aboutsummaryrefslogtreecommitdiff
path: root/gcc/resource.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/resource.c')
-rw-r--r--gcc/resource.c1266
1 files changed, 1266 insertions, 0 deletions
diff --git a/gcc/resource.c b/gcc/resource.c
new file mode 100644
index 00000000000..9f702a536cd
--- /dev/null
+++ b/gcc/resource.c
@@ -0,0 +1,1266 @@
+/* Definitions for computing resource usage of specific insns.
+ Copyright (C) 1999 Free Software Foundation, Inc.
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING. If not, write to
+the Free Software Foundation, 59 Temple Place - Suite 330,
+Boston, MA 02111-1307, USA. */
+
+#include "config.h"
+#include "rtl.h"
+#include "hard-reg-set.h"
+#include "system.h"
+#include "basic-block.h"
+#include "regs.h"
+#include "flags.h"
+#include "output.h"
+#include "resource.h"
+
+/* This structure is used to record liveness information at the targets or
+ fallthrough insns of branches. We will most likely need the information
+ at targets again, so save them in a hash table rather than recomputing them
+ each time. */
+
+struct target_info
+{
+ int uid; /* INSN_UID of target. */
+ struct target_info *next; /* Next info for same hash bucket. */
+ HARD_REG_SET live_regs; /* Registers live at target. */
+ int block; /* Basic block number containing target. */
+ int bb_tick; /* Generation count of basic block info. */
+};
+
+#define TARGET_HASH_PRIME 257
+
+/* Indicates what resources are required at the beginning of the epilogue. */
+static struct resources start_of_epilogue_needs;
+
+/* Indicates what resources are required at function end. */
+static struct resources end_of_function_needs;
+
+/* Define the hash table itself. */
+static struct target_info **target_hash_table = NULL;
+
+/* For each basic block, we maintain a generation number of its basic
+ block info, which is updated each time we move an insn from the
+ target of a jump. This is the generation number indexed by block
+ number. */
+
+static int *bb_ticks;
+
+/* Marks registers possibly live at the current place being scanned by
+ mark_target_live_regs. Used only by next two function. */
+
+static HARD_REG_SET current_live_regs;
+
+/* Marks registers for which we have seen a REG_DEAD note but no assignment.
+ Also only used by the next two functions. */
+
+static HARD_REG_SET pending_dead_regs;
+
+static void update_live_status PROTO ((rtx, rtx));
+static int find_basic_block PROTO ((rtx));
+static rtx next_insn_no_annul PROTO ((rtx));
+static rtx find_dead_or_set_registers PROTO ((rtx, struct resources*,
+ rtx*, int, struct resources,
+ struct resources));
+
+/* Utility function called from mark_target_live_regs via note_stores.
+ It deadens any CLOBBERed registers and livens any SET registers. */
+
+static void
+update_live_status (dest, x)
+ rtx dest;
+ rtx x;
+{
+ int first_regno, last_regno;
+ int i;
+
+ if (GET_CODE (dest) != REG
+ && (GET_CODE (dest) != SUBREG || GET_CODE (SUBREG_REG (dest)) != REG))
+ return;
+
+ if (GET_CODE (dest) == SUBREG)
+ first_regno = REGNO (SUBREG_REG (dest)) + SUBREG_WORD (dest);
+ else
+ first_regno = REGNO (dest);
+
+ last_regno = first_regno + HARD_REGNO_NREGS (first_regno, GET_MODE (dest));
+
+ if (GET_CODE (x) == CLOBBER)
+ for (i = first_regno; i < last_regno; i++)
+ CLEAR_HARD_REG_BIT (current_live_regs, i);
+ else
+ for (i = first_regno; i < last_regno; i++)
+ {
+ SET_HARD_REG_BIT (current_live_regs, i);
+ CLEAR_HARD_REG_BIT (pending_dead_regs, i);
+ }
+}
+/* Find the number of the basic block that starts closest to INSN. Return -1
+ if we couldn't find such a basic block. */
+
+static int
+find_basic_block (insn)
+ rtx insn;
+{
+ int i;
+
+ /* Scan backwards to the previous BARRIER. Then see if we can find a
+ label that starts a basic block. Return the basic block number. */
+
+ for (insn = prev_nonnote_insn (insn);
+ insn && GET_CODE (insn) != BARRIER;
+ insn = prev_nonnote_insn (insn))
+ ;
+
+ /* The start of the function is basic block zero. */
+ if (insn == 0)
+ return 0;
+
+ /* See if any of the upcoming CODE_LABELs start a basic block. If we reach
+ anything other than a CODE_LABEL or note, we can't find this code. */
+ for (insn = next_nonnote_insn (insn);
+ insn && GET_CODE (insn) == CODE_LABEL;
+ insn = next_nonnote_insn (insn))
+ {
+ for (i = 0; i < n_basic_blocks; i++)
+ if (insn == BLOCK_HEAD (i))
+ return i;
+ }
+
+ return -1;
+}
+
+/* Similar to next_insn, but ignores insns in the delay slots of
+ an annulled branch. */
+
+static rtx
+next_insn_no_annul (insn)
+ rtx insn;
+{
+ if (insn)
+ {
+ /* If INSN is an annulled branch, skip any insns from the target
+ of the branch. */
+ if (INSN_ANNULLED_BRANCH_P (insn)
+ && NEXT_INSN (PREV_INSN (insn)) != insn)
+ while (INSN_FROM_TARGET_P (NEXT_INSN (insn)))
+ insn = NEXT_INSN (insn);
+
+ insn = NEXT_INSN (insn);
+ if (insn && GET_CODE (insn) == INSN
+ && GET_CODE (PATTERN (insn)) == SEQUENCE)
+ insn = XVECEXP (PATTERN (insn), 0, 0);
+ }
+
+ return insn;
+}
+
+/* Given X, some rtl, and RES, a pointer to a `struct resource', mark
+ which resources are references by the insn. If INCLUDE_DELAYED_EFFECTS
+ is TRUE, resources used by the called routine will be included for
+ CALL_INSNs. */
+
+void
+mark_referenced_resources (x, res, include_delayed_effects)
+ register rtx x;
+ register struct resources *res;
+ register int include_delayed_effects;
+{
+ register enum rtx_code code = GET_CODE (x);
+ register int i, j;
+ register char *format_ptr;
+
+ /* Handle leaf items for which we set resource flags. Also, special-case
+ CALL, SET and CLOBBER operators. */
+ switch (code)
+ {
+ case CONST:
+ case CONST_INT:
+ case CONST_DOUBLE:
+ case PC:
+ case SYMBOL_REF:
+ case LABEL_REF:
+ return;
+
+ case SUBREG:
+ if (GET_CODE (SUBREG_REG (x)) != REG)
+ mark_referenced_resources (SUBREG_REG (x), res, 0);
+ else
+ {
+ int regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
+ int last_regno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
+ for (i = regno; i < last_regno; i++)
+ SET_HARD_REG_BIT (res->regs, i);
+ }
+ return;
+
+ case REG:
+ for (i = 0; i < HARD_REGNO_NREGS (REGNO (x), GET_MODE (x)); i++)
+ SET_HARD_REG_BIT (res->regs, REGNO (x) + i);
+ return;
+
+ case MEM:
+ /* If this memory shouldn't change, it really isn't referencing
+ memory. */
+ if (RTX_UNCHANGING_P (x))
+ res->unch_memory = 1;
+ else
+ res->memory = 1;
+ res->volatil = MEM_VOLATILE_P (x);
+
+ /* Mark registers used to access memory. */
+ mark_referenced_resources (XEXP (x, 0), res, 0);
+ return;
+
+ case CC0:
+ res->cc = 1;
+ return;
+
+ case UNSPEC_VOLATILE:
+ case ASM_INPUT:
+ /* Traditional asm's are always volatile. */
+ res->volatil = 1;
+ return;
+
+ case TRAP_IF:
+ res->volatil = 1;
+ break;
+
+ case ASM_OPERANDS:
+ res->volatil = MEM_VOLATILE_P (x);
+
+ /* For all ASM_OPERANDS, we must traverse the vector of input operands.
+ We can not just fall through here since then we would be confused
+ by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
+ traditional asms unlike their normal usage. */
+
+ for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
+ mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, 0);
+ return;
+
+ case CALL:
+ /* The first operand will be a (MEM (xxx)) but doesn't really reference
+ memory. The second operand may be referenced, though. */
+ mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, 0);
+ mark_referenced_resources (XEXP (x, 1), res, 0);
+ return;
+
+ case SET:
+ /* Usually, the first operand of SET is set, not referenced. But
+ registers used to access memory are referenced. SET_DEST is
+ also referenced if it is a ZERO_EXTRACT or SIGN_EXTRACT. */
+
+ mark_referenced_resources (SET_SRC (x), res, 0);
+
+ x = SET_DEST (x);
+ if (GET_CODE (x) == SIGN_EXTRACT || GET_CODE (x) == ZERO_EXTRACT)
+ mark_referenced_resources (x, res, 0);
+ else if (GET_CODE (x) == SUBREG)
+ x = SUBREG_REG (x);
+ if (GET_CODE (x) == MEM)
+ mark_referenced_resources (XEXP (x, 0), res, 0);
+ return;
+
+ case CLOBBER:
+ return;
+
+ case CALL_INSN:
+ if (include_delayed_effects)
+ {
+ /* A CALL references memory, the frame pointer if it exists, the
+ stack pointer, any global registers and any registers given in
+ USE insns immediately in front of the CALL.
+
+ However, we may have moved some of the parameter loading insns
+ into the delay slot of this CALL. If so, the USE's for them
+ don't count and should be skipped. */
+ rtx insn = PREV_INSN (x);
+ rtx sequence = 0;
+ int seq_size = 0;
+ rtx next = NEXT_INSN (x);
+ int i;
+
+ /* If we are part of a delay slot sequence, point at the SEQUENCE. */
+ if (NEXT_INSN (insn) != x)
+ {
+ next = NEXT_INSN (NEXT_INSN (insn));
+ sequence = PATTERN (NEXT_INSN (insn));
+ seq_size = XVECLEN (sequence, 0);
+ if (GET_CODE (sequence) != SEQUENCE)
+ abort ();
+ }
+
+ res->memory = 1;
+ SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
+ if (frame_pointer_needed)
+ {
+ SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
+#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
+ SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
+#endif
+ }
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ if (global_regs[i])
+ SET_HARD_REG_BIT (res->regs, i);
+
+ /* Check for a NOTE_INSN_SETJMP. If it exists, then we must
+ assume that this call can need any register.
+
+ This is done to be more conservative about how we handle setjmp.
+ We assume that they both use and set all registers. Using all
+ registers ensures that a register will not be considered dead
+ just because it crosses a setjmp call. A register should be
+ considered dead only if the setjmp call returns non-zero. */
+ if (next && GET_CODE (next) == NOTE
+ && NOTE_LINE_NUMBER (next) == NOTE_INSN_SETJMP)
+ SET_HARD_REG_SET (res->regs);
+
+ {
+ rtx link;
+
+ for (link = CALL_INSN_FUNCTION_USAGE (x);
+ link;
+ link = XEXP (link, 1))
+ if (GET_CODE (XEXP (link, 0)) == USE)
+ {
+ for (i = 1; i < seq_size; i++)
+ {
+ rtx slot_pat = PATTERN (XVECEXP (sequence, 0, i));
+ if (GET_CODE (slot_pat) == SET
+ && rtx_equal_p (SET_DEST (slot_pat),
+ SET_DEST (XEXP (link, 0))))
+ break;
+ }
+ if (i >= seq_size)
+ mark_referenced_resources (SET_DEST (XEXP (link, 0)),
+ res, 0);
+ }
+ }
+ }
+
+ /* ... fall through to other INSN processing ... */
+
+ case INSN:
+ case JUMP_INSN:
+
+#ifdef INSN_REFERENCES_ARE_DELAYED
+ if (! include_delayed_effects
+ && INSN_REFERENCES_ARE_DELAYED (x))
+ return;
+#endif
+
+ /* No special processing, just speed up. */
+ mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
+ return;
+
+ default:
+ break;
+ }
+
+ /* Process each sub-expression and flag what it needs. */
+ format_ptr = GET_RTX_FORMAT (code);
+ for (i = 0; i < GET_RTX_LENGTH (code); i++)
+ switch (*format_ptr++)
+ {
+ case 'e':
+ mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
+ break;
+
+ case 'E':
+ for (j = 0; j < XVECLEN (x, i); j++)
+ mark_referenced_resources (XVECEXP (x, i, j), res,
+ include_delayed_effects);
+ break;
+ }
+}
+
+/* A subroutine of mark_target_live_regs. Search forward from TARGET
+ looking for registers that are set before they are used. These are dead.
+ Stop after passing a few conditional jumps, and/or a small
+ number of unconditional branches. */
+
+static rtx
+find_dead_or_set_registers (target, res, jump_target, jump_count, set, needed)
+ rtx target;
+ struct resources *res;
+ rtx *jump_target;
+ int jump_count;
+ struct resources set, needed;
+{
+ HARD_REG_SET scratch;
+ rtx insn, next;
+ rtx jump_insn = 0;
+ int i;
+
+ for (insn = target; insn; insn = next)
+ {
+ rtx this_jump_insn = insn;
+
+ next = NEXT_INSN (insn);
+ switch (GET_CODE (insn))
+ {
+ case CODE_LABEL:
+ /* After a label, any pending dead registers that weren't yet
+ used can be made dead. */
+ AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
+ AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
+ CLEAR_HARD_REG_SET (pending_dead_regs);
+
+ continue;
+
+ case BARRIER:
+ case NOTE:
+ continue;
+
+ case INSN:
+ if (GET_CODE (PATTERN (insn)) == USE)
+ {
+ /* If INSN is a USE made by update_block, we care about the
+ underlying insn. Any registers set by the underlying insn
+ are live since the insn is being done somewhere else. */
+ if (GET_RTX_CLASS (GET_CODE (XEXP (PATTERN (insn), 0))) == 'i')
+ mark_set_resources (XEXP (PATTERN (insn), 0), res, 0, 1);
+
+ /* All other USE insns are to be ignored. */
+ continue;
+ }
+ else if (GET_CODE (PATTERN (insn)) == CLOBBER)
+ continue;
+ else if (GET_CODE (PATTERN (insn)) == SEQUENCE)
+ {
+ /* An unconditional jump can be used to fill the delay slot
+ of a call, so search for a JUMP_INSN in any position. */
+ for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
+ {
+ this_jump_insn = XVECEXP (PATTERN (insn), 0, i);
+ if (GET_CODE (this_jump_insn) == JUMP_INSN)
+ break;
+ }
+ }
+
+ default:
+ break;
+ }
+
+ if (GET_CODE (this_jump_insn) == JUMP_INSN)
+ {
+ if (jump_count++ < 10)
+ {
+ if (simplejump_p (this_jump_insn)
+ || GET_CODE (PATTERN (this_jump_insn)) == RETURN)
+ {
+ next = JUMP_LABEL (this_jump_insn);
+ if (jump_insn == 0)
+ {
+ jump_insn = insn;
+ if (jump_target)
+ *jump_target = JUMP_LABEL (this_jump_insn);
+ }
+ }
+ else if (condjump_p (this_jump_insn)
+ || condjump_in_parallel_p (this_jump_insn))
+ {
+ struct resources target_set, target_res;
+ struct resources fallthrough_res;
+
+ /* We can handle conditional branches here by following
+ both paths, and then IOR the results of the two paths
+ together, which will give us registers that are dead
+ on both paths. Since this is expensive, we give it
+ a much higher cost than unconditional branches. The
+ cost was chosen so that we will follow at most 1
+ conditional branch. */
+
+ jump_count += 4;
+ if (jump_count >= 10)
+ break;
+
+ mark_referenced_resources (insn, &needed, 1);
+
+ /* For an annulled branch, mark_set_resources ignores slots
+ filled by instructions from the target. This is correct
+ if the branch is not taken. Since we are following both
+ paths from the branch, we must also compute correct info
+ if the branch is taken. We do this by inverting all of
+ the INSN_FROM_TARGET_P bits, calling mark_set_resources,
+ and then inverting the INSN_FROM_TARGET_P bits again. */
+
+ if (GET_CODE (PATTERN (insn)) == SEQUENCE
+ && INSN_ANNULLED_BRANCH_P (this_jump_insn))
+ {
+ for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
+ INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
+ = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
+
+ target_set = set;
+ mark_set_resources (insn, &target_set, 0, 1);
+
+ for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
+ INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
+ = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
+
+ mark_set_resources (insn, &set, 0, 1);
+ }
+ else
+ {
+ mark_set_resources (insn, &set, 0, 1);
+ target_set = set;
+ }
+
+ target_res = *res;
+ COPY_HARD_REG_SET (scratch, target_set.regs);
+ AND_COMPL_HARD_REG_SET (scratch, needed.regs);
+ AND_COMPL_HARD_REG_SET (target_res.regs, scratch);
+
+ fallthrough_res = *res;
+ COPY_HARD_REG_SET (scratch, set.regs);
+ AND_COMPL_HARD_REG_SET (scratch, needed.regs);
+ AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);
+
+ find_dead_or_set_registers (JUMP_LABEL (this_jump_insn),
+ &target_res, 0, jump_count,
+ target_set, needed);
+ find_dead_or_set_registers (next,
+ &fallthrough_res, 0, jump_count,
+ set, needed);
+ IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
+ AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
+ break;
+ }
+ else
+ break;
+ }
+ else
+ {
+ /* Don't try this optimization if we expired our jump count
+ above, since that would mean there may be an infinite loop
+ in the function being compiled. */
+ jump_insn = 0;
+ break;
+ }
+ }
+
+ mark_referenced_resources (insn, &needed, 1);
+ mark_set_resources (insn, &set, 0, 1);
+
+ COPY_HARD_REG_SET (scratch, set.regs);
+ AND_COMPL_HARD_REG_SET (scratch, needed.regs);
+ AND_COMPL_HARD_REG_SET (res->regs, scratch);
+ }
+
+ return jump_insn;
+}
+
+/* Given X, a part of an insn, and a pointer to a `struct resource',
+ RES, indicate which resources are modified by the insn. If
+ INCLUDE_DELAYED_EFFECTS is nonzero, also mark resources potentially
+ set by the called routine.
+
+ If IN_DEST is nonzero, it means we are inside a SET. Otherwise,
+ objects are being referenced instead of set.
+
+ We never mark the insn as modifying the condition code unless it explicitly
+ SETs CC0 even though this is not totally correct. The reason for this is
+ that we require a SET of CC0 to immediately precede the reference to CC0.
+ So if some other insn sets CC0 as a side-effect, we know it cannot affect
+ our computation and thus may be placed in a delay slot. */
+
+void
+mark_set_resources (x, res, in_dest, include_delayed_effects)
+ register rtx x;
+ register struct resources *res;
+ int in_dest;
+ int include_delayed_effects;
+{
+ register enum rtx_code code;
+ register int i, j;
+ register char *format_ptr;
+
+ restart:
+
+ code = GET_CODE (x);
+
+ switch (code)
+ {
+ case NOTE:
+ case BARRIER:
+ case CODE_LABEL:
+ case USE:
+ case CONST_INT:
+ case CONST_DOUBLE:
+ case LABEL_REF:
+ case SYMBOL_REF:
+ case CONST:
+ case PC:
+ /* These don't set any resources. */
+ return;
+
+ case CC0:
+ if (in_dest)
+ res->cc = 1;
+ return;
+
+ case CALL_INSN:
+ /* Called routine modifies the condition code, memory, any registers
+ that aren't saved across calls, global registers and anything
+ explicitly CLOBBERed immediately after the CALL_INSN. */
+
+ if (include_delayed_effects)
+ {
+ rtx next = NEXT_INSN (x);
+ rtx prev = PREV_INSN (x);
+ rtx link;
+
+ res->cc = res->memory = 1;
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ if (call_used_regs[i] || global_regs[i])
+ SET_HARD_REG_BIT (res->regs, i);
+
+ /* If X is part of a delay slot sequence, then NEXT should be
+ the first insn after the sequence. */
+ if (NEXT_INSN (prev) != x)
+ next = NEXT_INSN (NEXT_INSN (prev));
+
+ for (link = CALL_INSN_FUNCTION_USAGE (x);
+ link; link = XEXP (link, 1))
+ if (GET_CODE (XEXP (link, 0)) == CLOBBER)
+ mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1, 0);
+
+ /* Check for a NOTE_INSN_SETJMP. If it exists, then we must
+ assume that this call can clobber any register. */
+ if (next && GET_CODE (next) == NOTE
+ && NOTE_LINE_NUMBER (next) == NOTE_INSN_SETJMP)
+ SET_HARD_REG_SET (res->regs);
+ }
+
+ /* ... and also what its RTL says it modifies, if anything. */
+
+ case JUMP_INSN:
+ case INSN:
+
+ /* An insn consisting of just a CLOBBER (or USE) is just for flow
+ and doesn't actually do anything, so we ignore it. */
+
+#ifdef INSN_SETS_ARE_DELAYED
+ if (! include_delayed_effects
+ && INSN_SETS_ARE_DELAYED (x))
+ return;
+#endif
+
+ x = PATTERN (x);
+ if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
+ goto restart;
+ return;
+
+ case SET:
+ /* If the source of a SET is a CALL, this is actually done by
+ the called routine. So only include it if we are to include the
+ effects of the calling routine. */
+
+ mark_set_resources (SET_DEST (x), res,
+ (include_delayed_effects
+ || GET_CODE (SET_SRC (x)) != CALL),
+ 0);
+
+ mark_set_resources (SET_SRC (x), res, 0, 0);
+ return;
+
+ case CLOBBER:
+ mark_set_resources (XEXP (x, 0), res, 1, 0);
+ return;
+
+ case SEQUENCE:
+ for (i = 0; i < XVECLEN (x, 0); i++)
+ if (! (INSN_ANNULLED_BRANCH_P (XVECEXP (x, 0, 0))
+ && INSN_FROM_TARGET_P (XVECEXP (x, 0, i))))
+ mark_set_resources (XVECEXP (x, 0, i), res, 0,
+ include_delayed_effects);
+ return;
+
+ case POST_INC:
+ case PRE_INC:
+ case POST_DEC:
+ case PRE_DEC:
+ mark_set_resources (XEXP (x, 0), res, 1, 0);
+ return;
+
+ case ZERO_EXTRACT:
+ mark_set_resources (XEXP (x, 0), res, in_dest, 0);
+ mark_set_resources (XEXP (x, 1), res, 0, 0);
+ mark_set_resources (XEXP (x, 2), res, 0, 0);
+ return;
+
+ case MEM:
+ if (in_dest)
+ {
+ res->memory = 1;
+ res->unch_memory = RTX_UNCHANGING_P (x);
+ res->volatil = MEM_VOLATILE_P (x);
+ }
+
+ mark_set_resources (XEXP (x, 0), res, 0, 0);
+ return;
+
+ case SUBREG:
+ if (in_dest)
+ {
+ if (GET_CODE (SUBREG_REG (x)) != REG)
+ mark_set_resources (SUBREG_REG (x), res,
+ in_dest, include_delayed_effects);
+ else
+ {
+ int regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
+ int last_regno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
+ for (i = regno; i < last_regno; i++)
+ SET_HARD_REG_BIT (res->regs, i);
+ }
+ }
+ return;
+
+ case REG:
+ if (in_dest)
+ for (i = 0; i < HARD_REGNO_NREGS (REGNO (x), GET_MODE (x)); i++)
+ SET_HARD_REG_BIT (res->regs, REGNO (x) + i);
+ return;
+
+ default:
+ break;
+ }
+
+ /* Process each sub-expression and flag what it needs. */
+ format_ptr = GET_RTX_FORMAT (code);
+ for (i = 0; i < GET_RTX_LENGTH (code); i++)
+ switch (*format_ptr++)
+ {
+ case 'e':
+ mark_set_resources (XEXP (x, i), res, in_dest, include_delayed_effects);
+ break;
+
+ case 'E':
+ for (j = 0; j < XVECLEN (x, i); j++)
+ mark_set_resources (XVECEXP (x, i, j), res, in_dest,
+ include_delayed_effects);
+ break;
+ }
+}
+
+/* Set the resources that are live at TARGET.
+
+ If TARGET is zero, we refer to the end of the current function and can
+ return our precomputed value.
+
+ Otherwise, we try to find out what is live by consulting the basic block
+ information. This is tricky, because we must consider the actions of
+ reload and jump optimization, which occur after the basic block information
+ has been computed.
+
+ Accordingly, we proceed as follows::
+
+ We find the previous BARRIER and look at all immediately following labels
+ (with no intervening active insns) to see if any of them start a basic
+ block. If we hit the start of the function first, we use block 0.
+
+ Once we have found a basic block and a corresponding first insns, we can
+ accurately compute the live status from basic_block_live_regs and
+ reg_renumber. (By starting at a label following a BARRIER, we are immune
+ to actions taken by reload and jump.) Then we scan all insns between
+ that point and our target. For each CLOBBER (or for call-clobbered regs
+ when we pass a CALL_INSN), mark the appropriate registers are dead. For
+ a SET, mark them as live.
+
+ We have to be careful when using REG_DEAD notes because they are not
+ updated by such things as find_equiv_reg. So keep track of registers
+ marked as dead that haven't been assigned to, and mark them dead at the
+ next CODE_LABEL since reload and jump won't propagate values across labels.
+
+ If we cannot find the start of a basic block (should be a very rare
+ case, if it can happen at all), mark everything as potentially live.
+
+ Next, scan forward from TARGET looking for things set or clobbered
+ before they are used. These are not live.
+
+ Because we can be called many times on the same target, save our results
+ in a hash table indexed by INSN_UID. This is only done if the function
+ init_resource_info () was invoked before we are called. */
+
+void
+mark_target_live_regs (insns, target, res)
+ rtx insns;
+ rtx target;
+ struct resources *res;
+{
+ int b = -1;
+ int i;
+ struct target_info *tinfo = NULL;
+ rtx insn;
+ rtx jump_insn = 0;
+ rtx jump_target;
+ HARD_REG_SET scratch;
+ struct resources set, needed;
+
+ /* Handle end of function. */
+ if (target == 0)
+ {
+ *res = end_of_function_needs;
+ return;
+ }
+
+ /* We have to assume memory is needed, but the CC isn't. */
+ res->memory = 1;
+ res->volatil = res->unch_memory = 0;
+ res->cc = 0;
+
+ /* See if we have computed this value already. */
+ if (target_hash_table != NULL)
+ {
+ for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
+ tinfo; tinfo = tinfo->next)
+ if (tinfo->uid == INSN_UID (target))
+ break;
+
+ /* Start by getting the basic block number. If we have saved
+ information, we can get it from there unless the insn at the
+ start of the basic block has been deleted. */
+ if (tinfo && tinfo->block != -1
+ && ! INSN_DELETED_P (BLOCK_HEAD (tinfo->block)))
+ b = tinfo->block;
+ }
+
+ if (b == -1)
+ b = find_basic_block (target);
+
+ if (target_hash_table != NULL)
+ {
+ if (tinfo)
+ {
+ /* If the information is up-to-date, use it. Otherwise, we will
+ update it below. */
+ if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
+ {
+ COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
+ return;
+ }
+ }
+ else
+ {
+ /* Allocate a place to put our results and chain it into the
+ hash table. */
+ tinfo = (struct target_info *) oballoc (sizeof (struct target_info));
+ tinfo->uid = INSN_UID (target);
+ tinfo->block = b;
+ tinfo->next = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
+ target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
+ }
+ }
+
+ CLEAR_HARD_REG_SET (pending_dead_regs);
+
+ /* If we found a basic block, get the live registers from it and update
+ them with anything set or killed between its start and the insn before
+ TARGET. Otherwise, we must assume everything is live. */
+ if (b != -1)
+ {
+ regset regs_live = BASIC_BLOCK (b)->global_live_at_start;
+ int j;
+ int regno;
+ rtx start_insn, stop_insn;
+
+ /* Compute hard regs live at start of block -- this is the real hard regs
+ marked live, plus live pseudo regs that have been renumbered to
+ hard regs. */
+
+ REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
+
+ EXECUTE_IF_SET_IN_REG_SET
+ (regs_live, FIRST_PSEUDO_REGISTER, i,
+ {
+ if ((regno = reg_renumber[i]) >= 0)
+ for (j = regno;
+ j < regno + HARD_REGNO_NREGS (regno,
+ PSEUDO_REGNO_MODE (i));
+ j++)
+ SET_HARD_REG_BIT (current_live_regs, j);
+ });
+
+ /* Get starting and ending insn, handling the case where each might
+ be a SEQUENCE. */
+ start_insn = (b == 0 ? insns : BLOCK_HEAD (b));
+ stop_insn = target;
+
+ if (GET_CODE (start_insn) == INSN
+ && GET_CODE (PATTERN (start_insn)) == SEQUENCE)
+ start_insn = XVECEXP (PATTERN (start_insn), 0, 0);
+
+ if (GET_CODE (stop_insn) == INSN
+ && GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
+ stop_insn = next_insn (PREV_INSN (stop_insn));
+
+ for (insn = start_insn; insn != stop_insn;
+ insn = next_insn_no_annul (insn))
+ {
+ rtx link;
+ rtx real_insn = insn;
+
+ /* If this insn is from the target of a branch, it isn't going to
+ be used in the sequel. If it is used in both cases, this
+ test will not be true. */
+ if (INSN_FROM_TARGET_P (insn))
+ continue;
+
+ /* If this insn is a USE made by update_block, we care about the
+ underlying insn. */
+ if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE
+ && GET_RTX_CLASS (GET_CODE (XEXP (PATTERN (insn), 0))) == 'i')
+ real_insn = XEXP (PATTERN (insn), 0);
+
+ if (GET_CODE (real_insn) == CALL_INSN)
+ {
+ /* CALL clobbers all call-used regs that aren't fixed except
+ sp, ap, and fp. Do this before setting the result of the
+ call live. */
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ if (call_used_regs[i]
+ && i != STACK_POINTER_REGNUM && i != FRAME_POINTER_REGNUM
+ && i != ARG_POINTER_REGNUM
+#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
+ && i != HARD_FRAME_POINTER_REGNUM
+#endif
+#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
+ && ! (i == ARG_POINTER_REGNUM && fixed_regs[i])
+#endif
+#ifdef PIC_OFFSET_TABLE_REGNUM
+ && ! (i == PIC_OFFSET_TABLE_REGNUM && flag_pic)
+#endif
+ )
+ CLEAR_HARD_REG_BIT (current_live_regs, i);
+
+ /* A CALL_INSN sets any global register live, since it may
+ have been modified by the call. */
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ if (global_regs[i])
+ SET_HARD_REG_BIT (current_live_regs, i);
+ }
+
+ /* Mark anything killed in an insn to be deadened at the next
+ label. Ignore USE insns; the only REG_DEAD notes will be for
+ parameters. But they might be early. A CALL_INSN will usually
+ clobber registers used for parameters. It isn't worth bothering
+ with the unlikely case when it won't. */
+ if ((GET_CODE (real_insn) == INSN
+ && GET_CODE (PATTERN (real_insn)) != USE
+ && GET_CODE (PATTERN (real_insn)) != CLOBBER)
+ || GET_CODE (real_insn) == JUMP_INSN
+ || GET_CODE (real_insn) == CALL_INSN)
+ {
+ for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
+ if (REG_NOTE_KIND (link) == REG_DEAD
+ && GET_CODE (XEXP (link, 0)) == REG
+ && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
+ {
+ int first_regno = REGNO (XEXP (link, 0));
+ int last_regno
+ = (first_regno
+ + HARD_REGNO_NREGS (first_regno,
+ GET_MODE (XEXP (link, 0))));
+
+ for (i = first_regno; i < last_regno; i++)
+ SET_HARD_REG_BIT (pending_dead_regs, i);
+ }
+
+ note_stores (PATTERN (real_insn), update_live_status);
+
+ /* If any registers were unused after this insn, kill them.
+ These notes will always be accurate. */
+ for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
+ if (REG_NOTE_KIND (link) == REG_UNUSED
+ && GET_CODE (XEXP (link, 0)) == REG
+ && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
+ {
+ int first_regno = REGNO (XEXP (link, 0));
+ int last_regno
+ = (first_regno
+ + HARD_REGNO_NREGS (first_regno,
+ GET_MODE (XEXP (link, 0))));
+
+ for (i = first_regno; i < last_regno; i++)
+ CLEAR_HARD_REG_BIT (current_live_regs, i);
+ }
+ }
+
+ else if (GET_CODE (real_insn) == CODE_LABEL)
+ {
+ /* A label clobbers the pending dead registers since neither
+ reload nor jump will propagate a value across a label. */
+ AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
+ CLEAR_HARD_REG_SET (pending_dead_regs);
+ }
+
+ /* The beginning of the epilogue corresponds to the end of the
+ RTL chain when there are no epilogue insns. Certain resources
+ are implicitly required at that point. */
+ else if (GET_CODE (real_insn) == NOTE
+ && NOTE_LINE_NUMBER (real_insn) == NOTE_INSN_EPILOGUE_BEG)
+ IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
+ }
+
+ COPY_HARD_REG_SET (res->regs, current_live_regs);
+ if (tinfo != NULL)
+ {
+ tinfo->block = b;
+ tinfo->bb_tick = bb_ticks[b];
+ }
+ }
+ else
+ /* We didn't find the start of a basic block. Assume everything
+ in use. This should happen only extremely rarely. */
+ SET_HARD_REG_SET (res->regs);
+
+ CLEAR_RESOURCE (&set);
+ CLEAR_RESOURCE (&needed);
+
+ jump_insn = find_dead_or_set_registers (target, res, &jump_target, 0,
+ set, needed);
+
+ /* If we hit an unconditional branch, we have another way of finding out
+ what is live: we can see what is live at the branch target and include
+ anything used but not set before the branch. The only things that are
+ live are those that are live using the above test and the test below. */
+
+ if (jump_insn)
+ {
+ struct resources new_resources;
+ rtx stop_insn = next_active_insn (jump_insn);
+
+ mark_target_live_regs (insns, next_active_insn (jump_target),
+ &new_resources);
+ CLEAR_RESOURCE (&set);
+ CLEAR_RESOURCE (&needed);
+
+ /* Include JUMP_INSN in the needed registers. */
+ for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
+ {
+ mark_referenced_resources (insn, &needed, 1);
+
+ COPY_HARD_REG_SET (scratch, needed.regs);
+ AND_COMPL_HARD_REG_SET (scratch, set.regs);
+ IOR_HARD_REG_SET (new_resources.regs, scratch);
+
+ mark_set_resources (insn, &set, 0, 1);
+ }
+
+ AND_HARD_REG_SET (res->regs, new_resources.regs);
+ }
+
+ if (tinfo != NULL)
+ {
+ COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
+ }
+}
+
+/* Initialize the resources required by mark_target_live_regs ().
+ This should be invoked before the first call to mark_target_live_regs. */
+
+void
+init_resource_info (epilogue_insn)
+ rtx epilogue_insn;
+{
+ int i;
+
+ /* Indicate what resources are required to be valid at the end of the current
+ function. The condition code never is and memory always is. If the
+ frame pointer is needed, it is and so is the stack pointer unless
+ EXIT_IGNORE_STACK is non-zero. If the frame pointer is not needed, the
+ stack pointer is. Registers used to return the function value are
+ needed. Registers holding global variables are needed. */
+
+ end_of_function_needs.cc = 0;
+ end_of_function_needs.memory = 1;
+ end_of_function_needs.unch_memory = 0;
+ CLEAR_HARD_REG_SET (end_of_function_needs.regs);
+
+ if (frame_pointer_needed)
+ {
+ SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
+#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
+ SET_HARD_REG_BIT (end_of_function_needs.regs, HARD_FRAME_POINTER_REGNUM);
+#endif
+#ifdef EXIT_IGNORE_STACK
+ if (! EXIT_IGNORE_STACK
+ || current_function_sp_is_unchanging)
+#endif
+ SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
+ }
+ else
+ SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
+
+ if (current_function_return_rtx != 0)
+ mark_referenced_resources (current_function_return_rtx,
+ &end_of_function_needs, 1);
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ if (global_regs[i]
+#ifdef EPILOGUE_USES
+ || EPILOGUE_USES (i)
+#endif
+ )
+ SET_HARD_REG_BIT (end_of_function_needs.regs, i);
+
+ /* The registers required to be live at the end of the function are
+ represented in the flow information as being dead just prior to
+ reaching the end of the function. For example, the return of a value
+ might be represented by a USE of the return register immediately
+ followed by an unconditional jump to the return label where the
+ return label is the end of the RTL chain. The end of the RTL chain
+ is then taken to mean that the return register is live.
+
+ This sequence is no longer maintained when epilogue instructions are
+ added to the RTL chain. To reconstruct the original meaning, the
+ start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
+ point where these registers become live (start_of_epilogue_needs).
+ If epilogue instructions are present, the registers set by those
+ instructions won't have been processed by flow. Thus, those
+ registers are additionally required at the end of the RTL chain
+ (end_of_function_needs). */
+
+ start_of_epilogue_needs = end_of_function_needs;
+
+ while ((epilogue_insn = next_nonnote_insn (epilogue_insn)))
+ mark_set_resources (epilogue_insn, &end_of_function_needs, 0, 1);
+
+ /* Allocate and initialize the tables used by mark_target_live_regs. */
+ target_hash_table
+ = (struct target_info **) xmalloc ((TARGET_HASH_PRIME
+ * sizeof (struct target_info *)));
+ bzero ((char *) target_hash_table,
+ TARGET_HASH_PRIME * sizeof (struct target_info *));
+
+ bb_ticks = (int *) xmalloc (n_basic_blocks * sizeof (int));
+ bzero ((char *) bb_ticks, n_basic_blocks * sizeof (int));
+}
+
+/* Free up the resources allcated to mark_target_live_regs (). This
+ should be invoked after the last call to mark_target_live_regs (). */
+
+void
+free_resource_info ()
+{
+ if (target_hash_table != NULL)
+ {
+ free (target_hash_table);
+ target_hash_table = NULL;
+ }
+
+ if (bb_ticks != NULL)
+ {
+ free (bb_ticks);
+ bb_ticks = NULL;
+ }
+}
+
+/* Clear any hashed information that we have stored for INSN. */
+
+void
+clear_hashed_info_for_insn (insn)
+ rtx insn;
+{
+ struct target_info *tinfo;
+
+ if (target_hash_table != NULL)
+ {
+ for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
+ tinfo; tinfo = tinfo->next)
+ if (tinfo->uid == INSN_UID (insn))
+ break;
+
+ if (tinfo)
+ tinfo->block = -1;
+ }
+}
+
+/* Increment the tick count for the basic block that contains INSN. */
+
+void
+incr_ticks_for_insn (insn)
+ rtx insn;
+{
+ int b = find_basic_block (insn);
+
+ if (b != -1)
+ bb_ticks[b]++;
+}
+
+/* Add TRIAL to the set of resources used at the end of the current
+ function. */
+void
+mark_end_of_function_resources (trial, include_delayed_effects)
+ rtx trial;
+ int include_delayed_effects;
+{
+ mark_referenced_resources (trial, &end_of_function_needs,
+ include_delayed_effects);
+}
+
+/* Try to find an available hard register of mode MODE at
+ CURRENT_INSN, matching the register class in CLASS_STR. Registers
+ that already have bits set in REG_SET will not be considered.
+
+ If an appropriate register is available, it will be returned and the
+ corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
+ returned. */
+
+rtx
+find_free_register (current_insn, class_str, mode, reg_set)
+ rtx current_insn;
+ char *class_str;
+ int mode;
+ HARD_REG_SET *reg_set;
+{
+ int i, j;
+ struct resources used;
+ unsigned char clet = class_str[0];
+ enum reg_class class
+ = (clet == 'r' ? GENERAL_REGS : REG_CLASS_FROM_LETTER (clet));
+
+ mark_target_live_regs (get_insns (), current_insn, &used);
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ {
+ int success = 1;
+
+ if (! TEST_HARD_REG_BIT (reg_class_contents[class], i))
+ continue;
+ for (j = HARD_REGNO_NREGS (i, mode) - 1; j >= 0; j--)
+ {
+ if (TEST_HARD_REG_BIT (*reg_set, i + j)
+ || TEST_HARD_REG_BIT (used.regs, i + j))
+ {
+ success = 0;
+ break;
+ }
+ }
+ if (success)
+ {
+ for (j = HARD_REGNO_NREGS (i, mode) - 1; j >= 0; j--)
+ {
+ SET_HARD_REG_BIT (*reg_set, i + j);
+ }
+ return gen_rtx_REG (mode, i);
+ }
+ }
+ return NULL_RTX;
+}