aboutsummaryrefslogtreecommitdiff
path: root/gcc/testsuite/ada/acats/tests/cxg
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/testsuite/ada/acats/tests/cxg')
-rw-r--r--gcc/testsuite/ada/acats/tests/cxg/cxg1001.a276
-rw-r--r--gcc/testsuite/ada/acats/tests/cxg/cxg1002.a198
-rw-r--r--gcc/testsuite/ada/acats/tests/cxg/cxg1003.a478
-rw-r--r--gcc/testsuite/ada/acats/tests/cxg/cxg1004.a360
-rw-r--r--gcc/testsuite/ada/acats/tests/cxg/cxg1005.a393
-rw-r--r--gcc/testsuite/ada/acats/tests/cxg/cxg2001.a322
-rw-r--r--gcc/testsuite/ada/acats/tests/cxg/cxg2002.a468
-rw-r--r--gcc/testsuite/ada/acats/tests/cxg/cxg2003.a701
-rw-r--r--gcc/testsuite/ada/acats/tests/cxg/cxg2004.a499
-rw-r--r--gcc/testsuite/ada/acats/tests/cxg/cxg2005.a204
-rw-r--r--gcc/testsuite/ada/acats/tests/cxg/cxg2006.a281
-rw-r--r--gcc/testsuite/ada/acats/tests/cxg/cxg2007.a291
-rw-r--r--gcc/testsuite/ada/acats/tests/cxg/cxg2008.a948
-rw-r--r--gcc/testsuite/ada/acats/tests/cxg/cxg2009.a421
-rw-r--r--gcc/testsuite/ada/acats/tests/cxg/cxg2010.a892
-rw-r--r--gcc/testsuite/ada/acats/tests/cxg/cxg2011.a490
-rw-r--r--gcc/testsuite/ada/acats/tests/cxg/cxg2012.a438
-rw-r--r--gcc/testsuite/ada/acats/tests/cxg/cxg2013.a367
-rw-r--r--gcc/testsuite/ada/acats/tests/cxg/cxg2014.a399
-rw-r--r--gcc/testsuite/ada/acats/tests/cxg/cxg2015.a686
-rw-r--r--gcc/testsuite/ada/acats/tests/cxg/cxg2016.a482
-rw-r--r--gcc/testsuite/ada/acats/tests/cxg/cxg2017.a296
-rw-r--r--gcc/testsuite/ada/acats/tests/cxg/cxg2018.a355
-rw-r--r--gcc/testsuite/ada/acats/tests/cxg/cxg2019.a338
-rw-r--r--gcc/testsuite/ada/acats/tests/cxg/cxg2020.a351
-rw-r--r--gcc/testsuite/ada/acats/tests/cxg/cxg2021.a386
-rw-r--r--gcc/testsuite/ada/acats/tests/cxg/cxg2022.a309
-rw-r--r--gcc/testsuite/ada/acats/tests/cxg/cxg2023.a351
-rw-r--r--gcc/testsuite/ada/acats/tests/cxg/cxg2024.a191
29 files changed, 0 insertions, 12171 deletions
diff --git a/gcc/testsuite/ada/acats/tests/cxg/cxg1001.a b/gcc/testsuite/ada/acats/tests/cxg/cxg1001.a
deleted file mode 100644
index 01a0f061e51..00000000000
--- a/gcc/testsuite/ada/acats/tests/cxg/cxg1001.a
+++ /dev/null
@@ -1,276 +0,0 @@
--- CXG1001.A
---
--- Grant of Unlimited Rights
---
--- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
--- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
--- unlimited rights in the software and documentation contained herein.
--- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
--- this public release, the Government intends to confer upon all
--- recipients unlimited rights equal to those held by the Government.
--- These rights include rights to use, duplicate, release or disclose the
--- released technical data and computer software in whole or in part, in
--- any manner and for any purpose whatsoever, and to have or permit others
--- to do so.
---
--- DISCLAIMER
---
--- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
--- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
--- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
--- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
--- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
--- PARTICULAR PURPOSE OF SAID MATERIAL.
---*
---
--- OBJECTIVE:
--- Check that the subprograms defined in the package
--- Ada.Numerics.Generic_Complex_Types provide correct results.
--- Specifically, check the functions Re, Im (both versions), procedures
--- Set_Re, Set_Im (both versions), functions Compose_From_Cartesian (all
--- versions), Compose_From_Polar, Modulus, Argument, and "abs".
---
--- TEST DESCRIPTION:
--- The generic package Generic_Complex_Types
--- is instantiated with a real type (new Float), and the results
--- produced by the specified subprograms are verified.
---
--- APPLICABILITY CRITERIA:
--- This test applies only to implementations supporting the
--- Numerics Annex.
---
---
--- CHANGE HISTORY:
--- 06 Dec 94 SAIC ACVC 2.0
--- 15 Nov 95 SAIC Corrected visibility problems for ACVC 2.0.1.
--- Modified subtest for Compose_From_Polar.
--- 29 Sep 96 SAIC Incorporated reviewer comments.
---
---!
-
-with Ada.Numerics.Generic_Complex_Types;
-with Report;
-
-procedure CXG1001 is
-
-begin
-
- Report.Test ("CXG1001", "Check that the subprograms defined in " &
- "the package Ada.Numerics.Generic_Complex_Types " &
- "provide correct results");
-
- Test_Block:
- declare
-
- type Real_Type is new Float;
-
- package Complex_Pack is new
- Ada.Numerics.Generic_Complex_Types(Real_Type);
-
- use type Complex_Pack.Complex;
-
- -- Declare a zero valued complex number.
- Complex_Zero : constant Complex_Pack.Complex := (0.0, 0.0);
-
- TC_Complex : Complex_Pack.Complex := Complex_Zero;
- TC_Imaginary : Complex_Pack.Imaginary;
-
- begin
-
- -- Check that the procedures Set_Re and Set_Im (both versions) provide
- -- correct results.
-
- declare
- TC_Complex_Real_Field : Complex_Pack.Complex := (5.0, 0.0);
- TC_Complex_Both_Fields : Complex_Pack.Complex := (5.0, 7.0);
- begin
-
- Complex_Pack.Set_Re(X => TC_Complex, Re => 5.0);
-
- if TC_Complex /= TC_Complex_Real_Field then
- Report.Failed("Incorrect results from Procedure Set_Re");
- end if;
-
- Complex_Pack.Set_Im(X => TC_Complex, Im => 7.0);
-
- if TC_Complex.Re /= 5.0 or
- TC_Complex.Im /= 7.0 or
- TC_Complex /= TC_Complex_Both_Fields
- then
- Report.Failed("Incorrect results from Procedure Set_Im " &
- "with Complex argument");
- end if;
-
- Complex_Pack.Set_Im(X => TC_Imaginary, Im => 3.0);
-
-
- if Complex_Pack.Im(TC_Imaginary) /= 3.0 then
- Report.Failed("Incorrect results returned following the use " &
- "of Procedure Set_Im with Imaginary argument");
- end if;
-
- end;
-
-
- -- Check that the functions Re and Im (both versions) provide
- -- correct results.
-
- declare
- TC_Complex_1 : Complex_Pack.Complex := (1.0, 0.0);
- TC_Complex_2 : Complex_Pack.Complex := (0.0, 2.0);
- TC_Complex_3 : Complex_Pack.Complex := (4.0, 3.0);
- begin
-
- -- Function Re.
-
- if Complex_Pack.Re(X => TC_Complex_1) /= 1.0 or
- Complex_Pack.Re(X => TC_Complex_2) /= 0.0 or
- Complex_Pack.Re(X => TC_Complex_3) /= 4.0
- then
- Report.Failed("Incorrect results from Function Re");
- end if;
-
- -- Function Im; version with Complex argument.
-
- if Complex_Pack.Im(X => TC_Complex_1) /= 0.0 or
- Complex_Pack.Im(X => TC_Complex_2) /= 2.0 or
- Complex_Pack.Im(X => TC_Complex_3) /= 3.0
- then
- Report.Failed("Incorrect results from Function Im " &
- "with Complex argument");
- end if;
-
-
- -- Function Im; version with Imaginary argument.
-
- if Complex_Pack.Im(Complex_Pack.i) /= 1.0 or
- Complex_Pack.Im(Complex_Pack.j) /= 1.0
- then
- Report.Failed("Incorrect results from use of Function Im " &
- "when used with an Imaginary argument");
- end if;
-
- end;
-
-
- -- Verify the results of the three versions of Function
- -- Compose_From_Cartesian
-
- declare
-
- Zero : constant Real_Type := 0.0;
- Six : constant Real_Type := 6.0;
-
- TC_Complex_1 : Complex_Pack.Complex := (3.0, 8.0);
- TC_Complex_2 : Complex_Pack.Complex := (Six, Zero);
- TC_Complex_3 : Complex_Pack.Complex := (Zero, 1.0);
-
- begin
-
- TC_Complex := Complex_Pack.Compose_From_Cartesian(3.0, 8.0);
-
- if TC_Complex /= TC_Complex_1 then
- Report.Failed("Incorrect results from Function " &
- "Compose_From_Cartesian - 1");
- end if;
-
- -- If only one component is given, the other component is
- -- implicitly zero (Both components are set by the following two
- -- function calls).
-
- TC_Complex := Complex_Pack.Compose_From_Cartesian(Re => 6.0);
-
- if TC_Complex /= TC_Complex_2 then
- Report.Failed("Incorrect results from Function " &
- "Compose_From_Cartesian - 2");
- end if;
-
- TC_Complex :=
- Complex_Pack.Compose_From_Cartesian(Im => Complex_Pack.i);
-
- if TC_Complex /= TC_Complex_3 then
- Report.Failed("Incorrect results from Function " &
- "Compose_From_Cartesian - 3");
- end if;
-
- end;
-
-
- -- Verify the results of Function Compose_From_Polar, Modulus, "abs",
- -- and Argument.
-
- declare
-
- use Complex_Pack;
-
- TC_Modulus,
- TC_Argument : Real_Type := 0.0;
-
-
- Angle_0 : constant Real_Type := 0.0;
- Angle_90 : constant Real_Type := 90.0;
- Angle_180 : constant Real_Type := 180.0;
- Angle_270 : constant Real_Type := 270.0;
- Angle_360 : constant Real_Type := 360.0;
-
- begin
-
- -- Verify the result of Function Compose_From_Polar.
- -- When the value of the parameter Modulus is zero, the
- -- Compose_From_Polar function yields a result of zero.
-
- if Compose_From_Polar(0.0, 30.0, 360.0) /= Complex_Zero
- then
- Report.Failed("Incorrect result from Function " &
- "Compose_From_Polar - 1");
- end if;
-
- -- When the value of the parameter Argument is equal to a multiple
- -- of the quarter cycle, the result of the Compose_From_Polar
- -- function with specified cycle lies on one of the axes.
-
- if Compose_From_Polar( 5.0, Angle_0, Angle_360) /= (5.0, 0.0) or
- Compose_From_Polar( 5.0, Angle_90, Angle_360) /= (0.0, 5.0) or
- Compose_From_Polar(-5.0, Angle_180, Angle_360) /= (5.0, 0.0) or
- Compose_From_Polar(-5.0, Angle_270, Angle_360) /= (0.0, 5.0) or
- Compose_From_Polar(-5.0, Angle_90, Angle_360) /= (0.0, -5.0) or
- Compose_From_Polar( 5.0, Angle_270, Angle_360) /= (0.0, -5.0)
- then
- Report.Failed("Incorrect result from Function " &
- "Compose_From_Polar - 2");
- end if;
-
- -- When the parameter to Function Argument represents a point on
- -- the non-negative real axis, the function yields a zero result.
-
- if Argument(Complex_Zero, Angle_360) /= 0.0 then
- Report.Failed("Incorrect result from Function Argument");
- end if;
-
- -- Function Modulus
-
- if Modulus(Complex_Zero) /= 0.0 or
- Modulus(Compose_From_Polar( 5.0, Angle_90, Angle_360)) /= 5.0 or
- Modulus(Compose_From_Polar(-5.0, Angle_180, Angle_360)) /= 5.0
- then
- Report.Failed("Incorrect results from Function Modulus");
- end if;
-
- -- Function "abs", a rename of Function Modulus.
-
- if "abs"(Complex_Zero) /= 0.0 or
- "abs"(Compose_From_Polar( 5.0, Angle_90, Angle_360)) /= 5.0 or
- "abs"(Compose_From_Polar(-5.0, Angle_180, Angle_360)) /= 5.0
- then
- Report.Failed("Incorrect results from Function abs");
- end if;
-
- end;
-
- exception
- when others => Report.Failed ("Exception raised in Test_Block");
- end Test_Block;
-
- Report.Result;
-
-end CXG1001;
diff --git a/gcc/testsuite/ada/acats/tests/cxg/cxg1002.a b/gcc/testsuite/ada/acats/tests/cxg/cxg1002.a
deleted file mode 100644
index 39f5f00dbc3..00000000000
--- a/gcc/testsuite/ada/acats/tests/cxg/cxg1002.a
+++ /dev/null
@@ -1,198 +0,0 @@
--- CXG1002.A
---
--- Grant of Unlimited Rights
---
--- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
--- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
--- unlimited rights in the software and documentation contained herein.
--- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
--- this public release, the Government intends to confer upon all
--- recipients unlimited rights equal to those held by the Government.
--- These rights include rights to use, duplicate, release or disclose the
--- released technical data and computer software in whole or in part, in
--- any manner and for any purpose whatsoever, and to have or permit others
--- to do so.
---
--- DISCLAIMER
---
--- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
--- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
--- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
--- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
--- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
--- PARTICULAR PURPOSE OF SAID MATERIAL.
---*
---
--- OBJECTIVE:
--- Check that the subprograms defined in the package
--- Ada.Numerics.Generic_Complex_Types provide the prescribed results.
--- Specifically, check the various versions of functions "+" and "-".
---
--- TEST DESCRIPTION:
--- This test checks that the subprograms "+" and "-" defined in the
--- Generic_Complex_Types package provide the results prescribed for the
--- evaluation of these complex arithmetic operations. The functions
--- Re and Im are used to extract the appropriate component of the
--- complex result, in order that the prescribed result component can be
--- verified.
--- The generic package is instantiated with a real type (new Float),
--- and the results produced by the specified subprograms are verified.
---
--- SPECIAL REQUIREMENTS:
--- This test can be run in either "relaxed" or "strict" mode.
---
---
--- CHANGE HISTORY:
--- 06 Dec 94 SAIC ACVC 2.0
---
---!
-
-with Ada.Numerics.Generic_Complex_Types;
-with Report;
-
-procedure CXG1002 is
-
-begin
-
- Report.Test ("CXG1002", "Check that the subprograms defined in " &
- "the package Ada.Numerics.Generic_Complex_Types " &
- "provide the prescribed results");
-
- Test_Block:
- declare
-
- type Real_Type is new Float;
-
- package Complex_Pack is new
- Ada.Numerics.Generic_Complex_Types(Real_Type);
- use Complex_Pack;
-
- -- Declare a zero valued complex number using the record
- -- aggregate approach.
-
- Complex_Zero : constant Complex_Pack.Complex := (0.0, 0.0);
-
- TC_Complex,
- TC_Complex_Right,
- TC_Complex_Left : Complex_Pack.Complex := Complex_Zero;
-
- TC_Real : Real_Type := 0.0;
-
- TC_Imaginary : Complex_Pack.Imaginary;
-
- begin
-
-
- -- Check that the imaginary component of the result of a binary addition
- -- operator that yields a result of complex type is exact when either
- -- of its operands is of pure-real type.
-
- TC_Complex := Compose_From_Cartesian(2.0, 3.0);
- TC_Real := 3.0;
-
- if Im("+"(Left => TC_Complex, Right => TC_Real)) /= 3.0 or
- Im("+"(TC_Complex, 6.0)) /= 3.0 or
- Im(TC_Complex + TC_Real) /= 3.0 or
- Im(TC_Complex + 5.0) /= 3.0 or
- Im((7.0, 2.0) + 1.0) /= 2.0 or
- Im((7.0, 5.0) + (-2.0)) /= 5.0 or
- Im((-7.0, -2.0) + 1.0) /= -2.0 or
- Im((-7.0, -3.0) + (-3.0)) /= -3.0
- then
- Report.Failed("Incorrect results from Function ""+"" with " &
- "one Complex and one Real argument - 1");
- end if;
-
- if Im("+"(Left => TC_Real, Right => TC_Complex)) /= 3.0 or
- Im("+"(4.0, TC_Complex)) /= 3.0 or
- Im(TC_Real + TC_Complex) /= 3.0 or
- Im(9.0 + TC_Complex) /= 3.0 or
- Im(1.0 + (7.0, -9.0)) /= -9.0 or
- Im((-2.0) + (7.0, 2.0)) /= 2.0 or
- Im(1.0 + (-7.0, -5.0)) /= -5.0 or
- Im((-3.0) + (-7.0, 16.0)) /= 16.0
- then
- Report.Failed("Incorrect results from Function ""+"" with " &
- "one Complex and one Real argument - 2");
- end if;
-
-
- -- Check that the imaginary component of the result of a binary
- -- subtraction operator that yields a result of complex type is exact
- -- when its right operand is of pure-real type.
-
- TC_Complex := (8.0, -4.0);
- TC_Real := 2.0;
-
- if Im("-"(Left => TC_Complex, Right => TC_Real)) /= -4.0 or
- Im("-"(TC_Complex, 5.0)) /= -4.0 or
- Im(TC_Complex - TC_Real) /= -4.0 or
- Im(TC_Complex - 4.0) /= -4.0 or
- Im((6.0, 5.0) - 1.0) /= 5.0 or
- Im((6.0, 13.0) - 7.0) /= 13.0 or
- Im((-5.0, 3.0) - (2.0)) /= 3.0 or
- Im((-5.0, -6.0) - (-3.0)) /= -6.0
- then
- Report.Failed("Incorrect results from Function ""-"" with " &
- "one Complex and one Real argument");
- end if;
-
-
- -- Check that the real component of the result of a binary addition
- -- operator that yields a result of complex type is exact when either
- -- of its operands is of pure-imaginary type.
-
- TC_Complex := (5.0, 0.0);
-
- if Re("+"(Left => TC_Complex, Right => i)) /= 5.0 or
- Re("+"(Complex_Pack.j, TC_Complex)) /= 5.0 or
- Re((-8.0, 5.0) + ( 2.0*i)) /= -8.0 or
- Re((2.0, 5.0) + (-2.0*i)) /= 2.0 or
- Re((-20.0, -5.0) + ( 3.0*i)) /= -20.0 or
- Re((6.0, -5.0) + (-3.0*i)) /= 6.0
- then
- Report.Failed("Incorrect results from Function ""+"" with " &
- "one Complex and one Imaginary argument");
- end if;
-
-
- -- Check that the real component of the result of a binary
- -- subtraction operator that yields a result of complex type is exact
- -- when its right operand is of pure-imaginary type.
-
- TC_Complex := TC_Complex + i; -- Should produce (5.0, 1.0)
-
- if Re("-"(TC_Complex, i)) /= 5.0 or
- Re((-4.0, 4.0) - ( 2.0*i)) /= -4.0 or
- Re((9.0, 4.0) - ( 5.0*i)) /= 9.0 or
- Re((16.0, -5.0) - ( 3.0*i)) /= 16.0 or
- Re((-3.0, -5.0) - (-4.0*i)) /= -3.0
- then
- Report.Failed("Incorrect results from Function ""-"" with " &
- "one Complex and one Imaginary argument");
- end if;
-
-
- -- Check that the result of a binary addition operation is exact when
- -- one of its operands is of real type and the other is of
- -- pure-imaginary type; the operator is analogous to the
- -- Compose_From_Cartesian function; it performs no arithmetic.
-
- TC_Complex := Complex_Pack."+"(5.0, Complex_Pack.i);
-
- if TC_Complex /= (5.0, 1.0) or
- (4.0 + i) /= (4.0, 1.0) or
- "+"(Left => j, Right => 3.0) /= (3.0, 1.0)
- then
- Report.Failed("Incorrect results from Function ""+"" with " &
- "one Real and one Imaginary argument");
- end if;
-
-
- exception
- when others => Report.Failed ("Exception raised in Test_Block");
- end Test_Block;
-
- Report.Result;
-
-end CXG1002;
diff --git a/gcc/testsuite/ada/acats/tests/cxg/cxg1003.a b/gcc/testsuite/ada/acats/tests/cxg/cxg1003.a
deleted file mode 100644
index c3885136b86..00000000000
--- a/gcc/testsuite/ada/acats/tests/cxg/cxg1003.a
+++ /dev/null
@@ -1,478 +0,0 @@
--- CXG1003.A
---
--- Grant of Unlimited Rights
---
--- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
--- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
--- unlimited rights in the software and documentation contained herein.
--- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
--- this public release, the Government intends to confer upon all
--- recipients unlimited rights equal to those held by the Government.
--- These rights include rights to use, duplicate, release or disclose the
--- released technical data and computer software in whole or in part, in
--- any manner and for any purpose whatsoever, and to have or permit others
--- to do so.
---
--- DISCLAIMER
---
--- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
--- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
--- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
--- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
--- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
--- PARTICULAR PURPOSE OF SAID MATERIAL.
---*
---
--- OBJECTIVE:
--- Check that the subprograms defined in the package Text_IO.Complex_IO
--- provide correct results.
---
--- TEST DESCRIPTION:
--- The generic package Ada.Numerics.Generic_Complex_Types is instantiated
--- with a real type (new Float). The resulting new package is used as
--- the generic actual to package Complex_IO.
--- Two different versions of Put and Get are examined in this test,
--- those that input/output complex data values from/to Text_IO files,
--- and those that input/output complex data values from/to strings.
--- Two procedures are defined to perform the file data manipulations;
--- one to place complex data into the file, and one to retrieve the data
--- from the file and verify its correctness.
--- Complex data is also put into string variables using the Procedure
--- Put for strings, and this data is then retrieved and reconverted into
--- complex values using the Get procedure.
---
---
--- APPLICABILITY CRITERIA:
--- This test is only applicable to implementations that:
--- support Annex G,
--- support Text_IO and external files
---
---
--- CHANGE HISTORY:
--- 06 Dec 94 SAIC ACVC 2.0
--- 29 Dec 94 SAIC Modified Width parameter in Get function calls.
--- 16 Nov 95 SAIC Corrected visibility problems for ACVC 2.0.1.
--- 29 Sep 96 SAIC Incorporated reviewer comments.
---
---!
-
-with Ada.Text_IO.Complex_IO;
-with Ada.Numerics.Generic_Complex_Types;
-with Report;
-
-procedure CXG1003 is
-begin
-
- Report.Test ("CXG1003", "Check that the subprograms defined in " &
- "the package Text_IO.Complex_IO " &
- "provide correct results");
-
- Test_for_Text_IO_Support:
- declare
- use Ada;
-
- Data_File : Ada.Text_IO.File_Type;
- Data_Filename : constant String := Report.Legal_File_Name;
-
- begin
-
- -- An application creates a text file in mode Out_File, with the
- -- intention of entering complex data into the file as appropriate.
- -- In the event that the particular environment where the application
- -- is running does not support Text_IO, Use_Error or Name_Error will be
- -- raised on calls to Text_IO operations. Either of these exceptions
- -- will be handled to produce a Not_Applicable result.
-
- Text_IO.Create (File => Data_File,
- Mode => Ada.Text_IO.Out_File,
- Name => Data_Filename);
-
- Test_Block:
- declare
-
- TC_Verbose : Boolean := False;
-
- type Real_Type is new Float;
-
- package Complex_Pack is new
- Ada.Numerics.Generic_Complex_Types(Real_Type);
-
- package C_IO is new Ada.Text_IO.Complex_IO(Complex_Pack);
-
- use Ada.Text_IO, C_IO;
- use type Complex_Pack.Complex;
-
- Number_Of_Complex_Items : constant := 6;
- Number_Of_Error_Items : constant := 2;
-
- TC_Complex : Complex_Pack.Complex;
- TC_Last_Character_Read : Positive;
-
- Complex_Array : array (1..Number_Of_Complex_Items)
- of Complex_Pack.Complex := ( (3.0, 9.0),
- (4.0, 7.0),
- (5.0, 6.0),
- (6.0, 3.0),
- (2.0, 5.0),
- (3.0, 7.0) );
-
-
- procedure Load_Data_File (The_File : in out Text_IO.File_Type) is
- use Ada.Text_IO;
- begin
- -- This procedure does not create, open, or close the data file;
- -- The_File file object must be Open at this point.
- -- This procedure is designed to load complex data into a data
- -- file twice, first using Text_IO, then Complex_IO. In this
- -- first case, the complex data values are entered as strings,
- -- assuming a variety of legal formats, as provided in the
- -- reference manual.
-
- Put_Line(The_File, "(3.0, 9.0)");
- Put_Line(The_File, "+4. +7."); -- Relaxed real literal format.
- Put_Line(The_File, "(5.0 6.)");
- Put_Line(The_File, "6., 3.0");
- Put_Line(The_File, " ( 2.0 , 5.0 ) ");
- Put_Line(The_File, "("); -- Complex data separated over
- Put_Line(The_File, "3.0"); -- several (5) lines.
- Put_Line(The_File, " , ");
- Put_Line(The_File, "7.0 ");
- Put_Line(The_File, ")");
-
- if TC_Verbose then
- Report.Comment("Complex values entered into data file using " &
- "Text_IO, Procedure Load_Data_File");
- end if;
-
- -- Use the Complex_IO procedure Put to enter Complex data items
- -- into the data file.
- -- Note: Data is being entered into the file for the *second* time
- -- at this point. (Using Complex_IO here, Text_IO above)
-
- for i in 1..Number_Of_Complex_Items loop
- C_IO.Put(File => The_File,
- Item => Complex_Array(i),
- Fore => 1,
- Aft => 1,
- Exp => 0);
- end loop;
-
- if TC_Verbose then
- Report.Comment("Complex values entered into data file using " &
- "Complex_IO, Procedure Load_Data_File");
- end if;
-
- Put_Line(The_File, "(5A,3)"); -- data to raise Data_Error.
- Put_Line(The_File, "(3.0,,8.0)"); -- data to raise Data_Error.
-
- end Load_Data_File;
-
-
-
- procedure Process_Data_File (The_File : in out Text_IO.File_Type) is
- TC_Complex : Complex_Pack.Complex := (0.0, 0.0);
- TC_Width : Integer := 0;
- begin
- -- This procedure does not create, open, or close the data file;
- -- The_File file object must be Open at this point.
- -- Use procedure Get (for Files) to extract the complex data from
- -- the Text_IO file. This data was placed into the file using
- -- Text_IO.
-
-
- for i in 1..Number_Of_Complex_Items loop
-
- C_IO.Get(The_File, TC_Complex, TC_Width);
-
- if TC_Complex /= Complex_Array(i) then
- Report.Failed("Incorrect complex data read from file " &
- "when using Text_IO procedure Get, " &
- "data item #" & Integer'Image(i));
- end if;
- end loop;
-
- if TC_Verbose then
- Report.Comment("First set of complex values extracted " &
- "from data file using Complex_IO, " &
- "Procedure Process_Data_File");
- end if;
-
- -- Use procedure Get (for Files) to extract the complex data from
- -- the Text_IO file. This data was placed into the file using
- -- procedure Complex_IO.Put.
- -- Note: Data is being extracted from the file for the *second*
- -- time at this point (Using Complex_IO here, Text_IO above)
-
- for i in 1..Number_Of_Complex_Items loop
-
- C_IO.Get(The_File, TC_Complex, TC_Width);
-
- if TC_Complex /= Complex_Array(i) then
- Report.Failed("Incorrect complex data read from file " &
- "when using Complex_IO procedure Get, " &
- "data item #" & Integer'Image(i));
- end if;
- end loop;
-
- if TC_Verbose then
- Report.Comment("Second set of complex values extracted " &
- "from data file using Complex_IO, " &
- "Procedure Process_Data_File");
- end if;
-
- -- The final items in the Data_File are complex values with
- -- incorrect syntax, which should raise Data_Error on an attempt
- -- to read them from the file.
- TC_Width := 10;
- for i in 1..Number_Of_Error_Items loop
- begin
- C_IO.Get(The_File, TC_Complex, TC_Width);
- Report.Failed
- ("Exception Data_Error not raised when Complex_IO.Get " &
- "was used to read complex data with incorrect " &
- "syntax from the Data_File, data item #" &
- Integer'Image(i));
- exception
- when Ada.Text_IO.Data_Error => -- OK, expected exception.
- Text_IO.Skip_Line(The_File);
- when others =>
- Report.Failed
- ("Unexpected exception raised when Complex_IO.Get " &
- "was used to read complex data with incorrect " &
- "syntax from the Data_File, data item #" &
- Integer'Image(i));
- end;
- end loop;
-
- if TC_Verbose then
- Report.Comment("Erroneous set of complex values extracted " &
- "from data file using Complex_IO, " &
- "Procedure Process_Data_File");
- end if;
-
-
- exception
- when others =>
- Report.Failed
- ("Unexpected exception raised in Process_Data_File");
- end Process_Data_File;
-
-
-
- begin -- Test_Block.
-
- -- Place complex values into data file.
-
- Load_Data_File(Data_File);
- Text_IO.Close(Data_File);
-
- if TC_Verbose then
- Report.Comment("Data file loaded with Complex values");
- end if;
-
- -- Read complex values from data file.
-
- Text_IO.Open(Data_File, Text_IO.In_File, Data_Filename);
- Process_Data_File(Data_File);
-
- if TC_Verbose then
- Report.Comment("Complex values extracted from data file");
- end if;
-
-
-
- -- Verify versions of Procedures Put and Get for Strings.
-
- declare
- TC_String_Array : array (1..Number_Of_Complex_Items)
- of String(1..15) := (others =>(others => ' '));
- begin
-
- -- Place complex values into strings using the Procedure Put.
-
- for i in 1..Number_Of_Complex_Items loop
- C_IO.Put(To => TC_String_Array(i),
- Item => Complex_Array(i),
- Aft => 1,
- Exp => 0);
- end loop;
-
- if TC_Verbose then
- Report.Comment("Complex values placed into string array");
- end if;
-
- -- Check the format of the strings containing a complex number.
- -- The resulting strings are of 15 character length, with the
- -- real component left justified within the string, followed by
- -- a comma, and with the imaginary component and closing
- -- parenthesis right justified in the string, with blank fill
- -- for the balance of the string.
-
- if TC_String_Array(1) /= "(3.0, 9.0)" or
- TC_String_Array(2) /= "(4.0, 7.0)" or
- TC_String_Array(3) /= "(5.0, 6.0)" or
- TC_String_Array(4) /= "(6.0, 3.0)" or
- TC_String_Array(5) /= "(2.0, 5.0)" or
- TC_String_Array(6) /= "(3.0, 7.0)"
- then
- Report.Failed("Incorrect format for complex values that " &
- "have been placed into string variables " &
- "using the Complex_IO.Put procedure for " &
- "strings");
- end if;
-
- if TC_Verbose then
- Report.Comment("String format of Complex values verified");
- end if;
-
- -- Get complex values from strings using the Procedure Get.
- -- Compare with expected complex values.
-
- for i in 1..Number_Of_Complex_Items loop
-
- C_IO.Get(From => TC_String_Array(i),
- Item => TC_Complex,
- Last => TC_Last_Character_Read);
-
- if TC_Complex /= Complex_Array(i) then
- Report.Failed("Incorrect complex data value obtained " &
- "from String following use of Procedures " &
- "Put and Get from Strings, Complex_Array " &
- "item #" & Integer'Image(i));
- end if;
- end loop;
-
- if TC_Verbose then
- Report.Comment("Complex values removed from String array");
- end if;
-
- -- Verify that Layout_Error is raised if the given string is
- -- too short to hold the formatted output.
- Layout_Error_On_Put:
- declare
- Much_Too_Short : String(1..2);
- Complex_Value : Complex_Pack.Complex := (5.0, 0.0);
- begin
- C_IO.Put(Much_Too_Short, Complex_Value);
- Report.Failed("Layout_Error not raised by Procedure Put " &
- "when the given string was too short to " &
- "hold the formatted output");
- exception
- when Layout_Error => null; -- OK, expected exception.
- when others =>
- Report.Failed
- ("Unexpected exception raised by Procedure Put when " &
- "the given string was too short to hold the " &
- "formatted output");
- end Layout_Error_On_Put;
-
- if TC_Verbose then
- Report.Comment("Layout Errors verified");
- end if;
-
- exception
- when others =>
- Report.Failed("Unexpected exception raised during the " &
- "evaluation of Put and Get for Strings");
- end;
-
-
- -- Place complex values into strings using a variety of legal
- -- complex data formats.
- declare
-
- type String_Ptr is access String;
-
- TC_Complex_String_Array :
- array (1..Number_Of_Complex_Items) of String_Ptr :=
- (new String'( "(3.0, 9.0 )" ),
- new String'( "+4.0 +7.0" ),
- new String'( "(5.0 6.0)" ),
- new String'( "6.0, 3.0" ),
- new String'( " ( 2.0 , 5.0 ) " ),
- new String'( "(3.0 7.0)" ));
-
- -- The following array contains Positive values that correspond
- -- to the last character that will be read by Procedure Get when
- -- given each of the above strings as input.
-
- TC_Last_Char_Array : array (1..Number_Of_Complex_Items)
- of Positive := (12,10,9,8,20,22);
-
- begin
-
- -- Get complex values from strings using the Procedure Get.
- -- Compare with expected complex values.
-
- for i in 1..Number_Of_Complex_Items loop
-
- C_IO.Get(TC_Complex_String_Array(i).all,
- TC_Complex,
- TC_Last_Character_Read);
-
- if TC_Complex /= Complex_Array(i) then
- Report.Failed
- ("Incorrect complex data value obtained from " &
- "Procedure Get with complex data input of: " &
- TC_Complex_String_Array(i).all);
- end if;
-
- if TC_Last_Character_Read /= TC_Last_Char_Array(i) then
- Report.Failed
- ("Incorrect value returned as the last character of " &
- "the input string processed by Procedure Get, " &
- "string value : " & TC_Complex_String_Array(i).all &
- " expected last character value read : " &
- Positive'Image(TC_Last_Char_Array(i)) &
- " last character value read : " &
- Positive'Image(TC_Last_Character_Read));
- end if;
-
- end loop;
-
- if TC_Verbose then
- Report.Comment("Complex values removed from strings and " &
- "verified against expected values");
- end if;
-
- exception
- when others =>
- Report.Failed("Unexpected exception raised during the " &
- "evaluation of Get for Strings");
- end;
-
- exception
- when others => Report.Failed ("Exception raised in Test_Block");
- end Test_Block;
-
-
- -- Delete the external file.
- if Ada.Text_IO.Is_Open(Data_File) then
- Ada.Text_IO.Delete(Data_File);
- else
- Ada.Text_IO.Open(Data_File,
- Ada.Text_IO.In_File,
- Data_Filename);
- Ada.Text_IO.Delete(Data_File);
- end if;
-
- exception
-
- -- Since Use_Error can be raised if, for the specified mode,
- -- the environment does not support Text_IO operations, the
- -- following handlers are included:
-
- when Ada.Text_IO.Use_Error =>
- Report.Not_Applicable ("Use_Error raised on Text_IO Create");
-
- when Ada.Text_IO.Name_Error =>
- Report.Not_Applicable ("Name_Error raised on Text_IO Create");
-
- when others =>
- Report.Failed ("Unexpected exception raised on text file Create");
-
- end Test_for_Text_IO_Support;
-
- Report.Result;
-
-end CXG1003;
diff --git a/gcc/testsuite/ada/acats/tests/cxg/cxg1004.a b/gcc/testsuite/ada/acats/tests/cxg/cxg1004.a
deleted file mode 100644
index f026eae70db..00000000000
--- a/gcc/testsuite/ada/acats/tests/cxg/cxg1004.a
+++ /dev/null
@@ -1,360 +0,0 @@
--- CXG1004.A
---
--- Grant of Unlimited Rights
---
--- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
--- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
--- unlimited rights in the software and documentation contained herein.
--- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
--- this public release, the Government intends to confer upon all
--- recipients unlimited rights equal to those held by the Government.
--- These rights include rights to use, duplicate, release or disclose the
--- released technical data and computer software in whole or in part, in
--- any manner and for any purpose whatsoever, and to have or permit others
--- to do so.
---
--- DISCLAIMER
---
--- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
--- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
--- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
--- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
--- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
--- PARTICULAR PURPOSE OF SAID MATERIAL.
---*
---
--- OBJECTIVE:
--- Check that the specified exceptions are raised by the subprograms
--- defined in package Ada.Numerics.Generic_Complex_Elementary_Functions
--- given the prescribed input parameter values.
---
--- TEST DESCRIPTION:
--- This test checks that specific subprograms defined in the
--- package Ada.Numerics.Generic_Complex_Elementary_Functions raise the
--- exceptions Argument_Error and Constraint_Error when their input
--- parameter value are those specified as causing each exception.
--- In the case of Constraint_Error, the exception will be raised in
--- each test case, provided that the value of the attribute
--- 'Machine_Overflows (for the actual type of package
--- Generic_Complex_Type) is True.
---
--- APPLICABILITY CRITERIA:
--- This test only applies to implementations supporting the
--- numerics annex.
---
---
--- CHANGE HISTORY:
--- 06 Dec 94 SAIC ACVC 2.0
--- 16 Nov 95 SAIC Corrected visibility problems for ACVC 2.0.1.
--- 29 Sep 96 SAIC Incorporated reviewer comments.
--- 02 Jun 98 EDS Replace "_i" with "_One".
---!
-
-with Ada.Numerics.Generic_Complex_Types;
-with Ada.Numerics.Generic_Complex_Elementary_Functions;
-with Report;
-
-procedure CXG1004 is
-begin
-
- Report.Test ("CXG1004", "Check that the specified exceptions are " &
- "raised by the subprograms defined in package " &
- "Ada.Numerics.Generic_Complex_Elementary_" &
- "Functions given the prescribed input " &
- "parameter values");
-
- Test_Block:
- declare
-
- type Real_Type is new Float;
-
- TC_Overflows : Boolean := Real_Type'Machine_Overflows;
-
- package Complex_Pack is
- new Ada.Numerics.Generic_Complex_Types(Real_Type);
-
- package CEF is
- new Ada.Numerics.Generic_Complex_Elementary_Functions(Complex_Pack);
-
- use Ada.Numerics, Complex_Pack, CEF;
-
- Complex_Zero : constant Complex := Compose_From_Cartesian(0.0, 0.0);
- Plus_One : constant Complex := Compose_From_Cartesian(1.0, 0.0);
- Minus_One : constant Complex := Compose_From_Cartesian(-1.0, 0.0);
- Plus_i : constant Complex := Compose_From_Cartesian(i);
- Minus_i : constant Complex := Compose_From_Cartesian(-i);
-
- Complex_Negative_Real : constant Complex :=
- Compose_From_Cartesian(-4.0, 2.0);
- Complex_Negative_Imaginary : constant Complex :=
- Compose_From_Cartesian(3.0, -5.0);
-
- TC_Complex : Complex;
-
-
- -- This procedure is used in "Exception Raising" calls below in an
- -- attempt to avoid elimination of the subtest through optimization.
-
- procedure No_Optimize (The_Complex_Number : Complex) is
- begin
- Report.Comment("No Optimize: Should never be printed " &
- Integer'Image(Integer(The_Complex_Number.Im)));
- end No_Optimize;
-
-
- begin
-
- -- Check that the exception Numerics.Argument_Error is raised by the
- -- exponentiation operator when the value of the left operand is zero,
- -- and the real component of the exponent (or the exponent itself) is
- -- zero.
-
- begin
- TC_Complex := "**"(Left => Complex_Zero, Right => Complex_Zero);
- Report.Failed("Argument_Error not raised by exponentiation " &
- "operator, left operand = complex zero, right " &
- "operand = complex zero");
- No_Optimize(TC_Complex);
- exception
- when Argument_Error => null; -- OK, expected exception.
- when others =>
- Report.Failed("Incorrect exception raised by exponentiation " &
- "operator, left operand = complex zero, right " &
- "operand = complex zero");
- end;
-
- begin
- TC_Complex := Complex_Zero**0.0;
- Report.Failed("Argument_Error not raised by exponentiation " &
- "operator, left operand = complex zero, right " &
- "operand = real zero");
- No_Optimize(TC_Complex);
- exception
- when Argument_Error => null; -- OK, expected exception.
- when others =>
- Report.Failed("Incorrect exception raised by exponentiation " &
- "operator, left operand = complex zero, right " &
- "operand = real zero");
- end;
-
-
- begin
- TC_Complex := "**"(Left => 0.0, Right => Complex_Zero);
- Report.Failed("Argument_Error not raised by exponentiation " &
- "operator, left operand = real zero, right " &
- "operand = complex zero");
- No_Optimize(TC_Complex);
- exception
- when Argument_Error => null; -- OK, expected exception.
- when others =>
- Report.Failed("Incorrect exception raised by exponentiation " &
- "operator, left operand = real zero, right " &
- "operand = complex zero");
- end;
-
-
- -- Check that the exception Constraint_Error is raised under the
- -- specified circumstances, provided that
- -- Complex_Types.Real'Machine_Overflows is True.
-
- if TC_Overflows then
-
- -- Raised by Log, when the value of the parameter X is zero.
- begin
- TC_Complex := Log (X => Complex_Zero);
- Report.Failed("Constraint_Error not raised when Function " &
- "Log given parameter value of complex zero");
- No_Optimize(TC_Complex);
- exception
- when Constraint_Error => null; -- OK, expected exception.
- when others =>
- Report.Failed("Incorrect exception raised when Function " &
- "Log given parameter value of complex zero");
- end;
-
- -- Raised by Cot, when the value of the parameter X is zero.
- begin
- TC_Complex := Cot (X => Complex_Zero);
- Report.Failed("Constraint_Error not raised when Function " &
- "Cot given parameter value of complex zero");
- No_Optimize(TC_Complex);
- exception
- when Constraint_Error => null; -- OK, expected exception.
- when others =>
- Report.Failed("Incorrect exception raised when Function " &
- "Cot given parameter value of complex zero");
- end;
-
- -- Raised by Coth, when the value of the parameter X is zero.
- begin
- TC_Complex := Coth (Complex_Zero);
- Report.Failed("Constraint_Error not raised when Function " &
- "Coth given parameter value of complex zero");
- No_Optimize(TC_Complex);
- exception
- when Constraint_Error => null; -- OK, expected exception.
- when others =>
- Report.Failed("Incorrect exception raised when Function " &
- "Coth given parameter value of complex zero");
- end;
-
- -- Raised by the exponentiation operator, when the value of the
- -- left operand is zero and the real component of the exponent
- -- is negative.
- begin
- TC_Complex := Complex_Zero**Complex_Negative_Real;
- Report.Failed("Constraint_Error not raised when the " &
- "exponentiation operator left operand is " &
- "complex zero, and the real component of " &
- "the exponent is negative");
- No_Optimize(TC_Complex);
- exception
- when Constraint_Error => null; -- OK, expected exception.
- when others =>
- Report.Failed("Incorrect exception raised when the " &
- "exponentiation operator left operand is " &
- "complex zero, and the real component of " &
- "the exponent is negative");
- end;
-
- -- Raised by the exponentiation operator, when the value of the
- -- left operand is zero and the exponent itself (when it is of
- -- type real) is negative.
- declare
- Negative_Exponent : constant Real_Type := -4.0;
- begin
- TC_Complex := Complex_Zero**Negative_Exponent;
- Report.Failed("Constraint_Error not raised when the " &
- "exponentiation operator left operand is " &
- "complex zero, and the real exponent is " &
- "negative");
- No_Optimize(TC_Complex);
- exception
- when Constraint_Error => null; -- OK, expected exception.
- when others =>
- Report.Failed("Incorrect exception raised when the " &
- "exponentiation operator left operand is " &
- "complex zero, and the real exponent is " &
- "negative");
- end;
-
- -- Raised by Arctan, when the value of the parameter is +i.
- begin
- TC_Complex := Arctan (Plus_i);
- Report.Failed("Constraint_Error not raised when Function " &
- "Arctan is given parameter value +i");
- No_Optimize(TC_Complex);
- exception
- when Constraint_Error => null; -- OK, expected exception.
- when others =>
- Report.Failed("Incorrect exception raised when Function " &
- "Arctan is given parameter value +i");
- end;
-
- -- Raised by Arctan, when the value of the parameter is -i.
- begin
- TC_Complex := Arctan (Minus_i);
- Report.Failed("Constraint_Error not raised when Function " &
- "Arctan is given parameter value -i");
- No_Optimize(TC_Complex);
- exception
- when Constraint_Error => null; -- OK, expected exception.
- when others =>
- Report.Failed("Incorrect exception raised when Function " &
- "Arctan is given parameter value -i");
- end;
-
- -- Raised by Arccot, when the value of the parameter is +i.
- begin
- TC_Complex := Arccot (Plus_i);
- Report.Failed("Constraint_Error not raised when Function " &
- "Arccot is given parameter value +i");
- No_Optimize(TC_Complex);
- exception
- when Constraint_Error => null; -- OK, expected exception.
- when others =>
- Report.Failed("Incorrect exception raised when Function " &
- "Arccot is given parameter value +i");
- end;
-
- -- Raised by Arccot, when the value of the parameter is -i.
- begin
- TC_Complex := Arccot (Minus_i);
- Report.Failed("Constraint_Error not raised when Function " &
- "Arccot is given parameter value -i");
- No_Optimize(TC_Complex);
- exception
- when Constraint_Error => null; -- OK, expected exception.
- when others =>
- Report.Failed("Incorrect exception raised when Function " &
- "Arccot is given parameter value -i");
- end;
-
- -- Raised by Arctanh, when the value of the parameter is +1.
- begin
- TC_Complex := Arctanh (Plus_One);
- Report.Failed("Constraint_Error not raised when Function " &
- "Arctanh is given parameter value +1");
- No_Optimize(TC_Complex);
- exception
- when Constraint_Error => null; -- OK, expected exception.
- when others =>
- Report.Failed("Incorrect exception raised when Function " &
- "Arctanh is given parameter value +1");
- end;
-
- -- Raised by Arctanh, when the value of the parameter is -1.
- begin
- TC_Complex := Arctanh (Minus_One);
- Report.Failed("Constraint_Error not raised when Function " &
- "Arctanh is given parameter value -1");
- No_Optimize(TC_Complex);
- exception
- when Constraint_Error => null; -- OK, expected exception.
- when others =>
- Report.Failed("Incorrect exception raised when Function " &
- "Arctanh is given parameter value -1");
- end;
-
- -- Raised by Arccoth, when the value of the parameter is +1.
- begin
- TC_Complex := Arccoth (Plus_One);
- Report.Failed("Constraint_Error not raised when Function " &
- "Arccoth is given parameter value +1");
- No_Optimize(TC_Complex);
- exception
- when Constraint_Error => null; -- OK, expected exception.
- when others =>
- Report.Failed("Incorrect exception raised when Function " &
- "Arccoth is given parameter value +1");
- end;
-
- -- Raised by Arccoth, when the value of the parameter is -1.
- begin
- TC_Complex := Arccoth (Minus_One);
- Report.Failed("Constraint_Error not raised when Function " &
- "Arccoth is given parameter value -1");
- No_Optimize(TC_Complex);
- exception
- when Constraint_Error => null; -- OK, expected exception.
- when others =>
- Report.Failed("Incorrect exception raised when Function " &
- "Arccoth is given parameter value -1");
- end;
-
- else
- Report.Comment
- ("Attribute Complex_Pack.Real'Machine_Overflows is False; " &
- "evaluation of the complex elementary functions under " &
- "specified circumstances was not performed");
- end if;
-
-
- exception
- when others =>
- Report.Failed ("Unexpected exception raised in Test_Block");
- end Test_Block;
-
- Report.Result;
-
-end CXG1004;
diff --git a/gcc/testsuite/ada/acats/tests/cxg/cxg1005.a b/gcc/testsuite/ada/acats/tests/cxg/cxg1005.a
deleted file mode 100644
index 6faad4e1357..00000000000
--- a/gcc/testsuite/ada/acats/tests/cxg/cxg1005.a
+++ /dev/null
@@ -1,393 +0,0 @@
--- CXG1005.A
---
--- Grant of Unlimited Rights
---
--- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
--- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
--- unlimited rights in the software and documentation contained herein.
--- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
--- this public release, the Government intends to confer upon all
--- recipients unlimited rights equal to those held by the Government.
--- These rights include rights to use, duplicate, release or disclose the
--- released technical data and computer software in whole or in part, in
--- any manner and for any purpose whatsoever, and to have or permit others
--- to do so.
---
--- DISCLAIMER
---
--- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
--- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
--- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
--- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
--- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
--- PARTICULAR PURPOSE OF SAID MATERIAL.
---*
---
--- OBJECTIVE:
--- Check that the subprograms defined in the package
--- Ada.Numerics.Generic_Complex_Elementary_Functions provide correct
--- results.
---
--- TEST DESCRIPTION:
--- This test checks that specific subprograms defined in the generic
--- package Generic_Complex_Elementary_Functions are available, and that
--- they provide prescribed results given specific input values.
--- The generic package Ada.Numerics.Generic_Complex_Types is instantiated
--- with a real type (new Float). The resulting new package is used as
--- the generic actual to package Complex_IO.
---
--- SPECIAL REQUIREMENTS:
--- Implementations for which Float'Signed_Zeros is True must provide
--- a body for ImpDef.Annex_G.Negative_Zero which returns a negative
--- zero.
---
--- APPLICABILITY CRITERIA
--- This test only applies to implementations that support the
--- numerics annex.
---
---
---
--- CHANGE HISTORY:
--- 06 Dec 94 SAIC ACVC 2.0
--- 16 Nov 95 SAIC Corrected visibility problems for ACVC 2.0.1.
--- 21 Feb 96 SAIC Incorporated new structure for package Impdef.
--- 29 Sep 96 SAIC Incorporated reviewer comments.
---
---!
-
-with Ada.Numerics.Generic_Complex_Types;
-with Ada.Numerics.Generic_Complex_Elementary_Functions;
-with ImpDef.Annex_G;
-with Report;
-
-procedure CXG1005 is
-begin
-
- Report.Test ("CXG1005", "Check that the subprograms defined in " &
- "the package Generic_Complex_Elementary_" &
- "Functions provide correct results");
-
- Test_Block:
- declare
-
- type Real_Type is new Float;
-
- TC_Signed_Zeros : Boolean := Real_Type'Signed_Zeros;
-
- package Complex_Pack is new
- Ada.Numerics.Generic_Complex_Types(Real_Type);
-
- package CEF is
- new Ada.Numerics.Generic_Complex_Elementary_Functions(Complex_Pack);
-
- use Ada.Numerics, Complex_Pack, CEF;
-
- Complex_Zero : constant Complex := Compose_From_Cartesian( 0.0, 0.0);
- Plus_One : constant Complex := Compose_From_Cartesian( 1.0, 0.0);
- Minus_One : constant Complex := Compose_From_Cartesian(-1.0, 0.0);
- Plus_i : constant Complex := Compose_From_Cartesian(i);
- Minus_i : constant Complex := Compose_From_Cartesian(-i);
-
- Complex_Positive_Real : constant Complex :=
- Compose_From_Cartesian(4.0, 2.0);
- Complex_Positive_Imaginary : constant Complex :=
- Compose_From_Cartesian(3.0, 5.0);
- Complex_Negative_Real : constant Complex :=
- Compose_From_Cartesian(-4.0, 2.0);
- Complex_Negative_Imaginary : constant Complex :=
- Compose_From_Cartesian(3.0, -5.0);
-
-
- function A_Zero_Result (Z : Complex) return Boolean is
- begin
- return (Re(Z) = 0.0 and Im(Z) = 0.0);
- end A_Zero_Result;
-
-
- -- In order to evaluate complex elementary functions that are
- -- prescribed to return a "real" result (meaning that the imaginary
- -- component is zero), the Function A_Real_Result is defined.
-
- function A_Real_Result (Z : Complex) return Boolean is
- begin
- return Im(Z) = 0.0;
- end A_Real_Result;
-
-
- -- In order to evaluate complex elementary functions that are
- -- prescribed to return an "imaginary" result (meaning that the real
- -- component of the complex number is zero, and the imaginary
- -- component is non-zero), the Function An_Imaginary_Result is defined.
-
- function An_Imaginary_Result (Z : Complex) return Boolean is
- begin
- return (Re(Z) = 0.0 and Im(Z) /= 0.0);
- end An_Imaginary_Result;
-
-
- begin
-
- -- Check that when the input parameter value is zero, the following
- -- functions yield a zero result.
-
- if not A_Zero_Result( Sqrt(Complex_Zero) ) then
- Report.Failed("Non-zero result from Function Sqrt with zero input");
- end if;
-
- if not A_Zero_Result( Sin(Complex_Zero) ) then
- Report.Failed("Non-zero result from Function Sin with zero input");
- end if;
-
- if not A_Zero_Result( Arcsin(Complex_Zero) ) then
- Report.Failed("Non-zero result from Function Arcsin with zero " &
- "input");
- end if;
-
- if not A_Zero_Result( Tan(Complex_Zero) ) then
- Report.Failed("Non-zero result from Function Tan with zero input");
- end if;
-
- if not A_Zero_Result( Arctan(Complex_Zero) ) then
- Report.Failed("Non-zero result from Function Arctan with zero " &
- "input");
- end if;
-
- if not A_Zero_Result( Sinh(Complex_Zero) ) then
- Report.Failed("Non-zero result from Function Sinh with zero input");
- end if;
-
- if not A_Zero_Result( Arcsinh(Complex_Zero) ) then
- Report.Failed("Non-zero result from Function Arcsinh with zero " &
- "input");
- end if;
-
- if not A_Zero_Result( Tanh(Complex_Zero) ) then
- Report.Failed("Non-zero result from Function Tanh with zero input");
- end if;
-
- if not A_Zero_Result( Arctanh(Complex_Zero) ) then
- Report.Failed("Non-zero result from Function Arctanh with zero " &
- "input");
- end if;
-
-
- -- Check that when the input parameter value is zero, the following
- -- functions yield a result of one.
-
- if Exp(Complex_Zero) /= Plus_One
- then
- Report.Failed("Non-zero result from Function Exp with zero input");
- end if;
-
- if Cos(Complex_Zero) /= Plus_One
- then
- Report.Failed("Non-zero result from Function Cos with zero input");
- end if;
-
- if Cosh(Complex_Zero) /= Plus_One
- then
- Report.Failed("Non-zero result from Function Cosh with zero input");
- end if;
-
-
- -- Check that when the input parameter value is zero, the following
- -- functions yield a real result.
-
- if not A_Real_Result( Arccos(Complex_Zero) ) then
- Report.Failed("Non-real result from Function Arccos with zero input");
- end if;
-
- if not A_Real_Result( Arccot(Complex_Zero) ) then
- Report.Failed("Non-real result from Function Arccot with zero input");
- end if;
-
-
- -- Check that when the input parameter value is zero, the following
- -- functions yield an imaginary result.
-
- if not An_Imaginary_Result( Arccoth(Complex_Zero) ) then
- Report.Failed("Non-imaginary result from Function Arccoth with " &
- "zero input");
- end if;
-
-
- -- Check that when the input parameter value is one, the Sqrt function
- -- yields a result of one.
-
- if Sqrt(Plus_One) /= Plus_One then
- Report.Failed("Incorrect result from Function Sqrt with input " &
- "value of one");
- end if;
-
-
- -- Check that when the input parameter value is one, the following
- -- functions yield a result of zero.
-
- if not A_Zero_Result( Log(Plus_One) ) then
- Report.Failed("Non-zero result from Function Log with input " &
- "value of one");
- end if;
-
- if not A_Zero_Result( Arccos(Plus_One) ) then
- Report.Failed("Non-zero result from Function Arccos with input " &
- "value of one");
- end if;
-
- if not A_Zero_Result( Arccosh(Plus_One) ) then
- Report.Failed("Non-zero result from Function Arccosh with input " &
- "value of one");
- end if;
-
-
- -- Check that when the input parameter value is one, the Arcsin
- -- function yields a real result.
-
- if not A_Real_Result( Arcsin(Plus_One) ) then
- Report.Failed("Non-real result from Function Arcsin with input " &
- "value of one");
- end if;
-
-
- -- Check that when the input parameter value is minus one, the Sqrt
- -- function yields a result of "i", when the sign of the imaginary
- -- component of the input parameter is positive (and yields "-i", if
- -- the sign on the imaginary component is negative), and the
- -- Complex_Types.Real'Signed_Zeros attribute is True.
-
- if TC_Signed_Zeros then
-
- declare
- Minus_One_With_Pos_Zero_Im_Component : Complex :=
- Compose_From_Cartesian(-1.0, +0.0);
- Minus_One_With_Neg_Zero_Im_Component : Complex :=
- Compose_From_Cartesian
- (-1.0, Real_Type(ImpDef.Annex_G.Negative_Zero));
- begin
-
- if Sqrt(Minus_One_With_Pos_Zero_Im_Component) /= Plus_i then
- Report.Failed("Incorrect result from Function Sqrt, when " &
- "input value is minus one with a positive " &
- "imaginary component, Signed_Zeros being True");
- end if;
-
- if Sqrt(Minus_One_With_Neg_Zero_Im_Component) /= Minus_i then
- Report.Failed("Incorrect result from Function Sqrt, when " &
- "input value is minus one with a negative " &
- "imaginary component, Signed_Zeros being True");
- end if;
- end;
-
- else -- Signed_Zeros is False.
-
- -- Check that when the input parameter value is minus one, the Sqrt
- -- function yields a result of "i", when the
- -- Complex_Types.Real'Signed_Zeros attribute is False.
-
- if Sqrt(Minus_One) /= Plus_i then
- Report.Failed("Incorrect result from Function Sqrt, when " &
- "input value is minus one, Signed_Zeros being " &
- "False");
- end if;
-
- end if;
-
-
- -- Check that when the input parameter value is minus one, the Log
- -- function yields an imaginary result.
-
- if not An_Imaginary_Result( Log(Minus_One) ) then
- Report.Failed("Non-imaginary result from Function Log with a " &
- "minus one input value");
- end if;
-
- -- Check that when the input parameter is minus one, the following
- -- functions yield a real result.
-
- if not A_Real_Result( Arcsin(Minus_One) ) then
- Report.Failed("Non-real result from Function Arcsin with a " &
- "minus one input value");
- end if;
-
- if not A_Real_Result( Arccos(Minus_One) ) then
- Report.Failed("Non-real result from Function Arccos with a " &
- "minus one input value");
- end if;
-
-
- -- Check that when the input parameter has a value of +i or -i, the
- -- Log function yields an imaginary result.
-
- if not An_Imaginary_Result( Log(Plus_i) ) then
- Report.Failed("Non-imaginary result from Function Log with an " &
- "input value of ""+i""");
- end if;
-
- if not An_Imaginary_Result( Log(Minus_i) ) then
- Report.Failed("Non-imaginary result from Function Log with an " &
- "input value of ""-i""");
- end if;
-
-
- -- Check that exponentiation by a zero exponent yields the value one.
-
- if "**"(Left => Compose_From_Cartesian(5.0, 3.0),
- Right => Complex_Zero) /= Plus_One or
- Complex_Negative_Real**0.0 /= Plus_One or
- 15.0**Complex_Zero /= Plus_One
- then
- Report.Failed("Incorrect result from exponentiation with a zero " &
- "exponent");
- end if;
-
-
- -- Check that exponentiation by a unit exponent yields the value of
- -- the left operand (as a complex value).
- -- Note: a "unit exponent" is considered the complex number (1.0, 0.0)
-
- if "**"(Complex_Negative_Real, Plus_One) /=
- Complex_Negative_Real or
- Complex_Negative_Imaginary**Plus_One /=
- Complex_Negative_Imaginary or
- 4.0**Plus_One /=
- Compose_From_Cartesian(4.0, 0.0)
- then
- Report.Failed("Incorrect result from exponentiation with a unit " &
- "exponent");
- end if;
-
-
- -- Check that exponentiation of the value one yields the value one.
-
- if "**"(Plus_One, Complex_Negative_Imaginary) /= Plus_One or
- Plus_One**9.0 /= Plus_One or
- 1.0**Complex_Negative_Real /= Plus_One
- then
- Report.Failed("Incorrect result from exponentiation of the value " &
- "One");
- end if;
-
-
- -- Check that exponentiation of the value zero yields the value zero.
- begin
- if not A_Zero_Result("**"(Complex_Zero,
- Complex_Positive_Imaginary)) or
- not A_Zero_Result(Complex_Zero**4.0) or
- not A_Zero_Result(0.0**Complex_Positive_Real)
- then
- Report.Failed("Incorrect result from exponentiation of the " &
- "value zero");
- end if;
- exception
- when others =>
- Report.Failed("Exception raised during the exponentiation of " &
- "the complex value zero");
- end;
-
-
- exception
- when others => Report.Failed ("Exception raised in Test_Block");
- end Test_Block;
-
- Report.Result;
-
-end CXG1005;
diff --git a/gcc/testsuite/ada/acats/tests/cxg/cxg2001.a b/gcc/testsuite/ada/acats/tests/cxg/cxg2001.a
deleted file mode 100644
index 0d7afa46091..00000000000
--- a/gcc/testsuite/ada/acats/tests/cxg/cxg2001.a
+++ /dev/null
@@ -1,322 +0,0 @@
--- CXG2001.A
---
--- Grant of Unlimited Rights
---
--- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
--- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
--- unlimited rights in the software and documentation contained herein.
--- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
--- this public release, the Government intends to confer upon all
--- recipients unlimited rights equal to those held by the Government.
--- These rights include rights to use, duplicate, release or disclose the
--- released technical data and computer software in whole or in part, in
--- any manner and for any purpose whatsoever, and to have or permit others
--- to do so.
---
--- DISCLAIMER
---
--- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
--- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
--- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
--- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
--- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
--- PARTICULAR PURPOSE OF SAID MATERIAL.
---*
---
--- OBJECTIVE:
--- Check that the floating point attributes Model_Mantissa,
--- Machine_Mantissa, Machine_Radix, and Machine_Rounds
--- are properly reported.
---
--- TEST DESCRIPTION:
--- This test uses a generic package to compute and check the
--- values of the Machine_ attributes listed above. The
--- generic package is instantiated with the standard FLOAT
--- type and a floating point type for the maximum number
--- of digits of precision.
---
--- APPLICABILITY CRITERIA:
--- This test applies only to implementations supporting the
--- Numerics Annex.
---
---
--- CHANGE HISTORY:
--- 26 JAN 96 SAIC Initial Release for 2.1
---
---!
-
--- References:
---
--- "Algorithms To Reveal Properties of Floating-Point Arithmetic"
--- Michael A. Malcolm; CACM November 1972; pgs 949-951.
---
--- Software Manual for Elementary Functions; W. J. Cody and W. Waite;
--- Prentice-Hall; 1980
------------------------------------------------------------------------
---
--- This test relies upon the fact that
--- (A+2.0)-A is not necessarily 2.0. If A is large enough then adding
--- a small value to A does not change the value of A. Consider the case
--- where we have a decimal based floating point representation with 4
--- digits of precision. A floating point number would logically be
--- represented as "DDDD * 10 ** exp" where D is a value in the range 0..9.
--- The first loop of the test starts A at 2.0 and doubles it until
--- ((A+1.0)-A)-1.0 is no longer zero. For our decimal floating point
--- number this will be 1638 * 10**1 (the value 16384 rounded or truncated
--- to fit in 4 digits).
--- The second loop starts B at 2.0 and keeps doubling B until (A+B)-A is
--- no longer 0. This will keep looping until B is 8.0 because that is
--- the first value where rounding (assuming our machine rounds and addition
--- employs a guard digit) will change the upper 4 digits of the result:
--- 1638_
--- + 8
--- -------
--- 1639_
--- Without rounding the second loop will continue until
--- B is 16:
--- 1638_
--- + 16
--- -------
--- 1639_
---
--- The radix is then determined by (A+B)-A which will give 10.
---
--- The use of Tmp and ITmp in the test is to force values to be
--- stored into memory in the event that register precision is greater
--- than the stored precision of the floating point values.
---
---
--- The test for rounding is (ignoring the temporary variables used to
--- get the stored precision) is
--- Rounds := A + Radix/2.0 - A /= 0.0 ;
--- where A is the value determined in the first step that is the smallest
--- power of 2 such that A + 1.0 = A. This means that the true value of
--- A has one more digit in its value than 'Machine_Mantissa.
--- This check will detect the case where a value is always rounded.
--- There is an additional case where values are rounded to the nearest
--- even value. That is referred to as IEEE style rounding in the test.
---
------------------------------------------------------------------------
-
-with System;
-with Report;
-with Ada.Numerics.Generic_Elementary_Functions;
-procedure CXG2001 is
- Verbose : constant Boolean := False;
-
- -- if one of the attribute computation loops exceeds Max_Iterations
- -- it is most likely due to the compiler reordering an expression
- -- that should not be reordered.
- Illegal_Optimization : exception;
- Max_Iterations : constant := 10_000;
-
- generic
- type Real is digits <>;
- package Chk_Attrs is
- procedure Do_Test;
- end Chk_Attrs;
-
- package body Chk_Attrs is
- package EF is new Ada.Numerics.Generic_Elementary_Functions (Real);
- function Log (X : Real) return Real renames EF.Log;
-
-
- -- names used in paper
- Radix : Integer; -- Beta
- Mantissa_Digits : Integer; -- t
- Rounds : Boolean; -- RND
-
- -- made global to Determine_Attributes to help thwart optimization
- A, B : Real := 2.0;
- Tmp, Tmpa, Tmp1 : Real;
- ITmp : Integer;
- Half_Radix : Real;
-
- -- special constants - not declared as constants so that
- -- the "stored" precision will be used instead of a "register"
- -- precision.
- Zero : Real := 0.0;
- One : Real := 1.0;
- Two : Real := 2.0;
-
-
- procedure Thwart_Optimization is
- -- the purpose of this procedure is to reference the
- -- global variables used by Determine_Attributes so
- -- that the compiler is not likely to keep them in
- -- a higher precision register for their entire lifetime.
- begin
- if Report.Ident_Bool (False) then
- -- never executed
- A := A + 5.0;
- B := B + 6.0;
- Tmp := Tmp + 1.0;
- Tmp1 := Tmp1 + 2.0;
- Tmpa := Tmpa + 2.0;
- One := 12.34; Two := 56.78; Zero := 90.12;
- end if;
- end Thwart_Optimization;
-
-
- -- determines values for Radix, Mantissa_Digits, and Rounds
- -- This is mostly a straight translation of the C code.
- -- The only significant addition is the iteration count
- -- to prevent endless looping if things are really screwed up.
- procedure Determine_Attributes is
- Iterations : Integer;
- begin
- Rounds := True;
-
- Iterations := 0;
- Tmp := Real'Machine (((A + One) - A) - One);
- while Tmp = Zero loop
- A := Real'Machine(A + A);
- Tmp := Real'Machine(A + One);
- Tmp1 := Real'Machine(Tmp - A);
- Tmp := Real'Machine(Tmp1 - One);
-
- Iterations := Iterations + 1;
- if Iterations > Max_Iterations then
- raise Illegal_Optimization;
- end if;
- end loop;
-
- Iterations := 0;
- Tmp := Real'Machine(A + B);
- ITmp := Integer (Tmp - A);
- while ITmp = 0 loop
- B := Real'Machine(B + B);
- Tmp := Real'Machine(A + B);
- ITmp := Integer (Tmp - A);
-
- Iterations := Iterations + 1;
- if Iterations > Max_Iterations then
- raise Illegal_Optimization;
- end if;
- end loop;
-
- Radix := ITmp;
-
- Mantissa_Digits := 0;
- B := 1.0;
- Tmp := Real'Machine(((B + One) - B) - One);
- Iterations := 0;
- while (Tmp = Zero) loop
- Mantissa_Digits := Mantissa_Digits + 1;
- B := B * Real (Radix);
- Tmp := Real'Machine(B + One);
- Tmp1 := Real'Machine(Tmp - B);
- Tmp := Real'Machine(Tmp1 - One);
-
- Iterations := Iterations + 1;
- if Iterations > Max_Iterations then
- raise Illegal_Optimization;
- end if;
- end loop;
-
- Rounds := False;
- Half_Radix := Real (Radix) / Two;
- Tmp := Real'Machine(A + Half_Radix);
- Tmp1 := Real'Machine(Tmp - A);
- if (Tmp1 /= Zero) then
- Rounds := True;
- end if;
- Tmpa := Real'Machine(A + Real (Radix));
- Tmp := Real'Machine(Tmpa + Half_Radix);
- if not Rounds and (Tmp - TmpA /= Zero) then
- Rounds := True;
- if Verbose then
- Report.Comment ("IEEE style rounding");
- end if;
- end if;
-
- exception
- when others =>
- Thwart_Optimization;
- raise;
- end Determine_Attributes;
-
-
- procedure Do_Test is
- Show_Results : Boolean := Verbose;
- Min_Mantissa_Digits : Integer;
- begin
- -- compute the actual Machine_* attribute values
- Determine_Attributes;
-
- if Real'Machine_Radix /= Radix then
- Report.Failed ("'Machine_Radix incorrectly reports" &
- Integer'Image (Real'Machine_Radix));
- Show_Results := True;
- end if;
-
- if Real'Machine_Mantissa /= Mantissa_Digits then
- Report.Failed ("'Machine_Mantissa incorrectly reports" &
- Integer'Image (Real'Machine_Mantissa));
- Show_Results := True;
- end if;
-
- if Real'Machine_Rounds /= Rounds then
- Report.Failed ("'Machine_Rounds incorrectly reports " &
- Boolean'Image (Real'Machine_Rounds));
- Show_Results := True;
- end if;
-
- if Show_Results then
- Report.Comment ("computed Machine_Mantissa is" &
- Integer'Image (Mantissa_Digits));
- Report.Comment ("computed Radix is" &
- Integer'Image (Radix));
- Report.Comment ("computed Rounds is " &
- Boolean'Image (Rounds));
- end if;
-
- -- check the model attributes against the machine attributes
- -- G.2.2(3)/3;6.0
- if Real'Model_Mantissa > Real'Machine_Mantissa then
- Report.Failed ("model mantissa > machine mantissa");
- end if;
-
- -- G.2.2(3)/2;6.0
- -- 'Model_Mantissa >= ceiling(d*log(10)/log(radix))+1
- Min_Mantissa_Digits :=
- Integer (
- Real'Ceiling (
- Real(Real'Digits) * Log(10.0) / Log(Real(Real'Machine_Radix))
- ) ) + 1;
- if Real'Model_Mantissa < Min_Mantissa_Digits then
- Report.Failed ("Model_Mantissa [" &
- Integer'Image (Real'Model_Mantissa) &
- "] < minimum mantissa digits [" &
- Integer'Image (Min_Mantissa_Digits) &
- "]");
- end if;
-
- exception
- when Illegal_Optimization =>
- Report.Failed ("illegal optimization of" &
- " floating point expression");
- end Do_Test;
- end Chk_Attrs;
-
- package Chk_Float is new Chk_Attrs (Float);
-
- -- check the floating point type with the most digits
- type A_Long_Float is digits System.Max_Digits;
- package Chk_A_Long_Float is new Chk_Attrs (A_Long_Float);
-begin
- Report.Test ("CXG2001",
- "Check the attributes Model_Mantissa," &
- " Machine_Mantissa, Machine_Radix," &
- " and Machine_Rounds");
-
- Report.Comment ("checking Standard.Float");
- Chk_Float.Do_Test;
-
- Report.Comment ("checking a digits" &
- Integer'Image (System.Max_Digits) &
- " floating point type");
- Chk_A_Long_Float.Do_Test;
-
- Report.Result;
-end CXG2001;
diff --git a/gcc/testsuite/ada/acats/tests/cxg/cxg2002.a b/gcc/testsuite/ada/acats/tests/cxg/cxg2002.a
deleted file mode 100644
index 6a1f322e8bf..00000000000
--- a/gcc/testsuite/ada/acats/tests/cxg/cxg2002.a
+++ /dev/null
@@ -1,468 +0,0 @@
--- CXG2002.A
---
--- Grant of Unlimited Rights
---
--- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
--- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
--- unlimited rights in the software and documentation contained herein.
--- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
--- this public release, the Government intends to confer upon all
--- recipients unlimited rights equal to those held by the Government.
--- These rights include rights to use, duplicate, release or disclose the
--- released technical data and computer software in whole or in part, in
--- any manner and for any purpose whatsoever, and to have or permit others
--- to do so.
---
--- DISCLAIMER
---
--- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
--- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
--- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
--- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
--- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
--- PARTICULAR PURPOSE OF SAID MATERIAL.
---*
---
--- OBJECTIVE:
--- Check that the complex "abs" or modulus function returns
--- results that are within the error bound allowed.
---
--- TEST DESCRIPTION:
--- This test uses a generic package to compute and check the
--- values of the modulus function. In addition, a non-generic
--- copy of this package is used to check the non-generic package
--- Ada.Numerics.Complex_Types.
--- Of special interest is the case where either the real or
--- the imaginary part of the argument is very large while the
--- other part is very small or 0.
--- We want to check that the value is computed such that
--- an overflow does not occur. If computed directly from the
--- definition
--- abs (x+yi) = sqrt(x**2 + y**2)
--- then overflow or underflow is much more likely than if the
--- argument is normalized first.
---
--- SPECIAL REQUIREMENTS
--- The Strict Mode for the numerical accuracy must be
--- selected. The method by which this mode is selected
--- is implementation dependent.
---
--- APPLICABILITY CRITERIA:
--- This test applies only to implementations supporting the
--- Numerics Annex.
--- This test only applies to the Strict Mode for numerical
--- accuracy.
---
---
--- CHANGE HISTORY:
--- 31 JAN 96 SAIC Initial release for 2.1
--- 02 JUN 98 EDS Add parens to intermediate calculations.
---!
-
---
--- Reference:
--- Problems and Methodologies in Mathematical Software Production;
--- editors: P. C. Messina and A Murli;
--- Lecture Notes in Computer Science
--- Volume 142
--- Springer Verlag 1982
---
-
-with System;
-with Report;
-with Ada.Numerics.Generic_Complex_Types;
-with Ada.Numerics.Complex_Types;
-procedure CXG2002 is
- Verbose : constant Boolean := False;
- Maximum_Relative_Error : constant := 3.0;
-
- generic
- type Real is digits <>;
- package Generic_Check is
- procedure Do_Test;
- end Generic_Check;
-
- package body Generic_Check is
- package Complex_Types is new
- Ada.Numerics.Generic_Complex_Types (Real);
- use Complex_Types;
-
- procedure Check (Actual, Expected : Real;
- Test_Name : String;
- MRE : Real := Maximum_Relative_Error) is
- Rel_Error,
- Abs_Error,
- Max_Error : Real;
- begin
- -- In the case where the expected result is very small or 0
- -- we compute the maximum error as a multiple of Model_Epsilon instead
- -- of Model_Epsilon and Expected.
- Rel_Error := MRE * (abs Expected * Real'Model_Epsilon);
- Abs_Error := MRE * Real'Model_Epsilon;
- if Rel_Error > Abs_Error then
- Max_Error := Rel_Error;
- else
- Max_Error := Abs_Error;
- end if;
-
- if abs (Actual - Expected) > Max_Error then
- Report.Failed (Test_Name &
- " actual: " & Real'Image (Actual) &
- " expected: " & Real'Image (Expected) &
- " difference: " &
- Real'Image (Expected - Actual) &
- " max_err:" & Real'Image (Max_Error) );
- elsif Verbose then
- if Actual = Expected then
- Report.Comment (Test_Name & " exact result");
- else
- Report.Comment (Test_Name & " passed");
- end if;
- end if;
- end Check;
-
-
- procedure Do_Test is
- Z : Complex;
- X : Real;
- T : Real;
- begin
-
- --- test 1 ---
- begin
- T := Real'Safe_Last;
- Z := T + 0.0*i;
- X := abs Z;
- Check (X, T, "test 1 -- abs(bigreal + 0i)");
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 1");
- when others =>
- Report.Failed ("exception in test 1");
- end;
-
- --- test 2 ---
- begin
- T := Real'Safe_Last;
- Z := 0.0 + T*i;
- X := Modulus (Z);
- Check (X, T, "test 2 -- abs(0 + bigreal*i)");
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 2");
- when others =>
- Report.Failed ("exception in test 2");
- end;
-
- --- test 3 ---
- begin
- Z := 3.0 + 4.0*i;
- X := abs Z;
- Check (X, 5.0 , "test 3 -- abs(3 + 4*i)");
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 3");
- when others =>
- Report.Failed ("exception in test 3");
- end;
-
- --- test 4 ---
- declare
- S : Real;
- begin
- S := Real(Real'Machine_Radix) ** (Real'Machine_EMax - 3);
- Z := 3.0 * S + 4.0*S*i;
- X := abs Z;
- Check (X, 5.0*S, "test 4 -- abs(3S + 4S*i) for large S",
- 5.0*Real'Model_Epsilon);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 4");
- when others =>
- Report.Failed ("exception in test 4");
- end;
-
- --- test 5 ---
- begin
- T := Real'Model_Small;
- Z := T + 0.0*i;
- X := abs Z;
- Check (X, T , "test 5 -- abs(small + 0*i)");
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 5");
- when others =>
- Report.Failed ("exception in test 5");
- end;
-
- --- test 6 ---
- begin
- T := Real'Model_Small;
- Z := 0.0 + T*i;
- X := abs Z;
- Check (X, T , "test 6 -- abs(0 + small*i)");
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 6");
- when others =>
- Report.Failed ("exception in test 6");
- end;
-
- --- test 7 ---
- declare
- S : Real;
- begin
- S := Real(Real'Machine_Radix) ** (Real'Model_EMin + 3);
- Z := 3.0 * S + 4.0*S*i;
- X := abs Z;
- Check (X, 5.0*S, "test 7 -- abs(3S + 4S*i) for small S",
- 5.0*Real'Model_Epsilon);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 7");
- when others =>
- Report.Failed ("exception in test 7");
- end;
-
- --- test 8 ---
- declare
- -- CRC Standard Mathematical Tables; 23rd Edition; pg 738
- Sqrt2 : constant :=
- 1.41421_35623_73095_04880_16887_24209_69807_85696_71875_37695;
- begin
- Z := 1.0 + 1.0*i;
- X := abs Z;
- Check (X, Sqrt2 , "test 8 -- abs(1 + 1*i)");
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 8");
- when others =>
- Report.Failed ("exception in test 8");
- end;
-
- --- test 9 ---
- begin
- T := 0.0;
- Z := T + 0.0*i;
- X := abs Z;
- Check (X, T , "test 5 -- abs(0 + 0*i)");
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 9");
- when others =>
- Report.Failed ("exception in test 9");
- end;
- end Do_Test;
- end Generic_Check;
-
- -----------------------------------------------------------------------
- --- non generic copy of the above generic package
- -----------------------------------------------------------------------
-
- package Non_Generic_Check is
- subtype Real is Float;
- procedure Do_Test;
- end Non_Generic_Check;
-
- package body Non_Generic_Check is
- use Ada.Numerics.Complex_Types;
-
- procedure Check (Actual, Expected : Real;
- Test_Name : String;
- MRE : Real := Maximum_Relative_Error) is
- Rel_Error,
- Abs_Error,
- Max_Error : Real;
- begin
- -- In the case where the expected result is very small or 0
- -- we compute the maximum error as a multiple of Model_Epsilon instead
- -- of Model_Epsilon and Expected.
- Rel_Error := MRE * (abs Expected * Real'Model_Epsilon);
- Abs_Error := MRE * Real'Model_Epsilon;
- if Rel_Error > Abs_Error then
- Max_Error := Rel_Error;
- else
- Max_Error := Abs_Error;
- end if;
-
- if abs (Actual - Expected) > Max_Error then
- Report.Failed (Test_Name &
- " actual: " & Real'Image (Actual) &
- " expected: " & Real'Image (Expected) &
- " difference: " &
- Real'Image (Expected - Actual) &
- " max_err:" & Real'Image (Max_Error) );
- elsif Verbose then
- if Actual = Expected then
- Report.Comment (Test_Name & " exact result");
- else
- Report.Comment (Test_Name & " passed");
- end if;
- end if;
- end Check;
-
-
- procedure Do_Test is
- Z : Complex;
- X : Real;
- T : Real;
- begin
-
- --- test 1 ---
- begin
- T := Real'Safe_Last;
- Z := T + 0.0*i;
- X := abs Z;
- Check (X, T, "test 1 -- abs(bigreal + 0i)");
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 1");
- when others =>
- Report.Failed ("exception in test 1");
- end;
-
- --- test 2 ---
- begin
- T := Real'Safe_Last;
- Z := 0.0 + T*i;
- X := Modulus (Z);
- Check (X, T, "test 2 -- abs(0 + bigreal*i)");
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 2");
- when others =>
- Report.Failed ("exception in test 2");
- end;
-
- --- test 3 ---
- begin
- Z := 3.0 + 4.0*i;
- X := abs Z;
- Check (X, 5.0 , "test 3 -- abs(3 + 4*i)");
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 3");
- when others =>
- Report.Failed ("exception in test 3");
- end;
-
- --- test 4 ---
- declare
- S : Real;
- begin
- S := Real(Real'Machine_Radix) ** (Real'Machine_EMax - 3);
- Z := 3.0 * S + 4.0*S*i;
- X := abs Z;
- Check (X, 5.0*S, "test 4 -- abs(3S + 4S*i) for large S",
- 5.0*Real'Model_Epsilon);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 4");
- when others =>
- Report.Failed ("exception in test 4");
- end;
-
- --- test 5 ---
- begin
- T := Real'Model_Small;
- Z := T + 0.0*i;
- X := abs Z;
- Check (X, T , "test 5 -- abs(small + 0*i)");
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 5");
- when others =>
- Report.Failed ("exception in test 5");
- end;
-
- --- test 6 ---
- begin
- T := Real'Model_Small;
- Z := 0.0 + T*i;
- X := abs Z;
- Check (X, T , "test 6 -- abs(0 + small*i)");
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 6");
- when others =>
- Report.Failed ("exception in test 6");
- end;
-
- --- test 7 ---
- declare
- S : Real;
- begin
- S := Real(Real'Machine_Radix) ** (Real'Model_EMin + 3);
- Z := 3.0 * S + 4.0*S*i;
- X := abs Z;
- Check (X, 5.0*S, "test 7 -- abs(3S + 4S*i) for small S",
- 5.0*Real'Model_Epsilon);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 7");
- when others =>
- Report.Failed ("exception in test 7");
- end;
-
- --- test 8 ---
- declare
- -- CRC Standard Mathematical Tables; 23rd Edition; pg 738
- Sqrt2 : constant :=
- 1.41421_35623_73095_04880_16887_24209_69807_85696_71875_37695;
- begin
- Z := 1.0 + 1.0*i;
- X := abs Z;
- Check (X, Sqrt2 , "test 8 -- abs(1 + 1*i)");
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 8");
- when others =>
- Report.Failed ("exception in test 8");
- end;
-
- --- test 9 ---
- begin
- T := 0.0;
- Z := T + 0.0*i;
- X := abs Z;
- Check (X, T , "test 5 -- abs(0 + 0*i)");
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 9");
- when others =>
- Report.Failed ("exception in test 9");
- end;
- end Do_Test;
- end Non_Generic_Check;
-
- -----------------------------------------------------------------------
- --- end of "manual instantiation"
- -----------------------------------------------------------------------
- package Chk_Float is new Generic_Check (Float);
-
- -- check the floating point type with the most digits
- type A_Long_Float is digits System.Max_Digits;
- package Chk_A_Long_Float is new Generic_Check (A_Long_Float);
-begin
- Report.Test ("CXG2002",
- "Check the accuracy of the complex modulus" &
- " function");
-
- if Verbose then
- Report.Comment ("checking Standard.Float");
- end if;
- Chk_Float.Do_Test;
-
- if Verbose then
- Report.Comment ("checking a digits" &
- Integer'Image (System.Max_Digits) &
- " floating point type");
- end if;
- Chk_A_Long_Float.Do_Test;
-
- if Verbose then
- Report.Comment ("checking non-generic package");
- end if;
- Non_Generic_Check.Do_Test;
- Report.Result;
-end CXG2002;
diff --git a/gcc/testsuite/ada/acats/tests/cxg/cxg2003.a b/gcc/testsuite/ada/acats/tests/cxg/cxg2003.a
deleted file mode 100644
index d1a225a50a1..00000000000
--- a/gcc/testsuite/ada/acats/tests/cxg/cxg2003.a
+++ /dev/null
@@ -1,701 +0,0 @@
--- CXG2003.A
---
--- Grant of Unlimited Rights
---
--- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
--- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
--- unlimited rights in the software and documentation contained herein.
--- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
--- this public release, the Government intends to confer upon all
--- recipients unlimited rights equal to those held by the Government.
--- These rights include rights to use, duplicate, release or disclose the
--- released technical data and computer software in whole or in part, in
--- any manner and for any purpose whatsoever, and to have or permit others
--- to do so.
---
--- DISCLAIMER
---
--- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
--- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
--- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
--- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
--- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
--- PARTICULAR PURPOSE OF SAID MATERIAL.
---*
---
--- OBJECTIVE:
--- Check that the sqrt function returns
--- results that are within the error bound allowed.
---
--- TEST DESCRIPTION:
--- This test contains three test packages that are almost
--- identical. The first two packages differ only in the
--- floating point type that is being tested. The first
--- and third package differ only in whether the generic
--- elementary functions package or the pre-instantiated
--- package is used.
--- The test package is not generic so that the arguments
--- and expected results for some of the test values
--- can be expressed as universal real instead of being
--- computed at runtime.
---
--- SPECIAL REQUIREMENTS
--- The Strict Mode for the numerical accuracy must be
--- selected. The method by which this mode is selected
--- is implementation dependent.
---
--- APPLICABILITY CRITERIA:
--- This test applies only to implementations supporting the
--- Numerics Annex.
--- This test only applies to the Strict Mode for numerical
--- accuracy.
---
---
--- CHANGE HISTORY:
--- 2 FEB 96 SAIC Initial release for 2.1
--- 18 AUG 96 SAIC Made Check consistent with other tests.
---
---!
-
-with System;
-with Report;
-with Ada.Numerics.Generic_Elementary_Functions;
-with Ada.Numerics.Elementary_Functions;
-procedure CXG2003 is
- Verbose : constant Boolean := False;
-
- package Float_Check is
- subtype Real is Float;
- procedure Do_Test;
- end Float_Check;
-
- package body Float_Check is
- package Elementary_Functions is new
- Ada.Numerics.Generic_Elementary_Functions (Real);
- function Sqrt (X : Real) return Real renames
- Elementary_Functions.Sqrt;
- function Log (X : Real) return Real renames
- Elementary_Functions.Log;
- function Exp (X : Real) return Real renames
- Elementary_Functions.Exp;
-
- -- The default Maximum Relative Error is the value specified
- -- in the LRM.
- Default_MRE : constant Real := 2.0;
-
- procedure Check (Actual, Expected : Real;
- Test_Name : String;
- MRE : Real := Default_MRE) is
- Rel_Error : Real;
- Abs_Error : Real;
- Max_Error : Real;
- begin
- -- In the case where the expected result is very small or 0
- -- we compute the maximum error as a multiple of Model_Epsilon instead
- -- of Model_Epsilon and Expected.
- Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
- Abs_Error := MRE * Real'Model_Epsilon;
- if Rel_Error > Abs_Error then
- Max_Error := Rel_Error;
- else
- Max_Error := Abs_Error;
- end if;
-
- if abs (Actual - Expected) > Max_Error then
- Report.Failed (Test_Name &
- " actual: " & Real'Image (Actual) &
- " expected: " & Real'Image (Expected) &
- " difference: " &
- Real'Image (Actual - Expected) &
- " mre:" & Real'Image (Max_Error) );
- elsif Verbose then
- if Actual = Expected then
- Report.Comment (Test_Name & " exact result");
- else
- Report.Comment (Test_Name & " passed");
- end if;
- end if;
- end Check;
-
-
- procedure Argument_Range_Check (A, B : Real;
- Test : String) is
- -- test a logarithmically distributed selection of
- -- arguments selected from the range A to B.
- X : Real;
- Expected : Real;
- Y : Real;
- C : Real := Log(B/A);
- Max_Samples : constant := 1000;
-
- begin
- for I in 1..Max_Samples loop
- Expected := A * Exp(C * Real (I) / Real (Max_Samples));
- X := Expected * Expected;
- Y := Sqrt (X);
-
- -- note that since the expected value is computed, we
- -- must take the error in that computation into account.
- Check (Y, Expected,
- "test " & Test & " -" &
- Integer'Image (I) &
- " of argument range",
- 3.0);
- end loop;
- exception
- when Constraint_Error =>
- Report.Failed
- ("Constraint_Error raised in argument range check");
- when others =>
- Report.Failed ("exception in argument range check");
- end Argument_Range_Check;
-
- procedure Do_Test is
- begin
-
- --- test 1 ---
- declare
- T : constant := (Real'Machine_EMax - 1) / 2;
- X : constant := (1.0 * Real'Machine_Radix) ** (2 * T);
- Expected : constant := (1.0 * Real'Machine_Radix) ** T;
- Y : Real;
- begin
- Y := Sqrt (X);
- Check (Y, Expected, "test 1 -- sqrt(radix**((emax-1)/2))");
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 1");
- when others =>
- Report.Failed ("exception in test 1");
- end;
-
- --- test 2 ---
- declare
- T : constant := (Real'Model_EMin + 1) / 2;
- X : constant := (1.0 * Real'Machine_Radix) ** (2 * T);
- Expected : constant := (1.0 * Real'Machine_Radix) ** T;
- Y : Real;
- begin
- Y := Sqrt (X);
- Check (Y, Expected, "test 2 -- sqrt(radix**((emin+1)/2))");
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 2");
- when others =>
- Report.Failed ("exception in test 2");
- end;
-
- --- test 3 ---
- declare
- X : constant := 1.0;
- Expected : constant := 1.0;
- Y : Real;
- begin
- Y := Sqrt(X);
- Check (Y, Expected, "test 3 -- sqrt(1.0)",
- 0.0); -- no error allowed
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 3");
- when others =>
- Report.Failed ("exception in test 3");
- end;
-
- --- test 4 ---
- declare
- X : constant := 0.0;
- Expected : constant := 0.0;
- Y : Real;
- begin
- Y := Sqrt(X);
- Check (Y, Expected, "test 4 -- sqrt(0.0)",
- 0.0); -- no error allowed
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 4");
- when others =>
- Report.Failed ("exception in test 4");
- end;
-
- --- test 5 ---
- declare
- X : constant := -1.0;
- Y : Real;
- begin
- Y := Sqrt(X);
- -- the following code should not be executed.
- -- The call to Check is to keep the call to Sqrt from
- -- appearing to be dead code.
- Check (Y, -1.0, "test 5 -- sqrt(-1)" );
- Report.Failed ("test 5 - argument_error expected");
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 5");
- when Ada.Numerics.Argument_Error =>
- if Verbose then
- Report.Comment ("test 5 correctly got argument_error");
- end if;
- when others =>
- Report.Failed ("exception in test 5");
- end;
-
- --- test 6 ---
- declare
- X : constant := Ada.Numerics.Pi ** 2;
- Expected : constant := Ada.Numerics.Pi;
- Y : Real;
- begin
- Y := Sqrt (X);
- Check (Y, Expected, "test 6 -- sqrt(pi**2)");
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 6");
- when others =>
- Report.Failed ("exception in test 6");
- end;
-
- --- test 7 & 8 ---
- Argument_Range_Check (1.0/Sqrt(Real(Real'Machine_Radix)),
- 1.0,
- "7");
- Argument_Range_Check (1.0,
- Sqrt(Real(Real'Machine_Radix)),
- "8");
- end Do_Test;
- end Float_Check;
-
- -----------------------------------------------------------------------
- -----------------------------------------------------------------------
- -- check the floating point type with the most digits
- type A_Long_Float is digits System.Max_Digits;
-
-
- package A_Long_Float_Check is
- subtype Real is A_Long_Float;
- procedure Do_Test;
- end A_Long_Float_Check;
-
- package body A_Long_Float_Check is
- package Elementary_Functions is new
- Ada.Numerics.Generic_Elementary_Functions (Real);
- function Sqrt (X : Real) return Real renames
- Elementary_Functions.Sqrt;
- function Log (X : Real) return Real renames
- Elementary_Functions.Log;
- function Exp (X : Real) return Real renames
- Elementary_Functions.Exp;
-
- -- The default Maximum Relative Error is the value specified
- -- in the LRM.
- Default_MRE : constant Real := 2.0;
-
- procedure Check (Actual, Expected : Real;
- Test_Name : String;
- MRE : Real := Default_MRE) is
- Rel_Error : Real;
- Abs_Error : Real;
- Max_Error : Real;
- begin
- -- In the case where the expected result is very small or 0
- -- we compute the maximum error as a multiple of Model_Epsilon instead
- -- of Model_Epsilon and Expected.
- Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
- Abs_Error := MRE * Real'Model_Epsilon;
- if Rel_Error > Abs_Error then
- Max_Error := Rel_Error;
- else
- Max_Error := Abs_Error;
- end if;
-
- if abs (Actual - Expected) > Max_Error then
- Report.Failed (Test_Name &
- " actual: " & Real'Image (Actual) &
- " expected: " & Real'Image (Expected) &
- " difference: " &
- Real'Image (Actual - Expected) &
- " mre:" & Real'Image (Max_Error) );
- elsif Verbose then
- if Actual = Expected then
- Report.Comment (Test_Name & " exact result");
- else
- Report.Comment (Test_Name & " passed");
- end if;
- end if;
- end Check;
-
-
- procedure Argument_Range_Check (A, B : Real;
- Test : String) is
- -- test a logarithmically distributed selection of
- -- arguments selected from the range A to B.
- X : Real;
- Expected : Real;
- Y : Real;
- C : Real := Log(B/A);
- Max_Samples : constant := 1000;
-
- begin
- for I in 1..Max_Samples loop
- Expected := A * Exp(C * Real (I) / Real (Max_Samples));
- X := Expected * Expected;
- Y := Sqrt (X);
-
- -- note that since the expected value is computed, we
- -- must take the error in that computation into account.
- Check (Y, Expected,
- "test " & Test & " -" &
- Integer'Image (I) &
- " of argument range",
- 3.0);
- end loop;
- exception
- when Constraint_Error =>
- Report.Failed
- ("Constraint_Error raised in argument range check");
- when others =>
- Report.Failed ("exception in argument range check");
- end Argument_Range_Check;
-
-
- procedure Do_Test is
- begin
-
- --- test 1 ---
- declare
- T : constant := (Real'Machine_EMax - 1) / 2;
- X : constant := (1.0 * Real'Machine_Radix) ** (2 * T);
- Expected : constant := (1.0 * Real'Machine_Radix) ** T;
- Y : Real;
- begin
- Y := Sqrt (X);
- Check (Y, Expected, "test 1 -- sqrt(radix**((emax-1)/2))");
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 1");
- when others =>
- Report.Failed ("exception in test 1");
- end;
-
- --- test 2 ---
- declare
- T : constant := (Real'Model_EMin + 1) / 2;
- X : constant := (1.0 * Real'Machine_Radix) ** (2 * T);
- Expected : constant := (1.0 * Real'Machine_Radix) ** T;
- Y : Real;
- begin
- Y := Sqrt (X);
- Check (Y, Expected, "test 2 -- sqrt(radix**((emin+1)/2))");
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 2");
- when others =>
- Report.Failed ("exception in test 2");
- end;
-
- --- test 3 ---
- declare
- X : constant := 1.0;
- Expected : constant := 1.0;
- Y : Real;
- begin
- Y := Sqrt(X);
- Check (Y, Expected, "test 3 -- sqrt(1.0)",
- 0.0); -- no error allowed
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 3");
- when others =>
- Report.Failed ("exception in test 3");
- end;
-
- --- test 4 ---
- declare
- X : constant := 0.0;
- Expected : constant := 0.0;
- Y : Real;
- begin
- Y := Sqrt(X);
- Check (Y, Expected, "test 4 -- sqrt(0.0)",
- 0.0); -- no error allowed
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 4");
- when others =>
- Report.Failed ("exception in test 4");
- end;
-
- --- test 5 ---
- declare
- X : constant := -1.0;
- Y : Real;
- begin
- Y := Sqrt(X);
- -- the following code should not be executed.
- -- The call to Check is to keep the call to Sqrt from
- -- appearing to be dead code.
- Check (Y, -1.0, "test 5 -- sqrt(-1)" );
- Report.Failed ("test 5 - argument_error expected");
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 5");
- when Ada.Numerics.Argument_Error =>
- if Verbose then
- Report.Comment ("test 5 correctly got argument_error");
- end if;
- when others =>
- Report.Failed ("exception in test 5");
- end;
-
- --- test 6 ---
- declare
- X : constant := Ada.Numerics.Pi ** 2;
- Expected : constant := Ada.Numerics.Pi;
- Y : Real;
- begin
- Y := Sqrt (X);
- Check (Y, Expected, "test 6 -- sqrt(pi**2)");
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 6");
- when others =>
- Report.Failed ("exception in test 6");
- end;
-
- --- test 7 & 8 ---
- Argument_Range_Check (1.0/Sqrt(Real(Real'Machine_Radix)),
- 1.0,
- "7");
- Argument_Range_Check (1.0,
- Sqrt(Real(Real'Machine_Radix)),
- "8");
- end Do_Test;
- end A_Long_Float_Check;
-
- -----------------------------------------------------------------------
- -----------------------------------------------------------------------
-
- package Non_Generic_Check is
- procedure Do_Test;
- end Non_Generic_Check;
-
- package body Non_Generic_Check is
- package EF renames
- Ada.Numerics.Elementary_Functions;
- subtype Real is Float;
-
- -- The default Maximum Relative Error is the value specified
- -- in the LRM.
- Default_MRE : constant Real := 2.0;
-
- procedure Check (Actual, Expected : Real;
- Test_Name : String;
- MRE : Real := Default_MRE) is
- Rel_Error : Real;
- Abs_Error : Real;
- Max_Error : Real;
- begin
- -- In the case where the expected result is very small or 0
- -- we compute the maximum error as a multiple of Model_Epsilon instead
- -- of Model_Epsilon and Expected.
- Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
- Abs_Error := MRE * Real'Model_Epsilon;
- if Rel_Error > Abs_Error then
- Max_Error := Rel_Error;
- else
- Max_Error := Abs_Error;
- end if;
-
- if abs (Actual - Expected) > Max_Error then
- Report.Failed (Test_Name &
- " actual: " & Real'Image (Actual) &
- " expected: " & Real'Image (Expected) &
- " difference: " &
- Real'Image (Actual - Expected) &
- " mre:" & Real'Image (Max_Error) );
- elsif Verbose then
- if Actual = Expected then
- Report.Comment (Test_Name & " exact result");
- else
- Report.Comment (Test_Name & " passed");
- end if;
- end if;
- end Check;
-
-
-
- procedure Argument_Range_Check (A, B : Float;
- Test : String) is
- -- test a logarithmically distributed selection of
- -- arguments selected from the range A to B.
- X : Float;
- Expected : Float;
- Y : Float;
- C : Float := EF.Log(B/A);
- Max_Samples : constant := 1000;
-
- begin
- for I in 1..Max_Samples loop
- Expected := A * EF.Exp(C * Float (I) / Float (Max_Samples));
- X := Expected * Expected;
- Y := EF.Sqrt (X);
-
- -- note that since the expected value is computed, we
- -- must take the error in that computation into account.
- Check (Y, Expected,
- "test " & Test & " -" &
- Integer'Image (I) &
- " of argument range",
- 3.0);
- end loop;
- exception
- when Constraint_Error =>
- Report.Failed
- ("Constraint_Error raised in argument range check");
- when others =>
- Report.Failed ("exception in argument range check");
- end Argument_Range_Check;
-
-
- procedure Do_Test is
- begin
-
- --- test 1 ---
- declare
- T : constant := (Float'Machine_EMax - 1) / 2;
- X : constant := (1.0 * Float'Machine_Radix) ** (2 * T);
- Expected : constant := (1.0 * Float'Machine_Radix) ** T;
- Y : Float;
- begin
- Y := EF.Sqrt (X);
- Check (Y, Expected, "test 1 -- sqrt(radix**((emax-1)/2))");
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 1");
- when others =>
- Report.Failed ("exception in test 1");
- end;
-
- --- test 2 ---
- declare
- T : constant := (Float'Model_EMin + 1) / 2;
- X : constant := (1.0 * Float'Machine_Radix) ** (2 * T);
- Expected : constant := (1.0 * Float'Machine_Radix) ** T;
- Y : Float;
- begin
- Y := EF.Sqrt (X);
- Check (Y, Expected, "test 2 -- sqrt(radix**((emin+1)/2))");
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 2");
- when others =>
- Report.Failed ("exception in test 2");
- end;
-
- --- test 3 ---
- declare
- X : constant := 1.0;
- Expected : constant := 1.0;
- Y : Float;
- begin
- Y := EF.Sqrt(X);
- Check (Y, Expected, "test 3 -- sqrt(1.0)",
- 0.0); -- no error allowed
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 3");
- when others =>
- Report.Failed ("exception in test 3");
- end;
-
- --- test 4 ---
- declare
- X : constant := 0.0;
- Expected : constant := 0.0;
- Y : Float;
- begin
- Y := EF.Sqrt(X);
- Check (Y, Expected, "test 4 -- sqrt(0.0)",
- 0.0); -- no error allowed
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 4");
- when others =>
- Report.Failed ("exception in test 4");
- end;
-
- --- test 5 ---
- declare
- X : constant := -1.0;
- Y : Float;
- begin
- Y := EF.Sqrt(X);
- -- the following code should not be executed.
- -- The call to Check is to keep the call to Sqrt from
- -- appearing to be dead code.
- Check (Y, -1.0, "test 5 -- sqrt(-1)" );
- Report.Failed ("test 5 - argument_error expected");
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 5");
- when Ada.Numerics.Argument_Error =>
- if Verbose then
- Report.Comment ("test 5 correctly got argument_error");
- end if;
- when others =>
- Report.Failed ("exception in test 5");
- end;
-
- --- test 6 ---
- declare
- X : constant := Ada.Numerics.Pi ** 2;
- Expected : constant := Ada.Numerics.Pi;
- Y : Float;
- begin
- Y := EF.Sqrt (X);
- Check (Y, Expected, "test 6 -- sqrt(pi**2)");
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 6");
- when others =>
- Report.Failed ("exception in test 6");
- end;
-
- --- test 7 & 8 ---
- Argument_Range_Check (1.0/EF.Sqrt(Float(Float'Machine_Radix)),
- 1.0,
- "7");
- Argument_Range_Check (1.0,
- EF.Sqrt(Float(Float'Machine_Radix)),
- "8");
- end Do_Test;
- end Non_Generic_Check;
-
- -----------------------------------------------------------------------
- -----------------------------------------------------------------------
-
-begin
- Report.Test ("CXG2003",
- "Check the accuracy of the sqrt function");
-
- if Verbose then
- Report.Comment ("checking Standard.Float");
- end if;
-
- Float_Check.Do_Test;
-
- if Verbose then
- Report.Comment ("checking a digits" &
- Integer'Image (System.Max_Digits) &
- " floating point type");
- end if;
-
- A_Long_Float_Check.Do_Test;
-
- if Verbose then
- Report.Comment ("checking non-generic package");
- end if;
-
- Non_Generic_Check.Do_Test;
-
- Report.Result;
-end CXG2003;
diff --git a/gcc/testsuite/ada/acats/tests/cxg/cxg2004.a b/gcc/testsuite/ada/acats/tests/cxg/cxg2004.a
deleted file mode 100644
index 2df296d3d42..00000000000
--- a/gcc/testsuite/ada/acats/tests/cxg/cxg2004.a
+++ /dev/null
@@ -1,499 +0,0 @@
--- CXG2004.A
---
--- Grant of Unlimited Rights
---
--- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
--- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
--- unlimited rights in the software and documentation contained herein.
--- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
--- this public release, the Government intends to confer upon all
--- recipients unlimited rights equal to those held by the Government.
--- These rights include rights to use, duplicate, release or disclose the
--- released technical data and computer software in whole or in part, in
--- any manner and for any purpose whatsoever, and to have or permit others
--- to do so.
---
--- DISCLAIMER
---
--- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
--- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
--- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
--- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
--- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
--- PARTICULAR PURPOSE OF SAID MATERIAL.
---*
---
--- OBJECTIVE:
--- Check that the sin and cos functions return
--- results that are within the error bound allowed.
---
--- TEST DESCRIPTION:
--- This test consists of a generic package that is
--- instantiated to check both float and a long float type.
--- The test for each floating point type is divided into
--- the following parts:
--- Special value checks where the result is a known constant.
--- Checks using an identity relationship.
---
--- SPECIAL REQUIREMENTS
--- The Strict Mode for the numerical accuracy must be
--- selected. The method by which this mode is selected
--- is implementation dependent.
---
--- APPLICABILITY CRITERIA:
--- This test applies only to implementations supporting the
--- Numerics Annex.
--- This test only applies to the Strict Mode for numerical
--- accuracy.
---
---
--- CHANGE HISTORY:
--- 13 FEB 96 SAIC Initial release for 2.1
--- 22 APR 96 SAIC Changed to generic implementation.
--- 18 AUG 96 SAIC Improvements to commentary.
--- 23 OCT 96 SAIC Exact results are not required unless the
--- cycle is specified.
--- 28 FEB 97 PWB.CTA Removed checks where cycle 2.0*Pi is specified
--- 02 JUN 98 EDS Revised calculations to ensure that X is exactly
--- three times Y per advice of numerics experts.
---
--- CHANGE NOTE:
--- According to Ken Dritz, author of the Numerics Annex of the RM,
--- one should never specify the cycle 2.0*Pi for the trigonometric
--- functions. In particular, if the machine number for the first
--- argument is not an exact multiple of the machine number for the
--- explicit cycle, then the specified exact results cannot be
--- reasonably expected. The affected checks in this test have been
--- marked as comments, with the additional notation "pwb-math".
--- Phil Brashear
---!
-
---
--- References:
---
--- Software Manual for the Elementary Functions
--- William J. Cody, Jr. and William Waite
--- Prentice-Hall, 1980
---
--- CRC Standard Mathematical Tables
--- 23rd Edition
---
--- Implementation and Testing of Function Software
--- W. J. Cody
--- Problems and Methodologies in Mathematical Software Production
--- editors P. C. Messina and A. Murli
--- Lecture Notes in Computer Science Volume 142
--- Springer Verlag, 1982
---
--- The sin and cos checks are translated directly from
--- the netlib FORTRAN code that was written by W. Cody.
---
-
-with System;
-with Report;
-with Ada.Numerics.Generic_Elementary_Functions;
-with Ada.Numerics.Elementary_Functions;
-procedure CXG2004 is
- Verbose : constant Boolean := False;
- Number_Samples : constant := 1000;
-
- -- CRC Standard Mathematical Tables; 23rd Edition; pg 738
- Sqrt2 : constant :=
- 1.41421_35623_73095_04880_16887_24209_69807_85696_71875_37695;
- Sqrt3 : constant :=
- 1.73205_08075_68877_29352_74463_41505_87236_69428_05253_81039;
-
- Pi : constant := Ada.Numerics.Pi;
-
- generic
- type Real is digits <>;
- package Generic_Check is
- procedure Do_Test;
- end Generic_Check;
-
- package body Generic_Check is
- package Elementary_Functions is new
- Ada.Numerics.Generic_Elementary_Functions (Real);
-
- function Sin (X : Real) return Real renames
- Elementary_Functions.Sin;
- function Cos (X : Real) return Real renames
- Elementary_Functions.Cos;
- function Sin (X, Cycle : Real) return Real renames
- Elementary_Functions.Sin;
- function Cos (X, Cycle : Real) return Real renames
- Elementary_Functions.Cos;
-
- Accuracy_Error_Reported : Boolean := False;
-
- procedure Check (Actual, Expected : Real;
- Test_Name : String;
- MRE : Real) is
- Rel_Error,
- Abs_Error,
- Max_Error : Real;
- begin
-
- -- In the case where the expected result is very small or 0
- -- we compute the maximum error as a multiple of Model_Epsilon instead
- -- of Model_Epsilon and Expected.
- Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
- Abs_Error := MRE * Real'Model_Epsilon;
- if Rel_Error > Abs_Error then
- Max_Error := Rel_Error;
- else
- Max_Error := Abs_Error;
- end if;
-
-
- -- in addition to the relative error checks we apply the
- -- criteria of G.2.4(16)
- if abs (Actual) > 1.0 then
- Accuracy_Error_Reported := True;
- Report.Failed (Test_Name & " result > 1.0");
- elsif abs (Actual - Expected) > Max_Error then
- Accuracy_Error_Reported := True;
- Report.Failed (Test_Name &
- " actual: " & Real'Image (Actual) &
- " expected: " & Real'Image (Expected) &
- " difference: " &
- Real'Image (Actual - Expected) &
- " mre:" &
- Real'Image (Max_Error) );
- elsif Verbose then
- if Actual = Expected then
- Report.Comment (Test_Name & " exact result");
- else
- Report.Comment (Test_Name & " passed");
- end if;
- end if;
- end Check;
-
-
- procedure Sin_Check (A, B : Real;
- Arg_Range : String) is
- -- test a selection of
- -- arguments selected from the range A to B.
- --
- -- This test uses the identity
- -- sin(x) = sin(x/3)*(3 - 4 * sin(x/3)**2)
- --
- -- Note that in this test we must take into account the
- -- error in the calculation of the expected result so
- -- the maximum relative error is larger than the
- -- accuracy required by the ARM.
-
- X, Y, ZZ : Real;
- Actual, Expected : Real;
- MRE : Real;
- Ran : Real;
- begin
- Accuracy_Error_Reported := False; -- reset
- for I in 1 .. Number_Samples loop
- -- Evenly distributed selection of arguments
- Ran := Real (I) / Real (Number_Samples);
-
- -- make sure x and x/3 are both exactly representable
- -- on the machine. See "Implementation and Testing of
- -- Function Software" page 44.
- X := (B - A) * Ran + A;
- Y := Real'Leading_Part
- ( X/3.0,
- Real'Machine_Mantissa - Real'Exponent (3.0) );
- X := Y * 3.0;
-
- Actual := Sin (X);
-
- ZZ := Sin(Y);
- Expected := ZZ * (3.0 - 4.0 * ZZ * ZZ);
-
- -- note that since the expected value is computed, we
- -- must take the error in that computation into account.
- -- See Cody pp 139-141.
- MRE := 4.0;
-
- Check (Actual, Expected,
- "sin test of range" & Arg_Range &
- Integer'Image (I),
- MRE);
- exit when Accuracy_Error_Reported;
- end loop;
- exception
- when Constraint_Error =>
- Report.Failed
- ("Constraint_Error raised in sin check");
- when others =>
- Report.Failed ("exception in sin check");
- end Sin_Check;
-
-
-
- procedure Cos_Check (A, B : Real;
- Arg_Range : String) is
- -- test a selection of
- -- arguments selected from the range A to B.
- --
- -- This test uses the identity
- -- cos(x) = cos(x/3)*(4 * cos(x/3)**2 - 3)
- --
- -- Note that in this test we must take into account the
- -- error in the calculation of the expected result so
- -- the maximum relative error is larger than the
- -- accuracy required by the ARM.
-
- X, Y, ZZ : Real;
- Actual, Expected : Real;
- MRE : Real;
- Ran : Real;
- begin
- Accuracy_Error_Reported := False; -- reset
- for I in 1 .. Number_Samples loop
- -- Evenly distributed selection of arguments
- Ran := Real (I) / Real (Number_Samples);
-
- -- make sure x and x/3 are both exactly representable
- -- on the machine. See "Implementation and Testing of
- -- Function Software" page 44.
- X := (B - A) * Ran + A;
- Y := Real'Leading_Part
- ( X/3.0,
- Real'Machine_Mantissa - Real'Exponent (3.0) );
- X := Y * 3.0;
-
- Actual := Cos (X);
-
- ZZ := Cos(Y);
- Expected := ZZ * (4.0 * ZZ * ZZ - 3.0);
-
- -- note that since the expected value is computed, we
- -- must take the error in that computation into account.
- -- See Cody pp 141-143.
- MRE := 6.0;
-
- Check (Actual, Expected,
- "cos test of range" & Arg_Range &
- Integer'Image (I),
- MRE);
- exit when Accuracy_Error_Reported;
- end loop;
- exception
- when Constraint_Error =>
- Report.Failed
- ("Constraint_Error raised in cos check");
- when others =>
- Report.Failed ("exception in cos check");
- end Cos_Check;
-
-
- procedure Special_Angle_Checks is
- type Data_Point is
- record
- Degrees,
- Radians,
- Sine,
- Cosine : Real;
- Sin_Result_Error,
- Cos_Result_Error : Boolean;
- end record;
-
- type Test_Data_Type is array (Positive range <>) of Data_Point;
-
- -- the values in the following table only involve static
- -- expressions to minimize any loss of precision. However,
- -- there are two sources of error that must be accounted for
- -- in the following tests.
- -- First, when a cycle is not specified there can be a roundoff
- -- error in the value of Pi used. This error does not apply
- -- when a cycle of 2.0 * Pi is explicitly provided.
- -- Second, the expected results that involve sqrt values also
- -- have a potential roundoff error.
- -- The amount of error due to error in the argument is computed
- -- as follows:
- -- sin(x+err) = sin(x)*cos(err) + cos(x)*sin(err)
- -- ~= sin(x) + err * cos(x)
- -- similarly for cos the error due to error in the argument is
- -- computed as follows:
- -- cos(x+err) = cos(x)*cos(err) - sin(x)*sin(err)
- -- ~= cos(x) - err * sin(x)
- -- In both cases the term "err" is bounded by 0.5 * argument.
-
- Test_Data : constant Test_Data_Type := (
--- degrees radians sine cosine sin_er cos_er test #
- ( 0.0, 0.0, 0.0, 1.0, False, False ), -- 1
- ( 30.0, Pi/6.0, 0.5, Sqrt3/2.0, False, True ), -- 2
- ( 60.0, Pi/3.0, Sqrt3/2.0, 0.5, True, False ), -- 3
- ( 90.0, Pi/2.0, 1.0, 0.0, False, False ), -- 4
- (120.0, 2.0*Pi/3.0, Sqrt3/2.0, -0.5, True, False ), -- 5
- (150.0, 5.0*Pi/6.0, 0.5, -Sqrt3/2.0, False, True ), -- 6
- (180.0, Pi, 0.0, -1.0, False, False ), -- 7
- (210.0, 7.0*Pi/6.0, -0.5, -Sqrt3/2.0, False, True ), -- 8
- (240.0, 8.0*Pi/6.0, -Sqrt3/2.0, -0.5, True, False ), -- 9
- (270.0, 9.0*Pi/6.0, -1.0, 0.0, False, False ), -- 10
- (300.0, 10.0*Pi/6.0, -Sqrt3/2.0, 0.5, True, False ), -- 11
- (330.0, 11.0*Pi/6.0, -0.5, Sqrt3/2.0, False, True ), -- 12
- (360.0, 2.0*Pi, 0.0, 1.0, False, False ), -- 13
- ( 45.0, Pi/4.0, Sqrt2/2.0, Sqrt2/2.0, True, True ), -- 14
- (135.0, 3.0*Pi/4.0, Sqrt2/2.0, -Sqrt2/2.0, True, True ), -- 15
- (225.0, 5.0*Pi/4.0, -Sqrt2/2.0, -Sqrt2/2.0, True, True ), -- 16
- (315.0, 7.0*Pi/4.0, -Sqrt2/2.0, Sqrt2/2.0, True, True ), -- 17
- (405.0, 9.0*Pi/4.0, Sqrt2/2.0, Sqrt2/2.0, True, True ) ); -- 18
-
-
- Y : Real;
- Sin_Arg_Err,
- Cos_Arg_Err,
- Sin_Result_Err,
- Cos_Result_Err : Real;
- begin
- for I in Test_Data'Range loop
- -- compute error components
- Sin_Arg_Err := abs Test_Data (I).Cosine *
- abs Test_Data (I).Radians / 2.0;
- Cos_Arg_Err := abs Test_Data (I).Sine *
- abs Test_Data (I).Radians / 2.0;
-
- if Test_Data (I).Sin_Result_Error then
- Sin_Result_Err := 0.5;
- else
- Sin_Result_Err := 0.0;
- end if;
-
- if Test_Data (I).Cos_Result_Error then
- Cos_Result_Err := 1.0;
- else
- Cos_Result_Err := 0.0;
- end if;
-
-
-
- Y := Sin (Test_Data (I).Radians);
- Check (Y, Test_Data (I).Sine,
- "test" & Integer'Image (I) & " sin(r)",
- 2.0 + Sin_Arg_Err + Sin_Result_Err);
- Y := Cos (Test_Data (I).Radians);
- Check (Y, Test_Data (I).Cosine,
- "test" & Integer'Image (I) & " cos(r)",
- 2.0 + Cos_Arg_Err + Cos_Result_Err);
- Y := Sin (Test_Data (I).Degrees, 360.0);
- Check (Y, Test_Data (I).Sine,
- "test" & Integer'Image (I) & " sin(d,360)",
- 2.0 + Sin_Result_Err);
- Y := Cos (Test_Data (I).Degrees, 360.0);
- Check (Y, Test_Data (I).Cosine,
- "test" & Integer'Image (I) & " cos(d,360)",
- 2.0 + Cos_Result_Err);
---pwb-math Y := Sin (Test_Data (I).Radians, 2.0*Pi);
---pwb-math Check (Y, Test_Data (I).Sine,
---pwb-math "test" & Integer'Image (I) & " sin(r,2pi)",
---pwb-math 2.0 + Sin_Result_Err);
---pwb-math Y := Cos (Test_Data (I).Radians, 2.0*Pi);
---pwb-math Check (Y, Test_Data (I).Cosine,
---pwb-math "test" & Integer'Image (I) & " cos(r,2pi)",
---pwb-math 2.0 + Cos_Result_Err);
- end loop;
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in special angle test");
- when others =>
- Report.Failed ("exception in special angle test");
- end Special_Angle_Checks;
-
-
- -- check the rule of A.5.1(41);6.0 which requires that the
- -- result be exact if the mathematical result is 0.0, 1.0,
- -- or -1.0
- procedure Exact_Result_Checks is
- type Data_Point is
- record
- Degrees,
- Sine,
- Cosine : Real;
- end record;
-
- type Test_Data_Type is array (Positive range <>) of Data_Point;
- Test_Data : constant Test_Data_Type := (
- -- degrees sine cosine test #
- ( 0.0, 0.0, 1.0 ), -- 1
- ( 90.0, 1.0, 0.0 ), -- 2
- (180.0, 0.0, -1.0 ), -- 3
- (270.0, -1.0, 0.0 ), -- 4
- (360.0, 0.0, 1.0 ), -- 5
- ( 90.0 + 360.0, 1.0, 0.0 ), -- 6
- (180.0 + 360.0, 0.0, -1.0 ), -- 7
- (270.0 + 360.0,-1.0, 0.0 ), -- 8
- (360.0 + 360.0, 0.0, 1.0 ) ); -- 9
-
- Y : Real;
- begin
- for I in Test_Data'Range loop
- Y := Sin (Test_Data(I).Degrees, 360.0);
- if Y /= Test_Data(I).Sine then
- Report.Failed ("exact result for sin(" &
- Real'Image (Test_Data(I).Degrees) &
- ", 360.0) is not" &
- Real'Image (Test_Data(I).Sine) &
- " Difference is " &
- Real'Image (Y - Test_Data(I).Sine) );
- end if;
-
- Y := Cos (Test_Data(I).Degrees, 360.0);
- if Y /= Test_Data(I).Cosine then
- Report.Failed ("exact result for cos(" &
- Real'Image (Test_Data(I).Degrees) &
- ", 360.0) is not" &
- Real'Image (Test_Data(I).Cosine) &
- " Difference is " &
- Real'Image (Y - Test_Data(I).Cosine) );
- end if;
- end loop;
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in exact result check");
- when others =>
- Report.Failed ("exception in exact result check");
- end Exact_Result_Checks;
-
-
- procedure Do_Test is
- begin
- Special_Angle_Checks;
- Sin_Check (0.0, Pi/2.0, "0..pi/2");
- Sin_Check (6.0*Pi, 6.5*Pi, "6pi..6.5pi");
- Cos_Check (7.0*Pi, 7.5*Pi, "7pi..7.5pi");
- Exact_Result_Checks;
- end Do_Test;
- end Generic_Check;
-
- -----------------------------------------------------------------------
- -----------------------------------------------------------------------
-
- package Float_Check is new Generic_Check (Float);
-
- -- check the floating point type with the most digits
- type A_Long_Float is digits System.Max_Digits;
- package A_Long_Float_Check is new Generic_Check (A_Long_Float);
-
- -----------------------------------------------------------------------
- -----------------------------------------------------------------------
-
-
-begin
- Report.Test ("CXG2004",
- "Check the accuracy of the sin and cos functions");
-
- if Verbose then
- Report.Comment ("checking Standard.Float");
- end if;
-
- Float_Check.Do_Test;
-
- if Verbose then
- Report.Comment ("checking a digits" &
- Integer'Image (System.Max_Digits) &
- " floating point type");
- end if;
-
- A_Long_Float_Check.Do_Test;
-
- Report.Result;
-end CXG2004;
diff --git a/gcc/testsuite/ada/acats/tests/cxg/cxg2005.a b/gcc/testsuite/ada/acats/tests/cxg/cxg2005.a
deleted file mode 100644
index 4054b83d88a..00000000000
--- a/gcc/testsuite/ada/acats/tests/cxg/cxg2005.a
+++ /dev/null
@@ -1,204 +0,0 @@
--- CXG2005.A
---
--- Grant of Unlimited Rights
---
--- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
--- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
--- unlimited rights in the software and documentation contained herein.
--- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
--- this public release, the Government intends to confer upon all
--- recipients unlimited rights equal to those held by the Government.
--- These rights include rights to use, duplicate, release or disclose the
--- released technical data and computer software in whole or in part, in
--- any manner and for any purpose whatsoever, and to have or permit others
--- to do so.
---
--- DISCLAIMER
---
--- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
--- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
--- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
--- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
--- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
--- PARTICULAR PURPOSE OF SAID MATERIAL.
---*
---
--- OBJECTIVE:
--- Check that floating point addition and multiplication
--- have the required accuracy.
---
--- TEST DESCRIPTION:
--- The check for the required precision is essentially a
--- check that a guard digit is used for the operations.
--- This test uses a generic package to check the addition
--- and multiplication results. The
--- generic package is instantiated with the standard FLOAT
--- type and a floating point type for the maximum number
--- of digits of precision.
---
--- APPLICABILITY CRITERIA:
--- This test applies only to implementations supporting the
--- Numerics Annex.
---
---
--- CHANGE HISTORY:
--- 14 FEB 96 SAIC Initial Release for 2.1
--- 16 SEP 99 RLB Repaired to avoid printing thousands of (almost)
--- identical failure messages.
---!
-
--- References:
---
--- Basic Concepts for Computational Software
--- W. J. Cody
--- Problems and Methodologies in Mathematical Software Production
--- editors P. C. Messina and A. Murli
--- Lecture Notes in Computer Science Vol 142
--- Springer Verlag, 1982
---
--- Software Manual for the Elementary Functions
--- William J. Cody and William Waite
--- Prentice-Hall, 1980
---
-
-with System;
-with Report;
-procedure CXG2005 is
- Verbose : constant Boolean := False;
-
- generic
- type Real is digits <>;
- package Guard_Digit_Check is
- procedure Do_Test;
- end Guard_Digit_Check;
-
- package body Guard_Digit_Check is
- -- made global so that the compiler will be more likely
- -- to keep the values in memory instead of in higher
- -- precision registers.
- X, Y, Z : Real;
- OneX : Real;
- Eps, BN : Real;
-
- -- special constants - not declared as constants so that
- -- the "stored" precision will be used instead of a "register"
- -- precision.
- Zero : Real := 0.0;
- One : Real := 1.0;
- Two : Real := 2.0;
-
- Failure_Count : Natural := 0;
-
- procedure Thwart_Optimization is
- -- the purpose of this procedure is to reference the
- -- global variables used by the test so
- -- that the compiler is not likely to keep them in
- -- a higher precision register for their entire lifetime.
- begin
- if Report.Ident_Bool (False) then
- -- never executed
- X := X + 5.0;
- Y := Y + 6.0;
- Z := Z + 1.0;
- Eps := Eps + 2.0;
- BN := BN + 2.0;
- OneX := X + Y;
- One := 12.34; Two := 56.78; Zero := 90.12;
- end if;
- end Thwart_Optimization;
-
-
- procedure Addition_Test is
- begin
- for K in 1..10 loop
- Eps := Real (K) * Real'Model_Epsilon;
- for N in 1.. Real'Machine_EMax - 1 loop
- BN := Real(Real'Machine_Radix) ** N;
- X := (One + Eps) * BN;
- Y := (One - Eps) * BN;
- Z := X - Y; -- true value for Z is 2*Eps*BN
-
- if Z /= Eps*BN + Eps*BN then
- Report.Failed ("addition check failed. K=" &
- Integer'Image (K) &
- " N=" & Integer'Image (N) &
- " difference=" & Real'Image (Z - 2.0*Eps*BN) &
- " Eps*BN=" & Real'Image (Eps*BN) );
- Failure_Count := Failure_Count + 1;
- exit when Failure_Count > K*4; -- Avoid displaying dozens of messages.
- end if;
- end loop;
- end loop;
- exception
- when others =>
- Thwart_Optimization;
- Report.Failed ("unexpected exception in addition test");
- end Addition_Test;
-
-
- procedure Multiplication_Test is
- begin
- X := Real (Real'Machine_Radix) ** (Real'Machine_EMax - 1);
- OneX := One * X;
- Thwart_Optimization;
- if OneX /= X then
- Report.Failed ("multiplication for large values");
- end if;
-
- X := Real (Real'Machine_Radix) ** (Real'Model_EMin + 1);
- OneX := One * X;
- Thwart_Optimization;
- if OneX /= X then
- Report.Failed ("multiplication for small values");
- end if;
-
- -- selection of "random" values between 1/radix and radix
- Y := One / Real (Real'Machine_Radix);
- Z := Real(Real'Machine_Radix) - One/Real(Real'Machine_Radix);
- for I in 0..100 loop
- X := Y + Real (I) / 100.0 * Z;
- OneX := One * X;
- Thwart_Optimization;
- if OneX /= X then
- Report.Failed ("multiplication for case" & Integer'Image (I));
- exit when Failure_Count > 40+8; -- Avoid displaying dozens of messages.
- end if;
- end loop;
- exception
- when others =>
- Thwart_Optimization;
- Report.Failed ("unexpected exception in multiplication test");
- end Multiplication_Test;
-
-
- procedure Do_Test is
- begin
- Addition_Test;
- Multiplication_Test;
- end Do_Test;
- end Guard_Digit_Check;
-
- package Chk_Float is new Guard_Digit_Check (Float);
-
- -- check the floating point type with the most digits
- type A_Long_Float is digits System.Max_Digits;
- package Chk_A_Long_Float is new Guard_Digit_Check (A_Long_Float);
-begin
- Report.Test ("CXG2005",
- "Check the accuracy of floating point" &
- " addition and multiplication");
-
- if Verbose then
- Report.Comment ("checking Standard.Float");
- end if;
- Chk_Float.Do_Test;
-
- if Verbose then
- Report.Comment ("checking a digits" &
- Integer'Image (System.Max_Digits) &
- " floating point type");
- end if;
- Chk_A_Long_Float.Do_Test;
-
- Report.Result;
-end CXG2005;
diff --git a/gcc/testsuite/ada/acats/tests/cxg/cxg2006.a b/gcc/testsuite/ada/acats/tests/cxg/cxg2006.a
deleted file mode 100644
index da15dc3be67..00000000000
--- a/gcc/testsuite/ada/acats/tests/cxg/cxg2006.a
+++ /dev/null
@@ -1,281 +0,0 @@
--- CXG2006.A
---
--- Grant of Unlimited Rights
---
--- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
--- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
--- unlimited rights in the software and documentation contained herein.
--- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
--- this public release, the Government intends to confer upon all
--- recipients unlimited rights equal to those held by the Government.
--- These rights include rights to use, duplicate, release or disclose the
--- released technical data and computer software in whole or in part, in
--- any manner and for any purpose whatsoever, and to have or permit others
--- to do so.
---
--- DISCLAIMER
---
--- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
--- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
--- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
--- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
--- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
--- PARTICULAR PURPOSE OF SAID MATERIAL.
---*
---
--- OBJECTIVE:
--- Check that the complex Argument function returns
--- results that are within the error bound allowed.
--- Check that Argument_Error is raised if the Cycle parameter
--- is less than or equal to zero.
---
--- TEST DESCRIPTION:
--- This test uses a generic package to compute and check the
--- values of the Argument function.
--- Of special interest is the case where either the real or
--- the imaginary part of the parameter is very large while the
--- other part is very small or 0.
---
--- SPECIAL REQUIREMENTS
--- The Strict Mode for the numerical accuracy must be
--- selected. The method by which this mode is selected
--- is implementation dependent.
---
--- APPLICABILITY CRITERIA:
--- This test applies only to implementations supporting the
--- Numerics Annex.
--- This test only applies to the Strict Mode for numerical
--- accuracy.
---
---
--- CHANGE HISTORY:
--- 15 FEB 96 SAIC Initial release for 2.1
--- 03 MAR 97 PWB.CTA Removed checks involving explicit cycle => 2.0*Pi
---
--- CHANGE NOTE:
--- According to Ken Dritz, author of the Numerics Annex of the RM,
--- one should never specify the cycle 2.0*Pi for the trigonometric
--- functions. In particular, if the machine number for the first
--- argument is not an exact multiple of the machine number for the
--- explicit cycle, then the specified exact results cannot be
--- reasonably expected. The affected checks in this test have been
--- marked as comments, with the additional notation "pwb-math".
--- Phil Brashear
---!
-
---
--- Reference:
--- Problems and Methodologies in Mathematical Software Production;
--- editors: P. C. Messina and A Murli;
--- Lecture Notes in Computer Science
--- Volume 142
--- Springer Verlag 1982
---
-
-with System;
-with Report;
-with ImpDef.Annex_G;
-with Ada.Numerics;
-with Ada.Numerics.Generic_Complex_Types;
-with Ada.Numerics.Complex_Types;
-procedure CXG2006 is
- Verbose : constant Boolean := False;
-
-
- -- CRC Standard Mathematical Tables; 23rd Edition; pg 738
- Sqrt2 : constant :=
- 1.41421_35623_73095_04880_16887_24209_69807_85696_71875_37695;
- Sqrt3 : constant :=
- 1.73205_08075_68877_29352_74463_41505_87236_69428_05253_81039;
-
- Pi : constant := Ada.Numerics.Pi;
-
- generic
- type Real is digits <>;
- package Generic_Check is
- procedure Do_Test;
- end Generic_Check;
-
- package body Generic_Check is
- package Complex_Types is new
- Ada.Numerics.Generic_Complex_Types (Real);
- use Complex_Types;
-
-
- procedure Check (Actual, Expected : Real;
- Test_Name : String;
- MRE : Real) is
- Rel_Error : Real;
- Abs_Error : Real;
- Max_Error : Real;
- begin
- -- In the case where the expected result is very small or 0
- -- we compute the maximum error as a multiple of Model_Epsilon instead
- -- of Model_Epsilon and Expected.
- Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
- Abs_Error := MRE * Real'Model_Epsilon;
- if Rel_Error > Abs_Error then
- Max_Error := Rel_Error;
- else
- Max_Error := Abs_Error;
- end if;
-
- if abs (Actual - Expected) > Max_Error then
- Report.Failed (Test_Name &
- " actual: " & Real'Image (Actual) &
- " expected: " & Real'Image (Expected) &
- " difference: " &
- Real'Image (Actual - Expected) &
- " mre:" & Real'Image (Max_Error) );
- elsif Verbose then
- if Actual = Expected then
- Report.Comment (Test_Name & " exact result");
- else
- Report.Comment (Test_Name & " passed");
- end if;
- end if;
- end Check;
-
-
- procedure Special_Cases is
- type Data_Point is
- record
- Re,
- Im,
- Radians,
- Degrees,
- Error_Bound : Real;
- end record;
-
- type Test_Data_Type is array (Positive range <>) of Data_Point;
-
- -- the values in the following table only involve static
- -- expressions to minimize errors in precision introduced by the
- -- test. For cases where Pi is used in the argument we must
- -- allow an extra 1.0*MRE to account for roundoff error in the
- -- argument. Where the result involves a square root we allow
- -- an extra 0.5*MRE to allow for roundoff error.
- Test_Data : constant Test_Data_Type := (
--- Re Im Radians Degrees Err Test #
- (0.0, 0.0, 0.0, 0.0, 4.0 ), -- 1
- (1.0, 0.0, 0.0, 0.0, 4.0 ), -- 2
- (Real'Safe_Last, 0.0, 0.0, 0.0, 4.0 ), -- 3
- (Real'Model_Small, 0.0, 0.0, 0.0, 4.0 ), -- 4
- (1.0, 1.0, Pi/4.0, 45.0, 5.0 ), -- 5
- (1.0, -1.0, -Pi/4.0, -45.0, 5.0 ), -- 6
- (-1.0, -1.0, -3.0*Pi/4.0,-135.0, 5.0 ), -- 7
- (-1.0, 1.0, 3.0*Pi/4.0, 135.0, 5.0 ), -- 8
- (Sqrt3, 1.0, Pi/6.0, 30.0, 5.5 ), -- 9
- (-Sqrt3, 1.0, 5.0*Pi/6.0, 150.0, 5.5 ), -- 10
- (Sqrt3, -1.0, -Pi/6.0, -30.0, 5.5 ), -- 11
- (-Sqrt3, -1.0, -5.0*Pi/6.0,-150.0, 5.5 ), -- 12
- (Real'Model_Small, Real'Model_Small, Pi/4.0, 45.0, 5.0 ), -- 13
- (-Real'Safe_Last, 0.0, Pi, 180.0, 5.0 ), -- 14
- (-Real'Safe_Last, -Real'Model_Small, -Pi,-180.0, 5.0 ), -- 15
- (100000.0, 100000.0, Pi/4.0, 45.0, 5.0 )); -- 16
-
- X : Real;
- Z : Complex;
- begin
- for I in Test_Data'Range loop
- begin
- Z := (Test_Data(I).Re, Test_Data(I).Im);
- X := Argument (Z);
- Check (X, Test_Data(I).Radians,
- "test" & Integer'Image (I) & " argument(z)",
- Test_Data (I).Error_Bound);
---pwb-math X := Argument (Z, 2.0*Pi);
---pwb-math Check (X, Test_Data(I).Radians,
---pwb-math "test" & Integer'Image (I) & " argument(z, 2pi)",
---pwb-math Test_Data (I).Error_Bound);
- X := Argument (Z, 360.0);
- Check (X, Test_Data(I).Degrees,
- "test" & Integer'Image (I) & " argument(z, 360)",
- Test_Data (I).Error_Bound);
-
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test" &
- Integer'Image (I));
- when others =>
- Report.Failed ("exception in test" &
- Integer'Image (I));
- end;
- end loop;
-
- if Real'Signed_Zeros then
- begin
- X := Argument ((-1.0, Real(ImpDef.Annex_G.Negative_Zero)));
- Check (X, -Pi, "test of arg((-1,-0)", 4.0);
- exception
- when others =>
- Report.Failed ("exception in signed zero test");
- end;
- end if;
- end Special_Cases;
-
-
- procedure Exception_Cases is
- -- check that Argument_Error is raised if Cycle is <= 0
- Z : Complex := (1.0, 1.0);
- X : Real;
- Y : Real;
- begin
- begin
- X := Argument (Z, Cycle => 0.0);
- Report.Failed ("no exception for cycle = 0.0");
- exception
- when Ada.Numerics.Argument_Error => null;
- when others =>
- Report.Failed ("wrong exception for cycle = 0.0");
- end;
-
- begin
- Y := Argument (Z, Cycle => -3.0);
- Report.Failed ("no exception for cycle < 0.0");
- exception
- when Ada.Numerics.Argument_Error => null;
- when others =>
- Report.Failed ("wrong exception for cycle < 0.0");
- end;
-
- if Report.Ident_Int (2) = 1 then
- -- optimization thwarting code - never executed
- Report.Failed("2=1" & Real'Image (X+Y));
- end if;
- end Exception_Cases;
-
-
- procedure Do_Test is
- begin
- Special_Cases;
- Exception_Cases;
- end Do_Test;
- end Generic_Check;
-
- package Chk_Float is new Generic_Check (Float);
-
- -- check the floating point type with the most digits
- type A_Long_Float is digits System.Max_Digits;
- package Chk_A_Long_Float is new Generic_Check (A_Long_Float);
-begin
- Report.Test ("CXG2006",
- "Check the accuracy of the complex argument" &
- " function");
-
- if Verbose then
- Report.Comment ("checking Standard.Float");
- end if;
-
- Chk_Float.Do_Test;
-
- if Verbose then
- Report.Comment ("checking a digits" &
- Integer'Image (System.Max_Digits) &
- " floating point type");
- end if;
-
- Chk_A_Long_Float.Do_Test;
-
- Report.Result;
-end CXG2006;
diff --git a/gcc/testsuite/ada/acats/tests/cxg/cxg2007.a b/gcc/testsuite/ada/acats/tests/cxg/cxg2007.a
deleted file mode 100644
index ba07df29d52..00000000000
--- a/gcc/testsuite/ada/acats/tests/cxg/cxg2007.a
+++ /dev/null
@@ -1,291 +0,0 @@
--- CXG2007.A
---
--- Grant of Unlimited Rights
---
--- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
--- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
--- unlimited rights in the software and documentation contained herein.
--- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
--- this public release, the Government intends to confer upon all
--- recipients unlimited rights equal to those held by the Government.
--- These rights include rights to use, duplicate, release or disclose the
--- released technical data and computer software in whole or in part, in
--- any manner and for any purpose whatsoever, and to have or permit others
--- to do so.
---
--- DISCLAIMER
---
--- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
--- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
--- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
--- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
--- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
--- PARTICULAR PURPOSE OF SAID MATERIAL.
---*
---
--- OBJECTIVE:
--- Check that the complex Compose_From_Polar function returns
--- results that are within the error bound allowed.
--- Check that Argument_Error is raised if the Cycle parameter
--- is less than or equal to zero.
---
--- TEST DESCRIPTION:
--- This test uses a generic package to compute and check the
--- values of the Compose_From_Polar function.
---
--- SPECIAL REQUIREMENTS
--- The Strict Mode for the numerical accuracy must be
--- selected. The method by which this mode is selected
--- is implementation dependent.
---
--- APPLICABILITY CRITERIA:
--- This test applies only to implementations supporting the
--- Numerics Annex.
--- This test only applies to the Strict Mode for numerical
--- accuracy.
---
---
--- CHANGE HISTORY:
--- 23 FEB 96 SAIC Initial release for 2.1
--- 23 APR 96 SAIC Fixed error checking
--- 03 MAR 97 PWB.CTA Deleted checks with explicit Cycle => 2.0*Pi
---
--- CHANGE NOTE:
--- According to Ken Dritz, author of the Numerics Annex of the RM,
--- one should never specify the cycle 2.0*Pi for the trigonometric
--- functions. In particular, if the machine number for the first
--- argument is not an exact multiple of the machine number for the
--- explicit cycle, then the specified exact results cannot be
--- reasonably expected. The affected checks in this test have been
--- marked as comments, with the additional notation "pwb-math".
--- Phil Brashear
---!
-
-with System;
-with Report;
-with Ada.Numerics;
-with Ada.Numerics.Generic_Complex_Types;
-procedure CXG2007 is
- Verbose : constant Boolean := False;
-
-
- -- CRC Standard Mathematical Tables; 23rd Edition; pg 738
- Sqrt2 : constant :=
- 1.41421_35623_73095_04880_16887_24209_69807_85696_71875_37695;
- Sqrt3 : constant :=
- 1.73205_08075_68877_29352_74463_41505_87236_69428_05253_81039;
-
- Pi : constant := Ada.Numerics.Pi;
-
- generic
- type Real is digits <>;
- package Generic_Check is
- procedure Do_Test;
- end Generic_Check;
-
- package body Generic_Check is
- package Complex_Types is new
- Ada.Numerics.Generic_Complex_Types (Real);
- use Complex_Types;
-
- Maximum_Relative_Error : constant Real := 3.0;
-
- procedure Check (Actual, Expected : Real;
- Test_Name : String;
- MRE : Real;
- Arg_Error : Real) is
- -- Arg_Error is additional absolute error that is allowed beyond
- -- the MRE to account for error in the result that can be
- -- attributed to error in the arguments.
- Max_Error : Real;
- Rel_Error : Real;
- Abs_Error : Real;
- begin
- -- In the case where the expected result is very small or 0
- -- we compute the maximum error as a multiple of Model_Small instead
- -- of Model_Epsilon and Expected.
- Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
- Abs_Error := MRE * Real'Model_Epsilon;
- if Rel_Error > Abs_Error then
- Max_Error := Rel_Error;
- else
- Max_Error := Abs_Error;
- end if;
- Max_Error := Max_Error + Arg_Error;
-
- if abs (Actual - Expected) > Max_Error then
- Report.Failed (Test_Name &
- " actual: " & Real'Image (Actual) &
- " expected: " & Real'Image (Expected) &
- " difference: " & Real'Image (Actual - Expected) &
- " max err:" & Real'Image (Max_Error) );
- elsif Verbose then
- if Actual = Expected then
- Report.Comment (Test_Name & " exact result");
- else
- Report.Comment (Test_Name & " passed");
- end if;
- end if;
- end Check;
-
-
- procedure Check (Actual, Expected : Complex;
- Test_Name : String;
- MRE : Real;
- Arg_Error : Real) is
- -- Arg_Error is additional absolute error that is allowed beyond
- -- the MRE to account for error in the result that can be
- -- attributed to error in the arguments.
- begin
- Check (Actual.Re, Expected.Re,
- Test_Name & " real part",
- MRE, Arg_Error);
- Check (Actual.Im, Expected.Im,
- Test_Name & " imaginary part",
- MRE, Arg_Error);
- end Check;
-
-
- procedure Special_Cases is
- type Data_Point is
- record
- Re,
- Im,
- Modulus,
- Radians,
- Degrees,
- Arg_Error : Real;
- end record;
-
- -- shorthand names for various constants
- P4 : constant := Pi/4.0;
- P6 : constant := Pi/6.0;
-
- MER2 : constant Real := Real'Model_Epsilon * Sqrt2;
-
- type Test_Data_Type is array (Positive range <>) of Data_Point;
-
- -- the values in the following table only involve static
- -- expressions so no loss of precision occurs.
- Test_Data : constant Test_Data_Type := (
- --Re Im Modulus Radians Degrees Arg_Err
- ( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ), -- 1
- ( 0.0, 0.0, 0.0, Pi, 180.0, 0.0 ), -- 2
-
- ( 1.0, 0.0, 1.0, 0.0, 0.0, 0.0 ), -- 3
- (-1.0, 0.0, -1.0, 0.0, 0.0, 0.0 ), -- 4
-
- ( 1.0, 1.0, Sqrt2, P4, 45.0, MER2), -- 5
- (-1.0, 1.0, -Sqrt2, -P4, -45.0, MER2), -- 6
- ( 1.0, -1.0, Sqrt2, -P4, -45.0, MER2), -- 7
- (-1.0, -1.0, -Sqrt2, P4, 45.0, MER2), -- 8
- (-1.0, -1.0, Sqrt2, -3.0*P4,-135.0, MER2), -- 9
- (-1.0, 1.0, Sqrt2, 3.0*P4, 135.0, MER2), -- 10
- ( 1.0, -1.0, -Sqrt2, 3.0*P4, 135.0, MER2), -- 11
-
- (-1.0, 0.0, 1.0, Pi, 180.0, 0.0 ), -- 12
- ( 1.0, 0.0, -1.0, Pi, 180.0, 0.0 ) ); -- 13
-
-
- Z : Complex;
- Exp : Complex;
- begin
- for I in Test_Data'Range loop
- begin
- Exp := (Test_Data (I).Re, Test_Data (I).Im);
-
- Z := Compose_From_Polar (Test_Data (I).Modulus,
- Test_Data (I).Radians);
- Check (Z, Exp,
- "test" & Integer'Image (I) & " compose_from_polar(m,r)",
- Maximum_Relative_Error, Test_Data (I).Arg_Error);
-
---pwb-math Z := Compose_From_Polar (Test_Data (I).Modulus,
---pwb-math Test_Data (I).Radians,
---pwb-math 2.0*Pi);
---pwb-math Check (Z, Exp,
---pwb-math "test" & Integer'Image (I) & " compose_from_polar(m,r,2pi)",
---pwb-math Maximum_Relative_Error, Test_Data (I).Arg_Error);
-
- Z := Compose_From_Polar (Test_Data (I).Modulus,
- Test_Data (I).Degrees,
- 360.0);
- Check (Z, Exp,
- "test" & Integer'Image (I) & " compose_from_polar(m,d,360)",
- Maximum_Relative_Error, Test_Data (I).Arg_Error);
-
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test" &
- Integer'Image (I));
- when others =>
- Report.Failed ("exception in test" &
- Integer'Image (I));
- end;
- end loop;
- end Special_Cases;
-
-
- procedure Exception_Cases is
- -- check that Argument_Error is raised if Cycle is <= 0
- Z : Complex;
- W : Complex;
- begin
- begin
- Z := Compose_From_Polar (3.0, 0.0, Cycle => 0.0);
- Report.Failed ("no exception for cycle = 0.0");
- exception
- when Ada.Numerics.Argument_Error => null;
- when others =>
- Report.Failed ("wrong exception for cycle = 0.0");
- end;
-
- begin
- W := Compose_From_Polar (6.0, 1.0, Cycle => -10.0);
- Report.Failed ("no exception for cycle < 0.0");
- exception
- when Ada.Numerics.Argument_Error => null;
- when others =>
- Report.Failed ("wrong exception for cycle < 0.0");
- end;
-
- if Report.Ident_Int (1) = 2 then
- -- not executed - used to make it appear that we use the
- -- results of the above computation
- Z := Z * W;
- Report.Failed(Real'Image (Z.Re + Z.Im));
- end if;
- end Exception_Cases;
-
-
- procedure Do_Test is
- begin
- Special_Cases;
- Exception_Cases;
- end Do_Test;
- end Generic_Check;
-
- package Chk_Float is new Generic_Check (Float);
-
- -- check the floating point type with the most digits
- type A_Long_Float is digits System.Max_Digits;
- package Chk_A_Long_Float is new Generic_Check (A_Long_Float);
-begin
- Report.Test ("CXG2007",
- "Check the accuracy of the Compose_From_Polar" &
- " function");
-
- if Verbose then
- Report.Comment ("checking Standard.Float");
- end if;
- Chk_Float.Do_Test;
-
- if Verbose then
- Report.Comment ("checking a digits" &
- Integer'Image (System.Max_Digits) &
- " floating point type");
- end if;
- Chk_A_Long_Float.Do_Test;
-
- Report.Result;
-end CXG2007;
diff --git a/gcc/testsuite/ada/acats/tests/cxg/cxg2008.a b/gcc/testsuite/ada/acats/tests/cxg/cxg2008.a
deleted file mode 100644
index 58cf367f61c..00000000000
--- a/gcc/testsuite/ada/acats/tests/cxg/cxg2008.a
+++ /dev/null
@@ -1,948 +0,0 @@
--- CXG2008.A
---
--- Grant of Unlimited Rights
---
--- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
--- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
--- unlimited rights in the software and documentation contained herein.
--- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
--- this public release, the Government intends to confer upon all
--- recipients unlimited rights equal to those held by the Government.
--- These rights include rights to use, duplicate, release or disclose the
--- released technical data and computer software in whole or in part, in
--- any manner and for any purpose whatsoever, and to have or permit others
--- to do so.
---
--- DISCLAIMER
---
--- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
--- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
--- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
--- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
--- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
--- PARTICULAR PURPOSE OF SAID MATERIAL.
---*
---
--- OBJECTIVE:
--- Check that the complex multiplication and division
--- operations return results that are within the allowed
--- error bound.
--- Check that all the required pure Numerics packages are pure.
---
--- TEST DESCRIPTION:
--- This test contains three test packages that are almost
--- identical. The first two packages differ only in the
--- floating point type that is being tested. The first
--- and third package differ only in whether the generic
--- complex types package or the pre-instantiated
--- package is used.
--- The test package is not generic so that the arguments
--- and expected results for some of the test values
--- can be expressed as universal real instead of being
--- computed at runtime.
---
--- SPECIAL REQUIREMENTS
--- The Strict Mode for the numerical accuracy must be
--- selected. The method by which this mode is selected
--- is implementation dependent.
---
--- APPLICABILITY CRITERIA:
--- This test applies only to implementations supporting the
--- Numerics Annex.
--- This test only applies to the Strict Mode for numerical
--- accuracy.
---
---
--- CHANGE HISTORY:
--- 24 FEB 96 SAIC Initial release for 2.1
--- 03 JUN 98 EDS Correct the test program's incorrect assumption
--- that Constraint_Error must be raised by complex
--- division by zero, which is contrary to the
--- allowance given by the Ada 95 standard G.1.1(40).
--- 13 MAR 01 RLB Replaced commented out Pure check on non-generic
--- packages, as required by Defect Report
--- 8652/0020 and as reflected in Technical
--- Corrigendum 1.
---!
-
-------------------------------------------------------------------------------
--- Check that the required pure packages are pure by withing them from a
--- pure package. The non-generic versions of those packages are required to
--- be pure by Defect Report 8652/0020, Technical Corrigendum 1 [A.5.1(9/1) and
--- G.1.1(25/1)].
-with Ada.Numerics.Generic_Elementary_Functions;
-with Ada.Numerics.Elementary_Functions;
-with Ada.Numerics.Generic_Complex_Types;
-with Ada.Numerics.Complex_Types;
-with Ada.Numerics.Generic_Complex_Elementary_Functions;
-with Ada.Numerics.Complex_Elementary_Functions;
-package CXG2008_0 is
- pragma Pure;
- -- CRC Standard Mathematical Tables; 23rd Edition; pg 738
- Sqrt2 : constant :=
- 1.41421_35623_73095_04880_16887_24209_69807_85696_71875_37695;
- Sqrt3 : constant :=
- 1.73205_08075_68877_29352_74463_41505_87236_69428_05253_81039;
-end CXG2008_0;
-
-------------------------------------------------------------------------------
-
-with System;
-with Report;
-with Ada.Numerics.Generic_Complex_Types;
-with Ada.Numerics.Complex_Types;
-with CXG2008_0; use CXG2008_0;
-procedure CXG2008 is
- Verbose : constant Boolean := False;
-
- package Float_Check is
- subtype Real is Float;
- procedure Do_Test;
- end Float_Check;
-
- package body Float_Check is
- package Complex_Types is new
- Ada.Numerics.Generic_Complex_Types (Real);
- use Complex_Types;
-
- -- keep track if an accuracy failure has occurred so the test
- -- can be short-circuited to avoid thousands of error messages.
- Failure_Detected : Boolean := False;
-
- Mult_MBE : constant Real := 5.0;
- Divide_MBE : constant Real := 13.0;
-
-
- procedure Check (Actual, Expected : Complex;
- Test_Name : String;
- MBE : Real) is
- Rel_Error : Real;
- Abs_Error : Real;
- Max_Error : Real;
- begin
- -- In the case where the expected result is very small or 0
- -- we compute the maximum error as a multiple of Model_Epsilon instead
- -- of Model_Epsilon and Expected.
- Rel_Error := MBE * abs Expected.Re * Real'Model_Epsilon;
- Abs_Error := MBE * Real'Model_Epsilon;
- if Rel_Error > Abs_Error then
- Max_Error := Rel_Error;
- else
- Max_Error := Abs_Error;
- end if;
-
- if abs (Actual.Re - Expected.Re) > Max_Error then
- Failure_Detected := True;
- Report.Failed (Test_Name &
- " actual.re: " & Real'Image (Actual.Re) &
- " expected.re: " & Real'Image (Expected.Re) &
- " difference.re " &
- Real'Image (Actual.Re - Expected.Re) &
- " mre:" & Real'Image (Max_Error) );
- elsif Verbose then
- if Actual = Expected then
- Report.Comment (Test_Name & " exact result for real part");
- else
- Report.Comment (Test_Name & " passed for real part");
- end if;
- end if;
-
- Rel_Error := MBE * abs Expected.Im * Real'Model_Epsilon;
- if Rel_Error > Abs_Error then
- Max_Error := Rel_Error;
- else
- Max_Error := Abs_Error;
- end if;
- if abs (Actual.Im - Expected.Im) > Max_Error then
- Failure_Detected := True;
- Report.Failed (Test_Name &
- " actual.im: " & Real'Image (Actual.Im) &
- " expected.im: " & Real'Image (Expected.Im) &
- " difference.im " &
- Real'Image (Actual.Im - Expected.Im) &
- " mre:" & Real'Image (Max_Error) );
- elsif Verbose then
- if Actual = Expected then
- Report.Comment (Test_Name & " exact result for imaginary part");
- else
- Report.Comment (Test_Name & " passed for imaginary part");
- end if;
- end if;
- end Check;
-
-
- procedure Special_Values is
- begin
-
- --- test 1 ---
- declare
- T : constant := (Real'Machine_EMax - 1) / 2;
- Big : constant := (1.0 * Real'Machine_Radix) ** (2 * T);
- Expected : Complex := (0.0, 0.0);
- X : Complex := (0.0, 0.0);
- Y : Complex := (Big, Big);
- Z : Complex;
- begin
- Z := X * Y;
- Check (Z, Expected, "test 1a -- (0+0i) * (big+big*i)",
- Mult_MBE);
- Z := Y * X;
- Check (Z, Expected, "test 1b -- (big+big*i) * (0+0i)",
- Mult_MBE);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 1");
- when others =>
- Report.Failed ("exception in test 1");
- end;
-
- --- test 2 ---
- declare
- T : constant := Real'Model_EMin + 1;
- Tiny : constant := (1.0 * Real'Machine_Radix) ** T;
- U : Complex := (Tiny, Tiny);
- X : Complex := (0.0, 0.0);
- Expected : Complex := (0.0, 0.0);
- Z : Complex;
- begin
- Z := U * X;
- Check (Z, Expected, "test 2 -- (tiny,tiny) * (0,0)",
- Mult_MBE);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 2");
- when others =>
- Report.Failed ("exception in test 2");
- end;
-
- --- test 3 ---
- declare
- T : constant := (Real'Machine_EMax - 1) / 2;
- Big : constant := (1.0 * Real'Machine_Radix) ** (2 * T);
- B : Complex := (Big, Big);
- X : Complex := (0.0, 0.0);
- Z : Complex;
- begin
- if Real'Machine_Overflows then
- Z := B / X;
- Report.Failed ("test 3 - Constraint_Error not raised");
- Check (Z, Z, "not executed - optimizer thwarting", 0.0);
- end if;
- exception
- when Constraint_Error => null; -- expected
- when others =>
- Report.Failed ("exception in test 3");
- end;
-
- --- test 4 ---
- declare
- T : constant := Real'Model_EMin + 1;
- Tiny : constant := (1.0 * Real'Machine_Radix) ** T;
- U : Complex := (Tiny, Tiny);
- X : Complex := (0.0, 0.0);
- Z : Complex;
- begin
- if Real'Machine_Overflows then
- Z := U / X;
- Report.Failed ("test 4 - Constraint_Error not raised");
- Check (Z, Z, "not executed - optimizer thwarting", 0.0);
- end if;
- exception
- when Constraint_Error => null; -- expected
- when others =>
- Report.Failed ("exception in test 4");
- end;
-
-
- --- test 5 ---
- declare
- X : Complex := (Sqrt2, Sqrt2);
- Z : Complex;
- Expected : constant Complex := (0.0, 4.0);
- begin
- Z := X * X;
- Check (Z, Expected, "test 5 -- (sqrt2,sqrt2) * (sqrt2,sqrt2)",
- Mult_MBE);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 5");
- when others =>
- Report.Failed ("exception in test 5");
- end;
-
- --- test 6 ---
- declare
- X : Complex := Sqrt3 - Sqrt3 * i;
- Z : Complex;
- Expected : constant Complex := (0.0, -6.0);
- begin
- Z := X * X;
- Check (Z, Expected, "test 6 -- (sqrt3,-sqrt3) * (sqrt3,-sqrt3)",
- Mult_MBE);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 6");
- when others =>
- Report.Failed ("exception in test 6");
- end;
-
- --- test 7 ---
- declare
- X : Complex := Sqrt2 + Sqrt2 * i;
- Y : Complex := Sqrt2 - Sqrt2 * i;
- Z : Complex;
- Expected : constant Complex := 0.0 + i;
- begin
- Z := X / Y;
- Check (Z, Expected, "test 7 -- (sqrt2,sqrt2) / (sqrt2,-sqrt2)",
- Divide_MBE);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 7");
- when others =>
- Report.Failed ("exception in test 7");
- end;
- end Special_Values;
-
-
- procedure Do_Mult_Div (X, Y : Complex) is
- Z : Complex;
- Args : constant String :=
- "X=(" & Real'Image (X.Re) & "," & Real'Image (X.Im) & ") " &
- "Y=(" & Real'Image (Y.Re) & "," & Real'Image (Y.Im) & ") " ;
- begin
- Z := (X * X) / X;
- Check (Z, X, "X*X/X " & Args, Mult_MBE + Divide_MBE);
- Z := (X * Y) / X;
- Check (Z, Y, "X*Y/X " & Args, Mult_MBE + Divide_MBE);
- Z := (X * Y) / Y;
- Check (Z, X, "X*Y/Y " & Args, Mult_MBE + Divide_MBE);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error in Do_Mult_Div for " & Args);
- when others =>
- Report.Failed ("exception in Do_Mult_Div for " & Args);
- end Do_Mult_Div;
-
- -- select complex values X and Y where the real and imaginary
- -- parts are selected from the ranges (1/radix..1) and
- -- (1..radix). This translates into quite a few combinations.
- procedure Mult_Div_Check is
- Samples : constant := 17;
- Radix : constant Real := Real(Real'Machine_Radix);
- Inv_Radix : constant Real := 1.0 / Real(Real'Machine_Radix);
- Low_Sample : Real; -- (1/radix .. 1)
- High_Sample : Real; -- (1 .. radix)
- Sample : array (1..2) of Real;
- X, Y : Complex;
- begin
- for I in 1 .. Samples loop
- Low_Sample := (1.0 - Inv_Radix) / Real (Samples) * Real (I) +
- Inv_Radix;
- Sample (1) := Low_Sample;
- for J in 1 .. Samples loop
- High_Sample := (Radix - 1.0) / Real (Samples) * Real (I) +
- Radix;
- Sample (2) := High_Sample;
- for K in 1 .. 2 loop
- for L in 1 .. 2 loop
- X := Complex'(Sample (K), Sample (L));
- Y := Complex'(Sample (L), Sample (K));
- Do_Mult_Div (X, Y);
- if Failure_Detected then
- return; -- minimize flood of error messages
- end if;
- end loop;
- end loop;
- end loop; -- J
- end loop; -- I
- end Mult_Div_Check;
-
-
- procedure Do_Test is
- begin
- Special_Values;
- Mult_Div_Check;
- end Do_Test;
- end Float_Check;
-
- -----------------------------------------------------------------------
- -----------------------------------------------------------------------
- -- check the floating point type with the most digits
-
- package A_Long_Float_Check is
- type A_Long_Float is digits System.Max_Digits;
- subtype Real is A_Long_Float;
- procedure Do_Test;
- end A_Long_Float_Check;
-
- package body A_Long_Float_Check is
-
- package Complex_Types is new
- Ada.Numerics.Generic_Complex_Types (Real);
- use Complex_Types;
-
- -- keep track if an accuracy failure has occurred so the test
- -- can be short-circuited to avoid thousands of error messages.
- Failure_Detected : Boolean := False;
-
- Mult_MBE : constant Real := 5.0;
- Divide_MBE : constant Real := 13.0;
-
-
- procedure Check (Actual, Expected : Complex;
- Test_Name : String;
- MBE : Real) is
- Rel_Error : Real;
- Abs_Error : Real;
- Max_Error : Real;
- begin
- -- In the case where the expected result is very small or 0
- -- we compute the maximum error as a multiple of Model_Epsilon instead
- -- of Model_Epsilon and Expected.
- Rel_Error := MBE * abs Expected.Re * Real'Model_Epsilon;
- Abs_Error := MBE * Real'Model_Epsilon;
- if Rel_Error > Abs_Error then
- Max_Error := Rel_Error;
- else
- Max_Error := Abs_Error;
- end if;
-
- if abs (Actual.Re - Expected.Re) > Max_Error then
- Failure_Detected := True;
- Report.Failed (Test_Name &
- " actual.re: " & Real'Image (Actual.Re) &
- " expected.re: " & Real'Image (Expected.Re) &
- " difference.re " &
- Real'Image (Actual.Re - Expected.Re) &
- " mre:" & Real'Image (Max_Error) );
- elsif Verbose then
- if Actual = Expected then
- Report.Comment (Test_Name & " exact result for real part");
- else
- Report.Comment (Test_Name & " passed for real part");
- end if;
- end if;
-
- Rel_Error := MBE * abs Expected.Im * Real'Model_Epsilon;
- if Rel_Error > Abs_Error then
- Max_Error := Rel_Error;
- else
- Max_Error := Abs_Error;
- end if;
- if abs (Actual.Im - Expected.Im) > Max_Error then
- Failure_Detected := True;
- Report.Failed (Test_Name &
- " actual.im: " & Real'Image (Actual.Im) &
- " expected.im: " & Real'Image (Expected.Im) &
- " difference.im " &
- Real'Image (Actual.Im - Expected.Im) &
- " mre:" & Real'Image (Max_Error) );
- elsif Verbose then
- if Actual = Expected then
- Report.Comment (Test_Name & " exact result for imaginary part");
- else
- Report.Comment (Test_Name & " passed for imaginary part");
- end if;
- end if;
- end Check;
-
-
- procedure Special_Values is
- begin
-
- --- test 1 ---
- declare
- T : constant := (Real'Machine_EMax - 1) / 2;
- Big : constant := (1.0 * Real'Machine_Radix) ** (2 * T);
- Expected : Complex := (0.0, 0.0);
- X : Complex := (0.0, 0.0);
- Y : Complex := (Big, Big);
- Z : Complex;
- begin
- Z := X * Y;
- Check (Z, Expected, "test 1a -- (0+0i) * (big+big*i)",
- Mult_MBE);
- Z := Y * X;
- Check (Z, Expected, "test 1b -- (big+big*i) * (0+0i)",
- Mult_MBE);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 1");
- when others =>
- Report.Failed ("exception in test 1");
- end;
-
- --- test 2 ---
- declare
- T : constant := Real'Model_EMin + 1;
- Tiny : constant := (1.0 * Real'Machine_Radix) ** T;
- U : Complex := (Tiny, Tiny);
- X : Complex := (0.0, 0.0);
- Expected : Complex := (0.0, 0.0);
- Z : Complex;
- begin
- Z := U * X;
- Check (Z, Expected, "test 2 -- (tiny,tiny) * (0,0)",
- Mult_MBE);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 2");
- when others =>
- Report.Failed ("exception in test 2");
- end;
-
- --- test 3 ---
- declare
- T : constant := (Real'Machine_EMax - 1) / 2;
- Big : constant := (1.0 * Real'Machine_Radix) ** (2 * T);
- B : Complex := (Big, Big);
- X : Complex := (0.0, 0.0);
- Z : Complex;
- begin
- if Real'Machine_Overflows then
- Z := B / X;
- Report.Failed ("test 3 - Constraint_Error not raised");
- Check (Z, Z, "not executed - optimizer thwarting", 0.0);
- end if;
- exception
- when Constraint_Error => null; -- expected
- when others =>
- Report.Failed ("exception in test 3");
- end;
-
- --- test 4 ---
- declare
- T : constant := Real'Model_EMin + 1;
- Tiny : constant := (1.0 * Real'Machine_Radix) ** T;
- U : Complex := (Tiny, Tiny);
- X : Complex := (0.0, 0.0);
- Z : Complex;
- begin
- if Real'Machine_Overflows then
- Z := U / X;
- Report.Failed ("test 4 - Constraint_Error not raised");
- Check (Z, Z, "not executed - optimizer thwarting", 0.0);
- end if;
- exception
- when Constraint_Error => null; -- expected
- when others =>
- Report.Failed ("exception in test 4");
- end;
-
-
- --- test 5 ---
- declare
- X : Complex := (Sqrt2, Sqrt2);
- Z : Complex;
- Expected : constant Complex := (0.0, 4.0);
- begin
- Z := X * X;
- Check (Z, Expected, "test 5 -- (sqrt2,sqrt2) * (sqrt2,sqrt2)",
- Mult_MBE);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 5");
- when others =>
- Report.Failed ("exception in test 5");
- end;
-
- --- test 6 ---
- declare
- X : Complex := Sqrt3 - Sqrt3 * i;
- Z : Complex;
- Expected : constant Complex := (0.0, -6.0);
- begin
- Z := X * X;
- Check (Z, Expected, "test 6 -- (sqrt3,-sqrt3) * (sqrt3,-sqrt3)",
- Mult_MBE);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 6");
- when others =>
- Report.Failed ("exception in test 6");
- end;
-
- --- test 7 ---
- declare
- X : Complex := Sqrt2 + Sqrt2 * i;
- Y : Complex := Sqrt2 - Sqrt2 * i;
- Z : Complex;
- Expected : constant Complex := 0.0 + i;
- begin
- Z := X / Y;
- Check (Z, Expected, "test 7 -- (sqrt2,sqrt2) / (sqrt2,-sqrt2)",
- Divide_MBE);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 7");
- when others =>
- Report.Failed ("exception in test 7");
- end;
- end Special_Values;
-
-
- procedure Do_Mult_Div (X, Y : Complex) is
- Z : Complex;
- Args : constant String :=
- "X=(" & Real'Image (X.Re) & "," & Real'Image (X.Im) & ") " &
- "Y=(" & Real'Image (Y.Re) & "," & Real'Image (Y.Im) & ") " ;
- begin
- Z := (X * X) / X;
- Check (Z, X, "X*X/X " & Args, Mult_MBE + Divide_MBE);
- Z := (X * Y) / X;
- Check (Z, Y, "X*Y/X " & Args, Mult_MBE + Divide_MBE);
- Z := (X * Y) / Y;
- Check (Z, X, "X*Y/Y " & Args, Mult_MBE + Divide_MBE);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error in Do_Mult_Div for " & Args);
- when others =>
- Report.Failed ("exception in Do_Mult_Div for " & Args);
- end Do_Mult_Div;
-
- -- select complex values X and Y where the real and imaginary
- -- parts are selected from the ranges (1/radix..1) and
- -- (1..radix). This translates into quite a few combinations.
- procedure Mult_Div_Check is
- Samples : constant := 17;
- Radix : constant Real := Real(Real'Machine_Radix);
- Inv_Radix : constant Real := 1.0 / Real(Real'Machine_Radix);
- Low_Sample : Real; -- (1/radix .. 1)
- High_Sample : Real; -- (1 .. radix)
- Sample : array (1..2) of Real;
- X, Y : Complex;
- begin
- for I in 1 .. Samples loop
- Low_Sample := (1.0 - Inv_Radix) / Real (Samples) * Real (I) +
- Inv_Radix;
- Sample (1) := Low_Sample;
- for J in 1 .. Samples loop
- High_Sample := (Radix - 1.0) / Real (Samples) * Real (I) +
- Radix;
- Sample (2) := High_Sample;
- for K in 1 .. 2 loop
- for L in 1 .. 2 loop
- X := Complex'(Sample (K), Sample (L));
- Y := Complex'(Sample (L), Sample (K));
- Do_Mult_Div (X, Y);
- if Failure_Detected then
- return; -- minimize flood of error messages
- end if;
- end loop;
- end loop;
- end loop; -- J
- end loop; -- I
- end Mult_Div_Check;
-
-
- procedure Do_Test is
- begin
- Special_Values;
- Mult_Div_Check;
- end Do_Test;
- end A_Long_Float_Check;
-
- -----------------------------------------------------------------------
- -----------------------------------------------------------------------
-
- package Non_Generic_Check is
- subtype Real is Float;
- procedure Do_Test;
- end Non_Generic_Check;
-
- package body Non_Generic_Check is
-
- use Ada.Numerics.Complex_Types;
-
- -- keep track if an accuracy failure has occurred so the test
- -- can be short-circuited to avoid thousands of error messages.
- Failure_Detected : Boolean := False;
-
- Mult_MBE : constant Real := 5.0;
- Divide_MBE : constant Real := 13.0;
-
-
- procedure Check (Actual, Expected : Complex;
- Test_Name : String;
- MBE : Real) is
- Rel_Error : Real;
- Abs_Error : Real;
- Max_Error : Real;
- begin
- -- In the case where the expected result is very small or 0
- -- we compute the maximum error as a multiple of Model_Epsilon instead
- -- of Model_Epsilon and Expected.
- Rel_Error := MBE * abs Expected.Re * Real'Model_Epsilon;
- Abs_Error := MBE * Real'Model_Epsilon;
- if Rel_Error > Abs_Error then
- Max_Error := Rel_Error;
- else
- Max_Error := Abs_Error;
- end if;
-
- if abs (Actual.Re - Expected.Re) > Max_Error then
- Failure_Detected := True;
- Report.Failed (Test_Name &
- " actual.re: " & Real'Image (Actual.Re) &
- " expected.re: " & Real'Image (Expected.Re) &
- " difference.re " &
- Real'Image (Actual.Re - Expected.Re) &
- " mre:" & Real'Image (Max_Error) );
- elsif Verbose then
- if Actual = Expected then
- Report.Comment (Test_Name & " exact result for real part");
- else
- Report.Comment (Test_Name & " passed for real part");
- end if;
- end if;
-
- Rel_Error := MBE * abs Expected.Im * Real'Model_Epsilon;
- if Rel_Error > Abs_Error then
- Max_Error := Rel_Error;
- else
- Max_Error := Abs_Error;
- end if;
- if abs (Actual.Im - Expected.Im) > Max_Error then
- Failure_Detected := True;
- Report.Failed (Test_Name &
- " actual.im: " & Real'Image (Actual.Im) &
- " expected.im: " & Real'Image (Expected.Im) &
- " difference.im " &
- Real'Image (Actual.Im - Expected.Im) &
- " mre:" & Real'Image (Max_Error) );
- elsif Verbose then
- if Actual = Expected then
- Report.Comment (Test_Name & " exact result for imaginary part");
- else
- Report.Comment (Test_Name & " passed for imaginary part");
- end if;
- end if;
- end Check;
-
-
- procedure Special_Values is
- begin
-
- --- test 1 ---
- declare
- T : constant := (Real'Machine_EMax - 1) / 2;
- Big : constant := (1.0 * Real'Machine_Radix) ** (2 * T);
- Expected : Complex := (0.0, 0.0);
- X : Complex := (0.0, 0.0);
- Y : Complex := (Big, Big);
- Z : Complex;
- begin
- Z := X * Y;
- Check (Z, Expected, "test 1a -- (0+0i) * (big+big*i)",
- Mult_MBE);
- Z := Y * X;
- Check (Z, Expected, "test 1b -- (big+big*i) * (0+0i)",
- Mult_MBE);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 1");
- when others =>
- Report.Failed ("exception in test 1");
- end;
-
- --- test 2 ---
- declare
- T : constant := Real'Model_EMin + 1;
- Tiny : constant := (1.0 * Real'Machine_Radix) ** T;
- U : Complex := (Tiny, Tiny);
- X : Complex := (0.0, 0.0);
- Expected : Complex := (0.0, 0.0);
- Z : Complex;
- begin
- Z := U * X;
- Check (Z, Expected, "test 2 -- (tiny,tiny) * (0,0)",
- Mult_MBE);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 2");
- when others =>
- Report.Failed ("exception in test 2");
- end;
-
- --- test 3 ---
- declare
- T : constant := (Real'Machine_EMax - 1) / 2;
- Big : constant := (1.0 * Real'Machine_Radix) ** (2 * T);
- B : Complex := (Big, Big);
- X : Complex := (0.0, 0.0);
- Z : Complex;
- begin
- if Real'Machine_Overflows then
- Z := B / X;
- Report.Failed ("test 3 - Constraint_Error not raised");
- Check (Z, Z, "not executed - optimizer thwarting", 0.0);
- end if;
- exception
- when Constraint_Error => null; -- expected
- when others =>
- Report.Failed ("exception in test 3");
- end;
-
- --- test 4 ---
- declare
- T : constant := Real'Model_EMin + 1;
- Tiny : constant := (1.0 * Real'Machine_Radix) ** T;
- U : Complex := (Tiny, Tiny);
- X : Complex := (0.0, 0.0);
- Z : Complex;
- begin
- if Real'Machine_Overflows then
- Z := U / X;
- Report.Failed ("test 4 - Constraint_Error not raised");
- Check (Z, Z, "not executed - optimizer thwarting", 0.0);
- end if;
- exception
- when Constraint_Error => null; -- expected
- when others =>
- Report.Failed ("exception in test 4");
- end;
-
-
- --- test 5 ---
- declare
- X : Complex := (Sqrt2, Sqrt2);
- Z : Complex;
- Expected : constant Complex := (0.0, 4.0);
- begin
- Z := X * X;
- Check (Z, Expected, "test 5 -- (sqrt2,sqrt2) * (sqrt2,sqrt2)",
- Mult_MBE);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 5");
- when others =>
- Report.Failed ("exception in test 5");
- end;
-
- --- test 6 ---
- declare
- X : Complex := Sqrt3 - Sqrt3 * i;
- Z : Complex;
- Expected : constant Complex := (0.0, -6.0);
- begin
- Z := X * X;
- Check (Z, Expected, "test 6 -- (sqrt3,-sqrt3) * (sqrt3,-sqrt3)",
- Mult_MBE);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 6");
- when others =>
- Report.Failed ("exception in test 6");
- end;
-
- --- test 7 ---
- declare
- X : Complex := Sqrt2 + Sqrt2 * i;
- Y : Complex := Sqrt2 - Sqrt2 * i;
- Z : Complex;
- Expected : constant Complex := 0.0 + i;
- begin
- Z := X / Y;
- Check (Z, Expected, "test 7 -- (sqrt2,sqrt2) / (sqrt2,-sqrt2)",
- Divide_MBE);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 7");
- when others =>
- Report.Failed ("exception in test 7");
- end;
- end Special_Values;
-
-
- procedure Do_Mult_Div (X, Y : Complex) is
- Z : Complex;
- Args : constant String :=
- "X=(" & Real'Image (X.Re) & "," & Real'Image (X.Im) & ") " &
- "Y=(" & Real'Image (Y.Re) & "," & Real'Image (Y.Im) & ") " ;
- begin
- Z := (X * X) / X;
- Check (Z, X, "X*X/X " & Args, Mult_MBE + Divide_MBE);
- Z := (X * Y) / X;
- Check (Z, Y, "X*Y/X " & Args, Mult_MBE + Divide_MBE);
- Z := (X * Y) / Y;
- Check (Z, X, "X*Y/Y " & Args, Mult_MBE + Divide_MBE);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error in Do_Mult_Div for " & Args);
- when others =>
- Report.Failed ("exception in Do_Mult_Div for " & Args);
- end Do_Mult_Div;
-
- -- select complex values X and Y where the real and imaginary
- -- parts are selected from the ranges (1/radix..1) and
- -- (1..radix). This translates into quite a few combinations.
- procedure Mult_Div_Check is
- Samples : constant := 17;
- Radix : constant Real := Real(Real'Machine_Radix);
- Inv_Radix : constant Real := 1.0 / Real(Real'Machine_Radix);
- Low_Sample : Real; -- (1/radix .. 1)
- High_Sample : Real; -- (1 .. radix)
- Sample : array (1..2) of Real;
- X, Y : Complex;
- begin
- for I in 1 .. Samples loop
- Low_Sample := (1.0 - Inv_Radix) / Real (Samples) * Real (I) +
- Inv_Radix;
- Sample (1) := Low_Sample;
- for J in 1 .. Samples loop
- High_Sample := (Radix - 1.0) / Real (Samples) * Real (I) +
- Radix;
- Sample (2) := High_Sample;
- for K in 1 .. 2 loop
- for L in 1 .. 2 loop
- X := Complex'(Sample (K), Sample (L));
- Y := Complex'(Sample (L), Sample (K));
- Do_Mult_Div (X, Y);
- if Failure_Detected then
- return; -- minimize flood of error messages
- end if;
- end loop;
- end loop;
- end loop; -- J
- end loop; -- I
- end Mult_Div_Check;
-
-
- procedure Do_Test is
- begin
- Special_Values;
- Mult_Div_Check;
- end Do_Test;
- end Non_Generic_Check;
-
- -----------------------------------------------------------------------
- -----------------------------------------------------------------------
-
-begin
- Report.Test ("CXG2008",
- "Check the accuracy of the complex multiplication and" &
- " division operators");
-
- if Verbose then
- Report.Comment ("checking Standard.Float");
- end if;
-
- Float_Check.Do_Test;
-
- if Verbose then
- Report.Comment ("checking a digits" &
- Integer'Image (System.Max_Digits) &
- " floating point type");
- end if;
-
- A_Long_Float_Check.Do_Test;
-
- if Verbose then
- Report.Comment ("checking non-generic package");
- end if;
-
- Non_Generic_Check.Do_Test;
-
- Report.Result;
-end CXG2008;
diff --git a/gcc/testsuite/ada/acats/tests/cxg/cxg2009.a b/gcc/testsuite/ada/acats/tests/cxg/cxg2009.a
deleted file mode 100644
index 0b11ca53887..00000000000
--- a/gcc/testsuite/ada/acats/tests/cxg/cxg2009.a
+++ /dev/null
@@ -1,421 +0,0 @@
--- CXG2009.A
---
--- Grant of Unlimited Rights
---
--- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
--- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
--- unlimited rights in the software and documentation contained herein.
--- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
--- this public release, the Government intends to confer upon all
--- recipients unlimited rights equal to those held by the Government.
--- These rights include rights to use, duplicate, release or disclose the
--- released technical data and computer software in whole or in part, in
--- any manner and for any purpose whatsoever, and to have or permit others
--- to do so.
---
--- DISCLAIMER
---
--- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
--- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
--- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
--- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
--- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
--- PARTICULAR PURPOSE OF SAID MATERIAL.
---*
---
--- OBJECTIVE:
--- Check that the real sqrt and complex modulus functions
--- return results that are within the allowed
--- error bound.
---
--- TEST DESCRIPTION:
--- This test checks the accuracy of the sqrt and modulus functions
--- by computing the norm of various vectors where the result
--- is known in advance.
--- This test uses real and complex math together as would an
--- actual application. Considerable use of generics is also
--- employed.
---
--- SPECIAL REQUIREMENTS
--- The Strict Mode for the numerical accuracy must be
--- selected. The method by which this mode is selected
--- is implementation dependent.
---
--- APPLICABILITY CRITERIA:
--- This test applies only to implementations supporting the
--- Numerics Annex.
--- This test only applies to the Strict Mode for numerical
--- accuracy.
---
---
--- CHANGE HISTORY:
--- 26 FEB 96 SAIC Initial release for 2.1
--- 22 AUG 96 SAIC Revised Check procedure
---
---!
-
-------------------------------------------------------------------------------
-
-with System;
-with Report;
-with Ada.Numerics.Generic_Complex_Types;
-with Ada.Numerics.Generic_Elementary_Functions;
-procedure CXG2009 is
- Verbose : constant Boolean := False;
-
- --=====================================================================
-
- generic
- type Real is digits <>;
- package Generic_Real_Norm_Check is
- procedure Do_Test;
- end Generic_Real_Norm_Check;
-
- -----------------------------------------------------------------------
-
- package body Generic_Real_Norm_Check is
- type Vector is array (Integer range <>) of Real;
-
- package GEF is new Ada.Numerics.Generic_Elementary_Functions (Real);
- function Sqrt (X : Real) return Real renames GEF.Sqrt;
-
- function One_Norm (V : Vector) return Real is
- -- sum of absolute values of the elements of the vector
- Result : Real := 0.0;
- begin
- for I in V'Range loop
- Result := Result + abs V(I);
- end loop;
- return Result;
- end One_Norm;
-
- function Inf_Norm (V : Vector) return Real is
- -- greatest absolute vector element
- Result : Real := 0.0;
- begin
- for I in V'Range loop
- if abs V(I) > Result then
- Result := abs V(I);
- end if;
- end loop;
- return Result;
- end Inf_Norm;
-
- function Two_Norm (V : Vector) return Real is
- -- if greatest absolute vector element is 0 then return 0
- -- else return greatest * sqrt (sum((element / greatest) ** 2)))
- -- where greatest is Inf_Norm of the vector
- Inf_N : Real;
- Sum_Squares : Real;
- Term : Real;
- begin
- Inf_N := Inf_Norm (V);
- if Inf_N = 0.0 then
- return 0.0;
- end if;
- Sum_Squares := 0.0;
- for I in V'Range loop
- Term := V (I) / Inf_N;
- Sum_Squares := Sum_Squares + Term * Term;
- end loop;
- return Inf_N * Sqrt (Sum_Squares);
- end Two_Norm;
-
-
- procedure Check (Actual, Expected : Real;
- Test_Name : String;
- MRE : Real;
- Vector_Length : Integer) is
- Rel_Error : Real;
- Abs_Error : Real;
- Max_Error : Real;
- begin
- -- In the case where the expected result is very small or 0
- -- we compute the maximum error as a multiple of Model_Epsilon instead
- -- of Model_Epsilon and Expected.
- Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
- Abs_Error := MRE * Real'Model_Epsilon;
- if Rel_Error > Abs_Error then
- Max_Error := Rel_Error;
- else
- Max_Error := Abs_Error;
- end if;
-
- if abs (Actual - Expected) > Max_Error then
- Report.Failed (Test_Name &
- " VectLength:" &
- Integer'Image (Vector_Length) &
- " actual: " & Real'Image (Actual) &
- " expected: " & Real'Image (Expected) &
- " difference: " &
- Real'Image (Actual - Expected) &
- " mre:" & Real'Image (Max_Error) );
- elsif Verbose then
- Report.Comment (Test_Name & " vector length" &
- Integer'Image (Vector_Length));
- end if;
- end Check;
-
-
- procedure Do_Test is
- begin
- for Vector_Length in 1 .. 10 loop
- declare
- V : Vector (1..Vector_Length) := (1..Vector_Length => 0.0);
- V1 : Vector (1..Vector_Length) := (1..Vector_Length => 1.0);
- begin
- Check (One_Norm (V), 0.0, "one_norm (z)", 0.0, Vector_Length);
- Check (Inf_Norm (V), 0.0, "inf_norm (z)", 0.0, Vector_Length);
-
- for J in 1..Vector_Length loop
- V := (1..Vector_Length => 0.0);
- V (J) := 1.0;
- Check (One_Norm (V), 1.0, "one_norm (010)",
- 0.0, Vector_Length);
- Check (Inf_Norm (V), 1.0, "inf_norm (010)",
- 0.0, Vector_Length);
- Check (Two_Norm (V), 1.0, "two_norm (010)",
- 0.0, Vector_Length);
- end loop;
-
- Check (One_Norm (V1), Real (Vector_Length), "one_norm (1)",
- 0.0, Vector_Length);
- Check (Inf_Norm (V1), 1.0, "inf_norm (1)",
- 0.0, Vector_Length);
-
- -- error in computing Two_Norm and expected result
- -- are as follows (ME is Model_Epsilon * Expected_Value):
- -- 2ME from expected Sqrt
- -- 2ME from Sqrt in Two_Norm times the error in the
- -- vector calculation.
- -- The vector calculation contains the following error
- -- based upon the length N of the vector:
- -- N*1ME from squaring terms in Two_Norm
- -- N*1ME from the division of each term in Two_Norm
- -- (N-1)*1ME from the sum of the terms
- -- This gives (2 + 2 * (N + N + (N-1)) ) * ME
- -- which simplifies to (2 + 2N + 2N + 2N - 2) * ME
- -- or 6*N*ME
- Check (Two_Norm (V1), Sqrt (Real(Vector_Length)),
- "two_norm (1)",
- (Real (6 * Vector_Length)),
- Vector_Length);
- exception
- when others => Report.Failed ("exception for vector length" &
- Integer'Image (Vector_Length) );
- end;
- end loop;
- end Do_Test;
- end Generic_Real_Norm_Check;
-
- --=====================================================================
-
- generic
- type Real is digits <>;
- package Generic_Complex_Norm_Check is
- procedure Do_Test;
- end Generic_Complex_Norm_Check;
-
- -----------------------------------------------------------------------
-
- package body Generic_Complex_Norm_Check is
- package Complex_Types is new Ada.Numerics.Generic_Complex_Types (Real);
- use Complex_Types;
- type Vector is array (Integer range <>) of Complex;
-
- package GEF is new Ada.Numerics.Generic_Elementary_Functions (Real);
- function Sqrt (X : Real) return Real renames GEF.Sqrt;
-
- function One_Norm (V : Vector) return Real is
- Result : Real := 0.0;
- begin
- for I in V'Range loop
- Result := Result + abs V(I);
- end loop;
- return Result;
- end One_Norm;
-
- function Inf_Norm (V : Vector) return Real is
- Result : Real := 0.0;
- begin
- for I in V'Range loop
- if abs V(I) > Result then
- Result := abs V(I);
- end if;
- end loop;
- return Result;
- end Inf_Norm;
-
- function Two_Norm (V : Vector) return Real is
- Inf_N : Real;
- Sum_Squares : Real;
- Term : Real;
- begin
- Inf_N := Inf_Norm (V);
- if Inf_N = 0.0 then
- return 0.0;
- end if;
- Sum_Squares := 0.0;
- for I in V'Range loop
- Term := abs (V (I) / Inf_N );
- Sum_Squares := Sum_Squares + Term * Term;
- end loop;
- return Inf_N * Sqrt (Sum_Squares);
- end Two_Norm;
-
-
- procedure Check (Actual, Expected : Real;
- Test_Name : String;
- MRE : Real;
- Vector_Length : Integer) is
- Rel_Error : Real;
- Abs_Error : Real;
- Max_Error : Real;
- begin
- -- In the case where the expected result is very small or 0
- -- we compute the maximum error as a multiple of Model_Epsilon instead
- -- of Model_Epsilon and Expected.
- Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
- Abs_Error := MRE * Real'Model_Epsilon;
- if Rel_Error > Abs_Error then
- Max_Error := Rel_Error;
- else
- Max_Error := Abs_Error;
- end if;
-
- if abs (Actual - Expected) > Max_Error then
- Report.Failed (Test_Name &
- " VectLength:" &
- Integer'Image (Vector_Length) &
- " actual: " & Real'Image (Actual) &
- " expected: " & Real'Image (Expected) &
- " difference: " &
- Real'Image (Actual - Expected) &
- " mre:" & Real'Image (Max_Error) );
- elsif Verbose then
- Report.Comment (Test_Name & " vector length" &
- Integer'Image (Vector_Length));
- end if;
- end Check;
-
-
- procedure Do_Test is
- begin
- for Vector_Length in 1 .. 10 loop
- declare
- V : Vector (1..Vector_Length) :=
- (1..Vector_Length => (0.0, 0.0));
- X, Y : Vector (1..Vector_Length);
- begin
- Check (One_Norm (V), 0.0, "one_norm (z)", 0.0, Vector_Length);
- Check (Inf_Norm (V), 0.0, "inf_norm (z)", 0.0, Vector_Length);
-
- for J in 1..Vector_Length loop
- X := (1..Vector_Length => (0.0, 0.0) );
- Y := X; -- X and Y are now both zeroed
- X (J).Re := 1.0;
- Y (J).Im := 1.0;
- Check (One_Norm (X), 1.0, "one_norm (0x0)",
- 0.0, Vector_Length);
- Check (Inf_Norm (X), 1.0, "inf_norm (0x0)",
- 0.0, Vector_Length);
- Check (Two_Norm (X), 1.0, "two_norm (0x0)",
- 0.0, Vector_Length);
- Check (One_Norm (Y), 1.0, "one_norm (0y0)",
- 0.0, Vector_Length);
- Check (Inf_Norm (Y), 1.0, "inf_norm (0y0)",
- 0.0, Vector_Length);
- Check (Two_Norm (Y), 1.0, "two_norm (0y0)",
- 0.0, Vector_Length);
- end loop;
-
- V := (1..Vector_Length => (3.0, 4.0));
-
- -- error in One_Norm is 3*N*ME for abs computation +
- -- (N-1)*ME for the additions
- -- which gives (4N-1) * ME
- Check (One_Norm (V), 5.0 * Real (Vector_Length),
- "one_norm ((3,4))",
- Real (4*Vector_Length - 1),
- Vector_Length);
-
- -- error in Inf_Norm is from abs of single element (3ME)
- Check (Inf_Norm (V), 5.0,
- "inf_norm ((3,4))",
- 3.0,
- Vector_Length);
-
- -- error in following comes from:
- -- 2ME in sqrt of expected result
- -- 3ME in Inf_Norm calculation
- -- 2ME in sqrt of vector calculation
- -- vector calculation has following error
- -- 3N*ME for abs
- -- N*ME for squaring
- -- N*ME for division
- -- (N-1)ME for sum
- -- this results in [2 + 3 + 2(6N-1) ] * ME
- -- or (12N + 3)ME
- Check (Two_Norm (V), 5.0 * Sqrt (Real(Vector_Length)),
- "two_norm ((3,4))",
- (12.0 * Real (Vector_Length) + 3.0),
- Vector_Length);
- exception
- when others => Report.Failed ("exception for complex " &
- "vector length" &
- Integer'Image (Vector_Length) );
- end;
- end loop;
- end Do_Test;
- end Generic_Complex_Norm_Check;
-
- --=====================================================================
-
- generic
- type Real is digits <>;
- package Generic_Norm_Check is
- procedure Do_Test;
- end Generic_Norm_Check;
-
- -----------------------------------------------------------------------
-
- package body Generic_Norm_Check is
- package RNC is new Generic_Real_Norm_Check (Real);
- package CNC is new Generic_Complex_Norm_Check (Real);
- procedure Do_Test is
- begin
- RNC.Do_Test;
- CNC.Do_Test;
- end Do_Test;
- end Generic_Norm_Check;
-
- --=====================================================================
-
- package Float_Check is new Generic_Norm_Check (Float);
-
- type A_Long_Float is digits System.Max_Digits;
- package A_Long_Float_Check is new Generic_Norm_Check (A_Long_Float);
-
- -----------------------------------------------------------------------
-
-begin
- Report.Test ("CXG2009",
- "Check the accuracy of the real sqrt and complex " &
- " modulus functions");
-
- if Verbose then
- Report.Comment ("checking Standard.Float");
- end if;
-
- Float_Check.Do_Test;
-
- if Verbose then
- Report.Comment ("checking a digits" &
- Integer'Image (System.Max_Digits) &
- " floating point type");
- end if;
-
- A_Long_Float_Check.Do_Test;
-
- Report.Result;
-end CXG2009;
diff --git a/gcc/testsuite/ada/acats/tests/cxg/cxg2010.a b/gcc/testsuite/ada/acats/tests/cxg/cxg2010.a
deleted file mode 100644
index 4140a487526..00000000000
--- a/gcc/testsuite/ada/acats/tests/cxg/cxg2010.a
+++ /dev/null
@@ -1,892 +0,0 @@
--- CXG2010.A
---
--- Grant of Unlimited Rights
---
--- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
--- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
--- unlimited rights in the software and documentation contained herein.
--- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
--- this public release, the Government intends to confer upon all
--- recipients unlimited rights equal to those held by the Government.
--- These rights include rights to use, duplicate, release or disclose the
--- released technical data and computer software in whole or in part, in
--- any manner and for any purpose whatsoever, and to have or permit others
--- to do so.
---
--- DISCLAIMER
---
--- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
--- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
--- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
--- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
--- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
--- PARTICULAR PURPOSE OF SAID MATERIAL.
---*
---
--- OBJECTIVE:
--- Check that the exp function returns
--- results that are within the error bound allowed.
---
--- TEST DESCRIPTION:
--- This test contains three test packages that are almost
--- identical. The first two packages differ only in the
--- floating point type that is being tested. The first
--- and third package differ only in whether the generic
--- elementary functions package or the pre-instantiated
--- package is used.
--- The test package is not generic so that the arguments
--- and expected results for some of the test values
--- can be expressed as universal real instead of being
--- computed at runtime.
---
--- SPECIAL REQUIREMENTS
--- The Strict Mode for the numerical accuracy must be
--- selected. The method by which this mode is selected
--- is implementation dependent.
---
--- APPLICABILITY CRITERIA:
--- This test applies only to implementations supporting the
--- Numerics Annex and where the Machine_Radix is 2, 4, 8, or 16.
--- This test only applies to the Strict Mode for numerical
--- accuracy.
---
---
--- CHANGE HISTORY:
--- 1 Mar 96 SAIC Initial release for 2.1
--- 2 Sep 96 SAIC Improved check routine
---
---!
-
---
--- References:
---
--- Software Manual for the Elementary Functions
--- William J. Cody, Jr. and William Waite
--- Prentice-Hall, 1980
---
--- CRC Standard Mathematical Tables
--- 23rd Edition
---
--- Implementation and Testing of Function Software
--- W. J. Cody
--- Problems and Methodologies in Mathematical Software Production
--- editors P. C. Messina and A. Murli
--- Lecture Notes in Computer Science Volume 142
--- Springer Verlag, 1982
---
-
---
--- Notes on derivation of error bound for exp(p)*exp(-p)
---
--- Let a = true value of exp(p) and ac be the computed value.
--- Then a = ac(1+e1), where |e1| <= 4*Model_Epsilon.
--- Similarly, let b = true value of exp(-p) and bc be the computed value.
--- Then b = bc(1+e2), where |e2| <= 4*ME.
---
--- The product of x and y is (x*y)(1+e3), where |e3| <= 1.0ME
---
--- Hence, the computed ab is [ac(1+e1)*bc(1+e2)](1+e3) =
--- (ac*bc)[1 + e1 + e2 + e3 + e1e2 + e1e3 + e2e3 + e1e2e3).
---
--- Throwing away the last four tiny terms, we have (ac*bc)(1 + eta),
---
--- where |eta| <= (4+4+1)ME = 9.0Model_Epsilon.
-
-with System;
-with Report;
-with Ada.Numerics.Generic_Elementary_Functions;
-with Ada.Numerics.Elementary_Functions;
-procedure CXG2010 is
- Verbose : constant Boolean := False;
- Max_Samples : constant := 1000;
- Accuracy_Error_Reported : Boolean := False;
-
- package Float_Check is
- subtype Real is Float;
- procedure Do_Test;
- end Float_Check;
-
- package body Float_Check is
- package Elementary_Functions is new
- Ada.Numerics.Generic_Elementary_Functions (Real);
- function Sqrt (X : Real) return Real renames
- Elementary_Functions.Sqrt;
- function Exp (X : Real) return Real renames
- Elementary_Functions.Exp;
-
-
- -- The following value is a lower bound on the accuracy
- -- required. It is normally 0.0 so that the lower bound
- -- is computed from Model_Epsilon. However, for tests
- -- where the expected result is only known to a certain
- -- amount of precision this bound takes on a non-zero
- -- value to account for that level of precision.
- Error_Low_Bound : Real := 0.0;
-
- procedure Check (Actual, Expected : Real;
- Test_Name : String;
- MRE : Real) is
- Max_Error : Real;
- Rel_Error : Real;
- Abs_Error : Real;
- begin
- -- In the case where the expected result is very small or 0
- -- we compute the maximum error as a multiple of Model_Epsilon
- -- instead of Model_Epsilon and Expected.
- Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
- Abs_Error := MRE * Real'Model_Epsilon;
- if Rel_Error > Abs_Error then
- Max_Error := Rel_Error;
- else
- Max_Error := Abs_Error;
- end if;
-
- -- take into account the low bound on the error
- if Max_Error < Error_Low_Bound then
- Max_Error := Error_Low_Bound;
- end if;
-
- if abs (Actual - Expected) > Max_Error then
- Accuracy_Error_Reported := True;
- Report.Failed (Test_Name &
- " actual: " & Real'Image (Actual) &
- " expected: " & Real'Image (Expected) &
- " difference: " & Real'Image (Actual - Expected) &
- " max err:" & Real'Image (Max_Error) );
- elsif Verbose then
- if Actual = Expected then
- Report.Comment (Test_Name & " exact result");
- else
- Report.Comment (Test_Name & " passed");
- end if;
- end if;
- end Check;
-
-
- procedure Argument_Range_Check_1 (A, B : Real;
- Test : String) is
- -- test a evenly distributed selection of
- -- arguments selected from the range A to B.
- -- Test using identity: EXP(X-V) = EXP(X) * EXP (-V)
- -- The parameter One_Minus_Exp_Minus_V is the value
- -- 1.0 - Exp (-V)
- -- accurate to machine precision.
- -- This procedure is a translation of part of Cody's test
- X : Real;
- Y : Real;
- ZX, ZY : Real;
- V : constant := 1.0 / 16.0;
- One_Minus_Exp_Minus_V : constant := 6.058693718652421388E-2;
-
- begin
- Accuracy_Error_Reported := False;
- for I in 1..Max_Samples loop
- X := (B - A) * Real (I) / Real (Max_Samples) + A;
- Y := X - V;
- if Y < 0.0 then
- X := Y + V;
- end if;
-
- ZX := Exp (X);
- ZY := Exp (Y);
-
- -- ZX := Exp(X) - Exp(X) * (1 - Exp(-V);
- -- which simplifies to ZX := Exp (X-V);
- ZX := ZX - ZX * One_Minus_Exp_Minus_V;
-
- -- note that since the expected value is computed, we
- -- must take the error in that computation into account.
- Check (ZY, ZX,
- "test " & Test & " -" &
- Integer'Image (I) &
- " exp (" & Real'Image (X) & ")",
- 9.0);
- exit when Accuracy_Error_Reported;
- end loop;
- exception
- when Constraint_Error =>
- Report.Failed
- ("Constraint_Error raised in argument range check 1");
- when others =>
- Report.Failed ("exception in argument range check 1");
- end Argument_Range_Check_1;
-
-
-
- procedure Argument_Range_Check_2 (A, B : Real;
- Test : String) is
- -- test a evenly distributed selection of
- -- arguments selected from the range A to B.
- -- Test using identity: EXP(X-V) = EXP(X) * EXP (-V)
- -- The parameter One_Minus_Exp_Minus_V is the value
- -- 1.0 - Exp (-V)
- -- accurate to machine precision.
- -- This procedure is a translation of part of Cody's test
- X : Real;
- Y : Real;
- ZX, ZY : Real;
- V : constant := 45.0 / 16.0;
- -- 1/16 - Exp(45/16)
- Coeff : constant := 2.4453321046920570389E-3;
-
- begin
- Accuracy_Error_Reported := False;
- for I in 1..Max_Samples loop
- X := (B - A) * Real (I) / Real (Max_Samples) + A;
- Y := X - V;
- if Y < 0.0 then
- X := Y + V;
- end if;
-
- ZX := Exp (X);
- ZY := Exp (Y);
-
- -- ZX := Exp(X) * 1/16 - Exp(X) * Coeff;
- -- where Coeff is 1/16 - Exp(45/16)
- -- which simplifies to ZX := Exp (X-V);
- ZX := ZX * 0.0625 - ZX * Coeff;
-
- -- note that since the expected value is computed, we
- -- must take the error in that computation into account.
- Check (ZY, ZX,
- "test " & Test & " -" &
- Integer'Image (I) &
- " exp (" & Real'Image (X) & ")",
- 9.0);
- exit when Accuracy_Error_Reported;
- end loop;
- exception
- when Constraint_Error =>
- Report.Failed
- ("Constraint_Error raised in argument range check 2");
- when others =>
- Report.Failed ("exception in argument range check 2");
- end Argument_Range_Check_2;
-
-
- procedure Do_Test is
- begin
-
- --- test 1 ---
- declare
- Y : Real;
- begin
- Y := Exp(1.0);
- -- normal accuracy requirements
- Check (Y, Ada.Numerics.e, "test 1 -- exp(1)", 4.0);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 1");
- when others =>
- Report.Failed ("exception in test 1");
- end;
-
- --- test 2 ---
- declare
- Y : Real;
- begin
- Y := Exp(16.0) * Exp(-16.0);
- Check (Y, 1.0, "test 2 -- exp(16)*exp(-16)", 9.0);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 2");
- when others =>
- Report.Failed ("exception in test 2");
- end;
-
- --- test 3 ---
- declare
- Y : Real;
- begin
- Y := Exp (Ada.Numerics.Pi) * Exp (-Ada.Numerics.Pi);
- Check (Y, 1.0, "test 3 -- exp(pi)*exp(-pi)", 9.0);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 3");
- when others =>
- Report.Failed ("exception in test 3");
- end;
-
- --- test 4 ---
- declare
- Y : Real;
- begin
- Y := Exp(0.0);
- Check (Y, 1.0, "test 4 -- exp(0.0)",
- 0.0); -- no error allowed
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 4");
- when others =>
- Report.Failed ("exception in test 4");
- end;
-
- --- test 5 ---
- -- constants used here only have 19 digits of precision
- if Real'Digits > 19 then
- Error_Low_Bound := 0.00000_00000_00000_0001;
- Report.Comment ("exp accuracy checked to 19 digits");
- end if;
-
- Argument_Range_Check_1 ( 1.0/Sqrt(Real(Real'Machine_Radix)),
- 1.0,
- "5");
- Error_Low_Bound := 0.0; -- reset
-
- --- test 6 ---
- -- constants used here only have 19 digits of precision
- if Real'Digits > 19 then
- Error_Low_Bound := 0.00000_00000_00000_0001;
- Report.Comment ("exp accuracy checked to 19 digits");
- end if;
-
- Argument_Range_Check_2 (1.0,
- Sqrt(Real(Real'Machine_Radix)),
- "6");
- Error_Low_Bound := 0.0; -- reset
-
- end Do_Test;
- end Float_Check;
-
- -----------------------------------------------------------------------
- -----------------------------------------------------------------------
- -- check the floating point type with the most digits
- type A_Long_Float is digits System.Max_Digits;
-
-
- package A_Long_Float_Check is
- subtype Real is A_Long_Float;
- procedure Do_Test;
- end A_Long_Float_Check;
-
- package body A_Long_Float_Check is
- package Elementary_Functions is new
- Ada.Numerics.Generic_Elementary_Functions (Real);
- function Sqrt (X : Real) return Real renames
- Elementary_Functions.Sqrt;
- function Exp (X : Real) return Real renames
- Elementary_Functions.Exp;
-
-
- -- The following value is a lower bound on the accuracy
- -- required. It is normally 0.0 so that the lower bound
- -- is computed from Model_Epsilon. However, for tests
- -- where the expected result is only known to a certain
- -- amount of precision this bound takes on a non-zero
- -- value to account for that level of precision.
- Error_Low_Bound : Real := 0.0;
-
- procedure Check (Actual, Expected : Real;
- Test_Name : String;
- MRE : Real) is
- Max_Error : Real;
- Rel_Error : Real;
- Abs_Error : Real;
- begin
- -- In the case where the expected result is very small or 0
- -- we compute the maximum error as a multiple of Model_Epsilon
- -- instead of Model_Epsilon and Expected.
- Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
- Abs_Error := MRE * Real'Model_Epsilon;
- if Rel_Error > Abs_Error then
- Max_Error := Rel_Error;
- else
- Max_Error := Abs_Error;
- end if;
-
- -- take into account the low bound on the error
- if Max_Error < Error_Low_Bound then
- Max_Error := Error_Low_Bound;
- end if;
-
- if abs (Actual - Expected) > Max_Error then
- Accuracy_Error_Reported := True;
- Report.Failed (Test_Name &
- " actual: " & Real'Image (Actual) &
- " expected: " & Real'Image (Expected) &
- " difference: " & Real'Image (Actual - Expected) &
- " max err:" & Real'Image (Max_Error) );
- elsif Verbose then
- if Actual = Expected then
- Report.Comment (Test_Name & " exact result");
- else
- Report.Comment (Test_Name & " passed");
- end if;
- end if;
- end Check;
-
-
- procedure Argument_Range_Check_1 (A, B : Real;
- Test : String) is
- -- test a evenly distributed selection of
- -- arguments selected from the range A to B.
- -- Test using identity: EXP(X-V) = EXP(X) * EXP (-V)
- -- The parameter One_Minus_Exp_Minus_V is the value
- -- 1.0 - Exp (-V)
- -- accurate to machine precision.
- -- This procedure is a translation of part of Cody's test
- X : Real;
- Y : Real;
- ZX, ZY : Real;
- V : constant := 1.0 / 16.0;
- One_Minus_Exp_Minus_V : constant := 6.058693718652421388E-2;
-
- begin
- Accuracy_Error_Reported := False;
- for I in 1..Max_Samples loop
- X := (B - A) * Real (I) / Real (Max_Samples) + A;
- Y := X - V;
- if Y < 0.0 then
- X := Y + V;
- end if;
-
- ZX := Exp (X);
- ZY := Exp (Y);
-
- -- ZX := Exp(X) - Exp(X) * (1 - Exp(-V);
- -- which simplifies to ZX := Exp (X-V);
- ZX := ZX - ZX * One_Minus_Exp_Minus_V;
-
- -- note that since the expected value is computed, we
- -- must take the error in that computation into account.
- Check (ZY, ZX,
- "test " & Test & " -" &
- Integer'Image (I) &
- " exp (" & Real'Image (X) & ")",
- 9.0);
- exit when Accuracy_Error_Reported;
- end loop;
- exception
- when Constraint_Error =>
- Report.Failed
- ("Constraint_Error raised in argument range check 1");
- when others =>
- Report.Failed ("exception in argument range check 1");
- end Argument_Range_Check_1;
-
-
-
- procedure Argument_Range_Check_2 (A, B : Real;
- Test : String) is
- -- test a evenly distributed selection of
- -- arguments selected from the range A to B.
- -- Test using identity: EXP(X-V) = EXP(X) * EXP (-V)
- -- The parameter One_Minus_Exp_Minus_V is the value
- -- 1.0 - Exp (-V)
- -- accurate to machine precision.
- -- This procedure is a translation of part of Cody's test
- X : Real;
- Y : Real;
- ZX, ZY : Real;
- V : constant := 45.0 / 16.0;
- -- 1/16 - Exp(45/16)
- Coeff : constant := 2.4453321046920570389E-3;
-
- begin
- Accuracy_Error_Reported := False;
- for I in 1..Max_Samples loop
- X := (B - A) * Real (I) / Real (Max_Samples) + A;
- Y := X - V;
- if Y < 0.0 then
- X := Y + V;
- end if;
-
- ZX := Exp (X);
- ZY := Exp (Y);
-
- -- ZX := Exp(X) * 1/16 - Exp(X) * Coeff;
- -- where Coeff is 1/16 - Exp(45/16)
- -- which simplifies to ZX := Exp (X-V);
- ZX := ZX * 0.0625 - ZX * Coeff;
-
- -- note that since the expected value is computed, we
- -- must take the error in that computation into account.
- Check (ZY, ZX,
- "test " & Test & " -" &
- Integer'Image (I) &
- " exp (" & Real'Image (X) & ")",
- 9.0);
- exit when Accuracy_Error_Reported;
- end loop;
- exception
- when Constraint_Error =>
- Report.Failed
- ("Constraint_Error raised in argument range check 2");
- when others =>
- Report.Failed ("exception in argument range check 2");
- end Argument_Range_Check_2;
-
-
- procedure Do_Test is
- begin
-
- --- test 1 ---
- declare
- Y : Real;
- begin
- Y := Exp(1.0);
- -- normal accuracy requirements
- Check (Y, Ada.Numerics.e, "test 1 -- exp(1)", 4.0);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 1");
- when others =>
- Report.Failed ("exception in test 1");
- end;
-
- --- test 2 ---
- declare
- Y : Real;
- begin
- Y := Exp(16.0) * Exp(-16.0);
- Check (Y, 1.0, "test 2 -- exp(16)*exp(-16)", 9.0);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 2");
- when others =>
- Report.Failed ("exception in test 2");
- end;
-
- --- test 3 ---
- declare
- Y : Real;
- begin
- Y := Exp (Ada.Numerics.Pi) * Exp (-Ada.Numerics.Pi);
- Check (Y, 1.0, "test 3 -- exp(pi)*exp(-pi)", 9.0);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 3");
- when others =>
- Report.Failed ("exception in test 3");
- end;
-
- --- test 4 ---
- declare
- Y : Real;
- begin
- Y := Exp(0.0);
- Check (Y, 1.0, "test 4 -- exp(0.0)",
- 0.0); -- no error allowed
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 4");
- when others =>
- Report.Failed ("exception in test 4");
- end;
-
- --- test 5 ---
- -- constants used here only have 19 digits of precision
- if Real'Digits > 19 then
- Error_Low_Bound := 0.00000_00000_00000_0001;
- Report.Comment ("exp accuracy checked to 19 digits");
- end if;
-
- Argument_Range_Check_1 ( 1.0/Sqrt(Real(Real'Machine_Radix)),
- 1.0,
- "5");
- Error_Low_Bound := 0.0; -- reset
-
- --- test 6 ---
- -- constants used here only have 19 digits of precision
- if Real'Digits > 19 then
- Error_Low_Bound := 0.00000_00000_00000_0001;
- Report.Comment ("exp accuracy checked to 19 digits");
- end if;
-
- Argument_Range_Check_2 (1.0,
- Sqrt(Real(Real'Machine_Radix)),
- "6");
- Error_Low_Bound := 0.0; -- reset
-
- end Do_Test;
- end A_Long_Float_Check;
-
- -----------------------------------------------------------------------
- -----------------------------------------------------------------------
-
- package Non_Generic_Check is
- procedure Do_Test;
- subtype Real is Float;
- end Non_Generic_Check;
-
- package body Non_Generic_Check is
-
- package Elementary_Functions renames
- Ada.Numerics.Elementary_Functions;
- function Sqrt (X : Real) return Real renames
- Elementary_Functions.Sqrt;
- function Exp (X : Real) return Real renames
- Elementary_Functions.Exp;
-
-
- -- The following value is a lower bound on the accuracy
- -- required. It is normally 0.0 so that the lower bound
- -- is computed from Model_Epsilon. However, for tests
- -- where the expected result is only known to a certain
- -- amount of precision this bound takes on a non-zero
- -- value to account for that level of precision.
- Error_Low_Bound : Real := 0.0;
-
- procedure Check (Actual, Expected : Real;
- Test_Name : String;
- MRE : Real) is
- Max_Error : Real;
- Rel_Error : Real;
- Abs_Error : Real;
- begin
- -- In the case where the expected result is very small or 0
- -- we compute the maximum error as a multiple of Model_Epsilon
- -- instead of Model_Epsilon and Expected.
- Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
- Abs_Error := MRE * Real'Model_Epsilon;
- if Rel_Error > Abs_Error then
- Max_Error := Rel_Error;
- else
- Max_Error := Abs_Error;
- end if;
-
- -- take into account the low bound on the error
- if Max_Error < Error_Low_Bound then
- Max_Error := Error_Low_Bound;
- end if;
-
- if abs (Actual - Expected) > Max_Error then
- Accuracy_Error_Reported := True;
- Report.Failed (Test_Name &
- " actual: " & Real'Image (Actual) &
- " expected: " & Real'Image (Expected) &
- " difference: " & Real'Image (Actual - Expected) &
- " max err:" & Real'Image (Max_Error) );
- elsif Verbose then
- if Actual = Expected then
- Report.Comment (Test_Name & " exact result");
- else
- Report.Comment (Test_Name & " passed");
- end if;
- end if;
- end Check;
-
-
- procedure Argument_Range_Check_1 (A, B : Real;
- Test : String) is
- -- test a evenly distributed selection of
- -- arguments selected from the range A to B.
- -- Test using identity: EXP(X-V) = EXP(X) * EXP (-V)
- -- The parameter One_Minus_Exp_Minus_V is the value
- -- 1.0 - Exp (-V)
- -- accurate to machine precision.
- -- This procedure is a translation of part of Cody's test
- X : Real;
- Y : Real;
- ZX, ZY : Real;
- V : constant := 1.0 / 16.0;
- One_Minus_Exp_Minus_V : constant := 6.058693718652421388E-2;
-
- begin
- Accuracy_Error_Reported := False;
- for I in 1..Max_Samples loop
- X := (B - A) * Real (I) / Real (Max_Samples) + A;
- Y := X - V;
- if Y < 0.0 then
- X := Y + V;
- end if;
-
- ZX := Exp (X);
- ZY := Exp (Y);
-
- -- ZX := Exp(X) - Exp(X) * (1 - Exp(-V);
- -- which simplifies to ZX := Exp (X-V);
- ZX := ZX - ZX * One_Minus_Exp_Minus_V;
-
- -- note that since the expected value is computed, we
- -- must take the error in that computation into account.
- Check (ZY, ZX,
- "test " & Test & " -" &
- Integer'Image (I) &
- " exp (" & Real'Image (X) & ")",
- 9.0);
- exit when Accuracy_Error_Reported;
- end loop;
- exception
- when Constraint_Error =>
- Report.Failed
- ("Constraint_Error raised in argument range check 1");
- when others =>
- Report.Failed ("exception in argument range check 1");
- end Argument_Range_Check_1;
-
-
-
- procedure Argument_Range_Check_2 (A, B : Real;
- Test : String) is
- -- test a evenly distributed selection of
- -- arguments selected from the range A to B.
- -- Test using identity: EXP(X-V) = EXP(X) * EXP (-V)
- -- The parameter One_Minus_Exp_Minus_V is the value
- -- 1.0 - Exp (-V)
- -- accurate to machine precision.
- -- This procedure is a translation of part of Cody's test
- X : Real;
- Y : Real;
- ZX, ZY : Real;
- V : constant := 45.0 / 16.0;
- -- 1/16 - Exp(45/16)
- Coeff : constant := 2.4453321046920570389E-3;
-
- begin
- Accuracy_Error_Reported := False;
- for I in 1..Max_Samples loop
- X := (B - A) * Real (I) / Real (Max_Samples) + A;
- Y := X - V;
- if Y < 0.0 then
- X := Y + V;
- end if;
-
- ZX := Exp (X);
- ZY := Exp (Y);
-
- -- ZX := Exp(X) * 1/16 - Exp(X) * Coeff;
- -- where Coeff is 1/16 - Exp(45/16)
- -- which simplifies to ZX := Exp (X-V);
- ZX := ZX * 0.0625 - ZX * Coeff;
-
- -- note that since the expected value is computed, we
- -- must take the error in that computation into account.
- Check (ZY, ZX,
- "test " & Test & " -" &
- Integer'Image (I) &
- " exp (" & Real'Image (X) & ")",
- 9.0);
- exit when Accuracy_Error_Reported;
- end loop;
- exception
- when Constraint_Error =>
- Report.Failed
- ("Constraint_Error raised in argument range check 2");
- when others =>
- Report.Failed ("exception in argument range check 2");
- end Argument_Range_Check_2;
-
-
- procedure Do_Test is
- begin
-
- --- test 1 ---
- declare
- Y : Real;
- begin
- Y := Exp(1.0);
- -- normal accuracy requirements
- Check (Y, Ada.Numerics.e, "test 1 -- exp(1)", 4.0);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 1");
- when others =>
- Report.Failed ("exception in test 1");
- end;
-
- --- test 2 ---
- declare
- Y : Real;
- begin
- Y := Exp(16.0) * Exp(-16.0);
- Check (Y, 1.0, "test 2 -- exp(16)*exp(-16)", 9.0);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 2");
- when others =>
- Report.Failed ("exception in test 2");
- end;
-
- --- test 3 ---
- declare
- Y : Real;
- begin
- Y := Exp (Ada.Numerics.Pi) * Exp (-Ada.Numerics.Pi);
- Check (Y, 1.0, "test 3 -- exp(pi)*exp(-pi)", 9.0);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 3");
- when others =>
- Report.Failed ("exception in test 3");
- end;
-
- --- test 4 ---
- declare
- Y : Real;
- begin
- Y := Exp(0.0);
- Check (Y, 1.0, "test 4 -- exp(0.0)",
- 0.0); -- no error allowed
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 4");
- when others =>
- Report.Failed ("exception in test 4");
- end;
-
- --- test 5 ---
- -- constants used here only have 19 digits of precision
- if Real'Digits > 19 then
- Error_Low_Bound := 0.00000_00000_00000_0001;
- Report.Comment ("exp accuracy checked to 19 digits");
- end if;
-
- Argument_Range_Check_1 ( 1.0/Sqrt(Real(Real'Machine_Radix)),
- 1.0,
- "5");
- Error_Low_Bound := 0.0; -- reset
-
- --- test 6 ---
- -- constants used here only have 19 digits of precision
- if Real'Digits > 19 then
- Error_Low_Bound := 0.00000_00000_00000_0001;
- Report.Comment ("exp accuracy checked to 19 digits");
- end if;
-
- Argument_Range_Check_2 (1.0,
- Sqrt(Real(Real'Machine_Radix)),
- "6");
- Error_Low_Bound := 0.0; -- reset
-
- end Do_Test;
- end Non_Generic_Check;
-
- -----------------------------------------------------------------------
- -----------------------------------------------------------------------
-
-begin
- Report.Test ("CXG2010",
- "Check the accuracy of the exp function");
-
- -- the test only applies to machines with a radix of 2,4,8, or 16
- case Float'Machine_Radix is
- when 2 | 4 | 8 | 16 => null;
- when others =>
- Report.Not_Applicable ("only applicable to binary radix");
- Report.Result;
- return;
- end case;
-
- if Verbose then
- Report.Comment ("checking Standard.Float");
- end if;
-
- Float_Check.Do_Test;
-
- if Verbose then
- Report.Comment ("checking a digits" &
- Integer'Image (System.Max_Digits) &
- " floating point type");
- end if;
-
- A_Long_Float_Check.Do_Test;
-
- if Verbose then
- Report.Comment ("checking non-generic package");
- end if;
-
- Non_Generic_Check.Do_Test;
-
- Report.Result;
-end CXG2010;
diff --git a/gcc/testsuite/ada/acats/tests/cxg/cxg2011.a b/gcc/testsuite/ada/acats/tests/cxg/cxg2011.a
deleted file mode 100644
index 2c018b1321e..00000000000
--- a/gcc/testsuite/ada/acats/tests/cxg/cxg2011.a
+++ /dev/null
@@ -1,490 +0,0 @@
--- CXG2011.A
---
--- Grant of Unlimited Rights
---
--- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
--- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
--- unlimited rights in the software and documentation contained herein.
--- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
--- this public release, the Government intends to confer upon all
--- recipients unlimited rights equal to those held by the Government.
--- These rights include rights to use, duplicate, release or disclose the
--- released technical data and computer software in whole or in part, in
--- any manner and for any purpose whatsoever, and to have or permit others
--- to do so.
---
--- DISCLAIMER
---
--- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
--- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
--- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
--- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
--- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
--- PARTICULAR PURPOSE OF SAID MATERIAL.
---*
---
--- OBJECTIVE:
--- Check that the log function returns
--- results that are within the error bound allowed.
---
--- TEST DESCRIPTION:
--- This test consists of a generic package that is
--- instantiated to check both Float and a long float type.
--- The test for each floating point type is divided into
--- several parts:
--- Special value checks where the result is a known constant.
--- Checks in a range where a Taylor series can be used to compute
--- the expected result.
--- Checks that use an identity for determining the result.
--- Exception checks.
---
--- SPECIAL REQUIREMENTS
--- The Strict Mode for the numerical accuracy must be
--- selected. The method by which this mode is selected
--- is implementation dependent.
---
--- APPLICABILITY CRITERIA:
--- This test applies only to implementations supporting the
--- Numerics Annex.
--- This test only applies to the Strict Mode for numerical
--- accuracy.
---
---
--- CHANGE HISTORY:
--- 1 Mar 96 SAIC Initial release for 2.1
--- 22 Aug 96 SAIC Improved Check routine
--- 02 DEC 97 EDS Log (0.0) must raise Constraint_Error,
--- not Argument_Error
---!
-
---
--- References:
---
--- Software Manual for the Elementary Functions
--- William J. Cody, Jr. and William Waite
--- Prentice-Hall, 1980
---
--- CRC Standard Mathematical Tables
--- 23rd Edition
---
--- Implementation and Testing of Function Software
--- W. J. Cody
--- Problems and Methodologies in Mathematical Software Production
--- editors P. C. Messina and A. Murli
--- Lecture Notes in Computer Science Volume 142
--- Springer Verlag, 1982
---
-
-with System;
-with Report;
-with Ada.Numerics.Generic_Elementary_Functions;
-procedure CXG2011 is
- Verbose : constant Boolean := False;
- Max_Samples : constant := 1000;
-
- -- CRC Handbook Page 738
- Ln10 : constant := 2.30258_50929_94045_68401_79914_54684_36420_76011_01489;
- Ln2 : constant := 0.69314_71805_59945_30941_72321_21458_17656_80755_00134;
-
- generic
- type Real is digits <>;
- package Generic_Check is
- procedure Do_Test;
- end Generic_Check;
-
- package body Generic_Check is
- package Elementary_Functions is new
- Ada.Numerics.Generic_Elementary_Functions (Real);
- function Sqrt (X : Real'Base) return Real'Base renames
- Elementary_Functions.Sqrt;
- function Exp (X : Real'Base) return Real'Base renames
- Elementary_Functions.Exp;
- function Log (X : Real'Base) return Real'Base renames
- Elementary_Functions.Log;
- function Log (X, Base : Real'Base) return Real'Base renames
- Elementary_Functions.Log;
-
- -- flag used to terminate some tests early
- Accuracy_Error_Reported : Boolean := False;
-
-
- -- The following value is a lower bound on the accuracy
- -- required. It is normally 0.0 so that the lower bound
- -- is computed from Model_Epsilon. However, for tests
- -- where the expected result is only known to a certain
- -- amount of precision this bound takes on a non-zero
- -- value to account for that level of precision.
- Error_Low_Bound : Real := 0.0;
-
- procedure Check (Actual, Expected : Real;
- Test_Name : String;
- MRE : Real) is
- Max_Error : Real;
- Rel_Error : Real;
- Abs_Error : Real;
- begin
- -- In the case where the expected result is very small or 0
- -- we compute the maximum error as a multiple of Model_Epsilon
- -- instead of Model_Epsilon and Expected.
- Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
- Abs_Error := MRE * Real'Model_Epsilon;
- if Rel_Error > Abs_Error then
- Max_Error := Rel_Error;
- else
- Max_Error := Abs_Error;
- end if;
-
- -- take into account the low bound on the error
- if Max_Error < Error_Low_Bound then
- Max_Error := Error_Low_Bound;
- end if;
-
- if abs (Actual - Expected) > Max_Error then
- Accuracy_Error_Reported := True;
- Report.Failed (Test_Name &
- " actual: " & Real'Image (Actual) &
- " expected: " & Real'Image (Expected) &
- " difference: " & Real'Image (Actual - Expected) &
- " max err:" & Real'Image (Max_Error) );
- elsif Verbose then
- if Actual = Expected then
- Report.Comment (Test_Name & " exact result");
- else
- Report.Comment (Test_Name & " passed");
- end if;
- end if;
- end Check;
-
-
- procedure Special_Value_Test is
- begin
-
- --- test 1 ---
- declare
- Y : Real;
- begin
- Y := Log(1.0);
- Check (Y, 0.0, "special value test 1 -- log(1)",
- 0.0); -- no error allowed
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 1");
- when others =>
- Report.Failed ("exception in test 1");
- end;
-
- --- test 2 ---
- declare
- Y : Real;
- begin
- Y := Log(10.0);
- Check (Y, Ln10, "special value test 2 -- log(10)", 4.0);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 2");
- when others =>
- Report.Failed ("exception in test 2");
- end;
-
- --- test 3 ---
- declare
- Y : Real;
- begin
- Y := Log (2.0);
- Check (Y, Ln2, "special value test 3 -- log(2)", 4.0);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 3");
- when others =>
- Report.Failed ("exception in test 3");
- end;
-
- --- test 4 ---
- declare
- Y : Real;
- begin
- Y := Log (2.0 ** 18, 2.0);
- Check (Y, 18.0, "special value test 4 -- log(2**18,2)", 4.0);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 4");
- when others =>
- Report.Failed ("exception in test 4");
- end;
- end Special_Value_Test;
-
-
- procedure Taylor_Series_Test is
- -- Use a 4 term taylor series expansion to check a selection of
- -- arguments very near 1.0.
- -- The range is chosen so that the 4 term taylor series will
- -- provide accuracy to machine precision. Cody pg 49-50.
- Half_Range : constant Real := Real'Model_Epsilon * 50.0;
- A : constant Real := 1.0 - Half_Range;
- B : constant Real := 1.0 + Half_Range;
- X : Real;
- Xm1 : Real;
- Expected : Real;
- Actual : Real;
-
- begin
- Accuracy_Error_Reported := False; -- reset
- for I in 1..Max_Samples loop
- X := (B - A) * Real (I) / Real (Max_Samples) + A;
-
- Xm1 := X - 1.0;
- -- The following is the first 4 terms of the taylor series
- -- that has been rearranged to minimize error in the calculation
- Expected := (Xm1 * (1.0/3.0 - Xm1/4.0) - 0.5) * Xm1 * Xm1 + Xm1;
-
- Actual := Log (X);
- Check (Actual, Expected,
- "Taylor Series Test -" &
- Integer'Image (I) &
- " log (" & Real'Image (X) & ")",
- 4.0);
- if Accuracy_Error_Reported then
- -- only report the first error in this test in order to keep
- -- lots of failures from producing a huge error log
- return;
- end if;
- end loop;
- exception
- when Constraint_Error =>
- Report.Failed
- ("Constraint_Error raised in Taylor Series Test");
- when others =>
- Report.Failed ("exception in Taylor Series Test");
- end Taylor_Series_Test;
-
-
-
- procedure Log_Difference_Identity is
- -- Check using the identity ln(x) = ln(17x/16) - ln(17/16)
- -- over the range A to B.
- -- The selected range assures that both X and 17x/16 will
- -- have the same exponents and neither argument gets too close
- -- to 1. Cody pg 50.
- A : constant Real := 1.0 / Sqrt (2.0);
- B : constant Real := 15.0 / 16.0;
- X : Real;
- Expected : Real;
- Actual : Real;
- begin
- Accuracy_Error_Reported := False; -- reset
- for I in 1..Max_Samples loop
- X := (B - A) * Real (I) / Real (Max_Samples) + A;
- -- magic argument purification
- X := Real'Machine (Real'Machine (X+8.0) - 8.0);
-
- Expected := Log (X + X / 16.0) - Log (17.0/16.0);
-
- Actual := Log (X);
- Check (Actual, Expected,
- "Log Difference Identity -" &
- Integer'Image (I) &
- " log (" & Real'Image (X) & ")",
- 4.0);
-
- if Accuracy_Error_Reported then
- -- only report the first error in this test in order to keep
- -- lots of failures from producing a huge error log
- return;
- end if;
- end loop;
- exception
- when Constraint_Error =>
- Report.Failed
- ("Constraint_Error raised in Log Difference Identity Test");
- when others =>
- Report.Failed ("exception in Log Difference Identity Test");
- end Log_Difference_Identity;
-
-
- procedure Log_Product_Identity is
- -- Check using the identity ln(x**2) = 2ln(x)
- -- over the range A to B.
- -- This large range is chosen to minimize the possibility of
- -- undetected systematic errors. Cody pg 53.
- A : constant Real := 16.0;
- B : constant Real := 240.0;
- X : Real;
- Expected : Real;
- Actual : Real;
- begin
- Accuracy_Error_Reported := False; -- reset
- for I in 1..Max_Samples loop
- X := (B - A) * Real (I) / Real (Max_Samples) + A;
- -- magic argument purification
- X := Real'Machine (Real'Machine (X+8.0) - 8.0);
-
- Expected := 2.0 * Log (X);
-
- Actual := Log (X*X);
- Check (Actual, Expected,
- "Log Product Identity -" &
- Integer'Image (I) &
- " log (" & Real'Image (X) & ")",
- 4.0);
- if Accuracy_Error_Reported then
- -- only report the first error in this test in order to keep
- -- lots of failures from producing a huge error log
- return;
- end if;
- end loop;
- exception
- when Constraint_Error =>
- Report.Failed
- ("Constraint_Error raised in Log Product Identity Test");
- when others =>
- Report.Failed ("exception in Log Product Identity Test");
- end Log_Product_Identity;
-
-
- procedure Log10_Test is
- -- Check using the identity log(x) = log(11x/10) - log(1.1)
- -- over the range A to B. See Cody pg 52.
- A : constant Real := 1.0 / Sqrt (10.0);
- B : constant Real := 0.9;
- X : Real;
- Expected : Real;
- Actual : Real;
- begin
- if Real'Digits > 17 then
- -- constant used below is accuract to 17 digits
- Error_Low_Bound := 0.00000_00000_00000_01;
- Report.Comment ("log accuracy checked to 19 digits");
- end if;
- Accuracy_Error_Reported := False; -- reset
- for I in 1..Max_Samples loop
- X := (B - A) * Real (I) / Real (Max_Samples) + A;
-
- Expected := Log (X + X/10.0, 10.0)
- - 3.77060_15822_50407_5E-4 - 21.0 / 512.0;
-
- Actual := Log (X, 10.0);
- Check (Actual, Expected,
- "Log 10 Test -" &
- Integer'Image (I) &
- " log (" & Real'Image (X) & ")",
- 4.0);
-
- -- only report the first error in this test in order to keep
- -- lots of failures from producing a huge error log
- exit when Accuracy_Error_Reported;
- end loop;
- Error_Low_Bound := 0.0; -- reset
-
- exception
- when Constraint_Error =>
- Report.Failed
- ("Constraint_Error raised in Log 10 Test");
- when others =>
- Report.Failed ("exception in Log 10 Test");
- end Log10_Test;
-
-
- procedure Exception_Test is
- X1, X2, X3, X4 : Real;
- begin
- begin
- X1 := Log (0.0);
- Report.Failed ("exception not raised for LOG(0)");
- exception
- -- Log (0.0) must raise Constraint_Error, not Argument_Error,
- -- as per A.5.1(28,29). Was incorrect in ACVC 2.1 release.
- when Ada.Numerics.Argument_Error =>
- Report.Failed ("Argument_Error raised instead of" &
- " Constraint_Error for LOG(0)--A.5.1(28,29)");
- when Constraint_Error => null; -- ok
- when others =>
- Report.Failed ("wrong exception raised for LOG(0)");
- end;
-
- begin
- X2 := Log ( 1.0, 0.0);
- Report.Failed ("exception not raised for LOG(1,0)");
- exception
- when Ada.Numerics.Argument_Error => null; -- ok
- when Constraint_Error =>
- Report.Failed ("constraint_error raised instead of" &
- " argument_error for LOG(1,0)");
- when others =>
- Report.Failed ("wrong exception raised for LOG(1,0)");
- end;
-
- begin
- X3 := Log (1.0, 1.0);
- Report.Failed ("exception not raised for LOG(1,1)");
- exception
- when Ada.Numerics.Argument_Error => null; -- ok
- when Constraint_Error =>
- Report.Failed ("constraint_error raised instead of" &
- " argument_error for LOG(1,1)");
- when others =>
- Report.Failed ("wrong exception raised for LOG(1,1)");
- end;
-
- begin
- X4 := Log (1.0, -10.0);
- Report.Failed ("exception not raised for LOG(1,-10)");
- exception
- when Ada.Numerics.Argument_Error => null; -- ok
- when Constraint_Error =>
- Report.Failed ("constraint_error raised instead of" &
- " argument_error for LOG(1,-10)");
- when others =>
- Report.Failed ("wrong exception raised for LOG(1,-10)");
- end;
-
- -- optimizer thwarting
- if Report.Ident_Bool (False) then
- Report.Comment (Real'Image (X1+X2+X3+X4));
- end if;
- end Exception_Test;
-
-
- procedure Do_Test is
- begin
- Special_Value_Test;
- Taylor_Series_Test;
- Log_Difference_Identity;
- Log_Product_Identity;
- Log10_Test;
- Exception_Test;
- end Do_Test;
- end Generic_Check;
-
- -----------------------------------------------------------------------
- -----------------------------------------------------------------------
- package Float_Check is new Generic_Check (Float);
-
- -- check the floating point type with the most digits
- type A_Long_Float is digits System.Max_Digits;
- package A_Long_Float_Check is new Generic_Check (A_Long_Float);
-
- -----------------------------------------------------------------------
- -----------------------------------------------------------------------
-
-
-begin
- Report.Test ("CXG2011",
- "Check the accuracy of the log function");
-
- if Verbose then
- Report.Comment ("checking Standard.Float");
- end if;
-
- Float_Check.Do_Test;
-
- if Verbose then
- Report.Comment ("checking a digits" &
- Integer'Image (System.Max_Digits) &
- " floating point type");
- end if;
-
- A_Long_Float_Check.Do_Test;
-
-
- Report.Result;
-end CXG2011;
diff --git a/gcc/testsuite/ada/acats/tests/cxg/cxg2012.a b/gcc/testsuite/ada/acats/tests/cxg/cxg2012.a
deleted file mode 100644
index 6a665d0e077..00000000000
--- a/gcc/testsuite/ada/acats/tests/cxg/cxg2012.a
+++ /dev/null
@@ -1,438 +0,0 @@
--- CXG2012.A
---
--- Grant of Unlimited Rights
---
--- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
--- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
--- unlimited rights in the software and documentation contained herein.
--- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
--- this public release, the Government intends to confer upon all
--- recipients unlimited rights equal to those held by the Government.
--- These rights include rights to use, duplicate, release or disclose the
--- released technical data and computer software in whole or in part, in
--- any manner and for any purpose whatsoever, and to have or permit others
--- to do so.
---
--- DISCLAIMER
---
--- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
--- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
--- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
--- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
--- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
--- PARTICULAR PURPOSE OF SAID MATERIAL.
---*
---
--- OBJECTIVE:
--- Check that the exponentiation operator returns
--- results that are within the error bound allowed.
---
--- TEST DESCRIPTION:
--- This test consists of a generic package that is
--- instantiated to check both Float and a long float type.
--- The test for each floating point type is divided into
--- several parts:
--- Special value checks where the result is a known constant.
--- Checks that use an identity for determining the result.
--- Exception checks.
--- While this test concentrates on the "**" operator
--- defined in Generic_Elementary_Functions, a check is also
--- performed on the standard "**" operator.
---
--- SPECIAL REQUIREMENTS
--- The Strict Mode for the numerical accuracy must be
--- selected. The method by which this mode is selected
--- is implementation dependent.
---
--- APPLICABILITY CRITERIA:
--- This test applies only to implementations supporting the
--- Numerics Annex.
--- This test only applies to the Strict Mode for numerical
--- accuracy.
---
---
--- CHANGE HISTORY:
--- 7 Mar 96 SAIC Initial release for 2.1
--- 2 Sep 96 SAIC Improvements as suggested by reviewers
--- 3 Jun 98 EDS Add parens to ensure that the expression is not
--- evaluated by multiplying its two large terms
--- together and overflowing.
--- 3 Dec 01 RLB Added 'Machine to insure that equality tests
--- are certain to work.
---
---!
-
---
--- References:
---
--- Software Manual for the Elementary Functions
--- William J. Cody, Jr. and William Waite
--- Prentice-Hall, 1980
---
--- CRC Standard Mathematical Tables
--- 23rd Edition
---
--- Implementation and Testing of Function Software
--- W. J. Cody
--- Problems and Methodologies in Mathematical Software Production
--- editors P. C. Messina and A. Murli
--- Lecture Notes in Computer Science Volume 142
--- Springer Verlag, 1982
---
-
-with System;
-with Report;
-with Ada.Numerics.Generic_Elementary_Functions;
-procedure CXG2012 is
- Verbose : constant Boolean := False;
- Max_Samples : constant := 1000;
-
- -- CRC Standard Mathematical Tables; 23rd Edition; pg 738
- Sqrt2 : constant :=
- 1.41421_35623_73095_04880_16887_24209_69807_85696_71875_37695;
- Sqrt3 : constant :=
- 1.73205_08075_68877_29352_74463_41505_87236_69428_05253_81039;
-
-
- generic
- type Real is digits <>;
- package Generic_Check is
- procedure Do_Test;
- end Generic_Check;
-
- package body Generic_Check is
- package Elementary_Functions is new
- Ada.Numerics.Generic_Elementary_Functions (Real);
- function Sqrt (X : Real) return Real renames
- Elementary_Functions.Sqrt;
- function Exp (X : Real) return Real renames
- Elementary_Functions.Exp;
- function Log (X : Real) return Real renames
- Elementary_Functions.Log;
- function "**" (L, R : Real) return Real renames
- Elementary_Functions."**";
-
- -- flag used to terminate some tests early
- Accuracy_Error_Reported : Boolean := False;
-
-
-
- procedure Check (Actual, Expected : Real;
- Test_Name : String;
- MRE : Real) is
- Max_Error : Real;
- Rel_Error : Real;
- Abs_Error : Real;
- begin
- -- In the case where the expected result is very small or 0
- -- we compute the maximum error as a multiple of Model_Epsilon
- -- instead of Model_Epsilon and Expected.
- Rel_Error := MRE * (abs Expected * Real'Model_Epsilon);
- Abs_Error := MRE * Real'Model_Epsilon;
- if Rel_Error > Abs_Error then
- Max_Error := Rel_Error;
- else
- Max_Error := Abs_Error;
- end if;
-
- if abs (Actual - Expected) > Max_Error then
- Accuracy_Error_Reported := True;
- Report.Failed (Test_Name &
- " actual: " & Real'Image (Actual) &
- " expected: " & Real'Image (Expected) &
- " difference: " & Real'Image (Actual - Expected) &
- " max err:" & Real'Image (Max_Error) );
- elsif Verbose then
- if Actual = Expected then
- Report.Comment (Test_Name & " exact result");
- else
- Report.Comment (Test_Name & " passed");
- end if;
- end if;
- end Check;
-
-
- -- the following version of Check computes the allowed error bound
- -- using the operands
- procedure Check (Actual, Expected : Real;
- Left, Right : Real;
- Test_Name : String;
- MRE_Factor : Real := 1.0) is
- MRE : Real;
- begin
- MRE := MRE_Factor * (4.0 + abs (Right * Log(Left)) / 32.0);
- Check (Actual, Expected, Test_Name, MRE);
- end Check;
-
-
- procedure Real_To_Integer_Test is
- type Int_Check is
- record
- Left : Real;
- Right : Integer;
- Expected : Real;
- end record;
- type Int_Checks is array (Positive range <>) of Int_Check;
-
- -- the following tests use only model numbers so the result
- -- is expected to be exact.
- IC : constant Int_Checks :=
- ( ( 2.0, 5, 32.0),
- ( -2.0, 5, -32.0),
- ( 0.5, -5, 32.0),
- ( 2.0, 0, 1.0),
- ( 0.0, 0, 1.0) );
- begin
- for I in IC'Range loop
- declare
- Y : Real;
- begin
- Y := IC (I).Left ** IC (I).Right;
- Check (Y, IC (I).Expected,
- "real to integer test" &
- Real'Image (IC (I).Left) & " ** " &
- Integer'Image (IC (I).Right),
- 0.0); -- no error allowed
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in rtoi test " &
- Integer'Image (I));
- when others =>
- Report.Failed ("exception in rtoi test " &
- Integer'Image (I));
- end;
- end loop;
- end Real_To_Integer_Test;
-
-
- procedure Special_Value_Test is
- No_Error : constant := 0.0;
- begin
- Check (0.0 ** 1.0, 0.0, "0**1", No_Error);
- Check (1.0 ** 0.0, 1.0, "1**0", No_Error);
-
- Check ( 2.0 ** 5.0, 32.0, 2.0, 5.0, "2**5");
- Check ( 0.5**(-5.0), 32.0, 0.5, -5.0, "0.5**-5");
-
- Check (Sqrt2 ** 4.0, 4.0, Sqrt2, 4.0, "Sqrt2**4");
- Check (Sqrt3 ** 6.0, 27.0, Sqrt3, 6.0, "Sqrt3**6");
-
- Check (2.0 ** 0.5, Sqrt2, 2.0, 0.5, "2.0**0.5");
-
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in Special Value Test");
- when others =>
- Report.Failed ("exception in Special Value Test");
- end Special_Value_Test;
-
-
- procedure Small_Range_Test is
- -- Several checks over the range 1/radix .. 1
- A : constant Real := 1.0 / Real (Real'Machine_Radix);
- B : constant Real := 1.0;
- X : Real;
- -- In the cases below where the expected result is
- -- inexact we allow an additional error amount of
- -- 1.0 * Model_Epsilon to account for that error.
- -- This is accomplished by the factor of 1.25 times
- -- the computed error bound (which is > 4.0) thus
- -- increasing the error bound by at least
- -- 1.0 * Model_Epsilon
- begin
- Accuracy_Error_Reported := False; -- reset
- for I in 0..Max_Samples loop
- X := Real'Machine((B - A) * Real (I) / Real (Max_Samples) + A);
-
- Check (X ** 1.0, X, -- exact result required
- "Small range" & Integer'Image (I) & ": " &
- Real'Image (X) & " ** 1.0",
- 0.0);
-
- Check ((X*X) ** 1.5, X**3, X*X, 1.5,
- "Small range" & Integer'Image (I) & ": " &
- Real'Image (X*X) & " ** 1.5",
- 1.25);
-
- Check (X ** 13.5, 1.0 / (X ** (-13.5)), X, 13.5,
- "Small range" & Integer'Image (I) & ": " &
- Real'Image (X) & " ** 13.5",
- 2.0); -- 2 ** computations
-
- Check ((X*X) ** 1.25, X**(2.5), X*X, 1.25,
- "Small range" & Integer'Image (I) & ": " &
- Real'Image (X*X) & " ** 1.25",
- 2.0); -- 2 ** computations
-
- if Accuracy_Error_Reported then
- -- only report the first error in this test in order to keep
- -- lots of failures from producing a huge error log
- return;
- end if;
-
- end loop;
-
- exception
- when Constraint_Error =>
- Report.Failed
- ("Constraint_Error raised in Small Range Test");
- when others =>
- Report.Failed ("exception in Small Range Test");
- end Small_Range_Test;
-
-
- procedure Large_Range_Test is
- -- Check over the range A to B where A is 1.0 and
- -- B is a large value.
- A : constant Real := 1.0;
- B : Real;
- X : Real;
- Iteration : Integer := 0;
- Subtest : Character := 'X';
- begin
- -- upper bound of range should be as large as possible where
- -- B**3 is still valid.
- B := Real'Safe_Last ** 0.333;
- Accuracy_Error_Reported := False; -- reset
- for I in 0..Max_Samples loop
- Iteration := I;
- Subtest := 'X';
- X := Real'Machine((B - A) * (Real (I) / Real (Max_Samples)) + A);
-
- Subtest := 'A';
- Check (X ** 1.0, X, -- exact result required
- "Large range" & Integer'Image (I) & ": " &
- Real'Image (X) & " ** 1.0",
- 0.0);
-
- Subtest := 'B';
- Check ((X*X) ** 1.5, X**3, X*X, 1.5,
- "Large range" & Integer'Image (I) & ": " &
- Real'Image (X*X) & " ** 1.5",
- 1.25); -- inexact expected result
-
- Subtest := 'C';
- Check ((X*X) ** 1.25, X**(2.5), X*X, 1.25,
- "Large range" & Integer'Image (I) & ": " &
- Real'Image (X*X) & " ** 1.25",
- 2.0); -- two ** operators
-
- if Accuracy_Error_Reported then
- -- only report the first error in this test in order to keep
- -- lots of failures from producing a huge error log
- return;
- end if;
-
- end loop;
- exception
- when Constraint_Error =>
- Report.Failed
- ("Constraint_Error raised in Large Range Test" &
- Integer'Image (Iteration) & Subtest);
- when others =>
- Report.Failed ("exception in Large Range Test" &
- Integer'Image (Iteration) & Subtest);
- end Large_Range_Test;
-
-
- procedure Exception_Test is
- X1, X2, X3, X4 : Real;
- begin
- begin
- X1 := 0.0 ** (-1.0);
- Report.Failed ("exception not raised for 0**-1");
- exception
- when Ada.Numerics.Argument_Error =>
- Report.Failed ("argument_error raised instead of" &
- " constraint_error for 0**-1");
- when Constraint_Error => null; -- ok
- when others =>
- Report.Failed ("wrong exception raised for 0**-1");
- end;
-
- begin
- X2 := 0.0 ** 0.0;
- Report.Failed ("exception not raised for 0**0");
- exception
- when Ada.Numerics.Argument_Error => null; -- ok
- when Constraint_Error =>
- Report.Failed ("constraint_error raised instead of" &
- " argument_error for 0**0");
- when others =>
- Report.Failed ("wrong exception raised for 0**0");
- end;
-
- begin
- X3 := (-1.0) ** 1.0;
- Report.Failed ("exception not raised for -1**1");
- exception
- when Ada.Numerics.Argument_Error => null; -- ok
- when Constraint_Error =>
- Report.Failed ("constraint_error raised instead of" &
- " argument_error for -1**1");
- when others =>
- Report.Failed ("wrong exception raised for -1**1");
- end;
-
- begin
- X4 := (-2.0) ** 2.0;
- Report.Failed ("exception not raised for -2**2");
- exception
- when Ada.Numerics.Argument_Error => null; -- ok
- when Constraint_Error =>
- Report.Failed ("constraint_error raised instead of" &
- " argument_error for -2**2");
- when others =>
- Report.Failed ("wrong exception raised for -2**2");
- end;
-
- -- optimizer thwarting
- if Report.Ident_Bool (False) then
- Report.Comment (Real'Image (X1+X2+X3+X4));
- end if;
- end Exception_Test;
-
-
- procedure Do_Test is
- begin
- Real_To_Integer_Test;
- Special_Value_Test;
- Small_Range_Test;
- Large_Range_Test;
- Exception_Test;
- end Do_Test;
- end Generic_Check;
-
- -----------------------------------------------------------------------
- -----------------------------------------------------------------------
- package Float_Check is new Generic_Check (Float);
-
- -- check the floating point type with the most digits
- type A_Long_Float is digits System.Max_Digits;
- package A_Long_Float_Check is new Generic_Check (A_Long_Float);
-
- -----------------------------------------------------------------------
- -----------------------------------------------------------------------
-
-
-begin
- Report.Test ("CXG2012",
- "Check the accuracy of the ** operator");
-
- if Verbose then
- Report.Comment ("checking Standard.Float");
- end if;
-
- Float_Check.Do_Test;
-
- if Verbose then
- Report.Comment ("checking a digits" &
- Integer'Image (System.Max_Digits) &
- " floating point type");
- end if;
-
- A_Long_Float_Check.Do_Test;
-
-
- Report.Result;
-end CXG2012;
diff --git a/gcc/testsuite/ada/acats/tests/cxg/cxg2013.a b/gcc/testsuite/ada/acats/tests/cxg/cxg2013.a
deleted file mode 100644
index 94f180b804d..00000000000
--- a/gcc/testsuite/ada/acats/tests/cxg/cxg2013.a
+++ /dev/null
@@ -1,367 +0,0 @@
--- CXG2013.A
---
--- Grant of Unlimited Rights
---
--- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
--- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
--- unlimited rights in the software and documentation contained herein.
--- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
--- this public release, the Government intends to confer upon all
--- recipients unlimited rights equal to those held by the Government.
--- These rights include rights to use, duplicate, release or disclose the
--- released technical data and computer software in whole or in part, in
--- any manner and for any purpose whatsoever, and to have or permit others
--- to do so.
---
--- DISCLAIMER
---
--- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
--- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
--- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
--- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
--- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
--- PARTICULAR PURPOSE OF SAID MATERIAL.
---*
---
--- OBJECTIVE:
--- Check that the TAN and COT functions return
--- results that are within the error bound allowed.
---
--- TEST DESCRIPTION:
--- This test consists of a generic package that is
--- instantiated to check both Float and a long float type.
--- The test for each floating point type is divided into
--- several parts:
--- Special value checks where the result is a known constant.
--- Checks that use an identity for determining the result.
--- Exception checks.
---
--- SPECIAL REQUIREMENTS
--- The Strict Mode for the numerical accuracy must be
--- selected. The method by which this mode is selected
--- is implementation dependent.
---
--- APPLICABILITY CRITERIA:
--- This test applies only to implementations supporting the
--- Numerics Annex.
--- This test only applies to the Strict Mode for numerical
--- accuracy.
---
---
--- CHANGE HISTORY:
--- 11 Mar 96 SAIC Initial release for 2.1
--- 17 Aug 96 SAIC Commentary fixes.
--- 03 Feb 97 PWB.CTA Removed checks with explicit Cycle => 2.0*Pi
--- 02 DEC 97 EDS Change Max_Samples constant to 1001.
--- 29 JUN 98 EDS Deleted Special_Angle_Test as fatally flawed.
-
---!
-
---
--- References:
---
--- Software Manual for the Elementary Functions
--- William J. Cody, Jr. and William Waite
--- Prentice-Hall, 1980
---
--- CRC Standard Mathematical Tables
--- 23rd Edition
---
--- Implementation and Testing of Function Software
--- W. J. Cody
--- Problems and Methodologies in Mathematical Software Production
--- editors P. C. Messina and A. Murli
--- Lecture Notes in Computer Science Volume 142
--- Springer Verlag, 1982
---
-
-with System;
-with Report;
-with Ada.Numerics.Generic_Elementary_Functions;
-procedure CXG2013 is
- Verbose : constant Boolean := False;
- Max_Samples : constant := 1001;
-
- -- CRC Standard Mathematical Tables; 23rd Edition; pg 738
- Sqrt2 : constant :=
- 1.41421_35623_73095_04880_16887_24209_69807_85696_71875_37695;
- Sqrt3 : constant :=
- 1.73205_08075_68877_29352_74463_41505_87236_69428_05253_81039;
-
- Pi : constant := Ada.Numerics.Pi;
-
- generic
- type Real is digits <>;
- package Generic_Check is
- procedure Do_Test;
- end Generic_Check;
-
- package body Generic_Check is
- package Elementary_Functions is new
- Ada.Numerics.Generic_Elementary_Functions (Real);
- function Sqrt (X : Real) return Real renames
- Elementary_Functions.Sqrt;
- function Tan (X : Real) return Real renames
- Elementary_Functions.Tan;
- function Cot (X : Real) return Real renames
- Elementary_Functions.Cot;
- function Tan (X, Cycle : Real) return Real renames
- Elementary_Functions.Tan;
- function Cot (X, Cycle : Real) return Real renames
- Elementary_Functions.Cot;
-
- -- flag used to terminate some tests early
- Accuracy_Error_Reported : Boolean := False;
-
- -- factor to be applied in computing MRE
- Maximum_Relative_Error : constant Real := 4.0;
-
- procedure Check (Actual, Expected : Real;
- Test_Name : String;
- MRE : Real) is
- Max_Error : Real;
- Rel_Error : Real;
- Abs_Error : Real;
- begin
- -- In the case where the expected result is very small or 0
- -- we compute the maximum error as a multiple of Model_Epsilon instead
- -- of Model_Epsilon and Expected.
- Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
- Abs_Error := MRE * Real'Model_Epsilon;
- if Rel_Error > Abs_Error then
- Max_Error := Rel_Error;
- else
- Max_Error := Abs_Error;
- end if;
-
- if abs (Actual - Expected) > Max_Error then
- Accuracy_Error_Reported := True;
- Report.Failed (Test_Name &
- " actual: " & Real'Image (Actual) &
- " expected: " & Real'Image (Expected) &
- " difference: " & Real'Image (Actual - Expected) &
- " max err:" & Real'Image (Max_Error) );
- elsif Verbose then
- if Actual = Expected then
- Report.Comment (Test_Name & " exact result");
- else
- Report.Comment (Test_Name & " passed");
- end if;
- end if;
- end Check;
-
-
-
- procedure Exact_Result_Test is
- No_Error : constant := 0.0;
- begin
- -- A.5.1(38);6.0
- Check (Tan (0.0), 0.0, "tan(0)", No_Error);
-
- -- A.5.1(41);6.0
- Check (Tan (180.0, 360.0), 0.0, "tan(180,360)", No_Error);
- Check (Tan (360.0, 360.0), 0.0, "tan(360,360)", No_Error);
- Check (Tan (720.0, 360.0), 0.0, "tan(720,360)", No_Error);
-
- -- A.5.1(41);6.0
- Check (Cot ( 90.0, 360.0), 0.0, "cot( 90,360)", No_Error);
- Check (Cot (270.0, 360.0), 0.0, "cot(270,360)", No_Error);
- Check (Cot (810.0, 360.0), 0.0, "cot(810,360)", No_Error);
-
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in Exact_Result Test");
- when others =>
- Report.Failed ("exception in Exact_Result Test");
- end Exact_Result_Test;
-
-
- procedure Tan_Test (A, B : Real) is
- -- Use identity Tan(X) = [2*Tan(x/2)]/[1-Tan(x/2) ** 2]
- -- checks over the range -pi/4 .. pi/4 require no argument reduction
- -- checks over the range 7pi/8 .. 9pi/8 require argument reduction
- X, Y : Real;
- Actual1, Actual2 : Real;
- begin
- Accuracy_Error_Reported := False; -- reset
- for I in 1..Max_Samples loop
- X := (B - A) * Real (I) / Real (Max_Samples) + A;
- -- argument purification to insure x and x/2 are exact
- -- See Cody page 170.
- Y := Real'Machine (X*0.5);
- X := Real'Machine (Y + Y);
-
- Actual1 := Tan(X);
- Actual2 := (2.0 * Tan (Y)) / (1.0 - Tan (Y) ** 2);
-
- if abs (X - Pi) > ( (B-A)/Real(2*Max_Samples) ) then
- Check (Actual1, Actual2,
- "Tan_Test " & Integer'Image (I) & ": tan(" &
- Real'Image (X) & ") ",
- (1.0 + Sqrt2) * Maximum_Relative_Error);
- -- see Cody pg 165 for error bound info
- end if;
-
- if Accuracy_Error_Reported then
- -- only report the first error in this test in order to keep
- -- lots of failures from producing a huge error log
- return;
- end if;
-
- end loop;
-
- exception
- when Constraint_Error =>
- Report.Failed
- ("Constraint_Error raised in Tan_Test");
- when others =>
- Report.Failed ("exception in Tan_Test");
- end Tan_Test;
-
-
-
- procedure Cot_Test is
- -- Use identity Cot(X) = [Cot(X/2)**2 - 1]/[2*Cot(X/2)]
- A : constant := 6.0 * Pi;
- B : constant := 25.0 / 4.0 * Pi;
- X, Y : Real;
- Actual1, Actual2 : Real;
- begin
- Accuracy_Error_Reported := False; -- reset
- for I in 1..Max_Samples loop
- X := (B - A) * Real (I) / Real (Max_Samples) + A;
- -- argument purification to insure x and x/2 are exact.
- -- See Cody page 170.
- Y := Real'Machine (X*0.5);
- X := Real'Machine (Y + Y);
-
- Actual1 := Cot(X);
- Actual2 := (Cot (Y) ** 2 - 1.0) / (2.0 * Cot (Y));
-
- Check (Actual1, Actual2,
- "Cot_Test " & Integer'Image (I) & ": cot(" &
- Real'Image (X) & ") ",
- (1.0 + Sqrt2) * Maximum_Relative_Error);
- -- see Cody pg 165 for error bound info
-
- if Accuracy_Error_Reported then
- -- only report the first error in this test in order to keep
- -- lots of failures from producing a huge error log
- return;
- end if;
-
- end loop;
-
- exception
- when Constraint_Error =>
- Report.Failed
- ("Constraint_Error raised in Cot_Test");
- when others =>
- Report.Failed ("exception in Cot_Test");
- end Cot_Test;
-
-
- procedure Exception_Test is
- X1, X2, X3, X4, X5 : Real := 0.0;
- begin
-
-
- begin -- A.5.1(20);6.0
- X1 := Tan (0.0, Cycle => 0.0);
- Report.Failed ("no exception for cycle = 0.0");
- exception
- when Ada.Numerics.Argument_Error => null;
- when others =>
- Report.Failed ("wrong exception for cycle = 0.0");
- end;
-
- begin -- A.5.1(20);6.0
- X2 := Cot (1.0, Cycle => -3.0);
- Report.Failed ("no exception for cycle < 0.0");
- exception
- when Ada.Numerics.Argument_Error => null;
- when others =>
- Report.Failed ("wrong exception for cycle < 0.0");
- end;
-
- -- the remaining tests only apply to machines that overflow
- if Real'Machine_Overflows then -- A.5.1(28);6.0
-
- begin -- A.5.1(29);6.0
- X3 := Cot (0.0);
- Report.Failed ("exception not raised for cot(0)");
- exception
- when Constraint_Error => null; -- ok
- when others =>
- Report.Failed ("wrong exception raised for cot(0)");
- end;
-
- begin -- A.5.1(31);6.0
- X4 := Tan (90.0, 360.0);
- Report.Failed ("exception not raised for tan(90,360)");
- exception
- when Constraint_Error => null; -- ok
- when others =>
- Report.Failed ("wrong exception raised for tan(90,360)");
- end;
-
- begin -- A.5.1(32);6.0
- X5 := Cot (180.0, 360.0);
- Report.Failed ("exception not raised for cot(180,360)");
- exception
- when Constraint_Error => null; -- ok
- when others =>
- Report.Failed ("wrong exception raised for cot(180,360)");
- end;
- end if;
-
- -- optimizer thwarting
- if Report.Ident_Bool (False) then
- Report.Comment (Real'Image (X1+X2+X3+X4+X5));
- end if;
- end Exception_Test;
-
-
- procedure Do_Test is
- begin
- Exact_Result_Test;
- Tan_Test (-Pi/4.0, Pi/4.0);
- Tan_Test (7.0*Pi/8.0, 9.0*Pi/8.0);
- Cot_Test;
- Exception_Test;
- end Do_Test;
- end Generic_Check;
-
- -----------------------------------------------------------------------
- -----------------------------------------------------------------------
- package Float_Check is new Generic_Check (Float);
-
- -- check the floating point type with the most digits
- type A_Long_Float is digits System.Max_Digits;
- package A_Long_Float_Check is new Generic_Check (A_Long_Float);
-
- -----------------------------------------------------------------------
- -----------------------------------------------------------------------
-
-
-begin
- Report.Test ("CXG2013",
- "Check the accuracy of the TAN and COT functions");
-
- if Verbose then
- Report.Comment ("checking Standard.Float");
- end if;
-
- Float_Check.Do_Test;
-
- if Verbose then
- Report.Comment ("checking a digits" &
- Integer'Image (System.Max_Digits) &
- " floating point type");
- end if;
-
- A_Long_Float_Check.Do_Test;
-
-
- Report.Result;
-end CXG2013;
diff --git a/gcc/testsuite/ada/acats/tests/cxg/cxg2014.a b/gcc/testsuite/ada/acats/tests/cxg/cxg2014.a
deleted file mode 100644
index 48499a2556f..00000000000
--- a/gcc/testsuite/ada/acats/tests/cxg/cxg2014.a
+++ /dev/null
@@ -1,399 +0,0 @@
--- CXG2014.A
---
--- Grant of Unlimited Rights
---
--- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
--- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
--- unlimited rights in the software and documentation contained herein.
--- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
--- this public release, the Government intends to confer upon all
--- recipients unlimited rights equal to those held by the Government.
--- These rights include rights to use, duplicate, release or disclose the
--- released technical data and computer software in whole or in part, in
--- any manner and for any purpose whatsoever, and to have or permit others
--- to do so.
---
--- DISCLAIMER
---
--- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
--- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
--- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
--- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
--- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
--- PARTICULAR PURPOSE OF SAID MATERIAL.
---*
---
--- OBJECTIVE:
--- Check that the SINH and COSH functions return
--- results that are within the error bound allowed.
---
--- TEST DESCRIPTION:
--- This test consists of a generic package that is
--- instantiated to check both Float and a long float type.
--- The test for each floating point type is divided into
--- several parts:
--- Special value checks where the result is a known constant.
--- Checks that use an identity for determining the result.
--- Exception checks.
---
--- SPECIAL REQUIREMENTS
--- The Strict Mode for the numerical accuracy must be
--- selected. The method by which this mode is selected
--- is implementation dependent.
---
--- APPLICABILITY CRITERIA:
--- This test applies only to implementations supporting the
--- Numerics Annex.
--- This test only applies to the Strict Mode for numerical
--- accuracy.
---
---
--- CHANGE HISTORY:
--- 15 Mar 96 SAIC Initial release for 2.1
--- 03 Jun 98 EDS In line 80, change 1000 to 1024, making it a model
--- number. Add Taylor Series terms in line 281.
--- 15 Feb 99 RLB Repaired Subtraction_Error_Test to avoid precision
--- problems.
---!
-
---
--- References:
---
--- Software Manual for the Elementary Functions
--- William J. Cody, Jr. and William Waite
--- Prentice-Hall, 1980
---
--- CRC Standard Mathematical Tables
--- 23rd Edition
---
--- Implementation and Testing of Function Software
--- W. J. Cody
--- Problems and Methodologies in Mathematical Software Production
--- editors P. C. Messina and A. Murli
--- Lecture Notes in Computer Science Volume 142
--- Springer Verlag, 1982
---
-
-with System;
-with Report;
-with Ada.Numerics.Generic_Elementary_Functions;
-procedure CXG2014 is
- Verbose : constant Boolean := False;
- Max_Samples : constant := 1024;
-
- E : constant := Ada.Numerics.E;
- Cosh1 : constant := (E + 1.0 / E) / 2.0; -- cosh(1.0)
-
- generic
- type Real is digits <>;
- package Generic_Check is
- procedure Do_Test;
- end Generic_Check;
-
- package body Generic_Check is
- package Elementary_Functions is new
- Ada.Numerics.Generic_Elementary_Functions (Real);
- function Sinh (X : Real) return Real renames
- Elementary_Functions.Sinh;
- function Cosh (X : Real) return Real renames
- Elementary_Functions.Cosh;
- function Log (X : Real) return Real renames
- Elementary_Functions.Log;
-
- -- flag used to terminate some tests early
- Accuracy_Error_Reported : Boolean := False;
-
-
- procedure Check (Actual, Expected : Real;
- Test_Name : String;
- MRE : Real) is
- Max_Error : Real;
- Rel_Error : Real;
- Abs_Error : Real;
- begin
- -- In the case where the expected result is very small or 0
- -- we compute the maximum error as a multiple of Model_Small instead
- -- of Model_Epsilon and Expected.
- Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
- Abs_Error := MRE * Real'Model_Small;
- if Rel_Error > Abs_Error then
- Max_Error := Rel_Error;
- else
- Max_Error := Abs_Error;
- end if;
-
- if abs (Actual - Expected) > Max_Error then
- Accuracy_Error_Reported := True;
- Report.Failed (Test_Name &
- " actual: " & Real'Image (Actual) &
- " expected: " & Real'Image (Expected) &
- " difference: " & Real'Image (Actual - Expected) &
- " max err:" & Real'Image (Max_Error) );
- elsif Verbose then
- if Actual = Expected then
- Report.Comment (Test_Name & " exact result");
- else
- Report.Comment (Test_Name & " passed");
- end if;
- end if;
- end Check;
-
-
- procedure Special_Value_Test is
- -- In the following tests the expected result is accurate
- -- to the machine precision so the minimum guaranteed error
- -- bound can be used.
- Minimum_Error : constant := 8.0;
- begin
- Check (Sinh (1.0),
- (E - 1.0 / E) / 2.0,
- "sinh(1)",
- Minimum_Error);
- Check (Cosh (1.0),
- Cosh1,
- "cosh(1)",
- Minimum_Error);
- Check (Sinh (2.0),
- (E * E - (1.0 / (E * E))) / 2.0,
- "sinh(2)",
- Minimum_Error);
- Check (Cosh (2.0),
- (E * E + (1.0 / (E * E))) / 2.0,
- "cosh(2)",
- Minimum_Error);
- Check (Sinh (-1.0),
- (1.0 / E - E) / 2.0,
- "sinh(-1)",
- Minimum_Error);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in special value test");
- when others =>
- Report.Failed ("exception in special value test");
- end Special_Value_Test;
-
-
-
- procedure Exact_Result_Test is
- No_Error : constant := 0.0;
- begin
- -- A.5.1(38);6.0
- Check (Sinh (0.0), 0.0, "sinh(0)", No_Error);
- Check (Cosh (0.0), 1.0, "cosh(0)", No_Error);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in Exact_Result Test");
- when others =>
- Report.Failed ("exception in Exact_Result Test");
- end Exact_Result_Test;
-
-
- procedure Identity_1_Test is
- -- For the Sinh test use the identity
- -- 2 * Sinh(x) * Cosh(1) = Sinh(x+1) + Sinh (x-1)
- -- which is transformed to
- -- Sinh(x) = ((Sinh(x+1) + Sinh(x-1)) * C
- -- where C = 1/(2*Cosh(1))
- --
- -- For the Cosh test use the identity
- -- 2 * Cosh(x) * Cosh(1) = Cosh(x+1) + Cosh(x-1)
- -- which is transformed to
- -- Cosh(x) = C * (Cosh(x+1) + Cosh(x-1))
- -- where C is the same as above
- --
- -- see Cody pg 230-231 for details on the error analysis.
- -- The net result is a relative error bound of 16 * Model_Epsilon.
-
- A : constant := 3.0;
- -- large upper bound but not so large as to cause Cosh(B)
- -- to overflow
- B : constant Real := Log(Real'Safe_Last) - 2.0;
- X_Minus_1, X, X_Plus_1 : Real;
- Actual1, Actual2 : Real;
- C : constant := 1.0 / (2.0 * Cosh1);
- begin
- Accuracy_Error_Reported := False; -- reset
- for I in 1..Max_Samples loop
- -- make sure there is no error in x-1, x, and x+1
- X_Plus_1 := (B - A) * Real (I) / Real (Max_Samples) + A;
- X_Plus_1 := Real'Machine (X_Plus_1);
- X := Real'Machine (X_Plus_1 - 1.0);
- X_Minus_1 := Real'Machine (X - 1.0);
-
- -- Sinh(x) = ((Sinh(x+1) + Sinh(x-1)) * C
- Actual1 := Sinh(X);
- Actual2 := C * (Sinh(X_Plus_1) + Sinh(X_Minus_1));
-
- Check (Actual1, Actual2,
- "Identity_1_Test " & Integer'Image (I) & ": sinh(" &
- Real'Image (X) & ") ",
- 16.0);
-
- -- Cosh(x) = C * (Cosh(x+1) + Cosh(x-1))
- Actual1 := Cosh (X);
- Actual2 := C * (Cosh(X_Plus_1) + Cosh (X_Minus_1));
- Check (Actual1, Actual2,
- "Identity_1_Test " & Integer'Image (I) & ": cosh(" &
- Real'Image (X) & ") ",
- 16.0);
-
- if Accuracy_Error_Reported then
- -- only report the first error in this test in order to keep
- -- lots of failures from producing a huge error log
- return;
- end if;
-
- end loop;
-
- exception
- when Constraint_Error =>
- Report.Failed
- ("Constraint_Error raised in Identity_1_Test" &
- " for X=" & Real'Image (X));
- when others =>
- Report.Failed ("exception in Identity_1_Test" &
- " for X=" & Real'Image (X));
- end Identity_1_Test;
-
-
-
- procedure Subtraction_Error_Test is
- -- This test detects the error resulting from subtraction if
- -- the obvious algorithm was used for computing sinh. That is,
- -- it it is computed as (e**x - e**-x)/2.
- -- We check the result by using a Taylor series expansion that
- -- will produce a result accurate to the machine precision for
- -- the range under test.
- --
- -- The maximum relative error bound for this test is
- -- 8 for the sinh operation and 7 for the Taylor series
- -- for a total of 15 * Model_Epsilon
- A : constant := 0.0;
- B : constant := 0.5;
- X : Real;
- X_Squared : Real;
- Actual, Expected : Real;
- begin
- if Real'digits > 15 then
- return; -- The approximation below is not accurate beyond
- -- 15 digits. Adding more terms makes the error
- -- larger, so it makes the test worse for more normal
- -- values. Thus, we skip this subtest for larger than
- -- 15 digits.
- end if;
- Accuracy_Error_Reported := False; -- reset
- for I in 1..Max_Samples loop
- X := (B - A) * Real (I) / Real (Max_Samples) + A;
- X_Squared := X * X;
-
- Actual := Sinh(X);
-
- -- The Taylor series regrouped a bit
- Expected :=
- X * (1.0 + (X_Squared / 6.0) *
- (1.0 + (X_Squared/20.0) *
- (1.0 + (X_Squared/42.0) *
- (1.0 + (X_Squared/72.0) *
- (1.0 + (X_Squared/110.0) *
- (1.0 + (X_Squared/156.0)
- ))))));
-
- Check (Actual, Expected,
- "Subtraction_Error_Test " & Integer'Image (I) & ": sinh(" &
- Real'Image (X) & ") ",
- 15.0);
-
- if Accuracy_Error_Reported then
- -- only report the first error in this test in order to keep
- -- lots of failures from producing a huge error log
- return;
- end if;
-
- end loop;
-
- exception
- when Constraint_Error =>
- Report.Failed
- ("Constraint_Error raised in Subtraction_Error_Test");
- when others =>
- Report.Failed ("exception in Subtraction_Error_Test");
- end Subtraction_Error_Test;
-
-
- procedure Exception_Test is
- X1, X2 : Real := 0.0;
- begin
- -- this part of the test is only applicable if 'Machine_Overflows
- -- is true.
- if Real'Machine_Overflows then
-
- begin
- X1 := Sinh (Real'Safe_Last / 2.0);
- Report.Failed ("no exception for sinh overflow");
- exception
- when Constraint_Error => null;
- when others =>
- Report.Failed ("wrong exception sinh overflow");
- end;
-
- begin
- X2 := Cosh (Real'Safe_Last / 2.0);
- Report.Failed ("no exception for cosh overflow");
- exception
- when Constraint_Error => null;
- when others =>
- Report.Failed ("wrong exception cosh overflow");
- end;
-
- end if;
-
- -- optimizer thwarting
- if Report.Ident_Bool (False) then
- Report.Comment (Real'Image (X1 + X2));
- end if;
- end Exception_Test;
-
-
- procedure Do_Test is
- begin
- Special_Value_Test;
- Exact_Result_Test;
- Identity_1_Test;
- Subtraction_Error_Test;
- Exception_Test;
- end Do_Test;
- end Generic_Check;
-
- -----------------------------------------------------------------------
- -----------------------------------------------------------------------
- package Float_Check is new Generic_Check (Float);
-
- -- check the floating point type with the most digits
- type A_Long_Float is digits System.Max_Digits;
- package A_Long_Float_Check is new Generic_Check (A_Long_Float);
-
- -----------------------------------------------------------------------
- -----------------------------------------------------------------------
-
-
-begin
- Report.Test ("CXG2014",
- "Check the accuracy of the SINH and COSH functions");
-
- if Verbose then
- Report.Comment ("checking Standard.Float");
- end if;
-
- Float_Check.Do_Test;
-
- if Verbose then
- Report.Comment ("checking a digits" &
- Integer'Image (System.Max_Digits) &
- " floating point type");
- end if;
-
- A_Long_Float_Check.Do_Test;
-
-
- Report.Result;
-end CXG2014;
diff --git a/gcc/testsuite/ada/acats/tests/cxg/cxg2015.a b/gcc/testsuite/ada/acats/tests/cxg/cxg2015.a
deleted file mode 100644
index 50fda5e1f4f..00000000000
--- a/gcc/testsuite/ada/acats/tests/cxg/cxg2015.a
+++ /dev/null
@@ -1,686 +0,0 @@
--- CXG2015.A
---
--- Grant of Unlimited Rights
---
--- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
--- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
--- unlimited rights in the software and documentation contained herein.
--- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
--- this public release, the Government intends to confer upon all
--- recipients unlimited rights equal to those held by the Government.
--- These rights include rights to use, duplicate, release or disclose the
--- released technical data and computer software in whole or in part, in
--- any manner and for any purpose whatsoever, and to have or permit others
--- to do so.
---
--- DISCLAIMER
---
--- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
--- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
--- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
--- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
--- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
--- PARTICULAR PURPOSE OF SAID MATERIAL.
---*
---
--- OBJECTIVE:
--- Check that the ARCSIN and ARCCOS functions return
--- results that are within the error bound allowed.
---
--- TEST DESCRIPTION:
--- This test consists of a generic package that is
--- instantiated to check both Float and a long float type.
--- The test for each floating point type is divided into
--- several parts:
--- Special value checks where the result is a known constant.
--- Checks in a specific range where a Taylor series can be
--- used to compute an accurate result for comparison.
--- Exception checks.
--- The Taylor series tests are a direct translation of the
--- FORTRAN code found in the reference.
---
--- SPECIAL REQUIREMENTS
--- The Strict Mode for the numerical accuracy must be
--- selected. The method by which this mode is selected
--- is implementation dependent.
---
--- APPLICABILITY CRITERIA:
--- This test applies only to implementations supporting the
--- Numerics Annex.
--- This test only applies to the Strict Mode for numerical
--- accuracy.
---
---
--- CHANGE HISTORY:
--- 18 Mar 96 SAIC Initial release for 2.1
--- 24 Apr 96 SAIC Fixed error bounds.
--- 17 Aug 96 SAIC Added reference information and improved
--- checking for machines with more than 23
--- digits of precision.
--- 03 Feb 97 PWB.CTA Removed checks with explicit Cycle => 2.0*Pi
--- 22 Dec 99 RLB Added model range checking to "exact" results,
--- in order to avoid too strictly requiring a specific
--- result, and too weakly checking results.
---
--- CHANGE NOTE:
--- According to Ken Dritz, author of the Numerics Annex of the RM,
--- one should never specify the cycle 2.0*Pi for the trigonometric
--- functions. In particular, if the machine number for the first
--- argument is not an exact multiple of the machine number for the
--- explicit cycle, then the specified exact results cannot be
--- reasonably expected. The affected checks in this test have been
--- marked as comments, with the additional notation "pwb-math".
--- Phil Brashear
---!
-
---
--- References:
---
--- Software Manual for the Elementary Functions
--- William J. Cody, Jr. and William Waite
--- Prentice-Hall, 1980
---
--- CRC Standard Mathematical Tables
--- 23rd Edition
---
--- Implementation and Testing of Function Software
--- W. J. Cody
--- Problems and Methodologies in Mathematical Software Production
--- editors P. C. Messina and A. Murli
--- Lecture Notes in Computer Science Volume 142
--- Springer Verlag, 1982
---
--- CELEFUNT: A Portable Test Package for Complex Elementary Functions
--- ACM Collected Algorithms number 714
-
-with System;
-with Report;
-with Ada.Numerics.Generic_Elementary_Functions;
-procedure CXG2015 is
- Verbose : constant Boolean := False;
- Max_Samples : constant := 1000;
-
-
- -- CRC Standard Mathematical Tables; 23rd Edition; pg 738
- Sqrt2 : constant :=
- 1.41421_35623_73095_04880_16887_24209_69807_85696_71875_37695;
- Sqrt3 : constant :=
- 1.73205_08075_68877_29352_74463_41505_87236_69428_05253_81039;
-
- Pi : constant := Ada.Numerics.Pi;
-
- -- relative error bound from G.2.4(7);6.0
- Minimum_Error : constant := 4.0;
-
- generic
- type Real is digits <>;
- Half_PI_Low : in Real; -- The machine number closest to, but not greater
- -- than PI/2.0.
- Half_PI_High : in Real;-- The machine number closest to, but not less
- -- than PI/2.0.
- PI_Low : in Real; -- The machine number closest to, but not greater
- -- than PI.
- PI_High : in Real; -- The machine number closest to, but not less
- -- than PI.
- package Generic_Check is
- procedure Do_Test;
- end Generic_Check;
-
- package body Generic_Check is
- package Elementary_Functions is new
- Ada.Numerics.Generic_Elementary_Functions (Real);
-
- function Arcsin (X : Real) return Real renames
- Elementary_Functions.Arcsin;
- function Arcsin (X, Cycle : Real) return Real renames
- Elementary_Functions.Arcsin;
- function Arccos (X : Real) return Real renames
- Elementary_Functions.ArcCos;
- function Arccos (X, Cycle : Real) return Real renames
- Elementary_Functions.ArcCos;
-
- -- needed for support
- function Log (X, Base : Real) return Real renames
- Elementary_Functions.Log;
-
- -- flag used to terminate some tests early
- Accuracy_Error_Reported : Boolean := False;
-
- -- The following value is a lower bound on the accuracy
- -- required. It is normally 0.0 so that the lower bound
- -- is computed from Model_Epsilon. However, for tests
- -- where the expected result is only known to a certain
- -- amount of precision this bound takes on a non-zero
- -- value to account for that level of precision.
- Error_Low_Bound : Real := 0.0;
-
-
- procedure Check (Actual, Expected : Real;
- Test_Name : String;
- MRE : Real) is
- Max_Error : Real;
- Rel_Error : Real;
- Abs_Error : Real;
- begin
- -- In the case where the expected result is very small or 0
- -- we compute the maximum error as a multiple of Model_Epsilon instead
- -- of Model_Epsilon and Expected.
- Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
- Abs_Error := MRE * Real'Model_Epsilon;
- if Rel_Error > Abs_Error then
- Max_Error := Rel_Error;
- else
- Max_Error := Abs_Error;
- end if;
-
- -- take into account the low bound on the error
- if Max_Error < Error_Low_Bound then
- Max_Error := Error_Low_Bound;
- end if;
-
- if abs (Actual - Expected) > Max_Error then
- Accuracy_Error_Reported := True;
- Report.Failed (Test_Name &
- " actual: " & Real'Image (Actual) &
- " expected: " & Real'Image (Expected) &
- " difference: " & Real'Image (Actual - Expected) &
- " max err:" & Real'Image (Max_Error) );
- elsif Verbose then
- if Actual = Expected then
- Report.Comment (Test_Name & " exact result");
- else
- Report.Comment (Test_Name & " passed");
- end if;
- end if;
- end Check;
-
-
- procedure Special_Value_Test is
- -- In the following tests the expected result is accurate
- -- to the machine precision so the minimum guaranteed error
- -- bound can be used.
-
- type Data_Point is
- record
- Degrees,
- Radians,
- Argument,
- Error_Bound : Real;
- end record;
-
- type Test_Data_Type is array (Positive range <>) of Data_Point;
-
- -- the values in the following tables only involve static
- -- expressions so no loss of precision occurs. However,
- -- rounding can be an issue with expressions involving Pi
- -- and square roots. The error bound specified in the
- -- table takes the sqrt error into account but not the
- -- error due to Pi. The Pi error is added in in the
- -- radians test below.
-
- Arcsin_Test_Data : constant Test_Data_Type := (
- -- degrees radians sine error_bound test #
- --( 0.0, 0.0, 0.0, 0.0 ), -- 1 - In Exact_Result_Test.
- ( 30.0, Pi/6.0, 0.5, 4.0 ), -- 2
- ( 60.0, Pi/3.0, Sqrt3/2.0, 5.0 ), -- 3
- --( 90.0, Pi/2.0, 1.0, 4.0 ), -- 4 - In Exact_Result_Test.
- --(-90.0, -Pi/2.0, -1.0, 4.0 ), -- 5 - In Exact_Result_Test.
- (-60.0, -Pi/3.0, -Sqrt3/2.0, 5.0 ), -- 6
- (-30.0, -Pi/6.0, -0.5, 4.0 ), -- 7
- ( 45.0, Pi/4.0, Sqrt2/2.0, 5.0 ), -- 8
- (-45.0, -Pi/4.0, -Sqrt2/2.0, 5.0 ) ); -- 9
-
- Arccos_Test_Data : constant Test_Data_Type := (
- -- degrees radians cosine error_bound test #
- --( 0.0, 0.0, 1.0, 0.0 ), -- 1 - In Exact_Result_Test.
- ( 30.0, Pi/6.0, Sqrt3/2.0, 5.0 ), -- 2
- ( 60.0, Pi/3.0, 0.5, 4.0 ), -- 3
- --( 90.0, Pi/2.0, 0.0, 4.0 ), -- 4 - In Exact_Result_Test.
- (120.0, 2.0*Pi/3.0, -0.5, 4.0 ), -- 5
- (150.0, 5.0*Pi/6.0, -Sqrt3/2.0, 5.0 ), -- 6
- --(180.0, Pi, -1.0, 4.0 ), -- 7 - In Exact_Result_Test.
- ( 45.0, Pi/4.0, Sqrt2/2.0, 5.0 ), -- 8
- (135.0, 3.0*Pi/4.0, -Sqrt2/2.0, 5.0 ) ); -- 9
-
- Cycle_Error,
- Radian_Error : Real;
- begin
- for I in Arcsin_Test_Data'Range loop
-
- -- note exact result requirements A.5.1(38);6.0 and
- -- G.2.4(12);6.0
- if Arcsin_Test_Data (I).Error_Bound = 0.0 then
- Cycle_Error := 0.0;
- Radian_Error := 0.0;
- else
- Cycle_Error := Arcsin_Test_Data (I).Error_Bound;
- -- allow for rounding error in the specification of Pi
- Radian_Error := Cycle_Error + 1.0;
- end if;
-
- Check (Arcsin (Arcsin_Test_Data (I).Argument),
- Arcsin_Test_Data (I).Radians,
- "test" & Integer'Image (I) &
- " arcsin(" &
- Real'Image (Arcsin_Test_Data (I).Argument) &
- ")",
- Radian_Error);
---pwb-math Check (Arcsin (Arcsin_Test_Data (I).Argument, 2.0 * Pi),
---pwb-math Arcsin_Test_Data (I).Radians,
---pwb-math "test" & Integer'Image (I) &
---pwb-math " arcsin(" &
---pwb-math Real'Image (Arcsin_Test_Data (I).Argument) &
---pwb-math ", 2pi)",
---pwb-math Cycle_Error);
- Check (Arcsin (Arcsin_Test_Data (I).Argument, 360.0),
- Arcsin_Test_Data (I).Degrees,
- "test" & Integer'Image (I) &
- " arcsin(" &
- Real'Image (Arcsin_Test_Data (I).Argument) &
- ", 360)",
- Cycle_Error);
- end loop;
-
-
- for I in Arccos_Test_Data'Range loop
-
- -- note exact result requirements A.5.1(39);6.0 and
- -- G.2.4(12);6.0
- if Arccos_Test_Data (I).Error_Bound = 0.0 then
- Cycle_Error := 0.0;
- Radian_Error := 0.0;
- else
- Cycle_Error := Arccos_Test_Data (I).Error_Bound;
- -- allow for rounding error in the specification of Pi
- Radian_Error := Cycle_Error + 1.0;
- end if;
-
- Check (Arccos (Arccos_Test_Data (I).Argument),
- Arccos_Test_Data (I).Radians,
- "test" & Integer'Image (I) &
- " arccos(" &
- Real'Image (Arccos_Test_Data (I).Argument) &
- ")",
- Radian_Error);
---pwb-math Check (Arccos (Arccos_Test_Data (I).Argument, 2.0 * Pi),
---pwb-math Arccos_Test_Data (I).Radians,
---pwb-math "test" & Integer'Image (I) &
---pwb-math " arccos(" &
---pwb-math Real'Image (Arccos_Test_Data (I).Argument) &
---pwb-math ", 2pi)",
---pwb-math Cycle_Error);
- Check (Arccos (Arccos_Test_Data (I).Argument, 360.0),
- Arccos_Test_Data (I).Degrees,
- "test" & Integer'Image (I) &
- " arccos(" &
- Real'Image (Arccos_Test_Data (I).Argument) &
- ", 360)",
- Cycle_Error);
- end loop;
-
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in special value test");
- when others =>
- Report.Failed ("exception in special value test");
- end Special_Value_Test;
-
-
- procedure Check_Exact (Actual, Expected_Low, Expected_High : Real;
- Test_Name : String) is
- -- If the expected result is not a model number, then Expected_Low is
- -- the first machine number less than the (exact) expected
- -- result, and Expected_High is the first machine number greater than
- -- the (exact) expected result. If the expected result is a model
- -- number, Expected_Low = Expected_High = the result.
- Model_Expected_Low : Real := Expected_Low;
- Model_Expected_High : Real := Expected_High;
- begin
- -- Calculate the first model number nearest to, but below (or equal)
- -- to the expected result:
- while Real'Model (Model_Expected_Low) /= Model_Expected_Low loop
- -- Try the next machine number lower:
- Model_Expected_Low := Real'Adjacent(Model_Expected_Low, 0.0);
- end loop;
- -- Calculate the first model number nearest to, but above (or equal)
- -- to the expected result:
- while Real'Model (Model_Expected_High) /= Model_Expected_High loop
- -- Try the next machine number higher:
- Model_Expected_High := Real'Adjacent(Model_Expected_High, 100.0);
- end loop;
-
- if Actual < Model_Expected_Low or Actual > Model_Expected_High then
- Accuracy_Error_Reported := True;
- if Actual < Model_Expected_Low then
- Report.Failed (Test_Name &
- " actual: " & Real'Image (Actual) &
- " expected low: " & Real'Image (Model_Expected_Low) &
- " expected high: " & Real'Image (Model_Expected_High) &
- " difference: " & Real'Image (Actual - Expected_Low));
- else
- Report.Failed (Test_Name &
- " actual: " & Real'Image (Actual) &
- " expected low: " & Real'Image (Model_Expected_Low) &
- " expected high: " & Real'Image (Model_Expected_High) &
- " difference: " & Real'Image (Expected_High - Actual));
- end if;
- elsif Verbose then
- Report.Comment (Test_Name & " passed");
- end if;
- end Check_Exact;
-
-
- procedure Exact_Result_Test is
- begin
- -- A.5.1(38)
- Check_Exact (Arcsin (0.0), 0.0, 0.0, "arcsin(0)");
- Check_Exact (Arcsin (0.0, 45.0), 0.0, 0.0, "arcsin(0,45)");
-
- -- A.5.1(39)
- Check_Exact (Arccos (1.0), 0.0, 0.0, "arccos(1)");
- Check_Exact (Arccos (1.0, 75.0), 0.0, 0.0, "arccos(1,75)");
-
- -- G.2.4(11-13)
- Check_Exact (Arcsin (1.0), Half_PI_Low, Half_PI_High, "arcsin(1)");
- Check_Exact (Arcsin (1.0, 360.0), 90.0, 90.0, "arcsin(1,360)");
-
- Check_Exact (Arcsin (-1.0), -Half_PI_High, -Half_PI_Low, "arcsin(-1)");
- Check_Exact (Arcsin (-1.0, 360.0), -90.0, -90.0, "arcsin(-1,360)");
-
- Check_Exact (Arccos (0.0), Half_PI_Low, Half_PI_High, "arccos(0)");
- Check_Exact (Arccos (0.0, 360.0), 90.0, 90.0, "arccos(0,360)");
-
- Check_Exact (Arccos (-1.0), PI_Low, PI_High, "arccos(-1)");
- Check_Exact (Arccos (-1.0, 360.0), 180.0, 180.0, "arccos(-1,360)");
-
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in Exact_Result Test");
- when others =>
- Report.Failed ("Exception in Exact_Result Test");
- end Exact_Result_Test;
-
-
- procedure Arcsin_Taylor_Series_Test is
- -- the following range is chosen so that the Taylor series
- -- used will produce a result accurate to machine precision.
- --
- -- The following formula is used for the Taylor series:
- -- TS(x) = x { 1 + (xsq/2) [ (1/3) + (3/4)xsq { (1/5) +
- -- (5/6)xsq [ (1/7) + (7/8)xsq/9 ] } ] }
- -- where xsq = x * x
- --
- A : constant := -0.125;
- B : constant := 0.125;
- X : Real;
- Y, Y_Sq : Real;
- Actual, Sum, Xm : Real;
- -- terms in Taylor series
- K : constant Integer := Integer (
- Log (
- Real (Real'Machine_Radix) ** Real'Machine_Mantissa,
- 10.0)) + 1;
- begin
- Accuracy_Error_Reported := False; -- reset
- for I in 1..Max_Samples loop
- -- make sure there is no error in x-1, x, and x+1
- X := (B - A) * Real (I) / Real (Max_Samples) + A;
-
- Y := X;
- Y_Sq := Y * Y;
- Sum := 0.0;
- Xm := Real (K + K + 1);
- for M in 1 .. K loop
- Sum := Y_Sq * (Sum + 1.0/Xm);
- Xm := Xm - 2.0;
- Sum := Sum * (Xm /(Xm + 1.0));
- end loop;
- Sum := Sum * Y;
- Actual := Y + Sum;
- Sum := (Y - Actual) + Sum;
- if not Real'Machine_Rounds then
- Actual := Actual + (Sum + Sum);
- end if;
-
- Check (Actual, Arcsin (X),
- "Taylor Series test" & Integer'Image (I) & ": arcsin(" &
- Real'Image (X) & ") ",
- Minimum_Error);
-
- if Accuracy_Error_Reported then
- -- only report the first error in this test in order to keep
- -- lots of failures from producing a huge error log
- return;
- end if;
-
- end loop;
-
- exception
- when Constraint_Error =>
- Report.Failed
- ("Constraint_Error raised in Arcsin_Taylor_Series_Test" &
- " for X=" & Real'Image (X));
- when others =>
- Report.Failed ("exception in Arcsin_Taylor_Series_Test" &
- " for X=" & Real'Image (X));
- end Arcsin_Taylor_Series_Test;
-
-
-
- procedure Arccos_Taylor_Series_Test is
- -- the following range is chosen so that the Taylor series
- -- used will produce a result accurate to machine precision.
- --
- -- The following formula is used for the Taylor series:
- -- TS(x) = x { 1 + (xsq/2) [ (1/3) + (3/4)xsq { (1/5) +
- -- (5/6)xsq [ (1/7) + (7/8)xsq/9 ] } ] }
- -- arccos(x) = pi/2 - TS(x)
- A : constant := -0.125;
- B : constant := 0.125;
- C1, C2 : Real;
- X : Real;
- Y, Y_Sq : Real;
- Actual, Sum, Xm, S : Real;
- -- terms in Taylor series
- K : constant Integer := Integer (
- Log (
- Real (Real'Machine_Radix) ** Real'Machine_Mantissa,
- 10.0)) + 1;
- begin
- if Real'Digits > 23 then
- -- constants in this section only accurate to 23 digits
- Error_Low_Bound := 0.00000_00000_00000_00000_001;
- Report.Comment ("arctan accuracy checked to 23 digits");
- end if;
-
- -- C1 + C2 equals Pi/2 accurate to 23 digits
- if Real'Machine_Radix = 10 then
- C1 := 1.57;
- C2 := 7.9632679489661923132E-4;
- else
- C1 := 201.0 / 128.0;
- C2 := 4.8382679489661923132E-4;
- end if;
-
- Accuracy_Error_Reported := False; -- reset
- for I in 1..Max_Samples loop
- -- make sure there is no error in x-1, x, and x+1
- X := (B - A) * Real (I) / Real (Max_Samples) + A;
-
- Y := X;
- Y_Sq := Y * Y;
- Sum := 0.0;
- Xm := Real (K + K + 1);
- for M in 1 .. K loop
- Sum := Y_Sq * (Sum + 1.0/Xm);
- Xm := Xm - 2.0;
- Sum := Sum * (Xm /(Xm + 1.0));
- end loop;
- Sum := Sum * Y;
-
- -- at this point we have arcsin(x).
- -- We compute arccos(x) = pi/2 - arcsin(x).
- -- The following code segment is translated directly from
- -- the CELEFUNT FORTRAN implementation
-
- S := C1 + C2;
- Sum := ((C1 - S) + C2) - Sum;
- Actual := S + Sum;
- Sum := ((S - Actual) + Sum) - Y;
- S := Actual;
- Actual := S + Sum;
- Sum := (S - Actual) + Sum;
-
- if not Real'Machine_Rounds then
- Actual := Actual + (Sum + Sum);
- end if;
-
- Check (Actual, Arccos (X),
- "Taylor Series test" & Integer'Image (I) & ": arccos(" &
- Real'Image (X) & ") ",
- Minimum_Error);
-
- -- only report the first error in this test in order to keep
- -- lots of failures from producing a huge error log
- exit when Accuracy_Error_Reported;
- end loop;
- Error_Low_Bound := 0.0; -- reset
- exception
- when Constraint_Error =>
- Report.Failed
- ("Constraint_Error raised in Arccos_Taylor_Series_Test" &
- " for X=" & Real'Image (X));
- when others =>
- Report.Failed ("exception in Arccos_Taylor_Series_Test" &
- " for X=" & Real'Image (X));
- end Arccos_Taylor_Series_Test;
-
-
-
- procedure Identity_Test is
- -- test the identity arcsin(-x) = -arcsin(x)
- -- range chosen to be most of the valid range of the argument.
- A : constant := -0.999;
- B : constant := 0.999;
- X : Real;
- begin
- Accuracy_Error_Reported := False; -- reset
- for I in 1..Max_Samples loop
- -- make sure there is no error in x-1, x, and x+1
- X := (B - A) * Real (I) / Real (Max_Samples) + A;
-
- Check (Arcsin(-X), -Arcsin (X),
- "Identity test" & Integer'Image (I) & ": arcsin(" &
- Real'Image (X) & ") ",
- 8.0); -- 2 arcsin evaluations => twice the error bound
-
- if Accuracy_Error_Reported then
- -- only report the first error in this test in order to keep
- -- lots of failures from producing a huge error log
- return;
- end if;
- end loop;
- end Identity_Test;
-
-
- procedure Exception_Test is
- X1, X2 : Real := 0.0;
- begin
- begin
- X1 := Arcsin (1.1);
- Report.Failed ("no exception for Arcsin (1.1)");
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error instead of " &
- "Argument_Error for Arcsin (1.1)");
- when Ada.Numerics.Argument_Error =>
- null; -- expected result
- when others =>
- Report.Failed ("wrong exception for Arcsin(1.1)");
- end;
-
- begin
- X2 := Arccos (-1.1);
- Report.Failed ("no exception for Arccos (-1.1)");
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error instead of " &
- "Argument_Error for Arccos (-1.1)");
- when Ada.Numerics.Argument_Error =>
- null; -- expected result
- when others =>
- Report.Failed ("wrong exception for Arccos(-1.1)");
- end;
-
-
- -- optimizer thwarting
- if Report.Ident_Bool (False) then
- Report.Comment (Real'Image (X1 + X2));
- end if;
- end Exception_Test;
-
-
- procedure Do_Test is
- begin
- Special_Value_Test;
- Exact_Result_Test;
- Arcsin_Taylor_Series_Test;
- Arccos_Taylor_Series_Test;
- Identity_Test;
- Exception_Test;
- end Do_Test;
- end Generic_Check;
-
- -----------------------------------------------------------------------
- -----------------------------------------------------------------------
- -- These expressions must be truly static, which is why we have to do them
- -- outside of the generic, and we use the named numbers. Note that we know
- -- that PI is not a machine number (it is irrational), and it should be
- -- represented to more digits than supported by the target machine.
- Float_Half_PI_Low : constant := Float'Adjacent(PI/2.0, 0.0);
- Float_Half_PI_High : constant := Float'Adjacent(PI/2.0, 10.0);
- Float_PI_Low : constant := Float'Adjacent(PI, 0.0);
- Float_PI_High : constant := Float'Adjacent(PI, 10.0);
- package Float_Check is new Generic_Check (Float,
- Half_PI_Low => Float_Half_PI_Low,
- Half_PI_High => Float_Half_PI_High,
- PI_Low => Float_PI_Low,
- PI_High => Float_PI_High);
-
- -- check the floating point type with the most digits
- type A_Long_Float is digits System.Max_Digits;
- A_Long_Float_Half_PI_Low : constant := A_Long_Float'Adjacent(PI/2.0, 0.0);
- A_Long_Float_Half_PI_High : constant := A_Long_Float'Adjacent(PI/2.0, 10.0);
- A_Long_Float_PI_Low : constant := A_Long_Float'Adjacent(PI, 0.0);
- A_Long_Float_PI_High : constant := A_Long_Float'Adjacent(PI, 10.0);
- package A_Long_Float_Check is new Generic_Check (A_Long_Float,
- Half_PI_Low => A_Long_Float_Half_PI_Low,
- Half_PI_High => A_Long_Float_Half_PI_High,
- PI_Low => A_Long_Float_PI_Low,
- PI_High => A_Long_Float_PI_High);
-
- -----------------------------------------------------------------------
- -----------------------------------------------------------------------
-
-
-begin
- Report.Test ("CXG2015",
- "Check the accuracy of the ARCSIN and ARCCOS functions");
-
- if Verbose then
- Report.Comment ("checking Standard.Float");
- end if;
-
- Float_Check.Do_Test;
-
- if Verbose then
- Report.Comment ("checking a digits" &
- Integer'Image (System.Max_Digits) &
- " floating point type");
- end if;
-
- A_Long_Float_Check.Do_Test;
-
-
- Report.Result;
-end CXG2015;
diff --git a/gcc/testsuite/ada/acats/tests/cxg/cxg2016.a b/gcc/testsuite/ada/acats/tests/cxg/cxg2016.a
deleted file mode 100644
index 832b118224a..00000000000
--- a/gcc/testsuite/ada/acats/tests/cxg/cxg2016.a
+++ /dev/null
@@ -1,482 +0,0 @@
--- CXG2016.A
---
--- Grant of Unlimited Rights
---
--- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
--- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
--- unlimited rights in the software and documentation contained herein.
--- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
--- this public release, the Government intends to confer upon all
--- recipients unlimited rights equal to those held by the Government.
--- These rights include rights to use, duplicate, release or disclose the
--- released technical data and computer software in whole or in part, in
--- any manner and for any purpose whatsoever, and to have or permit others
--- to do so.
---
--- DISCLAIMER
---
--- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
--- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
--- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
--- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
--- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
--- PARTICULAR PURPOSE OF SAID MATERIAL.
---*
---
--- OBJECTIVE:
--- Check that the ARCTAN function returns a
--- result that is within the error bound allowed.
---
--- TEST DESCRIPTION:
--- This test consists of a generic package that is
--- instantiated to check both Float and a long float type.
--- The test for each floating point type is divided into
--- several parts:
--- Special value checks where the result is a known constant.
--- Exception checks.
---
--- SPECIAL REQUIREMENTS
--- The Strict Mode for the numerical accuracy must be
--- selected. The method by which this mode is selected
--- is implementation dependent.
---
--- APPLICABILITY CRITERIA:
--- This test applies only to implementations supporting the
--- Numerics Annex.
--- This test only applies to the Strict Mode for numerical
--- accuracy.
---
---
--- CHANGE HISTORY:
--- 19 Mar 96 SAIC Initial release for 2.1
--- 30 APR 96 SAIC Fixed optimization issue
--- 17 AUG 96 SAIC Incorporated Reviewer's suggestions.
--- 12 OCT 96 SAIC Incorporated Reviewer's suggestions.
--- 02 DEC 97 EDS Remove procedure Identity_1_Test and calls to
--- procedure.
--- 29 JUN 98 EDS Replace -0.0 with call to ImpDef.Annex_G.Negative_Zero
--- 28 APR 99 RLB Replaced comma accidentally deleted in above change.
--- 15 DEC 99 RLB Added model range checking to "exact" results,
--- in order to avoid too strictly requiring a specific
--- result.
---!
-
---
--- References:
---
--- Software Manual for the Elementary Functions
--- William J. Cody, Jr. and William Waite
--- Prentice-Hall, 1980
---
--- CRC Standard Mathematical Tables
--- 23rd Edition
---
--- Implementation and Testing of Function Software
--- W. J. Cody
--- Problems and Methodologies in Mathematical Software Production
--- editors P. C. Messina and A. Murli
--- Lecture Notes in Computer Science Volume 142
--- Springer Verlag, 1982
---
-
-with System;
-with Report;
-with Ada.Numerics.Generic_Elementary_Functions;
-with Impdef.Annex_G;
-procedure CXG2016 is
- Verbose : constant Boolean := False;
- Max_Samples : constant := 1000;
-
- -- CRC Standard Mathematical Tables; 23rd Edition; pg 738
- Sqrt2 : constant :=
- 1.41421_35623_73095_04880_16887_24209_69807_85696_71875_37695;
- Sqrt3 : constant :=
- 1.73205_08075_68877_29352_74463_41505_87236_69428_05253_81039;
-
- Pi : constant := Ada.Numerics.Pi;
-
- generic
- type Real is digits <>;
- Half_PI_Low : in Real; -- The machine number closest to, but not greater
- -- than PI/2.0.
- Half_PI_High : in Real;-- The machine number closest to, but not less
- -- than PI/2.0.
- PI_Low : in Real; -- The machine number closest to, but not greater
- -- than PI.
- PI_High : in Real; -- The machine number closest to, but not less
- -- than PI.
- package Generic_Check is
- procedure Do_Test;
- end Generic_Check;
-
- package body Generic_Check is
- package Elementary_Functions is new
- Ada.Numerics.Generic_Elementary_Functions (Real);
-
- function Arctan (Y : Real;
- X : Real := 1.0) return Real renames
- Elementary_Functions.Arctan;
- function Arctan (Y : Real;
- X : Real := 1.0;
- Cycle : Real) return Real renames
- Elementary_Functions.Arctan;
-
- -- flag used to terminate some tests early
- Accuracy_Error_Reported : Boolean := False;
-
- -- The following value is a lower bound on the accuracy
- -- required. It is normally 0.0 so that the lower bound
- -- is computed from Model_Epsilon. However, for tests
- -- where the expected result is only known to a certain
- -- amount of precision this bound takes on a non-zero
- -- value to account for that level of precision.
- Error_Low_Bound : Real := 0.0;
-
- procedure Check (Actual, Expected : Real;
- Test_Name : String;
- MRE : Real) is
- Max_Error : Real;
- Rel_Error : Real;
- Abs_Error : Real;
- begin
- -- In the case where the expected result is very small or 0
- -- we compute the maximum error as a multiple of Model_Epsilon
- -- instead of Model_Epsilon and Expected.
- Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
- Abs_Error := MRE * Real'Model_Epsilon;
- if Rel_Error > Abs_Error then
- Max_Error := Rel_Error;
- else
- Max_Error := Abs_Error;
- end if;
-
- -- take into account the low bound on the error
- if Max_Error < Error_Low_Bound then
- Max_Error := Error_Low_Bound;
- end if;
-
- if abs (Actual - Expected) > Max_Error then
- Accuracy_Error_Reported := True;
- Report.Failed (Test_Name &
- " actual: " & Real'Image (Actual) &
- " expected: " & Real'Image (Expected) &
- " difference: " & Real'Image (Actual - Expected) &
- " max err:" & Real'Image (Max_Error) );
- elsif Verbose then
- if Actual = Expected then
- Report.Comment (Test_Name & " exact result");
- else
- Report.Comment (Test_Name & " passed");
- end if;
- end if;
- end Check;
-
-
- procedure Special_Value_Test is
- -- If eta is very small, arctan(x + eta) ~= arctan(x) + eta/(1+x*x).
- --
- -- For tests 4 and 5, there is an error of 4.0ME for arctan + an
- -- additional error of 1.0ME because pi is not exact for a total of 5.0ME.
- --
- -- In test 3 there is the error for pi plus an additional error
- -- of (1.0ME)/4 since sqrt3 is not exact, for a total of 5.25ME.
- --
- -- In test 2 there is the error for pi plus an additional error
- -- of (3/4)(1.0ME) since sqrt3 is not exact, for a total of 5.75ME.
-
-
- type Data_Point is
- record
- Degrees,
- Radians,
- Tangent,
- Allowed_Error : Real;
- end record;
-
- type Test_Data_Type is array (Positive range <>) of Data_Point;
-
- -- the values in the following table only involve static
- -- expressions so no additional loss of precision occurs.
- Test_Data : constant Test_Data_Type := (
- -- degrees radians tangent error test #
- ( 0.0, 0.0, 0.0, 4.0 ), -- 1
- ( 30.0, Pi/6.0, Sqrt3/3.0, 5.75), -- 2
- ( 60.0, Pi/3.0, Sqrt3, 5.25), -- 3
- ( 45.0, Pi/4.0, 1.0, 5.0 ), -- 4
- (-45.0, -Pi/4.0, -1.0, 5.0 ) ); -- 5
-
- begin
- for I in Test_Data'Range loop
- Check (Arctan (Test_Data (I).Tangent),
- Test_Data (I).Radians,
- "special value test" & Integer'Image (I) &
- " arctan(" &
- Real'Image (Test_Data (I).Tangent) &
- ")",
- Test_Data (I).Allowed_Error);
- Check (Arctan (Test_Data (I).Tangent, Cycle => 360.0),
- Test_Data (I).Degrees,
- "special value test" & Integer'Image (I) &
- " arctan(" &
- Real'Image (Test_Data (I).Tangent) &
- ", cycle=>360)",
- Test_Data (I).Allowed_Error);
- end loop;
-
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in special value test");
- when others =>
- Report.Failed ("exception in special value test");
- end Special_Value_Test;
-
-
-
- procedure Check_Exact (Actual, Expected_Low, Expected_High : Real;
- Test_Name : String) is
- -- If the expected result is not a model number, then Expected_Low is
- -- the first machine number less than the (exact) expected
- -- result, and Expected_High is the first machine number greater than
- -- the (exact) expected result. If the expected result is a model
- -- number, Expected_Low = Expected_High = the result.
- Model_Expected_Low : Real := Expected_Low;
- Model_Expected_High : Real := Expected_High;
- begin
- -- Calculate the first model number nearest to, but below (or equal)
- -- to the expected result:
- while Real'Model (Model_Expected_Low) /= Model_Expected_Low loop
- -- Try the next machine number lower:
- Model_Expected_Low := Real'Adjacent(Model_Expected_Low, 0.0);
- end loop;
- -- Calculate the first model number nearest to, but above (or equal)
- -- to the expected result:
- while Real'Model (Model_Expected_High) /= Model_Expected_High loop
- -- Try the next machine number higher:
- Model_Expected_High := Real'Adjacent(Model_Expected_High, 100.0);
- end loop;
-
- if Actual < Model_Expected_Low or Actual > Model_Expected_High then
- Accuracy_Error_Reported := True;
- if Actual < Model_Expected_Low then
- Report.Failed (Test_Name &
- " actual: " & Real'Image (Actual) &
- " expected low: " & Real'Image (Model_Expected_Low) &
- " expected high: " & Real'Image (Model_Expected_High) &
- " difference: " & Real'Image (Actual - Expected_Low));
- else
- Report.Failed (Test_Name &
- " actual: " & Real'Image (Actual) &
- " expected low: " & Real'Image (Model_Expected_Low) &
- " expected high: " & Real'Image (Model_Expected_High) &
- " difference: " & Real'Image (Expected_High - Actual));
- end if;
- elsif Verbose then
- Report.Comment (Test_Name & " passed");
- end if;
- end Check_Exact;
-
-
- procedure Exact_Result_Test is
- begin
- -- A.5.1(40);6.0
- Check_Exact (Arctan (0.0, 1.0), 0.0, 0.0, "arctan(0,1)");
- Check_Exact (Arctan (0.0, 1.0, 27.0), 0.0, 0.0, "arctan(0,1,27)");
-
- -- G.2.4(11-13);6.0
-
- Check_Exact (Arctan (1.0, 0.0), Half_PI_Low, Half_PI_High,
- "arctan(1,0)");
- Check_Exact (Arctan (1.0, 0.0, 360.0), 90.0, 90.0, "arctan(1,0,360)");
-
- Check_Exact (Arctan (-1.0, 0.0), -Half_PI_High, -Half_PI_Low,
- "arctan(-1,0)");
- Check_Exact (Arctan (-1.0, 0.0, 360.0), -90.0, -90.0,
- "arctan(-1,0,360)");
-
- if Real'Signed_Zeros then
- Check_Exact (Arctan (0.0, -1.0), PI_Low, PI_High, "arctan(+0,-1)");
- Check_Exact (Arctan (0.0, -1.0, 360.0), 180.0, 180.0,
- "arctan(+0,-1,360)");
- Check_Exact (Arctan ( Real ( ImpDef.Annex_G.Negative_Zero ), -1.0),
- -PI_High, -PI_Low, "arctan(-0,-1)");
- Check_Exact (Arctan ( Real ( ImpDef.Annex_G.Negative_Zero ), -1.0,
- 360.0), -180.0, -180.0, "arctan(-0,-1,360)");
- else
- Check_Exact (Arctan (0.0, -1.0), PI_Low, PI_High, "arctan(0,-1)");
- Check_Exact (Arctan (0.0, -1.0, 360.0), 180.0, 180.0,
- "arctan(0,-1,360)");
- end if;
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in Exact_Result Test");
- when others =>
- Report.Failed ("Exception in Exact_Result Test");
- end Exact_Result_Test;
-
-
- procedure Taylor_Series_Test is
- -- This test checks the Arctan by using a taylor series expansion that
- -- will produce a result accurate to 19 decimal digits for
- -- the range under test.
- --
- -- The maximum relative error bound for this test is
- -- 4 for the arctan operation and 2 for the Taylor series
- -- for a total of 6 * Model_Epsilon
-
- A : constant := -1.0/16.0;
- B : constant := 1.0/16.0;
- X : Real;
- Actual, Expected : Real;
- Sum, Em, X_Squared : Real;
- begin
- if Real'Digits > 19 then
- -- Taylor series calculation produces result accurate to 19
- -- digits. If type being tested has more digits then set
- -- the error low bound to account for this.
- -- The error low bound is conservatively set to 6*10**-19
- Error_Low_Bound := 0.00000_00000_00000_0006;
- Report.Comment ("arctan accuracy checked to 19 digits");
- end if;
-
- Accuracy_Error_Reported := False; -- reset
- for I in 0..Max_Samples loop
- X := (B - A) * Real (I) / Real (Max_Samples) + A;
- X_Squared := X * X;
- Em := 17.0;
- Sum := X_Squared / Em;
-
- for II in 1 .. 7 loop
- Em := Em - 2.0;
- Sum := (1.0 / Em - Sum) * X_Squared;
- end loop;
- Sum := -X * Sum;
- Expected := X + Sum;
- Sum := (X - Expected) + Sum;
- if not Real'Machine_Rounds then
- Expected := Expected + (Sum + Sum);
- end if;
-
- Actual := Arctan (X);
-
- Check (Actual, Expected,
- "Taylor_Series_Test " & Integer'Image (I) & ": arctan(" &
- Real'Image (X) & ") ",
- 6.0);
-
- if Accuracy_Error_Reported then
- -- only report the first error in this test in order to keep
- -- lots of failures from producing a huge error log
- return;
- end if;
-
- end loop;
- Error_Low_Bound := 0.0; -- reset
- exception
- when Constraint_Error =>
- Report.Failed
- ("Constraint_Error raised in Taylor_Series_Test");
- when others =>
- Report.Failed ("exception in Taylor_Series_Test");
- end Taylor_Series_Test;
-
-
- procedure Exception_Test is
- X1, X2, X3 : Real := 0.0;
- begin
-
- begin -- A.5.1(20);6.0
- X1 := Arctan(0.0, Cycle => 0.0);
- Report.Failed ("no exception for cycle = 0.0");
- exception
- when Ada.Numerics.Argument_Error => null;
- when others =>
- Report.Failed ("wrong exception for cycle = 0.0");
- end;
-
- begin -- A.5.1(20);6.0
- X2 := Arctan (0.0, Cycle => -1.0);
- Report.Failed ("no exception for cycle < 0.0");
- exception
- when Ada.Numerics.Argument_Error => null;
- when others =>
- Report.Failed ("wrong exception for cycle < 0.0");
- end;
-
- begin -- A.5.1(25);6.0
- X3 := Arctan (0.0, 0.0);
- Report.Failed ("no exception for arctan(0,0)");
- exception
- when Ada.Numerics.Argument_Error => null;
- when others =>
- Report.Failed ("wrong exception for arctan(0,0)");
- end;
-
- -- optimizer thwarting
- if Report.Ident_Bool (False) then
- Report.Comment (Real'Image (X1 + X2 + X3));
- end if;
- end Exception_Test;
-
-
- procedure Do_Test is
- begin
- Special_Value_Test;
- Exact_Result_Test;
- Taylor_Series_Test;
- Exception_Test;
- end Do_Test;
- end Generic_Check;
-
- -----------------------------------------------------------------------
- -----------------------------------------------------------------------
- -- These expressions must be truly static, which is why we have to do them
- -- outside of the generic, and we use the named numbers. Note that we know
- -- that PI is not a machine number (it is irrational), and it should be
- -- represented to more digits than supported by the target machine.
- Float_Half_PI_Low : constant := Float'Adjacent(PI/2.0, 0.0);
- Float_Half_PI_High : constant := Float'Adjacent(PI/2.0, 10.0);
- Float_PI_Low : constant := Float'Adjacent(PI, 0.0);
- Float_PI_High : constant := Float'Adjacent(PI, 10.0);
- package Float_Check is new Generic_Check (Float,
- Half_PI_Low => Float_Half_PI_Low,
- Half_PI_High => Float_Half_PI_High,
- PI_Low => Float_PI_Low,
- PI_High => Float_PI_High);
-
- -- check the Floating point type with the most digits
- type A_Long_Float is digits System.Max_Digits;
- A_Long_Float_Half_PI_Low : constant := A_Long_Float'Adjacent(PI/2.0, 0.0);
- A_Long_Float_Half_PI_High : constant := A_Long_Float'Adjacent(PI/2.0, 10.0);
- A_Long_Float_PI_Low : constant := A_Long_Float'Adjacent(PI, 0.0);
- A_Long_Float_PI_High : constant := A_Long_Float'Adjacent(PI, 10.0);
- package A_Long_Float_Check is new Generic_Check (A_Long_Float,
- Half_PI_Low => A_Long_Float_Half_PI_Low,
- Half_PI_High => A_Long_Float_Half_PI_High,
- PI_Low => A_Long_Float_PI_Low,
- PI_High => A_Long_Float_PI_High);
-
- -----------------------------------------------------------------------
- -----------------------------------------------------------------------
-
-
-begin
- Report.Test ("CXG2016",
- "Check the accuracy of the ARCTAN function");
-
- if Verbose then
- Report.Comment ("checking Standard.Float");
- end if;
-
- Float_Check.Do_Test;
-
- if Verbose then
- Report.Comment ("checking a digits" &
- Integer'Image (System.Max_Digits) &
- " floating point type");
- end if;
-
- A_Long_Float_Check.Do_Test;
-
-
- Report.Result;
-end CXG2016;
diff --git a/gcc/testsuite/ada/acats/tests/cxg/cxg2017.a b/gcc/testsuite/ada/acats/tests/cxg/cxg2017.a
deleted file mode 100644
index 50add975f7f..00000000000
--- a/gcc/testsuite/ada/acats/tests/cxg/cxg2017.a
+++ /dev/null
@@ -1,296 +0,0 @@
--- CXG2017.A
---
--- Grant of Unlimited Rights
---
--- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
--- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
--- unlimited rights in the software and documentation contained herein.
--- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
--- this public release, the Government intends to confer upon all
--- recipients unlimited rights equal to those held by the Government.
--- These rights include rights to use, duplicate, release or disclose the
--- released technical data and computer software in whole or in part, in
--- any manner and for any purpose whatsoever, and to have or permit others
--- to do so.
---
--- DISCLAIMER
---
--- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
--- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
--- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
--- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
--- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
--- PARTICULAR PURPOSE OF SAID MATERIAL.
---*
---
--- OBJECTIVE:
--- Check that the TANH function returns
--- a result that is within the error bound allowed.
---
--- TEST DESCRIPTION:
--- This test consists of a generic package that is
--- instantiated to check both Float and a long float type.
--- The test for each floating point type is divided into
--- several parts:
--- Special value checks where the result is a known constant.
--- Checks that use an identity for determining the result.
---
--- SPECIAL REQUIREMENTS
--- The Strict Mode for the numerical accuracy must be
--- selected. The method by which this mode is selected
--- is implementation dependent.
---
--- APPLICABILITY CRITERIA:
--- This test applies only to implementations supporting the
--- Numerics Annex.
--- This test only applies to the Strict Mode for numerical
--- accuracy.
---
---
--- CHANGE HISTORY:
--- 20 Mar 96 SAIC Initial release for 2.1
--- 17 Aug 96 SAIC Incorporated reviewer comments.
--- 03 Jun 98 EDS Add parens to remove the potential for overflow.
--- Remove the invocation of Identity_Test that checks
--- Tanh values that are too close to zero for the
--- test's error bounds.
---!
-
---
--- References:
---
--- Software Manual for the Elementary Functions
--- William J. Cody, Jr. and William Waite
--- Prentice-Hall, 1980
---
--- CRC Standard Mathematical Tables
--- 23rd Edition
---
--- Implementation and Testing of Function Software
--- W. J. Cody
--- Problems and Methodologies in Mathematical Software Production
--- editors P. C. Messina and A. Murli
--- Lecture Notes in Computer Science Volume 142
--- Springer Verlag, 1982
---
-
-with System;
-with Report;
-with Ada.Numerics.Generic_Elementary_Functions;
-procedure CXG2017 is
- Verbose : constant Boolean := False;
- Max_Samples : constant := 1000;
-
- E : constant := Ada.Numerics.E;
-
- generic
- type Real is digits <>;
- package Generic_Check is
- procedure Do_Test;
- end Generic_Check;
-
- package body Generic_Check is
- package Elementary_Functions is new
- Ada.Numerics.Generic_Elementary_Functions (Real);
-
- function Tanh (X : Real) return Real renames
- Elementary_Functions.Tanh;
-
- function Log (X : Real) return Real renames
- Elementary_Functions.Log;
-
- -- flag used to terminate some tests early
- Accuracy_Error_Reported : Boolean := False;
-
-
- -- The following value is a lower bound on the accuracy
- -- required. It is normally 0.0 so that the lower bound
- -- is computed from Model_Epsilon. However, for tests
- -- where the expected result is only known to a certain
- -- amount of precision this bound takes on a non-zero
- -- value to account for that level of precision.
- Error_Low_Bound : Real := 0.0;
-
- procedure Check (Actual, Expected : Real;
- Test_Name : String;
- MRE : Real) is
- Max_Error : Real;
- Rel_Error : Real;
- Abs_Error : Real;
- begin
- -- In the case where the expected result is very small or 0
- -- we compute the maximum error as a multiple of Model_Small instead
- -- of Model_Epsilon and Expected.
- Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
- Abs_Error := MRE * Real'Model_Small;
- if Rel_Error > Abs_Error then
- Max_Error := Rel_Error;
- else
- Max_Error := Abs_Error;
- end if;
- -- take into account the low bound on the error
- if Max_Error < Error_Low_Bound then
- Max_Error := Error_Low_Bound;
- end if;
-
- if abs (Actual - Expected) > Max_Error then
- Accuracy_Error_Reported := True;
- Report.Failed (Test_Name &
- " actual: " & Real'Image (Actual) &
- " expected: " & Real'Image (Expected) &
- " difference: " & Real'Image (Actual - Expected) &
- " max err:" & Real'Image (Max_Error) );
- elsif Verbose then
- if Actual = Expected then
- Report.Comment (Test_Name & " exact result");
- else
- Report.Comment (Test_Name & " passed");
- end if;
- end if;
- end Check;
-
-
- procedure Special_Value_Test is
- -- In the following tests the expected result is accurate
- -- to the machine precision so the minimum guaranteed error
- -- bound can be used.
- Minimum_Error : constant := 8.0;
- E2 : constant := E * E;
- begin
- Check (Tanh (1.0),
- (E - 1.0 / E) / (E + 1.0 / E),
- "tanh(1)",
- Minimum_Error);
- Check (Tanh (2.0),
- (E2 - 1.0 / E2) / (E2 + 1.0 / E2),
- "tanh(2)",
- Minimum_Error);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in special value test");
- when others =>
- Report.Failed ("exception in special value test");
- end Special_Value_Test;
-
-
-
- procedure Exact_Result_Test is
- No_Error : constant := 0.0;
- begin
- -- A.5.1(38);6.0
- Check (Tanh (0.0), 0.0, "tanh(0)", No_Error);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in Exact_Result Test");
- when others =>
- Report.Failed ("exception in Exact_Result Test");
- end Exact_Result_Test;
-
-
- procedure Identity_Test (A, B : Real) is
- -- For this test we use the identity
- -- TANH(u+v) = [TANH(u) + TANH(v)] / [1 + TANH(u)*TANH(v)]
- -- which is transformed to
- -- TANH(x) = [TANH(y)+C] / [1 + TANH(y) * C]
- -- where C = TANH(1/8) and y = x - 1/8
- --
- -- see Cody pg 248-249 for details on the error analysis.
- -- The net result is a relative error bound of 16 * Model_Epsilon.
- --
- -- The second part of this test checks the identity
- -- TANH(-x) = -TANH(X)
-
- X, Y : Real;
- Actual1, Actual2 : Real;
- C : constant := 1.2435300177159620805e-1;
- begin
- if Real'Digits > 20 then
- -- constant C is accurate to 20 digits. Set the low bound
- -- on the error to 16*10**-20
- Error_Low_Bound := 0.00000_00000_00000_00016;
- Report.Comment ("tanh accuracy checked to 20 digits");
- end if;
-
- Accuracy_Error_Reported := False; -- reset
- for I in 1..Max_Samples loop
- X := (B - A) * (Real (I) / Real (Max_Samples)) + A;
- Actual1 := Tanh(X);
-
- -- TANH(x) = [TANH(y)+C] / [1 + TANH(y) * C]
- Y := X - (1.0 / 8.0);
- Actual2 := (Tanh (Y) + C) / (1.0 + Tanh(Y) * C);
-
- Check (Actual1, Actual2,
- "Identity_1_Test " & Integer'Image (I) & ": tanh(" &
- Real'Image (X) & ") ",
- 16.0);
-
- -- TANH(-x) = -TANH(X)
- Actual2 := Tanh(-X);
- Check (-Actual1, Actual2,
- "Identity_2_Test " & Integer'Image (I) & ": tanh(" &
- Real'Image (X) & ") ",
- 16.0);
-
- if Accuracy_Error_Reported then
- -- only report the first error in this test in order to keep
- -- lots of failures from producing a huge error log
- return;
- end if;
-
- end loop;
- Error_Low_Bound := 0.0; -- reset
- exception
- when Constraint_Error =>
- Report.Failed
- ("Constraint_Error raised in Identity_Test" &
- " for X=" & Real'Image (X));
- when others =>
- Report.Failed ("exception in Identity_Test" &
- " for X=" & Real'Image (X));
- end Identity_Test;
-
-
-
- procedure Do_Test is
- begin
- Special_Value_Test;
- Exact_Result_Test;
- -- cover a large range
- Identity_Test (1.0, Real'Safe_Last);
- end Do_Test;
- end Generic_Check;
-
- -----------------------------------------------------------------------
- -----------------------------------------------------------------------
- package Float_Check is new Generic_Check (Float);
-
- -- check the floating point type with the most digits
- type A_Long_Float is digits System.Max_Digits;
- package A_Long_Float_Check is new Generic_Check (A_Long_Float);
-
- -----------------------------------------------------------------------
- -----------------------------------------------------------------------
-
-
-begin
- Report.Test ("CXG2017",
- "Check the accuracy of the TANH function");
-
- if Verbose then
- Report.Comment ("checking Standard.Float");
- end if;
-
- Float_Check.Do_Test;
-
- if Verbose then
- Report.Comment ("checking a digits" &
- Integer'Image (System.Max_Digits) &
- " floating point type");
- end if;
-
- A_Long_Float_Check.Do_Test;
-
-
- Report.Result;
-end CXG2017;
diff --git a/gcc/testsuite/ada/acats/tests/cxg/cxg2018.a b/gcc/testsuite/ada/acats/tests/cxg/cxg2018.a
deleted file mode 100644
index be4f1a82faf..00000000000
--- a/gcc/testsuite/ada/acats/tests/cxg/cxg2018.a
+++ /dev/null
@@ -1,355 +0,0 @@
--- CXG2018.A
---
--- Grant of Unlimited Rights
---
--- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
--- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
--- unlimited rights in the software and documentation contained herein.
--- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
--- this public release, the Government intends to confer upon all
--- recipients unlimited rights equal to those held by the Government.
--- These rights include rights to use, duplicate, release or disclose the
--- released technical data and computer software in whole or in part, in
--- any manner and for any purpose whatsoever, and to have or permit others
--- to do so.
---
--- DISCLAIMER
---
--- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
--- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
--- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
--- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
--- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
--- PARTICULAR PURPOSE OF SAID MATERIAL.
---*
---
--- OBJECTIVE:
--- Check that the complex EXP function returns
--- a result that is within the error bound allowed.
---
--- TEST DESCRIPTION:
--- This test consists of a generic package that is
--- instantiated to check complex numbers based upon
--- both Float and a long float type.
--- The test for each floating point type is divided into
--- several parts:
--- Special value checks where the result is a known constant.
--- Checks that use an identity for determining the result.
---
--- SPECIAL REQUIREMENTS
--- The Strict Mode for the numerical accuracy must be
--- selected. The method by which this mode is selected
--- is implementation dependent.
---
--- APPLICABILITY CRITERIA:
--- This test applies only to implementations supporting the
--- Numerics Annex.
--- This test only applies to the Strict Mode for numerical
--- accuracy.
---
---
--- CHANGE HISTORY:
--- 21 Mar 96 SAIC Initial release for 2.1
--- 17 Aug 96 SAIC Incorporated reviewer comments.
--- 27 Aug 99 RLB Repair on the error result of checks.
--- 02 Apr 03 RLB Added code to discard excess precision in the
--- construction of the test value for the
--- Identity_Test.
---
---!
-
---
--- References:
---
--- W. J. Cody
--- CELEFUNT: A Portable Test Package for Complex Elementary Functions
--- Algorithm 714, Collected Algorithms from ACM.
--- Published in Transactions On Mathematical Software,
--- Vol. 19, No. 1, March, 1993, pp. 1-21.
---
--- CRC Standard Mathematical Tables
--- 23rd Edition
---
-
-with System;
-with Report;
-with Ada.Numerics.Generic_Complex_Types;
-with Ada.Numerics.Generic_Complex_Elementary_Functions;
-procedure CXG2018 is
- Verbose : constant Boolean := False;
- -- Note that Max_Samples is the number of samples taken in
- -- both the real and imaginary directions. Thus, for Max_Samples
- -- of 100 the number of values checked is 10000.
- Max_Samples : constant := 100;
-
- E : constant := Ada.Numerics.E;
- Pi : constant := Ada.Numerics.Pi;
-
- generic
- type Real is digits <>;
- package Generic_Check is
- procedure Do_Test;
- end Generic_Check;
-
- package body Generic_Check is
- package Complex_Type is new
- Ada.Numerics.Generic_Complex_Types (Real);
- use Complex_Type;
-
- package CEF is new
- Ada.Numerics.Generic_Complex_Elementary_Functions (Complex_Type);
-
- function Exp (X : Complex) return Complex renames CEF.Exp;
- function Exp (X : Imaginary) return Complex renames CEF.Exp;
-
- -- flag used to terminate some tests early
- Accuracy_Error_Reported : Boolean := False;
-
-
- -- The following value is a lower bound on the accuracy
- -- required. It is normally 0.0 so that the lower bound
- -- is computed from Model_Epsilon. However, for tests
- -- where the expected result is only known to a certain
- -- amount of precision this bound takes on a non-zero
- -- value to account for that level of precision.
- Error_Low_Bound : Real := 0.0;
-
- procedure Check (Actual, Expected : Real;
- Test_Name : String;
- MRE : Real) is
- Max_Error : Real;
- Rel_Error : Real;
- Abs_Error : Real;
- begin
- -- In the case where the expected result is very small or 0
- -- we compute the maximum error as a multiple of Model_Small instead
- -- of Model_Epsilon and Expected.
- Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
- Abs_Error := MRE * Real'Model_Small;
- if Rel_Error > Abs_Error then
- Max_Error := Rel_Error;
- else
- Max_Error := Abs_Error;
- end if;
-
- -- take into account the low bound on the error
- if Max_Error < Error_Low_Bound then
- Max_Error := Error_Low_Bound;
- end if;
-
- if abs (Actual - Expected) > Max_Error then
- Accuracy_Error_Reported := True;
- Report.Failed (Test_Name &
- " actual: " & Real'Image (Actual) &
- " expected: " & Real'Image (Expected) &
- " difference: " & Real'Image (Actual - Expected) &
- " max err:" & Real'Image (Max_Error) );
- elsif Verbose then
- if Actual = Expected then
- Report.Comment (Test_Name & " exact result");
- else
- Report.Comment (Test_Name & " passed");
- end if;
- end if;
- end Check;
-
-
- procedure Check (Actual, Expected : Complex;
- Test_Name : String;
- MRE : Real) is
- begin
- Check (Actual.Re, Expected.Re, Test_Name & " real part", MRE);
- Check (Actual.Im, Expected.Im, Test_Name & " imaginary part", MRE);
- end Check;
-
-
- procedure Special_Value_Test is
- -- In the following tests the expected result is accurate
- -- to the machine precision so the minimum guaranteed error
- -- bound can be used.
- --
- -- The error bounds given assumed z is exact. When using
- -- pi there is an extra error of 1.0ME.
- -- The pi inside the exp call requires that the complex
- -- component have an extra error allowance of 1.0*angle*ME.
- -- Thus for pi/2,the Minimum_Error_I is
- -- (2.0 + 1.0(pi/2))ME <= 3.6ME.
- -- For pi, it is (2.0 + 1.0*pi)ME <= 5.2ME,
- -- and for 2pi, it is (2.0 + 1.0(2pi))ME <= 8.3ME.
-
- -- The addition of 1 or i to a result is so that neither of
- -- the components of an expected result is 0. This is so
- -- that a reasonable relative error is allowed.
- Minimum_Error_C : constant := 7.0; -- for exp(Complex)
- Minimum_Error_I : constant := 2.0; -- for exp(Imaginary)
- begin
- Check (Exp (1.0 + 0.0*i) + i,
- E + i,
- "exp(1+0i)",
- Minimum_Error_C);
- Check (Exp ((Pi / 2.0) * i) + 1.0,
- 1.0 + 1.0*i,
- "exp(pi/2*i)",
- 3.6);
- Check (Exp (Pi * i) + i,
- -1.0 + 1.0*i,
- "exp(pi*i)",
- 5.2);
- Check (Exp (Pi * 2.0 * i) + i,
- 1.0 + i,
- "exp(2pi*i)",
- 8.3);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in special value test");
- when others =>
- Report.Failed ("exception in special value test");
- end Special_Value_Test;
-
-
-
- procedure Exact_Result_Test is
- No_Error : constant := 0.0;
- begin
- -- G.1.2(36);6.0
- Check (Exp(0.0 + 0.0*i), 1.0 + 0.0 * i, "exp(0+0i)", No_Error);
- Check (Exp( 0.0*i), 1.0 + 0.0 * i, "exp(0i)", No_Error);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in Exact_Result Test");
- when others =>
- Report.Failed ("exception in Exact_Result Test");
- end Exact_Result_Test;
-
-
- procedure Identity_Test (A, B : Real) is
- -- For this test we use the identity
- -- Exp(Z) = Exp(Z-W) * Exp (W)
- -- where W = (1+i)/16
- --
- -- The second part of this test checks the identity
- -- Exp(Z) * Exp(-Z) = 1
- --
-
- X, Y : Complex;
- Actual1, Actual2 : Complex;
- W : constant Complex := (0.0625, 0.0625);
- -- the following constant was taken from the CELEFUNC EXP test.
- -- This is the value EXP(W) - 1
- C : constant Complex := (6.2416044877018563681e-2,
- 6.6487597751003112768e-2);
- begin
- if Real'Digits > 20 then
- -- constant ExpW is accurate to 20 digits.
- -- The low bound is 19 * 10**-20
- Error_Low_Bound := 0.00000_00000_00019;
- Report.Comment ("complex exp accuracy checked to 20 digits");
- end if;
-
- Accuracy_Error_Reported := False; -- reset
- for II in 1..Max_Samples loop
- X.Re := Real'Machine ((B - A) * Real (II) / Real (Max_Samples)
- + A);
- for J in 1..Max_Samples loop
- X.Im := Real'Machine ((B - A) * Real (J) / Real (Max_Samples)
- + A);
-
- Actual1 := Exp(X);
-
- -- Exp(X) = Exp(X-W) * Exp (W)
- -- = Exp(X-W) * (1 - (1-Exp(W))
- -- = Exp(X-W) * (1 + (Exp(W) - 1))
- -- = Exp(X-W) * (1 + C)
- Y := X - W;
- Actual2 := Exp(Y);
- Actual2 := Actual2 + Actual2 * C;
-
- Check (Actual1, Actual2,
- "Identity_1_Test " & Integer'Image (II) &
- Integer'Image (J) & ": Exp((" &
- Real'Image (X.Re) & ", " &
- Real'Image (X.Im) & ")) ",
- 20.0); -- 2 exp and 1 multiply and 1 add = 2*7+1*5+1
- -- Note: The above is not strictly correct, as multiply
- -- has a box error, rather than a relative error.
- -- Supposedly, the interval is chosen to avoid the need
- -- to worry about this.
-
- -- Exp(X) * Exp(-X) + i = 1 + i
- -- The addition of i is to allow a reasonable relative
- -- error in the imaginary part
- Actual2 := (Actual1 * Exp(-X)) + i;
- Check (Actual2, (1.0, 1.0),
- "Identity_2_Test " & Integer'Image (II) &
- Integer'Image (J) & ": Exp((" &
- Real'Image (X.Re) & ", " &
- Real'Image (X.Im) & ")) ",
- 20.0); -- 2 exp and 1 multiply and one add = 2*7+1*5+1
-
- if Accuracy_Error_Reported then
- -- only report the first error in this test in order to keep
- -- lots of failures from producing a huge error log
- return;
- end if;
- end loop;
- end loop;
- Error_Low_Bound := 0.0;
- exception
- when Constraint_Error =>
- Report.Failed
- ("Constraint_Error raised in Identity_Test" &
- " for X=(" & Real'Image (X.Re) &
- ", " & Real'Image (X.Im) & ")");
- when others =>
- Report.Failed ("exception in Identity_Test" &
- " for X=(" & Real'Image (X.Re) &
- ", " & Real'Image (X.Im) & ")");
- end Identity_Test;
-
-
-
- procedure Do_Test is
- begin
- Special_Value_Test;
- Exact_Result_Test;
- -- test regions where we can avoid cancellation error problems
- -- See Cody page 10.
- Identity_Test (0.0625, 1.0);
- Identity_Test (15.0, 17.0);
- Identity_Test (1.625, 3.0);
- end Do_Test;
- end Generic_Check;
-
- -----------------------------------------------------------------------
- -----------------------------------------------------------------------
- package Float_Check is new Generic_Check (Float);
-
- -- check the floating point type with the most digits
- type A_Long_Float is digits System.Max_Digits;
- package A_Long_Float_Check is new Generic_Check (A_Long_Float);
-
- -----------------------------------------------------------------------
- -----------------------------------------------------------------------
-
-
-begin
- Report.Test ("CXG2018",
- "Check the accuracy of the complex EXP function");
-
- if Verbose then
- Report.Comment ("checking Standard.Float");
- end if;
-
- Float_Check.Do_Test;
-
- if Verbose then
- Report.Comment ("checking a digits" &
- Integer'Image (System.Max_Digits) &
- " floating point type");
- end if;
-
- A_Long_Float_Check.Do_Test;
-
-
- Report.Result;
-end CXG2018;
diff --git a/gcc/testsuite/ada/acats/tests/cxg/cxg2019.a b/gcc/testsuite/ada/acats/tests/cxg/cxg2019.a
deleted file mode 100644
index 0a4dddcc906..00000000000
--- a/gcc/testsuite/ada/acats/tests/cxg/cxg2019.a
+++ /dev/null
@@ -1,338 +0,0 @@
--- CXG2019.A
---
--- Grant of Unlimited Rights
---
--- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
--- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
--- unlimited rights in the software and documentation contained herein.
--- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
--- this public release, the Government intends to confer upon all
--- recipients unlimited rights equal to those held by the Government.
--- These rights include rights to use, duplicate, release or disclose the
--- released technical data and computer software in whole or in part, in
--- any manner and for any purpose whatsoever, and to have or permit others
--- to do so.
---
--- DISCLAIMER
---
--- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
--- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
--- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
--- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
--- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
--- PARTICULAR PURPOSE OF SAID MATERIAL.
---*
---
--- OBJECTIVE:
--- Check that the complex LOG function returns
--- a result that is within the error bound allowed.
---
--- TEST DESCRIPTION:
--- This test consists of a generic package that is
--- instantiated to check complex numbers based upon
--- both Float and a long float type.
--- The test for each floating point type is divided into
--- several parts:
--- Special value checks where the result is a known constant.
--- Checks that use an identity for determining the result.
--- Exception conditions.
---
--- SPECIAL REQUIREMENTS
--- The Strict Mode for the numerical accuracy must be
--- selected. The method by which this mode is selected
--- is implementation dependent.
---
--- APPLICABILITY CRITERIA:
--- This test applies only to implementations supporting the
--- Numerics Annex.
--- This test only applies to the Strict Mode for numerical
--- accuracy.
---
---
--- CHANGE HISTORY:
--- 22 Mar 96 SAIC Initial release for 2.1
---
---!
-
---
--- References:
---
--- W. J. Cody
--- CELEFUNT: A Portable Test Package for Complex Elementary Functions
--- Algorithm 714, Collected Algorithms from ACM.
--- Published in Transactions On Mathematical Software,
--- Vol. 19, No. 1, March, 1993, pp. 1-21.
---
--- CRC Standard Mathematical Tables
--- 23rd Edition
---
-
-with System;
-with Report;
-with Ada.Numerics.Generic_Complex_Types;
-with Ada.Numerics.Generic_Complex_Elementary_Functions;
-procedure CXG2019 is
- Verbose : constant Boolean := False;
- -- Note that Max_Samples is the number of samples taken in
- -- both the real and imaginary directions. Thus, for Max_Samples
- -- of 100 the number of values checked is 10000.
- Max_Samples : constant := 100;
-
- E : constant := Ada.Numerics.E;
- Pi : constant := Ada.Numerics.Pi;
-
- generic
- type Real is digits <>;
- package Generic_Check is
- procedure Do_Test;
- end Generic_Check;
-
- package body Generic_Check is
- package Complex_Type is new
- Ada.Numerics.Generic_Complex_Types (Real);
- use Complex_Type;
-
- package CEF is new
- Ada.Numerics.Generic_Complex_Elementary_Functions (Complex_Type);
-
- function Log (X : Complex) return Complex renames CEF.Log;
-
- -- flag used to terminate some tests early
- Accuracy_Error_Reported : Boolean := False;
-
-
- procedure Check (Actual, Expected : Real;
- Test_Name : String;
- MRE : Real) is
- Max_Error : Real;
- Rel_Error : Real;
- Abs_Error : Real;
- begin
- -- In the case where the expected result is very small or 0
- -- we compute the maximum error as a multiple of Model_Small instead
- -- of Model_Epsilon and Expected.
- Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
- Abs_Error := MRE * Real'Model_Epsilon;
- if Rel_Error > Abs_Error then
- Max_Error := Rel_Error;
- else
- Max_Error := Abs_Error;
- end if;
-
- if abs (Actual - Expected) > Max_Error then
- Accuracy_Error_Reported := True;
- Report.Failed (Test_Name &
- " actual: " & Real'Image (Actual) &
- " expected: " & Real'Image (Expected) &
- " difference: " & Real'Image (Actual - Expected) &
- " max err:" & Real'Image (Max_Error) );
- elsif Verbose then
- if Actual = Expected then
- Report.Comment (Test_Name & " exact result");
- else
- Report.Comment (Test_Name & " passed");
- end if;
- end if;
- end Check;
-
-
- procedure Check (Actual, Expected : Complex;
- Test_Name : String;
- MRE : Real) is
- begin
- Check (Actual.Re, Expected.Re, Test_Name & " real part", MRE);
- Check (Actual.Im, Expected.Im, Test_Name & " imaginary part", MRE);
- end Check;
-
-
- procedure Special_Value_Test is
- -- In the following tests the expected result is accurate
- -- to the machine precision so the minimum guaranteed error
- -- bound can be used if the argument is exact.
- --
- -- When using pi there is an extra error of 1.0ME.
- -- Although the real component has an error bound of 13.0,
- -- the complex component must take into account this error
- -- in the value for Pi.
- --
- -- One or i is added to the actual and expected results in
- -- order to prevent the expected result from having a
- -- real or imaginary part of 0. This is to allow a reasonable
- -- relative error for that component.
- Minimum_Error : constant := 13.0;
- begin
- Check (1.0 + Log (0.0 + i),
- 1.0 + Pi / 2.0 * i,
- "1+log(0+i)",
- Minimum_Error + 1.0);
- Check (1.0 + Log ((-1.0, 0.0)),
- 1.0 + (Pi * i),
- "log(-1+0i)+1 ",
- Minimum_Error + 1.0);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in special value test");
- when others =>
- Report.Failed ("exception in special value test");
- end Special_Value_Test;
-
-
-
- procedure Exact_Result_Test is
- No_Error : constant := 0.0;
- begin
- -- G.1.2(37);6.0
- Check (Log(1.0 + 0.0*i), 0.0 + 0.0 * i, "log(1+0i)", No_Error);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in Exact_Result Test");
- when others =>
- Report.Failed ("exception in Exact_Result Test");
- end Exact_Result_Test;
-
-
- procedure Identity_Test (RA, RB, IA, IB : Real) is
- -- Tests an identity over a range of values specified
- -- by the 4 parameters. RA and RB denote the range for the
- -- real part while IA and IB denote the range for the
- -- imaginary part.
- --
- -- For this test we use the identity
- -- Log(Z*Z) = 2 * Log(Z)
- --
-
- Scale : Real := Real (Real'Machine_Radix) ** (Real'Mantissa / 2 + 4);
- W, X, Y, Z : Real;
- CX, CY : Complex;
- Actual1, Actual2 : Complex;
- begin
- Accuracy_Error_Reported := False; -- reset
- for II in 1..Max_Samples loop
- X := (RB - RA) * Real (II) / Real (Max_Samples) + RA;
- for J in 1..Max_Samples loop
- Y := (IB - IA) * Real (J) / Real (Max_Samples) + IA;
-
- -- purify the arguments to minimize roundoff error.
- -- We construct the values so that the products X*X,
- -- Y*Y, and X*Y are all exact machine numbers.
- -- See Cody page 7 and CELEFUNT code.
- Z := X * Scale;
- W := Z + X;
- X := W - Z;
- Z := Y * Scale;
- W := Z + Y;
- Y := W - Z;
- CX := Compose_From_Cartesian(X,Y);
- Z := X*X - Y*Y;
- W := X*Y;
- CY := Compose_From_Cartesian(Z,W+W);
-
- -- The arguments are now ready so on with the
- -- identity computation.
- Actual1 := Log(CX);
-
- Actual2 := Log(CY) * 0.5;
-
- Check (Actual1, Actual2,
- "Identity_1_Test " & Integer'Image (II) &
- Integer'Image (J) & ": Log((" &
- Real'Image (CX.Re) & ", " &
- Real'Image (CX.Im) & ")) ",
- 26.0); -- 2 logs = 2*13. no error from this multiply
-
- if Accuracy_Error_Reported then
- -- only report the first error in this test in order to keep
- -- lots of failures from producing a huge error log
- return;
- end if;
- end loop;
- end loop;
-
- exception
- when Constraint_Error =>
- Report.Failed
- ("Constraint_Error raised in Identity_Test" &
- " for X=(" & Real'Image (X) &
- ", " & Real'Image (X) & ")");
- when others =>
- Report.Failed ("exception in Identity_Test" &
- " for X=(" & Real'Image (X) &
- ", " & Real'Image (X) & ")");
- end Identity_Test;
-
-
- procedure Exception_Test is
- -- Check that log((0,0)) causes constraint_error.
- -- G.1.2(29);
-
- X : Complex := (0.0, 0.0);
- begin
- if not Real'Machine_Overflows then
- -- not applicable: G.1.2(28);6.0
- return;
- end if;
-
- begin
- X := Log ((0.0, 0.0));
- Report.Failed ("exception not raised for log(0,0)");
- exception
- when Constraint_Error => null; -- ok
- when others =>
- Report.Failed ("wrong exception raised for log(0,0)");
- end;
-
- -- optimizer thwarting
- if Report.Ident_Bool(False) then
- Report.Comment (Real'Image (X.Re + X.Im));
- end if;
- end Exception_Test;
-
-
- procedure Do_Test is
- begin
- Special_Value_Test;
- Exact_Result_Test;
- -- test regions that do not include the unit circle so that
- -- the real part of LOG(Z) does not vanish
- -- See Cody page 9.
- Identity_Test ( 2.0, 10.0, 0.0, 10.0);
- Identity_Test (1000.0, 2000.0, -4000.0, -1000.0);
- Identity_Test (Real'Model_Epsilon, 0.25,
- -0.25, -Real'Model_Epsilon);
- Exception_Test;
- end Do_Test;
- end Generic_Check;
-
- -----------------------------------------------------------------------
- -----------------------------------------------------------------------
- package Float_Check is new Generic_Check (Float);
-
- -- check the floating point type with the most digits
- type A_Long_Float is digits System.Max_Digits;
- package A_Long_Float_Check is new Generic_Check (A_Long_Float);
-
- -----------------------------------------------------------------------
- -----------------------------------------------------------------------
-
-
-begin
- Report.Test ("CXG2019",
- "Check the accuracy of the complex LOG function");
-
- if Verbose then
- Report.Comment ("checking Standard.Float");
- end if;
-
- Float_Check.Do_Test;
-
- if Verbose then
- Report.Comment ("checking a digits" &
- Integer'Image (System.Max_Digits) &
- " floating point type");
- end if;
-
- A_Long_Float_Check.Do_Test;
-
-
- Report.Result;
-end CXG2019;
diff --git a/gcc/testsuite/ada/acats/tests/cxg/cxg2020.a b/gcc/testsuite/ada/acats/tests/cxg/cxg2020.a
deleted file mode 100644
index 1aed4ca5735..00000000000
--- a/gcc/testsuite/ada/acats/tests/cxg/cxg2020.a
+++ /dev/null
@@ -1,351 +0,0 @@
--- CXG2020.A
---
--- Grant of Unlimited Rights
---
--- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
--- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
--- unlimited rights in the software and documentation contained herein.
--- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
--- this public release, the Government intends to confer upon all
--- recipients unlimited rights equal to those held by the Government.
--- These rights include rights to use, duplicate, release or disclose the
--- released technical data and computer software in whole or in part, in
--- any manner and for any purpose whatsoever, and to have or permit others
--- to do so.
---
--- DISCLAIMER
---
--- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
--- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
--- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
--- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
--- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
--- PARTICULAR PURPOSE OF SAID MATERIAL.
---*
---
--- OBJECTIVE:
--- Check that the complex SQRT function returns
--- a result that is within the error bound allowed.
---
--- TEST DESCRIPTION:
--- This test consists of a generic package that is
--- instantiated to check complex numbers based upon
--- both Float and a long float type.
--- The test for each floating point type is divided into
--- several parts:
--- Special value checks where the result is a known constant.
--- Checks that use an identity for determining the result.
---
--- SPECIAL REQUIREMENTS
--- The Strict Mode for the numerical accuracy must be
--- selected. The method by which this mode is selected
--- is implementation dependent.
---
--- APPLICABILITY CRITERIA:
--- This test applies only to implementations supporting the
--- Numerics Annex.
--- This test only applies to the Strict Mode for numerical
--- accuracy.
---
---
--- CHANGE HISTORY:
--- 24 Mar 96 SAIC Initial release for 2.1
--- 17 Aug 96 SAIC Incorporated reviewer comments.
--- 03 Jun 98 EDS Added parens to ensure that the expression is not
--- evaluated by multiplying its two large terms
--- together and overflowing.
---!
-
---
--- References:
---
--- W. J. Cody
--- CELEFUNT: A Portable Test Package for Complex Elementary Functions
--- Algorithm 714, Collected Algorithms from ACM.
--- Published in Transactions On Mathematical Software,
--- Vol. 19, No. 1, March, 1993, pp. 1-21.
---
--- CRC Standard Mathematical Tables
--- 23rd Edition
---
-
-with System;
-with Report;
-with Ada.Numerics.Generic_Complex_Types;
-with Ada.Numerics.Generic_Complex_Elementary_Functions;
-procedure CXG2020 is
- Verbose : constant Boolean := False;
- -- Note that Max_Samples is the number of samples taken in
- -- both the real and imaginary directions. Thus, for Max_Samples
- -- of 100 the number of values checked is 10000.
- Max_Samples : constant := 100;
-
- E : constant := Ada.Numerics.E;
- Pi : constant := Ada.Numerics.Pi;
-
- -- CRC Standard Mathematical Tables; 23rd Edition; pg 738
- Sqrt2 : constant :=
- 1.41421_35623_73095_04880_16887_24209_69807_85696_71875_37695;
- Sqrt3 : constant :=
- 1.73205_08075_68877_29352_74463_41505_87236_69428_05253_81039;
-
- generic
- type Real is digits <>;
- package Generic_Check is
- procedure Do_Test;
- end Generic_Check;
-
- package body Generic_Check is
- package Complex_Type is new
- Ada.Numerics.Generic_Complex_Types (Real);
- use Complex_Type;
-
- package CEF is new
- Ada.Numerics.Generic_Complex_Elementary_Functions (Complex_Type);
-
- function Sqrt (X : Complex) return Complex renames CEF.Sqrt;
-
- -- flag used to terminate some tests early
- Accuracy_Error_Reported : Boolean := False;
-
-
- procedure Check (Actual, Expected : Real;
- Test_Name : String;
- MRE : Real) is
- Max_Error : Real;
- Rel_Error : Real;
- Abs_Error : Real;
- begin
- -- In the case where the expected result is very small or 0
- -- we compute the maximum error as a multiple of Model_Epsilon
- -- instead of Model_Epsilon and Expected.
- Rel_Error := MRE * (abs Expected * Real'Model_Epsilon);
- Abs_Error := MRE * Real'Model_Epsilon;
- if Rel_Error > Abs_Error then
- Max_Error := Rel_Error;
- else
- Max_Error := Abs_Error;
- end if;
-
- if abs (Actual - Expected) > Max_Error then
- Accuracy_Error_Reported := True;
- Report.Failed (Test_Name &
- " actual: " & Real'Image (Actual) &
- " expected: " & Real'Image (Expected) &
- " difference: " & Real'Image (Actual - Expected) &
- " max err:" & Real'Image (Max_Error) );
- elsif Verbose then
- if Actual = Expected then
- Report.Comment (Test_Name & " exact result");
- else
- Report.Comment (Test_Name & " passed");
- end if;
- end if;
- end Check;
-
-
- procedure Check (Actual, Expected : Complex;
- Test_Name : String;
- MRE : Real) is
- begin
- Check (Actual.Re, Expected.Re, Test_Name & " real part", MRE);
- Check (Actual.Im, Expected.Im, Test_Name & " imaginary part", MRE);
- end Check;
-
-
- procedure Special_Value_Test is
- -- In the following tests the expected result is accurate
- -- to the machine precision so the minimum guaranteed error
- -- bound can be used if the argument is exact.
- --
- -- One or i is added to the actual and expected results in
- -- order to prevent the expected result from having a
- -- real or imaginary part of 0. This is to allow a reasonable
- -- relative error for that component.
- Minimum_Error : constant := 6.0;
- Z1, Z2 : Complex;
- begin
- Check (Sqrt(9.0+0.0*i) + i,
- 3.0+1.0*i,
- "sqrt(9+0i)+i",
- Minimum_Error);
- Check (Sqrt (-2.0 + 0.0 * i) + 1.0,
- 1.0 + Sqrt2 * i,
- "sqrt(-2)+1 ",
- Minimum_Error);
-
- -- make sure no exception occurs when taking the sqrt of
- -- very large and very small values.
-
- Z1 := (Real'Safe_Last * 0.9, Real'Safe_Last * 0.9);
- Z2 := Sqrt (Z1);
- begin
- Check (Z2 * Z2,
- Z1,
- "sqrt((big,big))",
- Minimum_Error + 5.0); -- +5 for multiply
- exception
- when others =>
- Report.Failed ("unexpected exception in sqrt((big,big))");
- end;
-
- Z1 := (Real'Model_Epsilon * 10.0, Real'Model_Epsilon * 10.0);
- Z2 := Sqrt (Z1);
- begin
- Check (Z2 * Z2,
- Z1,
- "sqrt((little,little))",
- Minimum_Error + 5.0); -- +5 for multiply
- exception
- when others =>
- Report.Failed ("unexpected exception in " &
- "sqrt((little,little))");
- end;
-
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in special value test");
- when others =>
- Report.Failed ("exception in special value test");
- end Special_Value_Test;
-
-
-
- procedure Exact_Result_Test is
- No_Error : constant := 0.0;
- begin
- -- G.1.2(36);6.0
- Check (Sqrt(0.0 + 0.0*i), 0.0 + 0.0 * i, "sqrt(0+0i)", No_Error);
-
- -- G.1.2(37);6.0
- Check (Sqrt(1.0 + 0.0*i), 1.0 + 0.0 * i, "sqrt(1+0i)", No_Error);
-
- -- G.1.2(38-39);6.0
- Check (Sqrt(-1.0 + 0.0*i), 0.0 + 1.0 * i, "sqrt(-1+0i)", No_Error);
-
- -- G.1.2(40);6.0
- if Real'Signed_Zeros then
- Check (Sqrt(-1.0-0.0*i), 0.0 - 1.0 * i, "sqrt(-1-0i)", No_Error);
- end if;
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in Exact_Result Test");
- when others =>
- Report.Failed ("exception in Exact_Result Test");
- end Exact_Result_Test;
-
-
- procedure Identity_Test (RA, RB, IA, IB : Real) is
- -- Tests an identity over a range of values specified
- -- by the 4 parameters. RA and RB denote the range for the
- -- real part while IA and IB denote the range for the
- -- imaginary part of the result.
- --
- -- For this test we use the identity
- -- Sqrt(Z*Z) = Z
- --
-
- Scale : Real := Real (Real'Machine_Radix) ** (Real'Mantissa / 2 + 4);
- W, X, Y, Z : Real;
- CX : Complex;
- Actual, Expected : Complex;
- begin
- Accuracy_Error_Reported := False; -- reset
- for II in 1..Max_Samples loop
- X := (RB - RA) * Real (II) / Real (Max_Samples) + RA;
- for J in 1..Max_Samples loop
- Y := (IB - IA) * Real (J) / Real (Max_Samples) + IA;
-
- -- purify the arguments to minimize roundoff error.
- -- We construct the values so that the products X*X,
- -- Y*Y, and X*Y are all exact machine numbers.
- -- See Cody page 7 and CELEFUNT code.
- Z := X * Scale;
- W := Z + X;
- X := W - Z;
- Z := Y * Scale;
- W := Z + Y;
- Y := W - Z;
- -- G.1.2(21);6.0 - real part of result is non-negative
- Expected := Compose_From_Cartesian( abs X,Y);
- Z := X*X - Y*Y;
- W := X*Y;
- CX := Compose_From_Cartesian(Z,W+W);
-
- -- The arguments are now ready so on with the
- -- identity computation.
- Actual := Sqrt(CX);
-
- Check (Actual, Expected,
- "Identity_1_Test " & Integer'Image (II) &
- Integer'Image (J) & ": Sqrt((" &
- Real'Image (CX.Re) & ", " &
- Real'Image (CX.Im) & ")) ",
- 8.5); -- 6.0 from sqrt, 2.5 from argument.
- -- See Cody pg 7-8 for analysis of additional error amount.
-
- if Accuracy_Error_Reported then
- -- only report the first error in this test in order to keep
- -- lots of failures from producing a huge error log
- return;
- end if;
- end loop;
- end loop;
-
- exception
- when Constraint_Error =>
- Report.Failed
- ("Constraint_Error raised in Identity_Test" &
- " for X=(" & Real'Image (X) &
- ", " & Real'Image (X) & ")");
- when others =>
- Report.Failed ("exception in Identity_Test" &
- " for X=(" & Real'Image (X) &
- ", " & Real'Image (X) & ")");
- end Identity_Test;
-
-
- procedure Do_Test is
- begin
- Special_Value_Test;
- Exact_Result_Test;
- -- ranges where the sign is the same and where it
- -- differs.
- Identity_Test ( 0.0, 10.0, 0.0, 10.0);
- Identity_Test ( 0.0, 100.0, -100.0, 0.0);
- end Do_Test;
- end Generic_Check;
-
- -----------------------------------------------------------------------
- -----------------------------------------------------------------------
- package Float_Check is new Generic_Check (Float);
-
- -- check the floating point type with the most digits
- type A_Long_Float is digits System.Max_Digits;
- package A_Long_Float_Check is new Generic_Check (A_Long_Float);
-
- -----------------------------------------------------------------------
- -----------------------------------------------------------------------
-
-
-begin
- Report.Test ("CXG2020",
- "Check the accuracy of the complex SQRT function");
-
- if Verbose then
- Report.Comment ("checking Standard.Float");
- end if;
-
- Float_Check.Do_Test;
-
- if Verbose then
- Report.Comment ("checking a digits" &
- Integer'Image (System.Max_Digits) &
- " floating point type");
- end if;
-
- A_Long_Float_Check.Do_Test;
-
-
- Report.Result;
-end CXG2020;
diff --git a/gcc/testsuite/ada/acats/tests/cxg/cxg2021.a b/gcc/testsuite/ada/acats/tests/cxg/cxg2021.a
deleted file mode 100644
index db49fc845f2..00000000000
--- a/gcc/testsuite/ada/acats/tests/cxg/cxg2021.a
+++ /dev/null
@@ -1,386 +0,0 @@
--- CXG2021.A
---
--- Grant of Unlimited Rights
---
--- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
--- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
--- unlimited rights in the software and documentation contained herein.
--- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
--- this public release, the Government intends to confer upon all
--- recipients unlimited rights equal to those held by the Government.
--- These rights include rights to use, duplicate, release or disclose the
--- released technical data and computer software in whole or in part, in
--- any manner and for any purpose whatsoever, and to have or permit others
--- to do so.
---
--- DISCLAIMER
---
--- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
--- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
--- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
--- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
--- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
--- PARTICULAR PURPOSE OF SAID MATERIAL.
---*
---
--- OBJECTIVE:
--- Check that the complex SIN and COS functions return
--- a result that is within the error bound allowed.
---
--- TEST DESCRIPTION:
--- This test consists of a generic package that is
--- instantiated to check complex numbers based upon
--- both Float and a long float type.
--- The test for each floating point type is divided into
--- several parts:
--- Special value checks where the result is a known constant.
--- Checks that use an identity for determining the result.
---
--- SPECIAL REQUIREMENTS
--- The Strict Mode for the numerical accuracy must be
--- selected. The method by which this mode is selected
--- is implementation dependent.
---
--- APPLICABILITY CRITERIA:
--- This test applies only to implementations supporting the
--- Numerics Annex.
--- This test only applies to the Strict Mode for numerical
--- accuracy.
---
---
--- CHANGE HISTORY:
--- 27 Mar 96 SAIC Initial release for 2.1
--- 22 Aug 96 SAIC No longer skips test for systems with
--- more than 20 digits of precision.
---
---!
-
---
--- References:
---
--- W. J. Cody
--- CELEFUNT: A Portable Test Package for Complex Elementary Functions
--- Algorithm 714, Collected Algorithms from ACM.
--- Published in Transactions On Mathematical Software,
--- Vol. 19, No. 1, March, 1993, pp. 1-21.
---
--- CRC Standard Mathematical Tables
--- 23rd Edition
---
-
-with System;
-with Report;
-with Ada.Numerics.Generic_Complex_Types;
-with Ada.Numerics.Generic_Complex_Elementary_Functions;
-procedure CXG2021 is
- Verbose : constant Boolean := False;
- -- Note that Max_Samples is the number of samples taken in
- -- both the real and imaginary directions. Thus, for Max_Samples
- -- of 100 the number of values checked is 10000.
- Max_Samples : constant := 100;
-
- E : constant := Ada.Numerics.E;
- Pi : constant := Ada.Numerics.Pi;
-
- generic
- type Real is digits <>;
- package Generic_Check is
- procedure Do_Test;
- end Generic_Check;
-
- package body Generic_Check is
- package Complex_Type is new
- Ada.Numerics.Generic_Complex_Types (Real);
- use Complex_Type;
-
- package CEF is new
- Ada.Numerics.Generic_Complex_Elementary_Functions (Complex_Type);
-
- function Sin (X : Complex) return Complex renames CEF.Sin;
- function Cos (X : Complex) return Complex renames CEF.Cos;
-
- -- flag used to terminate some tests early
- Accuracy_Error_Reported : Boolean := False;
-
- -- The following value is a lower bound on the accuracy
- -- required. It is normally 0.0 so that the lower bound
- -- is computed from Model_Epsilon. However, for tests
- -- where the expected result is only known to a certain
- -- amount of precision this bound takes on a non-zero
- -- value to account for that level of precision.
- Error_Low_Bound : Real := 0.0;
-
- -- the E_Factor is an additional amount added to the Expected
- -- value prior to computing the maximum relative error.
- -- This is needed because the error analysis (Cody pg 17-20)
- -- requires this additional allowance.
- procedure Check (Actual, Expected : Real;
- Test_Name : String;
- MRE : Real;
- E_Factor : Real := 0.0) is
- Max_Error : Real;
- Rel_Error : Real;
- Abs_Error : Real;
- begin
- -- In the case where the expected result is very small or 0
- -- we compute the maximum error as a multiple of Model_Epsilon instead
- -- of Model_Epsilon and Expected.
- Rel_Error := MRE * Real'Model_Epsilon * (abs Expected + E_Factor);
- Abs_Error := MRE * Real'Model_Epsilon;
- if Rel_Error > Abs_Error then
- Max_Error := Rel_Error;
- else
- Max_Error := Abs_Error;
- end if;
-
- -- take into account the low bound on the error
- if Max_Error < Error_Low_Bound then
- Max_Error := Error_Low_Bound;
- end if;
-
- if abs (Actual - Expected) > Max_Error then
- Accuracy_Error_Reported := True;
- Report.Failed (Test_Name &
- " actual: " & Real'Image (Actual) &
- " expected: " & Real'Image (Expected) &
- " difference: " & Real'Image (Actual - Expected) &
- " max err:" & Real'Image (Max_Error) &
- " efactor:" & Real'Image (E_Factor) );
- elsif Verbose then
- if Actual = Expected then
- Report.Comment (Test_Name & " exact result");
- else
- Report.Comment (Test_Name & " passed" &
- " actual: " & Real'Image (Actual) &
- " expected: " & Real'Image (Expected) &
- " difference: " & Real'Image (Actual - Expected) &
- " max err:" & Real'Image (Max_Error) &
- " efactor:" & Real'Image (E_Factor) );
- end if;
- end if;
- end Check;
-
-
- procedure Check (Actual, Expected : Complex;
- Test_Name : String;
- MRE : Real;
- R_Factor, I_Factor : Real := 0.0) is
- begin
- Check (Actual.Re, Expected.Re, Test_Name & " real part",
- MRE, R_Factor);
- Check (Actual.Im, Expected.Im, Test_Name & " imaginary part",
- MRE, I_Factor);
- end Check;
-
-
- procedure Special_Value_Test is
- -- In the following tests the expected result is accurate
- -- to the machine precision so the minimum guaranteed error
- -- bound can be used if the argument is exact.
- -- Since the argument involves Pi, we must allow for this
- -- inexact argument.
- Minimum_Error : constant := 11.0;
- begin
- Check (Sin (Pi/2.0 + 0.0*i),
- 1.0 + 0.0*i,
- "sin(pi/2+0i)",
- Minimum_Error + 1.0);
- Check (Cos (Pi/2.0 + 0.0*i),
- 0.0 + 0.0*i,
- "cos(pi/2+0i)",
- Minimum_Error + 1.0);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in special value test");
- when others =>
- Report.Failed ("exception in special value test");
- end Special_Value_Test;
-
-
-
- procedure Exact_Result_Test is
- No_Error : constant := 0.0;
- begin
- -- G.1.2(36);6.0
- Check (Sin(0.0 + 0.0*i), 0.0 + 0.0 * i, "sin(0+0i)", No_Error);
- Check (Cos(0.0 + 0.0*i), 1.0 + 0.0 * i, "cos(0+0i)", No_Error);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in Exact_Result Test");
- when others =>
- Report.Failed ("exception in Exact_Result Test");
- end Exact_Result_Test;
-
-
- procedure Identity_Test (RA, RB, IA, IB : Real) is
- -- Tests an identity over a range of values specified
- -- by the 4 parameters. RA and RB denote the range for the
- -- real part while IA and IB denote the range for the
- -- imaginary part.
- --
- -- For this test we use the identity
- -- Sin(Z) = Sin(Z-W) * Cos(W) + Cos(Z-W) * Sin(W)
- -- and
- -- Cos(Z) = Cos(Z-W) * Cos(W) - Sin(Z-W) * Sin(W)
- --
-
- X, Y : Real;
- Z : Complex;
- W : constant Complex := Compose_From_Cartesian(0.0625, 0.0625);
- ZmW : Complex; -- Z - W
- Sin_ZmW,
- Cos_ZmW : Complex;
- Actual1, Actual2 : Complex;
- R_Factor : Real; -- additional real error factor
- I_Factor : Real; -- additional imaginary error factor
- Sin_W : constant Complex := (6.2581348413276935585E-2,
- 6.2418588008436587236E-2);
- -- numeric stability is enhanced by using Cos(W) - 1.0 instead of
- -- Cos(W) in the computation.
- Cos_W_m_1 : constant Complex := (-2.5431314180235545803E-6,
- -3.9062493377261771826E-3);
-
-
- begin
- if Real'Digits > 20 then
- -- constants used here accurate to 20 digits. Allow 1
- -- additional digit of error for computation.
- Error_Low_Bound := 0.00000_00000_00000_0001;
- Report.Comment ("accuracy checked to 19 digits");
- end if;
-
- Accuracy_Error_Reported := False; -- reset
- for II in 0..Max_Samples loop
- X := (RB - RA) * Real (II) / Real (Max_Samples) + RA;
- for J in 0..Max_Samples loop
- Y := (IB - IA) * Real (J) / Real (Max_Samples) + IA;
-
- Z := Compose_From_Cartesian(X,Y);
- ZmW := Z - W;
- Sin_ZmW := Sin (ZmW);
- Cos_ZmW := Cos (ZmW);
-
- -- now for the first identity
- -- Sin(Z) = Sin(Z-W) * Cos(W) + Cos(Z-W) * Sin(W)
- -- = Sin(Z-W) * (1+(Cos(W)-1)) + Cos(Z-W) * Sin(W)
- -- = Sin(Z-W) + Sin(Z-W)*(Cos(W)-1) + Cos(Z-W)*Sin(W)
-
-
- Actual1 := Sin (Z);
- Actual2 := Sin_ZmW + (Sin_ZmW * Cos_W_m_1 + Cos_ZmW * Sin_W);
-
- -- The computation of the additional error factors are taken
- -- from Cody pages 17-20.
-
- R_Factor := abs (Re (Sin_ZmW) * Re (1.0 - Cos_W_m_1)) +
- abs (Im (Sin_ZmW) * Im (1.0 - Cos_W_m_1)) +
- abs (Re (Cos_ZmW) * Re (Sin_W)) +
- abs (Re (Cos_ZmW) * Re (1.0 - Cos_W_m_1));
-
- I_Factor := abs (Re (Sin_ZmW) * Im (1.0 - Cos_W_m_1)) +
- abs (Im (Sin_ZmW) * Re (1.0 - Cos_W_m_1)) +
- abs (Re (Cos_ZmW) * Im (Sin_W)) +
- abs (Im (Cos_ZmW) * Re (1.0 - Cos_W_m_1));
-
- Check (Actual1, Actual2,
- "Identity_1_Test " & Integer'Image (II) &
- Integer'Image (J) & ": Sin((" &
- Real'Image (Z.Re) & ", " &
- Real'Image (Z.Im) & ")) ",
- 11.0, R_Factor, I_Factor);
-
- -- now for the second identity
- -- Cos(Z) = Cos(Z-W) * Cos(W) - Sin(Z-W) * Sin(W)
- -- = Cos(Z-W) * (1+(Cos(W)-1) - Sin(Z-W) * Sin(W)
- Actual1 := Cos (Z);
- Actual2 := Cos_ZmW + (Cos_ZmW * Cos_W_m_1 - Sin_ZmW * Sin_W);
-
- -- The computation of the additional error factors are taken
- -- from Cody pages 17-20.
-
- R_Factor := abs (Re (Sin_ZmW) * Re (Sin_W)) +
- abs (Im (Sin_ZmW) * Im (Sin_W)) +
- abs (Re (Cos_ZmW) * Re (1.0 - Cos_W_m_1)) +
- abs (Im (Cos_ZmW) * Im (1.0 - Cos_W_m_1));
-
- I_Factor := abs (Re (Sin_ZmW) * Im (Sin_W)) +
- abs (Im (Sin_ZmW) * Re (Sin_W)) +
- abs (Re (Cos_ZmW) * Im (1.0 - Cos_W_m_1)) +
- abs (Im (Cos_ZmW) * Re (1.0 - Cos_W_m_1));
-
- Check (Actual1, Actual2,
- "Identity_2_Test " & Integer'Image (II) &
- Integer'Image (J) & ": Cos((" &
- Real'Image (Z.Re) & ", " &
- Real'Image (Z.Im) & ")) ",
- 11.0, R_Factor, I_Factor);
-
- if Accuracy_Error_Reported then
- -- only report the first error in this test in order to keep
- -- lots of failures from producing a huge error log
- Error_Low_Bound := 0.0; -- reset
- return;
- end if;
- end loop;
- end loop;
-
- Error_Low_Bound := 0.0; -- reset
- exception
- when Constraint_Error =>
- Report.Failed
- ("Constraint_Error raised in Identity_Test" &
- " for Z=(" & Real'Image (X) &
- ", " & Real'Image (Y) & ")");
- when others =>
- Report.Failed ("exception in Identity_Test" &
- " for Z=(" & Real'Image (X) &
- ", " & Real'Image (Y) & ")");
- end Identity_Test;
-
-
- procedure Do_Test is
- begin
- Special_Value_Test;
- Exact_Result_Test;
- -- test regions where sin and cos have the same sign and
- -- about the same magnitude. This will minimize subtraction
- -- errors in the identities.
- -- See Cody page 17.
- Identity_Test (0.0625, 10.0, 0.0625, 10.0);
- Identity_Test ( 16.0, 17.0, 16.0, 17.0);
- end Do_Test;
- end Generic_Check;
-
- -----------------------------------------------------------------------
- -----------------------------------------------------------------------
- package Float_Check is new Generic_Check (Float);
-
- -- check the floating point type with the most digits
- type A_Long_Float is digits System.Max_Digits;
- package A_Long_Float_Check is new Generic_Check (A_Long_Float);
-
- -----------------------------------------------------------------------
- -----------------------------------------------------------------------
-
-
-begin
- Report.Test ("CXG2021",
- "Check the accuracy of the complex SIN and COS functions");
-
- if Verbose then
- Report.Comment ("checking Standard.Float");
- end if;
-
- Float_Check.Do_Test;
-
- if Verbose then
- Report.Comment ("checking a digits" &
- Integer'Image (System.Max_Digits) &
- " floating point type");
- end if;
-
- A_Long_Float_Check.Do_Test;
-
-
- Report.Result;
-end CXG2021;
diff --git a/gcc/testsuite/ada/acats/tests/cxg/cxg2022.a b/gcc/testsuite/ada/acats/tests/cxg/cxg2022.a
deleted file mode 100644
index f9e4d1cae33..00000000000
--- a/gcc/testsuite/ada/acats/tests/cxg/cxg2022.a
+++ /dev/null
@@ -1,309 +0,0 @@
--- CXG2022.A
---
--- Grant of Unlimited Rights
---
--- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
--- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
--- unlimited rights in the software and documentation contained herein.
--- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
--- this public release, the Government intends to confer upon all
--- recipients unlimited rights equal to those held by the Government.
--- These rights include rights to use, duplicate, release or disclose the
--- released technical data and computer software in whole or in part, in
--- any manner and for any purpose whatsoever, and to have or permit others
--- to do so.
---
--- DISCLAIMER
---
--- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
--- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
--- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
--- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
--- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
--- PARTICULAR PURPOSE OF SAID MATERIAL.
---*
---
--- OBJECTIVE:
--- Check that multiplication and division of binary fixed point
--- numbers with compatible 'small values produce exact results.
---
--- TEST DESCRIPTION:
--- Signed, unsigned, and a mixture of signed and unsigned
--- binary fixed point values are multiplied and divided.
--- The result is checked against the expected "perfect result set"
---
--- SPECIAL REQUIREMENTS
--- The Strict Mode for the numerical accuracy must be
--- selected. The method by which this mode is selected
--- is implementation dependent.
---
--- APPLICABILITY CRITERIA:
--- This test applies only to implementations supporting the
--- Numerics Annex.
--- This test only applies to the Strict Mode for numerical
--- accuracy.
---
---
--- CHANGE HISTORY:
--- 1 Apr 96 SAIC Initial release for 2.1
--- 29 Jan 1998 EDS Repaired fixed point errors ("**" and
--- assumptions about 'Small)
---!
-
-with System;
-with Report;
-procedure CXG2022 is
- Verbose : constant Boolean := False;
-
-procedure Check_Signed is
- type Pairs is delta 2.0 range -2.0 ** (System.Max_Mantissa) ..
- 2.0 ** (System.Max_Mantissa) - 1.0;
- type Halves is delta 0.5 range -2.0 ** (System.Max_Mantissa-2) ..
- 2.0 ** (System.Max_Mantissa-2) - 1.0;
- P1, P2, P3, P4 : Pairs;
- H1, H2, H3, H4 : Halves;
-
- procedure Dont_Opt is
- -- keep optimizer from knowing the constant value of expressions
- begin
- if Report.Ident_Bool (False) then
- P1 := 2.0; P2 := 4.0; P3 := 6.0;
- H1 := -2.0; H2 := 9.0; H3 := 3.0;
- end if;
- end Dont_Opt;
-
-begin
- H1 := -0.5;
- H2 := Halves'First;
- H3 := 1.0;
- P1 := 12.0;
- P2 := Pairs'First;
- P3 := Pairs'Last;
- Dont_Opt;
-
- P4 := Pairs (P1 * H1); -- 12.0 * -0.5
- if P4 /= -6.0 then
- Report.Failed ("12.0 * -0.5 = " & Pairs'Image (P4));
- end if;
-
- H4 := Halves (P1 / H1); -- 12.0 / -0.5
- if H4 /= -24.0 then
- Report.Failed ("12.0 / -0.5 = " & Halves'Image (H4));
- end if;
-
- P4 := P3 * H3; -- Pairs'Last * 1.0
- if P4 /= Pairs'Last then
- Report.Failed ("Pairs'Last * 1.0 = " & Pairs'Image (P4));
- end if;
-
- P4 := P3 / H3; -- Pairs'Last / 1.0
- if P4 /= Pairs'Last then
- Report.Failed ("Pairs'Last / 1.0 = " & Pairs'Image (P4));
- end if;
-
- P4 := P2 * 0.25; -- Pairs'First * 0.25
- if P4 /= Pairs (-2.0 ** (System.Max_Mantissa - 2)) then
- Report.Failed ("Pairs'First * 0.25 = " & Pairs'Image (P4));
- end if;
-
- P4 := 100.5 / H1; -- 100.5 / -0.5
- if P4 = -201.0 then
- null; -- Perfect result
- elsif Pairs'Small = 2.0 and ( P4 = -200.0 or P4 = -202.0 ) then
- null; -- Allowed variation
- else
- Report.Failed ("Pairs'Small =" & Pairs'Image (Pairs'Small) &
- " and 100.5/-0.5 = " & Pairs'Image (P4) );
- end if;
-
- H4 := H1 * H2; -- -0.5 * Halves'First
- if H4 /= Halves (2.0 ** (System.Max_Mantissa-3)) then
- Report.Failed ("-0.5 * Halves'First =" & Halves'Image (H4) &
- " instead of " &
- Halves'Image( Halves(2.0 ** (System.Max_Mantissa-3))));
- end if;
-
-exception
- when others =>
- Report.Failed ("unexpected exception in Check_Signed");
-end Check_Signed;
-
-
-
-procedure Check_Unsigned is
- type Pairs is delta 2.0 range 0.0 .. 2.0 ** (System.Max_Mantissa+1) - 1.0;
- type Halves is delta 0.5 range 0.0 .. 2.0 ** (System.Max_Mantissa-1) - 1.0;
- P1, P2, P3, P4 : Pairs;
- H1, H2, H3, H4 : Halves;
-
- procedure Dont_Opt is
- -- keep optimizer from knowing the constant value of expressions
- begin
- if Report.Ident_Bool (False) then
- P1 := 2.0; P2 := 4.0; P3 := 6.0;
- H1 := 2.0; H2 := 9.0; H3 := 3.0;
- end if;
- end Dont_Opt;
-
-begin
- H1 := 10.5;
- H2 := Halves(2.0 ** (System.Max_Mantissa - 6));
- H3 := 1.0;
- P1 := 12.0;
- P2 := Pairs'Last / 2;
- P3 := Pairs'Last;
- Dont_Opt;
-
- P4 := Pairs (P1 * H1); -- 12.0 * 10.5
- if P4 /= 126.0 then
- Report.Failed ("12.0 * 10.5 = " & Pairs'Image (P4));
- end if;
-
- H4 := Halves (P1 / H1); -- 12.0 / 10.5
- if H4 /= 1.0 and H4 /= 1.5 then
- Report.Failed ("12.0 / 10.5 = " & Halves'Image (H4));
- end if;
-
- P4 := P3 * H3; -- Pairs'Last * 1.0
- if P4 /= Pairs'Last then
- Report.Failed ("Pairs'Last * 1.0 = " & Pairs'Image (P4));
- end if;
-
- P4 := P3 / H3; -- Pairs'Last / 1.0
- if P4 /= Pairs'Last then
- Report.Failed ("Pairs'Last / 1.0 = " & Pairs'Image (P4));
- end if;
-
- P4 := P1 * 0.25; -- 12.0 * 0.25
- if P4 /= 2.0 and P4 /= 4.0 then
- Report.Failed ("12.0 * 0.25 = " & Pairs'Image (P4));
- end if;
-
- P4 := 100.5 / H1; -- 100.5 / 10.5 = 9.571...
- if P4 /= 8.0 and P4 /= 10.0 then
- Report.Failed ("100.5/10.5 = " & Pairs'Image (P4));
- end if;
-
- H4 := H2 * 2; -- 2**(max_mantissa-6) * 2
- if H4 /= Halves(2.0 ** (System.Max_Mantissa-5)) then
- Report.Failed ("2**(System.Max_Mantissa-6) * 2=" & Halves'Image (H4) &
- " instead of " &
- Halves'Image( Halves(2.0 ** (System.Max_Mantissa-5))));
- end if;
-
-exception
- when others =>
- Report.Failed ("unexpected exception in Check_Unsigned");
-end Check_Unsigned;
-
-
-
-procedure Check_Mixed is
- type Pairs is delta 2.0 range -2.0 ** (System.Max_Mantissa) ..
- 2.0 ** (System.Max_Mantissa) - 1.0;
- type Halves is delta 0.5 range 0.0 .. 2.0 ** (System.Max_Mantissa-1) - 1.0;
- P1, P2, P3, P4 : Pairs;
- H1, H2, H3, H4 : Halves;
-
- procedure Dont_Opt is
- -- keep optimizer from knowing the constant value of expressions
- begin
- if Report.Ident_Bool (False) then
- P1 := 2.0; P2 := 4.0; P3 := 6.0;
- H1 := 2.0; H2 := 9.0; H3 := 3.0;
- end if;
- end Dont_Opt;
-
-begin
- H1 := 10.5;
- H2 := Halves(2.0 ** (System.Max_Mantissa - 6));
- H3 := 1.0;
- P1 := 12.0;
- P2 := -4.0;
- P3 := Pairs'Last;
- Dont_Opt;
-
- P4 := Pairs (P1 * H1); -- 12.0 * 10.5
- if P4 /= 126.0 then
- Report.Failed ("12.0 * 10.5 = " & Pairs'Image (P4));
- end if;
-
- H4 := Halves (P1 / H1); -- 12.0 / 10.5
- if H4 /= 1.0 and H4 /= 1.5 then
- Report.Failed ("12.0 / 10.5 = " & Halves'Image (H4));
- end if;
-
- P4 := P3 * H3; -- Pairs'Last * 1.0
- if P4 /= Pairs'Last then
- Report.Failed ("Pairs'Last * 1.0 = " & Pairs'Image (P4));
- end if;
-
- P4 := P3 / H3; -- Pairs'Last / 1.0
- if P4 /= Pairs'Last then
- Report.Failed ("Pairs'Last / 1.0 = " & Pairs'Image (P4));
- end if;
-
- P4 := P1 * 0.25; -- 12.0 * 0.25
- if P4 = 3.0 then
- null; -- Perfect result
- elsif Pairs'Small = 2.0 and then ( P4 = 2.0 or P4 = 4.0 ) then
- null; -- Allowed deviation
- else
- Report.Failed ("Pairs'Small =" & Pairs'Image (Pairs'Small) &
- "and 12.0 * 0.25 = " & Pairs'Image (P4) );
- end if;
-
- P4 := 100.5 / H1; -- 100.5 / 10.5 = 9.571...
- if P4 = 9.0 then
- null; -- Perfect result
- elsif Pairs'Small = 2.0 and then ( P4 = 8.0 or P4 = 10.0 ) then
- null; -- Allowed values
- else
- Report.Failed ("Pairs'Small =" & Pairs'Image (Pairs'Small) &
- "and 100.5/10.5 = " & Pairs'Image (P4) );
- end if;
-
- H4 := H2 * 2; -- 2**(max_mantissa-6) * 2
- if H4 /= Halves(2.0 ** (System.Max_Mantissa-5)) then
- Report.Failed ("2**(System.Max_Mantissa-6) * 2=" & Halves'Image (H4) &
- " instead of " &
- Halves'Image( Halves(2.0 ** (System.Max_Mantissa-5))));
- end if;
-
- P4 := Pairs(P1 * 6) / P2; -- 12 * 6 / -4
- if (P4 /= -18.0) then
- Report.Failed ("12*6/-4 = " & Pairs'Image(P4));
- end if;
-
- P4 := Halves(P1 * 6.0) / P2; -- 12 * 6 / -4
- if (P4 /= -18.0) then
- Report.Failed ("Halves(12*6)/-4 = " & Pairs'Image(P4));
- end if;
-
-exception
- when others =>
- Report.Failed ("unexpected exception in Check_Mixed");
-end Check_Mixed;
-
-
-begin -- main
- Report.Test ("CXG2022",
- "Check the accuracy of multiplication and division" &
- " of binary fixed point numbers");
- if Verbose then
- Report.Comment ("starting signed test");
- end if;
- Check_Signed;
-
- if Verbose then
- Report.Comment ("starting unsigned test");
- end if;
- Check_Unsigned;
-
- if Verbose then
- Report.Comment ("starting mixed sign test");
- end if;
- Check_Mixed;
-
- Report.Result;
-end CXG2022;
diff --git a/gcc/testsuite/ada/acats/tests/cxg/cxg2023.a b/gcc/testsuite/ada/acats/tests/cxg/cxg2023.a
deleted file mode 100644
index 0cdd5574e09..00000000000
--- a/gcc/testsuite/ada/acats/tests/cxg/cxg2023.a
+++ /dev/null
@@ -1,351 +0,0 @@
--- CXG2023.A
---
--- Grant of Unlimited Rights
---
--- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
--- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
--- unlimited rights in the software and documentation contained herein.
--- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
--- this public release, the Government intends to confer upon all
--- recipients unlimited rights equal to those held by the Government.
--- These rights include rights to use, duplicate, release or disclose the
--- released technical data and computer software in whole or in part, in
--- any manner and for any purpose whatsoever, and to have or permit others
--- to do so.
---
--- DISCLAIMER
---
--- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
--- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
--- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
--- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
--- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
--- PARTICULAR PURPOSE OF SAID MATERIAL.
---*
---
--- OBJECTIVE:
--- Check that multiplication and division of decimal fixed point
--- numbers produce exact results.
---
--- TEST DESCRIPTION:
--- Check that multiplication and division of decimal fixed point
--- numbers produce exact results.
---
--- SPECIAL REQUIREMENTS
--- The Strict Mode for the numerical accuracy must be
--- selected. The method by which this mode is selected
--- is implementation dependent.
---
--- APPLICABILITY CRITERIA:
--- This test applies only to implementations supporting the
--- Numerics Annex.
--- This test only applies to the Strict Mode for numerical
--- accuracy.
--- This test applies only to implementations supporting
--- decimal fixed point types of at least 9 digits.
---
---
--- CHANGE HISTORY:
--- 3 Apr 96 SAIC Initial release for 2.1
---
---!
-
-with System;
-with Report;
-procedure CXG2023 is
- Verbose : constant Boolean := False;
-
-procedure Check_1 is
- Num_Digits : constant := 6;
- type Pennies is delta 0.01 digits Num_Digits;
- type Franklins is delta 100.0 digits Num_Digits;
- type Dollars is delta 1.0 digits Num_Digits;
-
- P1 : Pennies;
- F1 : Franklins;
- D1 : Dollars;
-
- -- optimization thwarting functions
-
- function P (X : Pennies) return Pennies is
- begin
- if Report.Ident_Bool (True) then
- return X;
- else
- return 3.21; -- never executed
- end if;
- end P;
-
-
- function F (X : Franklins) return Franklins is
- begin
- if Report.Ident_Bool (True) then
- return X;
- else
- return 32100.0; -- never executed
- end if;
- end F;
-
-
- function D (X : Dollars) return Dollars is
- begin
- if Report.Ident_Bool (True) then
- return X;
- else
- return 321.0; -- never executed
- end if;
- end D;
-
-
-begin
- -- multiplication where one operand is universal real
-
- P1 := P(0.05) * 200.0;
- if P1 /= 10.00 then
- Report.Failed ("1 - expected 10.00 got " & Pennies'Image (P1));
- end if;
-
- D1 := P(0.05) * 100.0;
- if D1 /= 5.00 then
- Report.Failed ("2 - expected 5.00 got " & Dollars'Image (D1));
- end if;
-
- F1 := P(0.05) * 50_000.0;
- if F1 /= 2500.00 then
- Report.Failed ("3 - expected 2500.0 got " & Franklins'Image (F1));
- end if;
-
- -- multiplication where both operands are decimal fixed
-
- P1 := P(0.05) * D(-200.0);
- if P1 /= -10.00 then
- Report.Failed ("4 - expected -10.00 got " & Pennies'Image (P1));
- end if;
-
- D1 := P(0.05) * P(-100.0);
- if D1 /= -5.00 then
- Report.Failed ("5 - expected -5.00 got " & Dollars'Image (D1));
- end if;
-
- F1 := P(-0.05) * F(50_000.0);
- if F1 /= -2500.00 then
- Report.Failed ("6 - expected -2500.0 got " & Franklins'Image (F1));
- end if;
-
- -- division where one operand is universal real
-
- P1 := P(0.05) / 0.001;
- if P1 /= 50.00 then
- Report.Failed ("7 - expected 50.00 got " & Pennies'Image (P1));
- end if;
-
- D1 := D(1000.0) / 3.0;
- if D1 /= 333.00 then
- Report.Failed ("8 - expected 333.00 got " & Dollars'Image (D1));
- end if;
-
- F1 := P(1234.56) / 0.0001;
- if F1 /= 12345600.00 then
- Report.Failed ("9 - expected 12345600.0 got " & Franklins'Image (F1));
- end if;
-
-
- -- division where both operands are decimal fixed
-
- P1 := P(0.05) / D(1.0);
- if P1 /= 0.05 then
- Report.Failed ("10 - expected 0.05 got " & Pennies'Image (P1));
- end if;
-
- -- check for truncation toward 0
- D1 := P(-101.00) / P(2.0);
- if D1 /= -50.00 then
- Report.Failed ("11 - expected -50.00 got " & Dollars'Image (D1));
- end if;
-
- P1 := P(-102.03) / P(-0.5);
- if P1 /= 204.06 then
- Report.Failed ("12 - expected 204.06 got " & Pennies'Image (P1));
- end if;
-
- F1 := P(876.54) / P(0.03);
- if F1 /= 29200.00 then
- Report.Failed ("13 - expected 29200.0 got " & Franklins'Image (F1));
- end if;
-
-exception
- when others =>
- Report.Failed ("unexpected exception in Check_1");
-end Check_1;
-
-generic
- type Pennies is delta<> digits<>;
- type Dollars is delta<> digits<>;
- type Franklins is delta<> digits<>;
-procedure Generic_Check;
-procedure Generic_Check is
-
- -- the following code is copied directly from the
- -- above procedure Check_1
-
- P1 : Pennies;
- F1 : Franklins;
- D1 : Dollars;
-
- -- optimization thwarting functions
-
- function P (X : Pennies) return Pennies is
- begin
- if Report.Ident_Bool (True) then
- return X;
- else
- return 3.21; -- never executed
- end if;
- end P;
-
-
- function F (X : Franklins) return Franklins is
- begin
- if Report.Ident_Bool (True) then
- return X;
- else
- return 32100.0; -- never executed
- end if;
- end F;
-
-
- function D (X : Dollars) return Dollars is
- begin
- if Report.Ident_Bool (True) then
- return X;
- else
- return 321.0; -- never executed
- end if;
- end D;
-
-
-begin
- -- multiplication where one operand is universal real
-
- P1 := P(0.05) * 200.0;
- if P1 /= 10.00 then
- Report.Failed ("1 - expected 10.00 got " & Pennies'Image (P1));
- end if;
-
- D1 := P(0.05) * 100.0;
- if D1 /= 5.00 then
- Report.Failed ("2 - expected 5.00 got " & Dollars'Image (D1));
- end if;
-
- F1 := P(0.05) * 50_000.0;
- if F1 /= 2500.00 then
- Report.Failed ("3 - expected 2500.0 got " & Franklins'Image (F1));
- end if;
-
- -- multiplication where both operands are decimal fixed
-
- P1 := P(0.05) * D(-200.0);
- if P1 /= -10.00 then
- Report.Failed ("4 - expected -10.00 got " & Pennies'Image (P1));
- end if;
-
- D1 := P(0.05) * P(-100.0);
- if D1 /= -5.00 then
- Report.Failed ("5 - expected -5.00 got " & Dollars'Image (D1));
- end if;
-
- F1 := P(-0.05) * F(50_000.0);
- if F1 /= -2500.00 then
- Report.Failed ("6 - expected -2500.0 got " & Franklins'Image (F1));
- end if;
-
- -- division where one operand is universal real
-
- P1 := P(0.05) / 0.001;
- if P1 /= 50.00 then
- Report.Failed ("7 - expected 50.00 got " & Pennies'Image (P1));
- end if;
-
- D1 := D(1000.0) / 3.0;
- if D1 /= 333.00 then
- Report.Failed ("8 - expected 333.00 got " & Dollars'Image (D1));
- end if;
-
- F1 := P(1234.56) / 0.0001;
- if F1 /= 12345600.00 then
- Report.Failed ("9 - expected 12345600.0 got " & Franklins'Image (F1));
- end if;
-
-
- -- division where both operands are decimal fixed
-
- P1 := P(0.05) / D(1.0);
- if P1 /= 0.05 then
- Report.Failed ("10 - expected 0.05 got " & Pennies'Image (P1));
- end if;
-
- -- check for truncation toward 0
- D1 := P(-101.00) / P(2.0);
- if D1 /= -50.00 then
- Report.Failed ("11 - expected -50.00 got " & Dollars'Image (D1));
- end if;
-
- P1 := P(-102.03) / P(-0.5);
- if P1 /= 204.06 then
- Report.Failed ("12 - expected 204.06 got " & Pennies'Image (P1));
- end if;
-
- F1 := P(876.54) / P(0.03);
- if F1 /= 29200.00 then
- Report.Failed ("13 - expected 29200.0 got " & Franklins'Image (F1));
- end if;
-
-end Generic_Check;
-
-
-procedure Check_G6 is
- Num_Digits : constant := 6;
- type Pennies is delta 0.01 digits Num_Digits;
- type Franklins is delta 100.0 digits Num_Digits;
- type Dollars is delta 1.0 digits Num_Digits;
-
- procedure G is new Generic_Check (Pennies, Dollars, Franklins);
-begin
- G;
-end Check_G6;
-
-
-procedure Check_G9 is
- Num_Digits : constant := 9;
- type Pennies is delta 0.01 digits Num_Digits;
- type Franklins is delta 100.0 digits Num_Digits;
- type Dollars is delta 1.0 digits Num_Digits;
-
- procedure G is new Generic_Check (Pennies, Dollars, Franklins);
-begin
- G;
-end Check_G9;
-
-
-begin -- main
- Report.Test ("CXG2023",
- "Check the accuracy of multiplication and division" &
- " of decimal fixed point numbers");
-
- if Verbose then
- Report.Comment ("starting Check_1");
- end if;
- Check_1;
-
- if Verbose then
- Report.Comment ("starting Check_G6");
- end if;
- Check_G6;
-
- if Verbose then
- Report.Comment ("starting Check_G9");
- end if;
- Check_G9;
-
- Report.Result;
-end CXG2023;
diff --git a/gcc/testsuite/ada/acats/tests/cxg/cxg2024.a b/gcc/testsuite/ada/acats/tests/cxg/cxg2024.a
deleted file mode 100644
index 55648283eba..00000000000
--- a/gcc/testsuite/ada/acats/tests/cxg/cxg2024.a
+++ /dev/null
@@ -1,191 +0,0 @@
--- CXG2024.A
---
--- Grant of Unlimited Rights
---
--- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
--- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
--- unlimited rights in the software and documentation contained herein.
--- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
--- this public release, the Government intends to confer upon all
--- recipients unlimited rights equal to those held by the Government.
--- These rights include rights to use, duplicate, release or disclose the
--- released technical data and computer software in whole or in part, in
--- any manner and for any purpose whatsoever, and to have or permit others
--- to do so.
---
--- DISCLAIMER
---
--- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
--- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
--- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
--- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
--- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
--- PARTICULAR PURPOSE OF SAID MATERIAL.
---*
---
--- OBJECTIVE:
--- Check that multiplication and division of decimal
--- and binary fixed point numbers that result in a
--- decimal fixed point type produce acceptable results.
---
--- TEST DESCRIPTION:
--- Multiplication and division of mixed binary and decimal
--- values are performed. Identity functions are used so
--- that the operands of the expressions will not be seen
--- as static by the compiler.
---
--- SPECIAL REQUIREMENTS
--- The Strict Mode for the numerical accuracy must be
--- selected. The method by which this mode is selected
--- is implementation dependent.
---
--- APPLICABILITY CRITERIA:
--- This test applies only to implementations supporting the
--- Numerics Annex.
--- This test only applies to the Strict Mode for numerical
--- accuracy.
--- This test applies only to implementations supporting
--- decimal fixed point types of at least 9 digits.
---
---
--- CHANGE HISTORY:
--- 4 Apr 96 SAIC Initial release for 2.1
--- 17 Aug 96 SAIC Removed checks for close results
---
---!
-
-with System;
-with Report;
-procedure CXG2024 is
-
-procedure Do_Check is
- Num_Digits : constant := 9;
- type Pennies is delta 0.01 digits Num_Digits;
- type Dollars is delta 1.0 digits Num_Digits;
-
- type Signed_Sixteenths is delta 0.0625
- range -2.0 ** (System.Max_Mantissa-5) ..
- 2.0 ** (System.Max_Mantissa-5) - 1.0;
- type Unsigned_Sixteenths is delta 0.0625
- range 0.0 .. 2.0 ** (System.Max_Mantissa-4) - 1.0;
-
- P1 : Pennies;
- D1 : Dollars;
-
- -- optimization thwarting functions
-
- function P (X : Pennies) return Pennies is
- begin
- if Report.Ident_Bool (True) then
- return X;
- else
- return 3.21; -- never executed
- end if;
- end P;
-
-
- function D (X : Dollars) return Dollars is
- begin
- if Report.Ident_Bool (True) then
- return X;
- else
- return 321.0; -- never executed
- end if;
- end D;
-
-
- function US (X : Unsigned_Sixteenths) return Unsigned_Sixteenths is
- begin
- if Report.Ident_Bool (True) then
- return X;
- else
- return 321.0; -- never executed
- end if;
- end US;
-
-
- function SS (X : Signed_Sixteenths) return Signed_Sixteenths is
- begin
- if Report.Ident_Bool (True) then
- return X;
- else
- return 321.0; -- never executed
- end if;
- end SS;
-
-
-begin
-
- P1 := P(0.05) * SS(-200.0);
- if P1 /= -10.00 then
- Report.Failed ("1 - expected -10.00 got " & Pennies'Image (P1));
- end if;
-
- D1 := P(0.05) * SS(-100.0);
- if D1 /= -5.00 then
- Report.Failed ("2 - expected -5.00 got " & Dollars'Image (D1));
- end if;
-
- P1 := P(0.05) * US(200.0);
- if P1 /= 10.00 then
- Report.Failed ("3 - expected 10.00 got " & Pennies'Image (P1));
- end if;
-
- D1 := P(-0.05) * US(100.0);
- if D1 /= -5.00 then
- Report.Failed ("4 - expected -5.00 got " & Dollars'Image (D1));
- end if;
-
-
-
- P1 := P(0.05) / US(1.0);
- if P1 /= 0.05 then
- Report.Failed ("6 - expected 0.05 got " & Pennies'Image (P1));
- end if;
-
-
- -- check rounding
-
- D1 := Dollars'Round (Pennies (P(-101.00) / US(2.0)));
- if D1 /= -51.00 then
- Report.Failed ("11 - expected -51.00 got " & Dollars'Image (D1));
- end if;
-
- D1 := Dollars'Round (Pennies (P(101.00) / US(2.0)));
- if D1 /= 51.00 then
- Report.Failed ("12 - expected 51.00 got " & Dollars'Image (D1));
- end if;
-
- D1 := Dollars'Round (Pennies (SS(-101.00) / P(2.0)));
- if D1 /= -51.00 then
- Report.Failed ("13 - expected -51.00 got " & Dollars'Image (D1));
- end if;
-
- D1 := Dollars'Round (Pennies (US(101.00) / P(2.0)));
- if D1 /= 51.00 then
- Report.Failed ("14 - expected 51.00 got " & Dollars'Image (D1));
- end if;
-
-
-
- P1 := P(-102.03) / SS(-0.5);
- if P1 /= 204.06 then
- Report.Failed ("15 - expected 204.06 got " & Pennies'Image (P1));
- end if;
-
-
-exception
- when others =>
- Report.Failed ("unexpected exception in Do_Check");
-end Do_Check;
-
-
-begin -- main
- Report.Test ("CXG2024",
- "Check the accuracy of multiplication and division" &
- " of mixed decimal and binary fixed point numbers");
-
- Do_Check;
-
- Report.Result;
-end CXG2024;