aboutsummaryrefslogtreecommitdiff
path: root/gcc/real.c
diff options
context:
space:
mode:
authorUlrich Drepper <drepper@cygnus.com>1998-12-02 10:44:51 +0000
committerUlrich Drepper <drepper@cygnus.com>1998-12-02 10:44:51 +0000
commitfd8ebaea5946a10822c3973fffae4c663ba57e1a (patch)
tree9ee2718dbec8fe91c3f75fd21fb4a5bb2966d17d /gcc/real.c
parent1e69d24b31b73c1d2ed225ff62ef7b6ae688c98f (diff)
Fix indentation from last patch.
Remove trailing whitespace. git-svn-id: https://gcc.gnu.org/svn/gcc/trunk@24062 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'gcc/real.c')
-rw-r--r--gcc/real.c308
1 files changed, 154 insertions, 154 deletions
diff --git a/gcc/real.c b/gcc/real.c
index cb3a3eb75d2..7261e29f629 100644
--- a/gcc/real.c
+++ b/gcc/real.c
@@ -89,7 +89,7 @@ netlib.att.com: netlib/cephes. */
both mean DFmode. In this case, the software floating-point
support available here is activated by writing
#define REAL_ARITHMETIC
- in tm.h.
+ in tm.h.
The case LONG_DOUBLE_TYPE_SIZE = 128 activates TFmode support
and may deactivate XFmode since `long double' is used to refer
@@ -461,7 +461,7 @@ static void esqrt PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
swapping ends if required, into output array of longs. The
result is normally passed to fprintf by the ASM_OUTPUT_ macros. */
-static void
+static void
endian (e, x, mode)
unsigned EMUSHORT e[];
long x[];
@@ -558,7 +558,7 @@ endian (e, x, mode)
/* This is the implementation of the REAL_ARITHMETIC macro. */
-void
+void
earith (value, icode, r1, r2)
REAL_VALUE_TYPE *value;
int icode;
@@ -637,7 +637,7 @@ PUT_REAL (v, value);
/* Truncate REAL_VALUE_TYPE toward zero to signed HOST_WIDE_INT.
implements REAL_VALUE_RNDZINT (x) (etrunci (x)). */
-REAL_VALUE_TYPE
+REAL_VALUE_TYPE
etrunci (x)
REAL_VALUE_TYPE x;
{
@@ -660,7 +660,7 @@ etrunci (x)
/* Truncate REAL_VALUE_TYPE toward zero to unsigned HOST_WIDE_INT;
implements REAL_VALUE_UNSIGNED_RNDZINT (x) (etruncui (x)). */
-REAL_VALUE_TYPE
+REAL_VALUE_TYPE
etruncui (x)
REAL_VALUE_TYPE x;
{
@@ -684,7 +684,7 @@ etruncui (x)
string to binary, rounding off as indicated by the machine_mode argument.
Then it promotes the rounded value to REAL_VALUE_TYPE. */
-REAL_VALUE_TYPE
+REAL_VALUE_TYPE
ereal_atof (s, t)
char *s;
enum machine_mode t;
@@ -734,7 +734,7 @@ ereal_atof (s, t)
/* Expansion of REAL_NEGATE. */
-REAL_VALUE_TYPE
+REAL_VALUE_TYPE
ereal_negate (x)
REAL_VALUE_TYPE x;
{
@@ -796,7 +796,7 @@ efixui (x)
/* REAL_VALUE_FROM_INT macro. */
-void
+void
ereal_from_int (d, i, j, mode)
REAL_VALUE_TYPE *d;
HOST_WIDE_INT i, j;
@@ -863,7 +863,7 @@ ereal_from_int (d, i, j, mode)
/* REAL_VALUE_FROM_UNSIGNED_INT macro. */
-void
+void
ereal_from_uint (d, i, j, mode)
REAL_VALUE_TYPE *d;
unsigned HOST_WIDE_INT i, j;
@@ -917,7 +917,7 @@ ereal_from_uint (d, i, j, mode)
/* REAL_VALUE_TO_INT macro. */
-void
+void
ereal_to_int (low, high, rr)
HOST_WIDE_INT *low, *high;
REAL_VALUE_TYPE rr;
@@ -1167,15 +1167,15 @@ debug_real (r)
REAL_VALUE_TO_DECIMAL (r, "%.20g", dstr);
fprintf (stderr, "%s", dstr);
-}
+}
/* The following routines convert REAL_VALUE_TYPE to the various floating
point formats that are meaningful to supported computers.
- The results are returned in 32-bit pieces, each piece stored in a `long'.
+ The results are returned in 32-bit pieces, each piece stored in a `long'.
This is so they can be printed by statements like
-
+
fprintf (file, "%lx, %lx", L[0], L[1]);
that will work on both narrow- and wide-word host computers. */
@@ -1184,7 +1184,7 @@ debug_real (r)
contains four 32-bit pieces of the result, in the order they would appear
in memory. */
-void
+void
etartdouble (r, l)
REAL_VALUE_TYPE r;
long l[];
@@ -1200,7 +1200,7 @@ etartdouble (r, l)
contains three 32-bit pieces of the result, in the order they would
appear in memory. */
-void
+void
etarldouble (r, l)
REAL_VALUE_TYPE r;
long l[];
@@ -1215,7 +1215,7 @@ etarldouble (r, l)
/* Convert R to a double precision value. The output array L contains two
32-bit pieces of the result, in the order they would appear in memory. */
-void
+void
etardouble (r, l)
REAL_VALUE_TYPE r;
long l[];
@@ -1313,11 +1313,11 @@ ereal_isneg (x)
most significant word first,
most significant bit is set)
ei[NI-1] low guard word (0x8000 bit is rounding place)
-
-
-
+
+
+
Routines for external format e-type numbers
-
+
asctoe (string, e) ASCII string to extended double e type
asctoe64 (string, &d) ASCII string to long double
asctoe53 (string, &d) ASCII string to double
@@ -1364,10 +1364,10 @@ ereal_isneg (x)
eisinf (e) 1 if e has maximum exponent (non-IEEE)
or is infinite (IEEE)
eisnan (e) 1 if e is a NaN
-
+
Routines for internal format exploded e-type numbers
-
+
eaddm (ai, bi) add significands, bi = bi + ai
ecleaz (ei) ei = 0
ecleazs (ei) set ei = 0 but leave its sign alone
@@ -1399,13 +1399,13 @@ ereal_isneg (x)
after each arithmetic operation.
Exception flags are NOT fully supported.
-
+
Signaling NaN's are NOT supported; they are treated the same
as quiet NaN's.
-
+
Define INFINITY for support of infinity; otherwise a
saturation arithmetic is implemented.
-
+
Define NANS for support of Not-a-Number items; otherwise the
arithmetic will never produce a NaN output, and might be confused
by a NaN input.
@@ -1413,7 +1413,7 @@ ereal_isneg (x)
either a or b is a NaN. This means asking `if (ecmp (a,b) < 0)'
may not be legitimate. Use `if (ecmp (a,b) == -1)' for `less than'
if in doubt.
-
+
Denormals are always supported here where appropriate (e.g., not
for conversion to DEC numbers). */
@@ -1426,7 +1426,7 @@ ereal_isneg (x)
mode, most floating point constants are given as arrays
of octal integers to eliminate decimal to binary conversion
errors that might be introduced by the compiler.
-
+
For computers, such as IBM PC, that follow the IEEE
Standard for Binary Floating Point Arithmetic (ANSI/IEEE
Std 754-1985), the symbol IEEE should be defined.
@@ -1434,20 +1434,20 @@ ereal_isneg (x)
are provided as arrays of hexadecimal 16 bit integers.
The endian-ness of generated values is controlled by
REAL_WORDS_BIG_ENDIAN.
-
+
To accommodate other types of computer arithmetic, all
constants are also provided in a normal decimal radix
which one can hope are correctly converted to a suitable
format by the available C language compiler. To invoke
this mode, the symbol UNK is defined.
-
+
An important difference among these modes is a predefined
set of machine arithmetic constants for each. The numbers
MACHEP (the machine roundoff error), MAXNUM (largest number
represented), and several other parameters are preset by
the configuration symbol. Check the file const.c to
ensure that these values are correct for your computer.
-
+
For ANSI C compatibility, define ANSIC equal to 1. Currently
this affects only the atan2 function and others that use it. */
@@ -1540,7 +1540,7 @@ extern int rndprc;
/* Clear out entire e-type number X. */
-static void
+static void
eclear (x)
register unsigned EMUSHORT *x;
{
@@ -1552,7 +1552,7 @@ eclear (x)
/* Move e-type number from A to B. */
-static void
+static void
emov (a, b)
register unsigned EMUSHORT *a, *b;
{
@@ -1566,18 +1566,18 @@ emov (a, b)
#if 0
/* Absolute value of e-type X. */
-static void
+static void
eabs (x)
unsigned EMUSHORT x[];
{
/* sign is top bit of last word of external format */
- x[NE - 1] &= 0x7fff;
+ x[NE - 1] &= 0x7fff;
}
#endif /* 0 */
/* Negate the e-type number X. */
-static void
+static void
eneg (x)
unsigned EMUSHORT x[];
{
@@ -1587,7 +1587,7 @@ eneg (x)
/* Return 1 if sign bit of e-type number X is nonzero, else zero. */
-static int
+static int
eisneg (x)
unsigned EMUSHORT x[];
{
@@ -1600,7 +1600,7 @@ eisneg (x)
/* Return 1 if e-type number X is infinity, else return zero. */
-static int
+static int
eisinf (x)
unsigned EMUSHORT x[];
{
@@ -1618,7 +1618,7 @@ eisinf (x)
/* Check if e-type number is not a number. The bit pattern is one that we
defined, so we know for sure how to detect it. */
-static int
+static int
eisnan (x)
unsigned EMUSHORT x[];
{
@@ -1642,7 +1642,7 @@ eisnan (x)
/* Fill e-type number X with infinity pattern (IEEE)
or largest possible number (non-IEEE). */
-static void
+static void
einfin (x)
register unsigned EMUSHORT *x;
{
@@ -1685,7 +1685,7 @@ einfin (x)
This generates Intel's quiet NaN pattern for extended real.
The exponent is 7fff, the leading mantissa word is c000. */
-static void
+static void
enan (x, sign)
register unsigned EMUSHORT *x;
int sign;
@@ -1700,7 +1700,7 @@ enan (x, sign)
/* Move in an e-type number A, converting it to exploded e-type B. */
-static void
+static void
emovi (a, b)
unsigned EMUSHORT *a, *b;
{
@@ -1747,7 +1747,7 @@ emovi (a, b)
/* Move out exploded e-type number A, converting it to e type B. */
-static void
+static void
emovo (a, b)
unsigned EMUSHORT *a, *b;
{
@@ -1786,7 +1786,7 @@ emovo (a, b)
/* Clear out exploded e-type number XI. */
-static void
+static void
ecleaz (xi)
register unsigned EMUSHORT *xi;
{
@@ -1798,7 +1798,7 @@ ecleaz (xi)
/* Clear out exploded e-type XI, but don't touch the sign. */
-static void
+static void
ecleazs (xi)
register unsigned EMUSHORT *xi;
{
@@ -1811,7 +1811,7 @@ ecleazs (xi)
/* Move exploded e-type number from A to B. */
-static void
+static void
emovz (a, b)
register unsigned EMUSHORT *a, *b;
{
@@ -1839,7 +1839,7 @@ einan (x)
/* Return nonzero if exploded e-type X is a NaN. */
-static int
+static int
eiisnan (x)
unsigned EMUSHORT x[];
{
@@ -1858,7 +1858,7 @@ eiisnan (x)
/* Return nonzero if sign of exploded e-type X is nonzero. */
-static int
+static int
eiisneg (x)
unsigned EMUSHORT x[];
{
@@ -1882,7 +1882,7 @@ eiinfin (x)
/* Return nonzero if exploded e-type X is infinite. */
-static int
+static int
eiisinf (x)
unsigned EMUSHORT x[];
{
@@ -1928,7 +1928,7 @@ ecmpm (a, b)
/* Shift significand of exploded e-type X down by 1 bit. */
-static void
+static void
eshdn1 (x)
register unsigned EMUSHORT *x;
{
@@ -1952,7 +1952,7 @@ eshdn1 (x)
/* Shift significand of exploded e-type X up by 1 bit. */
-static void
+static void
eshup1 (x)
register unsigned EMUSHORT *x;
{
@@ -1977,7 +1977,7 @@ eshup1 (x)
/* Shift significand of exploded e-type X down by 8 bits. */
-static void
+static void
eshdn8 (x)
register unsigned EMUSHORT *x;
{
@@ -1998,7 +1998,7 @@ eshdn8 (x)
/* Shift significand of exploded e-type X up by 8 bits. */
-static void
+static void
eshup8 (x)
register unsigned EMUSHORT *x;
{
@@ -2020,7 +2020,7 @@ eshup8 (x)
/* Shift significand of exploded e-type X up by 16 bits. */
-static void
+static void
eshup6 (x)
register unsigned EMUSHORT *x;
{
@@ -2038,7 +2038,7 @@ eshup6 (x)
/* Shift significand of exploded e-type X down by 16 bits. */
-static void
+static void
eshdn6 (x)
register unsigned EMUSHORT *x;
{
@@ -2056,7 +2056,7 @@ eshdn6 (x)
/* Add significands of exploded e-type X and Y. X + Y replaces Y. */
-static void
+static void
eaddm (x, y)
unsigned EMUSHORT *x, *y;
{
@@ -2082,7 +2082,7 @@ eaddm (x, y)
/* Subtract significands of exploded e-type X and Y. Y - X replaces Y. */
-static void
+static void
esubm (x, y)
unsigned EMUSHORT *x, *y;
{
@@ -2116,7 +2116,7 @@ static unsigned EMUSHORT equot[NI];
/* Divide significands */
-int
+int
edivm (den, num)
unsigned EMUSHORT den[], num[];
{
@@ -2214,7 +2214,7 @@ edivm (den, num)
/* Multiply significands */
-int
+int
emulm (a, b)
unsigned EMUSHORT a[], b[];
{
@@ -2420,15 +2420,15 @@ emulm (a, b)
The internal format number to be rounded is S.
Input LOST is 0 if the value is exact. This is the so-called sticky bit.
-
+
Input SUBFLG indicates whether the number was obtained
by a subtraction operation. In that case if LOST is nonzero
then the number is slightly smaller than indicated.
-
+
Input EXP is the biased exponent, which may be negative.
the exponent field of S is ignored but is replaced by
EXP as adjusted by normalization and rounding.
-
+
Input RCNTRL is the rounding control. If it is nonzero, the
returned value will be rounded to RNDPRC bits.
@@ -2437,7 +2437,7 @@ emulm (a, b)
adjusted to be the actual value it would have after conversion to
the final floating point type. This adjustment has been
implemented for all type conversions (etoe53, etc.) and decimal
- conversions, but not for the arithmetic functions (eadd, etc.).
+ conversions, but not for the arithmetic functions (eadd, etc.).
Data types having standard 15-bit exponents are not affected by
this, but SFmode and DFmode are affected. For example, ediv with
rndprc = 24 will not round correctly to 24-bit precision if the
@@ -2451,7 +2451,7 @@ static unsigned EMUSHORT rebit = 0;
static int re = 0;
static unsigned EMUSHORT rbit[NI];
-static void
+static void
emdnorm (s, lost, subflg, exp, rcntrl)
unsigned EMUSHORT s[];
int lost;
@@ -2667,7 +2667,7 @@ emdnorm (s, lost, subflg, exp, rcntrl)
static int subflg = 0;
-static void
+static void
esub (a, b, c)
unsigned EMUSHORT *a, *b, *c;
{
@@ -2699,7 +2699,7 @@ esub (a, b, c)
/* Add. C = A + B, all e type. */
-static void
+static void
eadd (a, b, c)
unsigned EMUSHORT *a, *b, *c;
{
@@ -2732,7 +2732,7 @@ eadd (a, b, c)
/* Arithmetic common to both addition and subtraction. */
-static void
+static void
eadd1 (a, b, c)
unsigned EMUSHORT *a, *b, *c;
{
@@ -2843,7 +2843,7 @@ eadd1 (a, b, c)
/* Divide: C = B/A, all e type. */
-static void
+static void
ediv (a, b, c)
unsigned EMUSHORT *a, *b, *c;
{
@@ -2947,7 +2947,7 @@ ediv (a, b, c)
/* Multiply e-types A and B, return e-type product C. */
-static void
+static void
emul (a, b, c)
unsigned EMUSHORT *a, *b, *c;
{
@@ -3137,7 +3137,7 @@ e53toe (pe, y)
#endif
eshift (yy, -5);
if (denorm)
- {
+ {
/* If zero exponent, then normalize the significand. */
if ((k = enormlz (yy)) > NBITS)
ecleazs (yy);
@@ -3152,7 +3152,7 @@ e53toe (pe, y)
/* Convert double extended precision float PE to e type Y. */
-static void
+static void
e64toe (pe, y)
unsigned EMUSHORT *pe, *y;
{
@@ -3274,7 +3274,7 @@ bigend_nan:
/* Convert 128-bit long double precision float PE to e type Y. */
-static void
+static void
e113toe (pe, y)
unsigned EMUSHORT *pe, *y;
{
@@ -3359,7 +3359,7 @@ e113toe (pe, y)
/* Convert single precision float PE to e type Y. */
-static void
+static void
e24toe (pe, y)
unsigned EMUSHORT *pe, *y;
{
@@ -3462,7 +3462,7 @@ e24toe (pe, y)
/* Convert e-type X to IEEE 128-bit long double format E. */
-static void
+static void
etoe113 (x, e)
unsigned EMUSHORT *x, *e;
{
@@ -3495,7 +3495,7 @@ etoe113 (x, e)
/* Convert exploded e-type X, that has already been rounded to
113-bit precision, to IEEE 128-bit long double format Y. */
-static void
+static void
toe113 (a, b)
unsigned EMUSHORT *a, *b;
{
@@ -3553,7 +3553,7 @@ toe113 (a, b)
/* Convert e-type X to IEEE double extended format E. */
-static void
+static void
etoe64 (x, e)
unsigned EMUSHORT *x, *e;
{
@@ -3587,7 +3587,7 @@ etoe64 (x, e)
/* Convert exploded e-type X, that has already been rounded to
64-bit precision, to IEEE double extended format Y. */
-static void
+static void
toe64 (a, b)
unsigned EMUSHORT *a, *b;
{
@@ -3703,7 +3703,7 @@ toe64 (a, b)
#ifdef DEC
/* Convert e-type X to DEC-format double E. */
-static void
+static void
etoe53 (x, e)
unsigned EMUSHORT *x, *e;
{
@@ -3713,7 +3713,7 @@ etoe53 (x, e)
/* Convert exploded e-type X, that has already been rounded to
56-bit double precision, to DEC double Y. */
-static void
+static void
toe53 (x, y)
unsigned EMUSHORT *x, *y;
{
@@ -3724,7 +3724,7 @@ toe53 (x, y)
#ifdef IBM
/* Convert e-type X to IBM 370-format double E. */
-static void
+static void
etoe53 (x, e)
unsigned EMUSHORT *x, *e;
{
@@ -3734,7 +3734,7 @@ etoe53 (x, e)
/* Convert exploded e-type X, that has already been rounded to
56-bit precision, to IBM 370 double Y. */
-static void
+static void
toe53 (x, y)
unsigned EMUSHORT *x, *y;
{
@@ -3745,7 +3745,7 @@ toe53 (x, y)
#ifdef C4X
/* Convert e-type X to C4X-format long double E. */
-static void
+static void
etoe53 (x, e)
unsigned EMUSHORT *x, *e;
{
@@ -3755,7 +3755,7 @@ etoe53 (x, e)
/* Convert exploded e-type X, that has already been rounded to
56-bit precision, to IBM 370 double Y. */
-static void
+static void
toe53 (x, y)
unsigned EMUSHORT *x, *y;
{
@@ -3766,7 +3766,7 @@ toe53 (x, y)
/* Convert e-type X to IEEE double E. */
-static void
+static void
etoe53 (x, e)
unsigned EMUSHORT *x, *e;
{
@@ -3800,7 +3800,7 @@ etoe53 (x, e)
/* Convert exploded e-type X, that has already been rounded to
53-bit precision, to IEEE double Y. */
-static void
+static void
toe53 (x, y)
unsigned EMUSHORT *x, *y;
{
@@ -3897,7 +3897,7 @@ toe53 (x, y)
#ifdef IBM
/* Convert e-type X to IBM 370 float E. */
-static void
+static void
etoe24 (x, e)
unsigned EMUSHORT *x, *e;
{
@@ -3907,7 +3907,7 @@ etoe24 (x, e)
/* Convert exploded e-type X, that has already been rounded to
float precision, to IBM 370 float Y. */
-static void
+static void
toe24 (x, y)
unsigned EMUSHORT *x, *y;
{
@@ -3919,7 +3919,7 @@ toe24 (x, y)
#ifdef C4X
/* Convert e-type X to C4X float E. */
-static void
+static void
etoe24 (x, e)
unsigned EMUSHORT *x, *e;
{
@@ -3929,7 +3929,7 @@ etoe24 (x, e)
/* Convert exploded e-type X, that has already been rounded to
float precision, to IBM 370 float Y. */
-static void
+static void
toe24 (x, y)
unsigned EMUSHORT *x, *y;
{
@@ -3940,7 +3940,7 @@ toe24 (x, y)
/* Convert e-type X to IEEE float E. DEC float is the same as IEEE float. */
-static void
+static void
etoe24 (x, e)
unsigned EMUSHORT *x, *e;
{
@@ -3974,7 +3974,7 @@ etoe24 (x, e)
/* Convert exploded e-type X, that has already been rounded to
float precision, to IEEE float Y. */
-static void
+static void
toe24 (x, y)
unsigned EMUSHORT *x, *y;
{
@@ -4066,13 +4066,13 @@ toe24 (x, y)
#endif /* not C4X */
#endif /* not IBM */
-/* Compare two e type numbers.
+/* Compare two e type numbers.
Return +1 if a > b
0 if a == b
-1 if a < b
-2 if either a or b is a NaN. */
-static int
+static int
ecmp (a, b)
unsigned EMUSHORT *a, *b;
{
@@ -4135,7 +4135,7 @@ ecmp (a, b)
#if 0
/* Find e-type nearest integer to X, as floor (X + 0.5). */
-static void
+static void
eround (x, y)
unsigned EMUSHORT *x, *y;
{
@@ -4146,7 +4146,7 @@ eround (x, y)
/* Convert HOST_WIDE_INT LP to e type Y. */
-static void
+static void
ltoe (lp, y)
HOST_WIDE_INT *lp;
unsigned EMUSHORT *y;
@@ -4188,7 +4188,7 @@ ltoe (lp, y)
/* Convert unsigned HOST_WIDE_INT LP to e type Y. */
-static void
+static void
ultoe (lp, y)
unsigned HOST_WIDE_INT *lp;
unsigned EMUSHORT *y;
@@ -4228,7 +4228,7 @@ ultoe (lp, y)
The output e-type fraction FRAC is the positive fractional
part of abs (X). */
-static void
+static void
eifrac (x, i, frac)
unsigned EMUSHORT *x;
HOST_WIDE_INT *i;
@@ -4311,7 +4311,7 @@ eifrac (x, i, frac)
FRAC of e-type X. A negative input yields integer output = 0 but
correct fraction. */
-static void
+static void
euifrac (x, i, frac)
unsigned EMUSHORT *x;
unsigned HOST_WIDE_INT *i;
@@ -4380,7 +4380,7 @@ euifrac (x, i, frac)
/* Shift the significand of exploded e-type X up or down by SC bits. */
-static int
+static int
eshift (x, sc)
unsigned EMUSHORT *x;
int sc;
@@ -4446,7 +4446,7 @@ eshift (x, sc)
/* Shift normalize the significand area of exploded e-type X.
Return the shift count (up = positive). */
-static int
+static int
enormlz (x)
unsigned EMUSHORT x[];
{
@@ -4618,7 +4618,7 @@ static unsigned EMUSHORT emtens[NTEN + 1][NE] =
/* Convert float value X to ASCII string STRING with NDIG digits after
the decimal point. */
-static void
+static void
e24toasc (x, string, ndigs)
unsigned EMUSHORT x[];
char *string;
@@ -4633,7 +4633,7 @@ e24toasc (x, string, ndigs)
/* Convert double value X to ASCII string STRING with NDIG digits after
the decimal point. */
-static void
+static void
e53toasc (x, string, ndigs)
unsigned EMUSHORT x[];
char *string;
@@ -4648,7 +4648,7 @@ e53toasc (x, string, ndigs)
/* Convert double extended value X to ASCII string STRING with NDIG digits
after the decimal point. */
-static void
+static void
e64toasc (x, string, ndigs)
unsigned EMUSHORT x[];
char *string;
@@ -4663,7 +4663,7 @@ e64toasc (x, string, ndigs)
/* Convert 128-bit long double value X to ASCII string STRING with NDIG digits
after the decimal point. */
-static void
+static void
e113toasc (x, string, ndigs)
unsigned EMUSHORT x[];
char *string;
@@ -4681,7 +4681,7 @@ e113toasc (x, string, ndigs)
static char wstring[80]; /* working storage for ASCII output */
-static void
+static void
etoasc (x, string, ndigs)
unsigned EMUSHORT x[];
char *string;
@@ -4999,7 +4999,7 @@ etoasc (x, string, ndigs)
/* Convert ASCII string S to single precision float value Y. */
-static void
+static void
asctoe24 (s, y)
char *s;
unsigned EMUSHORT *y;
@@ -5010,7 +5010,7 @@ asctoe24 (s, y)
/* Convert ASCII string S to double precision value Y. */
-static void
+static void
asctoe53 (s, y)
char *s;
unsigned EMUSHORT *y;
@@ -5029,7 +5029,7 @@ asctoe53 (s, y)
/* Convert ASCII string S to double extended value Y. */
-static void
+static void
asctoe64 (s, y)
char *s;
unsigned EMUSHORT *y;
@@ -5039,7 +5039,7 @@ asctoe64 (s, y)
/* Convert ASCII string S to 128-bit long double Y. */
-static void
+static void
asctoe113 (s, y)
char *s;
unsigned EMUSHORT *y;
@@ -5049,7 +5049,7 @@ asctoe113 (s, y)
/* Convert ASCII string S to e type Y. */
-static void
+static void
asctoe (s, y)
char *s;
unsigned EMUSHORT *y;
@@ -5060,7 +5060,7 @@ asctoe (s, y)
/* Convert ASCII string SS to e type Y, with a specified rounding precision
of OPREC bits. BASE is 16 for C9X hexadecimal floating constants. */
-static void
+static void
asctoeg (ss, y, oprec)
char *ss;
unsigned EMUSHORT *y;
@@ -5106,7 +5106,7 @@ asctoeg (ss, y, oprec)
nxtcom:
if (*s >= '0' && *s <= '9')
- k = *s - '0';
+ k = *s - '0';
else if (*s >= 'a')
k = 10 + *s - 'a';
else
@@ -5149,7 +5149,7 @@ asctoeg (ss, y, oprec)
{
if (base == 16)
{
- if (decflg)
+ if (decflg)
nexp += 4; /* count digits after decimal point */
eshup1 (yy); /* multiply current number by 16 */
@@ -5160,13 +5160,13 @@ asctoeg (ss, y, oprec)
else
{
if (decflg)
- nexp += 1; /* count digits after decimal point */
+ nexp += 1; /* count digits after decimal point */
- eshup1 (yy); /* multiply current number by 10 */
- emovz (yy, xt);
- eshup1 (xt);
- eshup1 (xt);
- eaddm (xt, yy);
+ eshup1 (yy); /* multiply current number by 10 */
+ emovz (yy, xt);
+ eshup1 (xt);
+ eshup1 (xt);
+ eaddm (xt, yy);
}
/* Insert the current digit. */
ecleaz (xt);
@@ -5181,10 +5181,10 @@ asctoeg (ss, y, oprec)
if (decflg == 0)
{
if (base == 10)
- nexp -= 1;
+ nexp -= 1;
else
nexp -= 4;
- }
+ }
}
prec += 1;
goto donchr;
@@ -5472,7 +5472,7 @@ static unsigned EMUSHORT bmask[] =
0x0000,
};
-static void
+static void
efloor (x, y)
unsigned EMUSHORT x[], y[];
{
@@ -5523,7 +5523,7 @@ efloor (x, y)
/* Return S and EXP such that S * 2^EXP = X and .5 <= S < 1.
For example, 1.1 = 0.55 * 2^1. */
-static void
+static void
efrexp (x, exp, s)
unsigned EMUSHORT x[];
int *exp;
@@ -5548,7 +5548,7 @@ efrexp (x, exp, s)
/* Return e type Y = X * 2^PWR2. */
-static void
+static void
eldexp (x, pwr2, y)
unsigned EMUSHORT x[];
int pwr2;
@@ -5571,7 +5571,7 @@ eldexp (x, pwr2, y)
/* C = remainder after dividing B by A, all e type values.
Least significant integer quotient bits left in EQUOT. */
-static void
+static void
eremain (a, b, c)
unsigned EMUSHORT a[], b[], c[];
{
@@ -5608,7 +5608,7 @@ eremain (a, b, c)
/* Return quotient of exploded e-types NUM / DEN in EQUOT,
remainder in NUM. */
-static void
+static void
eiremain (den, num)
unsigned EMUSHORT den[], num[];
{
@@ -5641,7 +5641,7 @@ eiremain (den, num)
CODE is one of the following:
Mnemonic Value Significance
-
+
DOMAIN 1 argument domain error
SING 2 function singularity
OVERFLOW 3 overflow range error
@@ -5651,7 +5651,7 @@ eiremain (den, num)
INVALID 7 NaN - producing operation
EDOM 33 Unix domain error code
ERANGE 34 Unix range error code
-
+
The order of appearance of the following messages is bound to the
error codes defined above. */
@@ -5671,7 +5671,7 @@ static char *ermsg[NMSGS] =
int merror = 0;
extern int merror;
-static void
+static void
mtherr (name, code)
char *name;
int code;
@@ -5694,7 +5694,7 @@ mtherr (name, code)
#ifdef DEC
/* Convert DEC double precision D to e type E. */
-static void
+static void
dectoe (d, e)
unsigned EMUSHORT *d;
unsigned EMUSHORT *e;
@@ -5734,7 +5734,7 @@ dectoe (d, e)
/* Convert e type X to DEC double precision D. */
-static void
+static void
etodec (x, d)
unsigned EMUSHORT *x, *d;
{
@@ -5756,7 +5756,7 @@ etodec (x, d)
/* Convert exploded e-type X, that has already been rounded to
56-bit precision, to DEC format double Y. */
-static void
+static void
todec (x, y)
unsigned EMUSHORT *x, *y;
{
@@ -5802,7 +5802,7 @@ todec (x, y)
#ifdef IBM
/* Convert IBM single/double precision to e type. */
-static void
+static void
ibmtoe (d, e, mode)
unsigned EMUSHORT *d;
unsigned EMUSHORT *e;
@@ -5846,7 +5846,7 @@ ibmtoe (d, e, mode)
/* Convert e type to IBM single/double precision. */
-static void
+static void
etoibm (x, d, mode)
unsigned EMUSHORT *x, *d;
enum machine_mode mode;
@@ -5865,7 +5865,7 @@ etoibm (x, d, mode)
toibm (xi, d, mode);
}
-static void
+static void
toibm (x, y, mode)
unsigned EMUSHORT *x, *y;
enum machine_mode mode;
@@ -5923,7 +5923,7 @@ toibm (x, y, mode)
#ifdef C4X
/* Convert C4X single/double precision to e type. */
-static void
+static void
c4xtoe (d, e, mode)
unsigned EMUSHORT *d;
unsigned EMUSHORT *e;
@@ -5961,7 +5961,7 @@ c4xtoe (d, e, mode)
{
isnegative = FALSE;
}
-
+
r >>= 8; /* Shift exponent word down 8 bits. */
if (r & 0x80) /* Make the exponent negative if it is. */
{
@@ -5973,7 +5973,7 @@ c4xtoe (d, e, mode)
/* Now do the high order mantissa. We don't "or" on the high bit
because it is 2 (not 1) and is handled a little differently
below. */
- y[M] = d[0] & 0x7f;
+ y[M] = d[0] & 0x7f;
y[M+1] = d[1];
if (mode != QFmode) /* There are only 2 words in QFmode. */
@@ -6018,11 +6018,11 @@ c4xtoe (d, e, mode)
{
/* Add our e type exponent offset to form our exponent. */
r += EXONE;
- y[1] = r;
+ y[1] = r;
/* Now do the high order mantissa strip off the exponent and sign
bits and add the high 1 bit. */
- y[M] = (d[0] & 0x7f) | 0x80;
+ y[M] = (d[0] & 0x7f) | 0x80;
y[M+1] = d[1];
if (mode != QFmode) /* There are only 2 words in QFmode. */
@@ -6039,7 +6039,7 @@ c4xtoe (d, e, mode)
/* Convert e type to C4X single/double precision. */
-static void
+static void
etoc4x (x, d, mode)
unsigned EMUSHORT *x, *d;
enum machine_mode mode;
@@ -6061,7 +6061,7 @@ etoc4x (x, d, mode)
toc4x (xi, d, mode);
}
-static void
+static void
toc4x (x, y, mode)
unsigned EMUSHORT *x, *y;
enum machine_mode mode;
@@ -6069,7 +6069,7 @@ toc4x (x, y, mode)
int i;
int v;
int carry;
-
+
/* Short-circuit the zero case */
if ((x[0] == 0) /* Zero exponent and sign */
&& (x[1] == 0)
@@ -6088,17 +6088,17 @@ toc4x (x, y, mode)
}
return;
}
-
+
*y = 0;
-
+
/* Negative number require a two's complement conversion of the
mantissa. */
if (x[0])
{
*y = 0x0080;
-
+
i = ((int) x[1]) - 0x7f;
-
+
/* Now add 1 to the inverted data to do the two's complement. */
if (mode != QFmode)
v = 4 + M;
@@ -6118,7 +6118,7 @@ toc4x (x, y, mode)
}
v--;
}
-
+
/* The following is a special case. The C4X negative float requires
a zero in the high bit (because the format is (2 - x) x 2^m), so
if a one is in that bit, we have to shift left one to get rid
@@ -6150,11 +6150,11 @@ toc4x (x, y, mode)
#endif
return;
}
-
+
y[0] |= ((i & 0xff) << 8);
-
+
eshift (x, 8);
-
+
y[0] |= x[M] & 0x7f;
y[1] = x[M + 1];
if (mode != QFmode)
@@ -6503,7 +6503,7 @@ ditoe (di, e)
/* Convert e-type to unsigned 64-bit int. */
-static void
+static void
etoudi (x, i)
unsigned EMUSHORT *x;
unsigned EMUSHORT *i;
@@ -6586,7 +6586,7 @@ noshift:
/* Convert e-type to signed 64-bit int. */
-static void
+static void
etodi (x, i)
unsigned EMUSHORT *x;
unsigned EMUSHORT *i;
@@ -6688,7 +6688,7 @@ etodi (x, i)
static int esqinited = 0;
static unsigned short sqrndbit[NI];
-static void
+static void
esqrt (x, y)
unsigned EMUSHORT *x, *y;
{
@@ -6809,7 +6809,7 @@ significand_size (mode)
switch (GET_MODE_BITSIZE (mode))
{
case 32:
-
+
#if TARGET_FLOAT_FORMAT == C4X_FLOAT_FORMAT
return 56;
#endif