct _Alloc_traits<_Tp, __allocator<_Tp1, __default_alloc_template<__thr, __inst> > >
    {
      static const bool _S_instanceless = true;
      typedef __simple_alloc<_Tp, __default_alloc_template<__thr,__inst> >
      _Alloc_type;
      typedef __allocator<_Tp, __default_alloc_template<__thr,__inst> >
      allocator_type;
    };

  template<typename _Tp, typename _Tp1, typename _Alloc>
    struct _Alloc_traits<_Tp, __allocator<_Tp1, __debug_alloc<_Alloc> > >
    {
      static const bool _S_instanceless = true;
      typedef __simple_alloc<_Tp, __debug_alloc<_Alloc> > _Alloc_type;
      typedef __allocator<_Tp, __debug_alloc<_Alloc> > allocator_type;
    };
  //@}

  // Inhibit implicit instantiations for required instantiations,
  // which are defined via explicit instantiations elsewhere.
  // NB: This syntax is a GNU extension.
#if _GLIBCPP_EXTERN_TEMPLATE
  extern template class allocator<char>;
  extern template class allocator<wchar_t>;
  extern template class __default_alloc_template<true,0>;
#endif
} // namespace std

#endif