aboutsummaryrefslogtreecommitdiff
path: root/libstdc++-v3/include/tr1/hashtable
diff options
context:
space:
mode:
Diffstat (limited to 'libstdc++-v3/include/tr1/hashtable')
-rw-r--r--libstdc++-v3/include/tr1/hashtable1431
1 files changed, 1431 insertions, 0 deletions
diff --git a/libstdc++-v3/include/tr1/hashtable b/libstdc++-v3/include/tr1/hashtable
new file mode 100644
index 00000000000..c015e9edf69
--- /dev/null
+++ b/libstdc++-v3/include/tr1/hashtable
@@ -0,0 +1,1431 @@
+// Internal header for TR1 unordered_set and unordered_map -*- C++ -*-
+
+// Copyright (C) 2005 Free Software Foundation, Inc.
+//
+// This file is part of the GNU ISO C++ Library. This library is free
+// software; you can redistribute it and/or modify it under the
+// terms of the GNU General Public License as published by the
+// Free Software Foundation; either version 2, or (at your option)
+// any later version.
+
+// This library is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU General Public License for more details.
+
+// You should have received a copy of the GNU General Public License along
+// with this library; see the file COPYING. If not, write to the Free
+// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
+// USA.
+
+// As a special exception, you may use this file as part of a free software
+// library without restriction. Specifically, if other files instantiate
+// templates or use macros or inline functions from this file, or you compile
+// this file and link it with other files to produce an executable, this
+// file does not by itself cause the resulting executable to be covered by
+// the GNU General Public License. This exception does not however
+// invalidate any other reasons why the executable file might be covered by
+// the GNU General Public License.
+
+/** @file
+ * This is a TR1 C++ Library header.
+ */
+
+// This header file defines std::tr1::hashtable, which is used to
+// implement std::tr1::unordered_set, std::tr1::unordered_map,
+// std::tr1::unordered_multiset, and std::tr1::unordered_multimap.
+// hashtable has many template parameters, partly to accommodate
+// the differences between those four classes and partly to
+// accommodate policy choices that go beyond what TR1 calls for.
+
+// ??? Arguably this should be Internal::hashtable, not std::tr1::hashtable.
+
+// Class template hashtable attempts to encapsulate all reasonable
+// variation among hash tables that use chaining. It does not handle
+// open addressing.
+
+// References:
+// M. Austern, "A Proposal to Add Hash Tables to the Standard
+// Library (revision 4)," WG21 Document N1456=03-0039, 2003.
+// D. E. Knuth, The Art of Computer Programming, v. 3, Sorting and Searching.
+// A. Tavori and V. Dreizin, "Generic Associative Containers", 2004.
+// ??? Full citation?
+
+#ifndef GNU_LIBSTDCXX_TR1_HASHTABLE_
+#define GNU_LIBSTDCXX_TR1_HASHTABLE_
+
+#include <utility> // For std::pair
+#include <iterator>
+#include <cstddef>
+#include <cstdlib>
+#include <cmath>
+#include <tr1/type_traits> // For true_type and false_type
+
+//----------------------------------------------------------------------
+// General utilities
+
+namespace Internal {
+template <bool Flag, typename IfTrue, typename IfFalse> struct IF;
+
+template <typename IfTrue, typename IfFalse>
+struct IF <true, IfTrue, IfFalse> { typedef IfTrue type; };
+
+template <typename IfTrue, typename IfFalse>
+struct IF <false, IfTrue, IfFalse> { typedef IfFalse type; };
+
+// Helper function: return distance(first, last) for forward
+// iterators, or 0 for input iterators.
+
+template <class Iterator>
+inline typename std::iterator_traits<Iterator>::difference_type
+distance_fw (Iterator first, Iterator last, std::input_iterator_tag)
+{
+ return 0;
+}
+
+template <class Iterator>
+inline typename std::iterator_traits<Iterator>::difference_type
+distance_fw (Iterator first, Iterator last, std::forward_iterator_tag)
+{
+ return std::distance(first, last);
+}
+
+template <class Iterator>
+inline typename std::iterator_traits<Iterator>::difference_type
+distance_fw (Iterator first, Iterator last)
+{
+ typedef typename std::iterator_traits<Iterator>::iterator_category tag;
+ return distance_fw(first, last, tag());
+}
+
+} // namespace Internal
+
+//----------------------------------------------------------------------
+// Auxiliary types used for all instantiations of hashtable: nodes
+// and iterators.
+
+// Nodes, used to wrap elements stored in the hash table. A policy
+// template parameter of class template hashtable controls whether
+// nodes also store a hash code. In some cases (e.g. strings) this may
+// be a performance win.
+
+namespace Internal {
+
+template <typename Value, bool cache_hash_code> struct hash_node;
+
+template <typename Value>
+struct hash_node<Value, true> {
+ Value m_v;
+ std::size_t hash_code;
+ hash_node* m_next;
+};
+
+template <typename Value>
+struct hash_node<Value, false> {
+ Value m_v;
+ hash_node* m_next;
+};
+
+// Local iterators, used to iterate within a bucket but not between
+// buckets.
+
+template <typename Value, bool cache>
+struct node_iterator_base {
+ node_iterator_base(hash_node<Value, cache>* p) : m_cur(p) { }
+ void incr() { m_cur = m_cur->m_next; }
+
+ hash_node<Value, cache>* m_cur;
+};
+
+template <typename Value, bool cache>
+inline bool operator== (const node_iterator_base<Value, cache>& x,
+ const node_iterator_base<Value, cache>& y)
+{
+ return x.m_cur == y.m_cur;
+}
+
+template <typename Value, bool cache>
+inline bool operator!= (const node_iterator_base<Value, cache>& x,
+ const node_iterator_base<Value, cache>& y)
+{
+ return x.m_cur != y.m_cur;
+}
+
+template <typename Value, bool is_const, bool cache>
+struct node_iterator : public node_iterator_base<Value, cache> {
+ typedef Value value_type;
+ typedef typename IF<is_const, const Value*, Value*>::type pointer;
+ typedef typename IF<is_const, const Value&, Value&>::type reference;
+ typedef std::ptrdiff_t difference_type;
+ typedef std::forward_iterator_tag iterator_category;
+
+ explicit node_iterator (hash_node<Value, cache>* p = 0)
+ : node_iterator_base<Value, cache>(p) { }
+ node_iterator (const node_iterator<Value, true, cache>& x)
+ : node_iterator_base<Value, cache>(x.m_cur) { }
+
+ reference operator*() const { return this->m_cur->m_v; }
+ pointer operator->() const { return &this->m_cur->m_v; }
+
+ node_iterator& operator++() { this->incr(); return *this; }
+ node_iterator operator++(int)
+ { node_iterator tmp(*this); this->incr(); return tmp; }
+};
+
+template <typename Value, bool cache>
+struct hashtable_iterator_base {
+ hashtable_iterator_base(hash_node<Value, cache>* node,
+ hash_node<Value, cache>** bucket)
+ : m_cur_node (node), m_cur_bucket (bucket)
+ { }
+
+ void incr() {
+ m_cur_node = m_cur_node->m_next;
+ if (!m_cur_node)
+ m_incr_bucket();
+ }
+
+ void m_incr_bucket();
+
+ hash_node<Value, cache>* m_cur_node;
+ hash_node<Value, cache>** m_cur_bucket;
+};
+
+
+// Global iterators, used for arbitrary iteration within a hash
+// table. Larger and more expensive than local iterators.
+
+template <typename Value, bool cache>
+void hashtable_iterator_base<Value, cache>::m_incr_bucket()
+{
+ ++m_cur_bucket;
+
+ // This loop requires the bucket array to have a non-null sentinel
+ while (!*m_cur_bucket)
+ ++m_cur_bucket;
+ m_cur_node = *m_cur_bucket;
+}
+
+template <typename Value, bool cache>
+inline bool operator== (const hashtable_iterator_base<Value, cache>& x,
+ const hashtable_iterator_base<Value, cache>& y)
+{
+ return x.m_cur_node == y.m_cur_node;
+}
+
+template <typename Value, bool cache>
+inline bool operator!= (const hashtable_iterator_base<Value, cache>& x,
+ const hashtable_iterator_base<Value, cache>& y)
+{
+ return x.m_cur_node != y.m_cur_node;
+}
+
+template <typename Value, bool is_const, bool cache>
+struct hashtable_iterator : public hashtable_iterator_base<Value, cache>
+{
+ typedef Value value_type;
+ typedef typename IF<is_const, const Value*, Value*>::type pointer;
+ typedef typename IF<is_const, const Value&, Value&>::type reference;
+ typedef std::ptrdiff_t difference_type;
+ typedef std::forward_iterator_tag iterator_category;
+
+ hashtable_iterator (hash_node<Value, cache>* p, hash_node<Value, cache>** b)
+ : hashtable_iterator_base<Value, cache>(p, b) { }
+ hashtable_iterator (hash_node<Value, cache>** b)
+ : hashtable_iterator_base<Value, cache>(*b, b) { }
+ hashtable_iterator (const hashtable_iterator<Value, true, cache>& x)
+ : hashtable_iterator_base<Value, cache>(x.m_cur_node, x.m_cur_bucket) { }
+
+ reference operator*() const { return this->m_cur_node->m_v; }
+ pointer operator->() const { return &this->m_cur_node->m_v; }
+
+ hashtable_iterator& operator++() { this->incr(); return *this; }
+ hashtable_iterator operator++(int)
+ { hashtable_iterator tmp(*this); this->incr(); return tmp; }
+};
+
+} // namespace Internal
+
+// ----------------------------------------------------------------------
+// Many of class template hashtable's template parameters are policy
+// classes. These are defaults for the policies.
+
+namespace Internal {
+
+// The two key extraction policies used by the *set and *map variants.
+template <typename T>
+struct identity {
+ T operator()(const T& t) const { return t; }
+};
+
+template <typename Pair>
+struct extract1st {
+ typename Pair::first_type operator()(const Pair& p) const { return p.first; }
+};
+
+// Default range hashing function: use division to fold a large number
+// into the range [0, N).
+struct mod_range_hashing
+{
+ typedef std::size_t first_argument_type;
+ typedef std::size_t second_argument_type;
+ typedef std::size_t result_type;
+
+ result_type operator() (first_argument_type r, second_argument_type N) const
+ { return r % N; }
+};
+
+// Default ranged hash function H. In principle it should be a
+// function object composed from objects of type H1 and H2 such that
+// h(k, N) = h2(h1(k), N), but that would mean making extra copies of
+// h1 and h2. So instead we'll just use a tag to tell class template
+// hashtable to do that composition.
+struct default_ranged_hash { };
+
+// Default value for rehash policy. Bucket size is (usually) the
+// smallest prime that keeps the load factor small enough.
+
+struct prime_rehash_policy
+{
+ prime_rehash_policy (float z = 1.0);
+
+ float max_load_factor() const;
+
+ // Return a bucket size no smaller than n.
+ std::size_t next_bkt (std::size_t n) const;
+
+ // Return a bucket count appropriate for n elements
+ std::size_t bkt_for_elements (std::size_t n) const;
+
+ // n_bkt is current bucket count, n_elt is current element count,
+ // and n_ins is number of elements to be inserted. Do we need to
+ // increase bucket count? If so, return make_pair(true, n), where n
+ // is the new bucket count. If not, return make_pair(false, 0).
+ std::pair<bool, std::size_t>
+ need_rehash (std::size_t n_bkt, std::size_t n_elt, std::size_t n_ins) const;
+
+ float m_max_load_factor;
+ float m_growth_factor;
+ mutable std::size_t m_next_resize;
+};
+
+// XXX This is a hack. prime_rehash_policy's member functions, and
+// certainly the list of primes, should be defined in a .cc file.
+// We're temporarily putting them in a header because we don't have a
+// place to put TR1 .cc files yet. There's no good reason for any of
+// prime_rehash_policy's member functions to be inline, and there's
+// certainly no good reason for X<> to exist at all.
+
+struct lt {
+ template <typename X, typename Y> bool operator()(X x, Y y) { return x < y; }
+};
+
+template <int dummy>
+struct X {
+ static const int n_primes = 256;
+ static const unsigned long primes[n_primes + 1];
+};
+
+template <int dummy>
+const int X<dummy>::n_primes;
+
+template <int dummy>
+const unsigned long X<dummy>::primes[n_primes + 1] =
+ {
+ 2ul, 3ul, 5ul, 7ul, 11ul, 13ul, 17ul, 19ul, 23ul, 29ul, 31ul,
+ 37ul, 41ul, 43ul, 47ul, 53ul, 59ul, 61ul, 67ul, 71ul, 73ul, 79ul,
+ 83ul, 89ul, 97ul, 103ul, 109ul, 113ul, 127ul, 137ul, 139ul, 149ul,
+ 157ul, 167ul, 179ul, 193ul, 199ul, 211ul, 227ul, 241ul, 257ul,
+ 277ul, 293ul, 313ul, 337ul, 359ul, 383ul, 409ul, 439ul, 467ul,
+ 503ul, 541ul, 577ul, 619ul, 661ul, 709ul, 761ul, 823ul, 887ul,
+ 953ul, 1031ul, 1109ul, 1193ul, 1289ul, 1381ul, 1493ul, 1613ul,
+ 1741ul, 1879ul, 2029ul, 2179ul, 2357ul, 2549ul, 2753ul, 2971ul,
+ 3209ul, 3469ul, 3739ul, 4027ul, 4349ul, 4703ul, 5087ul, 5503ul,
+ 5953ul, 6427ul, 6949ul, 7517ul, 8123ul, 8783ul, 9497ul, 10273ul,
+ 11113ul, 12011ul, 12983ul, 14033ul, 15173ul, 16411ul, 17749ul,
+ 19183ul, 20753ul, 22447ul, 24281ul, 26267ul, 28411ul, 30727ul,
+ 33223ul, 35933ul, 38873ul, 42043ul, 45481ul, 49201ul, 53201ul,
+ 57557ul, 62233ul, 67307ul, 72817ul, 78779ul, 85229ul, 92203ul,
+ 99733ul, 107897ul, 116731ul, 126271ul, 136607ul, 147793ul,
+ 159871ul, 172933ul, 187091ul, 202409ul, 218971ul, 236897ul,
+ 256279ul, 277261ul, 299951ul, 324503ul, 351061ul, 379787ul,
+ 410857ul, 444487ul, 480881ul, 520241ul, 562841ul, 608903ul,
+ 658753ul, 712697ul, 771049ul, 834181ul, 902483ul, 976369ul,
+ 1056323ul, 1142821ul, 1236397ul, 1337629ul, 1447153ul, 1565659ul,
+ 1693859ul, 1832561ul, 1982627ul, 2144977ul, 2320627ul, 2510653ul,
+ 2716249ul, 2938679ul, 3179303ul, 3439651ul, 3721303ul, 4026031ul,
+ 4355707ul, 4712381ul, 5098259ul, 5515729ul, 5967347ul, 6456007ul,
+ 6984629ul, 7556579ul, 8175383ul, 8844859ul, 9569143ul, 10352717ul,
+ 11200489ul, 12117689ul, 13109983ul, 14183539ul, 15345007ul,
+ 16601593ul, 17961079ul, 19431899ul, 21023161ul, 22744717ul,
+ 24607243ul, 26622317ul, 28802401ul, 31160981ul, 33712729ul,
+ 36473443ul, 39460231ul, 42691603ul, 46187573ul, 49969847ul,
+ 54061849ul, 58488943ul, 63278561ul, 68460391ul, 74066549ul,
+ 80131819ul, 86693767ul, 93793069ul, 101473717ul, 109783337ul,
+ 118773397ul, 128499677ul, 139022417ul, 150406843ul, 162723577ul,
+ 176048909ul, 190465427ul, 206062531ul, 222936881ul, 241193053ul,
+ 260944219ul, 282312799ul, 305431229ul, 330442829ul, 357502601ul,
+ 386778277ul, 418451333ul, 452718089ul, 489790921ul, 529899637ul,
+ 573292817ul, 620239453ul, 671030513ul, 725980837ul, 785430967ul,
+ 849749479ul, 919334987ul, 994618837ul, 1076067617ul, 1164186217ul,
+ 1259520799ul, 1362662261ul, 1474249943ul, 1594975441ul,
+ 1725587117ul, 1866894511ul, 2019773507ul, 2185171673ul,
+ 2364114217ul, 2557710269ul, 2767159799ul, 2993761039ul,
+ 3238918481ul, 3504151727ul, 3791104843ul, 4101556399ul,
+ 4294967291ul,
+ 4294967291ul // sentinel so we don't have to test result of lower_bound
+ };
+
+inline prime_rehash_policy::prime_rehash_policy (float z)
+ : m_max_load_factor(z),
+ m_growth_factor (2.f),
+ m_next_resize (0)
+{ }
+
+inline float prime_rehash_policy::max_load_factor() const
+{
+ return m_max_load_factor;
+}
+
+// Return a prime no smaller than n.
+inline std::size_t prime_rehash_policy::next_bkt (std::size_t n) const
+{
+ const unsigned long* const last = X<0>::primes + X<0>::n_primes;
+ const unsigned long* p = std::lower_bound (X<0>::primes, last, n);
+ m_next_resize = static_cast<std::size_t>(std::ceil(*p * m_max_load_factor));
+ return *p;
+}
+
+// Return the smallest prime p such that alpha p >= n, where alpha
+// is the load factor.
+inline std::size_t prime_rehash_policy::bkt_for_elements (std::size_t n) const
+{
+ const unsigned long* const last = X<0>::primes + X<0>::n_primes;
+ const float min_bkts = n / m_max_load_factor;
+ const unsigned long* p = std::lower_bound (X<0>::primes, last, min_bkts, lt());
+ m_next_resize = static_cast<std::size_t>(std::ceil(*p * m_max_load_factor));
+ return *p;
+}
+
+// Finds the smallest prime p such that alpha p > n_elt + n_ins.
+// If p > n_bkt, return make_pair(true, p); otherwise return
+// make_pair(false, 0). In principle this isn't very different from
+// bkt_for_elements.
+
+// The only tricky part is that we're caching the element count at
+// which we need to rehash, so we don't have to do a floating-point
+// multiply for every insertion.
+
+inline std::pair<bool, std::size_t>
+prime_rehash_policy
+::need_rehash (std::size_t n_bkt, std::size_t n_elt, std::size_t n_ins) const
+{
+ if (n_elt + n_ins > m_next_resize) {
+ float min_bkts = (float(n_ins) + float(n_elt)) / m_max_load_factor;
+ if (min_bkts > n_bkt) {
+ min_bkts = std::max (min_bkts, m_growth_factor * n_bkt);
+ const unsigned long* const last = X<0>::primes + X<0>::n_primes;
+ const unsigned long* p = std::lower_bound (X<0>::primes, last, min_bkts, lt());
+ m_next_resize = static_cast<std::size_t>(std::ceil(*p * m_max_load_factor));
+ return std::make_pair(true, *p);
+ }
+ else {
+ m_next_resize = static_cast<std::size_t>(std::ceil(n_bkt * m_max_load_factor));
+ return std::make_pair(false, 0);
+ }
+ }
+ else
+ return std::make_pair(false, 0);
+}
+
+} // namespace Internal
+
+//----------------------------------------------------------------------
+// Base classes for std::tr1::hashtable. We define these base classes
+// because in some cases we want to do different things depending on
+// the value of a policy class. In some cases the policy class affects
+// which member functions and nested typedefs are defined; we handle that
+// by specializing base class templates. Several of the base class templates
+// need to access other members of class template hashtable, so we use
+// the "curiously recurring template pattern" for them.
+
+namespace Internal {
+
+// class template map_base. If the hashtable has a value type of the
+// form pair<T1, T2> and a key extraction policy that returns the
+// first part of the pair, the hashtable gets a mapped_type typedef.
+// If it satisfies those criteria and also has unique keys, then it
+// also gets an operator[].
+
+template <typename K, typename V, typename Ex, bool unique, typename Hashtable>
+struct map_base { };
+
+template <typename K, typename Pair, typename Hashtable>
+struct map_base<K, Pair, extract1st<Pair>, false, Hashtable>
+{
+ typedef typename Pair::second_type mapped_type;
+};
+
+template <typename K, typename Pair, typename Hashtable>
+struct map_base<K, Pair, extract1st<Pair>, true, Hashtable>
+{
+ typedef typename Pair::second_type mapped_type;
+ mapped_type& operator[](const K& k) {
+ Hashtable* h = static_cast<Hashtable*>(this);
+ typename Hashtable::iterator it = h->insert(std::make_pair(k, mapped_type())).first;
+ return it->second;
+ }
+};
+
+// class template rehash_base. Give hashtable the max_load_factor
+// functions iff the rehash policy is prime_rehash_policy.
+template <typename RehashPolicy, typename Hashtable>
+struct rehash_base { };
+
+template <typename Hashtable>
+struct rehash_base<prime_rehash_policy, Hashtable>
+{
+ float max_load_factor() const {
+ const Hashtable* This = static_cast<const Hashtable*>(this);
+ return This->rehash_policy()->max_load_factor();
+ }
+
+ void max_load_factor(float z) {
+ Hashtable* This = static_cast<Hashtable*>(this);
+ This->rehash_policy(prime_rehash_policy(z));
+ }
+};
+
+// Class template hash_code_base. Encapsulates two policy issues that
+// aren't quite orthogonal.
+// (1) the difference between using a ranged hash function and using
+// the combination of a hash function and a range-hashing function.
+// In the former case we don't have such things as hash codes, so
+// we have a dummy type as placeholder.
+// (2) Whether or not we cache hash codes. Caching hash codes is
+// meaningless if we have a ranged hash function.
+// We also put the key extraction and equality comparison function
+// objects here, for convenience.
+
+// Primary template: unused except as a hook for specializations.
+
+template <typename Key, typename Value,
+ typename ExtractKey, typename Equal,
+ typename H1, typename H2, typename H,
+ bool cache_hash_code>
+struct hash_code_base;
+
+// Specialization: ranged hash function, no caching hash codes. H1
+// and H2 are provided but ignored. We define a dummy hash code type.
+template <typename Key, typename Value,
+ typename ExtractKey, typename Equal,
+ typename H1, typename H2, typename H>
+struct hash_code_base <Key, Value, ExtractKey, Equal, H1, H2, H, false>
+{
+protected:
+ hash_code_base (const ExtractKey& ex, const Equal& eq,
+ const H1&, const H2&, const H& h)
+ : m_extract(ex), m_eq(eq), m_ranged_hash(h) { }
+
+ typedef void* hash_code_t;
+ hash_code_t m_hash_code (const Key& k) const { return 0; }
+ std::size_t bucket_index (const Key& k, hash_code_t, std::size_t N) const
+ { return m_ranged_hash (k, N); }
+ std::size_t bucket_index (const hash_node<Value, false>* p, std::size_t N) const {
+ return m_ranged_hash (m_extract (p->m_v), N);
+ }
+
+ bool compare (const Key& k, hash_code_t, hash_node<Value, false>* n) const
+ { return m_eq (k, m_extract(n->m_v)); }
+
+ void copy_code (hash_node<Value, false>*, const hash_node<Value, false>*) const { }
+
+ void m_swap(hash_code_base& x) {
+ m_extract.m_swap(x);
+ m_eq.m_swap(x);
+ m_ranged_hash.m_swap(x);
+ }
+
+protected:
+ ExtractKey m_extract;
+ Equal m_eq;
+ H m_ranged_hash;
+};
+
+
+// No specialization for ranged hash function while caching hash codes.
+// That combination is meaningless, and trying to do it is an error.
+
+
+// Specialization: ranged hash function, cache hash codes. This
+// combination is meaningless, so we provide only a declaration
+// and no definition.
+
+template <typename Key, typename Value,
+ typename ExtractKey, typename Equal,
+ typename H1, typename H2, typename H>
+struct hash_code_base <Key, Value, ExtractKey, Equal, H1, H2, H, true>;
+
+
+// Specialization: hash function and range-hashing function, no
+// caching of hash codes. H is provided but ignored. Provides
+// typedef and accessor required by TR1.
+
+template <typename Key, typename Value,
+ typename ExtractKey, typename Equal,
+ typename H1, typename H2>
+struct hash_code_base <Key, Value, ExtractKey, Equal, H1, H2, default_ranged_hash, false>
+{
+ typedef H1 hasher;
+ hasher hash_function() const { return m_h1; }
+
+protected:
+ hash_code_base (const ExtractKey& ex, const Equal& eq,
+ const H1& h1, const H2& h2, const default_ranged_hash&)
+ : m_extract(ex), m_eq(eq), m_h1(h1), m_h2(h2) { }
+
+ typedef std::size_t hash_code_t;
+ hash_code_t m_hash_code (const Key& k) const { return m_h1(k); }
+ std::size_t bucket_index (const Key&, hash_code_t c, std::size_t N) const
+ { return m_h2 (c, N); }
+ std::size_t bucket_index (const hash_node<Value, false>* p, std::size_t N) const {
+ return m_h2 (m_h1 (m_extract (p->m_v)), N);
+ }
+
+ bool compare (const Key& k, hash_code_t, hash_node<Value, false>* n) const
+ { return m_eq (k, m_extract(n->m_v)); }
+
+ void copy_code (hash_node<Value, false>*, const hash_node<Value, false>*) const { }
+
+ void m_swap(hash_code_base& x) {
+ m_extract.m_swap(x);
+ m_eq.m_swap(x);
+ m_h1.m_swap(x);
+ m_h2.m_swap(x);
+ }
+
+protected:
+ ExtractKey m_extract;
+ Equal m_eq;
+ H1 m_h1;
+ H2 m_h2;
+};
+
+// Specialization: hash function and range-hashing function,
+// caching hash codes. H is provided but ignored. Provides
+// typedef and accessor required by TR1.
+template <typename Key, typename Value,
+ typename ExtractKey, typename Equal,
+ typename H1, typename H2>
+struct hash_code_base <Key, Value, ExtractKey, Equal, H1, H2, default_ranged_hash, true>
+{
+ typedef H1 hasher;
+ hasher hash_function() const { return m_h1; }
+
+protected:
+ hash_code_base (const ExtractKey& ex, const Equal& eq,
+ const H1& h1, const H2& h2, const default_ranged_hash&)
+ : m_extract(ex), m_eq(eq), m_h1(h1), m_h2(h2) { }
+
+ typedef std::size_t hash_code_t;
+ hash_code_t m_hash_code (const Key& k) const { return m_h1(k); }
+ std::size_t bucket_index (const Key&, hash_code_t c, std::size_t N) const
+ { return m_h2 (c, N); }
+
+ std::size_t bucket_index (const hash_node<Value, true>* p, std::size_t N) const {
+ return m_h2 (p->hash_code, N);
+ }
+
+ bool compare (const Key& k, hash_code_t c, hash_node<Value, true>* n) const
+ { return c == n->hash_code && m_eq (k, m_extract(n->m_v)); }
+
+ void copy_code (hash_node<Value, true>* to, const hash_node<Value, true>* from) const
+ { to->hash_code = from->hash_code; }
+
+ void m_swap(hash_code_base& x) {
+ m_extract.m_swap(x);
+ m_eq.m_swap(x);
+ m_h1.m_swap(x);
+ m_h2.m_swap(x);
+ }
+
+protected:
+ ExtractKey m_extract;
+ Equal m_eq;
+ H1 m_h1;
+ H2 m_h2;
+};
+
+} // namespace internal
+
+namespace std { namespace tr1 {
+
+//----------------------------------------------------------------------
+// Class template hashtable, class definition.
+
+// Meaning of class template hashtable's template parameters
+
+// Key and Value: arbitrary CopyConstructible types.
+
+// Allocator: an allocator type ([lib.allocator.requirements]) whose
+// value type is Value.
+
+// ExtractKey: function object that takes a object of type Value
+// and returns a value of type Key.
+
+// Equal: function object that takes two objects of type k and returns
+// a bool-like value that is true if the two objects are considered equal.
+
+// H1: the hash function. A unary function object with argument type
+// Key and result type size_t. Return values should be distributed
+// over the entire range [0, numeric_limits<size_t>:::max()].
+
+// H2: the range-hashing function (in the terminology of Tavori and
+// Dreizin). A binary function object whose argument types and result
+// type are all size_t. Given arguments r and N, the return value is
+// in the range [0, N).
+
+// H: the ranged hash function (Tavori and Dreizin). A binary function
+// whose argument types are Key and size_t and whose result type is
+// size_t. Given arguments k and N, the return value is in the range
+// [0, N). Default: h(k, N) = h2(h1(k), N). If H is anything other
+// than the default, H1 and H2 are ignored.
+
+// RehashPolicy: Policy class with three members, all of which govern
+// the bucket count. n_bkt(n) returns a bucket count no smaller
+// than n. bkt_for_elements(n) returns a bucket count appropriate
+// for an element count of n. need_rehash(n_bkt, n_elt, n_ins)
+// determines whether, if the current bucket count is n_bkt and the
+// current element count is n_elt, we need to increase the bucket
+// count. If so, returns make_pair(true, n), where n is the new
+// bucket count. If not, returns make_pair(false, <anything>).
+
+// ??? Right now it is hard-wired that the number of buckets never
+// shrinks. Should we allow RehashPolicy to change that?
+
+// cache_hash_code: bool. true if we store the value of the hash
+// function along with the value. This is a time-space tradeoff.
+// Storing it may improve lookup speed by reducing the number of times
+// we need to call the Equal function.
+
+// mutable_iterators: bool. true if hashtable::iterator is a mutable
+// iterator, false if iterator and const_iterator are both const
+// iterators. This is true for unordered_map and unordered_multimap,
+// false for unordered_set and unordered_multiset.
+
+// unique_keys: bool. true if the return value of hashtable::count(k)
+// is always at most one, false if it may be an arbitrary number. This
+// true for unordered_set and unordered_map, false for unordered_multiset
+// and unordered_multimap.
+
+template <typename Key, typename Value,
+ typename Allocator,
+ typename ExtractKey, typename Equal,
+ typename H1, typename H2,
+ typename H, typename RehashPolicy,
+ bool cache_hash_code,
+ bool mutable_iterators,
+ bool unique_keys>
+class hashtable
+ : public Internal::rehash_base<RehashPolicy, hashtable<Key, Value, Allocator, ExtractKey, Equal, H1, H2, H, RehashPolicy, cache_hash_code, mutable_iterators, unique_keys> >,
+ public Internal::hash_code_base<Key, Value, ExtractKey, Equal, H1, H2, H, cache_hash_code>,
+ public Internal::map_base<Key, Value, ExtractKey, unique_keys, hashtable<Key, Value, Allocator, ExtractKey, Equal, H1, H2, H, RehashPolicy, cache_hash_code, mutable_iterators, unique_keys> >
+{
+public:
+ typedef Allocator allocator_type;
+ typedef Value value_type;
+ typedef Key key_type;
+ typedef Equal key_equal;
+ // mapped_type, if present, comes from map_base.
+ // hasher, if present, comes from hash_code_base.
+ typedef typename Allocator::difference_type difference_type;
+ typedef typename Allocator::size_type size_type;
+ typedef typename Allocator::reference reference;
+ typedef typename Allocator::const_reference const_reference;
+
+ typedef Internal::node_iterator<value_type, !mutable_iterators, cache_hash_code>
+ local_iterator;
+ typedef Internal::node_iterator<value_type, false, cache_hash_code>
+ const_local_iterator;
+
+ typedef Internal::hashtable_iterator<value_type, !mutable_iterators, cache_hash_code>
+ iterator;
+ typedef Internal::hashtable_iterator<value_type, false, cache_hash_code>
+ const_iterator;
+
+private:
+ typedef Internal::hash_node<Value, cache_hash_code> node;
+ typedef typename Allocator::template rebind<node>::other node_allocator_t;
+ typedef typename Allocator::template rebind<node*>::other bucket_allocator_t;
+
+private:
+ node_allocator_t m_node_allocator;
+ node** m_buckets;
+ size_type m_bucket_count;
+ size_type m_element_count;
+ RehashPolicy m_rehash_policy;
+
+ node* m_allocate_node (const value_type& v);
+ void m_deallocate_node (node* n);
+ void m_deallocate_nodes (node**, size_type);
+
+ node** m_allocate_buckets (size_type n);
+ void m_deallocate_buckets (node**, size_type n);
+
+public: // Constructor, destructor, assignment, swap
+ hashtable(size_type bucket_hint,
+ const H1&, const H2&, const H&,
+ const Equal&, const ExtractKey&,
+ const allocator_type&);
+
+ template <typename InIter>
+ hashtable(InIter first, InIter last,
+ size_type bucket_hint,
+ const H1&, const H2&, const H&,
+ const Equal&, const ExtractKey&,
+ const allocator_type&);
+
+ hashtable(const hashtable&);
+ hashtable& operator=(const hashtable&);
+ ~hashtable();
+
+ void swap(hashtable&);
+
+public: // Basic container operations
+ iterator begin() {
+ iterator i(m_buckets);
+ if (!i.m_cur_node)
+ i.m_incr_bucket();
+ return i;
+ }
+
+ const_iterator begin() const {
+ const_iterator i(m_buckets);
+ if (!i.m_cur_node)
+ i.m_incr_bucket();
+ return i;
+ }
+
+ iterator end()
+ { return iterator(m_buckets + m_bucket_count); }
+ const_iterator end() const
+ { return const_iterator(m_buckets + m_bucket_count); }
+
+ size_type size() const { return m_element_count; }
+ bool empty() const { return size() == 0; }
+
+ allocator_type get_allocator() const { return m_node_allocator; }
+ size_type max_size() const { return m_node_allocator.max_size(); }
+
+public: // Bucket operations
+ size_type bucket_count() const
+ { return m_bucket_count; }
+ size_type max_bucket_count() const
+ { return max_size(); }
+ size_type bucket_size (size_type n) const
+ { return std::distance(begin(n), end(n)); }
+ size_type bucket (const key_type& k) const
+ { return this->bucket_index (k, this->m_hash_code, this->m_bucket_count); }
+
+ local_iterator begin(size_type n)
+ { return local_iterator(m_buckets[n]); }
+ local_iterator end(size_type n)
+ { return local_iterator(0); }
+ const_local_iterator begin(size_type n) const
+ { return const_local_iterator(m_buckets[n]); }
+ const_local_iterator end(size_type n) const
+ { return const_local_iterator(0); }
+
+ float load_factor() const
+ { return static_cast<float>(size()) / static_cast<float>(bucket_count()); }
+ // max_load_factor, if present, comes from rehash_base.
+
+ // Generalization of max_load_factor. Extension, not found in TR1. Only
+ // useful if RehashPolicy is something other than the default.
+ const RehashPolicy& rehash_policy() const { return m_rehash_policy; }
+ void rehash_policy (const RehashPolicy&);
+
+public: // lookup
+ iterator find(const key_type&);
+ const_iterator find(const key_type& k) const;
+ size_type count(const key_type& k) const;
+ std::pair<iterator, iterator> equal_range(const key_type& k);
+ std::pair<const_iterator, const_iterator> equal_range(const key_type& k) const;
+
+private: // Insert and erase helper functions
+ // ??? This dispatching is a workaround for the fact that we don't
+ // have partial specialization of member templates; it would be
+ // better to just specialize insert on unique_keys. There may be a
+ // cleaner workaround.
+ typedef typename Internal::IF<unique_keys, std::pair<iterator, bool>, iterator>::type
+ Insert_Return_Type;
+
+ node* find_node (node* p, const key_type& k, typename hashtable::hash_code_t c);
+
+ std::pair<iterator, bool> insert (const value_type&, std::tr1::true_type);
+ iterator insert (const value_type&, std::tr1::false_type);
+
+public: // Insert and erase
+ Insert_Return_Type insert (const value_type& v)
+ { return this->insert (v, std::tr1::integral_constant<bool, unique_keys>()); }
+ Insert_Return_Type insert (const_iterator, const value_type& v)
+ { return this->insert(v); }
+
+ template <typename InIter> void insert(InIter first, InIter last);
+
+ void erase(const_iterator);
+ size_type erase(const key_type&);
+ void erase(const_iterator, const_iterator);
+ void clear();
+
+public:
+ // Set number of buckets to be apropriate for container of n element.
+ void rehash (size_type n);
+
+private:
+ // Unconditionally change size of bucket array to n.
+ void m_rehash (size_type n);
+};
+
+//----------------------------------------------------------------------
+// Definitions of class template hashtable's out-of-line member functions.
+
+template <typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+typename hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::node*
+hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::m_allocate_node (const value_type& v)
+{
+ node* n = m_node_allocator.allocate(1);
+ try {
+ get_allocator().construct(&n->m_v, v);
+ n->m_next = 0;
+ return n;
+ }
+ catch(...) {
+ m_node_allocator.deallocate(n, 1);
+ throw;
+ }
+}
+
+template <typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+void
+hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::m_deallocate_node (node* n)
+{
+ get_allocator().destroy(&n->m_v);
+ m_node_allocator.deallocate(n, 1);
+}
+
+template <typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+void
+hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>
+::m_deallocate_nodes (node** array, size_type n)
+{
+ for (size_type i = 0; i < n; ++i) {
+ node* p = array[i];
+ while (p) {
+ node* tmp = p;
+ p = p->m_next;
+ m_deallocate_node (tmp);
+ }
+ array[i] = 0;
+ }
+}
+
+template <typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+typename hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::node**
+hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::m_allocate_buckets (size_type n)
+{
+ bucket_allocator_t alloc(m_node_allocator);
+
+ // We allocate one extra bucket to hold a sentinel, an arbitrary
+ // non-null pointer. Iterator increment relies on this.
+ node** p = alloc.allocate(n+1);
+ std::fill(p, p+n, (node*) 0);
+ p[n] = reinterpret_cast<node*>(0x1000);
+ return p;
+}
+
+template <typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+void
+hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>
+::m_deallocate_buckets (node** p, size_type n)
+{
+ bucket_allocator_t alloc(m_node_allocator);
+ alloc.deallocate(p, n+1);
+}
+
+template <typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>
+::hashtable(size_type bucket_hint,
+ const H1& h1, const H2& h2, const H& h,
+ const Eq& eq, const Ex& exk,
+ const allocator_type& a)
+ : Internal::rehash_base<RP,hashtable> (),
+ Internal::hash_code_base<K,V,Ex,Eq,H1,H2,H,c> (exk, eq, h1, h2, h),
+ Internal::map_base<K,V,Ex,u,hashtable> (),
+ m_node_allocator(a),
+ m_bucket_count (0),
+ m_element_count (0),
+ m_rehash_policy ()
+{
+ m_bucket_count = m_rehash_policy.next_bkt(bucket_hint);
+ m_buckets = m_allocate_buckets (m_bucket_count);
+}
+
+template <typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+template <typename InIter>
+hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>
+::hashtable(InIter f, InIter l,
+ size_type bucket_hint,
+ const H1& h1, const H2& h2, const H& h,
+ const Eq& eq, const Ex& exk,
+ const allocator_type& a)
+ : Internal::rehash_base<RP,hashtable> (),
+ Internal::hash_code_base<K,V,Ex,Eq,H1,H2,H,c> (exk, eq, h1, h2, h),
+ Internal::map_base<K,V,Ex,u,hashtable> (),
+ m_node_allocator(a),
+ m_bucket_count (0),
+ m_element_count (0),
+ m_rehash_policy ()
+{
+ m_bucket_count = std::max(m_rehash_policy.next_bkt(bucket_hint),
+ m_rehash_policy.bkt_for_elements(Internal::distance_fw(f, l)));
+ m_buckets = m_allocate_buckets (m_bucket_count);
+ try {
+ for (; f != l; ++f)
+ this->insert (*f);
+ }
+ catch(...) {
+ clear();
+ m_deallocate_buckets (m_buckets, m_bucket_count);
+ throw;
+ }
+}
+
+template <typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>
+::hashtable(const hashtable& ht)
+ : Internal::rehash_base<RP,hashtable> (ht),
+ Internal::hash_code_base<K,V,Ex,Eq,H1,H2,H,c> (ht),
+ Internal::map_base<K,V,Ex,u,hashtable> (ht),
+ m_node_allocator(ht.get_allocator()),
+ m_bucket_count (ht.m_bucket_count),
+ m_element_count (ht.m_element_count),
+ m_rehash_policy (ht.m_rehash_policy)
+{
+ m_buckets = m_allocate_buckets (m_bucket_count);
+ try {
+ for (size_t i = 0; i < ht.m_bucket_count; ++i) {
+ node* n = ht.m_buckets[i];
+ node** tail = m_buckets + i;
+ while (n) {
+ *tail = m_allocate_node (n);
+ (*tail).copy_code_from (n);
+ tail = &((*tail)->m_next);
+ n = n->m_next;
+ }
+ }
+ }
+ catch (...) {
+ clear();
+ m_deallocate_buckets (m_buckets, m_bucket_count);
+ throw;
+ }
+}
+
+template <typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>&
+hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::operator= (const hashtable& ht)
+{
+ hashtable tmp(ht);
+ this->swap(tmp);
+ return *this;
+}
+
+template <typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::~hashtable()
+{
+ clear();
+ m_deallocate_buckets(m_buckets, m_bucket_count);
+}
+
+template <typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+void hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::swap (hashtable& x)
+{
+ // The only base class with member variables is hash_code_base. We
+ // define hash_code_base::m_swap because different specializations
+ // have different members.
+ Internal::hash_code_base<K, V, Ex, Eq, H1, H2, H, c>::m_swap(x);
+
+ // open LWG issue 431
+ // std::swap(m_node_allocator, x.m_node_allocator);
+ std::swap (m_rehash_policy, x.m_rehash_policy);
+ std::swap (m_buckets, x.m_buckets);
+ std::swap (m_bucket_count, x.m_bucket_count);
+ std::swap (m_element_count, x.m_element_count);
+}
+
+template <typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+void
+hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::rehash_policy (const RP& pol)
+{
+ m_rehash_policy = pol;
+ size_type n_bkt = pol.bkt_for_elements(m_element_count);
+ if (n_bkt > m_bucket_count)
+ m_rehash (n_bkt);
+}
+
+template <typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+typename hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::iterator
+hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::find (const key_type& k)
+{
+ typename hashtable::hash_code_t code = this->m_hash_code (k);
+ std::size_t n = this->bucket_index (k, code, this->bucket_count());
+ node* p = find_node (m_buckets[n], k, code);
+ return p ? iterator(p, m_buckets + n) : this->end();
+}
+
+template <typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+typename hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::const_iterator
+hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::find (const key_type& k) const
+{
+ typename hashtable::hash_code_t code = this->m_hash_code (k);
+ std::size_t n = this->bucket_index (k, code, this->bucket_count());
+ node* p = find_node (m_buckets[n], k, code);
+ return p ? const_iterator(p, m_buckets + n) : this->end();
+}
+
+template <typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+typename hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::size_type
+hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::count (const key_type& k) const
+{
+ typename hashtable::hash_code_t code = this->m_hash_code (k);
+ std::size_t n = this->bucket_index (k, code, this->bucket_count());
+ size_t result = 0;
+ for (node* p = m_buckets[n]; p ; p = p->m_next)
+ if (this->compare (k, code, p))
+ ++result;
+ return result;
+}
+
+template <typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+std::pair<typename hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::iterator,
+ typename hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::iterator>
+hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::equal_range (const key_type& k)
+{
+ typename hashtable::hash_code_t code = this->m_hash_code (k);
+ std::size_t n = this->bucket_index (k, code, this->bucket_count());
+ node** head = m_buckets + n;
+ node* p = find_node (*head, k, code);
+
+ if (p) {
+ node* p1 = p->m_next;
+ for (; p1 ; p1 = p1->m_next)
+ if (!this->compare (k, code, p1))
+ break;
+ iterator first(p, head);
+ iterator last(p1, head);
+ if (!p1)
+ last.m_incr_bucket();
+ return std::make_pair(first, last);
+ }
+ else
+ return std::make_pair (this->end(), this->end());
+}
+
+template <typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+std::pair<typename hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::const_iterator,
+ typename hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::const_iterator>
+hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::equal_range (const key_type& k) const
+{
+ typename hashtable::hash_code_t code = this->m_hash_code (k);
+ std::size_t n = this->bucket_index (k, code, this->bucket_count());
+ node** head = m_buckets + n;
+ node* p = find_node (*head, k, code);
+
+ if (p) {
+ node* p1 = p->m_next;
+ for (; p1 ; p1 = p1->m_next)
+ if (!this->compare (k, code, p1))
+ break;
+ const_iterator first(p, head);
+ const_iterator last(p1, head);
+ if (!p1)
+ last.m_incr_bucket();
+ return std::make_pair(first, last);
+ }
+ else
+ return std::make_pair (this->end(), this->end());
+}
+
+// Find the node whose key compares equal to k, beginning the search
+// at p (usually the head of a bucket). Return nil if no node is found.
+template <typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+typename hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::node*
+hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>
+::find_node (node* p, const key_type& k, typename hashtable::hash_code_t code)
+{
+ for ( ; p ; p = p->m_next)
+ if (this->compare (k, code, p))
+ return p;
+ return false;
+}
+
+// Insert v if no element with its key is already present.
+template <typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+std::pair<typename hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::iterator, bool>
+hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>
+::insert (const value_type& v, std::tr1::true_type)
+{
+ const key_type& k = this->m_extract(v);
+ typename hashtable::hash_code_t code = this->m_hash_code (k);
+ size_type n = this->bucket_index (k, code, m_bucket_count);
+
+ if (node* p = find_node (m_buckets[n], k, code))
+ return std::make_pair(iterator(p, m_buckets + n), false);
+
+ std::pair<bool, size_t> do_rehash
+ = m_rehash_policy.need_rehash(m_bucket_count, m_element_count, 1);
+
+ // Allocate the new node before doing the rehash so that we don't
+ // do a rehash if the allocation throws.
+ node* new_node = m_allocate_node (v);
+
+ try {
+ if (do_rehash.first) {
+ n = this->bucket_index (k, code, do_rehash.second);
+ m_rehash(do_rehash.second);
+ }
+
+ new_node->m_next = m_buckets[n];
+ m_buckets[n] = new_node;
+ ++m_element_count;
+ return std::make_pair(iterator (new_node, m_buckets + n), true);
+ }
+ catch (...) {
+ m_deallocate_node (new_node);
+ throw;
+ }
+}
+
+// Insert v unconditionally.
+template <typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+typename hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::iterator
+hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>
+::insert (const value_type& v, std::tr1::false_type)
+{
+ std::pair<bool, std::size_t> do_rehash
+ = m_rehash_policy.need_rehash(m_bucket_count, m_element_count, 1);
+ if (do_rehash.first)
+ m_rehash(do_rehash.second);
+
+ const key_type& k = this->m_extract(v);
+ typename hashtable::hash_code_t code = this->m_hash_code (k);
+ size_type n = this->bucket_index (k, code, m_bucket_count);
+
+ node* new_node = m_allocate_node (v);
+ node* prev = find_node (m_buckets[n], k, code);
+ if (prev) {
+ new_node->m_next = prev->m_next;
+ prev->m_next = new_node;
+ }
+ else {
+ new_node->m_next = m_buckets[n];
+ m_buckets[n] = new_node;
+ }
+
+ ++m_element_count;
+ return iterator (new_node, m_buckets + n);
+}
+
+template <typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+template <typename InIter>
+void
+hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::insert(InIter first, InIter last)
+{
+ size_type n_elt = Internal::distance_fw (first, last);
+ std::pair<bool, std::size_t> do_rehash
+ = m_rehash_policy.need_rehash(m_bucket_count, m_element_count, n_elt);
+ if (do_rehash.first)
+ m_rehash(do_rehash.second);
+
+ for (; first != last; ++first)
+ this->insert (*first);
+}
+
+// XXX We're following the TR in giving this a return type of void,
+// but that ought to change. The return type should be const_iterator,
+// and it should return the iterator following the one we've erased.
+// That would simplify range erase.
+template <typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+void hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::erase (const_iterator i)
+{
+ node* p = i.m_cur_node;
+ node* cur = *i.m_cur_bucket;
+ if (cur == p)
+ *i.m_cur_bucket = cur->m_next;
+ else {
+ node* next = cur->m_next;
+ while (next != p) {
+ cur = next;
+ next = cur->m_next;
+ }
+ cur->m_next = next->m_next;
+ }
+
+ m_deallocate_node (p);
+ --m_element_count;
+}
+
+template <typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+typename hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::size_type
+hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::erase(const key_type& k)
+{
+ typename hashtable::hash_code_t code = this->m_hash_code (k);
+ size_type n = this->bucket_index (k, code, m_bucket_count);
+
+ node** slot = m_buckets + n;
+ while (*slot && ! this->compare (k, code, *slot))
+ slot = &((*slot)->m_next);
+
+ while (*slot && this->compare (k, code, *slot)) {
+ node* n = *slot;
+ *slot = n->m_next;
+ m_deallocate_node (n);
+ --m_element_count;
+ }
+}
+
+// ??? This could be optimized by taking advantage of the bucket
+// structure, but it's not clear that it's worth doing. It probably
+// wouldn't even be an optimization unless the load factor is large.
+template <typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+void hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>
+::erase(const_iterator first, const_iterator last)
+{
+ while (first != last) {
+ const_iterator next = first;
+ ++next;
+ this->erase(first);
+ first = next;
+ }
+}
+
+template <typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+void hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::clear()
+{
+ m_deallocate_nodes (m_buckets, m_bucket_count);
+ m_element_count = 0;
+}
+
+template <typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+void
+hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::m_rehash (size_type N)
+{
+ node** new_array = m_allocate_buckets (N);
+ try {
+ for (size_type i = 0; i < m_bucket_count; ++i)
+ while (node* p = m_buckets[i]) {
+ size_type new_index = this->bucket_index (p, N);
+ m_buckets[i] = p->m_next;
+ p->m_next = new_array[new_index];
+ new_array[new_index] = p;
+ }
+ m_deallocate_buckets (m_buckets, m_bucket_count);
+ m_bucket_count = N;
+ m_buckets = new_array;
+ }
+ catch (...) {
+ // A failure here means that a hash function threw an exception.
+ // We can't restore the previous state without calling the hash
+ // function again, so the only sensible recovery is to delete
+ // everything.
+ m_deallocate_nodes (new_array, N);
+ m_deallocate_buckets (new_array, N);
+ m_deallocate_nodes (m_buckets, m_bucket_count);
+ m_element_count = 0;
+ throw;
+ }
+}
+
+} } // Namespace std::tr1
+
+#endif /* GNU_LIBSTDCXX_TR1_HASHTABLE_ */
+