aboutsummaryrefslogtreecommitdiff
path: root/gcc/testsuite/ada/acats/tests/cxg/cxg2009.a
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/testsuite/ada/acats/tests/cxg/cxg2009.a')
-rw-r--r--gcc/testsuite/ada/acats/tests/cxg/cxg2009.a421
1 files changed, 0 insertions, 421 deletions
diff --git a/gcc/testsuite/ada/acats/tests/cxg/cxg2009.a b/gcc/testsuite/ada/acats/tests/cxg/cxg2009.a
deleted file mode 100644
index 0b11ca53887..00000000000
--- a/gcc/testsuite/ada/acats/tests/cxg/cxg2009.a
+++ /dev/null
@@ -1,421 +0,0 @@
--- CXG2009.A
---
--- Grant of Unlimited Rights
---
--- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
--- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
--- unlimited rights in the software and documentation contained herein.
--- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
--- this public release, the Government intends to confer upon all
--- recipients unlimited rights equal to those held by the Government.
--- These rights include rights to use, duplicate, release or disclose the
--- released technical data and computer software in whole or in part, in
--- any manner and for any purpose whatsoever, and to have or permit others
--- to do so.
---
--- DISCLAIMER
---
--- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
--- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
--- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
--- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
--- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
--- PARTICULAR PURPOSE OF SAID MATERIAL.
---*
---
--- OBJECTIVE:
--- Check that the real sqrt and complex modulus functions
--- return results that are within the allowed
--- error bound.
---
--- TEST DESCRIPTION:
--- This test checks the accuracy of the sqrt and modulus functions
--- by computing the norm of various vectors where the result
--- is known in advance.
--- This test uses real and complex math together as would an
--- actual application. Considerable use of generics is also
--- employed.
---
--- SPECIAL REQUIREMENTS
--- The Strict Mode for the numerical accuracy must be
--- selected. The method by which this mode is selected
--- is implementation dependent.
---
--- APPLICABILITY CRITERIA:
--- This test applies only to implementations supporting the
--- Numerics Annex.
--- This test only applies to the Strict Mode for numerical
--- accuracy.
---
---
--- CHANGE HISTORY:
--- 26 FEB 96 SAIC Initial release for 2.1
--- 22 AUG 96 SAIC Revised Check procedure
---
---!
-
-------------------------------------------------------------------------------
-
-with System;
-with Report;
-with Ada.Numerics.Generic_Complex_Types;
-with Ada.Numerics.Generic_Elementary_Functions;
-procedure CXG2009 is
- Verbose : constant Boolean := False;
-
- --=====================================================================
-
- generic
- type Real is digits <>;
- package Generic_Real_Norm_Check is
- procedure Do_Test;
- end Generic_Real_Norm_Check;
-
- -----------------------------------------------------------------------
-
- package body Generic_Real_Norm_Check is
- type Vector is array (Integer range <>) of Real;
-
- package GEF is new Ada.Numerics.Generic_Elementary_Functions (Real);
- function Sqrt (X : Real) return Real renames GEF.Sqrt;
-
- function One_Norm (V : Vector) return Real is
- -- sum of absolute values of the elements of the vector
- Result : Real := 0.0;
- begin
- for I in V'Range loop
- Result := Result + abs V(I);
- end loop;
- return Result;
- end One_Norm;
-
- function Inf_Norm (V : Vector) return Real is
- -- greatest absolute vector element
- Result : Real := 0.0;
- begin
- for I in V'Range loop
- if abs V(I) > Result then
- Result := abs V(I);
- end if;
- end loop;
- return Result;
- end Inf_Norm;
-
- function Two_Norm (V : Vector) return Real is
- -- if greatest absolute vector element is 0 then return 0
- -- else return greatest * sqrt (sum((element / greatest) ** 2)))
- -- where greatest is Inf_Norm of the vector
- Inf_N : Real;
- Sum_Squares : Real;
- Term : Real;
- begin
- Inf_N := Inf_Norm (V);
- if Inf_N = 0.0 then
- return 0.0;
- end if;
- Sum_Squares := 0.0;
- for I in V'Range loop
- Term := V (I) / Inf_N;
- Sum_Squares := Sum_Squares + Term * Term;
- end loop;
- return Inf_N * Sqrt (Sum_Squares);
- end Two_Norm;
-
-
- procedure Check (Actual, Expected : Real;
- Test_Name : String;
- MRE : Real;
- Vector_Length : Integer) is
- Rel_Error : Real;
- Abs_Error : Real;
- Max_Error : Real;
- begin
- -- In the case where the expected result is very small or 0
- -- we compute the maximum error as a multiple of Model_Epsilon instead
- -- of Model_Epsilon and Expected.
- Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
- Abs_Error := MRE * Real'Model_Epsilon;
- if Rel_Error > Abs_Error then
- Max_Error := Rel_Error;
- else
- Max_Error := Abs_Error;
- end if;
-
- if abs (Actual - Expected) > Max_Error then
- Report.Failed (Test_Name &
- " VectLength:" &
- Integer'Image (Vector_Length) &
- " actual: " & Real'Image (Actual) &
- " expected: " & Real'Image (Expected) &
- " difference: " &
- Real'Image (Actual - Expected) &
- " mre:" & Real'Image (Max_Error) );
- elsif Verbose then
- Report.Comment (Test_Name & " vector length" &
- Integer'Image (Vector_Length));
- end if;
- end Check;
-
-
- procedure Do_Test is
- begin
- for Vector_Length in 1 .. 10 loop
- declare
- V : Vector (1..Vector_Length) := (1..Vector_Length => 0.0);
- V1 : Vector (1..Vector_Length) := (1..Vector_Length => 1.0);
- begin
- Check (One_Norm (V), 0.0, "one_norm (z)", 0.0, Vector_Length);
- Check (Inf_Norm (V), 0.0, "inf_norm (z)", 0.0, Vector_Length);
-
- for J in 1..Vector_Length loop
- V := (1..Vector_Length => 0.0);
- V (J) := 1.0;
- Check (One_Norm (V), 1.0, "one_norm (010)",
- 0.0, Vector_Length);
- Check (Inf_Norm (V), 1.0, "inf_norm (010)",
- 0.0, Vector_Length);
- Check (Two_Norm (V), 1.0, "two_norm (010)",
- 0.0, Vector_Length);
- end loop;
-
- Check (One_Norm (V1), Real (Vector_Length), "one_norm (1)",
- 0.0, Vector_Length);
- Check (Inf_Norm (V1), 1.0, "inf_norm (1)",
- 0.0, Vector_Length);
-
- -- error in computing Two_Norm and expected result
- -- are as follows (ME is Model_Epsilon * Expected_Value):
- -- 2ME from expected Sqrt
- -- 2ME from Sqrt in Two_Norm times the error in the
- -- vector calculation.
- -- The vector calculation contains the following error
- -- based upon the length N of the vector:
- -- N*1ME from squaring terms in Two_Norm
- -- N*1ME from the division of each term in Two_Norm
- -- (N-1)*1ME from the sum of the terms
- -- This gives (2 + 2 * (N + N + (N-1)) ) * ME
- -- which simplifies to (2 + 2N + 2N + 2N - 2) * ME
- -- or 6*N*ME
- Check (Two_Norm (V1), Sqrt (Real(Vector_Length)),
- "two_norm (1)",
- (Real (6 * Vector_Length)),
- Vector_Length);
- exception
- when others => Report.Failed ("exception for vector length" &
- Integer'Image (Vector_Length) );
- end;
- end loop;
- end Do_Test;
- end Generic_Real_Norm_Check;
-
- --=====================================================================
-
- generic
- type Real is digits <>;
- package Generic_Complex_Norm_Check is
- procedure Do_Test;
- end Generic_Complex_Norm_Check;
-
- -----------------------------------------------------------------------
-
- package body Generic_Complex_Norm_Check is
- package Complex_Types is new Ada.Numerics.Generic_Complex_Types (Real);
- use Complex_Types;
- type Vector is array (Integer range <>) of Complex;
-
- package GEF is new Ada.Numerics.Generic_Elementary_Functions (Real);
- function Sqrt (X : Real) return Real renames GEF.Sqrt;
-
- function One_Norm (V : Vector) return Real is
- Result : Real := 0.0;
- begin
- for I in V'Range loop
- Result := Result + abs V(I);
- end loop;
- return Result;
- end One_Norm;
-
- function Inf_Norm (V : Vector) return Real is
- Result : Real := 0.0;
- begin
- for I in V'Range loop
- if abs V(I) > Result then
- Result := abs V(I);
- end if;
- end loop;
- return Result;
- end Inf_Norm;
-
- function Two_Norm (V : Vector) return Real is
- Inf_N : Real;
- Sum_Squares : Real;
- Term : Real;
- begin
- Inf_N := Inf_Norm (V);
- if Inf_N = 0.0 then
- return 0.0;
- end if;
- Sum_Squares := 0.0;
- for I in V'Range loop
- Term := abs (V (I) / Inf_N );
- Sum_Squares := Sum_Squares + Term * Term;
- end loop;
- return Inf_N * Sqrt (Sum_Squares);
- end Two_Norm;
-
-
- procedure Check (Actual, Expected : Real;
- Test_Name : String;
- MRE : Real;
- Vector_Length : Integer) is
- Rel_Error : Real;
- Abs_Error : Real;
- Max_Error : Real;
- begin
- -- In the case where the expected result is very small or 0
- -- we compute the maximum error as a multiple of Model_Epsilon instead
- -- of Model_Epsilon and Expected.
- Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
- Abs_Error := MRE * Real'Model_Epsilon;
- if Rel_Error > Abs_Error then
- Max_Error := Rel_Error;
- else
- Max_Error := Abs_Error;
- end if;
-
- if abs (Actual - Expected) > Max_Error then
- Report.Failed (Test_Name &
- " VectLength:" &
- Integer'Image (Vector_Length) &
- " actual: " & Real'Image (Actual) &
- " expected: " & Real'Image (Expected) &
- " difference: " &
- Real'Image (Actual - Expected) &
- " mre:" & Real'Image (Max_Error) );
- elsif Verbose then
- Report.Comment (Test_Name & " vector length" &
- Integer'Image (Vector_Length));
- end if;
- end Check;
-
-
- procedure Do_Test is
- begin
- for Vector_Length in 1 .. 10 loop
- declare
- V : Vector (1..Vector_Length) :=
- (1..Vector_Length => (0.0, 0.0));
- X, Y : Vector (1..Vector_Length);
- begin
- Check (One_Norm (V), 0.0, "one_norm (z)", 0.0, Vector_Length);
- Check (Inf_Norm (V), 0.0, "inf_norm (z)", 0.0, Vector_Length);
-
- for J in 1..Vector_Length loop
- X := (1..Vector_Length => (0.0, 0.0) );
- Y := X; -- X and Y are now both zeroed
- X (J).Re := 1.0;
- Y (J).Im := 1.0;
- Check (One_Norm (X), 1.0, "one_norm (0x0)",
- 0.0, Vector_Length);
- Check (Inf_Norm (X), 1.0, "inf_norm (0x0)",
- 0.0, Vector_Length);
- Check (Two_Norm (X), 1.0, "two_norm (0x0)",
- 0.0, Vector_Length);
- Check (One_Norm (Y), 1.0, "one_norm (0y0)",
- 0.0, Vector_Length);
- Check (Inf_Norm (Y), 1.0, "inf_norm (0y0)",
- 0.0, Vector_Length);
- Check (Two_Norm (Y), 1.0, "two_norm (0y0)",
- 0.0, Vector_Length);
- end loop;
-
- V := (1..Vector_Length => (3.0, 4.0));
-
- -- error in One_Norm is 3*N*ME for abs computation +
- -- (N-1)*ME for the additions
- -- which gives (4N-1) * ME
- Check (One_Norm (V), 5.0 * Real (Vector_Length),
- "one_norm ((3,4))",
- Real (4*Vector_Length - 1),
- Vector_Length);
-
- -- error in Inf_Norm is from abs of single element (3ME)
- Check (Inf_Norm (V), 5.0,
- "inf_norm ((3,4))",
- 3.0,
- Vector_Length);
-
- -- error in following comes from:
- -- 2ME in sqrt of expected result
- -- 3ME in Inf_Norm calculation
- -- 2ME in sqrt of vector calculation
- -- vector calculation has following error
- -- 3N*ME for abs
- -- N*ME for squaring
- -- N*ME for division
- -- (N-1)ME for sum
- -- this results in [2 + 3 + 2(6N-1) ] * ME
- -- or (12N + 3)ME
- Check (Two_Norm (V), 5.0 * Sqrt (Real(Vector_Length)),
- "two_norm ((3,4))",
- (12.0 * Real (Vector_Length) + 3.0),
- Vector_Length);
- exception
- when others => Report.Failed ("exception for complex " &
- "vector length" &
- Integer'Image (Vector_Length) );
- end;
- end loop;
- end Do_Test;
- end Generic_Complex_Norm_Check;
-
- --=====================================================================
-
- generic
- type Real is digits <>;
- package Generic_Norm_Check is
- procedure Do_Test;
- end Generic_Norm_Check;
-
- -----------------------------------------------------------------------
-
- package body Generic_Norm_Check is
- package RNC is new Generic_Real_Norm_Check (Real);
- package CNC is new Generic_Complex_Norm_Check (Real);
- procedure Do_Test is
- begin
- RNC.Do_Test;
- CNC.Do_Test;
- end Do_Test;
- end Generic_Norm_Check;
-
- --=====================================================================
-
- package Float_Check is new Generic_Norm_Check (Float);
-
- type A_Long_Float is digits System.Max_Digits;
- package A_Long_Float_Check is new Generic_Norm_Check (A_Long_Float);
-
- -----------------------------------------------------------------------
-
-begin
- Report.Test ("CXG2009",
- "Check the accuracy of the real sqrt and complex " &
- " modulus functions");
-
- if Verbose then
- Report.Comment ("checking Standard.Float");
- end if;
-
- Float_Check.Do_Test;
-
- if Verbose then
- Report.Comment ("checking a digits" &
- Integer'Image (System.Max_Digits) &
- " floating point type");
- end if;
-
- A_Long_Float_Check.Do_Test;
-
- Report.Result;
-end CXG2009;