/* Machine description for AArch64 architecture. Copyright (C) 2009-2018 Free Software Foundation, Inc. Contributed by ARM Ltd. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #define IN_TARGET_CODE 1 #include "config.h" #define INCLUDE_STRING #include "system.h" #include "coretypes.h" #include "backend.h" #include "target.h" #include "rtl.h" #include "tree.h" #include "memmodel.h" #include "gimple.h" #include "cfghooks.h" #include "cfgloop.h" #include "df.h" #include "tm_p.h" #include "stringpool.h" #include "attribs.h" #include "optabs.h" #include "regs.h" #include "emit-rtl.h" #include "recog.h" #include "diagnostic.h" #include "insn-attr.h" #include "alias.h" #include "fold-const.h" #include "stor-layout.h" #include "calls.h" #include "varasm.h" #include "output.h" #include "flags.h" #include "explow.h" #include "expr.h" #include "reload.h" #include "langhooks.h" #include "opts.h" #include "params.h" #include "gimplify.h" #include "dwarf2.h" #include "gimple-iterator.h" #include "tree-vectorizer.h" #include "aarch64-cost-tables.h" #include "dumpfile.h" #include "builtins.h" #include "rtl-iter.h" #include "tm-constrs.h" #include "sched-int.h" #include "target-globals.h" #include "common/common-target.h" #include "cfgrtl.h" #include "selftest.h" #include "selftest-rtl.h" #include "rtx-vector-builder.h" /* This file should be included last. */ #include "target-def.h" /* Defined for convenience. */ #define POINTER_BYTES (POINTER_SIZE / BITS_PER_UNIT) /* Classifies an address. ADDRESS_REG_IMM A simple base register plus immediate offset. ADDRESS_REG_WB A base register indexed by immediate offset with writeback. ADDRESS_REG_REG A base register indexed by (optionally scaled) register. ADDRESS_REG_UXTW A base register indexed by (optionally scaled) zero-extended register. ADDRESS_REG_SXTW A base register indexed by (optionally scaled) sign-extended register. ADDRESS_LO_SUM A LO_SUM rtx with a base register and "LO12" symbol relocation. ADDRESS_SYMBOLIC: A constant symbolic address, in pc-relative literal pool. */ enum aarch64_address_type { ADDRESS_REG_IMM, ADDRESS_REG_WB, ADDRESS_REG_REG, ADDRESS_REG_UXTW, ADDRESS_REG_SXTW, ADDRESS_LO_SUM, ADDRESS_SYMBOLIC }; struct aarch64_address_info { enum aarch64_address_type type; rtx base; rtx offset; poly_int64 const_offset; int shift; enum aarch64_symbol_type symbol_type; }; /* Information about a legitimate vector immediate operand. */ struct simd_immediate_info { enum insn_type { MOV, MVN }; enum modifier_type { LSL, MSL }; simd_immediate_info () {} simd_immediate_info (scalar_float_mode, rtx); simd_immediate_info (scalar_int_mode, unsigned HOST_WIDE_INT, insn_type = MOV, modifier_type = LSL, unsigned int = 0); simd_immediate_info (scalar_mode, rtx, rtx); /* The mode of the elements. */ scalar_mode elt_mode; /* The value of each element if all elements are the same, or the first value if the constant is a series. */ rtx value; /* The value of the step if the constant is a series, null otherwise. */ rtx step; /* The instruction to use to move the immediate into a vector. */ insn_type insn; /* The kind of shift modifier to use, and the number of bits to shift. This is (LSL, 0) if no shift is needed. */ modifier_type modifier; unsigned int shift; }; /* Construct a floating-point immediate in which each element has mode ELT_MODE_IN and value VALUE_IN. */ inline simd_immediate_info ::simd_immediate_info (scalar_float_mode elt_mode_in, rtx value_in) : elt_mode (elt_mode_in), value (value_in), step (NULL_RTX), insn (MOV), modifier (LSL), shift (0) {} /* Construct an integer immediate in which each element has mode ELT_MODE_IN and value VALUE_IN. The other parameters are as for the structure fields. */ inline simd_immediate_info ::simd_immediate_info (scalar_int_mode elt_mode_in, unsigned HOST_WIDE_INT value_in, insn_type insn_in, modifier_type modifier_in, unsigned int shift_in) : elt_mode (elt_mode_in), value (gen_int_mode (value_in, elt_mode_in)), step (NULL_RTX), insn (insn_in), modifier (modifier_in), shift (shift_in) {} /* Construct an integer immediate in which each element has mode ELT_MODE_IN and where element I is equal to VALUE_IN + I * STEP_IN. */ inline simd_immediate_info ::simd_immediate_info (scalar_mode elt_mode_in, rtx value_in, rtx step_in) : elt_mode (elt_mode_in), value (value_in), step (step_in), insn (MOV), modifier (LSL), shift (0) {} /* The current code model. */ enum aarch64_code_model aarch64_cmodel; /* The number of 64-bit elements in an SVE vector. */ poly_uint16 aarch64_sve_vg; #ifdef HAVE_AS_TLS #undef TARGET_HAVE_TLS #define TARGET_HAVE_TLS 1 #endif static bool aarch64_composite_type_p (const_tree, machine_mode); static bool aarch64_vfp_is_call_or_return_candidate (machine_mode, const_tree, machine_mode *, int *, bool *); static void aarch64_elf_asm_constructor (rtx, int) ATTRIBUTE_UNUSED; static void aarch64_elf_asm_destructor (rtx, int) ATTRIBUTE_UNUSED; static void aarch64_override_options_after_change (void); static bool aarch64_vector_mode_supported_p (machine_mode); static int aarch64_address_cost (rtx, machine_mode, addr_space_t, bool); static bool aarch64_builtin_support_vector_misalignment (machine_mode mode, const_tree type, int misalignment, bool is_packed); static machine_mode aarch64_simd_container_mode (scalar_mode, poly_int64); static bool aarch64_print_address_internal (FILE*, machine_mode, rtx, aarch64_addr_query_type); /* Major revision number of the ARM Architecture implemented by the target. */ unsigned aarch64_architecture_version; /* The processor for which instructions should be scheduled. */ enum aarch64_processor aarch64_tune = cortexa53; /* Mask to specify which instruction scheduling options should be used. */ unsigned long aarch64_tune_flags = 0; /* Global flag for PC relative loads. */ bool aarch64_pcrelative_literal_loads; /* Global flag for whether frame pointer is enabled. */ bool aarch64_use_frame_pointer; /* Support for command line parsing of boolean flags in the tuning structures. */ struct aarch64_flag_desc { const char* name; unsigned int flag; }; #define AARCH64_FUSION_PAIR(name, internal_name) \ { name, AARCH64_FUSE_##internal_name }, static const struct aarch64_flag_desc aarch64_fusible_pairs[] = { { "none", AARCH64_FUSE_NOTHING }, #include "aarch64-fusion-pairs.def" { "all", AARCH64_FUSE_ALL }, { NULL, AARCH64_FUSE_NOTHING } }; #define AARCH64_EXTRA_TUNING_OPTION(name, internal_name) \ { name, AARCH64_EXTRA_TUNE_##internal_name }, static const struct aarch64_flag_desc aarch64_tuning_flags[] = { { "none", AARCH64_EXTRA_TUNE_NONE }, #include "aarch64-tuning-flags.def" { "all", AARCH64_EXTRA_TUNE_ALL }, { NULL, AARCH64_EXTRA_TUNE_NONE } }; /* Tuning parameters. */ static const struct cpu_addrcost_table generic_addrcost_table = { { 1, /* hi */ 0, /* si */ 0, /* di */ 1, /* ti */ }, 0, /* pre_modify */ 0, /* post_modify */ 0, /* register_offset */ 0, /* register_sextend */ 0, /* register_zextend */ 0 /* imm_offset */ }; static const struct cpu_addrcost_table exynosm1_addrcost_table = { { 0, /* hi */ 0, /* si */ 0, /* di */ 2, /* ti */ }, 0, /* pre_modify */ 0, /* post_modify */ 1, /* register_offset */ 1, /* register_sextend */ 2, /* register_zextend */ 0, /* imm_offset */ }; static const struct cpu_addrcost_table xgene1_addrcost_table = { { 1, /* hi */ 0, /* si */ 0, /* di */ 1, /* ti */ }, 1, /* pre_modify */ 0, /* post_modify */ 0, /* register_offset */ 1, /* register_sextend */ 1, /* register_zextend */ 0, /* imm_offset */ }; static const struct cpu_addrcost_table thunderx2t99_addrcost_table = { { 1, /* hi */ 1, /* si */ 1, /* di */ 2, /* ti */ }, 0, /* pre_modify */ 0, /* post_modify */ 2, /* register_offset */ 3, /* register_sextend */ 3, /* register_zextend */ 0, /* imm_offset */ }; static const struct cpu_addrcost_table qdf24xx_addrcost_table = { { 1, /* hi */ 1, /* si */ 1, /* di */ 2, /* ti */ }, 1, /* pre_modify */ 1, /* post_modify */ 3, /* register_offset */ 3, /* register_sextend */ 3, /* register_zextend */ 2, /* imm_offset */ }; static const struct cpu_regmove_cost generic_regmove_cost = { 1, /* GP2GP */ /* Avoid the use of slow int<->fp moves for spilling by setting their cost higher than memmov_cost. */ 5, /* GP2FP */ 5, /* FP2GP */ 2 /* FP2FP */ }; static const struct cpu_regmove_cost cortexa57_regmove_cost = { 1, /* GP2GP */ /* Avoid the use of slow int<->fp moves for spilling by setting their cost higher than memmov_cost. */ 5, /* GP2FP */ 5, /* FP2GP */ 2 /* FP2FP */ }; static const struct cpu_regmove_cost cortexa53_regmove_cost = { 1, /* GP2GP */ /* Avoid the use of slow int<->fp moves for spilling by setting their cost higher than memmov_cost. */ 5, /* GP2FP */ 5, /* FP2GP */ 2 /* FP2FP */ }; static const struct cpu_regmove_cost exynosm1_regmove_cost = { 1, /* GP2GP */ /* Avoid the use of slow int<->fp moves for spilling by setting their cost higher than memmov_cost (actual, 4 and 9). */ 9, /* GP2FP */ 9, /* FP2GP */ 1 /* FP2FP */ }; static const struct cpu_regmove_cost thunderx_regmove_cost = { 2, /* GP2GP */ 2, /* GP2FP */ 6, /* FP2GP */ 4 /* FP2FP */ }; static const struct cpu_regmove_cost xgene1_regmove_cost = { 1, /* GP2GP */ /* Avoid the use of slow int<->fp moves for spilling by setting their cost higher than memmov_cost. */ 8, /* GP2FP */ 8, /* FP2GP */ 2 /* FP2FP */ }; static const struct cpu_regmove_cost qdf24xx_regmove_cost = { 2, /* GP2GP */ /* Avoid the use of int<->fp moves for spilling. */ 6, /* GP2FP */ 6, /* FP2GP */ 4 /* FP2FP */ }; static const struct cpu_regmove_cost thunderx2t99_regmove_cost = { 1, /* GP2GP */ /* Avoid the use of int<->fp moves for spilling. */ 8, /* GP2FP */ 8, /* FP2GP */ 4 /* FP2FP */ }; /* Generic costs for vector insn classes. */ static const struct cpu_vector_cost generic_vector_cost = { 1, /* scalar_int_stmt_cost */ 1, /* scalar_fp_stmt_cost */ 1, /* scalar_load_cost */ 1, /* scalar_store_cost */ 1, /* vec_int_stmt_cost */ 1, /* vec_fp_stmt_cost */ 2, /* vec_permute_cost */ 1, /* vec_to_scalar_cost */ 1, /* scalar_to_vec_cost */ 1, /* vec_align_load_cost */ 1, /* vec_unalign_load_cost */ 1, /* vec_unalign_store_cost */ 1, /* vec_store_cost */ 3, /* cond_taken_branch_cost */ 1 /* cond_not_taken_branch_cost */ }; /* QDF24XX costs for vector insn classes. */ static const struct cpu_vector_cost qdf24xx_vector_cost = { 1, /* scalar_int_stmt_cost */ 1, /* scalar_fp_stmt_cost */ 1, /* scalar_load_cost */ 1, /* scalar_store_cost */ 1, /* vec_int_stmt_cost */ 3, /* vec_fp_stmt_cost */ 2, /* vec_permute_cost */ 1, /* vec_to_scalar_cost */ 1, /* scalar_to_vec_cost */ 1, /* vec_align_load_cost */ 1, /* vec_unalign_load_cost */ 1, /* vec_unalign_store_cost */ 1, /* vec_store_cost */ 3, /* cond_taken_branch_cost */ 1 /* cond_not_taken_branch_cost */ }; /* ThunderX costs for vector insn classes. */ static const struct cpu_vector_cost thunderx_vector_cost = { 1, /* scalar_int_stmt_cost */ 1, /* scalar_fp_stmt_cost */ 3, /* scalar_load_cost */ 1, /* scalar_store_cost */ 4, /* vec_int_stmt_cost */ 1, /* vec_fp_stmt_cost */ 4, /* vec_permute_cost */ 2, /* vec_to_scalar_cost */ 2, /* scalar_to_vec_cost */ 3, /* vec_align_load_cost */ 5, /* vec_unalign_load_cost */ 5, /* vec_unalign_store_cost */ 1, /* vec_store_cost */ 3, /* cond_taken_branch_cost */ 3 /* cond_not_taken_branch_cost */ }; /* Generic costs for vector insn classes. */ static const struct cpu_vector_cost cortexa57_vector_cost = { 1, /* scalar_int_stmt_cost */ 1, /* scalar_fp_stmt_cost */ 4, /* scalar_load_cost */ 1, /* scalar_store_cost */ 2, /* vec_int_stmt_cost */ 2, /* vec_fp_stmt_cost */ 3, /* vec_permute_cost */ 8, /* vec_to_scalar_cost */ 8, /* scalar_to_vec_cost */ 4, /* vec_align_load_cost */ 4, /* vec_unalign_load_cost */ 1, /* vec_unalign_store_cost */ 1, /* vec_store_cost */ 1, /* cond_taken_branch_cost */ 1 /* cond_not_taken_branch_cost */ }; static const struct cpu_vector_cost exynosm1_vector_cost = { 1, /* scalar_int_stmt_cost */ 1, /* scalar_fp_stmt_cost */ 5, /* scalar_load_cost */ 1, /* scalar_store_cost */ 3, /* vec_int_stmt_cost */ 3, /* vec_fp_stmt_cost */ 3, /* vec_permute_cost */ 3, /* vec_to_scalar_cost */ 3, /* scalar_to_vec_cost */ 5, /* vec_align_load_cost */ 5, /* vec_unalign_load_cost */ 1, /* vec_unalign_store_cost */ 1, /* vec_store_cost */ 1, /* cond_taken_branch_cost */ 1 /* cond_not_taken_branch_cost */ }; /* Generic costs for vector insn classes. */ static const struct cpu_vector_cost xgene1_vector_cost = { 1, /* scalar_int_stmt_cost */ 1, /* scalar_fp_stmt_cost */ 5, /* scalar_load_cost */ 1, /* scalar_store_cost */ 2, /* vec_int_stmt_cost */ 2, /* vec_fp_stmt_cost */ 2, /* vec_permute_cost */ 4, /* vec_to_scalar_cost */ 4, /* scalar_to_vec_cost */ 10, /* vec_align_load_cost */ 10, /* vec_unalign_load_cost */ 2, /* vec_unalign_store_cost */ 2, /* vec_store_cost */ 2, /* cond_taken_branch_cost */ 1 /* cond_not_taken_branch_cost */ }; /* Costs for vector insn classes for Vulcan. */ static const struct cpu_vector_cost thunderx2t99_vector_cost = { 1, /* scalar_int_stmt_cost */ 6, /* scalar_fp_stmt_cost */ 4, /* scalar_load_cost */ 1, /* scalar_store_cost */ 5, /* vec_int_stmt_cost */ 6, /* vec_fp_stmt_cost */ 3, /* vec_permute_cost */ 6, /* vec_to_scalar_cost */ 5, /* scalar_to_vec_cost */ 8, /* vec_align_load_cost */ 8, /* vec_unalign_load_cost */ 4, /* vec_unalign_store_cost */ 4, /* vec_store_cost */ 2, /* cond_taken_branch_cost */ 1 /* cond_not_taken_branch_cost */ }; /* Generic costs for branch instructions. */ static const struct cpu_branch_cost generic_branch_cost = { 1, /* Predictable. */ 3 /* Unpredictable. */ }; /* Generic approximation modes. */ static const cpu_approx_modes generic_approx_modes = { AARCH64_APPROX_NONE, /* division */ AARCH64_APPROX_NONE, /* sqrt */ AARCH64_APPROX_NONE /* recip_sqrt */ }; /* Approximation modes for Exynos M1. */ static const cpu_approx_modes exynosm1_approx_modes = { AARCH64_APPROX_NONE, /* division */ AARCH64_APPROX_ALL, /* sqrt */ AARCH64_APPROX_ALL /* recip_sqrt */ }; /* Approximation modes for X-Gene 1. */ static const cpu_approx_modes xgene1_approx_modes = { AARCH64_APPROX_NONE, /* division */ AARCH64_APPROX_NONE, /* sqrt */ AARCH64_APPROX_ALL /* recip_sqrt */ }; /* Generic prefetch settings (which disable prefetch). */ static const cpu_prefetch_tune generic_prefetch_tune = { 0, /* num_slots */ -1, /* l1_cache_size */ -1, /* l1_cache_line_size */ -1, /* l2_cache_size */ true, /* prefetch_dynamic_strides */ -1, /* minimum_stride */ -1 /* default_opt_level */ }; static const cpu_prefetch_tune exynosm1_prefetch_tune = { 0, /* num_slots */ -1, /* l1_cache_size */ 64, /* l1_cache_line_size */ -1, /* l2_cache_size */ true, /* prefetch_dynamic_strides */ -1, /* minimum_stride */ -1 /* default_opt_level */ }; static const cpu_prefetch_tune qdf24xx_prefetch_tune = { 4, /* num_slots */ 32, /* l1_cache_size */ 64, /* l1_cache_line_size */ 512, /* l2_cache_size */ false, /* prefetch_dynamic_strides */ 2048, /* minimum_stride */ 3 /* default_opt_level */ }; static const cpu_prefetch_tune thunderxt88_prefetch_tune = { 8, /* num_slots */ 32, /* l1_cache_size */ 128, /* l1_cache_line_size */ 16*1024, /* l2_cache_size */ true, /* prefetch_dynamic_strides */ -1, /* minimum_stride */ 3 /* default_opt_level */ }; static const cpu_prefetch_tune thunderx_prefetch_tune = { 8, /* num_slots */ 32, /* l1_cache_size */ 128, /* l1_cache_line_size */ -1, /* l2_cache_size */ true, /* prefetch_dynamic_strides */ -1, /* minimum_stride */ -1 /* default_opt_level */ }; static const cpu_prefetch_tune thunderx2t99_prefetch_tune = { 8, /* num_slots */ 32, /* l1_cache_size */ 64, /* l1_cache_line_size */ 256, /* l2_cache_size */ true, /* prefetch_dynamic_strides */ -1, /* minimum_stride */ -1 /* default_opt_level */ }; static const struct tune_params generic_tunings = { &cortexa57_extra_costs, &generic_addrcost_table, &generic_regmove_cost, &generic_vector_cost, &generic_branch_cost, &generic_approx_modes, 4, /* memmov_cost */ 2, /* issue_rate */ (AARCH64_FUSE_AES_AESMC), /* fusible_ops */ "8", /* function_align. */ "4", /* jump_align. */ "8", /* loop_align. */ 2, /* int_reassoc_width. */ 4, /* fp_reassoc_width. */ 1, /* vec_reassoc_width. */ 2, /* min_div_recip_mul_sf. */ 2, /* min_div_recip_mul_df. */ 0, /* max_case_values. */ tune_params::AUTOPREFETCHER_WEAK, /* autoprefetcher_model. */ (AARCH64_EXTRA_TUNE_NONE), /* tune_flags. */ &generic_prefetch_tune }; static const struct tune_params cortexa35_tunings = { &cortexa53_extra_costs, &generic_addrcost_table, &cortexa53_regmove_cost, &generic_vector_cost, &generic_branch_cost, &generic_approx_modes, 4, /* memmov_cost */ 1, /* issue_rate */ (AARCH64_FUSE_AES_AESMC | AARCH64_FUSE_MOV_MOVK | AARCH64_FUSE_ADRP_ADD | AARCH64_FUSE_MOVK_MOVK | AARCH64_FUSE_ADRP_LDR), /* fusible_ops */ "16", /* function_align. */ "4", /* jump_align. */ "8", /* loop_align. */ 2, /* int_reassoc_width. */ 4, /* fp_reassoc_width. */ 1, /* vec_reassoc_width. */ 2, /* min_div_recip_mul_sf. */ 2, /* min_div_recip_mul_df. */ 0, /* max_case_values. */ tune_params::AUTOPREFETCHER_WEAK, /* autoprefetcher_model. */ (AARCH64_EXTRA_TUNE_NONE), /* tune_flags. */ &generic_prefetch_tune }; static const struct tune_params cortexa53_tunings = { &cortexa53_extra_costs, &generic_addrcost_table, &cortexa53_regmove_cost, &generic_vector_cost, &generic_branch_cost, &generic_approx_modes, 4, /* memmov_cost */ 2, /* issue_rate */ (AARCH64_FUSE_AES_AESMC | AARCH64_FUSE_MOV_MOVK | AARCH64_FUSE_ADRP_ADD | AARCH64_FUSE_MOVK_MOVK | AARCH64_FUSE_ADRP_LDR), /* fusible_ops */ "16", /* function_align. */ "4", /* jump_align. */ "8", /* loop_align. */ 2, /* int_reassoc_width. */ 4, /* fp_reassoc_width. */ 1, /* vec_reassoc_width. */ 2, /* min_div_recip_mul_sf. */ 2, /* min_div_recip_mul_df. */ 0, /* max_case_values. */ tune_params::AUTOPREFETCHER_WEAK, /* autoprefetcher_model. */ (AARCH64_EXTRA_TUNE_NONE), /* tune_flags. */ &generic_prefetch_tune }; static const struct tune_params cortexa57_tunings = { &cortexa57_extra_costs, &generic_addrcost_table, &cortexa57_regmove_cost, &cortexa57_vector_cost, &generic_branch_cost, &generic_approx_modes, 4, /* memmov_cost */ 3, /* issue_rate */ (AARCH64_FUSE_AES_AESMC | AARCH64_FUSE_MOV_MOVK | AARCH64_FUSE_ADRP_ADD | AARCH64_FUSE_MOVK_MOVK), /* fusible_ops */ "16", /* function_align. */ "4", /* jump_align. */ "8", /* loop_align. */ 2, /* int_reassoc_width. */ 4, /* fp_reassoc_width. */ 1, /* vec_reassoc_width. */ 2, /* min_div_recip_mul_sf. */ 2, /* min_div_recip_mul_df. */ 0, /* max_case_values. */ tune_params::AUTOPREFETCHER_WEAK, /* autoprefetcher_model. */ (AARCH64_EXTRA_TUNE_RENAME_FMA_REGS), /* tune_flags. */ &generic_prefetch_tune }; static const struct tune_params cortexa72_tunings = { &cortexa57_extra_costs, &generic_addrcost_table, &cortexa57_regmove_cost, &cortexa57_vector_cost, &generic_branch_cost, &generic_approx_modes, 4, /* memmov_cost */ 3, /* issue_rate */ (AARCH64_FUSE_AES_AESMC | AARCH64_FUSE_MOV_MOVK | AARCH64_FUSE_ADRP_ADD | AARCH64_FUSE_MOVK_MOVK), /* fusible_ops */ "16", /* function_align. */ "4", /* jump_align. */ "8", /* loop_align. */ 2, /* int_reassoc_width. */ 4, /* fp_reassoc_width. */ 1, /* vec_reassoc_width. */ 2, /* min_div_recip_mul_sf. */ 2, /* min_div_recip_mul_df. */ 0, /* max_case_values. */ tune_params::AUTOPREFETCHER_WEAK, /* autoprefetcher_model. */ (AARCH64_EXTRA_TUNE_NONE), /* tune_flags. */ &generic_prefetch_tune }; static const struct tune_params cortexa73_tunings = { &cortexa57_extra_costs, &generic_addrcost_table, &cortexa57_regmove_cost, &cortexa57_vector_cost, &generic_branch_cost, &generic_approx_modes, 4, /* memmov_cost. */ 2, /* issue_rate. */ (AARCH64_FUSE_AES_AESMC | AARCH64_FUSE_MOV_MOVK | AARCH64_FUSE_ADRP_ADD | AARCH64_FUSE_MOVK_MOVK | AARCH64_FUSE_ADRP_LDR), /* fusible_ops */ "16", /* function_align. */ "4", /* jump_align. */ "8", /* loop_align. */ 2, /* int_reassoc_width. */ 4, /* fp_reassoc_width. */ 1, /* vec_reassoc_width. */ 2, /* min_div_recip_mul_sf. */ 2, /* min_div_recip_mul_df. */ 0, /* max_case_values. */ tune_params::AUTOPREFETCHER_WEAK, /* autoprefetcher_model. */ (AARCH64_EXTRA_TUNE_NONE), /* tune_flags. */ &generic_prefetch_tune }; static const struct tune_params exynosm1_tunings = { &exynosm1_extra_costs, &exynosm1_addrcost_table, &exynosm1_regmove_cost, &exynosm1_vector_cost, &generic_branch_cost, &exynosm1_approx_modes, 4, /* memmov_cost */ 3, /* issue_rate */ (AARCH64_FUSE_AES_AESMC), /* fusible_ops */ "4", /* function_align. */ "4", /* jump_align. */ "4", /* loop_align. */ 2, /* int_reassoc_width. */ 4, /* fp_reassoc_width. */ 1, /* vec_reassoc_width. */ 2, /* min_div_recip_mul_sf. */ 2, /* min_div_recip_mul_df. */ 48, /* max_case_values. */ tune_params::AUTOPREFETCHER_WEAK, /* autoprefetcher_model. */ (AARCH64_EXTRA_TUNE_NONE), /* tune_flags. */ &exynosm1_prefetch_tune }; static const struct tune_params thunderxt88_tunings = { &thunderx_extra_costs, &generic_addrcost_table, &thunderx_regmove_cost, &thunderx_vector_cost, &generic_branch_cost, &generic_approx_modes, 6, /* memmov_cost */ 2, /* issue_rate */ AARCH64_FUSE_CMP_BRANCH, /* fusible_ops */ "8", /* function_align. */ "8", /* jump_align. */ "8", /* loop_align. */ 2, /* int_reassoc_width. */ 4, /* fp_reassoc_width. */ 1, /* vec_reassoc_width. */ 2, /* min_div_recip_mul_sf. */ 2, /* min_div_recip_mul_df. */ 0, /* max_case_values. */ tune_params::AUTOPREFETCHER_OFF, /* autoprefetcher_model. */ (AARCH64_EXTRA_TUNE_SLOW_UNALIGNED_LDPW), /* tune_flags. */ &thunderxt88_prefetch_tune }; static const struct tune_params thunderx_tunings = { &thunderx_extra_costs, &generic_addrcost_table, &thunderx_regmove_cost, &thunderx_vector_cost, &generic_branch_cost, &generic_approx_modes, 6, /* memmov_cost */ 2, /* issue_rate */ AARCH64_FUSE_CMP_BRANCH, /* fusible_ops */ "8", /* function_align. */ "8", /* jump_align. */ "8", /* loop_align. */ 2, /* int_reassoc_width. */ 4, /* fp_reassoc_width. */ 1, /* vec_reassoc_width. */ 2, /* min_div_recip_mul_sf. */ 2, /* min_div_recip_mul_df. */ 0, /* max_case_values. */ tune_params::AUTOPREFETCHER_OFF, /* autoprefetcher_model. */ (AARCH64_EXTRA_TUNE_SLOW_UNALIGNED_LDPW | AARCH64_EXTRA_TUNE_CHEAP_SHIFT_EXTEND), /* tune_flags. */ &thunderx_prefetch_tune }; static const struct tune_params xgene1_tunings = { &xgene1_extra_costs, &xgene1_addrcost_table, &xgene1_regmove_cost, &xgene1_vector_cost, &generic_branch_cost, &xgene1_approx_modes, 6, /* memmov_cost */ 4, /* issue_rate */ AARCH64_FUSE_NOTHING, /* fusible_ops */ "16", /* function_align. */ "8", /* jump_align. */ "16", /* loop_align. */ 2, /* int_reassoc_width. */ 4, /* fp_reassoc_width. */ 1, /* vec_reassoc_width. */ 2, /* min_div_recip_mul_sf. */ 2, /* min_div_recip_mul_df. */ 0, /* max_case_values. */ tune_params::AUTOPREFETCHER_OFF, /* autoprefetcher_model. */ (AARCH64_EXTRA_TUNE_NO_LDP_STP_QREGS), /* tune_flags. */ &generic_prefetch_tune }; static const struct tune_params qdf24xx_tunings = { &qdf24xx_extra_costs, &qdf24xx_addrcost_table, &qdf24xx_regmove_cost, &qdf24xx_vector_cost, &generic_branch_cost, &generic_approx_modes, 4, /* memmov_cost */ 4, /* issue_rate */ (AARCH64_FUSE_MOV_MOVK | AARCH64_FUSE_ADRP_ADD | AARCH64_FUSE_MOVK_MOVK), /* fuseable_ops */ "16", /* function_align. */ "8", /* jump_align. */ "16", /* loop_align. */ 2, /* int_reassoc_width. */ 4, /* fp_reassoc_width. */ 1, /* vec_reassoc_width. */ 2, /* min_div_recip_mul_sf. */ 2, /* min_div_recip_mul_df. */ 0, /* max_case_values. */ tune_params::AUTOPREFETCHER_WEAK, /* autoprefetcher_model. */ (AARCH64_EXTRA_TUNE_NONE), /* tune_flags. */ &qdf24xx_prefetch_tune }; /* Tuning structure for the Qualcomm Saphira core. Default to falkor values for now. */ static const struct tune_params saphira_tunings = { &generic_extra_costs, &generic_addrcost_table, &generic_regmove_cost, &generic_vector_cost, &generic_branch_cost, &generic_approx_modes, 4, /* memmov_cost */ 4, /* issue_rate */ (AARCH64_FUSE_MOV_MOVK | AARCH64_FUSE_ADRP_ADD | AARCH64_FUSE_MOVK_MOVK), /* fuseable_ops */ "16", /* function_align. */ "8", /* jump_align. */ "16", /* loop_align. */ 2, /* int_reassoc_width. */ 4, /* fp_reassoc_width. */ 1, /* vec_reassoc_width. */ 2, /* min_div_recip_mul_sf. */ 2, /* min_div_recip_mul_df. */ 0, /* max_case_values. */ tune_params::AUTOPREFETCHER_WEAK, /* autoprefetcher_model. */ (AARCH64_EXTRA_TUNE_NONE), /* tune_flags. */ &generic_prefetch_tune }; static const struct tune_params thunderx2t99_tunings = { &thunderx2t99_extra_costs, &thunderx2t99_addrcost_table, &thunderx2t99_regmove_cost, &thunderx2t99_vector_cost, &generic_branch_cost, &generic_approx_modes, 4, /* memmov_cost. */ 4, /* issue_rate. */ (AARCH64_FUSE_CMP_BRANCH | AARCH64_FUSE_AES_AESMC | AARCH64_FUSE_ALU_BRANCH), /* fusible_ops */ "16", /* function_align. */ "8", /* jump_align. */ "16", /* loop_align. */ 3, /* int_reassoc_width. */ 2, /* fp_reassoc_width. */ 2, /* vec_reassoc_width. */ 2, /* min_div_recip_mul_sf. */ 2, /* min_div_recip_mul_df. */ 0, /* max_case_values. */ tune_params::AUTOPREFETCHER_WEAK, /* autoprefetcher_model. */ (AARCH64_EXTRA_TUNE_NONE), /* tune_flags. */ &thunderx2t99_prefetch_tune }; /* Support for fine-grained override of the tuning structures. */ struct aarch64_tuning_override_function { const char* name; void (*parse_override)(const char*, struct tune_params*); }; static void aarch64_parse_fuse_string (const char*, struct tune_params*); static void aarch64_parse_tune_string (const char*, struct tune_params*); static const struct aarch64_tuning_override_function aarch64_tuning_override_functions[] = { { "fuse", aarch64_parse_fuse_string }, { "tune", aarch64_parse_tune_string }, { NULL, NULL } }; /* A processor implementing AArch64. */ struct processor { const char *const name; enum aarch64_processor ident; enum aarch64_processor sched_core; enum aarch64_arch arch; unsigned architecture_version; const unsigned long flags; const struct tune_params *const tune; }; /* Architectures implementing AArch64. */ static const struct processor all_architectures[] = { #define AARCH64_ARCH(NAME, CORE, ARCH_IDENT, ARCH_REV, FLAGS) \ {NAME, CORE, CORE, AARCH64_ARCH_##ARCH_IDENT, ARCH_REV, FLAGS, NULL}, #include "aarch64-arches.def" {NULL, aarch64_none, aarch64_none, aarch64_no_arch, 0, 0, NULL} }; /* Processor cores implementing AArch64. */ static const struct processor all_cores[] = { #define AARCH64_CORE(NAME, IDENT, SCHED, ARCH, FLAGS, COSTS, IMP, PART, VARIANT) \ {NAME, IDENT, SCHED, AARCH64_ARCH_##ARCH, \ all_architectures[AARCH64_ARCH_##ARCH].architecture_version, \ FLAGS, &COSTS##_tunings}, #include "aarch64-cores.def" {"generic", generic, cortexa53, AARCH64_ARCH_8A, 8, AARCH64_FL_FOR_ARCH8, &generic_tunings}, {NULL, aarch64_none, aarch64_none, aarch64_no_arch, 0, 0, NULL} }; /* Target specification. These are populated by the -march, -mtune, -mcpu handling code or by target attributes. */ static const struct processor *selected_arch; static const struct processor *selected_cpu; static const struct processor *selected_tune; /* The current tuning set. */ struct tune_params aarch64_tune_params = generic_tunings; #define AARCH64_CPU_DEFAULT_FLAGS ((selected_cpu) ? selected_cpu->flags : 0) /* An ISA extension in the co-processor and main instruction set space. */ struct aarch64_option_extension { const char *const name; const unsigned long flags_on; const unsigned long flags_off; }; typedef enum aarch64_cond_code { AARCH64_EQ = 0, AARCH64_NE, AARCH64_CS, AARCH64_CC, AARCH64_MI, AARCH64_PL, AARCH64_VS, AARCH64_VC, AARCH64_HI, AARCH64_LS, AARCH64_GE, AARCH64_LT, AARCH64_GT, AARCH64_LE, AARCH64_AL, AARCH64_NV } aarch64_cc; #define AARCH64_INVERSE_CONDITION_CODE(X) ((aarch64_cc) (((int) X) ^ 1)) /* The condition codes of the processor, and the inverse function. */ static const char * const aarch64_condition_codes[] = { "eq", "ne", "cs", "cc", "mi", "pl", "vs", "vc", "hi", "ls", "ge", "lt", "gt", "le", "al", "nv" }; /* Generate code to enable conditional branches in functions over 1 MiB. */ const char * aarch64_gen_far_branch (rtx * operands, int pos_label, const char * dest, const char * branch_format) { rtx_code_label * tmp_label = gen_label_rtx (); char label_buf[256]; char buffer[128]; ASM_GENERATE_INTERNAL_LABEL (label_buf, dest, CODE_LABEL_NUMBER (tmp_label)); const char *label_ptr = targetm.strip_name_encoding (label_buf); rtx dest_label = operands[pos_label]; operands[pos_label] = tmp_label; snprintf (buffer, sizeof (buffer), "%s%s", branch_format, label_ptr); output_asm_insn (buffer, operands); snprintf (buffer, sizeof (buffer), "b\t%%l%d\n%s:", pos_label, label_ptr); operands[pos_label] = dest_label; output_asm_insn (buffer, operands); return ""; } void aarch64_err_no_fpadvsimd (machine_mode mode) { if (TARGET_GENERAL_REGS_ONLY) if (FLOAT_MODE_P (mode)) error ("%qs is incompatible with the use of floating-point types", "-mgeneral-regs-only"); else error ("%qs is incompatible with the use of vector types", "-mgeneral-regs-only"); else if (FLOAT_MODE_P (mode)) error ("%qs feature modifier is incompatible with the use of" " floating-point types", "+nofp"); else error ("%qs feature modifier is incompatible with the use of" " vector types", "+nofp"); } /* Implement TARGET_IRA_CHANGE_PSEUDO_ALLOCNO_CLASS. The register allocator chooses POINTER_AND_FP_REGS if FP_REGS and GENERAL_REGS have the same cost - even if POINTER_AND_FP_REGS has a much higher cost. POINTER_AND_FP_REGS is also used if the cost of both FP_REGS and GENERAL_REGS is lower than the memory cost (in this case the best class is the lowest cost one). Using POINTER_AND_FP_REGS irrespectively of its cost results in bad allocations with many redundant int<->FP moves which are expensive on various cores. To avoid this we don't allow POINTER_AND_FP_REGS as the allocno class, but force a decision between FP_REGS and GENERAL_REGS. We use the allocno class if it isn't POINTER_AND_FP_REGS. Similarly, use the best class if it isn't POINTER_AND_FP_REGS. Otherwise set the allocno class depending on the mode. The result of this is that it is no longer inefficient to have a higher memory move cost than the register move cost. */ static reg_class_t aarch64_ira_change_pseudo_allocno_class (int regno, reg_class_t allocno_class, reg_class_t best_class) { machine_mode mode; if (!reg_class_subset_p (GENERAL_REGS, allocno_class) || !reg_class_subset_p (FP_REGS, allocno_class)) return allocno_class; if (!reg_class_subset_p (GENERAL_REGS, best_class) || !reg_class_subset_p (FP_REGS, best_class)) return best_class; mode = PSEUDO_REGNO_MODE (regno); return FLOAT_MODE_P (mode) || VECTOR_MODE_P (mode) ? FP_REGS : GENERAL_REGS; } static unsigned int aarch64_min_divisions_for_recip_mul (machine_mode mode) { if (GET_MODE_UNIT_SIZE (mode) == 4) return aarch64_tune_params.min_div_recip_mul_sf; return aarch64_tune_params.min_div_recip_mul_df; } /* Return the reassociation width of treeop OPC with mode MODE. */ static int aarch64_reassociation_width (unsigned opc, machine_mode mode) { if (VECTOR_MODE_P (mode)) return aarch64_tune_params.vec_reassoc_width; if (INTEGRAL_MODE_P (mode)) return aarch64_tune_params.int_reassoc_width; /* Avoid reassociating floating point addition so we emit more FMAs. */ if (FLOAT_MODE_P (mode) && opc != PLUS_EXPR) return aarch64_tune_params.fp_reassoc_width; return 1; } /* Provide a mapping from gcc register numbers to dwarf register numbers. */ unsigned aarch64_dbx_register_number (unsigned regno) { if (GP_REGNUM_P (regno)) return AARCH64_DWARF_R0 + regno - R0_REGNUM; else if (regno == SP_REGNUM) return AARCH64_DWARF_SP; else if (FP_REGNUM_P (regno)) return AARCH64_DWARF_V0 + regno - V0_REGNUM; else if (PR_REGNUM_P (regno)) return AARCH64_DWARF_P0 + regno - P0_REGNUM; else if (regno == VG_REGNUM) return AARCH64_DWARF_VG; /* Return values >= DWARF_FRAME_REGISTERS indicate that there is no equivalent DWARF register. */ return DWARF_FRAME_REGISTERS; } /* Return true if MODE is any of the Advanced SIMD structure modes. */ static bool aarch64_advsimd_struct_mode_p (machine_mode mode) { return (TARGET_SIMD && (mode == OImode || mode == CImode || mode == XImode)); } /* Return true if MODE is an SVE predicate mode. */ static bool aarch64_sve_pred_mode_p (machine_mode mode) { return (TARGET_SVE && (mode == VNx16BImode || mode == VNx8BImode || mode == VNx4BImode || mode == VNx2BImode)); } /* Three mutually-exclusive flags describing a vector or predicate type. */ const unsigned int VEC_ADVSIMD = 1; const unsigned int VEC_SVE_DATA = 2; const unsigned int VEC_SVE_PRED = 4; /* Can be used in combination with VEC_ADVSIMD or VEC_SVE_DATA to indicate a structure of 2, 3 or 4 vectors. */ const unsigned int VEC_STRUCT = 8; /* Useful combinations of the above. */ const unsigned int VEC_ANY_SVE = VEC_SVE_DATA | VEC_SVE_PRED; const unsigned int VEC_ANY_DATA = VEC_ADVSIMD | VEC_SVE_DATA; /* Return a set of flags describing the vector properties of mode MODE. Ignore modes that are not supported by the current target. */ static unsigned int aarch64_classify_vector_mode (machine_mode mode) { if (aarch64_advsimd_struct_mode_p (mode)) return VEC_ADVSIMD | VEC_STRUCT; if (aarch64_sve_pred_mode_p (mode)) return VEC_SVE_PRED; scalar_mode inner = GET_MODE_INNER (mode); if (VECTOR_MODE_P (mode) && (inner == QImode || inner == HImode || inner == HFmode || inner == SImode || inner == SFmode || inner == DImode || inner == DFmode)) { if (TARGET_SVE) { if (known_eq (GET_MODE_BITSIZE (mode), BITS_PER_SVE_VECTOR)) return VEC_SVE_DATA; if (known_eq (GET_MODE_BITSIZE (mode), BITS_PER_SVE_VECTOR * 2) || known_eq (GET_MODE_BITSIZE (mode), BITS_PER_SVE_VECTOR * 3) || known_eq (GET_MODE_BITSIZE (mode), BITS_PER_SVE_VECTOR * 4)) return VEC_SVE_DATA | VEC_STRUCT; } /* This includes V1DF but not V1DI (which doesn't exist). */ if (TARGET_SIMD && (known_eq (GET_MODE_BITSIZE (mode), 64) || known_eq (GET_MODE_BITSIZE (mode), 128))) return VEC_ADVSIMD; } return 0; } /* Return true if MODE is any of the data vector modes, including structure modes. */ static bool aarch64_vector_data_mode_p (machine_mode mode) { return aarch64_classify_vector_mode (mode) & VEC_ANY_DATA; } /* Return true if MODE is an SVE data vector mode; either a single vector or a structure of vectors. */ static bool aarch64_sve_data_mode_p (machine_mode mode) { return aarch64_classify_vector_mode (mode) & VEC_SVE_DATA; } /* Implement target hook TARGET_ARRAY_MODE. */ static opt_machine_mode aarch64_array_mode (machine_mode mode, unsigned HOST_WIDE_INT nelems) { if (aarch64_classify_vector_mode (mode) == VEC_SVE_DATA && IN_RANGE (nelems, 2, 4)) return mode_for_vector (GET_MODE_INNER (mode), GET_MODE_NUNITS (mode) * nelems); return opt_machine_mode (); } /* Implement target hook TARGET_ARRAY_MODE_SUPPORTED_P. */ static bool aarch64_array_mode_supported_p (machine_mode mode, unsigned HOST_WIDE_INT nelems) { if (TARGET_SIMD && (AARCH64_VALID_SIMD_QREG_MODE (mode) || AARCH64_VALID_SIMD_DREG_MODE (mode)) && (nelems >= 2 && nelems <= 4)) return true; return false; } /* Return the SVE predicate mode to use for elements that have ELEM_NBYTES bytes, if such a mode exists. */ opt_machine_mode aarch64_sve_pred_mode (unsigned int elem_nbytes) { if (TARGET_SVE) { if (elem_nbytes == 1) return VNx16BImode; if (elem_nbytes == 2) return VNx8BImode; if (elem_nbytes == 4) return VNx4BImode; if (elem_nbytes == 8) return VNx2BImode; } return opt_machine_mode (); } /* Implement TARGET_VECTORIZE_GET_MASK_MODE. */ static opt_machine_mode aarch64_get_mask_mode (poly_uint64 nunits, poly_uint64 nbytes) { if (TARGET_SVE && known_eq (nbytes, BYTES_PER_SVE_VECTOR)) { unsigned int elem_nbytes = vector_element_size (nbytes, nunits); machine_mode pred_mode; if (aarch64_sve_pred_mode (elem_nbytes).exists (&pred_mode)) return pred_mode; } return default_get_mask_mode (nunits, nbytes); } /* Implement TARGET_PREFERRED_ELSE_VALUE. For binary operations, prefer to use the first arithmetic operand as the else value if the else value doesn't matter, since that exactly matches the SVE destructive merging form. For ternary operations we could either pick the first operand and use FMAD-like instructions or the last operand and use FMLA-like instructions; the latter seems more natural. */ static tree aarch64_preferred_else_value (unsigned, tree, unsigned int nops, tree *ops) { return nops == 3 ? ops[2] : ops[0]; } /* Implement TARGET_HARD_REGNO_NREGS. */ static unsigned int aarch64_hard_regno_nregs (unsigned regno, machine_mode mode) { /* ??? Logically we should only need to provide a value when HARD_REGNO_MODE_OK says that the combination is valid, but at the moment we need to handle all modes. Just ignore any runtime parts for registers that can't store them. */ HOST_WIDE_INT lowest_size = constant_lower_bound (GET_MODE_SIZE (mode)); switch (aarch64_regno_regclass (regno)) { case FP_REGS: case FP_LO_REGS: if (aarch64_sve_data_mode_p (mode)) return exact_div (GET_MODE_SIZE (mode), BYTES_PER_SVE_VECTOR).to_constant (); return CEIL (lowest_size, UNITS_PER_VREG); case PR_REGS: case PR_LO_REGS: case PR_HI_REGS: return 1; default: return CEIL (lowest_size, UNITS_PER_WORD); } gcc_unreachable (); } /* Implement TARGET_HARD_REGNO_MODE_OK. */ static bool aarch64_hard_regno_mode_ok (unsigned regno, machine_mode mode) { if (GET_MODE_CLASS (mode) == MODE_CC) return regno == CC_REGNUM; if (regno == VG_REGNUM) /* This must have the same size as _Unwind_Word. */ return mode == DImode; unsigned int vec_flags = aarch64_classify_vector_mode (mode); if (vec_flags & VEC_SVE_PRED) return PR_REGNUM_P (regno); if (PR_REGNUM_P (regno)) return 0; if (regno == SP_REGNUM) /* The purpose of comparing with ptr_mode is to support the global register variable associated with the stack pointer register via the syntax of asm ("wsp") in ILP32. */ return mode == Pmode || mode == ptr_mode; if (regno == FRAME_POINTER_REGNUM || regno == ARG_POINTER_REGNUM) return mode == Pmode; if (GP_REGNUM_P (regno) && known_le (GET_MODE_SIZE (mode), 16)) return true; if (FP_REGNUM_P (regno)) { if (vec_flags & VEC_STRUCT) return end_hard_regno (mode, regno) - 1 <= V31_REGNUM; else return !VECTOR_MODE_P (mode) || vec_flags != 0; } return false; } /* Implement TARGET_HARD_REGNO_CALL_PART_CLOBBERED. The callee only saves the lower 64 bits of a 128-bit register. Tell the compiler the callee clobbers the top 64 bits when restoring the bottom 64 bits. */ static bool aarch64_hard_regno_call_part_clobbered (unsigned int regno, machine_mode mode) { return FP_REGNUM_P (regno) && maybe_gt (GET_MODE_SIZE (mode), 8); } /* Implement REGMODE_NATURAL_SIZE. */ poly_uint64 aarch64_regmode_natural_size (machine_mode mode) { /* The natural size for SVE data modes is one SVE data vector, and similarly for predicates. We can't independently modify anything smaller than that. */ /* ??? For now, only do this for variable-width SVE registers. Doing it for constant-sized registers breaks lower-subreg.c. */ /* ??? And once that's fixed, we should probably have similar code for Advanced SIMD. */ if (!aarch64_sve_vg.is_constant ()) { unsigned int vec_flags = aarch64_classify_vector_mode (mode); if (vec_flags & VEC_SVE_PRED) return BYTES_PER_SVE_PRED; if (vec_flags & VEC_SVE_DATA) return BYTES_PER_SVE_VECTOR; } return UNITS_PER_WORD; } /* Implement HARD_REGNO_CALLER_SAVE_MODE. */ machine_mode aarch64_hard_regno_caller_save_mode (unsigned regno, unsigned, machine_mode mode) { /* The predicate mode determines which bits are significant and which are "don't care". Decreasing the number of lanes would lose data while increasing the number of lanes would make bits unnecessarily significant. */ if (PR_REGNUM_P (regno)) return mode; if (known_ge (GET_MODE_SIZE (mode), 4)) return mode; else return SImode; } /* Implement TARGET_CONSTANT_ALIGNMENT. Make strings word-aligned so that strcpy from constants will be faster. */ static HOST_WIDE_INT aarch64_constant_alignment (const_tree exp, HOST_WIDE_INT align) { if (TREE_CODE (exp) == STRING_CST && !optimize_size) return MAX (align, BITS_PER_WORD); return align; } /* Return true if calls to DECL should be treated as long-calls (ie called via a register). */ static bool aarch64_decl_is_long_call_p (const_tree decl ATTRIBUTE_UNUSED) { return false; } /* Return true if calls to symbol-ref SYM should be treated as long-calls (ie called via a register). */ bool aarch64_is_long_call_p (rtx sym) { return aarch64_decl_is_long_call_p (SYMBOL_REF_DECL (sym)); } /* Return true if calls to symbol-ref SYM should not go through plt stubs. */ bool aarch64_is_noplt_call_p (rtx sym) { const_tree decl = SYMBOL_REF_DECL (sym); if (flag_pic && decl && (!flag_plt || lookup_attribute ("noplt", DECL_ATTRIBUTES (decl))) && !targetm.binds_local_p (decl)) return true; return false; } /* Return true if the offsets to a zero/sign-extract operation represent an expression that matches an extend operation. The operands represent the paramters from (extract:MODE (mult (reg) (MULT_IMM)) (EXTRACT_IMM) (const_int 0)). */ bool aarch64_is_extend_from_extract (scalar_int_mode mode, rtx mult_imm, rtx extract_imm) { HOST_WIDE_INT mult_val, extract_val; if (! CONST_INT_P (mult_imm) || ! CONST_INT_P (extract_imm)) return false; mult_val = INTVAL (mult_imm); extract_val = INTVAL (extract_imm); if (extract_val > 8 && extract_val < GET_MODE_BITSIZE (mode) && exact_log2 (extract_val & ~7) > 0 && (extract_val & 7) <= 4 && mult_val == (1 << (extract_val & 7))) return true; return false; } /* Emit an insn that's a simple single-set. Both the operands must be known to be valid. */ inline static rtx_insn * emit_set_insn (rtx x, rtx y) { return emit_insn (gen_rtx_SET (x, y)); } /* X and Y are two things to compare using CODE. Emit the compare insn and return the rtx for register 0 in the proper mode. */ rtx aarch64_gen_compare_reg (RTX_CODE code, rtx x, rtx y) { machine_mode mode = SELECT_CC_MODE (code, x, y); rtx cc_reg = gen_rtx_REG (mode, CC_REGNUM); emit_set_insn (cc_reg, gen_rtx_COMPARE (mode, x, y)); return cc_reg; } /* Build the SYMBOL_REF for __tls_get_addr. */ static GTY(()) rtx tls_get_addr_libfunc; rtx aarch64_tls_get_addr (void) { if (!tls_get_addr_libfunc) tls_get_addr_libfunc = init_one_libfunc ("__tls_get_addr"); return tls_get_addr_libfunc; } /* Return the TLS model to use for ADDR. */ static enum tls_model tls_symbolic_operand_type (rtx addr) { enum tls_model tls_kind = TLS_MODEL_NONE; if (GET_CODE (addr) == CONST) { poly_int64 addend; rtx sym = strip_offset (addr, &addend); if (GET_CODE (sym) == SYMBOL_REF) tls_kind = SYMBOL_REF_TLS_MODEL (sym); } else if (GET_CODE (addr) == SYMBOL_REF) tls_kind = SYMBOL_REF_TLS_MODEL (addr); return tls_kind; } /* We'll allow lo_sum's in addresses in our legitimate addresses so that combine would take care of combining addresses where necessary, but for generation purposes, we'll generate the address as : RTL Absolute tmp = hi (symbol_ref); adrp x1, foo dest = lo_sum (tmp, symbol_ref); add dest, x1, :lo_12:foo nop PIC TLS adrp x1, :got:foo adrp tmp, :tlsgd:foo ldr x1, [:got_lo12:foo] add dest, tmp, :tlsgd_lo12:foo bl __tls_get_addr nop Load TLS symbol, depending on TLS mechanism and TLS access model. Global Dynamic - Traditional TLS: adrp tmp, :tlsgd:imm add dest, tmp, #:tlsgd_lo12:imm bl __tls_get_addr Global Dynamic - TLS Descriptors: adrp dest, :tlsdesc:imm ldr tmp, [dest, #:tlsdesc_lo12:imm] add dest, dest, #:tlsdesc_lo12:imm blr tmp mrs tp, tpidr_el0 add dest, dest, tp Initial Exec: mrs tp, tpidr_el0 adrp tmp, :gottprel:imm ldr dest, [tmp, #:gottprel_lo12:imm] add dest, dest, tp Local Exec: mrs tp, tpidr_el0 add t0, tp, #:tprel_hi12:imm, lsl #12 add t0, t0, #:tprel_lo12_nc:imm */ static void aarch64_load_symref_appropriately (rtx dest, rtx imm, enum aarch64_symbol_type type) { switch (type) { case SYMBOL_SMALL_ABSOLUTE: { /* In ILP32, the mode of dest can be either SImode or DImode. */ rtx tmp_reg = dest; machine_mode mode = GET_MODE (dest); gcc_assert (mode == Pmode || mode == ptr_mode); if (can_create_pseudo_p ()) tmp_reg = gen_reg_rtx (mode); emit_move_insn (tmp_reg, gen_rtx_HIGH (mode, imm)); emit_insn (gen_add_losym (dest, tmp_reg, imm)); return; } case SYMBOL_TINY_ABSOLUTE: emit_insn (gen_rtx_SET (dest, imm)); return; case SYMBOL_SMALL_GOT_28K: { machine_mode mode = GET_MODE (dest); rtx gp_rtx = pic_offset_table_rtx; rtx insn; rtx mem; /* NOTE: pic_offset_table_rtx can be NULL_RTX, because we can reach here before rtl expand. Tree IVOPT will generate rtl pattern to decide rtx costs, in which case pic_offset_table_rtx is not initialized. For that case no need to generate the first adrp instruction as the final cost for global variable access is one instruction. */ if (gp_rtx != NULL) { /* -fpic for -mcmodel=small allow 32K GOT table size (but we are using the page base as GOT base, the first page may be wasted, in the worst scenario, there is only 28K space for GOT). The generate instruction sequence for accessing global variable is: ldr reg, [pic_offset_table_rtx, #:gotpage_lo15:sym] Only one instruction needed. But we must initialize pic_offset_table_rtx properly. We generate initialize insn for every global access, and allow CSE to remove all redundant. The final instruction sequences will look like the following for multiply global variables access. adrp pic_offset_table_rtx, _GLOBAL_OFFSET_TABLE_ ldr reg, [pic_offset_table_rtx, #:gotpage_lo15:sym1] ldr reg, [pic_offset_table_rtx, #:gotpage_lo15:sym2] ldr reg, [pic_offset_table_rtx, #:gotpage_lo15:sym3] ... */ rtx s = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_"); crtl->uses_pic_offset_table = 1; emit_move_insn (gp_rtx, gen_rtx_HIGH (Pmode, s)); if (mode != GET_MODE (gp_rtx)) gp_rtx = gen_lowpart (mode, gp_rtx); } if (mode == ptr_mode) { if (mode == DImode) insn = gen_ldr_got_small_28k_di (dest, gp_rtx, imm); else insn = gen_ldr_got_small_28k_si (dest, gp_rtx, imm); mem = XVECEXP (SET_SRC (insn), 0, 0); } else { gcc_assert (mode == Pmode); insn = gen_ldr_got_small_28k_sidi (dest, gp_rtx, imm); mem = XVECEXP (XEXP (SET_SRC (insn), 0), 0, 0); } /* The operand is expected to be MEM. Whenever the related insn pattern changed, above code which calculate mem should be updated. */ gcc_assert (GET_CODE (mem) == MEM); MEM_READONLY_P (mem) = 1; MEM_NOTRAP_P (mem) = 1; emit_insn (insn); return; } case SYMBOL_SMALL_GOT_4G: { /* In ILP32, the mode of dest can be either SImode or DImode, while the got entry is always of SImode size. The mode of dest depends on how dest is used: if dest is assigned to a pointer (e.g. in the memory), it has SImode; it may have DImode if dest is dereferenced to access the memeory. This is why we have to handle three different ldr_got_small patterns here (two patterns for ILP32). */ rtx insn; rtx mem; rtx tmp_reg = dest; machine_mode mode = GET_MODE (dest); if (can_create_pseudo_p ()) tmp_reg = gen_reg_rtx (mode); emit_move_insn (tmp_reg, gen_rtx_HIGH (mode, imm)); if (mode == ptr_mode) { if (mode == DImode) insn = gen_ldr_got_small_di (dest, tmp_reg, imm); else insn = gen_ldr_got_small_si (dest, tmp_reg, imm); mem = XVECEXP (SET_SRC (insn), 0, 0); } else { gcc_assert (mode == Pmode); insn = gen_ldr_got_small_sidi (dest, tmp_reg, imm); mem = XVECEXP (XEXP (SET_SRC (insn), 0), 0, 0); } gcc_assert (GET_CODE (mem) == MEM); MEM_READONLY_P (mem) = 1; MEM_NOTRAP_P (mem) = 1; emit_insn (insn); return; } case SYMBOL_SMALL_TLSGD: { rtx_insn *insns; machine_mode mode = GET_MODE (dest); rtx result = gen_rtx_REG (mode, R0_REGNUM); start_sequence (); if (TARGET_ILP32) aarch64_emit_call_insn (gen_tlsgd_small_si (result, imm)); else aarch64_emit_call_insn (gen_tlsgd_small_di (result, imm)); insns = get_insns (); end_sequence (); RTL_CONST_CALL_P (insns) = 1; emit_libcall_block (insns, dest, result, imm); return; } case SYMBOL_SMALL_TLSDESC: { machine_mode mode = GET_MODE (dest); rtx x0 = gen_rtx_REG (mode, R0_REGNUM); rtx tp; gcc_assert (mode == Pmode || mode == ptr_mode); /* In ILP32, the got entry is always of SImode size. Unlike small GOT, the dest is fixed at reg 0. */ if (TARGET_ILP32) emit_insn (gen_tlsdesc_small_si (imm)); else emit_insn (gen_tlsdesc_small_di (imm)); tp = aarch64_load_tp (NULL); if (mode != Pmode) tp = gen_lowpart (mode, tp); emit_insn (gen_rtx_SET (dest, gen_rtx_PLUS (mode, tp, x0))); if (REG_P (dest)) set_unique_reg_note (get_last_insn (), REG_EQUIV, imm); return; } case SYMBOL_SMALL_TLSIE: { /* In ILP32, the mode of dest can be either SImode or DImode, while the got entry is always of SImode size. The mode of dest depends on how dest is used: if dest is assigned to a pointer (e.g. in the memory), it has SImode; it may have DImode if dest is dereferenced to access the memeory. This is why we have to handle three different tlsie_small patterns here (two patterns for ILP32). */ machine_mode mode = GET_MODE (dest); rtx tmp_reg = gen_reg_rtx (mode); rtx tp = aarch64_load_tp (NULL); if (mode == ptr_mode) { if (mode == DImode) emit_insn (gen_tlsie_small_di (tmp_reg, imm)); else { emit_insn (gen_tlsie_small_si (tmp_reg, imm)); tp = gen_lowpart (mode, tp); } } else { gcc_assert (mode == Pmode); emit_insn (gen_tlsie_small_sidi (tmp_reg, imm)); } emit_insn (gen_rtx_SET (dest, gen_rtx_PLUS (mode, tp, tmp_reg))); if (REG_P (dest)) set_unique_reg_note (get_last_insn (), REG_EQUIV, imm); return; } case SYMBOL_TLSLE12: case SYMBOL_TLSLE24: case SYMBOL_TLSLE32: case SYMBOL_TLSLE48: { machine_mode mode = GET_MODE (dest); rtx tp = aarch64_load_tp (NULL); if (mode != Pmode) tp = gen_lowpart (mode, tp); switch (type) { case SYMBOL_TLSLE12: emit_insn ((mode == DImode ? gen_tlsle12_di : gen_tlsle12_si) (dest, tp, imm)); break; case SYMBOL_TLSLE24: emit_insn ((mode == DImode ? gen_tlsle24_di : gen_tlsle24_si) (dest, tp, imm)); break; case SYMBOL_TLSLE32: emit_insn ((mode == DImode ? gen_tlsle32_di : gen_tlsle32_si) (dest, imm)); emit_insn ((mode == DImode ? gen_adddi3 : gen_addsi3) (dest, dest, tp)); break; case SYMBOL_TLSLE48: emit_insn ((mode == DImode ? gen_tlsle48_di : gen_tlsle48_si) (dest, imm)); emit_insn ((mode == DImode ? gen_adddi3 : gen_addsi3) (dest, dest, tp)); break; default: gcc_unreachable (); } if (REG_P (dest)) set_unique_reg_note (get_last_insn (), REG_EQUIV, imm); return; } case SYMBOL_TINY_GOT: emit_insn (gen_ldr_got_tiny (dest, imm)); return; case SYMBOL_TINY_TLSIE: { machine_mode mode = GET_MODE (dest); rtx tp = aarch64_load_tp (NULL); if (mode == ptr_mode) { if (mode == DImode) emit_insn (gen_tlsie_tiny_di (dest, imm, tp)); else { tp = gen_lowpart (mode, tp); emit_insn (gen_tlsie_tiny_si (dest, imm, tp)); } } else { gcc_assert (mode == Pmode); emit_insn (gen_tlsie_tiny_sidi (dest, imm, tp)); } if (REG_P (dest)) set_unique_reg_note (get_last_insn (), REG_EQUIV, imm); return; } default: gcc_unreachable (); } } /* Emit a move from SRC to DEST. Assume that the move expanders can handle all moves if !can_create_pseudo_p (). The distinction is important because, unlike emit_move_insn, the move expanders know how to force Pmode objects into the constant pool even when the constant pool address is not itself legitimate. */ static rtx aarch64_emit_move (rtx dest, rtx src) { return (can_create_pseudo_p () ? emit_move_insn (dest, src) : emit_move_insn_1 (dest, src)); } /* Apply UNOPTAB to OP and store the result in DEST. */ static void aarch64_emit_unop (rtx dest, optab unoptab, rtx op) { rtx tmp = expand_unop (GET_MODE (dest), unoptab, op, dest, 0); if (dest != tmp) emit_move_insn (dest, tmp); } /* Apply BINOPTAB to OP0 and OP1 and store the result in DEST. */ static void aarch64_emit_binop (rtx dest, optab binoptab, rtx op0, rtx op1) { rtx tmp = expand_binop (GET_MODE (dest), binoptab, op0, op1, dest, 0, OPTAB_DIRECT); if (dest != tmp) emit_move_insn (dest, tmp); } /* Split a 128-bit move operation into two 64-bit move operations, taking care to handle partial overlap of register to register copies. Special cases are needed when moving between GP regs and FP regs. SRC can be a register, constant or memory; DST a register or memory. If either operand is memory it must not have any side effects. */ void aarch64_split_128bit_move (rtx dst, rtx src) { rtx dst_lo, dst_hi; rtx src_lo, src_hi; machine_mode mode = GET_MODE (dst); gcc_assert (mode == TImode || mode == TFmode); gcc_assert (!(side_effects_p (src) || side_effects_p (dst))); gcc_assert (mode == GET_MODE (src) || GET_MODE (src) == VOIDmode); if (REG_P (dst) && REG_P (src)) { int src_regno = REGNO (src); int dst_regno = REGNO (dst); /* Handle FP <-> GP regs. */ if (FP_REGNUM_P (dst_regno) && GP_REGNUM_P (src_regno)) { src_lo = gen_lowpart (word_mode, src); src_hi = gen_highpart (word_mode, src); emit_insn (gen_aarch64_movlow_di (mode, dst, src_lo)); emit_insn (gen_aarch64_movhigh_di (mode, dst, src_hi)); return; } else if (GP_REGNUM_P (dst_regno) && FP_REGNUM_P (src_regno)) { dst_lo = gen_lowpart (word_mode, dst); dst_hi = gen_highpart (word_mode, dst); emit_insn (gen_aarch64_movdi_low (mode, dst_lo, src)); emit_insn (gen_aarch64_movdi_high (mode, dst_hi, src)); return; } } dst_lo = gen_lowpart (word_mode, dst); dst_hi = gen_highpart (word_mode, dst); src_lo = gen_lowpart (word_mode, src); src_hi = gen_highpart_mode (word_mode, mode, src); /* At most one pairing may overlap. */ if (reg_overlap_mentioned_p (dst_lo, src_hi)) { aarch64_emit_move (dst_hi, src_hi); aarch64_emit_move (dst_lo, src_lo); } else { aarch64_emit_move (dst_lo, src_lo); aarch64_emit_move (dst_hi, src_hi); } } bool aarch64_split_128bit_move_p (rtx dst, rtx src) { return (! REG_P (src) || ! (FP_REGNUM_P (REGNO (dst)) && FP_REGNUM_P (REGNO (src)))); } /* Split a complex SIMD combine. */ void aarch64_split_simd_combine (rtx dst, rtx src1, rtx src2) { machine_mode src_mode = GET_MODE (src1); machine_mode dst_mode = GET_MODE (dst); gcc_assert (VECTOR_MODE_P (dst_mode)); gcc_assert (register_operand (dst, dst_mode) && register_operand (src1, src_mode) && register_operand (src2, src_mode)); emit_insn (gen_aarch64_simd_combine (src_mode, dst, src1, src2)); return; } /* Split a complex SIMD move. */ void aarch64_split_simd_move (rtx dst, rtx src) { machine_mode src_mode = GET_MODE (src); machine_mode dst_mode = GET_MODE (dst); gcc_assert (VECTOR_MODE_P (dst_mode)); if (REG_P (dst) && REG_P (src)) { gcc_assert (VECTOR_MODE_P (src_mode)); emit_insn (gen_aarch64_split_simd_mov (src_mode, dst, src)); } } bool aarch64_zero_extend_const_eq (machine_mode xmode, rtx x, machine_mode ymode, rtx y) { rtx r = simplify_const_unary_operation (ZERO_EXTEND, xmode, y, ymode); gcc_assert (r != NULL); return rtx_equal_p (x, r); } static rtx aarch64_force_temporary (machine_mode mode, rtx x, rtx value) { if (can_create_pseudo_p ()) return force_reg (mode, value); else { gcc_assert (x); aarch64_emit_move (x, value); return x; } } /* Return true if we can move VALUE into a register using a single CNT[BHWD] instruction. */ static bool aarch64_sve_cnt_immediate_p (poly_int64 value) { HOST_WIDE_INT factor = value.coeffs[0]; /* The coefficient must be [1, 16] * {2, 4, 8, 16}. */ return (value.coeffs[1] == factor && IN_RANGE (factor, 2, 16 * 16) && (factor & 1) == 0 && factor <= 16 * (factor & -factor)); } /* Likewise for rtx X. */ bool aarch64_sve_cnt_immediate_p (rtx x) { poly_int64 value; return poly_int_rtx_p (x, &value) && aarch64_sve_cnt_immediate_p (value); } /* Return the asm string for an instruction with a CNT-like vector size operand (a vector pattern followed by a multiplier in the range [1, 16]). PREFIX is the mnemonic without the size suffix and OPERANDS is the first part of the operands template (the part that comes before the vector size itself). FACTOR is the number of quadwords. NELTS_PER_VQ, if nonzero, is the number of elements in each quadword. If it is zero, we can use any element size. */ static char * aarch64_output_sve_cnt_immediate (const char *prefix, const char *operands, unsigned int factor, unsigned int nelts_per_vq) { static char buffer[sizeof ("sqincd\t%x0, %w0, all, mul #16")]; if (nelts_per_vq == 0) /* There is some overlap in the ranges of the four CNT instructions. Here we always use the smallest possible element size, so that the multiplier is 1 whereever possible. */ nelts_per_vq = factor & -factor; int shift = std::min (exact_log2 (nelts_per_vq), 4); gcc_assert (IN_RANGE (shift, 1, 4)); char suffix = "dwhb"[shift - 1]; factor >>= shift; unsigned int written; if (factor == 1) written = snprintf (buffer, sizeof (buffer), "%s%c\t%s", prefix, suffix, operands); else written = snprintf (buffer, sizeof (buffer), "%s%c\t%s, all, mul #%d", prefix, suffix, operands, factor); gcc_assert (written < sizeof (buffer)); return buffer; } /* Return the asm string for an instruction with a CNT-like vector size operand (a vector pattern followed by a multiplier in the range [1, 16]). PREFIX is the mnemonic without the size suffix and OPERANDS is the first part of the operands template (the part that comes before the vector size itself). X is the value of the vector size operand, as a polynomial integer rtx. */ char * aarch64_output_sve_cnt_immediate (const char *prefix, const char *operands, rtx x) { poly_int64 value = rtx_to_poly_int64 (x); gcc_assert (aarch64_sve_cnt_immediate_p (value)); return aarch64_output_sve_cnt_immediate (prefix, operands, value.coeffs[1], 0); } /* Return true if we can add VALUE to a register using a single ADDVL or ADDPL instruction. */ static bool aarch64_sve_addvl_addpl_immediate_p (poly_int64 value) { HOST_WIDE_INT factor = value.coeffs[0]; if (factor == 0 || value.coeffs[1] != factor) return false; /* FACTOR counts VG / 2, so a value of 2 is one predicate width and a value of 16 is one vector width. */ return (((factor & 15) == 0 && IN_RANGE (factor, -32 * 16, 31 * 16)) || ((factor & 1) == 0 && IN_RANGE (factor, -32 * 2, 31 * 2))); } /* Likewise for rtx X. */ bool aarch64_sve_addvl_addpl_immediate_p (rtx x) { poly_int64 value; return (poly_int_rtx_p (x, &value) && aarch64_sve_addvl_addpl_immediate_p (value)); } /* Return the asm string for adding ADDVL or ADDPL immediate X to operand 1 and storing the result in operand 0. */ char * aarch64_output_sve_addvl_addpl (rtx dest, rtx base, rtx offset) { static char buffer[sizeof ("addpl\t%x0, %x1, #-") + 3 * sizeof (int)]; poly_int64 offset_value = rtx_to_poly_int64 (offset); gcc_assert (aarch64_sve_addvl_addpl_immediate_p (offset_value)); /* Use INC or DEC if possible. */ if (rtx_equal_p (dest, base) && GP_REGNUM_P (REGNO (dest))) { if (aarch64_sve_cnt_immediate_p (offset_value)) return aarch64_output_sve_cnt_immediate ("inc", "%x0", offset_value.coeffs[1], 0); if (aarch64_sve_cnt_immediate_p (-offset_value)) return aarch64_output_sve_cnt_immediate ("dec", "%x0", -offset_value.coeffs[1], 0); } int factor = offset_value.coeffs[1]; if ((factor & 15) == 0) snprintf (buffer, sizeof (buffer), "addvl\t%%x0, %%x1, #%d", factor / 16); else snprintf (buffer, sizeof (buffer), "addpl\t%%x0, %%x1, #%d", factor / 2); return buffer; } /* Return true if X is a valid immediate for an SVE vector INC or DEC instruction. If it is, store the number of elements in each vector quadword in *NELTS_PER_VQ_OUT (if nonnull) and store the multiplication factor in *FACTOR_OUT (if nonnull). */ bool aarch64_sve_inc_dec_immediate_p (rtx x, int *factor_out, unsigned int *nelts_per_vq_out) { rtx elt; poly_int64 value; if (!const_vec_duplicate_p (x, &elt) || !poly_int_rtx_p (elt, &value)) return false; unsigned int nelts_per_vq = 128 / GET_MODE_UNIT_BITSIZE (GET_MODE (x)); if (nelts_per_vq != 8 && nelts_per_vq != 4 && nelts_per_vq != 2) /* There's no vector INCB. */ return false; HOST_WIDE_INT factor = value.coeffs[0]; if (value.coeffs[1] != factor) return false; /* The coefficient must be [1, 16] * NELTS_PER_VQ. */ if ((factor % nelts_per_vq) != 0 || !IN_RANGE (abs (factor), nelts_per_vq, 16 * nelts_per_vq)) return false; if (factor_out) *factor_out = factor; if (nelts_per_vq_out) *nelts_per_vq_out = nelts_per_vq; return true; } /* Return true if X is a valid immediate for an SVE vector INC or DEC instruction. */ bool aarch64_sve_inc_dec_immediate_p (rtx x) { return aarch64_sve_inc_dec_immediate_p (x, NULL, NULL); } /* Return the asm template for an SVE vector INC or DEC instruction. OPERANDS gives the operands before the vector count and X is the value of the vector count operand itself. */ char * aarch64_output_sve_inc_dec_immediate (const char *operands, rtx x) { int factor; unsigned int nelts_per_vq; if (!aarch64_sve_inc_dec_immediate_p (x, &factor, &nelts_per_vq)) gcc_unreachable (); if (factor < 0) return aarch64_output_sve_cnt_immediate ("dec", operands, -factor, nelts_per_vq); else return aarch64_output_sve_cnt_immediate ("inc", operands, factor, nelts_per_vq); } static int aarch64_internal_mov_immediate (rtx dest, rtx imm, bool generate, scalar_int_mode mode) { int i; unsigned HOST_WIDE_INT val, val2, mask; int one_match, zero_match; int num_insns; val = INTVAL (imm); if (aarch64_move_imm (val, mode)) { if (generate) emit_insn (gen_rtx_SET (dest, imm)); return 1; } /* Check to see if the low 32 bits are either 0xffffXXXX or 0xXXXXffff (with XXXX non-zero). In that case check to see if the move can be done in a smaller mode. */ val2 = val & 0xffffffff; if (mode == DImode && aarch64_move_imm (val2, SImode) && (((val >> 32) & 0xffff) == 0 || (val >> 48) == 0)) { if (generate) emit_insn (gen_rtx_SET (dest, GEN_INT (val2))); /* Check if we have to emit a second instruction by checking to see if any of the upper 32 bits of the original DI mode value is set. */ if (val == val2) return 1; i = (val >> 48) ? 48 : 32; if (generate) emit_insn (gen_insv_immdi (dest, GEN_INT (i), GEN_INT ((val >> i) & 0xffff))); return 2; } if ((val >> 32) == 0 || mode == SImode) { if (generate) { emit_insn (gen_rtx_SET (dest, GEN_INT (val & 0xffff))); if (mode == SImode) emit_insn (gen_insv_immsi (dest, GEN_INT (16), GEN_INT ((val >> 16) & 0xffff))); else emit_insn (gen_insv_immdi (dest, GEN_INT (16), GEN_INT ((val >> 16) & 0xffff))); } return 2; } /* Remaining cases are all for DImode. */ mask = 0xffff; zero_match = ((val & mask) == 0) + ((val & (mask << 16)) == 0) + ((val & (mask << 32)) == 0) + ((val & (mask << 48)) == 0); one_match = ((~val & mask) == 0) + ((~val & (mask << 16)) == 0) + ((~val & (mask << 32)) == 0) + ((~val & (mask << 48)) == 0); if (zero_match != 2 && one_match != 2) { /* Try emitting a bitmask immediate with a movk replacing 16 bits. For a 64-bit bitmask try whether changing 16 bits to all ones or zeroes creates a valid bitmask. To check any repeated bitmask, try using 16 bits from the other 32-bit half of val. */ for (i = 0; i < 64; i += 16, mask <<= 16) { val2 = val & ~mask; if (val2 != val && aarch64_bitmask_imm (val2, mode)) break; val2 = val | mask; if (val2 != val && aarch64_bitmask_imm (val2, mode)) break; val2 = val2 & ~mask; val2 = val2 | (((val2 >> 32) | (val2 << 32)) & mask); if (val2 != val && aarch64_bitmask_imm (val2, mode)) break; } if (i != 64) { if (generate) { emit_insn (gen_rtx_SET (dest, GEN_INT (val2))); emit_insn (gen_insv_immdi (dest, GEN_INT (i), GEN_INT ((val >> i) & 0xffff))); } return 2; } } /* Generate 2-4 instructions, skipping 16 bits of all zeroes or ones which are emitted by the initial mov. If one_match > zero_match, skip set bits, otherwise skip zero bits. */ num_insns = 1; mask = 0xffff; val2 = one_match > zero_match ? ~val : val; i = (val2 & mask) != 0 ? 0 : (val2 & (mask << 16)) != 0 ? 16 : 32; if (generate) emit_insn (gen_rtx_SET (dest, GEN_INT (one_match > zero_match ? (val | ~(mask << i)) : (val & (mask << i))))); for (i += 16; i < 64; i += 16) { if ((val2 & (mask << i)) == 0) continue; if (generate) emit_insn (gen_insv_immdi (dest, GEN_INT (i), GEN_INT ((val >> i) & 0xffff))); num_insns ++; } return num_insns; } /* Return whether imm is a 128-bit immediate which is simple enough to expand inline. */ bool aarch64_mov128_immediate (rtx imm) { if (GET_CODE (imm) == CONST_INT) return true; gcc_assert (CONST_WIDE_INT_NUNITS (imm) == 2); rtx lo = GEN_INT (CONST_WIDE_INT_ELT (imm, 0)); rtx hi = GEN_INT (CONST_WIDE_INT_ELT (imm, 1)); return aarch64_internal_mov_immediate (NULL_RTX, lo, false, DImode) + aarch64_internal_mov_immediate (NULL_RTX, hi, false, DImode) <= 4; } /* Return the number of temporary registers that aarch64_add_offset_1 would need to add OFFSET to a register. */ static unsigned int aarch64_add_offset_1_temporaries (HOST_WIDE_INT offset) { return abs_hwi (offset) < 0x1000000 ? 0 : 1; } /* A subroutine of aarch64_add_offset. Set DEST to SRC + OFFSET for a non-polynomial OFFSET. MODE is the mode of the addition. FRAME_RELATED_P is true if the RTX_FRAME_RELATED flag should be set and CFA adjustments added to the generated instructions. TEMP1, if nonnull, is a register of mode MODE that can be used as a temporary if register allocation is already complete. This temporary register may overlap DEST but must not overlap SRC. If TEMP1 is known to hold abs (OFFSET), EMIT_MOVE_IMM can be set to false to avoid emitting the immediate again. Since this function may be used to adjust the stack pointer, we must ensure that it cannot cause transient stack deallocation (for example by first incrementing SP and then decrementing when adjusting by a large immediate). */ static void aarch64_add_offset_1 (scalar_int_mode mode, rtx dest, rtx src, HOST_WIDE_INT offset, rtx temp1, bool frame_related_p, bool emit_move_imm) { gcc_assert (emit_move_imm || temp1 != NULL_RTX); gcc_assert (temp1 == NULL_RTX || !reg_overlap_mentioned_p (temp1, src)); HOST_WIDE_INT moffset = abs_hwi (offset); rtx_insn *insn; if (!moffset) { if (!rtx_equal_p (dest, src)) { insn = emit_insn (gen_rtx_SET (dest, src)); RTX_FRAME_RELATED_P (insn) = frame_related_p; } return; } /* Single instruction adjustment. */ if (aarch64_uimm12_shift (moffset)) { insn = emit_insn (gen_add3_insn (dest, src, GEN_INT (offset))); RTX_FRAME_RELATED_P (insn) = frame_related_p; return; } /* Emit 2 additions/subtractions if the adjustment is less than 24 bits and either: a) the offset cannot be loaded by a 16-bit move or b) there is no spare register into which we can move it. */ if (moffset < 0x1000000 && ((!temp1 && !can_create_pseudo_p ()) || !aarch64_move_imm (moffset, mode))) { HOST_WIDE_INT low_off = moffset & 0xfff; low_off = offset < 0 ? -low_off : low_off; insn = emit_insn (gen_add3_insn (dest, src, GEN_INT (low_off))); RTX_FRAME_RELATED_P (insn) = frame_related_p; insn = emit_insn (gen_add2_insn (dest, GEN_INT (offset - low_off))); RTX_FRAME_RELATED_P (insn) = frame_related_p; return; } /* Emit a move immediate if required and an addition/subtraction. */ if (emit_move_imm) { gcc_assert (temp1 != NULL_RTX || can_create_pseudo_p ()); temp1 = aarch64_force_temporary (mode, temp1, GEN_INT (moffset)); } insn = emit_insn (offset < 0 ? gen_sub3_insn (dest, src, temp1) : gen_add3_insn (dest, src, temp1)); if (frame_related_p) { RTX_FRAME_RELATED_P (insn) = frame_related_p; rtx adj = plus_constant (mode, src, offset); add_reg_note (insn, REG_CFA_ADJUST_CFA, gen_rtx_SET (dest, adj)); } } /* Return the number of temporary registers that aarch64_add_offset would need to move OFFSET into a register or add OFFSET to a register; ADD_P is true if we want the latter rather than the former. */ static unsigned int aarch64_offset_temporaries (bool add_p, poly_int64 offset) { /* This follows the same structure as aarch64_add_offset. */ if (add_p && aarch64_sve_addvl_addpl_immediate_p (offset)) return 0; unsigned int count = 0; HOST_WIDE_INT factor = offset.coeffs[1]; HOST_WIDE_INT constant = offset.coeffs[0] - factor; poly_int64 poly_offset (factor, factor); if (add_p && aarch64_sve_addvl_addpl_immediate_p (poly_offset)) /* Need one register for the ADDVL/ADDPL result. */ count += 1; else if (factor != 0) { factor = abs (factor); if (factor > 16 * (factor & -factor)) /* Need one register for the CNT result and one for the multiplication factor. If necessary, the second temporary can be reused for the constant part of the offset. */ return 2; /* Need one register for the CNT result (which might then be shifted). */ count += 1; } return count + aarch64_add_offset_1_temporaries (constant); } /* If X can be represented as a poly_int64, return the number of temporaries that are required to add it to a register. Return -1 otherwise. */ int aarch64_add_offset_temporaries (rtx x) { poly_int64 offset; if (!poly_int_rtx_p (x, &offset)) return -1; return aarch64_offset_temporaries (true, offset); } /* Set DEST to SRC + OFFSET. MODE is the mode of the addition. FRAME_RELATED_P is true if the RTX_FRAME_RELATED flag should be set and CFA adjustments added to the generated instructions. TEMP1, if nonnull, is a register of mode MODE that can be used as a temporary if register allocation is already complete. This temporary register may overlap DEST if !FRAME_RELATED_P but must not overlap SRC. If TEMP1 is known to hold abs (OFFSET), EMIT_MOVE_IMM can be set to false to avoid emitting the immediate again. TEMP2, if nonnull, is a second temporary register that doesn't overlap either DEST or REG. Since this function may be used to adjust the stack pointer, we must ensure that it cannot cause transient stack deallocation (for example by first incrementing SP and then decrementing when adjusting by a large immediate). */ static void aarch64_add_offset (scalar_int_mode mode, rtx dest, rtx src, poly_int64 offset, rtx temp1, rtx temp2, bool frame_related_p, bool emit_move_imm = true) { gcc_assert (emit_move_imm || temp1 != NULL_RTX); gcc_assert (temp1 == NULL_RTX || !reg_overlap_mentioned_p (temp1, src)); gcc_assert (temp1 == NULL_RTX || !frame_related_p || !reg_overlap_mentioned_p (temp1, dest)); gcc_assert (temp2 == NULL_RTX || !reg_overlap_mentioned_p (dest, temp2)); /* Try using ADDVL or ADDPL to add the whole value. */ if (src != const0_rtx && aarch64_sve_addvl_addpl_immediate_p (offset)) { rtx offset_rtx = gen_int_mode (offset, mode); rtx_insn *insn = emit_insn (gen_add3_insn (dest, src, offset_rtx)); RTX_FRAME_RELATED_P (insn) = frame_related_p; return; } /* Coefficient 1 is multiplied by the number of 128-bit blocks in an SVE vector register, over and above the minimum size of 128 bits. This is equivalent to half the value returned by CNTD with a vector shape of ALL. */ HOST_WIDE_INT factor = offset.coeffs[1]; HOST_WIDE_INT constant = offset.coeffs[0] - factor; /* Try using ADDVL or ADDPL to add the VG-based part. */ poly_int64 poly_offset (factor, factor); if (src != const0_rtx && aarch64_sve_addvl_addpl_immediate_p (poly_offset)) { rtx offset_rtx = gen_int_mode (poly_offset, mode); if (frame_related_p) { rtx_insn *insn = emit_insn (gen_add3_insn (dest, src, offset_rtx)); RTX_FRAME_RELATED_P (insn) = true; src = dest; } else { rtx addr = gen_rtx_PLUS (mode, src, offset_rtx); src = aarch64_force_temporary (mode, temp1, addr); temp1 = temp2; temp2 = NULL_RTX; } } /* Otherwise use a CNT-based sequence. */ else if (factor != 0) { /* Use a subtraction if we have a negative factor. */ rtx_code code = PLUS; if (factor < 0) { factor = -factor; code = MINUS; } /* Calculate CNTD * FACTOR / 2. First try to fold the division into the multiplication. */ rtx val; int shift = 0; if (factor & 1) /* Use a right shift by 1. */ shift = -1; else factor /= 2; HOST_WIDE_INT low_bit = factor & -factor; if (factor <= 16 * low_bit) { if (factor > 16 * 8) { /* "CNTB Xn, ALL, MUL #FACTOR" is out of range, so calculate the value with the minimum multiplier and shift it into position. */ int extra_shift = exact_log2 (low_bit); shift += extra_shift; factor >>= extra_shift; } val = gen_int_mode (poly_int64 (factor * 2, factor * 2), mode); } else { /* Use CNTD, then multiply it by FACTOR. */ val = gen_int_mode (poly_int64 (2, 2), mode); val = aarch64_force_temporary (mode, temp1, val); /* Go back to using a negative multiplication factor if we have no register from which to subtract. */ if (code == MINUS && src == const0_rtx) { factor = -factor; code = PLUS; } rtx coeff1 = gen_int_mode (factor, mode); coeff1 = aarch64_force_temporary (mode, temp2, coeff1); val = gen_rtx_MULT (mode, val, coeff1); } if (shift > 0) { /* Multiply by 1 << SHIFT. */ val = aarch64_force_temporary (mode, temp1, val); val = gen_rtx_ASHIFT (mode, val, GEN_INT (shift)); } else if (shift == -1) { /* Divide by 2. */ val = aarch64_force_temporary (mode, temp1, val); val = gen_rtx_ASHIFTRT (mode, val, const1_rtx); } /* Calculate SRC +/- CNTD * FACTOR / 2. */ if (src != const0_rtx) { val = aarch64_force_temporary (mode, temp1, val); val = gen_rtx_fmt_ee (code, mode, src, val); } else if (code == MINUS) { val = aarch64_force_temporary (mode, temp1, val); val = gen_rtx_NEG (mode, val); } if (constant == 0 || frame_related_p) { rtx_insn *insn = emit_insn (gen_rtx_SET (dest, val)); if (frame_related_p) { RTX_FRAME_RELATED_P (insn) = true; add_reg_note (insn, REG_CFA_ADJUST_CFA, gen_rtx_SET (dest, plus_constant (Pmode, src, poly_offset))); } src = dest; if (constant == 0) return; } else { src = aarch64_force_temporary (mode, temp1, val); temp1 = temp2; temp2 = NULL_RTX; } emit_move_imm = true; } aarch64_add_offset_1 (mode, dest, src, constant, temp1, frame_related_p, emit_move_imm); } /* Like aarch64_add_offset, but the offset is given as an rtx rather than a poly_int64. */ void aarch64_split_add_offset (scalar_int_mode mode, rtx dest, rtx src, rtx offset_rtx, rtx temp1, rtx temp2) { aarch64_add_offset (mode, dest, src, rtx_to_poly_int64 (offset_rtx), temp1, temp2, false); } /* Add DELTA to the stack pointer, marking the instructions frame-related. TEMP1 is available as a temporary if nonnull. EMIT_MOVE_IMM is false if TEMP1 already contains abs (DELTA). */ static inline void aarch64_add_sp (rtx temp1, rtx temp2, poly_int64 delta, bool emit_move_imm) { aarch64_add_offset (Pmode, stack_pointer_rtx, stack_pointer_rtx, delta, temp1, temp2, true, emit_move_imm); } /* Subtract DELTA from the stack pointer, marking the instructions frame-related if FRAME_RELATED_P. TEMP1 is available as a temporary if nonnull. */ static inline void aarch64_sub_sp (rtx temp1, rtx temp2, poly_int64 delta, bool frame_related_p) { aarch64_add_offset (Pmode, stack_pointer_rtx, stack_pointer_rtx, -delta, temp1, temp2, frame_related_p); } /* Set DEST to (vec_series BASE STEP). */ static void aarch64_expand_vec_series (rtx dest, rtx base, rtx step) { machine_mode mode = GET_MODE (dest); scalar_mode inner = GET_MODE_INNER (mode); /* Each operand can be a register or an immediate in the range [-16, 15]. */ if (!aarch64_sve_index_immediate_p (base)) base = force_reg (inner, base); if (!aarch64_sve_index_immediate_p (step)) step = force_reg (inner, step); emit_set_insn (dest, gen_rtx_VEC_SERIES (mode, base, step)); } /* Try to duplicate SRC into SVE register DEST, given that SRC is an integer of mode INT_MODE. Return true on success. */ static bool aarch64_expand_sve_widened_duplicate (rtx dest, scalar_int_mode src_mode, rtx src) { /* If the constant is smaller than 128 bits, we can do the move using a vector of SRC_MODEs. */ if (src_mode != TImode) { poly_uint64 count = exact_div (GET_MODE_SIZE (GET_MODE (dest)), GET_MODE_SIZE (src_mode)); machine_mode dup_mode = mode_for_vector (src_mode, count).require (); emit_move_insn (gen_lowpart (dup_mode, dest), gen_const_vec_duplicate (dup_mode, src)); return true; } /* Use LD1RQ[BHWD] to load the 128 bits from memory. */ src = force_const_mem (src_mode, src); if (!src) return false; /* Make sure that the address is legitimate. */ if (!aarch64_sve_ld1r_operand_p (src)) { rtx addr = force_reg (Pmode, XEXP (src, 0)); src = replace_equiv_address (src, addr); } machine_mode mode = GET_MODE (dest); unsigned int elem_bytes = GET_MODE_UNIT_SIZE (mode); machine_mode pred_mode = aarch64_sve_pred_mode (elem_bytes).require (); rtx ptrue = force_reg (pred_mode, CONSTM1_RTX (pred_mode)); src = gen_rtx_UNSPEC (mode, gen_rtvec (2, ptrue, src), UNSPEC_LD1RQ); emit_insn (gen_rtx_SET (dest, src)); return true; } /* Expand a move of general CONST_VECTOR SRC into DEST, given that it isn't a simple duplicate or series. */ static void aarch64_expand_sve_const_vector (rtx dest, rtx src) { machine_mode mode = GET_MODE (src); unsigned int npatterns = CONST_VECTOR_NPATTERNS (src); unsigned int nelts_per_pattern = CONST_VECTOR_NELTS_PER_PATTERN (src); gcc_assert (npatterns > 1); if (nelts_per_pattern == 1) { /* The constant is a repeating seqeuence of at least two elements, where the repeating elements occupy no more than 128 bits. Get an integer representation of the replicated value. */ scalar_int_mode int_mode; if (BYTES_BIG_ENDIAN) /* For now, always use LD1RQ to load the value on big-endian targets, since the handling of smaller integers includes a subreg that is semantically an element reverse. */ int_mode = TImode; else { unsigned int int_bits = GET_MODE_UNIT_BITSIZE (mode) * npatterns; gcc_assert (int_bits <= 128); int_mode = int_mode_for_size (int_bits, 0).require (); } rtx int_value = simplify_gen_subreg (int_mode, src, mode, 0); if (int_value && aarch64_expand_sve_widened_duplicate (dest, int_mode, int_value)) return; } /* Expand each pattern individually. */ rtx_vector_builder builder; auto_vec vectors (npatterns); for (unsigned int i = 0; i < npatterns; ++i) { builder.new_vector (mode, 1, nelts_per_pattern); for (unsigned int j = 0; j < nelts_per_pattern; ++j) builder.quick_push (CONST_VECTOR_ELT (src, i + j * npatterns)); vectors.quick_push (force_reg (mode, builder.build ())); } /* Use permutes to interleave the separate vectors. */ while (npatterns > 1) { npatterns /= 2; for (unsigned int i = 0; i < npatterns; ++i) { rtx tmp = (npatterns == 1 ? dest : gen_reg_rtx (mode)); rtvec v = gen_rtvec (2, vectors[i], vectors[i + npatterns]); emit_set_insn (tmp, gen_rtx_UNSPEC (mode, v, UNSPEC_ZIP1)); vectors[i] = tmp; } } gcc_assert (vectors[0] == dest); } /* Set DEST to immediate IMM. For SVE vector modes, GEN_VEC_DUPLICATE is a pattern that can be used to set DEST to a replicated scalar element. */ void aarch64_expand_mov_immediate (rtx dest, rtx imm, rtx (*gen_vec_duplicate) (rtx, rtx)) { machine_mode mode = GET_MODE (dest); /* Check on what type of symbol it is. */ scalar_int_mode int_mode; if ((GET_CODE (imm) == SYMBOL_REF || GET_CODE (imm) == LABEL_REF || GET_CODE (imm) == CONST || GET_CODE (imm) == CONST_POLY_INT) && is_a (mode, &int_mode)) { rtx mem; poly_int64 offset; HOST_WIDE_INT const_offset; enum aarch64_symbol_type sty; /* If we have (const (plus symbol offset)), separate out the offset before we start classifying the symbol. */ rtx base = strip_offset (imm, &offset); /* We must always add an offset involving VL separately, rather than folding it into the relocation. */ if (!offset.is_constant (&const_offset)) { if (base == const0_rtx && aarch64_sve_cnt_immediate_p (offset)) emit_insn (gen_rtx_SET (dest, imm)); else { /* Do arithmetic on 32-bit values if the result is smaller than that. */ if (partial_subreg_p (int_mode, SImode)) { /* It is invalid to do symbol calculations in modes narrower than SImode. */ gcc_assert (base == const0_rtx); dest = gen_lowpart (SImode, dest); int_mode = SImode; } if (base != const0_rtx) { base = aarch64_force_temporary (int_mode, dest, base); aarch64_add_offset (int_mode, dest, base, offset, NULL_RTX, NULL_RTX, false); } else aarch64_add_offset (int_mode, dest, base, offset, dest, NULL_RTX, false); } return; } sty = aarch64_classify_symbol (base, const_offset); switch (sty) { case SYMBOL_FORCE_TO_MEM: if (const_offset != 0 && targetm.cannot_force_const_mem (int_mode, imm)) { gcc_assert (can_create_pseudo_p ()); base = aarch64_force_temporary (int_mode, dest, base); aarch64_add_offset (int_mode, dest, base, const_offset, NULL_RTX, NULL_RTX, false); return; } mem = force_const_mem (ptr_mode, imm); gcc_assert (mem); /* If we aren't generating PC relative literals, then we need to expand the literal pool access carefully. This is something that needs to be done in a number of places, so could well live as a separate function. */ if (!aarch64_pcrelative_literal_loads) { gcc_assert (can_create_pseudo_p ()); base = gen_reg_rtx (ptr_mode); aarch64_expand_mov_immediate (base, XEXP (mem, 0)); if (ptr_mode != Pmode) base = convert_memory_address (Pmode, base); mem = gen_rtx_MEM (ptr_mode, base); } if (int_mode != ptr_mode) mem = gen_rtx_ZERO_EXTEND (int_mode, mem); emit_insn (gen_rtx_SET (dest, mem)); return; case SYMBOL_SMALL_TLSGD: case SYMBOL_SMALL_TLSDESC: case SYMBOL_SMALL_TLSIE: case SYMBOL_SMALL_GOT_28K: case SYMBOL_SMALL_GOT_4G: case SYMBOL_TINY_GOT: case SYMBOL_TINY_TLSIE: if (const_offset != 0) { gcc_assert(can_create_pseudo_p ()); base = aarch64_force_temporary (int_mode, dest, base); aarch64_add_offset (int_mode, dest, base, const_offset, NULL_RTX, NULL_RTX, false); return; } /* FALLTHRU */ case SYMBOL_SMALL_ABSOLUTE: case SYMBOL_TINY_ABSOLUTE: case SYMBOL_TLSLE12: case SYMBOL_TLSLE24: case SYMBOL_TLSLE32: case SYMBOL_TLSLE48: aarch64_load_symref_appropriately (dest, imm, sty); return; default: gcc_unreachable (); } } if (!CONST_INT_P (imm)) { rtx base, step, value; if (GET_CODE (imm) == HIGH || aarch64_simd_valid_immediate (imm, NULL)) emit_insn (gen_rtx_SET (dest, imm)); else if (const_vec_series_p (imm, &base, &step)) aarch64_expand_vec_series (dest, base, step); else if (const_vec_duplicate_p (imm, &value)) { /* If the constant is out of range of an SVE vector move, load it from memory if we can, otherwise move it into a register and use a DUP. */ scalar_mode inner_mode = GET_MODE_INNER (mode); rtx op = force_const_mem (inner_mode, value); if (!op) op = force_reg (inner_mode, value); else if (!aarch64_sve_ld1r_operand_p (op)) { rtx addr = force_reg (Pmode, XEXP (op, 0)); op = replace_equiv_address (op, addr); } emit_insn (gen_vec_duplicate (dest, op)); } else if (GET_CODE (imm) == CONST_VECTOR && !GET_MODE_NUNITS (GET_MODE (imm)).is_constant ()) aarch64_expand_sve_const_vector (dest, imm); else { rtx mem = force_const_mem (mode, imm); gcc_assert (mem); emit_move_insn (dest, mem); } return; } aarch64_internal_mov_immediate (dest, imm, true, as_a (mode)); } /* Emit an SVE predicated move from SRC to DEST. PRED is a predicate that is known to contain PTRUE. */ void aarch64_emit_sve_pred_move (rtx dest, rtx pred, rtx src) { emit_insn (gen_rtx_SET (dest, gen_rtx_UNSPEC (GET_MODE (dest), gen_rtvec (2, pred, src), UNSPEC_MERGE_PTRUE))); } /* Expand a pre-RA SVE data move from SRC to DEST in which at least one operand is in memory. In this case we need to use the predicated LD1 and ST1 instead of LDR and STR, both for correctness on big-endian targets and because LD1 and ST1 support a wider range of addressing modes. PRED_MODE is the mode of the predicate. See the comment at the head of aarch64-sve.md for details about the big-endian handling. */ void aarch64_expand_sve_mem_move (rtx dest, rtx src, machine_mode pred_mode) { machine_mode mode = GET_MODE (dest); rtx ptrue = force_reg (pred_mode, CONSTM1_RTX (pred_mode)); if (!register_operand (src, mode) && !register_operand (dest, mode)) { rtx tmp = gen_reg_rtx (mode); if (MEM_P (src)) aarch64_emit_sve_pred_move (tmp, ptrue, src); else emit_move_insn (tmp, src); src = tmp; } aarch64_emit_sve_pred_move (dest, ptrue, src); } /* Called only on big-endian targets. See whether an SVE vector move from SRC to DEST is effectively a REV[BHW] instruction, because at least one operand is a subreg of an SVE vector that has wider or narrower elements. Return true and emit the instruction if so. For example: (set (reg:VNx8HI R1) (subreg:VNx8HI (reg:VNx16QI R2) 0)) represents a VIEW_CONVERT between the following vectors, viewed in memory order: R2: { [0].high, [0].low, [1].high, [1].low, ... } R1: { [0], [1], [2], [3], ... } The high part of lane X in R2 should therefore correspond to lane X*2 of R1, but the register representations are: msb lsb R2: ...... [1].high [1].low [0].high [0].low R1: ...... [3] [2] [1] [0] where the low part of lane X in R2 corresponds to lane X*2 in R1. We therefore need a reverse operation to swap the high and low values around. This is purely an optimization. Without it we would spill the subreg operand to the stack in one mode and reload it in the other mode, which has the same effect as the REV. */ bool aarch64_maybe_expand_sve_subreg_move (rtx dest, rtx src) { gcc_assert (BYTES_BIG_ENDIAN); if (GET_CODE (dest) == SUBREG) dest = SUBREG_REG (dest); if (GET_CODE (src) == SUBREG) src = SUBREG_REG (src); /* The optimization handles two single SVE REGs with different element sizes. */ if (!REG_P (dest) || !REG_P (src) || aarch64_classify_vector_mode (GET_MODE (dest)) != VEC_SVE_DATA || aarch64_classify_vector_mode (GET_MODE (src)) != VEC_SVE_DATA || (GET_MODE_UNIT_SIZE (GET_MODE (dest)) == GET_MODE_UNIT_SIZE (GET_MODE (src)))) return false; /* Generate *aarch64_sve_mov_subreg_be. */ rtx ptrue = force_reg (VNx16BImode, CONSTM1_RTX (VNx16BImode)); rtx unspec = gen_rtx_UNSPEC (GET_MODE (dest), gen_rtvec (2, ptrue, src), UNSPEC_REV_SUBREG); emit_insn (gen_rtx_SET (dest, unspec)); return true; } /* Return a copy of X with mode MODE, without changing its other attributes. Unlike gen_lowpart, this doesn't care whether the mode change is valid. */ static rtx aarch64_replace_reg_mode (rtx x, machine_mode mode) { if (GET_MODE (x) == mode) return x; x = shallow_copy_rtx (x); set_mode_and_regno (x, mode, REGNO (x)); return x; } /* Split a *aarch64_sve_mov_subreg_be pattern with the given operands. */ void aarch64_split_sve_subreg_move (rtx dest, rtx ptrue, rtx src) { /* Decide which REV operation we need. The mode with narrower elements determines the mode of the operands and the mode with the wider elements determines the reverse width. */ machine_mode mode_with_wider_elts = GET_MODE (dest); machine_mode mode_with_narrower_elts = GET_MODE (src); if (GET_MODE_UNIT_SIZE (mode_with_wider_elts) < GET_MODE_UNIT_SIZE (mode_with_narrower_elts)) std::swap (mode_with_wider_elts, mode_with_narrower_elts); unsigned int wider_bytes = GET_MODE_UNIT_SIZE (mode_with_wider_elts); unsigned int unspec; if (wider_bytes == 8) unspec = UNSPEC_REV64; else if (wider_bytes == 4) unspec = UNSPEC_REV32; else if (wider_bytes == 2) unspec = UNSPEC_REV16; else gcc_unreachable (); machine_mode pred_mode = aarch64_sve_pred_mode (wider_bytes).require (); /* Emit: (set DEST (unspec [PTRUE (unspec [SRC] UNSPEC_REV)] UNSPEC_MERGE_PTRUE)) with the appropriate modes. */ ptrue = gen_lowpart (pred_mode, ptrue); dest = aarch64_replace_reg_mode (dest, mode_with_narrower_elts); src = aarch64_replace_reg_mode (src, mode_with_narrower_elts); src = gen_rtx_UNSPEC (mode_with_narrower_elts, gen_rtvec (1, src), unspec); src = gen_rtx_UNSPEC (mode_with_narrower_elts, gen_rtvec (2, ptrue, src), UNSPEC_MERGE_PTRUE); emit_insn (gen_rtx_SET (dest, src)); } static bool aarch64_function_ok_for_sibcall (tree decl ATTRIBUTE_UNUSED, tree exp ATTRIBUTE_UNUSED) { /* Currently, always true. */ return true; } /* Implement TARGET_PASS_BY_REFERENCE. */ static bool aarch64_pass_by_reference (cumulative_args_t pcum ATTRIBUTE_UNUSED, machine_mode mode, const_tree type, bool named ATTRIBUTE_UNUSED) { HOST_WIDE_INT size; machine_mode dummymode; int nregs; /* GET_MODE_SIZE (BLKmode) is useless since it is 0. */ if (mode == BLKmode && type) size = int_size_in_bytes (type); else /* No frontends can create types with variable-sized modes, so we shouldn't be asked to pass or return them. */ size = GET_MODE_SIZE (mode).to_constant (); /* Aggregates are passed by reference based on their size. */ if (type && AGGREGATE_TYPE_P (type)) { size = int_size_in_bytes (type); } /* Variable sized arguments are always returned by reference. */ if (size < 0) return true; /* Can this be a candidate to be passed in fp/simd register(s)? */ if (aarch64_vfp_is_call_or_return_candidate (mode, type, &dummymode, &nregs, NULL)) return false; /* Arguments which are variable sized or larger than 2 registers are passed by reference unless they are a homogenous floating point aggregate. */ return size > 2 * UNITS_PER_WORD; } /* Return TRUE if VALTYPE is padded to its least significant bits. */ static bool aarch64_return_in_msb (const_tree valtype) { machine_mode dummy_mode; int dummy_int; /* Never happens in little-endian mode. */ if (!BYTES_BIG_ENDIAN) return false; /* Only composite types smaller than or equal to 16 bytes can be potentially returned in registers. */ if (!aarch64_composite_type_p (valtype, TYPE_MODE (valtype)) || int_size_in_bytes (valtype) <= 0 || int_size_in_bytes (valtype) > 16) return false; /* But not a composite that is an HFA (Homogeneous Floating-point Aggregate) or an HVA (Homogeneous Short-Vector Aggregate); such a special composite is always passed/returned in the least significant bits of fp/simd register(s). */ if (aarch64_vfp_is_call_or_return_candidate (TYPE_MODE (valtype), valtype, &dummy_mode, &dummy_int, NULL)) return false; return true; } /* Implement TARGET_FUNCTION_VALUE. Define how to find the value returned by a function. */ static rtx aarch64_function_value (const_tree type, const_tree func, bool outgoing ATTRIBUTE_UNUSED) { machine_mode mode; int unsignedp; int count; machine_mode ag_mode; mode = TYPE_MODE (type); if (INTEGRAL_TYPE_P (type)) mode = promote_function_mode (type, mode, &unsignedp, func, 1); if (aarch64_return_in_msb (type)) { HOST_WIDE_INT size = int_size_in_bytes (type); if (size % UNITS_PER_WORD != 0) { size += UNITS_PER_WORD - size % UNITS_PER_WORD; mode = int_mode_for_size (size * BITS_PER_UNIT, 0).require (); } } if (aarch64_vfp_is_call_or_return_candidate (mode, type, &ag_mode, &count, NULL)) { if (!aarch64_composite_type_p (type, mode)) { gcc_assert (count == 1 && mode == ag_mode); return gen_rtx_REG (mode, V0_REGNUM); } else { int i; rtx par; par = gen_rtx_PARALLEL (mode, rtvec_alloc (count)); for (i = 0; i < count; i++) { rtx tmp = gen_rtx_REG (ag_mode, V0_REGNUM + i); rtx offset = gen_int_mode (i * GET_MODE_SIZE (ag_mode), Pmode); tmp = gen_rtx_EXPR_LIST (VOIDmode, tmp, offset); XVECEXP (par, 0, i) = tmp; } return par; } } else return gen_rtx_REG (mode, R0_REGNUM); } /* Implements TARGET_FUNCTION_VALUE_REGNO_P. Return true if REGNO is the number of a hard register in which the values of called function may come back. */ static bool aarch64_function_value_regno_p (const unsigned int regno) { /* Maximum of 16 bytes can be returned in the general registers. Examples of 16-byte return values are: 128-bit integers and 16-byte small structures (excluding homogeneous floating-point aggregates). */ if (regno == R0_REGNUM || regno == R1_REGNUM) return true; /* Up to four fp/simd registers can return a function value, e.g. a homogeneous floating-point aggregate having four members. */ if (regno >= V0_REGNUM && regno < V0_REGNUM + HA_MAX_NUM_FLDS) return TARGET_FLOAT; return false; } /* Implement TARGET_RETURN_IN_MEMORY. If the type T of the result of a function is such that void func (T arg) would require that arg be passed as a value in a register (or set of registers) according to the parameter passing rules, then the result is returned in the same registers as would be used for such an argument. */ static bool aarch64_return_in_memory (const_tree type, const_tree fndecl ATTRIBUTE_UNUSED) { HOST_WIDE_INT size; machine_mode ag_mode; int count; if (!AGGREGATE_TYPE_P (type) && TREE_CODE (type) != COMPLEX_TYPE && TREE_CODE (type) != VECTOR_TYPE) /* Simple scalar types always returned in registers. */ return false; if (aarch64_vfp_is_call_or_return_candidate (TYPE_MODE (type), type, &ag_mode, &count, NULL)) return false; /* Types larger than 2 registers returned in memory. */ size = int_size_in_bytes (type); return (size < 0 || size > 2 * UNITS_PER_WORD); } static bool aarch64_vfp_is_call_candidate (cumulative_args_t pcum_v, machine_mode mode, const_tree type, int *nregs) { CUMULATIVE_ARGS *pcum = get_cumulative_args (pcum_v); return aarch64_vfp_is_call_or_return_candidate (mode, type, &pcum->aapcs_vfp_rmode, nregs, NULL); } /* Given MODE and TYPE of a function argument, return the alignment in bits. The idea is to suppress any stronger alignment requested by the user and opt for the natural alignment (specified in AAPCS64 \S 4.1). This is a helper function for local use only. */ static unsigned int aarch64_function_arg_alignment (machine_mode mode, const_tree type) { if (!type) return GET_MODE_ALIGNMENT (mode); if (integer_zerop (TYPE_SIZE (type))) return 0; gcc_assert (TYPE_MODE (type) == mode); if (!AGGREGATE_TYPE_P (type)) return TYPE_ALIGN (TYPE_MAIN_VARIANT (type)); if (TREE_CODE (type) == ARRAY_TYPE) return TYPE_ALIGN (TREE_TYPE (type)); unsigned int alignment = 0; for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) if (TREE_CODE (field) == FIELD_DECL) alignment = std::max (alignment, DECL_ALIGN (field)); return alignment; } /* Layout a function argument according to the AAPCS64 rules. The rule numbers refer to the rule numbers in the AAPCS64. */ static void aarch64_layout_arg (cumulative_args_t pcum_v, machine_mode mode, const_tree type, bool named ATTRIBUTE_UNUSED) { CUMULATIVE_ARGS *pcum = get_cumulative_args (pcum_v); int ncrn, nvrn, nregs; bool allocate_ncrn, allocate_nvrn; HOST_WIDE_INT size; /* We need to do this once per argument. */ if (pcum->aapcs_arg_processed) return; pcum->aapcs_arg_processed = true; /* Size in bytes, rounded to the nearest multiple of 8 bytes. */ if (type) size = int_size_in_bytes (type); else /* No frontends can create types with variable-sized modes, so we shouldn't be asked to pass or return them. */ size = GET_MODE_SIZE (mode).to_constant (); size = ROUND_UP (size, UNITS_PER_WORD); allocate_ncrn = (type) ? !(FLOAT_TYPE_P (type)) : !FLOAT_MODE_P (mode); allocate_nvrn = aarch64_vfp_is_call_candidate (pcum_v, mode, type, &nregs); /* allocate_ncrn may be false-positive, but allocate_nvrn is quite reliable. The following code thus handles passing by SIMD/FP registers first. */ nvrn = pcum->aapcs_nvrn; /* C1 - C5 for floating point, homogenous floating point aggregates (HFA) and homogenous short-vector aggregates (HVA). */ if (allocate_nvrn) { if (!TARGET_FLOAT) aarch64_err_no_fpadvsimd (mode); if (nvrn + nregs <= NUM_FP_ARG_REGS) { pcum->aapcs_nextnvrn = nvrn + nregs; if (!aarch64_composite_type_p (type, mode)) { gcc_assert (nregs == 1); pcum->aapcs_reg = gen_rtx_REG (mode, V0_REGNUM + nvrn); } else { rtx par; int i; par = gen_rtx_PARALLEL (mode, rtvec_alloc (nregs)); for (i = 0; i < nregs; i++) { rtx tmp = gen_rtx_REG (pcum->aapcs_vfp_rmode, V0_REGNUM + nvrn + i); rtx offset = gen_int_mode (i * GET_MODE_SIZE (pcum->aapcs_vfp_rmode), Pmode); tmp = gen_rtx_EXPR_LIST (VOIDmode, tmp, offset); XVECEXP (par, 0, i) = tmp; } pcum->aapcs_reg = par; } return; } else { /* C.3 NSRN is set to 8. */ pcum->aapcs_nextnvrn = NUM_FP_ARG_REGS; goto on_stack; } } ncrn = pcum->aapcs_ncrn; nregs = size / UNITS_PER_WORD; /* C6 - C9. though the sign and zero extension semantics are handled elsewhere. This is the case where the argument fits entirely general registers. */ if (allocate_ncrn && (ncrn + nregs <= NUM_ARG_REGS)) { gcc_assert (nregs == 0 || nregs == 1 || nregs == 2); /* C.8 if the argument has an alignment of 16 then the NGRN is rounded up to the next even number. */ if (nregs == 2 && ncrn % 2 /* The == 16 * BITS_PER_UNIT instead of >= 16 * BITS_PER_UNIT comparison is there because for > 16 * BITS_PER_UNIT alignment nregs should be > 2 and therefore it should be passed by reference rather than value. */ && aarch64_function_arg_alignment (mode, type) == 16 * BITS_PER_UNIT) { ++ncrn; gcc_assert (ncrn + nregs <= NUM_ARG_REGS); } /* NREGS can be 0 when e.g. an empty structure is to be passed. A reg is still generated for it, but the caller should be smart enough not to use it. */ if (nregs == 0 || nregs == 1 || GET_MODE_CLASS (mode) == MODE_INT) pcum->aapcs_reg = gen_rtx_REG (mode, R0_REGNUM + ncrn); else { rtx par; int i; par = gen_rtx_PARALLEL (mode, rtvec_alloc (nregs)); for (i = 0; i < nregs; i++) { rtx tmp = gen_rtx_REG (word_mode, R0_REGNUM + ncrn + i); tmp = gen_rtx_EXPR_LIST (VOIDmode, tmp, GEN_INT (i * UNITS_PER_WORD)); XVECEXP (par, 0, i) = tmp; } pcum->aapcs_reg = par; } pcum->aapcs_nextncrn = ncrn + nregs; return; } /* C.11 */ pcum->aapcs_nextncrn = NUM_ARG_REGS; /* The argument is passed on stack; record the needed number of words for this argument and align the total size if necessary. */ on_stack: pcum->aapcs_stack_words = size / UNITS_PER_WORD; if (aarch64_function_arg_alignment (mode, type) == 16 * BITS_PER_UNIT) pcum->aapcs_stack_size = ROUND_UP (pcum->aapcs_stack_size, 16 / UNITS_PER_WORD); return; } /* Implement TARGET_FUNCTION_ARG. */ static rtx aarch64_function_arg (cumulative_args_t pcum_v, machine_mode mode, const_tree type, bool named) { CUMULATIVE_ARGS *pcum = get_cumulative_args (pcum_v); gcc_assert (pcum->pcs_variant == ARM_PCS_AAPCS64); if (mode == VOIDmode) return NULL_RTX; aarch64_layout_arg (pcum_v, mode, type, named); return pcum->aapcs_reg; } void aarch64_init_cumulative_args (CUMULATIVE_ARGS *pcum, const_tree fntype ATTRIBUTE_UNUSED, rtx libname ATTRIBUTE_UNUSED, const_tree fndecl ATTRIBUTE_UNUSED, unsigned n_named ATTRIBUTE_UNUSED) { pcum->aapcs_ncrn = 0; pcum->aapcs_nvrn = 0; pcum->aapcs_nextncrn = 0; pcum->aapcs_nextnvrn = 0; pcum->pcs_variant = ARM_PCS_AAPCS64; pcum->aapcs_reg = NULL_RTX; pcum->aapcs_arg_processed = false; pcum->aapcs_stack_words = 0; pcum->aapcs_stack_size = 0; if (!TARGET_FLOAT && fndecl && TREE_PUBLIC (fndecl) && fntype && fntype != error_mark_node) { const_tree type = TREE_TYPE (fntype); machine_mode mode ATTRIBUTE_UNUSED; /* To pass pointer as argument. */ int nregs ATTRIBUTE_UNUSED; /* Likewise. */ if (aarch64_vfp_is_call_or_return_candidate (TYPE_MODE (type), type, &mode, &nregs, NULL)) aarch64_err_no_fpadvsimd (TYPE_MODE (type)); } return; } static void aarch64_function_arg_advance (cumulative_args_t pcum_v, machine_mode mode, const_tree type, bool named) { CUMULATIVE_ARGS *pcum = get_cumulative_args (pcum_v); if (pcum->pcs_variant == ARM_PCS_AAPCS64) { aarch64_layout_arg (pcum_v, mode, type, named); gcc_assert ((pcum->aapcs_reg != NULL_RTX) != (pcum->aapcs_stack_words != 0)); pcum->aapcs_arg_processed = false; pcum->aapcs_ncrn = pcum->aapcs_nextncrn; pcum->aapcs_nvrn = pcum->aapcs_nextnvrn; pcum->aapcs_stack_size += pcum->aapcs_stack_words; pcum->aapcs_stack_words = 0; pcum->aapcs_reg = NULL_RTX; } } bool aarch64_function_arg_regno_p (unsigned regno) { return ((GP_REGNUM_P (regno) && regno < R0_REGNUM + NUM_ARG_REGS) || (FP_REGNUM_P (regno) && regno < V0_REGNUM + NUM_FP_ARG_REGS)); } /* Implement FUNCTION_ARG_BOUNDARY. Every parameter gets at least PARM_BOUNDARY bits of alignment, but will be given anything up to STACK_BOUNDARY bits if the type requires it. This makes sure that both before and after the layout of each argument, the Next Stacked Argument Address (NSAA) will have a minimum alignment of 8 bytes. */ static unsigned int aarch64_function_arg_boundary (machine_mode mode, const_tree type) { unsigned int alignment = aarch64_function_arg_alignment (mode, type); return MIN (MAX (alignment, PARM_BOUNDARY), STACK_BOUNDARY); } /* Implement TARGET_GET_RAW_RESULT_MODE and TARGET_GET_RAW_ARG_MODE. */ static fixed_size_mode aarch64_get_reg_raw_mode (int regno) { if (TARGET_SVE && FP_REGNUM_P (regno)) /* Don't use the SVE part of the register for __builtin_apply and __builtin_return. The SVE registers aren't used by the normal PCS, so using them there would be a waste of time. The PCS extensions for SVE types are fundamentally incompatible with the __builtin_return/__builtin_apply interface. */ return as_a (V16QImode); return default_get_reg_raw_mode (regno); } /* Implement TARGET_FUNCTION_ARG_PADDING. Small aggregate types are placed in the lowest memory address. The related parameter passing rules are B.4, C.3, C.5 and C.14. */ static pad_direction aarch64_function_arg_padding (machine_mode mode, const_tree type) { /* On little-endian targets, the least significant byte of every stack argument is passed at the lowest byte address of the stack slot. */ if (!BYTES_BIG_ENDIAN) return PAD_UPWARD; /* Otherwise, integral, floating-point and pointer types are padded downward: the least significant byte of a stack argument is passed at the highest byte address of the stack slot. */ if (type ? (INTEGRAL_TYPE_P (type) || SCALAR_FLOAT_TYPE_P (type) || POINTER_TYPE_P (type)) : (SCALAR_INT_MODE_P (mode) || SCALAR_FLOAT_MODE_P (mode))) return PAD_DOWNWARD; /* Everything else padded upward, i.e. data in first byte of stack slot. */ return PAD_UPWARD; } /* Similarly, for use by BLOCK_REG_PADDING (MODE, TYPE, FIRST). It specifies padding for the last (may also be the only) element of a block move between registers and memory. If assuming the block is in the memory, padding upward means that the last element is padded after its highest significant byte, while in downward padding, the last element is padded at the its least significant byte side. Small aggregates and small complex types are always padded upwards. We don't need to worry about homogeneous floating-point or short-vector aggregates; their move is not affected by the padding direction determined here. Regardless of endianness, each element of such an aggregate is put in the least significant bits of a fp/simd register. Return !BYTES_BIG_ENDIAN if the least significant byte of the register has useful data, and return the opposite if the most significant byte does. */ bool aarch64_pad_reg_upward (machine_mode mode, const_tree type, bool first ATTRIBUTE_UNUSED) { /* Small composite types are always padded upward. */ if (BYTES_BIG_ENDIAN && aarch64_composite_type_p (type, mode)) { HOST_WIDE_INT size; if (type) size = int_size_in_bytes (type); else /* No frontends can create types with variable-sized modes, so we shouldn't be asked to pass or return them. */ size = GET_MODE_SIZE (mode).to_constant (); if (size < 2 * UNITS_PER_WORD) return true; } /* Otherwise, use the default padding. */ return !BYTES_BIG_ENDIAN; } static scalar_int_mode aarch64_libgcc_cmp_return_mode (void) { return SImode; } #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP) /* We use the 12-bit shifted immediate arithmetic instructions so values must be multiple of (1 << 12), i.e. 4096. */ #define ARITH_FACTOR 4096 #if (PROBE_INTERVAL % ARITH_FACTOR) != 0 #error Cannot use simple address calculation for stack probing #endif /* The pair of scratch registers used for stack probing. */ #define PROBE_STACK_FIRST_REG 9 #define PROBE_STACK_SECOND_REG 10 /* Emit code to probe a range of stack addresses from FIRST to FIRST+POLY_SIZE, inclusive. These are offsets from the current stack pointer. */ static void aarch64_emit_probe_stack_range (HOST_WIDE_INT first, poly_int64 poly_size) { HOST_WIDE_INT size; if (!poly_size.is_constant (&size)) { sorry ("stack probes for SVE frames"); return; } rtx reg1 = gen_rtx_REG (Pmode, PROBE_STACK_FIRST_REG); /* See the same assertion on PROBE_INTERVAL above. */ gcc_assert ((first % ARITH_FACTOR) == 0); /* See if we have a constant small number of probes to generate. If so, that's the easy case. */ if (size <= PROBE_INTERVAL) { const HOST_WIDE_INT base = ROUND_UP (size, ARITH_FACTOR); emit_set_insn (reg1, plus_constant (Pmode, stack_pointer_rtx, -(first + base))); emit_stack_probe (plus_constant (Pmode, reg1, base - size)); } /* The run-time loop is made up of 8 insns in the generic case while the compile-time loop is made up of 4+2*(n-2) insns for n # of intervals. */ else if (size <= 4 * PROBE_INTERVAL) { HOST_WIDE_INT i, rem; emit_set_insn (reg1, plus_constant (Pmode, stack_pointer_rtx, -(first + PROBE_INTERVAL))); emit_stack_probe (reg1); /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 2 until it exceeds SIZE. If only two probes are needed, this will not generate any code. Then probe at FIRST + SIZE. */ for (i = 2 * PROBE_INTERVAL; i < size; i += PROBE_INTERVAL) { emit_set_insn (reg1, plus_constant (Pmode, reg1, -PROBE_INTERVAL)); emit_stack_probe (reg1); } rem = size - (i - PROBE_INTERVAL); if (rem > 256) { const HOST_WIDE_INT base = ROUND_UP (rem, ARITH_FACTOR); emit_set_insn (reg1, plus_constant (Pmode, reg1, -base)); emit_stack_probe (plus_constant (Pmode, reg1, base - rem)); } else emit_stack_probe (plus_constant (Pmode, reg1, -rem)); } /* Otherwise, do the same as above, but in a loop. Note that we must be extra careful with variables wrapping around because we might be at the very top (or the very bottom) of the address space and we have to be able to handle this case properly; in particular, we use an equality test for the loop condition. */ else { rtx reg2 = gen_rtx_REG (Pmode, PROBE_STACK_SECOND_REG); /* Step 1: round SIZE to the previous multiple of the interval. */ HOST_WIDE_INT rounded_size = size & -PROBE_INTERVAL; /* Step 2: compute initial and final value of the loop counter. */ /* TEST_ADDR = SP + FIRST. */ emit_set_insn (reg1, plus_constant (Pmode, stack_pointer_rtx, -first)); /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */ HOST_WIDE_INT adjustment = - (first + rounded_size); if (! aarch64_uimm12_shift (adjustment)) { aarch64_internal_mov_immediate (reg2, GEN_INT (adjustment), true, Pmode); emit_set_insn (reg2, gen_rtx_PLUS (Pmode, stack_pointer_rtx, reg2)); } else emit_set_insn (reg2, plus_constant (Pmode, stack_pointer_rtx, adjustment)); /* Step 3: the loop do { TEST_ADDR = TEST_ADDR + PROBE_INTERVAL probe at TEST_ADDR } while (TEST_ADDR != LAST_ADDR) probes at FIRST + N * PROBE_INTERVAL for values of N from 1 until it is equal to ROUNDED_SIZE. */ emit_insn (gen_probe_stack_range (reg1, reg1, reg2)); /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time that SIZE is equal to ROUNDED_SIZE. */ if (size != rounded_size) { HOST_WIDE_INT rem = size - rounded_size; if (rem > 256) { const HOST_WIDE_INT base = ROUND_UP (rem, ARITH_FACTOR); emit_set_insn (reg2, plus_constant (Pmode, reg2, -base)); emit_stack_probe (plus_constant (Pmode, reg2, base - rem)); } else emit_stack_probe (plus_constant (Pmode, reg2, -rem)); } } /* Make sure nothing is scheduled before we are done. */ emit_insn (gen_blockage ()); } /* Probe a range of stack addresses from REG1 to REG2 inclusive. These are absolute addresses. */ const char * aarch64_output_probe_stack_range (rtx reg1, rtx reg2) { static int labelno = 0; char loop_lab[32]; rtx xops[2]; ASM_GENERATE_INTERNAL_LABEL (loop_lab, "LPSRL", labelno++); /* Loop. */ ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, loop_lab); /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */ xops[0] = reg1; xops[1] = GEN_INT (PROBE_INTERVAL); output_asm_insn ("sub\t%0, %0, %1", xops); /* Probe at TEST_ADDR. */ output_asm_insn ("str\txzr, [%0]", xops); /* Test if TEST_ADDR == LAST_ADDR. */ xops[1] = reg2; output_asm_insn ("cmp\t%0, %1", xops); /* Branch. */ fputs ("\tb.ne\t", asm_out_file); assemble_name_raw (asm_out_file, loop_lab); fputc ('\n', asm_out_file); return ""; } /* Determine whether a frame chain needs to be generated. */ static bool aarch64_needs_frame_chain (void) { /* Force a frame chain for EH returns so the return address is at FP+8. */ if (frame_pointer_needed || crtl->calls_eh_return) return true; /* A leaf function cannot have calls or write LR. */ bool is_leaf = crtl->is_leaf && !df_regs_ever_live_p (LR_REGNUM); /* Don't use a frame chain in leaf functions if leaf frame pointers are disabled. */ if (flag_omit_leaf_frame_pointer && is_leaf) return false; return aarch64_use_frame_pointer; } /* Mark the registers that need to be saved by the callee and calculate the size of the callee-saved registers area and frame record (both FP and LR may be omitted). */ static void aarch64_layout_frame (void) { HOST_WIDE_INT offset = 0; int regno, last_fp_reg = INVALID_REGNUM; if (reload_completed && cfun->machine->frame.laid_out) return; cfun->machine->frame.emit_frame_chain = aarch64_needs_frame_chain (); #define SLOT_NOT_REQUIRED (-2) #define SLOT_REQUIRED (-1) cfun->machine->frame.wb_candidate1 = INVALID_REGNUM; cfun->machine->frame.wb_candidate2 = INVALID_REGNUM; /* First mark all the registers that really need to be saved... */ for (regno = R0_REGNUM; regno <= R30_REGNUM; regno++) cfun->machine->frame.reg_offset[regno] = SLOT_NOT_REQUIRED; for (regno = V0_REGNUM; regno <= V31_REGNUM; regno++) cfun->machine->frame.reg_offset[regno] = SLOT_NOT_REQUIRED; /* ... that includes the eh data registers (if needed)... */ if (crtl->calls_eh_return) for (regno = 0; EH_RETURN_DATA_REGNO (regno) != INVALID_REGNUM; regno++) cfun->machine->frame.reg_offset[EH_RETURN_DATA_REGNO (regno)] = SLOT_REQUIRED; /* ... and any callee saved register that dataflow says is live. */ for (regno = R0_REGNUM; regno <= R30_REGNUM; regno++) if (df_regs_ever_live_p (regno) && (regno == R30_REGNUM || !call_used_regs[regno])) cfun->machine->frame.reg_offset[regno] = SLOT_REQUIRED; for (regno = V0_REGNUM; regno <= V31_REGNUM; regno++) if (df_regs_ever_live_p (regno) && !call_used_regs[regno]) { cfun->machine->frame.reg_offset[regno] = SLOT_REQUIRED; last_fp_reg = regno; } if (cfun->machine->frame.emit_frame_chain) { /* FP and LR are placed in the linkage record. */ cfun->machine->frame.reg_offset[R29_REGNUM] = 0; cfun->machine->frame.wb_candidate1 = R29_REGNUM; cfun->machine->frame.reg_offset[R30_REGNUM] = UNITS_PER_WORD; cfun->machine->frame.wb_candidate2 = R30_REGNUM; offset = 2 * UNITS_PER_WORD; } /* Now assign stack slots for them. */ for (regno = R0_REGNUM; regno <= R30_REGNUM; regno++) if (cfun->machine->frame.reg_offset[regno] == SLOT_REQUIRED) { cfun->machine->frame.reg_offset[regno] = offset; if (cfun->machine->frame.wb_candidate1 == INVALID_REGNUM) cfun->machine->frame.wb_candidate1 = regno; else if (cfun->machine->frame.wb_candidate2 == INVALID_REGNUM) cfun->machine->frame.wb_candidate2 = regno; offset += UNITS_PER_WORD; } HOST_WIDE_INT max_int_offset = offset; offset = ROUND_UP (offset, STACK_BOUNDARY / BITS_PER_UNIT); bool has_align_gap = offset != max_int_offset; for (regno = V0_REGNUM; regno <= V31_REGNUM; regno++) if (cfun->machine->frame.reg_offset[regno] == SLOT_REQUIRED) { /* If there is an alignment gap between integer and fp callee-saves, allocate the last fp register to it if possible. */ if (regno == last_fp_reg && has_align_gap && (offset & 8) == 0) { cfun->machine->frame.reg_offset[regno] = max_int_offset; break; } cfun->machine->frame.reg_offset[regno] = offset; if (cfun->machine->frame.wb_candidate1 == INVALID_REGNUM) cfun->machine->frame.wb_candidate1 = regno; else if (cfun->machine->frame.wb_candidate2 == INVALID_REGNUM && cfun->machine->frame.wb_candidate1 >= V0_REGNUM) cfun->machine->frame.wb_candidate2 = regno; offset += UNITS_PER_WORD; } offset = ROUND_UP (offset, STACK_BOUNDARY / BITS_PER_UNIT); cfun->machine->frame.saved_regs_size = offset; HOST_WIDE_INT varargs_and_saved_regs_size = offset + cfun->machine->frame.saved_varargs_size; cfun->machine->frame.hard_fp_offset = aligned_upper_bound (varargs_and_saved_regs_size + get_frame_size (), STACK_BOUNDARY / BITS_PER_UNIT); /* Both these values are already aligned. */ gcc_assert (multiple_p (crtl->outgoing_args_size, STACK_BOUNDARY / BITS_PER_UNIT)); cfun->machine->frame.frame_size = (cfun->machine->frame.hard_fp_offset + crtl->outgoing_args_size); cfun->machine->frame.locals_offset = cfun->machine->frame.saved_varargs_size; cfun->machine->frame.initial_adjust = 0; cfun->machine->frame.final_adjust = 0; cfun->machine->frame.callee_adjust = 0; cfun->machine->frame.callee_offset = 0; HOST_WIDE_INT max_push_offset = 0; if (cfun->machine->frame.wb_candidate2 != INVALID_REGNUM) max_push_offset = 512; else if (cfun->machine->frame.wb_candidate1 != INVALID_REGNUM) max_push_offset = 256; HOST_WIDE_INT const_size, const_fp_offset; if (cfun->machine->frame.frame_size.is_constant (&const_size) && const_size < max_push_offset && known_eq (crtl->outgoing_args_size, 0)) { /* Simple, small frame with no outgoing arguments: stp reg1, reg2, [sp, -frame_size]! stp reg3, reg4, [sp, 16] */ cfun->machine->frame.callee_adjust = const_size; } else if (known_lt (crtl->outgoing_args_size + cfun->machine->frame.saved_regs_size, 512) && !(cfun->calls_alloca && known_lt (cfun->machine->frame.hard_fp_offset, max_push_offset))) { /* Frame with small outgoing arguments: sub sp, sp, frame_size stp reg1, reg2, [sp, outgoing_args_size] stp reg3, reg4, [sp, outgoing_args_size + 16] */ cfun->machine->frame.initial_adjust = cfun->machine->frame.frame_size; cfun->machine->frame.callee_offset = cfun->machine->frame.frame_size - cfun->machine->frame.hard_fp_offset; } else if (cfun->machine->frame.hard_fp_offset.is_constant (&const_fp_offset) && const_fp_offset < max_push_offset) { /* Frame with large outgoing arguments but a small local area: stp reg1, reg2, [sp, -hard_fp_offset]! stp reg3, reg4, [sp, 16] sub sp, sp, outgoing_args_size */ cfun->machine->frame.callee_adjust = const_fp_offset; cfun->machine->frame.final_adjust = cfun->machine->frame.frame_size - cfun->machine->frame.callee_adjust; } else { /* Frame with large local area and outgoing arguments using frame pointer: sub sp, sp, hard_fp_offset stp x29, x30, [sp, 0] add x29, sp, 0 stp reg3, reg4, [sp, 16] sub sp, sp, outgoing_args_size */ cfun->machine->frame.initial_adjust = cfun->machine->frame.hard_fp_offset; cfun->machine->frame.final_adjust = cfun->machine->frame.frame_size - cfun->machine->frame.initial_adjust; } cfun->machine->frame.laid_out = true; } /* Return true if the register REGNO is saved on entry to the current function. */ static bool aarch64_register_saved_on_entry (int regno) { return cfun->machine->frame.reg_offset[regno] >= 0; } /* Return the next register up from REGNO up to LIMIT for the callee to save. */ static unsigned aarch64_next_callee_save (unsigned regno, unsigned limit) { while (regno <= limit && !aarch64_register_saved_on_entry (regno)) regno ++; return regno; } /* Push the register number REGNO of mode MODE to the stack with write-back adjusting the stack by ADJUSTMENT. */ static void aarch64_pushwb_single_reg (machine_mode mode, unsigned regno, HOST_WIDE_INT adjustment) { rtx base_rtx = stack_pointer_rtx; rtx insn, reg, mem; reg = gen_rtx_REG (mode, regno); mem = gen_rtx_PRE_MODIFY (Pmode, base_rtx, plus_constant (Pmode, base_rtx, -adjustment)); mem = gen_frame_mem (mode, mem); insn = emit_move_insn (mem, reg); RTX_FRAME_RELATED_P (insn) = 1; } /* Generate and return an instruction to store the pair of registers REG and REG2 of mode MODE to location BASE with write-back adjusting the stack location BASE by ADJUSTMENT. */ static rtx aarch64_gen_storewb_pair (machine_mode mode, rtx base, rtx reg, rtx reg2, HOST_WIDE_INT adjustment) { switch (mode) { case E_DImode: return gen_storewb_pairdi_di (base, base, reg, reg2, GEN_INT (-adjustment), GEN_INT (UNITS_PER_WORD - adjustment)); case E_DFmode: return gen_storewb_pairdf_di (base, base, reg, reg2, GEN_INT (-adjustment), GEN_INT (UNITS_PER_WORD - adjustment)); default: gcc_unreachable (); } } /* Push registers numbered REGNO1 and REGNO2 to the stack, adjusting the stack pointer by ADJUSTMENT. */ static void aarch64_push_regs (unsigned regno1, unsigned regno2, HOST_WIDE_INT adjustment) { rtx_insn *insn; machine_mode mode = (regno1 <= R30_REGNUM) ? E_DImode : E_DFmode; if (regno2 == INVALID_REGNUM) return aarch64_pushwb_single_reg (mode, regno1, adjustment); rtx reg1 = gen_rtx_REG (mode, regno1); rtx reg2 = gen_rtx_REG (mode, regno2); insn = emit_insn (aarch64_gen_storewb_pair (mode, stack_pointer_rtx, reg1, reg2, adjustment)); RTX_FRAME_RELATED_P (XVECEXP (PATTERN (insn), 0, 2)) = 1; RTX_FRAME_RELATED_P (XVECEXP (PATTERN (insn), 0, 1)) = 1; RTX_FRAME_RELATED_P (insn) = 1; } /* Load the pair of register REG, REG2 of mode MODE from stack location BASE, adjusting it by ADJUSTMENT afterwards. */ static rtx aarch64_gen_loadwb_pair (machine_mode mode, rtx base, rtx reg, rtx reg2, HOST_WIDE_INT adjustment) { switch (mode) { case E_DImode: return gen_loadwb_pairdi_di (base, base, reg, reg2, GEN_INT (adjustment), GEN_INT (UNITS_PER_WORD)); case E_DFmode: return gen_loadwb_pairdf_di (base, base, reg, reg2, GEN_INT (adjustment), GEN_INT (UNITS_PER_WORD)); default: gcc_unreachable (); } } /* Pop the two registers numbered REGNO1, REGNO2 from the stack, adjusting it afterwards by ADJUSTMENT and writing the appropriate REG_CFA_RESTORE notes into CFI_OPS. */ static void aarch64_pop_regs (unsigned regno1, unsigned regno2, HOST_WIDE_INT adjustment, rtx *cfi_ops) { machine_mode mode = (regno1 <= R30_REGNUM) ? E_DImode : E_DFmode; rtx reg1 = gen_rtx_REG (mode, regno1); *cfi_ops = alloc_reg_note (REG_CFA_RESTORE, reg1, *cfi_ops); if (regno2 == INVALID_REGNUM) { rtx mem = plus_constant (Pmode, stack_pointer_rtx, adjustment); mem = gen_rtx_POST_MODIFY (Pmode, stack_pointer_rtx, mem); emit_move_insn (reg1, gen_frame_mem (mode, mem)); } else { rtx reg2 = gen_rtx_REG (mode, regno2); *cfi_ops = alloc_reg_note (REG_CFA_RESTORE, reg2, *cfi_ops); emit_insn (aarch64_gen_loadwb_pair (mode, stack_pointer_rtx, reg1, reg2, adjustment)); } } /* Generate and return a store pair instruction of mode MODE to store register REG1 to MEM1 and register REG2 to MEM2. */ static rtx aarch64_gen_store_pair (machine_mode mode, rtx mem1, rtx reg1, rtx mem2, rtx reg2) { switch (mode) { case E_DImode: return gen_store_pair_dw_didi (mem1, reg1, mem2, reg2); case E_DFmode: return gen_store_pair_dw_dfdf (mem1, reg1, mem2, reg2); default: gcc_unreachable (); } } /* Generate and regurn a load pair isntruction of mode MODE to load register REG1 from MEM1 and register REG2 from MEM2. */ static rtx aarch64_gen_load_pair (machine_mode mode, rtx reg1, rtx mem1, rtx reg2, rtx mem2) { switch (mode) { case E_DImode: return gen_load_pair_dw_didi (reg1, mem1, reg2, mem2); case E_DFmode: return gen_load_pair_dw_dfdf (reg1, mem1, reg2, mem2); default: gcc_unreachable (); } } /* Return TRUE if return address signing should be enabled for the current function, otherwise return FALSE. */ bool aarch64_return_address_signing_enabled (void) { /* This function should only be called after frame laid out. */ gcc_assert (cfun->machine->frame.laid_out); /* If signing scope is AARCH64_FUNCTION_NON_LEAF, we only sign a leaf function if it's LR is pushed onto stack. */ return (aarch64_ra_sign_scope == AARCH64_FUNCTION_ALL || (aarch64_ra_sign_scope == AARCH64_FUNCTION_NON_LEAF && cfun->machine->frame.reg_offset[LR_REGNUM] >= 0)); } /* Emit code to save the callee-saved registers from register number START to LIMIT to the stack at the location starting at offset START_OFFSET, skipping any write-back candidates if SKIP_WB is true. */ static void aarch64_save_callee_saves (machine_mode mode, poly_int64 start_offset, unsigned start, unsigned limit, bool skip_wb) { rtx_insn *insn; unsigned regno; unsigned regno2; for (regno = aarch64_next_callee_save (start, limit); regno <= limit; regno = aarch64_next_callee_save (regno + 1, limit)) { rtx reg, mem; poly_int64 offset; if (skip_wb && (regno == cfun->machine->frame.wb_candidate1 || regno == cfun->machine->frame.wb_candidate2)) continue; if (cfun->machine->reg_is_wrapped_separately[regno]) continue; reg = gen_rtx_REG (mode, regno); offset = start_offset + cfun->machine->frame.reg_offset[regno]; mem = gen_frame_mem (mode, plus_constant (Pmode, stack_pointer_rtx, offset)); regno2 = aarch64_next_callee_save (regno + 1, limit); if (regno2 <= limit && !cfun->machine->reg_is_wrapped_separately[regno2] && ((cfun->machine->frame.reg_offset[regno] + UNITS_PER_WORD) == cfun->machine->frame.reg_offset[regno2])) { rtx reg2 = gen_rtx_REG (mode, regno2); rtx mem2; offset = start_offset + cfun->machine->frame.reg_offset[regno2]; mem2 = gen_frame_mem (mode, plus_constant (Pmode, stack_pointer_rtx, offset)); insn = emit_insn (aarch64_gen_store_pair (mode, mem, reg, mem2, reg2)); /* The first part of a frame-related parallel insn is always assumed to be relevant to the frame calculations; subsequent parts, are only frame-related if explicitly marked. */ RTX_FRAME_RELATED_P (XVECEXP (PATTERN (insn), 0, 1)) = 1; regno = regno2; } else insn = emit_move_insn (mem, reg); RTX_FRAME_RELATED_P (insn) = 1; } } /* Emit code to restore the callee registers of mode MODE from register number START up to and including LIMIT. Restore from the stack offset START_OFFSET, skipping any write-back candidates if SKIP_WB is true. Write the appropriate REG_CFA_RESTORE notes into CFI_OPS. */ static void aarch64_restore_callee_saves (machine_mode mode, poly_int64 start_offset, unsigned start, unsigned limit, bool skip_wb, rtx *cfi_ops) { rtx base_rtx = stack_pointer_rtx; unsigned regno; unsigned regno2; poly_int64 offset; for (regno = aarch64_next_callee_save (start, limit); regno <= limit; regno = aarch64_next_callee_save (regno + 1, limit)) { if (cfun->machine->reg_is_wrapped_separately[regno]) continue; rtx reg, mem; if (skip_wb && (regno == cfun->machine->frame.wb_candidate1 || regno == cfun->machine->frame.wb_candidate2)) continue; reg = gen_rtx_REG (mode, regno); offset = start_offset + cfun->machine->frame.reg_offset[regno]; mem = gen_frame_mem (mode, plus_constant (Pmode, base_rtx, offset)); regno2 = aarch64_next_callee_save (regno + 1, limit); if (regno2 <= limit && !cfun->machine->reg_is_wrapped_separately[regno2] && ((cfun->machine->frame.reg_offset[regno] + UNITS_PER_WORD) == cfun->machine->frame.reg_offset[regno2])) { rtx reg2 = gen_rtx_REG (mode, regno2); rtx mem2; offset = start_offset + cfun->machine->frame.reg_offset[regno2]; mem2 = gen_frame_mem (mode, plus_constant (Pmode, base_rtx, offset)); emit_insn (aarch64_gen_load_pair (mode, reg, mem, reg2, mem2)); *cfi_ops = alloc_reg_note (REG_CFA_RESTORE, reg2, *cfi_ops); regno = regno2; } else emit_move_insn (reg, mem); *cfi_ops = alloc_reg_note (REG_CFA_RESTORE, reg, *cfi_ops); } } /* Return true if OFFSET is a signed 4-bit value multiplied by the size of MODE. */ static inline bool offset_4bit_signed_scaled_p (machine_mode mode, poly_int64 offset) { HOST_WIDE_INT multiple; return (constant_multiple_p (offset, GET_MODE_SIZE (mode), &multiple) && IN_RANGE (multiple, -8, 7)); } /* Return true if OFFSET is a unsigned 6-bit value multiplied by the size of MODE. */ static inline bool offset_6bit_unsigned_scaled_p (machine_mode mode, poly_int64 offset) { HOST_WIDE_INT multiple; return (constant_multiple_p (offset, GET_MODE_SIZE (mode), &multiple) && IN_RANGE (multiple, 0, 63)); } /* Return true if OFFSET is a signed 7-bit value multiplied by the size of MODE. */ bool aarch64_offset_7bit_signed_scaled_p (machine_mode mode, poly_int64 offset) { HOST_WIDE_INT multiple; return (constant_multiple_p (offset, GET_MODE_SIZE (mode), &multiple) && IN_RANGE (multiple, -64, 63)); } /* Return true if OFFSET is a signed 9-bit value. */ static inline bool offset_9bit_signed_unscaled_p (machine_mode mode ATTRIBUTE_UNUSED, poly_int64 offset) { HOST_WIDE_INT const_offset; return (offset.is_constant (&const_offset) && IN_RANGE (const_offset, -256, 255)); } /* Return true if OFFSET is a signed 9-bit value multiplied by the size of MODE. */ static inline bool offset_9bit_signed_scaled_p (machine_mode mode, poly_int64 offset) { HOST_WIDE_INT multiple; return (constant_multiple_p (offset, GET_MODE_SIZE (mode), &multiple) && IN_RANGE (multiple, -256, 255)); } /* Return true if OFFSET is an unsigned 12-bit value multiplied by the size of MODE. */ static inline bool offset_12bit_unsigned_scaled_p (machine_mode mode, poly_int64 offset) { HOST_WIDE_INT multiple; return (constant_multiple_p (offset, GET_MODE_SIZE (mode), &multiple) && IN_RANGE (multiple, 0, 4095)); } /* Implement TARGET_SHRINK_WRAP_GET_SEPARATE_COMPONENTS. */ static sbitmap aarch64_get_separate_components (void) { aarch64_layout_frame (); sbitmap components = sbitmap_alloc (LAST_SAVED_REGNUM + 1); bitmap_clear (components); /* The registers we need saved to the frame. */ for (unsigned regno = 0; regno <= LAST_SAVED_REGNUM; regno++) if (aarch64_register_saved_on_entry (regno)) { poly_int64 offset = cfun->machine->frame.reg_offset[regno]; if (!frame_pointer_needed) offset += cfun->machine->frame.frame_size - cfun->machine->frame.hard_fp_offset; /* Check that we can access the stack slot of the register with one direct load with no adjustments needed. */ if (offset_12bit_unsigned_scaled_p (DImode, offset)) bitmap_set_bit (components, regno); } /* Don't mess with the hard frame pointer. */ if (frame_pointer_needed) bitmap_clear_bit (components, HARD_FRAME_POINTER_REGNUM); unsigned reg1 = cfun->machine->frame.wb_candidate1; unsigned reg2 = cfun->machine->frame.wb_candidate2; /* If aarch64_layout_frame has chosen registers to store/restore with writeback don't interfere with them to avoid having to output explicit stack adjustment instructions. */ if (reg2 != INVALID_REGNUM) bitmap_clear_bit (components, reg2); if (reg1 != INVALID_REGNUM) bitmap_clear_bit (components, reg1); bitmap_clear_bit (components, LR_REGNUM); bitmap_clear_bit (components, SP_REGNUM); return components; } /* Implement TARGET_SHRINK_WRAP_COMPONENTS_FOR_BB. */ static sbitmap aarch64_components_for_bb (basic_block bb) { bitmap in = DF_LIVE_IN (bb); bitmap gen = &DF_LIVE_BB_INFO (bb)->gen; bitmap kill = &DF_LIVE_BB_INFO (bb)->kill; sbitmap components = sbitmap_alloc (LAST_SAVED_REGNUM + 1); bitmap_clear (components); /* GPRs are used in a bb if they are in the IN, GEN, or KILL sets. */ for (unsigned regno = 0; regno <= LAST_SAVED_REGNUM; regno++) if ((!call_used_regs[regno]) && (bitmap_bit_p (in, regno) || bitmap_bit_p (gen, regno) || bitmap_bit_p (kill, regno))) { unsigned regno2, offset, offset2; bitmap_set_bit (components, regno); /* If there is a callee-save at an adjacent offset, add it too to increase the use of LDP/STP. */ offset = cfun->machine->frame.reg_offset[regno]; regno2 = ((offset & 8) == 0) ? regno + 1 : regno - 1; if (regno2 <= LAST_SAVED_REGNUM) { offset2 = cfun->machine->frame.reg_offset[regno2]; if ((offset & ~8) == (offset2 & ~8)) bitmap_set_bit (components, regno2); } } return components; } /* Implement TARGET_SHRINK_WRAP_DISQUALIFY_COMPONENTS. Nothing to do for aarch64. */ static void aarch64_disqualify_components (sbitmap, edge, sbitmap, bool) { } /* Return the next set bit in BMP from START onwards. Return the total number of bits in BMP if no set bit is found at or after START. */ static unsigned int aarch64_get_next_set_bit (sbitmap bmp, unsigned int start) { unsigned int nbits = SBITMAP_SIZE (bmp); if (start == nbits) return start; gcc_assert (start < nbits); for (unsigned int i = start; i < nbits; i++) if (bitmap_bit_p (bmp, i)) return i; return nbits; } /* Do the work for aarch64_emit_prologue_components and aarch64_emit_epilogue_components. COMPONENTS is the bitmap of registers to save/restore, PROLOGUE_P indicates whether to emit the prologue sequence for these components or the epilogue sequence. That is, it determines whether we should emit stores or loads and what kind of CFA notes to attach to the insns. Otherwise the logic for the two sequences is very similar. */ static void aarch64_process_components (sbitmap components, bool prologue_p) { rtx ptr_reg = gen_rtx_REG (Pmode, frame_pointer_needed ? HARD_FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM); unsigned last_regno = SBITMAP_SIZE (components); unsigned regno = aarch64_get_next_set_bit (components, R0_REGNUM); rtx_insn *insn = NULL; while (regno != last_regno) { /* AAPCS64 section 5.1.2 requires only the bottom 64 bits to be saved so DFmode for the vector registers is enough. */ machine_mode mode = GP_REGNUM_P (regno) ? E_DImode : E_DFmode; rtx reg = gen_rtx_REG (mode, regno); poly_int64 offset = cfun->machine->frame.reg_offset[regno]; if (!frame_pointer_needed) offset += cfun->machine->frame.frame_size - cfun->machine->frame.hard_fp_offset; rtx addr = plus_constant (Pmode, ptr_reg, offset); rtx mem = gen_frame_mem (mode, addr); rtx set = prologue_p ? gen_rtx_SET (mem, reg) : gen_rtx_SET (reg, mem); unsigned regno2 = aarch64_get_next_set_bit (components, regno + 1); /* No more registers to handle after REGNO. Emit a single save/restore and exit. */ if (regno2 == last_regno) { insn = emit_insn (set); RTX_FRAME_RELATED_P (insn) = 1; if (prologue_p) add_reg_note (insn, REG_CFA_OFFSET, copy_rtx (set)); else add_reg_note (insn, REG_CFA_RESTORE, reg); break; } poly_int64 offset2 = cfun->machine->frame.reg_offset[regno2]; /* The next register is not of the same class or its offset is not mergeable with the current one into a pair. */ if (!satisfies_constraint_Ump (mem) || GP_REGNUM_P (regno) != GP_REGNUM_P (regno2) || maybe_ne ((offset2 - cfun->machine->frame.reg_offset[regno]), GET_MODE_SIZE (mode))) { insn = emit_insn (set); RTX_FRAME_RELATED_P (insn) = 1; if (prologue_p) add_reg_note (insn, REG_CFA_OFFSET, copy_rtx (set)); else add_reg_note (insn, REG_CFA_RESTORE, reg); regno = regno2; continue; } /* REGNO2 can be saved/restored in a pair with REGNO. */ rtx reg2 = gen_rtx_REG (mode, regno2); if (!frame_pointer_needed) offset2 += cfun->machine->frame.frame_size - cfun->machine->frame.hard_fp_offset; rtx addr2 = plus_constant (Pmode, ptr_reg, offset2); rtx mem2 = gen_frame_mem (mode, addr2); rtx set2 = prologue_p ? gen_rtx_SET (mem2, reg2) : gen_rtx_SET (reg2, mem2); if (prologue_p) insn = emit_insn (aarch64_gen_store_pair (mode, mem, reg, mem2, reg2)); else insn = emit_insn (aarch64_gen_load_pair (mode, reg, mem, reg2, mem2)); RTX_FRAME_RELATED_P (insn) = 1; if (prologue_p) { add_reg_note (insn, REG_CFA_OFFSET, set); add_reg_note (insn, REG_CFA_OFFSET, set2); } else { add_reg_note (insn, REG_CFA_RESTORE, reg); add_reg_note (insn, REG_CFA_RESTORE, reg2); } regno = aarch64_get_next_set_bit (components, regno2 + 1); } } /* Implement TARGET_SHRINK_WRAP_EMIT_PROLOGUE_COMPONENTS. */ static void aarch64_emit_prologue_components (sbitmap components) { aarch64_process_components (components, true); } /* Implement TARGET_SHRINK_WRAP_EMIT_EPILOGUE_COMPONENTS. */ static void aarch64_emit_epilogue_components (sbitmap components) { aarch64_process_components (components, false); } /* Implement TARGET_SHRINK_WRAP_SET_HANDLED_COMPONENTS. */ static void aarch64_set_handled_components (sbitmap components) { for (unsigned regno = 0; regno <= LAST_SAVED_REGNUM; regno++) if (bitmap_bit_p (components, regno)) cfun->machine->reg_is_wrapped_separately[regno] = true; } /* Add a REG_CFA_EXPRESSION note to INSN to say that register REG is saved at BASE + OFFSET. */ static void aarch64_add_cfa_expression (rtx_insn *insn, unsigned int reg, rtx base, poly_int64 offset) { rtx mem = gen_frame_mem (DImode, plus_constant (Pmode, base, offset)); add_reg_note (insn, REG_CFA_EXPRESSION, gen_rtx_SET (mem, regno_reg_rtx[reg])); } /* AArch64 stack frames generated by this compiler look like: +-------------------------------+ | | | incoming stack arguments | | | +-------------------------------+ | | <-- incoming stack pointer (aligned) | callee-allocated save area | | for register varargs | | | +-------------------------------+ | local variables | <-- frame_pointer_rtx | | +-------------------------------+ | padding0 | \ +-------------------------------+ | | callee-saved registers | | frame.saved_regs_size +-------------------------------+ | | LR' | | +-------------------------------+ | | FP' | / <- hard_frame_pointer_rtx (aligned) +-------------------------------+ | dynamic allocation | +-------------------------------+ | padding | +-------------------------------+ | outgoing stack arguments | <-- arg_pointer | | +-------------------------------+ | | <-- stack_pointer_rtx (aligned) Dynamic stack allocations via alloca() decrease stack_pointer_rtx but leave frame_pointer_rtx and hard_frame_pointer_rtx unchanged. */ /* Generate the prologue instructions for entry into a function. Establish the stack frame by decreasing the stack pointer with a properly calculated size and, if necessary, create a frame record filled with the values of LR and previous frame pointer. The current FP is also set up if it is in use. */ void aarch64_expand_prologue (void) { aarch64_layout_frame (); poly_int64 frame_size = cfun->machine->frame.frame_size; poly_int64 initial_adjust = cfun->machine->frame.initial_adjust; HOST_WIDE_INT callee_adjust = cfun->machine->frame.callee_adjust; poly_int64 final_adjust = cfun->machine->frame.final_adjust; poly_int64 callee_offset = cfun->machine->frame.callee_offset; unsigned reg1 = cfun->machine->frame.wb_candidate1; unsigned reg2 = cfun->machine->frame.wb_candidate2; bool emit_frame_chain = cfun->machine->frame.emit_frame_chain; rtx_insn *insn; /* Sign return address for functions. */ if (aarch64_return_address_signing_enabled ()) { insn = emit_insn (gen_pacisp ()); add_reg_note (insn, REG_CFA_TOGGLE_RA_MANGLE, const0_rtx); RTX_FRAME_RELATED_P (insn) = 1; } if (flag_stack_usage_info) current_function_static_stack_size = constant_lower_bound (frame_size); if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK) { if (crtl->is_leaf && !cfun->calls_alloca) { if (maybe_gt (frame_size, PROBE_INTERVAL) && maybe_gt (frame_size, get_stack_check_protect ())) aarch64_emit_probe_stack_range (get_stack_check_protect (), (frame_size - get_stack_check_protect ())); } else if (maybe_gt (frame_size, 0)) aarch64_emit_probe_stack_range (get_stack_check_protect (), frame_size); } rtx ip0_rtx = gen_rtx_REG (Pmode, IP0_REGNUM); rtx ip1_rtx = gen_rtx_REG (Pmode, IP1_REGNUM); aarch64_sub_sp (ip0_rtx, ip1_rtx, initial_adjust, true); if (callee_adjust != 0) aarch64_push_regs (reg1, reg2, callee_adjust); if (emit_frame_chain) { poly_int64 reg_offset = callee_adjust; if (callee_adjust == 0) { reg1 = R29_REGNUM; reg2 = R30_REGNUM; reg_offset = callee_offset; aarch64_save_callee_saves (DImode, reg_offset, reg1, reg2, false); } aarch64_add_offset (Pmode, hard_frame_pointer_rtx, stack_pointer_rtx, callee_offset, ip1_rtx, ip0_rtx, frame_pointer_needed); if (frame_pointer_needed && !frame_size.is_constant ()) { /* Variable-sized frames need to describe the save slot address using DW_CFA_expression rather than DW_CFA_offset. This means that, without taking further action, the locations of the registers that we've already saved would remain based on the stack pointer even after we redefine the CFA based on the frame pointer. We therefore need new DW_CFA_expressions to re-express the save slots with addresses based on the frame pointer. */ rtx_insn *insn = get_last_insn (); gcc_assert (RTX_FRAME_RELATED_P (insn)); /* Add an explicit CFA definition if this was previously implicit. */ if (!find_reg_note (insn, REG_CFA_ADJUST_CFA, NULL_RTX)) { rtx src = plus_constant (Pmode, stack_pointer_rtx, callee_offset); add_reg_note (insn, REG_CFA_ADJUST_CFA, gen_rtx_SET (hard_frame_pointer_rtx, src)); } /* Change the save slot expressions for the registers that we've already saved. */ reg_offset -= callee_offset; aarch64_add_cfa_expression (insn, reg2, hard_frame_pointer_rtx, reg_offset + UNITS_PER_WORD); aarch64_add_cfa_expression (insn, reg1, hard_frame_pointer_rtx, reg_offset); } emit_insn (gen_stack_tie (stack_pointer_rtx, hard_frame_pointer_rtx)); } aarch64_save_callee_saves (DImode, callee_offset, R0_REGNUM, R30_REGNUM, callee_adjust != 0 || emit_frame_chain); aarch64_save_callee_saves (DFmode, callee_offset, V0_REGNUM, V31_REGNUM, callee_adjust != 0 || emit_frame_chain); aarch64_sub_sp (ip1_rtx, ip0_rtx, final_adjust, !frame_pointer_needed); } /* Return TRUE if we can use a simple_return insn. This function checks whether the callee saved stack is empty, which means no restore actions are need. The pro_and_epilogue will use this to check whether shrink-wrapping opt is feasible. */ bool aarch64_use_return_insn_p (void) { if (!reload_completed) return false; if (crtl->profile) return false; aarch64_layout_frame (); return known_eq (cfun->machine->frame.frame_size, 0); } /* Generate the epilogue instructions for returning from a function. This is almost exactly the reverse of the prolog sequence, except that we need to insert barriers to avoid scheduling loads that read from a deallocated stack, and we optimize the unwind records by emitting them all together if possible. */ void aarch64_expand_epilogue (bool for_sibcall) { aarch64_layout_frame (); poly_int64 initial_adjust = cfun->machine->frame.initial_adjust; HOST_WIDE_INT callee_adjust = cfun->machine->frame.callee_adjust; poly_int64 final_adjust = cfun->machine->frame.final_adjust; poly_int64 callee_offset = cfun->machine->frame.callee_offset; unsigned reg1 = cfun->machine->frame.wb_candidate1; unsigned reg2 = cfun->machine->frame.wb_candidate2; rtx cfi_ops = NULL; rtx_insn *insn; /* A stack clash protection prologue may not have left IP0_REGNUM or IP1_REGNUM in a usable state. The same is true for allocations with an SVE component, since we then need both temporary registers for each allocation. */ bool can_inherit_p = (initial_adjust.is_constant () && final_adjust.is_constant () && !flag_stack_clash_protection); /* We need to add memory barrier to prevent read from deallocated stack. */ bool need_barrier_p = maybe_ne (get_frame_size () + cfun->machine->frame.saved_varargs_size, 0); /* Emit a barrier to prevent loads from a deallocated stack. */ if (maybe_gt (final_adjust, crtl->outgoing_args_size) || cfun->calls_alloca || crtl->calls_eh_return) { emit_insn (gen_stack_tie (stack_pointer_rtx, stack_pointer_rtx)); need_barrier_p = false; } /* Restore the stack pointer from the frame pointer if it may not be the same as the stack pointer. */ rtx ip0_rtx = gen_rtx_REG (Pmode, IP0_REGNUM); rtx ip1_rtx = gen_rtx_REG (Pmode, IP1_REGNUM); if (frame_pointer_needed && (maybe_ne (final_adjust, 0) || cfun->calls_alloca)) /* If writeback is used when restoring callee-saves, the CFA is restored on the instruction doing the writeback. */ aarch64_add_offset (Pmode, stack_pointer_rtx, hard_frame_pointer_rtx, -callee_offset, ip1_rtx, ip0_rtx, callee_adjust == 0); else aarch64_add_sp (ip1_rtx, ip0_rtx, final_adjust, !can_inherit_p || df_regs_ever_live_p (IP1_REGNUM)); aarch64_restore_callee_saves (DImode, callee_offset, R0_REGNUM, R30_REGNUM, callee_adjust != 0, &cfi_ops); aarch64_restore_callee_saves (DFmode, callee_offset, V0_REGNUM, V31_REGNUM, callee_adjust != 0, &cfi_ops); if (need_barrier_p) emit_insn (gen_stack_tie (stack_pointer_rtx, stack_pointer_rtx)); if (callee_adjust != 0) aarch64_pop_regs (reg1, reg2, callee_adjust, &cfi_ops); if (callee_adjust != 0 || maybe_gt (initial_adjust, 65536)) { /* Emit delayed restores and set the CFA to be SP + initial_adjust. */ insn = get_last_insn (); rtx new_cfa = plus_constant (Pmode, stack_pointer_rtx, initial_adjust); REG_NOTES (insn) = alloc_reg_note (REG_CFA_DEF_CFA, new_cfa, cfi_ops); RTX_FRAME_RELATED_P (insn) = 1; cfi_ops = NULL; } aarch64_add_sp (ip0_rtx, ip1_rtx, initial_adjust, !can_inherit_p || df_regs_ever_live_p (IP0_REGNUM)); if (cfi_ops) { /* Emit delayed restores and reset the CFA to be SP. */ insn = get_last_insn (); cfi_ops = alloc_reg_note (REG_CFA_DEF_CFA, stack_pointer_rtx, cfi_ops); REG_NOTES (insn) = cfi_ops; RTX_FRAME_RELATED_P (insn) = 1; } /* We prefer to emit the combined return/authenticate instruction RETAA, however there are three cases in which we must instead emit an explicit authentication instruction. 1) Sibcalls don't return in a normal way, so if we're about to call one we must authenticate. 2) The RETAA instruction is not available before ARMv8.3-A, so if we are generating code for !TARGET_ARMV8_3 we can't use it and must explicitly authenticate. 3) On an eh_return path we make extra stack adjustments to update the canonical frame address to be the exception handler's CFA. We want to authenticate using the CFA of the function which calls eh_return. */ if (aarch64_return_address_signing_enabled () && (for_sibcall || !TARGET_ARMV8_3 || crtl->calls_eh_return)) { insn = emit_insn (gen_autisp ()); add_reg_note (insn, REG_CFA_TOGGLE_RA_MANGLE, const0_rtx); RTX_FRAME_RELATED_P (insn) = 1; } /* Stack adjustment for exception handler. */ if (crtl->calls_eh_return) { /* We need to unwind the stack by the offset computed by EH_RETURN_STACKADJ_RTX. We have already reset the CFA to be SP; letting the CFA move during this adjustment is just as correct as retaining the CFA from the body of the function. Therefore, do nothing special. */ emit_insn (gen_add2_insn (stack_pointer_rtx, EH_RETURN_STACKADJ_RTX)); } emit_use (gen_rtx_REG (DImode, LR_REGNUM)); if (!for_sibcall) emit_jump_insn (ret_rtx); } /* Implement EH_RETURN_HANDLER_RTX. EH returns need to either return normally or return to a previous frame after unwinding. An EH return uses a single shared return sequence. The epilogue is exactly like a normal epilogue except that it has an extra input register (EH_RETURN_STACKADJ_RTX) which contains the stack adjustment that must be applied after the frame has been destroyed. An extra label is inserted before the epilogue which initializes this register to zero, and this is the entry point for a normal return. An actual EH return updates the return address, initializes the stack adjustment and jumps directly into the epilogue (bypassing the zeroing of the adjustment). Since the return address is typically saved on the stack when a function makes a call, the saved LR must be updated outside the epilogue. This poses problems as the store is generated well before the epilogue, so the offset of LR is not known yet. Also optimizations will remove the store as it appears dead, even after the epilogue is generated (as the base or offset for loading LR is different in many cases). To avoid these problems this implementation forces the frame pointer in eh_return functions so that the location of LR is fixed and known early. It also marks the store volatile, so no optimization is permitted to remove the store. */ rtx aarch64_eh_return_handler_rtx (void) { rtx tmp = gen_frame_mem (Pmode, plus_constant (Pmode, hard_frame_pointer_rtx, UNITS_PER_WORD)); /* Mark the store volatile, so no optimization is permitted to remove it. */ MEM_VOLATILE_P (tmp) = true; return tmp; } /* Output code to add DELTA to the first argument, and then jump to FUNCTION. Used for C++ multiple inheritance. */ static void aarch64_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED, HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset, tree function) { /* The this pointer is always in x0. Note that this differs from Arm where the this pointer maybe bumped to r1 if r0 is required to return a pointer to an aggregate. On AArch64 a result value pointer will be in x8. */ int this_regno = R0_REGNUM; rtx this_rtx, temp0, temp1, addr, funexp; rtx_insn *insn; reload_completed = 1; emit_note (NOTE_INSN_PROLOGUE_END); this_rtx = gen_rtx_REG (Pmode, this_regno); temp0 = gen_rtx_REG (Pmode, IP0_REGNUM); temp1 = gen_rtx_REG (Pmode, IP1_REGNUM); if (vcall_offset == 0) aarch64_add_offset (Pmode, this_rtx, this_rtx, delta, temp1, temp0, false); else { gcc_assert ((vcall_offset & (POINTER_BYTES - 1)) == 0); addr = this_rtx; if (delta != 0) { if (delta >= -256 && delta < 256) addr = gen_rtx_PRE_MODIFY (Pmode, this_rtx, plus_constant (Pmode, this_rtx, delta)); else aarch64_add_offset (Pmode, this_rtx, this_rtx, delta, temp1, temp0, false); } if (Pmode == ptr_mode) aarch64_emit_move (temp0, gen_rtx_MEM (ptr_mode, addr)); else aarch64_emit_move (temp0, gen_rtx_ZERO_EXTEND (Pmode, gen_rtx_MEM (ptr_mode, addr))); if (vcall_offset >= -256 && vcall_offset < 4096 * POINTER_BYTES) addr = plus_constant (Pmode, temp0, vcall_offset); else { aarch64_internal_mov_immediate (temp1, GEN_INT (vcall_offset), true, Pmode); addr = gen_rtx_PLUS (Pmode, temp0, temp1); } if (Pmode == ptr_mode) aarch64_emit_move (temp1, gen_rtx_MEM (ptr_mode,addr)); else aarch64_emit_move (temp1, gen_rtx_SIGN_EXTEND (Pmode, gen_rtx_MEM (ptr_mode, addr))); emit_insn (gen_add2_insn (this_rtx, temp1)); } /* Generate a tail call to the target function. */ if (!TREE_USED (function)) { assemble_external (function); TREE_USED (function) = 1; } funexp = XEXP (DECL_RTL (function), 0); funexp = gen_rtx_MEM (FUNCTION_MODE, funexp); insn = emit_call_insn (gen_sibcall (funexp, const0_rtx, NULL_RTX)); SIBLING_CALL_P (insn) = 1; insn = get_insns (); shorten_branches (insn); final_start_function (insn, file, 1); final (insn, file, 1); final_end_function (); /* Stop pretending to be a post-reload pass. */ reload_completed = 0; } static bool aarch64_tls_referenced_p (rtx x) { if (!TARGET_HAVE_TLS) return false; subrtx_iterator::array_type array; FOR_EACH_SUBRTX (iter, array, x, ALL) { const_rtx x = *iter; if (GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x) != 0) return true; /* Don't recurse into UNSPEC_TLS looking for TLS symbols; these are TLS offsets, not real symbol references. */ if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_TLS) iter.skip_subrtxes (); } return false; } /* Return true if val can be encoded as a 12-bit unsigned immediate with a left shift of 0 or 12 bits. */ bool aarch64_uimm12_shift (HOST_WIDE_INT val) { return ((val & (((HOST_WIDE_INT) 0xfff) << 0)) == val || (val & (((HOST_WIDE_INT) 0xfff) << 12)) == val ); } /* Return true if val is an immediate that can be loaded into a register by a MOVZ instruction. */ static bool aarch64_movw_imm (HOST_WIDE_INT val, scalar_int_mode mode) { if (GET_MODE_SIZE (mode) > 4) { if ((val & (((HOST_WIDE_INT) 0xffff) << 32)) == val || (val & (((HOST_WIDE_INT) 0xffff) << 48)) == val) return 1; } else { /* Ignore sign extension. */ val &= (HOST_WIDE_INT) 0xffffffff; } return ((val & (((HOST_WIDE_INT) 0xffff) << 0)) == val || (val & (((HOST_WIDE_INT) 0xffff) << 16)) == val); } /* VAL is a value with the inner mode of MODE. Replicate it to fill a 64-bit (DImode) integer. */ static unsigned HOST_WIDE_INT aarch64_replicate_bitmask_imm (unsigned HOST_WIDE_INT val, machine_mode mode) { unsigned int size = GET_MODE_UNIT_PRECISION (mode); while (size < 64) { val &= (HOST_WIDE_INT_1U << size) - 1; val |= val << size; size *= 2; } return val; } /* Multipliers for repeating bitmasks of width 32, 16, 8, 4, and 2. */ static const unsigned HOST_WIDE_INT bitmask_imm_mul[] = { 0x0000000100000001ull, 0x0001000100010001ull, 0x0101010101010101ull, 0x1111111111111111ull, 0x5555555555555555ull, }; /* Return true if val is a valid bitmask immediate. */ bool aarch64_bitmask_imm (HOST_WIDE_INT val_in, machine_mode mode) { unsigned HOST_WIDE_INT val, tmp, mask, first_one, next_one; int bits; /* Check for a single sequence of one bits and return quickly if so. The special cases of all ones and all zeroes returns false. */ val = aarch64_replicate_bitmask_imm (val_in, mode); tmp = val + (val & -val); if (tmp == (tmp & -tmp)) return (val + 1) > 1; /* Replicate 32-bit immediates so we can treat them as 64-bit. */ if (mode == SImode) val = (val << 32) | (val & 0xffffffff); /* Invert if the immediate doesn't start with a zero bit - this means we only need to search for sequences of one bits. */ if (val & 1) val = ~val; /* Find the first set bit and set tmp to val with the first sequence of one bits removed. Return success if there is a single sequence of ones. */ first_one = val & -val; tmp = val & (val + first_one); if (tmp == 0) return true; /* Find the next set bit and compute the difference in bit position. */ next_one = tmp & -tmp; bits = clz_hwi (first_one) - clz_hwi (next_one); mask = val ^ tmp; /* Check the bit position difference is a power of 2, and that the first sequence of one bits fits within 'bits' bits. */ if ((mask >> bits) != 0 || bits != (bits & -bits)) return false; /* Check the sequence of one bits is repeated 64/bits times. */ return val == mask * bitmask_imm_mul[__builtin_clz (bits) - 26]; } /* Create mask of ones, covering the lowest to highest bits set in VAL_IN. Assumed precondition: VAL_IN Is not zero. */ unsigned HOST_WIDE_INT aarch64_and_split_imm1 (HOST_WIDE_INT val_in) { int lowest_bit_set = ctz_hwi (val_in); int highest_bit_set = floor_log2 (val_in); gcc_assert (val_in != 0); return ((HOST_WIDE_INT_UC (2) << highest_bit_set) - (HOST_WIDE_INT_1U << lowest_bit_set)); } /* Create constant where bits outside of lowest bit set to highest bit set are set to 1. */ unsigned HOST_WIDE_INT aarch64_and_split_imm2 (HOST_WIDE_INT val_in) { return val_in | ~aarch64_and_split_imm1 (val_in); } /* Return true if VAL_IN is a valid 'and' bitmask immediate. */ bool aarch64_and_bitmask_imm (unsigned HOST_WIDE_INT val_in, machine_mode mode) { scalar_int_mode int_mode; if (!is_a (mode, &int_mode)) return false; if (aarch64_bitmask_imm (val_in, int_mode)) return false; if (aarch64_move_imm (val_in, int_mode)) return false; unsigned HOST_WIDE_INT imm2 = aarch64_and_split_imm2 (val_in); return aarch64_bitmask_imm (imm2, int_mode); } /* Return true if val is an immediate that can be loaded into a register in a single instruction. */ bool aarch64_move_imm (HOST_WIDE_INT val, machine_mode mode) { scalar_int_mode int_mode; if (!is_a (mode, &int_mode)) return false; if (aarch64_movw_imm (val, int_mode) || aarch64_movw_imm (~val, int_mode)) return 1; return aarch64_bitmask_imm (val, int_mode); } static bool aarch64_cannot_force_const_mem (machine_mode mode ATTRIBUTE_UNUSED, rtx x) { rtx base, offset; if (GET_CODE (x) == HIGH) return true; /* There's no way to calculate VL-based values using relocations. */ subrtx_iterator::array_type array; FOR_EACH_SUBRTX (iter, array, x, ALL) if (GET_CODE (*iter) == CONST_POLY_INT) return true; split_const (x, &base, &offset); if (GET_CODE (base) == SYMBOL_REF || GET_CODE (base) == LABEL_REF) { if (aarch64_classify_symbol (base, INTVAL (offset)) != SYMBOL_FORCE_TO_MEM) return true; else /* Avoid generating a 64-bit relocation in ILP32; leave to aarch64_expand_mov_immediate to handle it properly. */ return mode != ptr_mode; } return aarch64_tls_referenced_p (x); } /* Implement TARGET_CASE_VALUES_THRESHOLD. The expansion for a table switch is quite expensive due to the number of instructions, the table lookup and hard to predict indirect jump. When optimizing for speed, and -O3 enabled, use the per-core tuning if set, otherwise use tables for > 16 cases as a tradeoff between size and performance. When optimizing for size, use the default setting. */ static unsigned int aarch64_case_values_threshold (void) { /* Use the specified limit for the number of cases before using jump tables at higher optimization levels. */ if (optimize > 2 && selected_cpu->tune->max_case_values != 0) return selected_cpu->tune->max_case_values; else return optimize_size ? default_case_values_threshold () : 17; } /* Return true if register REGNO is a valid index register. STRICT_P is true if REG_OK_STRICT is in effect. */ bool aarch64_regno_ok_for_index_p (int regno, bool strict_p) { if (!HARD_REGISTER_NUM_P (regno)) { if (!strict_p) return true; if (!reg_renumber) return false; regno = reg_renumber[regno]; } return GP_REGNUM_P (regno); } /* Return true if register REGNO is a valid base register for mode MODE. STRICT_P is true if REG_OK_STRICT is in effect. */ bool aarch64_regno_ok_for_base_p (int regno, bool strict_p) { if (!HARD_REGISTER_NUM_P (regno)) { if (!strict_p) return true; if (!reg_renumber) return false; regno = reg_renumber[regno]; } /* The fake registers will be eliminated to either the stack or hard frame pointer, both of which are usually valid base registers. Reload deals with the cases where the eliminated form isn't valid. */ return (GP_REGNUM_P (regno) || regno == SP_REGNUM || regno == FRAME_POINTER_REGNUM || regno == ARG_POINTER_REGNUM); } /* Return true if X is a valid base register for mode MODE. STRICT_P is true if REG_OK_STRICT is in effect. */ static bool aarch64_base_register_rtx_p (rtx x, bool strict_p) { if (!strict_p && GET_CODE (x) == SUBREG && contains_reg_of_mode[GENERAL_REGS][GET_MODE (SUBREG_REG (x))]) x = SUBREG_REG (x); return (REG_P (x) && aarch64_regno_ok_for_base_p (REGNO (x), strict_p)); } /* Return true if address offset is a valid index. If it is, fill in INFO appropriately. STRICT_P is true if REG_OK_STRICT is in effect. */ static bool aarch64_classify_index (struct aarch64_address_info *info, rtx x, machine_mode mode, bool strict_p) { enum aarch64_address_type type; rtx index; int shift; /* (reg:P) */ if ((REG_P (x) || GET_CODE (x) == SUBREG) && GET_MODE (x) == Pmode) { type = ADDRESS_REG_REG; index = x; shift = 0; } /* (sign_extend:DI (reg:SI)) */ else if ((GET_CODE (x) == SIGN_EXTEND || GET_CODE (x) == ZERO_EXTEND) && GET_MODE (x) == DImode && GET_MODE (XEXP (x, 0)) == SImode) { type = (GET_CODE (x) == SIGN_EXTEND) ? ADDRESS_REG_SXTW : ADDRESS_REG_UXTW; index = XEXP (x, 0); shift = 0; } /* (mult:DI (sign_extend:DI (reg:SI)) (const_int scale)) */ else if (GET_CODE (x) == MULT && (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND) && GET_MODE (XEXP (x, 0)) == DImode && GET_MODE (XEXP (XEXP (x, 0), 0)) == SImode && CONST_INT_P (XEXP (x, 1))) { type = (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND) ? ADDRESS_REG_SXTW : ADDRESS_REG_UXTW; index = XEXP (XEXP (x, 0), 0); shift = exact_log2 (INTVAL (XEXP (x, 1))); } /* (ashift:DI (sign_extend:DI (reg:SI)) (const_int shift)) */ else if (GET_CODE (x) == ASHIFT && (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND) && GET_MODE (XEXP (x, 0)) == DImode && GET_MODE (XEXP (XEXP (x, 0), 0)) == SImode && CONST_INT_P (XEXP (x, 1))) { type = (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND) ? ADDRESS_REG_SXTW : ADDRESS_REG_UXTW; index = XEXP (XEXP (x, 0), 0); shift = INTVAL (XEXP (x, 1)); } /* (sign_extract:DI (mult:DI (reg:DI) (const_int scale)) 32+shift 0) */ else if ((GET_CODE (x) == SIGN_EXTRACT || GET_CODE (x) == ZERO_EXTRACT) && GET_MODE (x) == DImode && GET_CODE (XEXP (x, 0)) == MULT && GET_MODE (XEXP (XEXP (x, 0), 0)) == DImode && CONST_INT_P (XEXP (XEXP (x, 0), 1))) { type = (GET_CODE (x) == SIGN_EXTRACT) ? ADDRESS_REG_SXTW : ADDRESS_REG_UXTW; index = XEXP (XEXP (x, 0), 0); shift = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1))); if (INTVAL (XEXP (x, 1)) != 32 + shift || INTVAL (XEXP (x, 2)) != 0) shift = -1; } /* (and:DI (mult:DI (reg:DI) (const_int scale)) (const_int 0xffffffff<type = type; info->offset = index; info->shift = shift; return true; } return false; } /* Return true if MODE is one of the modes for which we support LDP/STP operations. */ static bool aarch64_mode_valid_for_sched_fusion_p (machine_mode mode) { return mode == SImode || mode == DImode || mode == SFmode || mode == DFmode || (aarch64_vector_mode_supported_p (mode) && (known_eq (GET_MODE_SIZE (mode), 8) || (known_eq (GET_MODE_SIZE (mode), 16) && (aarch64_tune_params.extra_tuning_flags & AARCH64_EXTRA_TUNE_NO_LDP_STP_QREGS) == 0))); } /* Return true if REGNO is a virtual pointer register, or an eliminable "soft" frame register. Like REGNO_PTR_FRAME_P except that we don't include stack_pointer or hard_frame_pointer. */ static bool virt_or_elim_regno_p (unsigned regno) { return ((regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_POINTER_REGISTER) || regno == FRAME_POINTER_REGNUM || regno == ARG_POINTER_REGNUM); } /* Return true if X is a valid address of type TYPE for machine mode MODE. If it is, fill in INFO appropriately. STRICT_P is true if REG_OK_STRICT is in effect. */ static bool aarch64_classify_address (struct aarch64_address_info *info, rtx x, machine_mode mode, bool strict_p, aarch64_addr_query_type type = ADDR_QUERY_M) { enum rtx_code code = GET_CODE (x); rtx op0, op1; poly_int64 offset; HOST_WIDE_INT const_size; /* On BE, we use load/store pair for all large int mode load/stores. TI/TFmode may also use a load/store pair. */ unsigned int vec_flags = aarch64_classify_vector_mode (mode); bool advsimd_struct_p = (vec_flags == (VEC_ADVSIMD | VEC_STRUCT)); bool load_store_pair_p = (type == ADDR_QUERY_LDP_STP || type == ADDR_QUERY_LDP_STP_N || mode == TImode || mode == TFmode || (BYTES_BIG_ENDIAN && advsimd_struct_p)); /* If we are dealing with ADDR_QUERY_LDP_STP_N that means the incoming mode corresponds to the actual size of the memory being loaded/stored and the mode of the corresponding addressing mode is half of that. */ if (type == ADDR_QUERY_LDP_STP_N && known_eq (GET_MODE_SIZE (mode), 16)) mode = DFmode; bool allow_reg_index_p = (!load_store_pair_p && (known_lt (GET_MODE_SIZE (mode), 16) || vec_flags == VEC_ADVSIMD || vec_flags == VEC_SVE_DATA)); /* For SVE, only accept [Rn], [Rn, Rm, LSL #shift] and [Rn, #offset, MUL VL]. */ if ((vec_flags & (VEC_SVE_DATA | VEC_SVE_PRED)) != 0 && (code != REG && code != PLUS)) return false; /* On LE, for AdvSIMD, don't support anything other than POST_INC or REG addressing. */ if (advsimd_struct_p && !BYTES_BIG_ENDIAN && (code != POST_INC && code != REG)) return false; gcc_checking_assert (GET_MODE (x) == VOIDmode || SCALAR_INT_MODE_P (GET_MODE (x))); switch (code) { case REG: case SUBREG: info->type = ADDRESS_REG_IMM; info->base = x; info->offset = const0_rtx; info->const_offset = 0; return aarch64_base_register_rtx_p (x, strict_p); case PLUS: op0 = XEXP (x, 0); op1 = XEXP (x, 1); if (! strict_p && REG_P (op0) && virt_or_elim_regno_p (REGNO (op0)) && poly_int_rtx_p (op1, &offset)) { info->type = ADDRESS_REG_IMM; info->base = op0; info->offset = op1; info->const_offset = offset; return true; } if (maybe_ne (GET_MODE_SIZE (mode), 0) && aarch64_base_register_rtx_p (op0, strict_p) && poly_int_rtx_p (op1, &offset)) { info->type = ADDRESS_REG_IMM; info->base = op0; info->offset = op1; info->const_offset = offset; /* TImode and TFmode values are allowed in both pairs of X registers and individual Q registers. The available address modes are: X,X: 7-bit signed scaled offset Q: 9-bit signed offset We conservatively require an offset representable in either mode. When performing the check for pairs of X registers i.e. LDP/STP pass down DImode since that is the natural size of the LDP/STP instruction memory accesses. */ if (mode == TImode || mode == TFmode) return (aarch64_offset_7bit_signed_scaled_p (DImode, offset) && (offset_9bit_signed_unscaled_p (mode, offset) || offset_12bit_unsigned_scaled_p (mode, offset))); /* A 7bit offset check because OImode will emit a ldp/stp instruction (only big endian will get here). For ldp/stp instructions, the offset is scaled for the size of a single element of the pair. */ if (mode == OImode) return aarch64_offset_7bit_signed_scaled_p (TImode, offset); /* Three 9/12 bit offsets checks because CImode will emit three ldr/str instructions (only big endian will get here). */ if (mode == CImode) return (aarch64_offset_7bit_signed_scaled_p (TImode, offset) && (offset_9bit_signed_unscaled_p (V16QImode, offset + 32) || offset_12bit_unsigned_scaled_p (V16QImode, offset + 32))); /* Two 7bit offsets checks because XImode will emit two ldp/stp instructions (only big endian will get here). */ if (mode == XImode) return (aarch64_offset_7bit_signed_scaled_p (TImode, offset) && aarch64_offset_7bit_signed_scaled_p (TImode, offset + 32)); /* Make "m" use the LD1 offset range for SVE data modes, so that pre-RTL optimizers like ivopts will work to that instead of the wider LDR/STR range. */ if (vec_flags == VEC_SVE_DATA) return (type == ADDR_QUERY_M ? offset_4bit_signed_scaled_p (mode, offset) : offset_9bit_signed_scaled_p (mode, offset)); if (vec_flags == (VEC_SVE_DATA | VEC_STRUCT)) { poly_int64 end_offset = (offset + GET_MODE_SIZE (mode) - BYTES_PER_SVE_VECTOR); return (type == ADDR_QUERY_M ? offset_4bit_signed_scaled_p (mode, offset) : (offset_9bit_signed_scaled_p (SVE_BYTE_MODE, offset) && offset_9bit_signed_scaled_p (SVE_BYTE_MODE, end_offset))); } if (vec_flags == VEC_SVE_PRED) return offset_9bit_signed_scaled_p (mode, offset); if (load_store_pair_p) return ((known_eq (GET_MODE_SIZE (mode), 4) || known_eq (GET_MODE_SIZE (mode), 8) || known_eq (GET_MODE_SIZE (mode), 16)) && aarch64_offset_7bit_signed_scaled_p (mode, offset)); else return (offset_9bit_signed_unscaled_p (mode, offset) || offset_12bit_unsigned_scaled_p (mode, offset)); } if (allow_reg_index_p) { /* Look for base + (scaled/extended) index register. */ if (aarch64_base_register_rtx_p (op0, strict_p) && aarch64_classify_index (info, op1, mode, strict_p)) { info->base = op0; return true; } if (aarch64_base_register_rtx_p (op1, strict_p) && aarch64_classify_index (info, op0, mode, strict_p)) { info->base = op1; return true; } } return false; case POST_INC: case POST_DEC: case PRE_INC: case PRE_DEC: info->type = ADDRESS_REG_WB; info->base = XEXP (x, 0); info->offset = NULL_RTX; return aarch64_base_register_rtx_p (info->base, strict_p); case POST_MODIFY: case PRE_MODIFY: info->type = ADDRESS_REG_WB; info->base = XEXP (x, 0); if (GET_CODE (XEXP (x, 1)) == PLUS && poly_int_rtx_p (XEXP (XEXP (x, 1), 1), &offset) && rtx_equal_p (XEXP (XEXP (x, 1), 0), info->base) && aarch64_base_register_rtx_p (info->base, strict_p)) { info->offset = XEXP (XEXP (x, 1), 1); info->const_offset = offset; /* TImode and TFmode values are allowed in both pairs of X registers and individual Q registers. The available address modes are: X,X: 7-bit signed scaled offset Q: 9-bit signed offset We conservatively require an offset representable in either mode. */ if (mode == TImode || mode == TFmode) return (aarch64_offset_7bit_signed_scaled_p (mode, offset) && offset_9bit_signed_unscaled_p (mode, offset)); if (load_store_pair_p) return ((known_eq (GET_MODE_SIZE (mode), 4) || known_eq (GET_MODE_SIZE (mode), 8) || known_eq (GET_MODE_SIZE (mode), 16)) && aarch64_offset_7bit_signed_scaled_p (mode, offset)); else return offset_9bit_signed_unscaled_p (mode, offset); } return false; case CONST: case SYMBOL_REF: case LABEL_REF: /* load literal: pc-relative constant pool entry. Only supported for SI mode or larger. */ info->type = ADDRESS_SYMBOLIC; if (!load_store_pair_p && GET_MODE_SIZE (mode).is_constant (&const_size) && const_size >= 4) { rtx sym, addend; split_const (x, &sym, &addend); return ((GET_CODE (sym) == LABEL_REF || (GET_CODE (sym) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (sym) && aarch64_pcrelative_literal_loads))); } return false; case LO_SUM: info->type = ADDRESS_LO_SUM; info->base = XEXP (x, 0); info->offset = XEXP (x, 1); if (allow_reg_index_p && aarch64_base_register_rtx_p (info->base, strict_p)) { rtx sym, offs; split_const (info->offset, &sym, &offs); if (GET_CODE (sym) == SYMBOL_REF && (aarch64_classify_symbol (sym, INTVAL (offs)) == SYMBOL_SMALL_ABSOLUTE)) { /* The symbol and offset must be aligned to the access size. */ unsigned int align; if (CONSTANT_POOL_ADDRESS_P (sym)) align = GET_MODE_ALIGNMENT (get_pool_mode (sym)); else if (TREE_CONSTANT_POOL_ADDRESS_P (sym)) { tree exp = SYMBOL_REF_DECL (sym); align = TYPE_ALIGN (TREE_TYPE (exp)); align = aarch64_constant_alignment (exp, align); } else if (SYMBOL_REF_DECL (sym)) align = DECL_ALIGN (SYMBOL_REF_DECL (sym)); else if (SYMBOL_REF_HAS_BLOCK_INFO_P (sym) && SYMBOL_REF_BLOCK (sym) != NULL) align = SYMBOL_REF_BLOCK (sym)->alignment; else align = BITS_PER_UNIT; poly_int64 ref_size = GET_MODE_SIZE (mode); if (known_eq (ref_size, 0)) ref_size = GET_MODE_SIZE (DImode); return (multiple_p (INTVAL (offs), ref_size) && multiple_p (align / BITS_PER_UNIT, ref_size)); } } return false; default: return false; } } /* Return true if the address X is valid for a PRFM instruction. STRICT_P is true if we should do strict checking with aarch64_classify_address. */ bool aarch64_address_valid_for_prefetch_p (rtx x, bool strict_p) { struct aarch64_address_info addr; /* PRFM accepts the same addresses as DImode... */ bool res = aarch64_classify_address (&addr, x, DImode, strict_p); if (!res) return false; /* ... except writeback forms. */ return addr.type != ADDRESS_REG_WB; } bool aarch64_symbolic_address_p (rtx x) { rtx offset; split_const (x, &x, &offset); return GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF; } /* Classify the base of symbolic expression X. */ enum aarch64_symbol_type aarch64_classify_symbolic_expression (rtx x) { rtx offset; split_const (x, &x, &offset); return aarch64_classify_symbol (x, INTVAL (offset)); } /* Return TRUE if X is a legitimate address for accessing memory in mode MODE. */ static bool aarch64_legitimate_address_hook_p (machine_mode mode, rtx x, bool strict_p) { struct aarch64_address_info addr; return aarch64_classify_address (&addr, x, mode, strict_p); } /* Return TRUE if X is a legitimate address of type TYPE for accessing memory in mode MODE. STRICT_P is true if REG_OK_STRICT is in effect. */ bool aarch64_legitimate_address_p (machine_mode mode, rtx x, bool strict_p, aarch64_addr_query_type type) { struct aarch64_address_info addr; return aarch64_classify_address (&addr, x, mode, strict_p, type); } /* Implement TARGET_LEGITIMIZE_ADDRESS_DISPLACEMENT. */ static bool aarch64_legitimize_address_displacement (rtx *offset1, rtx *offset2, poly_int64 orig_offset, machine_mode mode) { HOST_WIDE_INT size; if (GET_MODE_SIZE (mode).is_constant (&size)) { HOST_WIDE_INT const_offset, second_offset; /* A general SVE offset is A * VQ + B. Remove the A component from coefficient 0 in order to get the constant B. */ const_offset = orig_offset.coeffs[0] - orig_offset.coeffs[1]; /* Split an out-of-range address displacement into a base and offset. Use 4KB range for 1- and 2-byte accesses and a 16KB range otherwise to increase opportunities for sharing the base address of different sizes. Unaligned accesses use the signed 9-bit range, TImode/TFmode use the intersection of signed scaled 7-bit and signed 9-bit offset. */ if (mode == TImode || mode == TFmode) second_offset = ((const_offset + 0x100) & 0x1f8) - 0x100; else if ((const_offset & (size - 1)) != 0) second_offset = ((const_offset + 0x100) & 0x1ff) - 0x100; else second_offset = const_offset & (size < 4 ? 0xfff : 0x3ffc); if (second_offset == 0 || known_eq (orig_offset, second_offset)) return false; /* Split the offset into second_offset and the rest. */ *offset1 = gen_int_mode (orig_offset - second_offset, Pmode); *offset2 = gen_int_mode (second_offset, Pmode); return true; } else { /* Get the mode we should use as the basis of the range. For structure modes this is the mode of one vector. */ unsigned int vec_flags = aarch64_classify_vector_mode (mode); machine_mode step_mode = (vec_flags & VEC_STRUCT) != 0 ? SVE_BYTE_MODE : mode; /* Get the "mul vl" multiplier we'd like to use. */ HOST_WIDE_INT factor = GET_MODE_SIZE (step_mode).coeffs[1]; HOST_WIDE_INT vnum = orig_offset.coeffs[1] / factor; if (vec_flags & VEC_SVE_DATA) /* LDR supports a 9-bit range, but the move patterns for structure modes require all vectors to be in range of the same base. The simplest way of accomodating that while still promoting reuse of anchor points between different modes is to use an 8-bit range unconditionally. */ vnum = ((vnum + 128) & 255) - 128; else /* Predicates are only handled singly, so we might as well use the full range. */ vnum = ((vnum + 256) & 511) - 256; if (vnum == 0) return false; /* Convert the "mul vl" multiplier into a byte offset. */ poly_int64 second_offset = GET_MODE_SIZE (step_mode) * vnum; if (known_eq (second_offset, orig_offset)) return false; /* Split the offset into second_offset and the rest. */ *offset1 = gen_int_mode (orig_offset - second_offset, Pmode); *offset2 = gen_int_mode (second_offset, Pmode); return true; } } /* Return the binary representation of floating point constant VALUE in INTVAL. If the value cannot be converted, return false without setting INTVAL. The conversion is done in the given MODE. */ bool aarch64_reinterpret_float_as_int (rtx value, unsigned HOST_WIDE_INT *intval) { /* We make a general exception for 0. */ if (aarch64_float_const_zero_rtx_p (value)) { *intval = 0; return true; } scalar_float_mode mode; if (GET_CODE (value) != CONST_DOUBLE || !is_a (GET_MODE (value), &mode) || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT /* Only support up to DF mode. */ || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (DFmode)) return false; unsigned HOST_WIDE_INT ival = 0; long res[2]; real_to_target (res, CONST_DOUBLE_REAL_VALUE (value), REAL_MODE_FORMAT (mode)); if (mode == DFmode) { int order = BYTES_BIG_ENDIAN ? 1 : 0; ival = zext_hwi (res[order], 32); ival |= (zext_hwi (res[1 - order], 32) << 32); } else ival = zext_hwi (res[0], 32); *intval = ival; return true; } /* Return TRUE if rtx X is an immediate constant that can be moved using a single MOV(+MOVK) followed by an FMOV. */ bool aarch64_float_const_rtx_p (rtx x) { machine_mode mode = GET_MODE (x); if (mode == VOIDmode) return false; /* Determine whether it's cheaper to write float constants as mov/movk pairs over ldr/adrp pairs. */ unsigned HOST_WIDE_INT ival; if (GET_CODE (x) == CONST_DOUBLE && SCALAR_FLOAT_MODE_P (mode) && aarch64_reinterpret_float_as_int (x, &ival)) { scalar_int_mode imode = (mode == HFmode ? SImode : int_mode_for_mode (mode).require ()); int num_instr = aarch64_internal_mov_immediate (NULL_RTX, gen_int_mode (ival, imode), false, imode); return num_instr < 3; } return false; } /* Return TRUE if rtx X is immediate constant 0.0 */ bool aarch64_float_const_zero_rtx_p (rtx x) { if (GET_MODE (x) == VOIDmode) return false; if (REAL_VALUE_MINUS_ZERO (*CONST_DOUBLE_REAL_VALUE (x))) return !HONOR_SIGNED_ZEROS (GET_MODE (x)); return real_equal (CONST_DOUBLE_REAL_VALUE (x), &dconst0); } /* Return TRUE if rtx X is immediate constant that fits in a single MOVI immediate operation. */ bool aarch64_can_const_movi_rtx_p (rtx x, machine_mode mode) { if (!TARGET_SIMD) return false; machine_mode vmode; scalar_int_mode imode; unsigned HOST_WIDE_INT ival; if (GET_CODE (x) == CONST_DOUBLE && SCALAR_FLOAT_MODE_P (mode)) { if (!aarch64_reinterpret_float_as_int (x, &ival)) return false; /* We make a general exception for 0. */ if (aarch64_float_const_zero_rtx_p (x)) return true; imode = int_mode_for_mode (mode).require (); } else if (GET_CODE (x) == CONST_INT && is_a (mode, &imode)) ival = INTVAL (x); else return false; /* use a 64 bit mode for everything except for DI/DF mode, where we use a 128 bit vector mode. */ int width = GET_MODE_BITSIZE (imode) == 64 ? 128 : 64; vmode = aarch64_simd_container_mode (imode, width); rtx v_op = aarch64_simd_gen_const_vector_dup (vmode, ival); return aarch64_simd_valid_immediate (v_op, NULL); } /* Return the fixed registers used for condition codes. */ static bool aarch64_fixed_condition_code_regs (unsigned int *p1, unsigned int *p2) { *p1 = CC_REGNUM; *p2 = INVALID_REGNUM; return true; } /* This function is used by the call expanders of the machine description. RESULT is the register in which the result is returned. It's NULL for "call" and "sibcall". MEM is the location of the function call. SIBCALL indicates whether this function call is normal call or sibling call. It will generate different pattern accordingly. */ void aarch64_expand_call (rtx result, rtx mem, bool sibcall) { rtx call, callee, tmp; rtvec vec; machine_mode mode; gcc_assert (MEM_P (mem)); callee = XEXP (mem, 0); mode = GET_MODE (callee); gcc_assert (mode == Pmode); /* Decide if we should generate indirect calls by loading the address of the callee into a register before performing the branch-and-link. */ if (SYMBOL_REF_P (callee) ? (aarch64_is_long_call_p (callee) || aarch64_is_noplt_call_p (callee)) : !REG_P (callee)) XEXP (mem, 0) = force_reg (mode, callee); call = gen_rtx_CALL (VOIDmode, mem, const0_rtx); if (result != NULL_RTX) call = gen_rtx_SET (result, call); if (sibcall) tmp = ret_rtx; else tmp = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, LR_REGNUM)); vec = gen_rtvec (2, call, tmp); call = gen_rtx_PARALLEL (VOIDmode, vec); aarch64_emit_call_insn (call); } /* Emit call insn with PAT and do aarch64-specific handling. */ void aarch64_emit_call_insn (rtx pat) { rtx insn = emit_call_insn (pat); rtx *fusage = &CALL_INSN_FUNCTION_USAGE (insn); clobber_reg (fusage, gen_rtx_REG (word_mode, IP0_REGNUM)); clobber_reg (fusage, gen_rtx_REG (word_mode, IP1_REGNUM)); } machine_mode aarch64_select_cc_mode (RTX_CODE code, rtx x, rtx y) { /* All floating point compares return CCFP if it is an equality comparison, and CCFPE otherwise. */ if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT) { switch (code) { case EQ: case NE: case UNORDERED: case ORDERED: case UNLT: case UNLE: case UNGT: case UNGE: case UNEQ: return CCFPmode; case LT: case LE: case GT: case GE: case LTGT: return CCFPEmode; default: gcc_unreachable (); } } /* Equality comparisons of short modes against zero can be performed using the TST instruction with the appropriate bitmask. */ if (y == const0_rtx && REG_P (x) && (code == EQ || code == NE) && (GET_MODE (x) == HImode || GET_MODE (x) == QImode)) return CC_NZmode; /* Similarly, comparisons of zero_extends from shorter modes can be performed using an ANDS with an immediate mask. */ if (y == const0_rtx && GET_CODE (x) == ZERO_EXTEND && (GET_MODE (x) == SImode || GET_MODE (x) == DImode) && (GET_MODE (XEXP (x, 0)) == HImode || GET_MODE (XEXP (x, 0)) == QImode) && (code == EQ || code == NE)) return CC_NZmode; if ((GET_MODE (x) == SImode || GET_MODE (x) == DImode) && y == const0_rtx && (code == EQ || code == NE || code == LT || code == GE) && (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS || GET_CODE (x) == AND || GET_CODE (x) == NEG || (GET_CODE (x) == ZERO_EXTRACT && CONST_INT_P (XEXP (x, 1)) && CONST_INT_P (XEXP (x, 2))))) return CC_NZmode; /* A compare with a shifted operand. Because of canonicalization, the comparison will have to be swapped when we emit the assembly code. */ if ((GET_MODE (x) == SImode || GET_MODE (x) == DImode) && (REG_P (y) || GET_CODE (y) == SUBREG || y == const0_rtx) && (GET_CODE (x) == ASHIFT || GET_CODE (x) == ASHIFTRT || GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)) return CC_SWPmode; /* Similarly for a negated operand, but we can only do this for equalities. */ if ((GET_MODE (x) == SImode || GET_MODE (x) == DImode) && (REG_P (y) || GET_CODE (y) == SUBREG) && (code == EQ || code == NE) && GET_CODE (x) == NEG) return CC_Zmode; /* A test for unsigned overflow. */ if ((GET_MODE (x) == DImode || GET_MODE (x) == TImode) && code == NE && GET_CODE (x) == PLUS && GET_CODE (y) == ZERO_EXTEND) return CC_Cmode; /* A test for signed overflow. */ if ((GET_MODE (x) == DImode || GET_MODE (x) == TImode) && code == NE && GET_CODE (x) == PLUS && GET_CODE (y) == SIGN_EXTEND) return CC_Vmode; /* For everything else, return CCmode. */ return CCmode; } static int aarch64_get_condition_code_1 (machine_mode, enum rtx_code); int aarch64_get_condition_code (rtx x) { machine_mode mode = GET_MODE (XEXP (x, 0)); enum rtx_code comp_code = GET_CODE (x); if (GET_MODE_CLASS (mode) != MODE_CC) mode = SELECT_CC_MODE (comp_code, XEXP (x, 0), XEXP (x, 1)); return aarch64_get_condition_code_1 (mode, comp_code); } static int aarch64_get_condition_code_1 (machine_mode mode, enum rtx_code comp_code) { switch (mode) { case E_CCFPmode: case E_CCFPEmode: switch (comp_code) { case GE: return AARCH64_GE; case GT: return AARCH64_GT; case LE: return AARCH64_LS; case LT: return AARCH64_MI; case NE: return AARCH64_NE; case EQ: return AARCH64_EQ; case ORDERED: return AARCH64_VC; case UNORDERED: return AARCH64_VS; case UNLT: return AARCH64_LT; case UNLE: return AARCH64_LE; case UNGT: return AARCH64_HI; case UNGE: return AARCH64_PL; default: return -1; } break; case E_CCmode: switch (comp_code) { case NE: return AARCH64_NE; case EQ: return AARCH64_EQ; case GE: return AARCH64_GE; case GT: return AARCH64_GT; case LE: return AARCH64_LE; case LT: return AARCH64_LT; case GEU: return AARCH64_CS; case GTU: return AARCH64_HI; case LEU: return AARCH64_LS; case LTU: return AARCH64_CC; default: return -1; } break; case E_CC_SWPmode: switch (comp_code) { case NE: return AARCH64_NE; case EQ: return AARCH64_EQ; case GE: return AARCH64_LE; case GT: return AARCH64_LT; case LE: return AARCH64_GE; case LT: return AARCH64_GT; case GEU: return AARCH64_LS; case GTU: return AARCH64_CC; case LEU: return AARCH64_CS; case LTU: return AARCH64_HI; default: return -1; } break; case E_CC_NZmode: switch (comp_code) { case NE: return AARCH64_NE; case EQ: return AARCH64_EQ; case GE: return AARCH64_PL; case LT: return AARCH64_MI; default: return -1; } break; case E_CC_Zmode: switch (comp_code) { case NE: return AARCH64_NE; case EQ: return AARCH64_EQ; default: return -1; } break; case E_CC_Cmode: switch (comp_code) { case NE: return AARCH64_CS; case EQ: return AARCH64_CC; default: return -1; } break; case E_CC_Vmode: switch (comp_code) { case NE: return AARCH64_VS; case EQ: return AARCH64_VC; default: return -1; } break; default: return -1; } return -1; } bool aarch64_const_vec_all_same_in_range_p (rtx x, HOST_WIDE_INT minval, HOST_WIDE_INT maxval) { rtx elt; return (const_vec_duplicate_p (x, &elt) && CONST_INT_P (elt) && IN_RANGE (INTVAL (elt), minval, maxval)); } bool aarch64_const_vec_all_same_int_p (rtx x, HOST_WIDE_INT val) { return aarch64_const_vec_all_same_in_range_p (x, val, val); } /* Return true if VEC is a constant in which every element is in the range [MINVAL, MAXVAL]. The elements do not need to have the same value. */ static bool aarch64_const_vec_all_in_range_p (rtx vec, HOST_WIDE_INT minval, HOST_WIDE_INT maxval) { if (GET_CODE (vec) != CONST_VECTOR || GET_MODE_CLASS (GET_MODE (vec)) != MODE_VECTOR_INT) return false; int nunits; if (!CONST_VECTOR_STEPPED_P (vec)) nunits = const_vector_encoded_nelts (vec); else if (!CONST_VECTOR_NUNITS (vec).is_constant (&nunits)) return false; for (int i = 0; i < nunits; i++) { rtx vec_elem = CONST_VECTOR_ELT (vec, i); if (!CONST_INT_P (vec_elem) || !IN_RANGE (INTVAL (vec_elem), minval, maxval)) return false; } return true; } /* N Z C V. */ #define AARCH64_CC_V 1 #define AARCH64_CC_C (1 << 1) #define AARCH64_CC_Z (1 << 2) #define AARCH64_CC_N (1 << 3) /* N Z C V flags for ccmp. Indexed by AARCH64_COND_CODE. */ static const int aarch64_nzcv_codes[] = { 0, /* EQ, Z == 1. */ AARCH64_CC_Z, /* NE, Z == 0. */ 0, /* CS, C == 1. */ AARCH64_CC_C, /* CC, C == 0. */ 0, /* MI, N == 1. */ AARCH64_CC_N, /* PL, N == 0. */ 0, /* VS, V == 1. */ AARCH64_CC_V, /* VC, V == 0. */ 0, /* HI, C ==1 && Z == 0. */ AARCH64_CC_C, /* LS, !(C == 1 && Z == 0). */ AARCH64_CC_V, /* GE, N == V. */ 0, /* LT, N != V. */ AARCH64_CC_Z, /* GT, Z == 0 && N == V. */ 0, /* LE, !(Z == 0 && N == V). */ 0, /* AL, Any. */ 0 /* NV, Any. */ }; /* Print floating-point vector immediate operand X to F, negating it first if NEGATE is true. Return true on success, false if it isn't a constant we can handle. */ static bool aarch64_print_vector_float_operand (FILE *f, rtx x, bool negate) { rtx elt; if (!const_vec_duplicate_p (x, &elt)) return false; REAL_VALUE_TYPE r = *CONST_DOUBLE_REAL_VALUE (elt); if (negate) r = real_value_negate (&r); /* We only handle the SVE single-bit immediates here. */ if (real_equal (&r, &dconst0)) asm_fprintf (f, "0.0"); else if (real_equal (&r, &dconst1)) asm_fprintf (f, "1.0"); else if (real_equal (&r, &dconsthalf)) asm_fprintf (f, "0.5"); else return false; return true; } /* Return the equivalent letter for size. */ static char sizetochar (int size) { switch (size) { case 64: return 'd'; case 32: return 's'; case 16: return 'h'; case 8 : return 'b'; default: gcc_unreachable (); } } /* Print operand X to file F in a target specific manner according to CODE. The acceptable formatting commands given by CODE are: 'c': An integer or symbol address without a preceding # sign. 'C': Take the duplicated element in a vector constant and print it in hex. 'D': Take the duplicated element in a vector constant and print it as an unsigned integer, in decimal. 'e': Print the sign/zero-extend size as a character 8->b, 16->h, 32->w. 'p': Prints N such that 2^N == X (X must be power of 2 and const int). 'P': Print the number of non-zero bits in X (a const_int). 'H': Print the higher numbered register of a pair (TImode) of regs. 'm': Print a condition (eq, ne, etc). 'M': Same as 'm', but invert condition. 'N': Take the duplicated element in a vector constant and print the negative of it in decimal. 'b/h/s/d/q': Print a scalar FP/SIMD register name. 'S/T/U/V': Print a FP/SIMD register name for a register list. The register printed is the FP/SIMD register name of X + 0/1/2/3 for S/T/U/V. 'R': Print a scalar FP/SIMD register name + 1. 'X': Print bottom 16 bits of integer constant in hex. 'w/x': Print a general register name or the zero register (32-bit or 64-bit). '0': Print a normal operand, if it's a general register, then we assume DImode. 'k': Print NZCV for conditional compare instructions. 'A': Output address constant representing the first argument of X, specifying a relocation offset if appropriate. 'L': Output constant address specified by X with a relocation offset if appropriate. 'G': Prints address of X, specifying a PC relative relocation mode if appropriate. 'y': Output address of LDP or STP - this is used for some LDP/STPs which don't use a PARALLEL in their pattern (so the mode needs to be adjusted). 'z': Output address of a typical LDP or STP. */ static void aarch64_print_operand (FILE *f, rtx x, int code) { rtx elt; switch (code) { case 'c': switch (GET_CODE (x)) { case CONST_INT: fprintf (f, HOST_WIDE_INT_PRINT_DEC, INTVAL (x)); break; case SYMBOL_REF: output_addr_const (f, x); break; case CONST: if (GET_CODE (XEXP (x, 0)) == PLUS && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF) { output_addr_const (f, x); break; } /* Fall through. */ default: output_operand_lossage ("unsupported operand for code '%c'", code); } break; case 'e': { int n; if (!CONST_INT_P (x) || (n = exact_log2 (INTVAL (x) & ~7)) <= 0) { output_operand_lossage ("invalid operand for '%%%c'", code); return; } switch (n) { case 3: fputc ('b', f); break; case 4: fputc ('h', f); break; case 5: fputc ('w', f); break; default: output_operand_lossage ("invalid operand for '%%%c'", code); return; } } break; case 'p': { int n; if (!CONST_INT_P (x) || (n = exact_log2 (INTVAL (x))) < 0) { output_operand_lossage ("invalid operand for '%%%c'", code); return; } asm_fprintf (f, "%d", n); } break; case 'P': if (!CONST_INT_P (x)) { output_operand_lossage ("invalid operand for '%%%c'", code); return; } asm_fprintf (f, "%u", popcount_hwi (INTVAL (x))); break; case 'H': if (x == const0_rtx) { asm_fprintf (f, "xzr"); break; } if (!REG_P (x) || !GP_REGNUM_P (REGNO (x) + 1)) { output_operand_lossage ("invalid operand for '%%%c'", code); return; } asm_fprintf (f, "%s", reg_names [REGNO (x) + 1]); break; case 'M': case 'm': { int cond_code; /* CONST_TRUE_RTX means al/nv (al is the default, don't print it). */ if (x == const_true_rtx) { if (code == 'M') fputs ("nv", f); return; } if (!COMPARISON_P (x)) { output_operand_lossage ("invalid operand for '%%%c'", code); return; } cond_code = aarch64_get_condition_code (x); gcc_assert (cond_code >= 0); if (code == 'M') cond_code = AARCH64_INVERSE_CONDITION_CODE (cond_code); fputs (aarch64_condition_codes[cond_code], f); } break; case 'N': if (!const_vec_duplicate_p (x, &elt)) { output_operand_lossage ("invalid vector constant"); return; } if (GET_MODE_CLASS (GET_MODE (x)) == MODE_VECTOR_INT) asm_fprintf (f, "%wd", -INTVAL (elt)); else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_VECTOR_FLOAT && aarch64_print_vector_float_operand (f, x, true)) ; else { output_operand_lossage ("invalid vector constant"); return; } break; case 'b': case 'h': case 's': case 'd': case 'q': if (!REG_P (x) || !FP_REGNUM_P (REGNO (x))) { output_operand_lossage ("incompatible floating point / vector register operand for '%%%c'", code); return; } asm_fprintf (f, "%c%d", code, REGNO (x) - V0_REGNUM); break; case 'S': case 'T': case 'U': case 'V': if (!REG_P (x) || !FP_REGNUM_P (REGNO (x))) { output_operand_lossage ("incompatible floating point / vector register operand for '%%%c'", code); return; } asm_fprintf (f, "%c%d", aarch64_sve_data_mode_p (GET_MODE (x)) ? 'z' : 'v', REGNO (x) - V0_REGNUM + (code - 'S')); break; case 'R': if (!REG_P (x) || !FP_REGNUM_P (REGNO (x))) { output_operand_lossage ("incompatible floating point / vector register operand for '%%%c'", code); return; } asm_fprintf (f, "q%d", REGNO (x) - V0_REGNUM + 1); break; case 'X': if (!CONST_INT_P (x)) { output_operand_lossage ("invalid operand for '%%%c'", code); return; } asm_fprintf (f, "0x%wx", UINTVAL (x) & 0xffff); break; case 'C': { /* Print a replicated constant in hex. */ if (!const_vec_duplicate_p (x, &elt) || !CONST_INT_P (elt)) { output_operand_lossage ("invalid operand for '%%%c'", code); return; } scalar_mode inner_mode = GET_MODE_INNER (GET_MODE (x)); asm_fprintf (f, "0x%wx", UINTVAL (elt) & GET_MODE_MASK (inner_mode)); } break; case 'D': { /* Print a replicated constant in decimal, treating it as unsigned. */ if (!const_vec_duplicate_p (x, &elt) || !CONST_INT_P (elt)) { output_operand_lossage ("invalid operand for '%%%c'", code); return; } scalar_mode inner_mode = GET_MODE_INNER (GET_MODE (x)); asm_fprintf (f, "%wd", UINTVAL (elt) & GET_MODE_MASK (inner_mode)); } break; case 'w': case 'x': if (x == const0_rtx || (CONST_DOUBLE_P (x) && aarch64_float_const_zero_rtx_p (x))) { asm_fprintf (f, "%czr", code); break; } if (REG_P (x) && GP_REGNUM_P (REGNO (x))) { asm_fprintf (f, "%c%d", code, REGNO (x) - R0_REGNUM); break; } if (REG_P (x) && REGNO (x) == SP_REGNUM) { asm_fprintf (f, "%ssp", code == 'w' ? "w" : ""); break; } /* Fall through */ case 0: if (x == NULL) { output_operand_lossage ("missing operand"); return; } switch (GET_CODE (x)) { case REG: if (aarch64_sve_data_mode_p (GET_MODE (x))) { if (REG_NREGS (x) == 1) asm_fprintf (f, "z%d", REGNO (x) - V0_REGNUM); else { char suffix = sizetochar (GET_MODE_UNIT_BITSIZE (GET_MODE (x))); asm_fprintf (f, "{z%d.%c - z%d.%c}", REGNO (x) - V0_REGNUM, suffix, END_REGNO (x) - V0_REGNUM - 1, suffix); } } else asm_fprintf (f, "%s", reg_names [REGNO (x)]); break; case MEM: output_address (GET_MODE (x), XEXP (x, 0)); break; case LABEL_REF: case SYMBOL_REF: output_addr_const (asm_out_file, x); break; case CONST_INT: asm_fprintf (f, "%wd", INTVAL (x)); break; case CONST: if (!VECTOR_MODE_P (GET_MODE (x))) { output_addr_const (asm_out_file, x); break; } /* fall through */ case CONST_VECTOR: if (!const_vec_duplicate_p (x, &elt)) { output_operand_lossage ("invalid vector constant"); return; } if (GET_MODE_CLASS (GET_MODE (x)) == MODE_VECTOR_INT) asm_fprintf (f, "%wd", INTVAL (elt)); else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_VECTOR_FLOAT && aarch64_print_vector_float_operand (f, x, false)) ; else { output_operand_lossage ("invalid vector constant"); return; } break; case CONST_DOUBLE: /* Since we define TARGET_SUPPORTS_WIDE_INT we shouldn't ever be getting CONST_DOUBLEs holding integers. */ gcc_assert (GET_MODE (x) != VOIDmode); if (aarch64_float_const_zero_rtx_p (x)) { fputc ('0', f); break; } else if (aarch64_float_const_representable_p (x)) { #define buf_size 20 char float_buf[buf_size] = {'\0'}; real_to_decimal_for_mode (float_buf, CONST_DOUBLE_REAL_VALUE (x), buf_size, buf_size, 1, GET_MODE (x)); asm_fprintf (asm_out_file, "%s", float_buf); break; #undef buf_size } output_operand_lossage ("invalid constant"); return; default: output_operand_lossage ("invalid operand"); return; } break; case 'A': if (GET_CODE (x) == HIGH) x = XEXP (x, 0); switch (aarch64_classify_symbolic_expression (x)) { case SYMBOL_SMALL_GOT_4G: asm_fprintf (asm_out_file, ":got:"); break; case SYMBOL_SMALL_TLSGD: asm_fprintf (asm_out_file, ":tlsgd:"); break; case SYMBOL_SMALL_TLSDESC: asm_fprintf (asm_out_file, ":tlsdesc:"); break; case SYMBOL_SMALL_TLSIE: asm_fprintf (asm_out_file, ":gottprel:"); break; case SYMBOL_TLSLE24: asm_fprintf (asm_out_file, ":tprel:"); break; case SYMBOL_TINY_GOT: gcc_unreachable (); break; default: break; } output_addr_const (asm_out_file, x); break; case 'L': switch (aarch64_classify_symbolic_expression (x)) { case SYMBOL_SMALL_GOT_4G: asm_fprintf (asm_out_file, ":lo12:"); break; case SYMBOL_SMALL_TLSGD: asm_fprintf (asm_out_file, ":tlsgd_lo12:"); break; case SYMBOL_SMALL_TLSDESC: asm_fprintf (asm_out_file, ":tlsdesc_lo12:"); break; case SYMBOL_SMALL_TLSIE: asm_fprintf (asm_out_file, ":gottprel_lo12:"); break; case SYMBOL_TLSLE12: asm_fprintf (asm_out_file, ":tprel_lo12:"); break; case SYMBOL_TLSLE24: asm_fprintf (asm_out_file, ":tprel_lo12_nc:"); break; case SYMBOL_TINY_GOT: asm_fprintf (asm_out_file, ":got:"); break; case SYMBOL_TINY_TLSIE: asm_fprintf (asm_out_file, ":gottprel:"); break; default: break; } output_addr_const (asm_out_file, x); break; case 'G': switch (aarch64_classify_symbolic_expression (x)) { case SYMBOL_TLSLE24: asm_fprintf (asm_out_file, ":tprel_hi12:"); break; default: break; } output_addr_const (asm_out_file, x); break; case 'k': { HOST_WIDE_INT cond_code; if (!CONST_INT_P (x)) { output_operand_lossage ("invalid operand for '%%%c'", code); return; } cond_code = INTVAL (x); gcc_assert (cond_code >= 0 && cond_code <= AARCH64_NV); asm_fprintf (f, "%d", aarch64_nzcv_codes[cond_code]); } break; case 'y': case 'z': { machine_mode mode = GET_MODE (x); if (GET_CODE (x) != MEM || (code == 'y' && maybe_ne (GET_MODE_SIZE (mode), 16))) { output_operand_lossage ("invalid operand for '%%%c'", code); return; } if (!aarch64_print_address_internal (f, mode, XEXP (x, 0), code == 'y' ? ADDR_QUERY_LDP_STP_N : ADDR_QUERY_LDP_STP)) output_operand_lossage ("invalid operand prefix '%%%c'", code); } break; default: output_operand_lossage ("invalid operand prefix '%%%c'", code); return; } } /* Print address 'x' of a memory access with mode 'mode'. 'op' is the context required by aarch64_classify_address. It can either be MEM for a normal memory access or PARALLEL for LDP/STP. */ static bool aarch64_print_address_internal (FILE *f, machine_mode mode, rtx x, aarch64_addr_query_type type) { struct aarch64_address_info addr; unsigned int size; /* Check all addresses are Pmode - including ILP32. */ if (GET_MODE (x) != Pmode) output_operand_lossage ("invalid address mode"); if (aarch64_classify_address (&addr, x, mode, true, type)) switch (addr.type) { case ADDRESS_REG_IMM: if (known_eq (addr.const_offset, 0)) asm_fprintf (f, "[%s]", reg_names [REGNO (addr.base)]); else if (aarch64_sve_data_mode_p (mode)) { HOST_WIDE_INT vnum = exact_div (addr.const_offset, BYTES_PER_SVE_VECTOR).to_constant (); asm_fprintf (f, "[%s, #%wd, mul vl]", reg_names[REGNO (addr.base)], vnum); } else if (aarch64_sve_pred_mode_p (mode)) { HOST_WIDE_INT vnum = exact_div (addr.const_offset, BYTES_PER_SVE_PRED).to_constant (); asm_fprintf (f, "[%s, #%wd, mul vl]", reg_names[REGNO (addr.base)], vnum); } else asm_fprintf (f, "[%s, %wd]", reg_names [REGNO (addr.base)], INTVAL (addr.offset)); return true; case ADDRESS_REG_REG: if (addr.shift == 0) asm_fprintf (f, "[%s, %s]", reg_names [REGNO (addr.base)], reg_names [REGNO (addr.offset)]); else asm_fprintf (f, "[%s, %s, lsl %u]", reg_names [REGNO (addr.base)], reg_names [REGNO (addr.offset)], addr.shift); return true; case ADDRESS_REG_UXTW: if (addr.shift == 0) asm_fprintf (f, "[%s, w%d, uxtw]", reg_names [REGNO (addr.base)], REGNO (addr.offset) - R0_REGNUM); else asm_fprintf (f, "[%s, w%d, uxtw %u]", reg_names [REGNO (addr.base)], REGNO (addr.offset) - R0_REGNUM, addr.shift); return true; case ADDRESS_REG_SXTW: if (addr.shift == 0) asm_fprintf (f, "[%s, w%d, sxtw]", reg_names [REGNO (addr.base)], REGNO (addr.offset) - R0_REGNUM); else asm_fprintf (f, "[%s, w%d, sxtw %u]", reg_names [REGNO (addr.base)], REGNO (addr.offset) - R0_REGNUM, addr.shift); return true; case ADDRESS_REG_WB: /* Writeback is only supported for fixed-width modes. */ size = GET_MODE_SIZE (mode).to_constant (); switch (GET_CODE (x)) { case PRE_INC: asm_fprintf (f, "[%s, %d]!", reg_names [REGNO (addr.base)], size); return true; case POST_INC: asm_fprintf (f, "[%s], %d", reg_names [REGNO (addr.base)], size); return true; case PRE_DEC: asm_fprintf (f, "[%s, -%d]!", reg_names [REGNO (addr.base)], size); return true; case POST_DEC: asm_fprintf (f, "[%s], -%d", reg_names [REGNO (addr.base)], size); return true; case PRE_MODIFY: asm_fprintf (f, "[%s, %wd]!", reg_names[REGNO (addr.base)], INTVAL (addr.offset)); return true; case POST_MODIFY: asm_fprintf (f, "[%s], %wd", reg_names[REGNO (addr.base)], INTVAL (addr.offset)); return true; default: break; } break; case ADDRESS_LO_SUM: asm_fprintf (f, "[%s, #:lo12:", reg_names [REGNO (addr.base)]); output_addr_const (f, addr.offset); asm_fprintf (f, "]"); return true; case ADDRESS_SYMBOLIC: output_addr_const (f, x); return true; } return false; } /* Print address 'x' of a memory access with mode 'mode'. */ static void aarch64_print_operand_address (FILE *f, machine_mode mode, rtx x) { if (!aarch64_print_address_internal (f, mode, x, ADDR_QUERY_ANY)) output_addr_const (f, x); } bool aarch64_label_mentioned_p (rtx x) { const char *fmt; int i; if (GET_CODE (x) == LABEL_REF) return true; /* UNSPEC_TLS entries for a symbol include a LABEL_REF for the referencing instruction, but they are constant offsets, not symbols. */ if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_TLS) return false; fmt = GET_RTX_FORMAT (GET_CODE (x)); for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--) { if (fmt[i] == 'E') { int j; for (j = XVECLEN (x, i) - 1; j >= 0; j--) if (aarch64_label_mentioned_p (XVECEXP (x, i, j))) return 1; } else if (fmt[i] == 'e' && aarch64_label_mentioned_p (XEXP (x, i))) return 1; } return 0; } /* Implement REGNO_REG_CLASS. */ enum reg_class aarch64_regno_regclass (unsigned regno) { if (GP_REGNUM_P (regno)) return GENERAL_REGS; if (regno == SP_REGNUM) return STACK_REG; if (regno == FRAME_POINTER_REGNUM || regno == ARG_POINTER_REGNUM) return POINTER_REGS; if (FP_REGNUM_P (regno)) return FP_LO_REGNUM_P (regno) ? FP_LO_REGS : FP_REGS; if (PR_REGNUM_P (regno)) return PR_LO_REGNUM_P (regno) ? PR_LO_REGS : PR_HI_REGS; return NO_REGS; } /* OFFSET is an address offset for mode MODE, which has SIZE bytes. If OFFSET is out of range, return an offset of an anchor point that is in range. Return 0 otherwise. */ static HOST_WIDE_INT aarch64_anchor_offset (HOST_WIDE_INT offset, HOST_WIDE_INT size, machine_mode mode) { /* Does it look like we'll need a 16-byte load/store-pair operation? */ if (size > 16) return (offset + 0x400) & ~0x7f0; /* For offsets that aren't a multiple of the access size, the limit is -256...255. */ if (offset & (size - 1)) { /* BLKmode typically uses LDP of X-registers. */ if (mode == BLKmode) return (offset + 512) & ~0x3ff; return (offset + 0x100) & ~0x1ff; } /* Small negative offsets are supported. */ if (IN_RANGE (offset, -256, 0)) return 0; if (mode == TImode || mode == TFmode) return (offset + 0x100) & ~0x1ff; /* Use 12-bit offset by access size. */ return offset & (~0xfff * size); } static rtx aarch64_legitimize_address (rtx x, rtx /* orig_x */, machine_mode mode) { /* Try to split X+CONST into Y=X+(CONST & ~mask), Y+(CONST&mask), where mask is selected by alignment and size of the offset. We try to pick as large a range for the offset as possible to maximize the chance of a CSE. However, for aligned addresses we limit the range to 4k so that structures with different sized elements are likely to use the same base. We need to be careful not to split a CONST for some forms of address expression, otherwise it will generate sub-optimal code. */ if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1))) { rtx base = XEXP (x, 0); rtx offset_rtx = XEXP (x, 1); HOST_WIDE_INT offset = INTVAL (offset_rtx); if (GET_CODE (base) == PLUS) { rtx op0 = XEXP (base, 0); rtx op1 = XEXP (base, 1); /* Force any scaling into a temp for CSE. */ op0 = force_reg (Pmode, op0); op1 = force_reg (Pmode, op1); /* Let the pointer register be in op0. */ if (REG_POINTER (op1)) std::swap (op0, op1); /* If the pointer is virtual or frame related, then we know that virtual register instantiation or register elimination is going to apply a second constant. We want the two constants folded together easily. Therefore, emit as (OP0 + CONST) + OP1. */ if (virt_or_elim_regno_p (REGNO (op0))) { base = expand_binop (Pmode, add_optab, op0, offset_rtx, NULL_RTX, true, OPTAB_DIRECT); return gen_rtx_PLUS (Pmode, base, op1); } /* Otherwise, in order to encourage CSE (and thence loop strength reduce) scaled addresses, emit as (OP0 + OP1) + CONST. */ base = expand_binop (Pmode, add_optab, op0, op1, NULL_RTX, true, OPTAB_DIRECT); x = gen_rtx_PLUS (Pmode, base, offset_rtx); } HOST_WIDE_INT size; if (GET_MODE_SIZE (mode).is_constant (&size)) { HOST_WIDE_INT base_offset = aarch64_anchor_offset (offset, size, mode); if (base_offset != 0) { base = plus_constant (Pmode, base, base_offset); base = force_operand (base, NULL_RTX); return plus_constant (Pmode, base, offset - base_offset); } } } return x; } static reg_class_t aarch64_secondary_reload (bool in_p ATTRIBUTE_UNUSED, rtx x, reg_class_t rclass, machine_mode mode, secondary_reload_info *sri) { /* Use aarch64_sve_reload_be for SVE reloads that cannot be handled directly by the *aarch64_sve_mov_be move pattern. See the comment at the head of aarch64-sve.md for more details about the big-endian handling. */ if (BYTES_BIG_ENDIAN && reg_class_subset_p (rclass, FP_REGS) && !((REG_P (x) && HARD_REGISTER_P (x)) || aarch64_simd_valid_immediate (x, NULL)) && aarch64_sve_data_mode_p (mode)) { sri->icode = CODE_FOR_aarch64_sve_reload_be; return NO_REGS; } /* If we have to disable direct literal pool loads and stores because the function is too big, then we need a scratch register. */ if (MEM_P (x) && GET_CODE (x) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (x) && (SCALAR_FLOAT_MODE_P (GET_MODE (x)) || targetm.vector_mode_supported_p (GET_MODE (x))) && !aarch64_pcrelative_literal_loads) { sri->icode = code_for_aarch64_reload_movcp (mode, DImode); return NO_REGS; } /* Without the TARGET_SIMD instructions we cannot move a Q register to a Q register directly. We need a scratch. */ if (REG_P (x) && (mode == TFmode || mode == TImode) && mode == GET_MODE (x) && FP_REGNUM_P (REGNO (x)) && !TARGET_SIMD && reg_class_subset_p (rclass, FP_REGS)) { sri->icode = code_for_aarch64_reload_mov (mode); return NO_REGS; } /* A TFmode or TImode memory access should be handled via an FP_REGS because AArch64 has richer addressing modes for LDR/STR instructions than LDP/STP instructions. */ if (TARGET_FLOAT && rclass == GENERAL_REGS && known_eq (GET_MODE_SIZE (mode), 16) && MEM_P (x)) return FP_REGS; if (rclass == FP_REGS && (mode == TImode || mode == TFmode) && CONSTANT_P(x)) return GENERAL_REGS; return NO_REGS; } static bool aarch64_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to) { gcc_assert (from == ARG_POINTER_REGNUM || from == FRAME_POINTER_REGNUM); /* If we need a frame pointer, ARG_POINTER_REGNUM and FRAME_POINTER_REGNUM can only eliminate to HARD_FRAME_POINTER_REGNUM. */ if (frame_pointer_needed) return to == HARD_FRAME_POINTER_REGNUM; return true; } poly_int64 aarch64_initial_elimination_offset (unsigned from, unsigned to) { aarch64_layout_frame (); if (to == HARD_FRAME_POINTER_REGNUM) { if (from == ARG_POINTER_REGNUM) return cfun->machine->frame.hard_fp_offset; if (from == FRAME_POINTER_REGNUM) return cfun->machine->frame.hard_fp_offset - cfun->machine->frame.locals_offset; } if (to == STACK_POINTER_REGNUM) { if (from == FRAME_POINTER_REGNUM) return cfun->machine->frame.frame_size - cfun->machine->frame.locals_offset; } return cfun->machine->frame.frame_size; } /* Implement RETURN_ADDR_RTX. We do not support moving back to a previous frame. */ rtx aarch64_return_addr (int count, rtx frame ATTRIBUTE_UNUSED) { if (count != 0) return const0_rtx; return get_hard_reg_initial_val (Pmode, LR_REGNUM); } static void aarch64_asm_trampoline_template (FILE *f) { if (TARGET_ILP32) { asm_fprintf (f, "\tldr\tw%d, .+16\n", IP1_REGNUM - R0_REGNUM); asm_fprintf (f, "\tldr\tw%d, .+16\n", STATIC_CHAIN_REGNUM - R0_REGNUM); } else { asm_fprintf (f, "\tldr\t%s, .+16\n", reg_names [IP1_REGNUM]); asm_fprintf (f, "\tldr\t%s, .+20\n", reg_names [STATIC_CHAIN_REGNUM]); } asm_fprintf (f, "\tbr\t%s\n", reg_names [IP1_REGNUM]); assemble_aligned_integer (4, const0_rtx); assemble_aligned_integer (POINTER_BYTES, const0_rtx); assemble_aligned_integer (POINTER_BYTES, const0_rtx); } static void aarch64_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value) { rtx fnaddr, mem, a_tramp; const int tramp_code_sz = 16; /* Don't need to copy the trailing D-words, we fill those in below. */ emit_block_move (m_tramp, assemble_trampoline_template (), GEN_INT (tramp_code_sz), BLOCK_OP_NORMAL); mem = adjust_address (m_tramp, ptr_mode, tramp_code_sz); fnaddr = XEXP (DECL_RTL (fndecl), 0); if (GET_MODE (fnaddr) != ptr_mode) fnaddr = convert_memory_address (ptr_mode, fnaddr); emit_move_insn (mem, fnaddr); mem = adjust_address (m_tramp, ptr_mode, tramp_code_sz + POINTER_BYTES); emit_move_insn (mem, chain_value); /* XXX We should really define a "clear_cache" pattern and use gen_clear_cache(). */ a_tramp = XEXP (m_tramp, 0); emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__clear_cache"), LCT_NORMAL, VOIDmode, a_tramp, ptr_mode, plus_constant (ptr_mode, a_tramp, TRAMPOLINE_SIZE), ptr_mode); } static unsigned char aarch64_class_max_nregs (reg_class_t regclass, machine_mode mode) { /* ??? Logically we should only need to provide a value when HARD_REGNO_MODE_OK says that at least one register in REGCLASS can hold MODE, but at the moment we need to handle all modes. Just ignore any runtime parts for registers that can't store them. */ HOST_WIDE_INT lowest_size = constant_lower_bound (GET_MODE_SIZE (mode)); unsigned int nregs; switch (regclass) { case TAILCALL_ADDR_REGS: case POINTER_REGS: case GENERAL_REGS: case ALL_REGS: case POINTER_AND_FP_REGS: case FP_REGS: case FP_LO_REGS: if (aarch64_sve_data_mode_p (mode) && constant_multiple_p (GET_MODE_SIZE (mode), BYTES_PER_SVE_VECTOR, &nregs)) return nregs; return (aarch64_vector_data_mode_p (mode) ? CEIL (lowest_size, UNITS_PER_VREG) : CEIL (lowest_size, UNITS_PER_WORD)); case STACK_REG: case PR_REGS: case PR_LO_REGS: case PR_HI_REGS: return 1; case NO_REGS: return 0; default: break; } gcc_unreachable (); } static reg_class_t aarch64_preferred_reload_class (rtx x, reg_class_t regclass) { if (regclass == POINTER_REGS) return GENERAL_REGS; if (regclass == STACK_REG) { if (REG_P(x) && reg_class_subset_p (REGNO_REG_CLASS (REGNO (x)), POINTER_REGS)) return regclass; return NO_REGS; } /* Register eliminiation can result in a request for SP+constant->FP_REGS. We cannot support such operations which use SP as source and an FP_REG as destination, so reject out right now. */ if (! reg_class_subset_p (regclass, GENERAL_REGS) && GET_CODE (x) == PLUS) { rtx lhs = XEXP (x, 0); /* Look through a possible SUBREG introduced by ILP32. */ if (GET_CODE (lhs) == SUBREG) lhs = SUBREG_REG (lhs); gcc_assert (REG_P (lhs)); gcc_assert (reg_class_subset_p (REGNO_REG_CLASS (REGNO (lhs)), POINTER_REGS)); return NO_REGS; } return regclass; } void aarch64_asm_output_labelref (FILE* f, const char *name) { asm_fprintf (f, "%U%s", name); } static void aarch64_elf_asm_constructor (rtx symbol, int priority) { if (priority == DEFAULT_INIT_PRIORITY) default_ctor_section_asm_out_constructor (symbol, priority); else { section *s; /* While priority is known to be in range [0, 65535], so 18 bytes would be enough, the compiler might not know that. To avoid -Wformat-truncation false positive, use a larger size. */ char buf[23]; snprintf (buf, sizeof (buf), ".init_array.%.5u", priority); s = get_section (buf, SECTION_WRITE | SECTION_NOTYPE, NULL); switch_to_section (s); assemble_align (POINTER_SIZE); assemble_aligned_integer (POINTER_BYTES, symbol); } } static void aarch64_elf_asm_destructor (rtx symbol, int priority) { if (priority == DEFAULT_INIT_PRIORITY) default_dtor_section_asm_out_destructor (symbol, priority); else { section *s; /* While priority is known to be in range [0, 65535], so 18 bytes would be enough, the compiler might not know that. To avoid -Wformat-truncation false positive, use a larger size. */ char buf[23]; snprintf (buf, sizeof (buf), ".fini_array.%.5u", priority); s = get_section (buf, SECTION_WRITE | SECTION_NOTYPE, NULL); switch_to_section (s); assemble_align (POINTER_SIZE); assemble_aligned_integer (POINTER_BYTES, symbol); } } const char* aarch64_output_casesi (rtx *operands) { char buf[100]; char label[100]; rtx diff_vec = PATTERN (NEXT_INSN (as_a (operands[2]))); int index; static const char *const patterns[4][2] = { { "ldrb\t%w3, [%0,%w1,uxtw]", "add\t%3, %4, %w3, sxtb #2" }, { "ldrh\t%w3, [%0,%w1,uxtw #1]", "add\t%3, %4, %w3, sxth #2" }, { "ldr\t%w3, [%0,%w1,uxtw #2]", "add\t%3, %4, %w3, sxtw #2" }, /* We assume that DImode is only generated when not optimizing and that we don't really need 64-bit address offsets. That would imply an object file with 8GB of code in a single function! */ { "ldr\t%w3, [%0,%w1,uxtw #2]", "add\t%3, %4, %w3, sxtw #2" } }; gcc_assert (GET_CODE (diff_vec) == ADDR_DIFF_VEC); scalar_int_mode mode = as_a (GET_MODE (diff_vec)); index = exact_log2 (GET_MODE_SIZE (mode)); gcc_assert (index >= 0 && index <= 3); /* Need to implement table size reduction, by chaning the code below. */ output_asm_insn (patterns[index][0], operands); ASM_GENERATE_INTERNAL_LABEL (label, "Lrtx", CODE_LABEL_NUMBER (operands[2])); snprintf (buf, sizeof (buf), "adr\t%%4, %s", targetm.strip_name_encoding (label)); output_asm_insn (buf, operands); output_asm_insn (patterns[index][1], operands); output_asm_insn ("br\t%3", operands); assemble_label (asm_out_file, label); return ""; } /* Return size in bits of an arithmetic operand which is shifted/scaled and masked such that it is suitable for a UXTB, UXTH, or UXTW extend operator. */ int aarch64_uxt_size (int shift, HOST_WIDE_INT mask) { if (shift >= 0 && shift <= 3) { int size; for (size = 8; size <= 32; size *= 2) { HOST_WIDE_INT bits = ((HOST_WIDE_INT)1U << size) - 1; if (mask == bits << shift) return size; } } return 0; } /* Constant pools are per function only when PC relative literal loads are true or we are in the large memory model. */ static inline bool aarch64_can_use_per_function_literal_pools_p (void) { return (aarch64_pcrelative_literal_loads || aarch64_cmodel == AARCH64_CMODEL_LARGE); } static bool aarch64_use_blocks_for_constant_p (machine_mode, const_rtx) { /* We can't use blocks for constants when we're using a per-function constant pool. */ return !aarch64_can_use_per_function_literal_pools_p (); } /* Select appropriate section for constants depending on where we place literal pools. */ static section * aarch64_select_rtx_section (machine_mode mode, rtx x, unsigned HOST_WIDE_INT align) { if (aarch64_can_use_per_function_literal_pools_p ()) return function_section (current_function_decl); return default_elf_select_rtx_section (mode, x, align); } /* Implement ASM_OUTPUT_POOL_EPILOGUE. */ void aarch64_asm_output_pool_epilogue (FILE *f, const char *, tree, HOST_WIDE_INT offset) { /* When using per-function literal pools, we must ensure that any code section is aligned to the minimal instruction length, lest we get errors from the assembler re "unaligned instructions". */ if ((offset & 3) && aarch64_can_use_per_function_literal_pools_p ()) ASM_OUTPUT_ALIGN (f, 2); } /* Costs. */ /* Helper function for rtx cost calculation. Strip a shift expression from X. Returns the inner operand if successful, or the original expression on failure. */ static rtx aarch64_strip_shift (rtx x) { rtx op = x; /* We accept both ROTATERT and ROTATE: since the RHS must be a constant we can convert both to ROR during final output. */ if ((GET_CODE (op) == ASHIFT || GET_CODE (op) == ASHIFTRT || GET_CODE (op) == LSHIFTRT || GET_CODE (op) == ROTATERT || GET_CODE (op) == ROTATE) && CONST_INT_P (XEXP (op, 1))) return XEXP (op, 0); if (GET_CODE (op) == MULT && CONST_INT_P (XEXP (op, 1)) && ((unsigned) exact_log2 (INTVAL (XEXP (op, 1)))) < 64) return XEXP (op, 0); return x; } /* Helper function for rtx cost calculation. Strip an extend expression from X. Returns the inner operand if successful, or the original expression on failure. We deal with a number of possible canonicalization variations here. If STRIP_SHIFT is true, then we can strip off a shift also. */ static rtx aarch64_strip_extend (rtx x, bool strip_shift) { scalar_int_mode mode; rtx op = x; if (!is_a (GET_MODE (op), &mode)) return op; /* Zero and sign extraction of a widened value. */ if ((GET_CODE (op) == ZERO_EXTRACT || GET_CODE (op) == SIGN_EXTRACT) && XEXP (op, 2) == const0_rtx && GET_CODE (XEXP (op, 0)) == MULT && aarch64_is_extend_from_extract (mode, XEXP (XEXP (op, 0), 1), XEXP (op, 1))) return XEXP (XEXP (op, 0), 0); /* It can also be represented (for zero-extend) as an AND with an immediate. */ if (GET_CODE (op) == AND && GET_CODE (XEXP (op, 0)) == MULT && CONST_INT_P (XEXP (XEXP (op, 0), 1)) && CONST_INT_P (XEXP (op, 1)) && aarch64_uxt_size (exact_log2 (INTVAL (XEXP (XEXP (op, 0), 1))), INTVAL (XEXP (op, 1))) != 0) return XEXP (XEXP (op, 0), 0); /* Now handle extended register, as this may also have an optional left shift by 1..4. */ if (strip_shift && GET_CODE (op) == ASHIFT && CONST_INT_P (XEXP (op, 1)) && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (op, 1))) <= 4) op = XEXP (op, 0); if (GET_CODE (op) == ZERO_EXTEND || GET_CODE (op) == SIGN_EXTEND) op = XEXP (op, 0); if (op != x) return op; return x; } /* Return true iff CODE is a shift supported in combination with arithmetic instructions. */ static bool aarch64_shift_p (enum rtx_code code) { return code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT; } /* Return true iff X is a cheap shift without a sign extend. */ static bool aarch64_cheap_mult_shift_p (rtx x) { rtx op0, op1; op0 = XEXP (x, 0); op1 = XEXP (x, 1); if (!(aarch64_tune_params.extra_tuning_flags & AARCH64_EXTRA_TUNE_CHEAP_SHIFT_EXTEND)) return false; if (GET_CODE (op0) == SIGN_EXTEND) return false; if (GET_CODE (x) == ASHIFT && CONST_INT_P (op1) && UINTVAL (op1) <= 4) return true; if (GET_CODE (x) != MULT || !CONST_INT_P (op1)) return false; HOST_WIDE_INT l2 = exact_log2 (INTVAL (op1)); if (l2 > 0 && l2 <= 4) return true; return false; } /* Helper function for rtx cost calculation. Calculate the cost of a MULT or ASHIFT, which may be part of a compound PLUS/MINUS rtx. Return the calculated cost of the expression, recursing manually in to operands where needed. */ static int aarch64_rtx_mult_cost (rtx x, enum rtx_code code, int outer, bool speed) { rtx op0, op1; const struct cpu_cost_table *extra_cost = aarch64_tune_params.insn_extra_cost; int cost = 0; bool compound_p = (outer == PLUS || outer == MINUS); machine_mode mode = GET_MODE (x); gcc_checking_assert (code == MULT); op0 = XEXP (x, 0); op1 = XEXP (x, 1); if (VECTOR_MODE_P (mode)) mode = GET_MODE_INNER (mode); /* Integer multiply/fma. */ if (GET_MODE_CLASS (mode) == MODE_INT) { /* The multiply will be canonicalized as a shift, cost it as such. */ if (aarch64_shift_p (GET_CODE (x)) || (CONST_INT_P (op1) && exact_log2 (INTVAL (op1)) > 0)) { bool is_extend = GET_CODE (op0) == ZERO_EXTEND || GET_CODE (op0) == SIGN_EXTEND; if (speed) { if (compound_p) { /* If the shift is considered cheap, then don't add any cost. */ if (aarch64_cheap_mult_shift_p (x)) ; else if (REG_P (op1)) /* ARITH + shift-by-register. */ cost += extra_cost->alu.arith_shift_reg; else if (is_extend) /* ARITH + extended register. We don't have a cost field for ARITH+EXTEND+SHIFT, so use extend_arith here. */ cost += extra_cost->alu.extend_arith; else /* ARITH + shift-by-immediate. */ cost += extra_cost->alu.arith_shift; } else /* LSL (immediate). */ cost += extra_cost->alu.shift; } /* Strip extends as we will have costed them in the case above. */ if (is_extend) op0 = aarch64_strip_extend (op0, true); cost += rtx_cost (op0, VOIDmode, code, 0, speed); return cost; } /* MNEG or [US]MNEGL. Extract the NEG operand and indicate that it's a compound and let the below cases handle it. After all, MNEG is a special-case alias of MSUB. */ if (GET_CODE (op0) == NEG) { op0 = XEXP (op0, 0); compound_p = true; } /* Integer multiplies or FMAs have zero/sign extending variants. */ if ((GET_CODE (op0) == ZERO_EXTEND && GET_CODE (op1) == ZERO_EXTEND) || (GET_CODE (op0) == SIGN_EXTEND && GET_CODE (op1) == SIGN_EXTEND)) { cost += rtx_cost (XEXP (op0, 0), VOIDmode, MULT, 0, speed); cost += rtx_cost (XEXP (op1, 0), VOIDmode, MULT, 1, speed); if (speed) { if (compound_p) /* SMADDL/UMADDL/UMSUBL/SMSUBL. */ cost += extra_cost->mult[0].extend_add; else /* MUL/SMULL/UMULL. */ cost += extra_cost->mult[0].extend; } return cost; } /* This is either an integer multiply or a MADD. In both cases we want to recurse and cost the operands. */ cost += rtx_cost (op0, mode, MULT, 0, speed); cost += rtx_cost (op1, mode, MULT, 1, speed); if (speed) { if (compound_p) /* MADD/MSUB. */ cost += extra_cost->mult[mode == DImode].add; else /* MUL. */ cost += extra_cost->mult[mode == DImode].simple; } return cost; } else { if (speed) { /* Floating-point FMA/FMUL can also support negations of the operands, unless the rounding mode is upward or downward in which case FNMUL is different than FMUL with operand negation. */ bool neg0 = GET_CODE (op0) == NEG; bool neg1 = GET_CODE (op1) == NEG; if (compound_p || !flag_rounding_math || (neg0 && neg1)) { if (neg0) op0 = XEXP (op0, 0); if (neg1) op1 = XEXP (op1, 0); } if (compound_p) /* FMADD/FNMADD/FNMSUB/FMSUB. */ cost += extra_cost->fp[mode == DFmode].fma; else /* FMUL/FNMUL. */ cost += extra_cost->fp[mode == DFmode].mult; } cost += rtx_cost (op0, mode, MULT, 0, speed); cost += rtx_cost (op1, mode, MULT, 1, speed); return cost; } } static int aarch64_address_cost (rtx x, machine_mode mode, addr_space_t as ATTRIBUTE_UNUSED, bool speed) { enum rtx_code c = GET_CODE (x); const struct cpu_addrcost_table *addr_cost = aarch64_tune_params.addr_cost; struct aarch64_address_info info; int cost = 0; info.shift = 0; if (!aarch64_classify_address (&info, x, mode, false)) { if (GET_CODE (x) == CONST || GET_CODE (x) == SYMBOL_REF) { /* This is a CONST or SYMBOL ref which will be split in a different way depending on the code model in use. Cost it through the generic infrastructure. */ int cost_symbol_ref = rtx_cost (x, Pmode, MEM, 1, speed); /* Divide through by the cost of one instruction to bring it to the same units as the address costs. */ cost_symbol_ref /= COSTS_N_INSNS (1); /* The cost is then the cost of preparing the address, followed by an immediate (possibly 0) offset. */ return cost_symbol_ref + addr_cost->imm_offset; } else { /* This is most likely a jump table from a case statement. */ return addr_cost->register_offset; } } switch (info.type) { case ADDRESS_LO_SUM: case ADDRESS_SYMBOLIC: case ADDRESS_REG_IMM: cost += addr_cost->imm_offset; break; case ADDRESS_REG_WB: if (c == PRE_INC || c == PRE_DEC || c == PRE_MODIFY) cost += addr_cost->pre_modify; else if (c == POST_INC || c == POST_DEC || c == POST_MODIFY) cost += addr_cost->post_modify; else gcc_unreachable (); break; case ADDRESS_REG_REG: cost += addr_cost->register_offset; break; case ADDRESS_REG_SXTW: cost += addr_cost->register_sextend; break; case ADDRESS_REG_UXTW: cost += addr_cost->register_zextend; break; default: gcc_unreachable (); } if (info.shift > 0) { /* For the sake of calculating the cost of the shifted register component, we can treat same sized modes in the same way. */ if (known_eq (GET_MODE_BITSIZE (mode), 16)) cost += addr_cost->addr_scale_costs.hi; else if (known_eq (GET_MODE_BITSIZE (mode), 32)) cost += addr_cost->addr_scale_costs.si; else if (known_eq (GET_MODE_BITSIZE (mode), 64)) cost += addr_cost->addr_scale_costs.di; else /* We can't tell, or this is a 128-bit vector. */ cost += addr_cost->addr_scale_costs.ti; } return cost; } /* Return the cost of a branch. If SPEED_P is true then the compiler is optimizing for speed. If PREDICTABLE_P is true then the branch is predicted to be taken. */ int aarch64_branch_cost (bool speed_p, bool predictable_p) { /* When optimizing for speed, use the cost of unpredictable branches. */ const struct cpu_branch_cost *branch_costs = aarch64_tune_params.branch_costs; if (!speed_p || predictable_p) return branch_costs->predictable; else return branch_costs->unpredictable; } /* Return true if the RTX X in mode MODE is a zero or sign extract usable in an ADD or SUB (extended register) instruction. */ static bool aarch64_rtx_arith_op_extract_p (rtx x, scalar_int_mode mode) { /* Catch add with a sign extract. This is add__multp2. */ if (GET_CODE (x) == SIGN_EXTRACT || GET_CODE (x) == ZERO_EXTRACT) { rtx op0 = XEXP (x, 0); rtx op1 = XEXP (x, 1); rtx op2 = XEXP (x, 2); if (GET_CODE (op0) == MULT && CONST_INT_P (op1) && op2 == const0_rtx && CONST_INT_P (XEXP (op0, 1)) && aarch64_is_extend_from_extract (mode, XEXP (op0, 1), op1)) { return true; } } /* The simple case , XD, XN, XM, [us]xt. No shift. */ else if (GET_CODE (x) == SIGN_EXTEND || GET_CODE (x) == ZERO_EXTEND) return REG_P (XEXP (x, 0)); return false; } static bool aarch64_frint_unspec_p (unsigned int u) { switch (u) { case UNSPEC_FRINTZ: case UNSPEC_FRINTP: case UNSPEC_FRINTM: case UNSPEC_FRINTA: case UNSPEC_FRINTN: case UNSPEC_FRINTX: case UNSPEC_FRINTI: return true; default: return false; } } /* Return true iff X is an rtx that will match an extr instruction i.e. as described in the *extr5_insn family of patterns. OP0 and OP1 will be set to the operands of the shifts involved on success and will be NULL_RTX otherwise. */ static bool aarch64_extr_rtx_p (rtx x, rtx *res_op0, rtx *res_op1) { rtx op0, op1; scalar_int_mode mode; if (!is_a (GET_MODE (x), &mode)) return false; *res_op0 = NULL_RTX; *res_op1 = NULL_RTX; if (GET_CODE (x) != IOR) return false; op0 = XEXP (x, 0); op1 = XEXP (x, 1); if ((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT) || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT)) { /* Canonicalise locally to ashift in op0, lshiftrt in op1. */ if (GET_CODE (op1) == ASHIFT) std::swap (op0, op1); if (!CONST_INT_P (XEXP (op0, 1)) || !CONST_INT_P (XEXP (op1, 1))) return false; unsigned HOST_WIDE_INT shft_amnt_0 = UINTVAL (XEXP (op0, 1)); unsigned HOST_WIDE_INT shft_amnt_1 = UINTVAL (XEXP (op1, 1)); if (shft_amnt_0 < GET_MODE_BITSIZE (mode) && shft_amnt_0 + shft_amnt_1 == GET_MODE_BITSIZE (mode)) { *res_op0 = XEXP (op0, 0); *res_op1 = XEXP (op1, 0); return true; } } return false; } /* Calculate the cost of calculating (if_then_else (OP0) (OP1) (OP2)), storing it in *COST. Result is true if the total cost of the operation has now been calculated. */ static bool aarch64_if_then_else_costs (rtx op0, rtx op1, rtx op2, int *cost, bool speed) { rtx inner; rtx comparator; enum rtx_code cmpcode; if (COMPARISON_P (op0)) { inner = XEXP (op0, 0); comparator = XEXP (op0, 1); cmpcode = GET_CODE (op0); } else { inner = op0; comparator = const0_rtx; cmpcode = NE; } if (GET_CODE (op1) == PC || GET_CODE (op2) == PC) { /* Conditional branch. */ if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_CC) return true; else { if (cmpcode == NE || cmpcode == EQ) { if (comparator == const0_rtx) { /* TBZ/TBNZ/CBZ/CBNZ. */ if (GET_CODE (inner) == ZERO_EXTRACT) /* TBZ/TBNZ. */ *cost += rtx_cost (XEXP (inner, 0), VOIDmode, ZERO_EXTRACT, 0, speed); else /* CBZ/CBNZ. */ *cost += rtx_cost (inner, VOIDmode, cmpcode, 0, speed); return true; } } else if (cmpcode == LT || cmpcode == GE) { /* TBZ/TBNZ. */ if (comparator == const0_rtx) return true; } } } else if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_CC) { /* CCMP. */ if (GET_CODE (op1) == COMPARE) { /* Increase cost of CCMP reg, 0, imm, CC to prefer CMP reg, 0. */ if (XEXP (op1, 1) == const0_rtx) *cost += 1; if (speed) { machine_mode mode = GET_MODE (XEXP (op1, 0)); const struct cpu_cost_table *extra_cost = aarch64_tune_params.insn_extra_cost; if (GET_MODE_CLASS (mode) == MODE_INT) *cost += extra_cost->alu.arith; else *cost += extra_cost->fp[mode == DFmode].compare; } return true; } /* It's a conditional operation based on the status flags, so it must be some flavor of CSEL. */ /* CSNEG, CSINV, and CSINC are handled for free as part of CSEL. */ if (GET_CODE (op1) == NEG || GET_CODE (op1) == NOT || (GET_CODE (op1) == PLUS && XEXP (op1, 1) == const1_rtx)) op1 = XEXP (op1, 0); else if (GET_CODE (op1) == ZERO_EXTEND && GET_CODE (op2) == ZERO_EXTEND) { /* CSEL with zero-extension (*cmovdi_insn_uxtw). */ op1 = XEXP (op1, 0); op2 = XEXP (op2, 0); } *cost += rtx_cost (op1, VOIDmode, IF_THEN_ELSE, 1, speed); *cost += rtx_cost (op2, VOIDmode, IF_THEN_ELSE, 2, speed); return true; } /* We don't know what this is, cost all operands. */ return false; } /* Check whether X is a bitfield operation of the form shift + extend that maps down to a UBFIZ/SBFIZ/UBFX/SBFX instruction. If so, return the operand to which the bitfield operation is applied. Otherwise return NULL_RTX. */ static rtx aarch64_extend_bitfield_pattern_p (rtx x) { rtx_code outer_code = GET_CODE (x); machine_mode outer_mode = GET_MODE (x); if (outer_code != ZERO_EXTEND && outer_code != SIGN_EXTEND && outer_mode != SImode && outer_mode != DImode) return NULL_RTX; rtx inner = XEXP (x, 0); rtx_code inner_code = GET_CODE (inner); machine_mode inner_mode = GET_MODE (inner); rtx op = NULL_RTX; switch (inner_code) { case ASHIFT: if (CONST_INT_P (XEXP (inner, 1)) && (inner_mode == QImode || inner_mode == HImode)) op = XEXP (inner, 0); break; case LSHIFTRT: if (outer_code == ZERO_EXTEND && CONST_INT_P (XEXP (inner, 1)) && (inner_mode == QImode || inner_mode == HImode)) op = XEXP (inner, 0); break; case ASHIFTRT: if (outer_code == SIGN_EXTEND && CONST_INT_P (XEXP (inner, 1)) && (inner_mode == QImode || inner_mode == HImode)) op = XEXP (inner, 0); break; default: break; } return op; } /* Return true if the mask and a shift amount from an RTX of the form (x << SHFT_AMNT) & MASK are valid to combine into a UBFIZ instruction of mode MODE. See the *andim_ashift_bfiz pattern. */ bool aarch64_mask_and_shift_for_ubfiz_p (scalar_int_mode mode, rtx mask, rtx shft_amnt) { return CONST_INT_P (mask) && CONST_INT_P (shft_amnt) && INTVAL (shft_amnt) < GET_MODE_BITSIZE (mode) && exact_log2 ((INTVAL (mask) >> INTVAL (shft_amnt)) + 1) >= 0 && (INTVAL (mask) & ((1 << INTVAL (shft_amnt)) - 1)) == 0; } /* Calculate the cost of calculating X, storing it in *COST. Result is true if the total cost of the operation has now been calculated. */ static bool aarch64_rtx_costs (rtx x, machine_mode mode, int outer ATTRIBUTE_UNUSED, int param ATTRIBUTE_UNUSED, int *cost, bool speed) { rtx op0, op1, op2; const struct cpu_cost_table *extra_cost = aarch64_tune_params.insn_extra_cost; int code = GET_CODE (x); scalar_int_mode int_mode; /* By default, assume that everything has equivalent cost to the cheapest instruction. Any additional costs are applied as a delta above this default. */ *cost = COSTS_N_INSNS (1); switch (code) { case SET: /* The cost depends entirely on the operands to SET. */ *cost = 0; op0 = SET_DEST (x); op1 = SET_SRC (x); switch (GET_CODE (op0)) { case MEM: if (speed) { rtx address = XEXP (op0, 0); if (VECTOR_MODE_P (mode)) *cost += extra_cost->ldst.storev; else if (GET_MODE_CLASS (mode) == MODE_INT) *cost += extra_cost->ldst.store; else if (mode == SFmode) *cost += extra_cost->ldst.storef; else if (mode == DFmode) *cost += extra_cost->ldst.stored; *cost += COSTS_N_INSNS (aarch64_address_cost (address, mode, 0, speed)); } *cost += rtx_cost (op1, mode, SET, 1, speed); return true; case SUBREG: if (! REG_P (SUBREG_REG (op0))) *cost += rtx_cost (SUBREG_REG (op0), VOIDmode, SET, 0, speed); /* Fall through. */ case REG: /* The cost is one per vector-register copied. */ if (VECTOR_MODE_P (GET_MODE (op0)) && REG_P (op1)) { int nregs = aarch64_hard_regno_nregs (V0_REGNUM, GET_MODE (op0)); *cost = COSTS_N_INSNS (nregs); } /* const0_rtx is in general free, but we will use an instruction to set a register to 0. */ else if (REG_P (op1) || op1 == const0_rtx) { /* The cost is 1 per register copied. */ int nregs = aarch64_hard_regno_nregs (R0_REGNUM, GET_MODE (op0)); *cost = COSTS_N_INSNS (nregs); } else /* Cost is just the cost of the RHS of the set. */ *cost += rtx_cost (op1, mode, SET, 1, speed); return true; case ZERO_EXTRACT: case SIGN_EXTRACT: /* Bit-field insertion. Strip any redundant widening of the RHS to meet the width of the target. */ if (GET_CODE (op1) == SUBREG) op1 = SUBREG_REG (op1); if ((GET_CODE (op1) == ZERO_EXTEND || GET_CODE (op1) == SIGN_EXTEND) && CONST_INT_P (XEXP (op0, 1)) && is_a (GET_MODE (XEXP (op1, 0)), &int_mode) && GET_MODE_BITSIZE (int_mode) >= INTVAL (XEXP (op0, 1))) op1 = XEXP (op1, 0); if (CONST_INT_P (op1)) { /* MOV immediate is assumed to always be cheap. */ *cost = COSTS_N_INSNS (1); } else { /* BFM. */ if (speed) *cost += extra_cost->alu.bfi; *cost += rtx_cost (op1, VOIDmode, (enum rtx_code) code, 1, speed); } return true; default: /* We can't make sense of this, assume default cost. */ *cost = COSTS_N_INSNS (1); return false; } return false; case CONST_INT: /* If an instruction can incorporate a constant within the instruction, the instruction's expression avoids calling rtx_cost() on the constant. If rtx_cost() is called on a constant, then it is usually because the constant must be moved into a register by one or more instructions. The exception is constant 0, which can be expressed as XZR/WZR and is therefore free. The exception to this is if we have (set (reg) (const0_rtx)) in which case we must cost the move. However, we can catch that when we cost the SET, so we don't need to consider that here. */ if (x == const0_rtx) *cost = 0; else { /* To an approximation, building any other constant is proportionally expensive to the number of instructions required to build that constant. This is true whether we are compiling for SPEED or otherwise. */ if (!is_a (mode, &int_mode)) int_mode = word_mode; *cost = COSTS_N_INSNS (aarch64_internal_mov_immediate (NULL_RTX, x, false, int_mode)); } return true; case CONST_DOUBLE: /* First determine number of instructions to do the move as an integer constant. */ if (!aarch64_float_const_representable_p (x) && !aarch64_can_const_movi_rtx_p (x, mode) && aarch64_float_const_rtx_p (x)) { unsigned HOST_WIDE_INT ival; bool succeed = aarch64_reinterpret_float_as_int (x, &ival); gcc_assert (succeed); scalar_int_mode imode = (mode == HFmode ? SImode : int_mode_for_mode (mode).require ()); int ncost = aarch64_internal_mov_immediate (NULL_RTX, gen_int_mode (ival, imode), false, imode); *cost += COSTS_N_INSNS (ncost); return true; } if (speed) { /* mov[df,sf]_aarch64. */ if (aarch64_float_const_representable_p (x)) /* FMOV (scalar immediate). */ *cost += extra_cost->fp[mode == DFmode].fpconst; else if (!aarch64_float_const_zero_rtx_p (x)) { /* This will be a load from memory. */ if (mode == DFmode) *cost += extra_cost->ldst.loadd; else *cost += extra_cost->ldst.loadf; } else /* Otherwise this is +0.0. We get this using MOVI d0, #0 or MOV v0.s[0], wzr - neither of which are modeled by the cost tables. Just use the default cost. */ { } } return true; case MEM: if (speed) { /* For loads we want the base cost of a load, plus an approximation for the additional cost of the addressing mode. */ rtx address = XEXP (x, 0); if (VECTOR_MODE_P (mode)) *cost += extra_cost->ldst.loadv; else if (GET_MODE_CLASS (mode) == MODE_INT) *cost += extra_cost->ldst.load; else if (mode == SFmode) *cost += extra_cost->ldst.loadf; else if (mode == DFmode) *cost += extra_cost->ldst.loadd; *cost += COSTS_N_INSNS (aarch64_address_cost (address, mode, 0, speed)); } return true; case NEG: op0 = XEXP (x, 0); if (VECTOR_MODE_P (mode)) { if (speed) { /* FNEG. */ *cost += extra_cost->vect.alu; } return false; } if (GET_MODE_CLASS (mode) == MODE_INT) { if (GET_RTX_CLASS (GET_CODE (op0)) == RTX_COMPARE || GET_RTX_CLASS (GET_CODE (op0)) == RTX_COMM_COMPARE) { /* CSETM. */ *cost += rtx_cost (XEXP (op0, 0), VOIDmode, NEG, 0, speed); return true; } /* Cost this as SUB wzr, X. */ op0 = CONST0_RTX (mode); op1 = XEXP (x, 0); goto cost_minus; } if (GET_MODE_CLASS (mode) == MODE_FLOAT) { /* Support (neg(fma...)) as a single instruction only if sign of zeros is unimportant. This matches the decision making in aarch64.md. */ if (GET_CODE (op0) == FMA && !HONOR_SIGNED_ZEROS (GET_MODE (op0))) { /* FNMADD. */ *cost = rtx_cost (op0, mode, NEG, 0, speed); return true; } if (GET_CODE (op0) == MULT) { /* FNMUL. */ *cost = rtx_cost (op0, mode, NEG, 0, speed); return true; } if (speed) /* FNEG. */ *cost += extra_cost->fp[mode == DFmode].neg; return false; } return false; case CLRSB: case CLZ: if (speed) { if (VECTOR_MODE_P (mode)) *cost += extra_cost->vect.alu; else *cost += extra_cost->alu.clz; } return false; case COMPARE: op0 = XEXP (x, 0); op1 = XEXP (x, 1); if (op1 == const0_rtx && GET_CODE (op0) == AND) { x = op0; mode = GET_MODE (op0); goto cost_logic; } if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT) { /* TODO: A write to the CC flags possibly costs extra, this needs encoding in the cost tables. */ mode = GET_MODE (op0); /* ANDS. */ if (GET_CODE (op0) == AND) { x = op0; goto cost_logic; } if (GET_CODE (op0) == PLUS) { /* ADDS (and CMN alias). */ x = op0; goto cost_plus; } if (GET_CODE (op0) == MINUS) { /* SUBS. */ x = op0; goto cost_minus; } if (GET_CODE (op0) == ZERO_EXTRACT && op1 == const0_rtx && GET_MODE (x) == CC_NZmode && CONST_INT_P (XEXP (op0, 1)) && CONST_INT_P (XEXP (op0, 2))) { /* COMPARE of ZERO_EXTRACT form of TST-immediate. Handle it here directly rather than going to cost_logic since we know the immediate generated for the TST is valid so we can avoid creating an intermediate rtx for it only for costing purposes. */ if (speed) *cost += extra_cost->alu.logical; *cost += rtx_cost (XEXP (op0, 0), GET_MODE (op0), ZERO_EXTRACT, 0, speed); return true; } if (GET_CODE (op1) == NEG) { /* CMN. */ if (speed) *cost += extra_cost->alu.arith; *cost += rtx_cost (op0, mode, COMPARE, 0, speed); *cost += rtx_cost (XEXP (op1, 0), mode, NEG, 1, speed); return true; } /* CMP. Compare can freely swap the order of operands, and canonicalization puts the more complex operation first. But the integer MINUS logic expects the shift/extend operation in op1. */ if (! (REG_P (op0) || (GET_CODE (op0) == SUBREG && REG_P (SUBREG_REG (op0))))) { op0 = XEXP (x, 1); op1 = XEXP (x, 0); } goto cost_minus; } if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT) { /* FCMP. */ if (speed) *cost += extra_cost->fp[mode == DFmode].compare; if (CONST_DOUBLE_P (op1) && aarch64_float_const_zero_rtx_p (op1)) { *cost += rtx_cost (op0, VOIDmode, COMPARE, 0, speed); /* FCMP supports constant 0.0 for no extra cost. */ return true; } return false; } if (VECTOR_MODE_P (mode)) { /* Vector compare. */ if (speed) *cost += extra_cost->vect.alu; if (aarch64_float_const_zero_rtx_p (op1)) { /* Vector cm (eq|ge|gt|lt|le) supports constant 0.0 for no extra cost. */ return true; } return false; } return false; case MINUS: { op0 = XEXP (x, 0); op1 = XEXP (x, 1); cost_minus: *cost += rtx_cost (op0, mode, MINUS, 0, speed); /* Detect valid immediates. */ if ((GET_MODE_CLASS (mode) == MODE_INT || (GET_MODE_CLASS (mode) == MODE_CC && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT)) && CONST_INT_P (op1) && aarch64_uimm12_shift (INTVAL (op1))) { if (speed) /* SUB(S) (immediate). */ *cost += extra_cost->alu.arith; return true; } /* Look for SUB (extended register). */ if (is_a (mode, &int_mode) && aarch64_rtx_arith_op_extract_p (op1, int_mode)) { if (speed) *cost += extra_cost->alu.extend_arith; op1 = aarch64_strip_extend (op1, true); *cost += rtx_cost (op1, VOIDmode, (enum rtx_code) GET_CODE (op1), 0, speed); return true; } rtx new_op1 = aarch64_strip_extend (op1, false); /* Cost this as an FMA-alike operation. */ if ((GET_CODE (new_op1) == MULT || aarch64_shift_p (GET_CODE (new_op1))) && code != COMPARE) { *cost += aarch64_rtx_mult_cost (new_op1, MULT, (enum rtx_code) code, speed); return true; } *cost += rtx_cost (new_op1, VOIDmode, MINUS, 1, speed); if (speed) { if (VECTOR_MODE_P (mode)) { /* Vector SUB. */ *cost += extra_cost->vect.alu; } else if (GET_MODE_CLASS (mode) == MODE_INT) { /* SUB(S). */ *cost += extra_cost->alu.arith; } else if (GET_MODE_CLASS (mode) == MODE_FLOAT) { /* FSUB. */ *cost += extra_cost->fp[mode == DFmode].addsub; } } return true; } case PLUS: { rtx new_op0; op0 = XEXP (x, 0); op1 = XEXP (x, 1); cost_plus: if (GET_RTX_CLASS (GET_CODE (op0)) == RTX_COMPARE || GET_RTX_CLASS (GET_CODE (op0)) == RTX_COMM_COMPARE) { /* CSINC. */ *cost += rtx_cost (XEXP (op0, 0), mode, PLUS, 0, speed); *cost += rtx_cost (op1, mode, PLUS, 1, speed); return true; } if (GET_MODE_CLASS (mode) == MODE_INT && ((CONST_INT_P (op1) && aarch64_uimm12_shift (INTVAL (op1))) || aarch64_sve_addvl_addpl_immediate (op1, mode))) { *cost += rtx_cost (op0, mode, PLUS, 0, speed); if (speed) /* ADD (immediate). */ *cost += extra_cost->alu.arith; return true; } *cost += rtx_cost (op1, mode, PLUS, 1, speed); /* Look for ADD (extended register). */ if (is_a (mode, &int_mode) && aarch64_rtx_arith_op_extract_p (op0, int_mode)) { if (speed) *cost += extra_cost->alu.extend_arith; op0 = aarch64_strip_extend (op0, true); *cost += rtx_cost (op0, VOIDmode, (enum rtx_code) GET_CODE (op0), 0, speed); return true; } /* Strip any extend, leave shifts behind as we will cost them through mult_cost. */ new_op0 = aarch64_strip_extend (op0, false); if (GET_CODE (new_op0) == MULT || aarch64_shift_p (GET_CODE (new_op0))) { *cost += aarch64_rtx_mult_cost (new_op0, MULT, PLUS, speed); return true; } *cost += rtx_cost (new_op0, VOIDmode, PLUS, 0, speed); if (speed) { if (VECTOR_MODE_P (mode)) { /* Vector ADD. */ *cost += extra_cost->vect.alu; } else if (GET_MODE_CLASS (mode) == MODE_INT) { /* ADD. */ *cost += extra_cost->alu.arith; } else if (GET_MODE_CLASS (mode) == MODE_FLOAT) { /* FADD. */ *cost += extra_cost->fp[mode == DFmode].addsub; } } return true; } case BSWAP: *cost = COSTS_N_INSNS (1); if (speed) { if (VECTOR_MODE_P (mode)) *cost += extra_cost->vect.alu; else *cost += extra_cost->alu.rev; } return false; case IOR: if (aarch_rev16_p (x)) { *cost = COSTS_N_INSNS (1); if (speed) { if (VECTOR_MODE_P (mode)) *cost += extra_cost->vect.alu; else *cost += extra_cost->alu.rev; } return true; } if (aarch64_extr_rtx_p (x, &op0, &op1)) { *cost += rtx_cost (op0, mode, IOR, 0, speed); *cost += rtx_cost (op1, mode, IOR, 1, speed); if (speed) *cost += extra_cost->alu.shift; return true; } /* Fall through. */ case XOR: case AND: cost_logic: op0 = XEXP (x, 0); op1 = XEXP (x, 1); if (VECTOR_MODE_P (mode)) { if (speed) *cost += extra_cost->vect.alu; return true; } if (code == AND && GET_CODE (op0) == MULT && CONST_INT_P (XEXP (op0, 1)) && CONST_INT_P (op1) && aarch64_uxt_size (exact_log2 (INTVAL (XEXP (op0, 1))), INTVAL (op1)) != 0) { /* This is a UBFM/SBFM. */ *cost += rtx_cost (XEXP (op0, 0), mode, ZERO_EXTRACT, 0, speed); if (speed) *cost += extra_cost->alu.bfx; return true; } if (is_int_mode (mode, &int_mode)) { if (CONST_INT_P (op1)) { /* We have a mask + shift version of a UBFIZ i.e. the *andim_ashift_bfiz pattern. */ if (GET_CODE (op0) == ASHIFT && aarch64_mask_and_shift_for_ubfiz_p (int_mode, op1, XEXP (op0, 1))) { *cost += rtx_cost (XEXP (op0, 0), int_mode, (enum rtx_code) code, 0, speed); if (speed) *cost += extra_cost->alu.bfx; return true; } else if (aarch64_bitmask_imm (INTVAL (op1), int_mode)) { /* We possibly get the immediate for free, this is not modelled. */ *cost += rtx_cost (op0, int_mode, (enum rtx_code) code, 0, speed); if (speed) *cost += extra_cost->alu.logical; return true; } } else { rtx new_op0 = op0; /* Handle ORN, EON, or BIC. */ if (GET_CODE (op0) == NOT) op0 = XEXP (op0, 0); new_op0 = aarch64_strip_shift (op0); /* If we had a shift on op0 then this is a logical-shift- by-register/immediate operation. Otherwise, this is just a logical operation. */ if (speed) { if (new_op0 != op0) { /* Shift by immediate. */ if (CONST_INT_P (XEXP (op0, 1))) *cost += extra_cost->alu.log_shift; else *cost += extra_cost->alu.log_shift_reg; } else *cost += extra_cost->alu.logical; } /* In both cases we want to cost both operands. */ *cost += rtx_cost (new_op0, int_mode, (enum rtx_code) code, 0, speed); *cost += rtx_cost (op1, int_mode, (enum rtx_code) code, 1, speed); return true; } } return false; case NOT: x = XEXP (x, 0); op0 = aarch64_strip_shift (x); if (VECTOR_MODE_P (mode)) { /* Vector NOT. */ *cost += extra_cost->vect.alu; return false; } /* MVN-shifted-reg. */ if (op0 != x) { *cost += rtx_cost (op0, mode, (enum rtx_code) code, 0, speed); if (speed) *cost += extra_cost->alu.log_shift; return true; } /* EON can have two forms: (xor (not a) b) but also (not (xor a b)). Handle the second form here taking care that 'a' in the above can be a shift. */ else if (GET_CODE (op0) == XOR) { rtx newop0 = XEXP (op0, 0); rtx newop1 = XEXP (op0, 1); rtx op0_stripped = aarch64_strip_shift (newop0); *cost += rtx_cost (newop1, mode, (enum rtx_code) code, 1, speed); *cost += rtx_cost (op0_stripped, mode, XOR, 0, speed); if (speed) { if (op0_stripped != newop0) *cost += extra_cost->alu.log_shift; else *cost += extra_cost->alu.logical; } return true; } /* MVN. */ if (speed) *cost += extra_cost->alu.logical; return false; case ZERO_EXTEND: op0 = XEXP (x, 0); /* If a value is written in SI mode, then zero extended to DI mode, the operation will in general be free as a write to a 'w' register implicitly zeroes the upper bits of an 'x' register. However, if this is (set (reg) (zero_extend (reg))) we must cost the explicit register move. */ if (mode == DImode && GET_MODE (op0) == SImode && outer == SET) { int op_cost = rtx_cost (op0, VOIDmode, ZERO_EXTEND, 0, speed); /* If OP_COST is non-zero, then the cost of the zero extend is effectively the cost of the inner operation. Otherwise we have a MOV instruction and we take the cost from the MOV itself. This is true independently of whether we are optimizing for space or time. */ if (op_cost) *cost = op_cost; return true; } else if (MEM_P (op0)) { /* All loads can zero extend to any size for free. */ *cost = rtx_cost (op0, VOIDmode, ZERO_EXTEND, param, speed); return true; } op0 = aarch64_extend_bitfield_pattern_p (x); if (op0) { *cost += rtx_cost (op0, mode, ZERO_EXTEND, 0, speed); if (speed) *cost += extra_cost->alu.bfx; return true; } if (speed) { if (VECTOR_MODE_P (mode)) { /* UMOV. */ *cost += extra_cost->vect.alu; } else { /* We generate an AND instead of UXTB/UXTH. */ *cost += extra_cost->alu.logical; } } return false; case SIGN_EXTEND: if (MEM_P (XEXP (x, 0))) { /* LDRSH. */ if (speed) { rtx address = XEXP (XEXP (x, 0), 0); *cost += extra_cost->ldst.load_sign_extend; *cost += COSTS_N_INSNS (aarch64_address_cost (address, mode, 0, speed)); } return true; } op0 = aarch64_extend_bitfield_pattern_p (x); if (op0) { *cost += rtx_cost (op0, mode, SIGN_EXTEND, 0, speed); if (speed) *cost += extra_cost->alu.bfx; return true; } if (speed) { if (VECTOR_MODE_P (mode)) *cost += extra_cost->vect.alu; else *cost += extra_cost->alu.extend; } return false; case ASHIFT: op0 = XEXP (x, 0); op1 = XEXP (x, 1); if (CONST_INT_P (op1)) { if (speed) { if (VECTOR_MODE_P (mode)) { /* Vector shift (immediate). */ *cost += extra_cost->vect.alu; } else { /* LSL (immediate), UBMF, UBFIZ and friends. These are all aliases. */ *cost += extra_cost->alu.shift; } } /* We can incorporate zero/sign extend for free. */ if (GET_CODE (op0) == ZERO_EXTEND || GET_CODE (op0) == SIGN_EXTEND) op0 = XEXP (op0, 0); *cost += rtx_cost (op0, VOIDmode, ASHIFT, 0, speed); return true; } else { if (VECTOR_MODE_P (mode)) { if (speed) /* Vector shift (register). */ *cost += extra_cost->vect.alu; } else { if (speed) /* LSLV. */ *cost += extra_cost->alu.shift_reg; if (GET_CODE (op1) == AND && REG_P (XEXP (op1, 0)) && CONST_INT_P (XEXP (op1, 1)) && known_eq (INTVAL (XEXP (op1, 1)), GET_MODE_BITSIZE (mode) - 1)) { *cost += rtx_cost (op0, mode, (rtx_code) code, 0, speed); /* We already demanded XEXP (op1, 0) to be REG_P, so don't recurse into it. */ return true; } } return false; /* All arguments need to be in registers. */ } case ROTATE: case ROTATERT: case LSHIFTRT: case ASHIFTRT: op0 = XEXP (x, 0); op1 = XEXP (x, 1); if (CONST_INT_P (op1)) { /* ASR (immediate) and friends. */ if (speed) { if (VECTOR_MODE_P (mode)) *cost += extra_cost->vect.alu; else *cost += extra_cost->alu.shift; } *cost += rtx_cost (op0, mode, (enum rtx_code) code, 0, speed); return true; } else { if (VECTOR_MODE_P (mode)) { if (speed) /* Vector shift (register). */ *cost += extra_cost->vect.alu; } else { if (speed) /* ASR (register) and friends. */ *cost += extra_cost->alu.shift_reg; if (GET_CODE (op1) == AND && REG_P (XEXP (op1, 0)) && CONST_INT_P (XEXP (op1, 1)) && known_eq (INTVAL (XEXP (op1, 1)), GET_MODE_BITSIZE (mode) - 1)) { *cost += rtx_cost (op0, mode, (rtx_code) code, 0, speed); /* We already demanded XEXP (op1, 0) to be REG_P, so don't recurse into it. */ return true; } } return false; /* All arguments need to be in registers. */ } case SYMBOL_REF: if (aarch64_cmodel == AARCH64_CMODEL_LARGE || aarch64_cmodel == AARCH64_CMODEL_SMALL_SPIC) { /* LDR. */ if (speed) *cost += extra_cost->ldst.load; } else if (aarch64_cmodel == AARCH64_CMODEL_SMALL || aarch64_cmodel == AARCH64_CMODEL_SMALL_PIC) { /* ADRP, followed by ADD. */ *cost += COSTS_N_INSNS (1); if (speed) *cost += 2 * extra_cost->alu.arith; } else if (aarch64_cmodel == AARCH64_CMODEL_TINY || aarch64_cmodel == AARCH64_CMODEL_TINY_PIC) { /* ADR. */ if (speed) *cost += extra_cost->alu.arith; } if (flag_pic) { /* One extra load instruction, after accessing the GOT. */ *cost += COSTS_N_INSNS (1); if (speed) *cost += extra_cost->ldst.load; } return true; case HIGH: case LO_SUM: /* ADRP/ADD (immediate). */ if (speed) *cost += extra_cost->alu.arith; return true; case ZERO_EXTRACT: case SIGN_EXTRACT: /* UBFX/SBFX. */ if (speed) { if (VECTOR_MODE_P (mode)) *cost += extra_cost->vect.alu; else *cost += extra_cost->alu.bfx; } /* We can trust that the immediates used will be correct (there are no by-register forms), so we need only cost op0. */ *cost += rtx_cost (XEXP (x, 0), VOIDmode, (enum rtx_code) code, 0, speed); return true; case MULT: *cost += aarch64_rtx_mult_cost (x, MULT, 0, speed); /* aarch64_rtx_mult_cost always handles recursion to its operands. */ return true; case MOD: /* We can expand signed mod by power of 2 using a NEGS, two parallel ANDs and a CSNEG. Assume here that CSNEG is the same as the cost of an unconditional negate. This case should only ever be reached through the set_smod_pow2_cheap check in expmed.c. */ if (CONST_INT_P (XEXP (x, 1)) && exact_log2 (INTVAL (XEXP (x, 1))) > 0 && (mode == SImode || mode == DImode)) { /* We expand to 4 instructions. Reset the baseline. */ *cost = COSTS_N_INSNS (4); if (speed) *cost += 2 * extra_cost->alu.logical + 2 * extra_cost->alu.arith; return true; } /* Fall-through. */ case UMOD: if (speed) { /* Slighly prefer UMOD over SMOD. */ if (VECTOR_MODE_P (mode)) *cost += extra_cost->vect.alu; else if (GET_MODE_CLASS (mode) == MODE_INT) *cost += (extra_cost->mult[mode == DImode].add + extra_cost->mult[mode == DImode].idiv + (code == MOD ? 1 : 0)); } return false; /* All arguments need to be in registers. */ case DIV: case UDIV: case SQRT: if (speed) { if (VECTOR_MODE_P (mode)) *cost += extra_cost->vect.alu; else if (GET_MODE_CLASS (mode) == MODE_INT) /* There is no integer SQRT, so only DIV and UDIV can get here. */ *cost += (extra_cost->mult[mode == DImode].idiv /* Slighly prefer UDIV over SDIV. */ + (code == DIV ? 1 : 0)); else *cost += extra_cost->fp[mode == DFmode].div; } return false; /* All arguments need to be in registers. */ case IF_THEN_ELSE: return aarch64_if_then_else_costs (XEXP (x, 0), XEXP (x, 1), XEXP (x, 2), cost, speed); case EQ: case NE: case GT: case GTU: case LT: case LTU: case GE: case GEU: case LE: case LEU: return false; /* All arguments must be in registers. */ case FMA: op0 = XEXP (x, 0); op1 = XEXP (x, 1); op2 = XEXP (x, 2); if (speed) { if (VECTOR_MODE_P (mode)) *cost += extra_cost->vect.alu; else *cost += extra_cost->fp[mode == DFmode].fma; } /* FMSUB, FNMADD, and FNMSUB are free. */ if (GET_CODE (op0) == NEG) op0 = XEXP (op0, 0); if (GET_CODE (op2) == NEG) op2 = XEXP (op2, 0); /* aarch64_fnma4_elt_to_64v2df has the NEG as operand 1, and the by-element operand as operand 0. */ if (GET_CODE (op1) == NEG) op1 = XEXP (op1, 0); /* Catch vector-by-element operations. The by-element operand can either be (vec_duplicate (vec_select (x))) or just (vec_select (x)), depending on whether we are multiplying by a vector or a scalar. Canonicalization is not very good in these cases, FMA4 will put the by-element operand as operand 0, FNMA4 will have it as operand 1. */ if (GET_CODE (op0) == VEC_DUPLICATE) op0 = XEXP (op0, 0); else if (GET_CODE (op1) == VEC_DUPLICATE) op1 = XEXP (op1, 0); if (GET_CODE (op0) == VEC_SELECT) op0 = XEXP (op0, 0); else if (GET_CODE (op1) == VEC_SELECT) op1 = XEXP (op1, 0); /* If the remaining parameters are not registers, get the cost to put them into registers. */ *cost += rtx_cost (op0, mode, FMA, 0, speed); *cost += rtx_cost (op1, mode, FMA, 1, speed); *cost += rtx_cost (op2, mode, FMA, 2, speed); return true; case FLOAT: case UNSIGNED_FLOAT: if (speed) *cost += extra_cost->fp[mode == DFmode].fromint; return false; case FLOAT_EXTEND: if (speed) { if (VECTOR_MODE_P (mode)) { /*Vector truncate. */ *cost += extra_cost->vect.alu; } else *cost += extra_cost->fp[mode == DFmode].widen; } return false; case FLOAT_TRUNCATE: if (speed) { if (VECTOR_MODE_P (mode)) { /*Vector conversion. */ *cost += extra_cost->vect.alu; } else *cost += extra_cost->fp[mode == DFmode].narrow; } return false; case FIX: case UNSIGNED_FIX: x = XEXP (x, 0); /* Strip the rounding part. They will all be implemented by the fcvt* family of instructions anyway. */ if (GET_CODE (x) == UNSPEC) { unsigned int uns_code = XINT (x, 1); if (uns_code == UNSPEC_FRINTA || uns_code == UNSPEC_FRINTM || uns_code == UNSPEC_FRINTN || uns_code == UNSPEC_FRINTP || uns_code == UNSPEC_FRINTZ) x = XVECEXP (x, 0, 0); } if (speed) { if (VECTOR_MODE_P (mode)) *cost += extra_cost->vect.alu; else *cost += extra_cost->fp[GET_MODE (x) == DFmode].toint; } /* We can combine fmul by a power of 2 followed by a fcvt into a single fixed-point fcvt. */ if (GET_CODE (x) == MULT && ((VECTOR_MODE_P (mode) && aarch64_vec_fpconst_pow_of_2 (XEXP (x, 1)) > 0) || aarch64_fpconst_pow_of_2 (XEXP (x, 1)) > 0)) { *cost += rtx_cost (XEXP (x, 0), VOIDmode, (rtx_code) code, 0, speed); return true; } *cost += rtx_cost (x, VOIDmode, (enum rtx_code) code, 0, speed); return true; case ABS: if (VECTOR_MODE_P (mode)) { /* ABS (vector). */ if (speed) *cost += extra_cost->vect.alu; } else if (GET_MODE_CLASS (mode) == MODE_FLOAT) { op0 = XEXP (x, 0); /* FABD, which is analogous to FADD. */ if (GET_CODE (op0) == MINUS) { *cost += rtx_cost (XEXP (op0, 0), mode, MINUS, 0, speed); *cost += rtx_cost (XEXP (op0, 1), mode, MINUS, 1, speed); if (speed) *cost += extra_cost->fp[mode == DFmode].addsub; return true; } /* Simple FABS is analogous to FNEG. */ if (speed) *cost += extra_cost->fp[mode == DFmode].neg; } else { /* Integer ABS will either be split to two arithmetic instructions, or will be an ABS (scalar), which we don't model. */ *cost = COSTS_N_INSNS (2); if (speed) *cost += 2 * extra_cost->alu.arith; } return false; case SMAX: case SMIN: if (speed) { if (VECTOR_MODE_P (mode)) *cost += extra_cost->vect.alu; else { /* FMAXNM/FMINNM/FMAX/FMIN. TODO: This may not be accurate for all implementations, but we do not model this in the cost tables. */ *cost += extra_cost->fp[mode == DFmode].addsub; } } return false; case UNSPEC: /* The floating point round to integer frint* instructions. */ if (aarch64_frint_unspec_p (XINT (x, 1))) { if (speed) *cost += extra_cost->fp[mode == DFmode].roundint; return false; } if (XINT (x, 1) == UNSPEC_RBIT) { if (speed) *cost += extra_cost->alu.rev; return false; } break; case TRUNCATE: /* Decompose muldi3_highpart. */ if (/* (truncate:DI */ mode == DImode /* (lshiftrt:TI */ && GET_MODE (XEXP (x, 0)) == TImode && GET_CODE (XEXP (x, 0)) == LSHIFTRT /* (mult:TI */ && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT /* (ANY_EXTEND:TI (reg:DI)) (ANY_EXTEND:TI (reg:DI))) */ && ((GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ZERO_EXTEND && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == ZERO_EXTEND) || (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == SIGN_EXTEND && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == SIGN_EXTEND)) && GET_MODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0)) == DImode && GET_MODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 1), 0)) == DImode /* (const_int 64) */ && CONST_INT_P (XEXP (XEXP (x, 0), 1)) && UINTVAL (XEXP (XEXP (x, 0), 1)) == 64) { /* UMULH/SMULH. */ if (speed) *cost += extra_cost->mult[mode == DImode].extend; *cost += rtx_cost (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0), mode, MULT, 0, speed); *cost += rtx_cost (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 1), 0), mode, MULT, 1, speed); return true; } /* Fall through. */ default: break; } if (dump_file && flag_aarch64_verbose_cost) fprintf (dump_file, "\nFailed to cost RTX. Assuming default cost.\n"); return true; } /* Wrapper around aarch64_rtx_costs, dumps the partial, or total cost calculated for X. This cost is stored in *COST. Returns true if the total cost of X was calculated. */ static bool aarch64_rtx_costs_wrapper (rtx x, machine_mode mode, int outer, int param, int *cost, bool speed) { bool result = aarch64_rtx_costs (x, mode, outer, param, cost, speed); if (dump_file && flag_aarch64_verbose_cost) { print_rtl_single (dump_file, x); fprintf (dump_file, "\n%s cost: %d (%s)\n", speed ? "Hot" : "Cold", *cost, result ? "final" : "partial"); } return result; } static int aarch64_register_move_cost (machine_mode mode, reg_class_t from_i, reg_class_t to_i) { enum reg_class from = (enum reg_class) from_i; enum reg_class to = (enum reg_class) to_i; const struct cpu_regmove_cost *regmove_cost = aarch64_tune_params.regmove_cost; /* Caller save and pointer regs are equivalent to GENERAL_REGS. */ if (to == TAILCALL_ADDR_REGS || to == POINTER_REGS) to = GENERAL_REGS; if (from == TAILCALL_ADDR_REGS || from == POINTER_REGS) from = GENERAL_REGS; /* Moving between GPR and stack cost is the same as GP2GP. */ if ((from == GENERAL_REGS && to == STACK_REG) || (to == GENERAL_REGS && from == STACK_REG)) return regmove_cost->GP2GP; /* To/From the stack register, we move via the gprs. */ if (to == STACK_REG || from == STACK_REG) return aarch64_register_move_cost (mode, from, GENERAL_REGS) + aarch64_register_move_cost (mode, GENERAL_REGS, to); if (known_eq (GET_MODE_SIZE (mode), 16)) { /* 128-bit operations on general registers require 2 instructions. */ if (from == GENERAL_REGS && to == GENERAL_REGS) return regmove_cost->GP2GP * 2; else if (from == GENERAL_REGS) return regmove_cost->GP2FP * 2; else if (to == GENERAL_REGS) return regmove_cost->FP2GP * 2; /* When AdvSIMD instructions are disabled it is not possible to move a 128-bit value directly between Q registers. This is handled in secondary reload. A general register is used as a scratch to move the upper DI value and the lower DI value is moved directly, hence the cost is the sum of three moves. */ if (! TARGET_SIMD) return regmove_cost->GP2FP + regmove_cost->FP2GP + regmove_cost->FP2FP; return regmove_cost->FP2FP; } if (from == GENERAL_REGS && to == GENERAL_REGS) return regmove_cost->GP2GP; else if (from == GENERAL_REGS) return regmove_cost->GP2FP; else if (to == GENERAL_REGS) return regmove_cost->FP2GP; return regmove_cost->FP2FP; } static int aarch64_memory_move_cost (machine_mode mode ATTRIBUTE_UNUSED, reg_class_t rclass ATTRIBUTE_UNUSED, bool in ATTRIBUTE_UNUSED) { return aarch64_tune_params.memmov_cost; } /* Return true if it is safe and beneficial to use the approximate rsqrt optabs to optimize 1.0/sqrt. */ static bool use_rsqrt_p (machine_mode mode) { return (!flag_trapping_math && flag_unsafe_math_optimizations && ((aarch64_tune_params.approx_modes->recip_sqrt & AARCH64_APPROX_MODE (mode)) || flag_mrecip_low_precision_sqrt)); } /* Function to decide when to use the approximate reciprocal square root builtin. */ static tree aarch64_builtin_reciprocal (tree fndecl) { machine_mode mode = TYPE_MODE (TREE_TYPE (fndecl)); if (!use_rsqrt_p (mode)) return NULL_TREE; return aarch64_builtin_rsqrt (DECL_FUNCTION_CODE (fndecl)); } /* Emit instruction sequence to compute either the approximate square root or its approximate reciprocal, depending on the flag RECP, and return whether the sequence was emitted or not. */ bool aarch64_emit_approx_sqrt (rtx dst, rtx src, bool recp) { machine_mode mode = GET_MODE (dst); if (GET_MODE_INNER (mode) == HFmode) { gcc_assert (!recp); return false; } if (!recp) { if (!(flag_mlow_precision_sqrt || (aarch64_tune_params.approx_modes->sqrt & AARCH64_APPROX_MODE (mode)))) return false; if (flag_finite_math_only || flag_trapping_math || !flag_unsafe_math_optimizations || optimize_function_for_size_p (cfun)) return false; } else /* Caller assumes we cannot fail. */ gcc_assert (use_rsqrt_p (mode)); machine_mode mmsk = mode_for_int_vector (mode).require (); rtx xmsk = gen_reg_rtx (mmsk); if (!recp) /* When calculating the approximate square root, compare the argument with 0.0 and create a mask. */ emit_insn (gen_rtx_SET (xmsk, gen_rtx_NEG (mmsk, gen_rtx_EQ (mmsk, src, CONST0_RTX (mode))))); /* Estimate the approximate reciprocal square root. */ rtx xdst = gen_reg_rtx (mode); emit_insn (gen_aarch64_rsqrte (mode, xdst, src)); /* Iterate over the series twice for SF and thrice for DF. */ int iterations = (GET_MODE_INNER (mode) == DFmode) ? 3 : 2; /* Optionally iterate over the series once less for faster performance while sacrificing the accuracy. */ if ((recp && flag_mrecip_low_precision_sqrt) || (!recp && flag_mlow_precision_sqrt)) iterations--; /* Iterate over the series to calculate the approximate reciprocal square root. */ rtx x1 = gen_reg_rtx (mode); while (iterations--) { rtx x2 = gen_reg_rtx (mode); emit_set_insn (x2, gen_rtx_MULT (mode, xdst, xdst)); emit_insn (gen_aarch64_rsqrts (mode, x1, src, x2)); if (iterations > 0) emit_set_insn (xdst, gen_rtx_MULT (mode, xdst, x1)); } if (!recp) { /* Qualify the approximate reciprocal square root when the argument is 0.0 by squashing the intermediary result to 0.0. */ rtx xtmp = gen_reg_rtx (mmsk); emit_set_insn (xtmp, gen_rtx_AND (mmsk, gen_rtx_NOT (mmsk, xmsk), gen_rtx_SUBREG (mmsk, xdst, 0))); emit_move_insn (xdst, gen_rtx_SUBREG (mode, xtmp, 0)); /* Calculate the approximate square root. */ emit_set_insn (xdst, gen_rtx_MULT (mode, xdst, src)); } /* Finalize the approximation. */ emit_set_insn (dst, gen_rtx_MULT (mode, xdst, x1)); return true; } /* Emit the instruction sequence to compute the approximation for the division of NUM by DEN in QUO and return whether the sequence was emitted or not. */ bool aarch64_emit_approx_div (rtx quo, rtx num, rtx den) { machine_mode mode = GET_MODE (quo); if (GET_MODE_INNER (mode) == HFmode) return false; bool use_approx_division_p = (flag_mlow_precision_div || (aarch64_tune_params.approx_modes->division & AARCH64_APPROX_MODE (mode))); if (!flag_finite_math_only || flag_trapping_math || !flag_unsafe_math_optimizations || optimize_function_for_size_p (cfun) || !use_approx_division_p) return false; if (!TARGET_SIMD && VECTOR_MODE_P (mode)) return false; /* Estimate the approximate reciprocal. */ rtx xrcp = gen_reg_rtx (mode); emit_insn (gen_aarch64_frecpe (mode, xrcp, den)); /* Iterate over the series twice for SF and thrice for DF. */ int iterations = (GET_MODE_INNER (mode) == DFmode) ? 3 : 2; /* Optionally iterate over the series once less for faster performance, while sacrificing the accuracy. */ if (flag_mlow_precision_div) iterations--; /* Iterate over the series to calculate the approximate reciprocal. */ rtx xtmp = gen_reg_rtx (mode); while (iterations--) { emit_insn (gen_aarch64_frecps (mode, xtmp, xrcp, den)); if (iterations > 0) emit_set_insn (xrcp, gen_rtx_MULT (mode, xrcp, xtmp)); } if (num != CONST1_RTX (mode)) { /* As the approximate reciprocal of DEN is already calculated, only calculate the approximate division when NUM is not 1.0. */ rtx xnum = force_reg (mode, num); emit_set_insn (xrcp, gen_rtx_MULT (mode, xrcp, xnum)); } /* Finalize the approximation. */ emit_set_insn (quo, gen_rtx_MULT (mode, xrcp, xtmp)); return true; } /* Return the number of instructions that can be issued per cycle. */ static int aarch64_sched_issue_rate (void) { return aarch64_tune_params.issue_rate; } static int aarch64_sched_first_cycle_multipass_dfa_lookahead (void) { int issue_rate = aarch64_sched_issue_rate (); return issue_rate > 1 && !sched_fusion ? issue_rate : 0; } /* Implement TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD as autopref_multipass_dfa_lookahead_guard from haifa-sched.c. It only has an effect if PARAM_SCHED_AUTOPREF_QUEUE_DEPTH > 0. */ static int aarch64_first_cycle_multipass_dfa_lookahead_guard (rtx_insn *insn, int ready_index) { return autopref_multipass_dfa_lookahead_guard (insn, ready_index); } /* Vectorizer cost model target hooks. */ /* Implement targetm.vectorize.builtin_vectorization_cost. */ static int aarch64_builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost, tree vectype, int misalign ATTRIBUTE_UNUSED) { unsigned elements; const cpu_vector_cost *costs = aarch64_tune_params.vec_costs; bool fp = false; if (vectype != NULL) fp = FLOAT_TYPE_P (vectype); switch (type_of_cost) { case scalar_stmt: return fp ? costs->scalar_fp_stmt_cost : costs->scalar_int_stmt_cost; case scalar_load: return costs->scalar_load_cost; case scalar_store: return costs->scalar_store_cost; case vector_stmt: return fp ? costs->vec_fp_stmt_cost : costs->vec_int_stmt_cost; case vector_load: return costs->vec_align_load_cost; case vector_store: return costs->vec_store_cost; case vec_to_scalar: return costs->vec_to_scalar_cost; case scalar_to_vec: return costs->scalar_to_vec_cost; case unaligned_load: case vector_gather_load: return costs->vec_unalign_load_cost; case unaligned_store: case vector_scatter_store: return costs->vec_unalign_store_cost; case cond_branch_taken: return costs->cond_taken_branch_cost; case cond_branch_not_taken: return costs->cond_not_taken_branch_cost; case vec_perm: return costs->vec_permute_cost; case vec_promote_demote: return fp ? costs->vec_fp_stmt_cost : costs->vec_int_stmt_cost; case vec_construct: elements = estimated_poly_value (TYPE_VECTOR_SUBPARTS (vectype)); return elements / 2 + 1; default: gcc_unreachable (); } } /* Implement targetm.vectorize.add_stmt_cost. */ static unsigned aarch64_add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind, struct _stmt_vec_info *stmt_info, int misalign, enum vect_cost_model_location where) { unsigned *cost = (unsigned *) data; unsigned retval = 0; if (flag_vect_cost_model) { tree vectype = stmt_info ? stmt_vectype (stmt_info) : NULL_TREE; int stmt_cost = aarch64_builtin_vectorization_cost (kind, vectype, misalign); /* Statements in an inner loop relative to the loop being vectorized are weighted more heavily. The value here is arbitrary and could potentially be improved with analysis. */ if (where == vect_body && stmt_info && stmt_in_inner_loop_p (stmt_info)) count *= 50; /* FIXME */ retval = (unsigned) (count * stmt_cost); cost[where] += retval; } return retval; } static void initialize_aarch64_code_model (struct gcc_options *); /* Parse the TO_PARSE string and put the architecture struct that it selects into RES and the architectural features into ISA_FLAGS. Return an aarch64_parse_opt_result describing the parse result. If there is an error parsing, RES and ISA_FLAGS are left unchanged. */ static enum aarch64_parse_opt_result aarch64_parse_arch (const char *to_parse, const struct processor **res, unsigned long *isa_flags) { char *ext; const struct processor *arch; char *str = (char *) alloca (strlen (to_parse) + 1); size_t len; strcpy (str, to_parse); ext = strchr (str, '+'); if (ext != NULL) len = ext - str; else len = strlen (str); if (len == 0) return AARCH64_PARSE_MISSING_ARG; /* Loop through the list of supported ARCHes to find a match. */ for (arch = all_architectures; arch->name != NULL; arch++) { if (strlen (arch->name) == len && strncmp (arch->name, str, len) == 0) { unsigned long isa_temp = arch->flags; if (ext != NULL) { /* TO_PARSE string contains at least one extension. */ enum aarch64_parse_opt_result ext_res = aarch64_parse_extension (ext, &isa_temp); if (ext_res != AARCH64_PARSE_OK) return ext_res; } /* Extension parsing was successful. Confirm the result arch and ISA flags. */ *res = arch; *isa_flags = isa_temp; return AARCH64_PARSE_OK; } } /* ARCH name not found in list. */ return AARCH64_PARSE_INVALID_ARG; } /* Parse the TO_PARSE string and put the result tuning in RES and the architecture flags in ISA_FLAGS. Return an aarch64_parse_opt_result describing the parse result. If there is an error parsing, RES and ISA_FLAGS are left unchanged. */ static enum aarch64_parse_opt_result aarch64_parse_cpu (const char *to_parse, const struct processor **res, unsigned long *isa_flags) { char *ext; const struct processor *cpu; char *str = (char *) alloca (strlen (to_parse) + 1); size_t len; strcpy (str, to_parse); ext = strchr (str, '+'); if (ext != NULL) len = ext - str; else len = strlen (str); if (len == 0) return AARCH64_PARSE_MISSING_ARG; /* Loop through the list of supported CPUs to find a match. */ for (cpu = all_cores; cpu->name != NULL; cpu++) { if (strlen (cpu->name) == len && strncmp (cpu->name, str, len) == 0) { unsigned long isa_temp = cpu->flags; if (ext != NULL) { /* TO_PARSE string contains at least one extension. */ enum aarch64_parse_opt_result ext_res = aarch64_parse_extension (ext, &isa_temp); if (ext_res != AARCH64_PARSE_OK) return ext_res; } /* Extension parsing was successfull. Confirm the result cpu and ISA flags. */ *res = cpu; *isa_flags = isa_temp; return AARCH64_PARSE_OK; } } /* CPU name not found in list. */ return AARCH64_PARSE_INVALID_ARG; } /* Parse the TO_PARSE string and put the cpu it selects into RES. Return an aarch64_parse_opt_result describing the parse result. If the parsing fails the RES does not change. */ static enum aarch64_parse_opt_result aarch64_parse_tune (const char *to_parse, const struct processor **res) { const struct processor *cpu; char *str = (char *) alloca (strlen (to_parse) + 1); strcpy (str, to_parse); /* Loop through the list of supported CPUs to find a match. */ for (cpu = all_cores; cpu->name != NULL; cpu++) { if (strcmp (cpu->name, str) == 0) { *res = cpu; return AARCH64_PARSE_OK; } } /* CPU name not found in list. */ return AARCH64_PARSE_INVALID_ARG; } /* Parse TOKEN, which has length LENGTH to see if it is an option described in FLAG. If it is, return the index bit for that fusion type. If not, error (printing OPTION_NAME) and return zero. */ static unsigned int aarch64_parse_one_option_token (const char *token, size_t length, const struct aarch64_flag_desc *flag, const char *option_name) { for (; flag->name != NULL; flag++) { if (length == strlen (flag->name) && !strncmp (flag->name, token, length)) return flag->flag; } error ("unknown flag passed in -moverride=%s (%s)", option_name, token); return 0; } /* Parse OPTION which is a comma-separated list of flags to enable. FLAGS gives the list of flags we understand, INITIAL_STATE gives any default state we inherit from the CPU tuning structures. OPTION_NAME gives the top-level option we are parsing in the -moverride string, for use in error messages. */ static unsigned int aarch64_parse_boolean_options (const char *option, const struct aarch64_flag_desc *flags, unsigned int initial_state, const char *option_name) { const char separator = '.'; const char* specs = option; const char* ntoken = option; unsigned int found_flags = initial_state; while ((ntoken = strchr (specs, separator))) { size_t token_length = ntoken - specs; unsigned token_ops = aarch64_parse_one_option_token (specs, token_length, flags, option_name); /* If we find "none" (or, for simplicity's sake, an error) anywhere in the token stream, reset the supported operations. So: adrp+add.cmp+branch.none.adrp+add would have the result of turning on only adrp+add fusion. */ if (!token_ops) found_flags = 0; found_flags |= token_ops; specs = ++ntoken; } /* We ended with a comma, print something. */ if (!(*specs)) { error ("%s string ill-formed\n", option_name); return 0; } /* We still have one more token to parse. */ size_t token_length = strlen (specs); unsigned token_ops = aarch64_parse_one_option_token (specs, token_length, flags, option_name); if (!token_ops) found_flags = 0; found_flags |= token_ops; return found_flags; } /* Support for overriding instruction fusion. */ static void aarch64_parse_fuse_string (const char *fuse_string, struct tune_params *tune) { tune->fusible_ops = aarch64_parse_boolean_options (fuse_string, aarch64_fusible_pairs, tune->fusible_ops, "fuse="); } /* Support for overriding other tuning flags. */ static void aarch64_parse_tune_string (const char *tune_string, struct tune_params *tune) { tune->extra_tuning_flags = aarch64_parse_boolean_options (tune_string, aarch64_tuning_flags, tune->extra_tuning_flags, "tune="); } /* Parse TOKEN, which has length LENGTH to see if it is a tuning option we understand. If it is, extract the option string and handoff to the appropriate function. */ void aarch64_parse_one_override_token (const char* token, size_t length, struct tune_params *tune) { const struct aarch64_tuning_override_function *fn = aarch64_tuning_override_functions; const char *option_part = strchr (token, '='); if (!option_part) { error ("tuning string missing in option (%s)", token); return; } /* Get the length of the option name. */ length = option_part - token; /* Skip the '=' to get to the option string. */ option_part++; for (; fn->name != NULL; fn++) { if (!strncmp (fn->name, token, length)) { fn->parse_override (option_part, tune); return; } } error ("unknown tuning option (%s)",token); return; } /* A checking mechanism for the implementation of the tls size. */ static void initialize_aarch64_tls_size (struct gcc_options *opts) { if (aarch64_tls_size == 0) aarch64_tls_size = 24; switch (opts->x_aarch64_cmodel_var) { case AARCH64_CMODEL_TINY: /* Both the default and maximum TLS size allowed under tiny is 1M which needs two instructions to address, so we clamp the size to 24. */ if (aarch64_tls_size > 24) aarch64_tls_size = 24; break; case AARCH64_CMODEL_SMALL: /* The maximum TLS size allowed under small is 4G. */ if (aarch64_tls_size > 32) aarch64_tls_size = 32; break; case AARCH64_CMODEL_LARGE: /* The maximum TLS size allowed under large is 16E. FIXME: 16E should be 64bit, we only support 48bit offset now. */ if (aarch64_tls_size > 48) aarch64_tls_size = 48; break; default: gcc_unreachable (); } return; } /* Parse STRING looking for options in the format: string :: option:string option :: name=substring name :: {a-z} substring :: defined by option. */ static void aarch64_parse_override_string (const char* input_string, struct tune_params* tune) { const char separator = ':'; size_t string_length = strlen (input_string) + 1; char *string_root = (char *) xmalloc (sizeof (*string_root) * string_length); char *string = string_root; strncpy (string, input_string, string_length); string[string_length - 1] = '\0'; char* ntoken = string; while ((ntoken = strchr (string, separator))) { size_t token_length = ntoken - string; /* Make this substring look like a string. */ *ntoken = '\0'; aarch64_parse_one_override_token (string, token_length, tune); string = ++ntoken; } /* One last option to parse. */ aarch64_parse_one_override_token (string, strlen (string), tune); free (string_root); } static void aarch64_override_options_after_change_1 (struct gcc_options *opts) { /* PR 70044: We have to be careful about being called multiple times for the same function. This means all changes should be repeatable. */ /* Set aarch64_use_frame_pointer based on -fno-omit-frame-pointer. Disable the frame pointer flag so the mid-end will not use a frame pointer in leaf functions in order to support -fomit-leaf-frame-pointer. Set x_flag_omit_frame_pointer to the special value 2 to differentiate between -fomit-frame-pointer (1) and -fno-omit-frame-pointer (2). */ aarch64_use_frame_pointer = opts->x_flag_omit_frame_pointer != 1; if (opts->x_flag_omit_frame_pointer == 0) opts->x_flag_omit_frame_pointer = 2; /* If not optimizing for size, set the default alignment to what the target wants. */ if (!opts->x_optimize_size) { if (opts->x_flag_align_loops && !opts->x_str_align_loops) opts->x_str_align_loops = aarch64_tune_params.loop_align; if (opts->x_flag_align_jumps && !opts->x_str_align_jumps) opts->x_str_align_jumps = aarch64_tune_params.jump_align; if (opts->x_flag_align_functions && !opts->x_str_align_functions) opts->x_str_align_functions = aarch64_tune_params.function_align; } /* We default to no pc-relative literal loads. */ aarch64_pcrelative_literal_loads = false; /* If -mpc-relative-literal-loads is set on the command line, this implies that the user asked for PC relative literal loads. */ if (opts->x_pcrelative_literal_loads == 1) aarch64_pcrelative_literal_loads = true; /* In the tiny memory model it makes no sense to disallow PC relative literal pool loads. */ if (aarch64_cmodel == AARCH64_CMODEL_TINY || aarch64_cmodel == AARCH64_CMODEL_TINY_PIC) aarch64_pcrelative_literal_loads = true; /* When enabling the lower precision Newton series for the square root, also enable it for the reciprocal square root, since the latter is an intermediary step for the former. */ if (flag_mlow_precision_sqrt) flag_mrecip_low_precision_sqrt = true; } /* 'Unpack' up the internal tuning structs and update the options in OPTS. The caller must have set up selected_tune and selected_arch as all the other target-specific codegen decisions are derived from them. */ void aarch64_override_options_internal (struct gcc_options *opts) { aarch64_tune_flags = selected_tune->flags; aarch64_tune = selected_tune->sched_core; /* Make a copy of the tuning parameters attached to the core, which we may later overwrite. */ aarch64_tune_params = *(selected_tune->tune); aarch64_architecture_version = selected_arch->architecture_version; if (opts->x_aarch64_override_tune_string) aarch64_parse_override_string (opts->x_aarch64_override_tune_string, &aarch64_tune_params); /* This target defaults to strict volatile bitfields. */ if (opts->x_flag_strict_volatile_bitfields < 0 && abi_version_at_least (2)) opts->x_flag_strict_volatile_bitfields = 1; initialize_aarch64_code_model (opts); initialize_aarch64_tls_size (opts); int queue_depth = 0; switch (aarch64_tune_params.autoprefetcher_model) { case tune_params::AUTOPREFETCHER_OFF: queue_depth = -1; break; case tune_params::AUTOPREFETCHER_WEAK: queue_depth = 0; break; case tune_params::AUTOPREFETCHER_STRONG: queue_depth = max_insn_queue_index + 1; break; default: gcc_unreachable (); } /* We don't mind passing in global_options_set here as we don't use the *options_set structs anyway. */ maybe_set_param_value (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH, queue_depth, opts->x_param_values, global_options_set.x_param_values); /* Set up parameters to be used in prefetching algorithm. Do not override the defaults unless we are tuning for a core we have researched values for. */ if (aarch64_tune_params.prefetch->num_slots > 0) maybe_set_param_value (PARAM_SIMULTANEOUS_PREFETCHES, aarch64_tune_params.prefetch->num_slots, opts->x_param_values, global_options_set.x_param_values); if (aarch64_tune_params.prefetch->l1_cache_size >= 0) maybe_set_param_value (PARAM_L1_CACHE_SIZE, aarch64_tune_params.prefetch->l1_cache_size, opts->x_param_values, global_options_set.x_param_values); if (aarch64_tune_params.prefetch->l1_cache_line_size >= 0) maybe_set_param_value (PARAM_L1_CACHE_LINE_SIZE, aarch64_tune_params.prefetch->l1_cache_line_size, opts->x_param_values, global_options_set.x_param_values); if (aarch64_tune_params.prefetch->l2_cache_size >= 0) maybe_set_param_value (PARAM_L2_CACHE_SIZE, aarch64_tune_params.prefetch->l2_cache_size, opts->x_param_values, global_options_set.x_param_values); if (!aarch64_tune_params.prefetch->prefetch_dynamic_strides) maybe_set_param_value (PARAM_PREFETCH_DYNAMIC_STRIDES, 0, opts->x_param_values, global_options_set.x_param_values); if (aarch64_tune_params.prefetch->minimum_stride >= 0) maybe_set_param_value (PARAM_PREFETCH_MINIMUM_STRIDE, aarch64_tune_params.prefetch->minimum_stride, opts->x_param_values, global_options_set.x_param_values); /* Use the alternative scheduling-pressure algorithm by default. */ maybe_set_param_value (PARAM_SCHED_PRESSURE_ALGORITHM, SCHED_PRESSURE_MODEL, opts->x_param_values, global_options_set.x_param_values); /* Enable sw prefetching at specified optimization level for CPUS that have prefetch. Lower optimization level threshold by 1 when profiling is enabled. */ if (opts->x_flag_prefetch_loop_arrays < 0 && !opts->x_optimize_size && aarch64_tune_params.prefetch->default_opt_level >= 0 && opts->x_optimize >= aarch64_tune_params.prefetch->default_opt_level) opts->x_flag_prefetch_loop_arrays = 1; aarch64_override_options_after_change_1 (opts); } /* Print a hint with a suggestion for a core or architecture name that most closely resembles what the user passed in STR. ARCH is true if the user is asking for an architecture name. ARCH is false if the user is asking for a core name. */ static void aarch64_print_hint_for_core_or_arch (const char *str, bool arch) { auto_vec candidates; const struct processor *entry = arch ? all_architectures : all_cores; for (; entry->name != NULL; entry++) candidates.safe_push (entry->name); #ifdef HAVE_LOCAL_CPU_DETECT /* Add also "native" as possible value. */ if (arch) candidates.safe_push ("native"); #endif char *s; const char *hint = candidates_list_and_hint (str, s, candidates); if (hint) inform (input_location, "valid arguments are: %s;" " did you mean %qs?", s, hint); else inform (input_location, "valid arguments are: %s", s); XDELETEVEC (s); } /* Print a hint with a suggestion for a core name that most closely resembles what the user passed in STR. */ inline static void aarch64_print_hint_for_core (const char *str) { aarch64_print_hint_for_core_or_arch (str, false); } /* Print a hint with a suggestion for an architecture name that most closely resembles what the user passed in STR. */ inline static void aarch64_print_hint_for_arch (const char *str) { aarch64_print_hint_for_core_or_arch (str, true); } /* Validate a command-line -mcpu option. Parse the cpu and extensions (if any) specified in STR and throw errors if appropriate. Put the results if they are valid in RES and ISA_FLAGS. Return whether the option is valid. */ static bool aarch64_validate_mcpu (const char *str, const struct processor **res, unsigned long *isa_flags) { enum aarch64_parse_opt_result parse_res = aarch64_parse_cpu (str, res, isa_flags); if (parse_res == AARCH64_PARSE_OK) return true; switch (parse_res) { case AARCH64_PARSE_MISSING_ARG: error ("missing cpu name in %<-mcpu=%s%>", str); break; case AARCH64_PARSE_INVALID_ARG: error ("unknown value %qs for -mcpu", str); aarch64_print_hint_for_core (str); break; case AARCH64_PARSE_INVALID_FEATURE: error ("invalid feature modifier in %<-mcpu=%s%>", str); break; default: gcc_unreachable (); } return false; } /* Validate a command-line -march option. Parse the arch and extensions (if any) specified in STR and throw errors if appropriate. Put the results, if they are valid, in RES and ISA_FLAGS. Return whether the option is valid. */ static bool aarch64_validate_march (const char *str, const struct processor **res, unsigned long *isa_flags) { enum aarch64_parse_opt_result parse_res = aarch64_parse_arch (str, res, isa_flags); if (parse_res == AARCH64_PARSE_OK) return true; switch (parse_res) { case AARCH64_PARSE_MISSING_ARG: error ("missing arch name in %<-march=%s%>", str); break; case AARCH64_PARSE_INVALID_ARG: error ("unknown value %qs for -march", str); aarch64_print_hint_for_arch (str); break; case AARCH64_PARSE_INVALID_FEATURE: error ("invalid feature modifier in %<-march=%s%>", str); break; default: gcc_unreachable (); } return false; } /* Validate a command-line -mtune option. Parse the cpu specified in STR and throw errors if appropriate. Put the result, if it is valid, in RES. Return whether the option is valid. */ static bool aarch64_validate_mtune (const char *str, const struct processor **res) { enum aarch64_parse_opt_result parse_res = aarch64_parse_tune (str, res); if (parse_res == AARCH64_PARSE_OK) return true; switch (parse_res) { case AARCH64_PARSE_MISSING_ARG: error ("missing cpu name in %<-mtune=%s%>", str); break; case AARCH64_PARSE_INVALID_ARG: error ("unknown value %qs for -mtune", str); aarch64_print_hint_for_core (str); break; default: gcc_unreachable (); } return false; } /* Return the CPU corresponding to the enum CPU. If it doesn't specify a cpu, return the default. */ static const struct processor * aarch64_get_tune_cpu (enum aarch64_processor cpu) { if (cpu != aarch64_none) return &all_cores[cpu]; /* The & 0x3f is to extract the bottom 6 bits that encode the default cpu as selected by the --with-cpu GCC configure option in config.gcc. ???: The whole TARGET_CPU_DEFAULT and AARCH64_CPU_DEFAULT_FLAGS flags mechanism should be reworked to make it more sane. */ return &all_cores[TARGET_CPU_DEFAULT & 0x3f]; } /* Return the architecture corresponding to the enum ARCH. If it doesn't specify a valid architecture, return the default. */ static const struct processor * aarch64_get_arch (enum aarch64_arch arch) { if (arch != aarch64_no_arch) return &all_architectures[arch]; const struct processor *cpu = &all_cores[TARGET_CPU_DEFAULT & 0x3f]; return &all_architectures[cpu->arch]; } /* Return the VG value associated with -msve-vector-bits= value VALUE. */ static poly_uint16 aarch64_convert_sve_vector_bits (aarch64_sve_vector_bits_enum value) { /* For now generate vector-length agnostic code for -msve-vector-bits=128. This ensures we can clearly distinguish SVE and Advanced SIMD modes when deciding which .md file patterns to use and when deciding whether something is a legitimate address or constant. */ if (value == SVE_SCALABLE || value == SVE_128) return poly_uint16 (2, 2); else return (int) value / 64; } /* Implement TARGET_OPTION_OVERRIDE. This is called once in the beginning and is used to parse the -m{cpu,tune,arch} strings and setup the initial tuning structs. In particular it must set selected_tune and aarch64_isa_flags that define the available ISA features and tuning decisions. It must also set selected_arch as this will be used to output the .arch asm tags for each function. */ static void aarch64_override_options (void) { unsigned long cpu_isa = 0; unsigned long arch_isa = 0; aarch64_isa_flags = 0; bool valid_cpu = true; bool valid_tune = true; bool valid_arch = true; selected_cpu = NULL; selected_arch = NULL; selected_tune = NULL; /* -mcpu=CPU is shorthand for -march=ARCH_FOR_CPU, -mtune=CPU. If either of -march or -mtune is given, they override their respective component of -mcpu. */ if (aarch64_cpu_string) valid_cpu = aarch64_validate_mcpu (aarch64_cpu_string, &selected_cpu, &cpu_isa); if (aarch64_arch_string) valid_arch = aarch64_validate_march (aarch64_arch_string, &selected_arch, &arch_isa); if (aarch64_tune_string) valid_tune = aarch64_validate_mtune (aarch64_tune_string, &selected_tune); /* If the user did not specify a processor, choose the default one for them. This will be the CPU set during configuration using --with-cpu, otherwise it is "generic". */ if (!selected_cpu) { if (selected_arch) { selected_cpu = &all_cores[selected_arch->ident]; aarch64_isa_flags = arch_isa; explicit_arch = selected_arch->arch; } else { /* Get default configure-time CPU. */ selected_cpu = aarch64_get_tune_cpu (aarch64_none); aarch64_isa_flags = TARGET_CPU_DEFAULT >> 6; } if (selected_tune) explicit_tune_core = selected_tune->ident; } /* If both -mcpu and -march are specified check that they are architecturally compatible, warn if they're not and prefer the -march ISA flags. */ else if (selected_arch) { if (selected_arch->arch != selected_cpu->arch) { warning (0, "switch -mcpu=%s conflicts with -march=%s switch", all_architectures[selected_cpu->arch].name, selected_arch->name); } aarch64_isa_flags = arch_isa; explicit_arch = selected_arch->arch; explicit_tune_core = selected_tune ? selected_tune->ident : selected_cpu->ident; } else { /* -mcpu but no -march. */ aarch64_isa_flags = cpu_isa; explicit_tune_core = selected_tune ? selected_tune->ident : selected_cpu->ident; gcc_assert (selected_cpu); selected_arch = &all_architectures[selected_cpu->arch]; explicit_arch = selected_arch->arch; } /* Set the arch as well as we will need it when outputing the .arch directive in assembly. */ if (!selected_arch) { gcc_assert (selected_cpu); selected_arch = &all_architectures[selected_cpu->arch]; } if (!selected_tune) selected_tune = selected_cpu; #ifndef HAVE_AS_MABI_OPTION /* The compiler may have been configured with 2.23.* binutils, which does not have support for ILP32. */ if (TARGET_ILP32) error ("assembler does not support -mabi=ilp32"); #endif /* Convert -msve-vector-bits to a VG count. */ aarch64_sve_vg = aarch64_convert_sve_vector_bits (aarch64_sve_vector_bits); if (aarch64_ra_sign_scope != AARCH64_FUNCTION_NONE && TARGET_ILP32) sorry ("return address signing is only supported for -mabi=lp64"); /* Make sure we properly set up the explicit options. */ if ((aarch64_cpu_string && valid_cpu) || (aarch64_tune_string && valid_tune)) gcc_assert (explicit_tune_core != aarch64_none); if ((aarch64_cpu_string && valid_cpu) || (aarch64_arch_string && valid_arch)) gcc_assert (explicit_arch != aarch64_no_arch); aarch64_override_options_internal (&global_options); /* Save these options as the default ones in case we push and pop them later while processing functions with potential target attributes. */ target_option_default_node = target_option_current_node = build_target_option_node (&global_options); } /* Implement targetm.override_options_after_change. */ static void aarch64_override_options_after_change (void) { aarch64_override_options_after_change_1 (&global_options); } static struct machine_function * aarch64_init_machine_status (void) { struct machine_function *machine; machine = ggc_cleared_alloc (); return machine; } void aarch64_init_expanders (void) { init_machine_status = aarch64_init_machine_status; } /* A checking mechanism for the implementation of the various code models. */ static void initialize_aarch64_code_model (struct gcc_options *opts) { if (opts->x_flag_pic) { switch (opts->x_aarch64_cmodel_var) { case AARCH64_CMODEL_TINY: aarch64_cmodel = AARCH64_CMODEL_TINY_PIC; break; case AARCH64_CMODEL_SMALL: #ifdef HAVE_AS_SMALL_PIC_RELOCS aarch64_cmodel = (flag_pic == 2 ? AARCH64_CMODEL_SMALL_PIC : AARCH64_CMODEL_SMALL_SPIC); #else aarch64_cmodel = AARCH64_CMODEL_SMALL_PIC; #endif break; case AARCH64_CMODEL_LARGE: sorry ("code model %qs with -f%s", "large", opts->x_flag_pic > 1 ? "PIC" : "pic"); break; default: gcc_unreachable (); } } else aarch64_cmodel = opts->x_aarch64_cmodel_var; } /* Implement TARGET_OPTION_SAVE. */ static void aarch64_option_save (struct cl_target_option *ptr, struct gcc_options *opts) { ptr->x_aarch64_override_tune_string = opts->x_aarch64_override_tune_string; } /* Implements TARGET_OPTION_RESTORE. Restore the backend codegen decisions using the information saved in PTR. */ static void aarch64_option_restore (struct gcc_options *opts, struct cl_target_option *ptr) { opts->x_explicit_tune_core = ptr->x_explicit_tune_core; selected_tune = aarch64_get_tune_cpu (ptr->x_explicit_tune_core); opts->x_explicit_arch = ptr->x_explicit_arch; selected_arch = aarch64_get_arch (ptr->x_explicit_arch); opts->x_aarch64_override_tune_string = ptr->x_aarch64_override_tune_string; aarch64_override_options_internal (opts); } /* Implement TARGET_OPTION_PRINT. */ static void aarch64_option_print (FILE *file, int indent, struct cl_target_option *ptr) { const struct processor *cpu = aarch64_get_tune_cpu (ptr->x_explicit_tune_core); unsigned long isa_flags = ptr->x_aarch64_isa_flags; const struct processor *arch = aarch64_get_arch (ptr->x_explicit_arch); std::string extension = aarch64_get_extension_string_for_isa_flags (isa_flags, arch->flags); fprintf (file, "%*sselected tune = %s\n", indent, "", cpu->name); fprintf (file, "%*sselected arch = %s%s\n", indent, "", arch->name, extension.c_str ()); } static GTY(()) tree aarch64_previous_fndecl; void aarch64_reset_previous_fndecl (void) { aarch64_previous_fndecl = NULL; } /* Restore or save the TREE_TARGET_GLOBALS from or to NEW_TREE. Used by aarch64_set_current_function and aarch64_pragma_target_parse to make sure optab availability predicates are recomputed when necessary. */ void aarch64_save_restore_target_globals (tree new_tree) { if (TREE_TARGET_GLOBALS (new_tree)) restore_target_globals (TREE_TARGET_GLOBALS (new_tree)); else if (new_tree == target_option_default_node) restore_target_globals (&default_target_globals); else TREE_TARGET_GLOBALS (new_tree) = save_target_globals_default_opts (); } /* Implement TARGET_SET_CURRENT_FUNCTION. Unpack the codegen decisions like tuning and ISA features from the DECL_FUNCTION_SPECIFIC_TARGET of the function, if such exists. This function may be called multiple times on a single function so use aarch64_previous_fndecl to avoid setting up identical state. */ static void aarch64_set_current_function (tree fndecl) { if (!fndecl || fndecl == aarch64_previous_fndecl) return; tree old_tree = (aarch64_previous_fndecl ? DECL_FUNCTION_SPECIFIC_TARGET (aarch64_previous_fndecl) : NULL_TREE); tree new_tree = DECL_FUNCTION_SPECIFIC_TARGET (fndecl); /* If current function has no attributes but the previous one did, use the default node. */ if (!new_tree && old_tree) new_tree = target_option_default_node; /* If nothing to do, return. #pragma GCC reset or #pragma GCC pop to the default have been handled by aarch64_save_restore_target_globals from aarch64_pragma_target_parse. */ if (old_tree == new_tree) return; aarch64_previous_fndecl = fndecl; /* First set the target options. */ cl_target_option_restore (&global_options, TREE_TARGET_OPTION (new_tree)); aarch64_save_restore_target_globals (new_tree); } /* Enum describing the various ways we can handle attributes. In many cases we can reuse the generic option handling machinery. */ enum aarch64_attr_opt_type { aarch64_attr_mask, /* Attribute should set a bit in target_flags. */ aarch64_attr_bool, /* Attribute sets or unsets a boolean variable. */ aarch64_attr_enum, /* Attribute sets an enum variable. */ aarch64_attr_custom /* Attribute requires a custom handling function. */ }; /* All the information needed to handle a target attribute. NAME is the name of the attribute. ATTR_TYPE specifies the type of behavior of the attribute as described in the definition of enum aarch64_attr_opt_type. ALLOW_NEG is true if the attribute supports a "no-" form. HANDLER is the function that takes the attribute string as an argument It is needed only when the ATTR_TYPE is aarch64_attr_custom. OPT_NUM is the enum specifying the option that the attribute modifies. This is needed for attributes that mirror the behavior of a command-line option, that is it has ATTR_TYPE aarch64_attr_mask, aarch64_attr_bool or aarch64_attr_enum. */ struct aarch64_attribute_info { const char *name; enum aarch64_attr_opt_type attr_type; bool allow_neg; bool (*handler) (const char *); enum opt_code opt_num; }; /* Handle the ARCH_STR argument to the arch= target attribute. */ static bool aarch64_handle_attr_arch (const char *str) { const struct processor *tmp_arch = NULL; enum aarch64_parse_opt_result parse_res = aarch64_parse_arch (str, &tmp_arch, &aarch64_isa_flags); if (parse_res == AARCH64_PARSE_OK) { gcc_assert (tmp_arch); selected_arch = tmp_arch; explicit_arch = selected_arch->arch; return true; } switch (parse_res) { case AARCH64_PARSE_MISSING_ARG: error ("missing name in % pragma or attribute"); break; case AARCH64_PARSE_INVALID_ARG: error ("invalid name (\"%s\") in % pragma or attribute", str); aarch64_print_hint_for_arch (str); break; case AARCH64_PARSE_INVALID_FEATURE: error ("invalid value (\"%s\") in % pragma or attribute", str); break; default: gcc_unreachable (); } return false; } /* Handle the argument CPU_STR to the cpu= target attribute. */ static bool aarch64_handle_attr_cpu (const char *str) { const struct processor *tmp_cpu = NULL; enum aarch64_parse_opt_result parse_res = aarch64_parse_cpu (str, &tmp_cpu, &aarch64_isa_flags); if (parse_res == AARCH64_PARSE_OK) { gcc_assert (tmp_cpu); selected_tune = tmp_cpu; explicit_tune_core = selected_tune->ident; selected_arch = &all_architectures[tmp_cpu->arch]; explicit_arch = selected_arch->arch; return true; } switch (parse_res) { case AARCH64_PARSE_MISSING_ARG: error ("missing name in % pragma or attribute"); break; case AARCH64_PARSE_INVALID_ARG: error ("invalid name (\"%s\") in % pragma or attribute", str); aarch64_print_hint_for_core (str); break; case AARCH64_PARSE_INVALID_FEATURE: error ("invalid value (\"%s\") in % pragma or attribute", str); break; default: gcc_unreachable (); } return false; } /* Handle the argument STR to the tune= target attribute. */ static bool aarch64_handle_attr_tune (const char *str) { const struct processor *tmp_tune = NULL; enum aarch64_parse_opt_result parse_res = aarch64_parse_tune (str, &tmp_tune); if (parse_res == AARCH64_PARSE_OK) { gcc_assert (tmp_tune); selected_tune = tmp_tune; explicit_tune_core = selected_tune->ident; return true; } switch (parse_res) { case AARCH64_PARSE_INVALID_ARG: error ("invalid name (\"%s\") in % pragma or attribute", str); aarch64_print_hint_for_core (str); break; default: gcc_unreachable (); } return false; } /* Parse an architecture extensions target attribute string specified in STR. For example "+fp+nosimd". Show any errors if needed. Return TRUE if successful. Update aarch64_isa_flags to reflect the ISA features modified. */ static bool aarch64_handle_attr_isa_flags (char *str) { enum aarch64_parse_opt_result parse_res; unsigned long isa_flags = aarch64_isa_flags; /* We allow "+nothing" in the beginning to clear out all architectural features if the user wants to handpick specific features. */ if (strncmp ("+nothing", str, 8) == 0) { isa_flags = 0; str += 8; } parse_res = aarch64_parse_extension (str, &isa_flags); if (parse_res == AARCH64_PARSE_OK) { aarch64_isa_flags = isa_flags; return true; } switch (parse_res) { case AARCH64_PARSE_MISSING_ARG: error ("missing value in % pragma or attribute"); break; case AARCH64_PARSE_INVALID_FEATURE: error ("invalid value (\"%s\") in % pragma or attribute", str); break; default: gcc_unreachable (); } return false; } /* The target attributes that we support. On top of these we also support just ISA extensions, like __attribute__ ((target ("+crc"))), but that case is handled explicitly in aarch64_process_one_target_attr. */ static const struct aarch64_attribute_info aarch64_attributes[] = { { "general-regs-only", aarch64_attr_mask, false, NULL, OPT_mgeneral_regs_only }, { "fix-cortex-a53-835769", aarch64_attr_bool, true, NULL, OPT_mfix_cortex_a53_835769 }, { "fix-cortex-a53-843419", aarch64_attr_bool, true, NULL, OPT_mfix_cortex_a53_843419 }, { "cmodel", aarch64_attr_enum, false, NULL, OPT_mcmodel_ }, { "strict-align", aarch64_attr_mask, true, NULL, OPT_mstrict_align }, { "omit-leaf-frame-pointer", aarch64_attr_bool, true, NULL, OPT_momit_leaf_frame_pointer }, { "tls-dialect", aarch64_attr_enum, false, NULL, OPT_mtls_dialect_ }, { "arch", aarch64_attr_custom, false, aarch64_handle_attr_arch, OPT_march_ }, { "cpu", aarch64_attr_custom, false, aarch64_handle_attr_cpu, OPT_mcpu_ }, { "tune", aarch64_attr_custom, false, aarch64_handle_attr_tune, OPT_mtune_ }, { "sign-return-address", aarch64_attr_enum, false, NULL, OPT_msign_return_address_ }, { NULL, aarch64_attr_custom, false, NULL, OPT____ } }; /* Parse ARG_STR which contains the definition of one target attribute. Show appropriate errors if any or return true if the attribute is valid. */ static bool aarch64_process_one_target_attr (char *arg_str) { bool invert = false; size_t len = strlen (arg_str); if (len == 0) { error ("malformed % pragma or attribute"); return false; } char *str_to_check = (char *) alloca (len + 1); strcpy (str_to_check, arg_str); /* Skip leading whitespace. */ while (*str_to_check == ' ' || *str_to_check == '\t') str_to_check++; /* We have something like __attribute__ ((target ("+fp+nosimd"))). It is easier to detect and handle it explicitly here rather than going through the machinery for the rest of the target attributes in this function. */ if (*str_to_check == '+') return aarch64_handle_attr_isa_flags (str_to_check); if (len > 3 && strncmp (str_to_check, "no-", 3) == 0) { invert = true; str_to_check += 3; } char *arg = strchr (str_to_check, '='); /* If we found opt=foo then terminate STR_TO_CHECK at the '=' and point ARG to "foo". */ if (arg) { *arg = '\0'; arg++; } const struct aarch64_attribute_info *p_attr; bool found = false; for (p_attr = aarch64_attributes; p_attr->name; p_attr++) { /* If the names don't match up, or the user has given an argument to an attribute that doesn't accept one, or didn't give an argument to an attribute that expects one, fail to match. */ if (strcmp (str_to_check, p_attr->name) != 0) continue; found = true; bool attr_need_arg_p = p_attr->attr_type == aarch64_attr_custom || p_attr->attr_type == aarch64_attr_enum; if (attr_need_arg_p ^ (arg != NULL)) { error ("pragma or attribute % does not accept an argument", str_to_check); return false; } /* If the name matches but the attribute does not allow "no-" versions then we can't match. */ if (invert && !p_attr->allow_neg) { error ("pragma or attribute % does not allow a negated form", str_to_check); return false; } switch (p_attr->attr_type) { /* Has a custom handler registered. For example, cpu=, arch=, tune=. */ case aarch64_attr_custom: gcc_assert (p_attr->handler); if (!p_attr->handler (arg)) return false; break; /* Either set or unset a boolean option. */ case aarch64_attr_bool: { struct cl_decoded_option decoded; generate_option (p_attr->opt_num, NULL, !invert, CL_TARGET, &decoded); aarch64_handle_option (&global_options, &global_options_set, &decoded, input_location); break; } /* Set or unset a bit in the target_flags. aarch64_handle_option should know what mask to apply given the option number. */ case aarch64_attr_mask: { struct cl_decoded_option decoded; /* We only need to specify the option number. aarch64_handle_option will know which mask to apply. */ decoded.opt_index = p_attr->opt_num; decoded.value = !invert; aarch64_handle_option (&global_options, &global_options_set, &decoded, input_location); break; } /* Use the option setting machinery to set an option to an enum. */ case aarch64_attr_enum: { gcc_assert (arg); bool valid; int value; valid = opt_enum_arg_to_value (p_attr->opt_num, arg, &value, CL_TARGET); if (valid) { set_option (&global_options, NULL, p_attr->opt_num, value, NULL, DK_UNSPECIFIED, input_location, global_dc); } else { error ("pragma or attribute % is not valid", str_to_check, arg); } break; } default: gcc_unreachable (); } } /* If we reached here we either have found an attribute and validated it or didn't match any. If we matched an attribute but its arguments were malformed we will have returned false already. */ return found; } /* Count how many times the character C appears in NULL-terminated string STR. */ static unsigned int num_occurences_in_str (char c, char *str) { unsigned int res = 0; while (*str != '\0') { if (*str == c) res++; str++; } return res; } /* Parse the tree in ARGS that contains the target attribute information and update the global target options space. */ bool aarch64_process_target_attr (tree args) { if (TREE_CODE (args) == TREE_LIST) { do { tree head = TREE_VALUE (args); if (head) { if (!aarch64_process_target_attr (head)) return false; } args = TREE_CHAIN (args); } while (args); return true; } if (TREE_CODE (args) != STRING_CST) { error ("attribute % argument not a string"); return false; } size_t len = strlen (TREE_STRING_POINTER (args)); char *str_to_check = (char *) alloca (len + 1); strcpy (str_to_check, TREE_STRING_POINTER (args)); if (len == 0) { error ("malformed % pragma or attribute"); return false; } /* Used to catch empty spaces between commas i.e. attribute ((target ("attr1,,attr2"))). */ unsigned int num_commas = num_occurences_in_str (',', str_to_check); /* Handle multiple target attributes separated by ','. */ char *token = strtok (str_to_check, ","); unsigned int num_attrs = 0; while (token) { num_attrs++; if (!aarch64_process_one_target_attr (token)) { error ("pragma or attribute % is not valid", token); return false; } token = strtok (NULL, ","); } if (num_attrs != num_commas + 1) { error ("malformed % pragma or attribute", TREE_STRING_POINTER (args)); return false; } return true; } /* Implement TARGET_OPTION_VALID_ATTRIBUTE_P. This is used to process attribute ((target ("..."))). */ static bool aarch64_option_valid_attribute_p (tree fndecl, tree, tree args, int) { struct cl_target_option cur_target; bool ret; tree old_optimize; tree new_target, new_optimize; tree existing_target = DECL_FUNCTION_SPECIFIC_TARGET (fndecl); /* If what we're processing is the current pragma string then the target option node is already stored in target_option_current_node by aarch64_pragma_target_parse in aarch64-c.c. Use that to avoid having to re-parse the string. This is especially useful to keep arm_neon.h compile times down since that header contains a lot of intrinsics enclosed in pragmas. */ if (!existing_target && args == current_target_pragma) { DECL_FUNCTION_SPECIFIC_TARGET (fndecl) = target_option_current_node; return true; } tree func_optimize = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl); old_optimize = build_optimization_node (&global_options); func_optimize = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl); /* If the function changed the optimization levels as well as setting target options, start with the optimizations specified. */ if (func_optimize && func_optimize != old_optimize) cl_optimization_restore (&global_options, TREE_OPTIMIZATION (func_optimize)); /* Save the current target options to restore at the end. */ cl_target_option_save (&cur_target, &global_options); /* If fndecl already has some target attributes applied to it, unpack them so that we add this attribute on top of them, rather than overwriting them. */ if (existing_target) { struct cl_target_option *existing_options = TREE_TARGET_OPTION (existing_target); if (existing_options) cl_target_option_restore (&global_options, existing_options); } else cl_target_option_restore (&global_options, TREE_TARGET_OPTION (target_option_current_node)); ret = aarch64_process_target_attr (args); /* Set up any additional state. */ if (ret) { aarch64_override_options_internal (&global_options); /* Initialize SIMD builtins if we haven't already. Set current_target_pragma to NULL for the duration so that the builtin initialization code doesn't try to tag the functions being built with the attributes specified by any current pragma, thus going into an infinite recursion. */ if (TARGET_SIMD) { tree saved_current_target_pragma = current_target_pragma; current_target_pragma = NULL; aarch64_init_simd_builtins (); current_target_pragma = saved_current_target_pragma; } new_target = build_target_option_node (&global_options); } else new_target = NULL; new_optimize = build_optimization_node (&global_options); if (fndecl && ret) { DECL_FUNCTION_SPECIFIC_TARGET (fndecl) = new_target; if (old_optimize != new_optimize) DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl) = new_optimize; } cl_target_option_restore (&global_options, &cur_target); if (old_optimize != new_optimize) cl_optimization_restore (&global_options, TREE_OPTIMIZATION (old_optimize)); return ret; } /* Helper for aarch64_can_inline_p. In the case where CALLER and CALLEE are tri-bool options (yes, no, don't care) and the default value is DEF, determine whether to reject inlining. */ static bool aarch64_tribools_ok_for_inlining_p (int caller, int callee, int dont_care, int def) { /* If the callee doesn't care, always allow inlining. */ if (callee == dont_care) return true; /* If the caller doesn't care, always allow inlining. */ if (caller == dont_care) return true; /* Otherwise, allow inlining if either the callee and caller values agree, or if the callee is using the default value. */ return (callee == caller || callee == def); } /* Implement TARGET_CAN_INLINE_P. Decide whether it is valid to inline CALLEE into CALLER based on target-specific info. Make sure that the caller and callee have compatible architectural features. Then go through the other possible target attributes and see if they can block inlining. Try not to reject always_inline callees unless they are incompatible architecturally. */ static bool aarch64_can_inline_p (tree caller, tree callee) { tree caller_tree = DECL_FUNCTION_SPECIFIC_TARGET (caller); tree callee_tree = DECL_FUNCTION_SPECIFIC_TARGET (callee); struct cl_target_option *caller_opts = TREE_TARGET_OPTION (caller_tree ? caller_tree : target_option_default_node); struct cl_target_option *callee_opts = TREE_TARGET_OPTION (callee_tree ? callee_tree : target_option_default_node); /* Callee's ISA flags should be a subset of the caller's. */ if ((caller_opts->x_aarch64_isa_flags & callee_opts->x_aarch64_isa_flags) != callee_opts->x_aarch64_isa_flags) return false; /* Allow non-strict aligned functions inlining into strict aligned ones. */ if ((TARGET_STRICT_ALIGN_P (caller_opts->x_target_flags) != TARGET_STRICT_ALIGN_P (callee_opts->x_target_flags)) && !(!TARGET_STRICT_ALIGN_P (callee_opts->x_target_flags) && TARGET_STRICT_ALIGN_P (caller_opts->x_target_flags))) return false; bool always_inline = lookup_attribute ("always_inline", DECL_ATTRIBUTES (callee)); /* If the architectural features match up and the callee is always_inline then the other attributes don't matter. */ if (always_inline) return true; if (caller_opts->x_aarch64_cmodel_var != callee_opts->x_aarch64_cmodel_var) return false; if (caller_opts->x_aarch64_tls_dialect != callee_opts->x_aarch64_tls_dialect) return false; /* Honour explicit requests to workaround errata. */ if (!aarch64_tribools_ok_for_inlining_p ( caller_opts->x_aarch64_fix_a53_err835769, callee_opts->x_aarch64_fix_a53_err835769, 2, TARGET_FIX_ERR_A53_835769_DEFAULT)) return false; if (!aarch64_tribools_ok_for_inlining_p ( caller_opts->x_aarch64_fix_a53_err843419, callee_opts->x_aarch64_fix_a53_err843419, 2, TARGET_FIX_ERR_A53_843419)) return false; /* If the user explicitly specified -momit-leaf-frame-pointer for the caller and calle and they don't match up, reject inlining. */ if (!aarch64_tribools_ok_for_inlining_p ( caller_opts->x_flag_omit_leaf_frame_pointer, callee_opts->x_flag_omit_leaf_frame_pointer, 2, 1)) return false; /* If the callee has specific tuning overrides, respect them. */ if (callee_opts->x_aarch64_override_tune_string != NULL && caller_opts->x_aarch64_override_tune_string == NULL) return false; /* If the user specified tuning override strings for the caller and callee and they don't match up, reject inlining. We just do a string compare here, we don't analyze the meaning of the string, as it would be too costly for little gain. */ if (callee_opts->x_aarch64_override_tune_string && caller_opts->x_aarch64_override_tune_string && (strcmp (callee_opts->x_aarch64_override_tune_string, caller_opts->x_aarch64_override_tune_string) != 0)) return false; return true; } /* Return true if SYMBOL_REF X binds locally. */ static bool aarch64_symbol_binds_local_p (const_rtx x) { return (SYMBOL_REF_DECL (x) ? targetm.binds_local_p (SYMBOL_REF_DECL (x)) : SYMBOL_REF_LOCAL_P (x)); } /* Return true if SYMBOL_REF X is thread local */ static bool aarch64_tls_symbol_p (rtx x) { if (! TARGET_HAVE_TLS) return false; if (GET_CODE (x) != SYMBOL_REF) return false; return SYMBOL_REF_TLS_MODEL (x) != 0; } /* Classify a TLS symbol into one of the TLS kinds. */ enum aarch64_symbol_type aarch64_classify_tls_symbol (rtx x) { enum tls_model tls_kind = tls_symbolic_operand_type (x); switch (tls_kind) { case TLS_MODEL_GLOBAL_DYNAMIC: case TLS_MODEL_LOCAL_DYNAMIC: return TARGET_TLS_DESC ? SYMBOL_SMALL_TLSDESC : SYMBOL_SMALL_TLSGD; case TLS_MODEL_INITIAL_EXEC: switch (aarch64_cmodel) { case AARCH64_CMODEL_TINY: case AARCH64_CMODEL_TINY_PIC: return SYMBOL_TINY_TLSIE; default: return SYMBOL_SMALL_TLSIE; } case TLS_MODEL_LOCAL_EXEC: if (aarch64_tls_size == 12) return SYMBOL_TLSLE12; else if (aarch64_tls_size == 24) return SYMBOL_TLSLE24; else if (aarch64_tls_size == 32) return SYMBOL_TLSLE32; else if (aarch64_tls_size == 48) return SYMBOL_TLSLE48; else gcc_unreachable (); case TLS_MODEL_EMULATED: case TLS_MODEL_NONE: return SYMBOL_FORCE_TO_MEM; default: gcc_unreachable (); } } /* Return the correct method for accessing X + OFFSET, where X is either a SYMBOL_REF or LABEL_REF. */ enum aarch64_symbol_type aarch64_classify_symbol (rtx x, HOST_WIDE_INT offset) { if (GET_CODE (x) == LABEL_REF) { switch (aarch64_cmodel) { case AARCH64_CMODEL_LARGE: return SYMBOL_FORCE_TO_MEM; case AARCH64_CMODEL_TINY_PIC: case AARCH64_CMODEL_TINY: return SYMBOL_TINY_ABSOLUTE; case AARCH64_CMODEL_SMALL_SPIC: case AARCH64_CMODEL_SMALL_PIC: case AARCH64_CMODEL_SMALL: return SYMBOL_SMALL_ABSOLUTE; default: gcc_unreachable (); } } if (GET_CODE (x) == SYMBOL_REF) { if (aarch64_tls_symbol_p (x)) return aarch64_classify_tls_symbol (x); switch (aarch64_cmodel) { case AARCH64_CMODEL_TINY: /* When we retrieve symbol + offset address, we have to make sure the offset does not cause overflow of the final address. But we have no way of knowing the address of symbol at compile time so we can't accurately say if the distance between the PC and symbol + offset is outside the addressible range of +/-1M in the TINY code model. So we rely on images not being greater than 1M and cap the offset at 1M and anything beyond 1M will have to be loaded using an alternative mechanism. Furthermore if the symbol is a weak reference to something that isn't known to resolve to a symbol in this module, then force to memory. */ if ((SYMBOL_REF_WEAK (x) && !aarch64_symbol_binds_local_p (x)) || !IN_RANGE (offset, -1048575, 1048575)) return SYMBOL_FORCE_TO_MEM; return SYMBOL_TINY_ABSOLUTE; case AARCH64_CMODEL_SMALL: /* Same reasoning as the tiny code model, but the offset cap here is 4G. */ if ((SYMBOL_REF_WEAK (x) && !aarch64_symbol_binds_local_p (x)) || !IN_RANGE (offset, HOST_WIDE_INT_C (-4294967263), HOST_WIDE_INT_C (4294967264))) return SYMBOL_FORCE_TO_MEM; return SYMBOL_SMALL_ABSOLUTE; case AARCH64_CMODEL_TINY_PIC: if (!aarch64_symbol_binds_local_p (x)) return SYMBOL_TINY_GOT; return SYMBOL_TINY_ABSOLUTE; case AARCH64_CMODEL_SMALL_SPIC: case AARCH64_CMODEL_SMALL_PIC: if (!aarch64_symbol_binds_local_p (x)) return (aarch64_cmodel == AARCH64_CMODEL_SMALL_SPIC ? SYMBOL_SMALL_GOT_28K : SYMBOL_SMALL_GOT_4G); return SYMBOL_SMALL_ABSOLUTE; case AARCH64_CMODEL_LARGE: /* This is alright even in PIC code as the constant pool reference is always PC relative and within the same translation unit. */ if (!aarch64_pcrelative_literal_loads && CONSTANT_POOL_ADDRESS_P (x)) return SYMBOL_SMALL_ABSOLUTE; else return SYMBOL_FORCE_TO_MEM; default: gcc_unreachable (); } } /* By default push everything into the constant pool. */ return SYMBOL_FORCE_TO_MEM; } bool aarch64_constant_address_p (rtx x) { return (CONSTANT_P (x) && memory_address_p (DImode, x)); } bool aarch64_legitimate_pic_operand_p (rtx x) { if (GET_CODE (x) == SYMBOL_REF || (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF)) return false; return true; } /* Implement TARGET_LEGITIMATE_CONSTANT_P hook. Return true for constants that should be rematerialized rather than spilled. */ static bool aarch64_legitimate_constant_p (machine_mode mode, rtx x) { /* Support CSE and rematerialization of common constants. */ if (CONST_INT_P (x) || (CONST_DOUBLE_P (x) && GET_MODE_CLASS (mode) == MODE_FLOAT) || GET_CODE (x) == CONST_VECTOR) return true; /* Do not allow vector struct mode constants for Advanced SIMD. We could support 0 and -1 easily, but they need support in aarch64-simd.md. */ unsigned int vec_flags = aarch64_classify_vector_mode (mode); if (vec_flags == (VEC_ADVSIMD | VEC_STRUCT)) return false; /* Only accept variable-length vector constants if they can be handled directly. ??? It would be possible to handle rematerialization of other constants via secondary reloads. */ if (vec_flags & VEC_ANY_SVE) return aarch64_simd_valid_immediate (x, NULL); if (GET_CODE (x) == HIGH) x = XEXP (x, 0); /* Accept polynomial constants that can be calculated by using the destination of a move as the sole temporary. Constants that require a second temporary cannot be rematerialized (they can't be forced to memory and also aren't legitimate constants). */ poly_int64 offset; if (poly_int_rtx_p (x, &offset)) return aarch64_offset_temporaries (false, offset) <= 1; /* If an offset is being added to something else, we need to allow the base to be moved into the destination register, meaning that there are no free temporaries for the offset. */ x = strip_offset (x, &offset); if (!offset.is_constant () && aarch64_offset_temporaries (true, offset) > 0) return false; /* Do not allow const (plus (anchor_symbol, const_int)). */ if (maybe_ne (offset, 0) && SYMBOL_REF_P (x) && SYMBOL_REF_ANCHOR_P (x)) return false; /* Treat symbols as constants. Avoid TLS symbols as they are complex, so spilling them is better than rematerialization. */ if (SYMBOL_REF_P (x) && !SYMBOL_REF_TLS_MODEL (x)) return true; /* Label references are always constant. */ if (GET_CODE (x) == LABEL_REF) return true; return false; } rtx aarch64_load_tp (rtx target) { if (!target || GET_MODE (target) != Pmode || !register_operand (target, Pmode)) target = gen_reg_rtx (Pmode); /* Can return in any reg. */ emit_insn (gen_aarch64_load_tp_hard (target)); return target; } /* On AAPCS systems, this is the "struct __va_list". */ static GTY(()) tree va_list_type; /* Implement TARGET_BUILD_BUILTIN_VA_LIST. Return the type to use as __builtin_va_list. AAPCS64 \S 7.1.4 requires that va_list be a typedef for a type defined as: struct __va_list { void *__stack; void *__gr_top; void *__vr_top; int __gr_offs; int __vr_offs; }; */ static tree aarch64_build_builtin_va_list (void) { tree va_list_name; tree f_stack, f_grtop, f_vrtop, f_groff, f_vroff; /* Create the type. */ va_list_type = lang_hooks.types.make_type (RECORD_TYPE); /* Give it the required name. */ va_list_name = build_decl (BUILTINS_LOCATION, TYPE_DECL, get_identifier ("__va_list"), va_list_type); DECL_ARTIFICIAL (va_list_name) = 1; TYPE_NAME (va_list_type) = va_list_name; TYPE_STUB_DECL (va_list_type) = va_list_name; /* Create the fields. */ f_stack = build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("__stack"), ptr_type_node); f_grtop = build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("__gr_top"), ptr_type_node); f_vrtop = build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("__vr_top"), ptr_type_node); f_groff = build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("__gr_offs"), integer_type_node); f_vroff = build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("__vr_offs"), integer_type_node); /* Tell tree-stdarg pass about our internal offset fields. NOTE: va_list_gpr/fpr_counter_field are only used for tree comparision purpose to identify whether the code is updating va_list internal offset fields through irregular way. */ va_list_gpr_counter_field = f_groff; va_list_fpr_counter_field = f_vroff; DECL_ARTIFICIAL (f_stack) = 1; DECL_ARTIFICIAL (f_grtop) = 1; DECL_ARTIFICIAL (f_vrtop) = 1; DECL_ARTIFICIAL (f_groff) = 1; DECL_ARTIFICIAL (f_vroff) = 1; DECL_FIELD_CONTEXT (f_stack) = va_list_type; DECL_FIELD_CONTEXT (f_grtop) = va_list_type; DECL_FIELD_CONTEXT (f_vrtop) = va_list_type; DECL_FIELD_CONTEXT (f_groff) = va_list_type; DECL_FIELD_CONTEXT (f_vroff) = va_list_type; TYPE_FIELDS (va_list_type) = f_stack; DECL_CHAIN (f_stack) = f_grtop; DECL_CHAIN (f_grtop) = f_vrtop; DECL_CHAIN (f_vrtop) = f_groff; DECL_CHAIN (f_groff) = f_vroff; /* Compute its layout. */ layout_type (va_list_type); return va_list_type; } /* Implement TARGET_EXPAND_BUILTIN_VA_START. */ static void aarch64_expand_builtin_va_start (tree valist, rtx nextarg ATTRIBUTE_UNUSED) { const CUMULATIVE_ARGS *cum; tree f_stack, f_grtop, f_vrtop, f_groff, f_vroff; tree stack, grtop, vrtop, groff, vroff; tree t; int gr_save_area_size = cfun->va_list_gpr_size; int vr_save_area_size = cfun->va_list_fpr_size; int vr_offset; cum = &crtl->args.info; if (cfun->va_list_gpr_size) gr_save_area_size = MIN ((NUM_ARG_REGS - cum->aapcs_ncrn) * UNITS_PER_WORD, cfun->va_list_gpr_size); if (cfun->va_list_fpr_size) vr_save_area_size = MIN ((NUM_FP_ARG_REGS - cum->aapcs_nvrn) * UNITS_PER_VREG, cfun->va_list_fpr_size); if (!TARGET_FLOAT) { gcc_assert (cum->aapcs_nvrn == 0); vr_save_area_size = 0; } f_stack = TYPE_FIELDS (va_list_type_node); f_grtop = DECL_CHAIN (f_stack); f_vrtop = DECL_CHAIN (f_grtop); f_groff = DECL_CHAIN (f_vrtop); f_vroff = DECL_CHAIN (f_groff); stack = build3 (COMPONENT_REF, TREE_TYPE (f_stack), valist, f_stack, NULL_TREE); grtop = build3 (COMPONENT_REF, TREE_TYPE (f_grtop), valist, f_grtop, NULL_TREE); vrtop = build3 (COMPONENT_REF, TREE_TYPE (f_vrtop), valist, f_vrtop, NULL_TREE); groff = build3 (COMPONENT_REF, TREE_TYPE (f_groff), valist, f_groff, NULL_TREE); vroff = build3 (COMPONENT_REF, TREE_TYPE (f_vroff), valist, f_vroff, NULL_TREE); /* Emit code to initialize STACK, which points to the next varargs stack argument. CUM->AAPCS_STACK_SIZE gives the number of stack words used by named arguments. STACK is 8-byte aligned. */ t = make_tree (TREE_TYPE (stack), virtual_incoming_args_rtx); if (cum->aapcs_stack_size > 0) t = fold_build_pointer_plus_hwi (t, cum->aapcs_stack_size * UNITS_PER_WORD); t = build2 (MODIFY_EXPR, TREE_TYPE (stack), stack, t); expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); /* Emit code to initialize GRTOP, the top of the GR save area. virtual_incoming_args_rtx should have been 16 byte aligned. */ t = make_tree (TREE_TYPE (grtop), virtual_incoming_args_rtx); t = build2 (MODIFY_EXPR, TREE_TYPE (grtop), grtop, t); expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); /* Emit code to initialize VRTOP, the top of the VR save area. This address is gr_save_area_bytes below GRTOP, rounded down to the next 16-byte boundary. */ t = make_tree (TREE_TYPE (vrtop), virtual_incoming_args_rtx); vr_offset = ROUND_UP (gr_save_area_size, STACK_BOUNDARY / BITS_PER_UNIT); if (vr_offset) t = fold_build_pointer_plus_hwi (t, -vr_offset); t = build2 (MODIFY_EXPR, TREE_TYPE (vrtop), vrtop, t); expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); /* Emit code to initialize GROFF, the offset from GRTOP of the next GPR argument. */ t = build2 (MODIFY_EXPR, TREE_TYPE (groff), groff, build_int_cst (TREE_TYPE (groff), -gr_save_area_size)); expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); /* Likewise emit code to initialize VROFF, the offset from FTOP of the next VR argument. */ t = build2 (MODIFY_EXPR, TREE_TYPE (vroff), vroff, build_int_cst (TREE_TYPE (vroff), -vr_save_area_size)); expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); } /* Implement TARGET_GIMPLIFY_VA_ARG_EXPR. */ static tree aarch64_gimplify_va_arg_expr (tree valist, tree type, gimple_seq *pre_p, gimple_seq *post_p ATTRIBUTE_UNUSED) { tree addr; bool indirect_p; bool is_ha; /* is HFA or HVA. */ bool dw_align; /* double-word align. */ machine_mode ag_mode = VOIDmode; int nregs; machine_mode mode; tree f_stack, f_grtop, f_vrtop, f_groff, f_vroff; tree stack, f_top, f_off, off, arg, roundup, on_stack; HOST_WIDE_INT size, rsize, adjust, align; tree t, u, cond1, cond2; indirect_p = pass_by_reference (NULL, TYPE_MODE (type), type, false); if (indirect_p) type = build_pointer_type (type); mode = TYPE_MODE (type); f_stack = TYPE_FIELDS (va_list_type_node); f_grtop = DECL_CHAIN (f_stack); f_vrtop = DECL_CHAIN (f_grtop); f_groff = DECL_CHAIN (f_vrtop); f_vroff = DECL_CHAIN (f_groff); stack = build3 (COMPONENT_REF, TREE_TYPE (f_stack), unshare_expr (valist), f_stack, NULL_TREE); size = int_size_in_bytes (type); align = aarch64_function_arg_alignment (mode, type) / BITS_PER_UNIT; dw_align = false; adjust = 0; if (aarch64_vfp_is_call_or_return_candidate (mode, type, &ag_mode, &nregs, &is_ha)) { /* No frontends can create types with variable-sized modes, so we shouldn't be asked to pass or return them. */ unsigned int ag_size = GET_MODE_SIZE (ag_mode).to_constant (); /* TYPE passed in fp/simd registers. */ if (!TARGET_FLOAT) aarch64_err_no_fpadvsimd (mode); f_top = build3 (COMPONENT_REF, TREE_TYPE (f_vrtop), unshare_expr (valist), f_vrtop, NULL_TREE); f_off = build3 (COMPONENT_REF, TREE_TYPE (f_vroff), unshare_expr (valist), f_vroff, NULL_TREE); rsize = nregs * UNITS_PER_VREG; if (is_ha) { if (BYTES_BIG_ENDIAN && ag_size < UNITS_PER_VREG) adjust = UNITS_PER_VREG - ag_size; } else if (BLOCK_REG_PADDING (mode, type, 1) == PAD_DOWNWARD && size < UNITS_PER_VREG) { adjust = UNITS_PER_VREG - size; } } else { /* TYPE passed in general registers. */ f_top = build3 (COMPONENT_REF, TREE_TYPE (f_grtop), unshare_expr (valist), f_grtop, NULL_TREE); f_off = build3 (COMPONENT_REF, TREE_TYPE (f_groff), unshare_expr (valist), f_groff, NULL_TREE); rsize = ROUND_UP (size, UNITS_PER_WORD); nregs = rsize / UNITS_PER_WORD; if (align > 8) dw_align = true; if (BLOCK_REG_PADDING (mode, type, 1) == PAD_DOWNWARD && size < UNITS_PER_WORD) { adjust = UNITS_PER_WORD - size; } } /* Get a local temporary for the field value. */ off = get_initialized_tmp_var (f_off, pre_p, NULL); /* Emit code to branch if off >= 0. */ t = build2 (GE_EXPR, boolean_type_node, off, build_int_cst (TREE_TYPE (off), 0)); cond1 = build3 (COND_EXPR, ptr_type_node, t, NULL_TREE, NULL_TREE); if (dw_align) { /* Emit: offs = (offs + 15) & -16. */ t = build2 (PLUS_EXPR, TREE_TYPE (off), off, build_int_cst (TREE_TYPE (off), 15)); t = build2 (BIT_AND_EXPR, TREE_TYPE (off), t, build_int_cst (TREE_TYPE (off), -16)); roundup = build2 (MODIFY_EXPR, TREE_TYPE (off), off, t); } else roundup = NULL; /* Update ap.__[g|v]r_offs */ t = build2 (PLUS_EXPR, TREE_TYPE (off), off, build_int_cst (TREE_TYPE (off), rsize)); t = build2 (MODIFY_EXPR, TREE_TYPE (f_off), unshare_expr (f_off), t); /* String up. */ if (roundup) t = build2 (COMPOUND_EXPR, TREE_TYPE (t), roundup, t); /* [cond2] if (ap.__[g|v]r_offs > 0) */ u = build2 (GT_EXPR, boolean_type_node, unshare_expr (f_off), build_int_cst (TREE_TYPE (f_off), 0)); cond2 = build3 (COND_EXPR, ptr_type_node, u, NULL_TREE, NULL_TREE); /* String up: make sure the assignment happens before the use. */ t = build2 (COMPOUND_EXPR, TREE_TYPE (cond2), t, cond2); COND_EXPR_ELSE (cond1) = t; /* Prepare the trees handling the argument that is passed on the stack; the top level node will store in ON_STACK. */ arg = get_initialized_tmp_var (stack, pre_p, NULL); if (align > 8) { /* if (alignof(type) > 8) (arg = arg + 15) & -16; */ t = fold_build_pointer_plus_hwi (arg, 15); t = build2 (BIT_AND_EXPR, TREE_TYPE (t), t, build_int_cst (TREE_TYPE (t), -16)); roundup = build2 (MODIFY_EXPR, TREE_TYPE (arg), arg, t); } else roundup = NULL; /* Advance ap.__stack */ t = fold_build_pointer_plus_hwi (arg, size + 7); t = build2 (BIT_AND_EXPR, TREE_TYPE (t), t, build_int_cst (TREE_TYPE (t), -8)); t = build2 (MODIFY_EXPR, TREE_TYPE (stack), unshare_expr (stack), t); /* String up roundup and advance. */ if (roundup) t = build2 (COMPOUND_EXPR, TREE_TYPE (t), roundup, t); /* String up with arg */ on_stack = build2 (COMPOUND_EXPR, TREE_TYPE (arg), t, arg); /* Big-endianness related address adjustment. */ if (BLOCK_REG_PADDING (mode, type, 1) == PAD_DOWNWARD && size < UNITS_PER_WORD) { t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (arg), arg, size_int (UNITS_PER_WORD - size)); on_stack = build2 (COMPOUND_EXPR, TREE_TYPE (arg), on_stack, t); } COND_EXPR_THEN (cond1) = unshare_expr (on_stack); COND_EXPR_THEN (cond2) = unshare_expr (on_stack); /* Adjustment to OFFSET in the case of BIG_ENDIAN. */ t = off; if (adjust) t = build2 (PREINCREMENT_EXPR, TREE_TYPE (off), off, build_int_cst (TREE_TYPE (off), adjust)); t = fold_convert (sizetype, t); t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (f_top), f_top, t); if (is_ha) { /* type ha; // treat as "struct {ftype field[n];}" ... [computing offs] for (i = 0; i va_list_gpr_size; int vr_saved = cfun->va_list_fpr_size; /* The caller has advanced CUM up to, but not beyond, the last named argument. Advance a local copy of CUM past the last "real" named argument, to find out how many registers are left over. */ local_cum = *cum; aarch64_function_arg_advance (pack_cumulative_args(&local_cum), mode, type, true); /* Found out how many registers we need to save. Honor tree-stdvar analysis results. */ if (cfun->va_list_gpr_size) gr_saved = MIN (NUM_ARG_REGS - local_cum.aapcs_ncrn, cfun->va_list_gpr_size / UNITS_PER_WORD); if (cfun->va_list_fpr_size) vr_saved = MIN (NUM_FP_ARG_REGS - local_cum.aapcs_nvrn, cfun->va_list_fpr_size / UNITS_PER_VREG); if (!TARGET_FLOAT) { gcc_assert (local_cum.aapcs_nvrn == 0); vr_saved = 0; } if (!no_rtl) { if (gr_saved > 0) { rtx ptr, mem; /* virtual_incoming_args_rtx should have been 16-byte aligned. */ ptr = plus_constant (Pmode, virtual_incoming_args_rtx, - gr_saved * UNITS_PER_WORD); mem = gen_frame_mem (BLKmode, ptr); set_mem_alias_set (mem, get_varargs_alias_set ()); move_block_from_reg (local_cum.aapcs_ncrn + R0_REGNUM, mem, gr_saved); } if (vr_saved > 0) { /* We can't use move_block_from_reg, because it will use the wrong mode, storing D regs only. */ machine_mode mode = TImode; int off, i, vr_start; /* Set OFF to the offset from virtual_incoming_args_rtx of the first vector register. The VR save area lies below the GR one, and is aligned to 16 bytes. */ off = -ROUND_UP (gr_saved * UNITS_PER_WORD, STACK_BOUNDARY / BITS_PER_UNIT); off -= vr_saved * UNITS_PER_VREG; vr_start = V0_REGNUM + local_cum.aapcs_nvrn; for (i = 0; i < vr_saved; ++i) { rtx ptr, mem; ptr = plus_constant (Pmode, virtual_incoming_args_rtx, off); mem = gen_frame_mem (mode, ptr); set_mem_alias_set (mem, get_varargs_alias_set ()); aarch64_emit_move (mem, gen_rtx_REG (mode, vr_start + i)); off += UNITS_PER_VREG; } } } /* We don't save the size into *PRETEND_SIZE because we want to avoid any complication of having crtl->args.pretend_args_size changed. */ cfun->machine->frame.saved_varargs_size = (ROUND_UP (gr_saved * UNITS_PER_WORD, STACK_BOUNDARY / BITS_PER_UNIT) + vr_saved * UNITS_PER_VREG); } static void aarch64_conditional_register_usage (void) { int i; if (!TARGET_FLOAT) { for (i = V0_REGNUM; i <= V31_REGNUM; i++) { fixed_regs[i] = 1; call_used_regs[i] = 1; } } if (!TARGET_SVE) for (i = P0_REGNUM; i <= P15_REGNUM; i++) { fixed_regs[i] = 1; call_used_regs[i] = 1; } /* When tracking speculation, we need a couple of call-clobbered registers to track the speculation state. It would be nice to just use IP0 and IP1, but currently there are numerous places that just assume these registers are free for other uses (eg pointer authentication). */ if (aarch64_track_speculation) { fixed_regs[SPECULATION_TRACKER_REGNUM] = 1; call_used_regs[SPECULATION_TRACKER_REGNUM] = 1; fixed_regs[SPECULATION_SCRATCH_REGNUM] = 1; call_used_regs[SPECULATION_SCRATCH_REGNUM] = 1; } } /* Walk down the type tree of TYPE counting consecutive base elements. If *MODEP is VOIDmode, then set it to the first valid floating point type. If a non-floating point type is found, or if a floating point type that doesn't match a non-VOIDmode *MODEP is found, then return -1, otherwise return the count in the sub-tree. */ static int aapcs_vfp_sub_candidate (const_tree type, machine_mode *modep) { machine_mode mode; HOST_WIDE_INT size; switch (TREE_CODE (type)) { case REAL_TYPE: mode = TYPE_MODE (type); if (mode != DFmode && mode != SFmode && mode != TFmode && mode != HFmode) return -1; if (*modep == VOIDmode) *modep = mode; if (*modep == mode) return 1; break; case COMPLEX_TYPE: mode = TYPE_MODE (TREE_TYPE (type)); if (mode != DFmode && mode != SFmode && mode != TFmode && mode != HFmode) return -1; if (*modep == VOIDmode) *modep = mode; if (*modep == mode) return 2; break; case VECTOR_TYPE: /* Use V2SImode and V4SImode as representatives of all 64-bit and 128-bit vector types. */ size = int_size_in_bytes (type); switch (size) { case 8: mode = V2SImode; break; case 16: mode = V4SImode; break; default: return -1; } if (*modep == VOIDmode) *modep = mode; /* Vector modes are considered to be opaque: two vectors are equivalent for the purposes of being homogeneous aggregates if they are the same size. */ if (*modep == mode) return 1; break; case ARRAY_TYPE: { int count; tree index = TYPE_DOMAIN (type); /* Can't handle incomplete types nor sizes that are not fixed. */ if (!COMPLETE_TYPE_P (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST) return -1; count = aapcs_vfp_sub_candidate (TREE_TYPE (type), modep); if (count == -1 || !index || !TYPE_MAX_VALUE (index) || !tree_fits_uhwi_p (TYPE_MAX_VALUE (index)) || !TYPE_MIN_VALUE (index) || !tree_fits_uhwi_p (TYPE_MIN_VALUE (index)) || count < 0) return -1; count *= (1 + tree_to_uhwi (TYPE_MAX_VALUE (index)) - tree_to_uhwi (TYPE_MIN_VALUE (index))); /* There must be no padding. */ if (maybe_ne (wi::to_poly_wide (TYPE_SIZE (type)), count * GET_MODE_BITSIZE (*modep))) return -1; return count; } case RECORD_TYPE: { int count = 0; int sub_count; tree field; /* Can't handle incomplete types nor sizes that are not fixed. */ if (!COMPLETE_TYPE_P (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST) return -1; for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field)) { if (TREE_CODE (field) != FIELD_DECL) continue; sub_count = aapcs_vfp_sub_candidate (TREE_TYPE (field), modep); if (sub_count < 0) return -1; count += sub_count; } /* There must be no padding. */ if (maybe_ne (wi::to_poly_wide (TYPE_SIZE (type)), count * GET_MODE_BITSIZE (*modep))) return -1; return count; } case UNION_TYPE: case QUAL_UNION_TYPE: { /* These aren't very interesting except in a degenerate case. */ int count = 0; int sub_count; tree field; /* Can't handle incomplete types nor sizes that are not fixed. */ if (!COMPLETE_TYPE_P (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST) return -1; for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field)) { if (TREE_CODE (field) != FIELD_DECL) continue; sub_count = aapcs_vfp_sub_candidate (TREE_TYPE (field), modep); if (sub_count < 0) return -1; count = count > sub_count ? count : sub_count; } /* There must be no padding. */ if (maybe_ne (wi::to_poly_wide (TYPE_SIZE (type)), count * GET_MODE_BITSIZE (*modep))) return -1; return count; } default: break; } return -1; } /* Return TRUE if the type, as described by TYPE and MODE, is a short vector type as described in AAPCS64 \S 4.1.2. See the comment above aarch64_composite_type_p for the notes on MODE. */ static bool aarch64_short_vector_p (const_tree type, machine_mode mode) { poly_int64 size = -1; if (type && TREE_CODE (type) == VECTOR_TYPE) size = int_size_in_bytes (type); else if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT) size = GET_MODE_SIZE (mode); return known_eq (size, 8) || known_eq (size, 16); } /* Return TRUE if the type, as described by TYPE and MODE, is a composite type as described in AAPCS64 \S 4.3. This includes aggregate, union and array types. The C99 floating-point complex types are also considered as composite types, according to AAPCS64 \S 7.1.1. The complex integer types, which are GCC extensions and out of the scope of AAPCS64, are treated as composite types here as well. Note that MODE itself is not sufficient in determining whether a type is such a composite type or not. This is because stor-layout.c:compute_record_mode may have already changed the MODE (BLKmode) of a RECORD_TYPE TYPE to some other mode. For example, a structure with only one field may have its MODE set to the mode of the field. Also an integer mode whose size matches the size of the RECORD_TYPE type may be used to substitute the original mode (i.e. BLKmode) in certain circumstances. In other words, MODE cannot be solely relied on. */ static bool aarch64_composite_type_p (const_tree type, machine_mode mode) { if (aarch64_short_vector_p (type, mode)) return false; if (type && (AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE)) return true; if (mode == BLKmode || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT) return true; return false; } /* Return TRUE if an argument, whose type is described by TYPE and MODE, shall be passed or returned in simd/fp register(s) (providing these parameter passing registers are available). Upon successful return, *COUNT returns the number of needed registers, *BASE_MODE returns the mode of the individual register and when IS_HAF is not NULL, *IS_HA indicates whether or not the argument is a homogeneous floating-point aggregate or a homogeneous short-vector aggregate. */ static bool aarch64_vfp_is_call_or_return_candidate (machine_mode mode, const_tree type, machine_mode *base_mode, int *count, bool *is_ha) { machine_mode new_mode = VOIDmode; bool composite_p = aarch64_composite_type_p (type, mode); if (is_ha != NULL) *is_ha = false; if ((!composite_p && GET_MODE_CLASS (mode) == MODE_FLOAT) || aarch64_short_vector_p (type, mode)) { *count = 1; new_mode = mode; } else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT) { if (is_ha != NULL) *is_ha = true; *count = 2; new_mode = GET_MODE_INNER (mode); } else if (type && composite_p) { int ag_count = aapcs_vfp_sub_candidate (type, &new_mode); if (ag_count > 0 && ag_count <= HA_MAX_NUM_FLDS) { if (is_ha != NULL) *is_ha = true; *count = ag_count; } else return false; } else return false; *base_mode = new_mode; return true; } /* Implement TARGET_STRUCT_VALUE_RTX. */ static rtx aarch64_struct_value_rtx (tree fndecl ATTRIBUTE_UNUSED, int incoming ATTRIBUTE_UNUSED) { return gen_rtx_REG (Pmode, AARCH64_STRUCT_VALUE_REGNUM); } /* Implements target hook vector_mode_supported_p. */ static bool aarch64_vector_mode_supported_p (machine_mode mode) { unsigned int vec_flags = aarch64_classify_vector_mode (mode); return vec_flags != 0 && (vec_flags & VEC_STRUCT) == 0; } /* Return appropriate SIMD container for MODE within a vector of WIDTH bits. */ static machine_mode aarch64_simd_container_mode (scalar_mode mode, poly_int64 width) { if (TARGET_SVE && known_eq (width, BITS_PER_SVE_VECTOR)) switch (mode) { case E_DFmode: return VNx2DFmode; case E_SFmode: return VNx4SFmode; case E_HFmode: return VNx8HFmode; case E_DImode: return VNx2DImode; case E_SImode: return VNx4SImode; case E_HImode: return VNx8HImode; case E_QImode: return VNx16QImode; default: return word_mode; } gcc_assert (known_eq (width, 64) || known_eq (width, 128)); if (TARGET_SIMD) { if (known_eq (width, 128)) switch (mode) { case E_DFmode: return V2DFmode; case E_SFmode: return V4SFmode; case E_HFmode: return V8HFmode; case E_SImode: return V4SImode; case E_HImode: return V8HImode; case E_QImode: return V16QImode; case E_DImode: return V2DImode; default: break; } else switch (mode) { case E_SFmode: return V2SFmode; case E_HFmode: return V4HFmode; case E_SImode: return V2SImode; case E_HImode: return V4HImode; case E_QImode: return V8QImode; default: break; } } return word_mode; } /* Return 128-bit container as the preferred SIMD mode for MODE. */ static machine_mode aarch64_preferred_simd_mode (scalar_mode mode) { poly_int64 bits = TARGET_SVE ? BITS_PER_SVE_VECTOR : 128; return aarch64_simd_container_mode (mode, bits); } /* Return a list of possible vector sizes for the vectorizer to iterate over. */ static void aarch64_autovectorize_vector_sizes (vector_sizes *sizes) { if (TARGET_SVE) sizes->safe_push (BYTES_PER_SVE_VECTOR); sizes->safe_push (16); sizes->safe_push (8); } /* Implement TARGET_MANGLE_TYPE. */ static const char * aarch64_mangle_type (const_tree type) { /* The AArch64 ABI documents say that "__va_list" has to be managled as if it is in the "std" namespace. */ if (lang_hooks.types_compatible_p (CONST_CAST_TREE (type), va_list_type)) return "St9__va_list"; /* Half-precision float. */ if (TREE_CODE (type) == REAL_TYPE && TYPE_PRECISION (type) == 16) return "Dh"; /* Mangle AArch64-specific internal types. TYPE_NAME is non-NULL_TREE for builtin types. */ if (TYPE_NAME (type) != NULL) return aarch64_mangle_builtin_type (type); /* Use the default mangling. */ return NULL; } /* Find the first rtx_insn before insn that will generate an assembly instruction. */ static rtx_insn * aarch64_prev_real_insn (rtx_insn *insn) { if (!insn) return NULL; do { insn = prev_real_insn (insn); } while (insn && recog_memoized (insn) < 0); return insn; } static bool is_madd_op (enum attr_type t1) { unsigned int i; /* A number of these may be AArch32 only. */ enum attr_type mlatypes[] = { TYPE_MLA, TYPE_MLAS, TYPE_SMLAD, TYPE_SMLADX, TYPE_SMLAL, TYPE_SMLALD, TYPE_SMLALS, TYPE_SMLALXY, TYPE_SMLAWX, TYPE_SMLAWY, TYPE_SMLAXY, TYPE_SMMLA, TYPE_UMLAL, TYPE_UMLALS,TYPE_SMLSD, TYPE_SMLSDX, TYPE_SMLSLD }; for (i = 0; i < sizeof (mlatypes) / sizeof (enum attr_type); i++) { if (t1 == mlatypes[i]) return true; } return false; } /* Check if there is a register dependency between a load and the insn for which we hold recog_data. */ static bool dep_between_memop_and_curr (rtx memop) { rtx load_reg; int opno; gcc_assert (GET_CODE (memop) == SET); if (!REG_P (SET_DEST (memop))) return false; load_reg = SET_DEST (memop); for (opno = 1; opno < recog_data.n_operands; opno++) { rtx operand = recog_data.operand[opno]; if (REG_P (operand) && reg_overlap_mentioned_p (load_reg, operand)) return true; } return false; } /* When working around the Cortex-A53 erratum 835769, given rtx_insn INSN, return true if it is a 64-bit multiply-accumulate instruction and has a preceding memory instruction such that a NOP should be inserted between them. */ bool aarch64_madd_needs_nop (rtx_insn* insn) { enum attr_type attr_type; rtx_insn *prev; rtx body; if (!TARGET_FIX_ERR_A53_835769) return false; if (!INSN_P (insn) || recog_memoized (insn) < 0) return false; attr_type = get_attr_type (insn); if (!is_madd_op (attr_type)) return false; prev = aarch64_prev_real_insn (insn); /* aarch64_prev_real_insn can call recog_memoized on insns other than INSN. Restore recog state to INSN to avoid state corruption. */ extract_constrain_insn_cached (insn); if (!prev || !contains_mem_rtx_p (PATTERN (prev))) return false; body = single_set (prev); /* If the previous insn is a memory op and there is no dependency between it and the DImode madd, emit a NOP between them. If body is NULL then we have a complex memory operation, probably a load/store pair. Be conservative for now and emit a NOP. */ if (GET_MODE (recog_data.operand[0]) == DImode && (!body || !dep_between_memop_and_curr (body))) return true; return false; } /* Implement FINAL_PRESCAN_INSN. */ void aarch64_final_prescan_insn (rtx_insn *insn) { if (aarch64_madd_needs_nop (insn)) fprintf (asm_out_file, "\tnop // between mem op and mult-accumulate\n"); } /* Return true if BASE_OR_STEP is a valid immediate operand for an SVE INDEX instruction. */ bool aarch64_sve_index_immediate_p (rtx base_or_step) { return (CONST_INT_P (base_or_step) && IN_RANGE (INTVAL (base_or_step), -16, 15)); } /* Return true if X is a valid immediate for the SVE ADD and SUB instructions. Negate X first if NEGATE_P is true. */ bool aarch64_sve_arith_immediate_p (rtx x, bool negate_p) { rtx elt; if (!const_vec_duplicate_p (x, &elt) || !CONST_INT_P (elt)) return false; HOST_WIDE_INT val = INTVAL (elt); if (negate_p) val = -val; val &= GET_MODE_MASK (GET_MODE_INNER (GET_MODE (x))); if (val & 0xff) return IN_RANGE (val, 0, 0xff); return IN_RANGE (val, 0, 0xff00); } /* Return true if X is a valid immediate operand for an SVE logical instruction such as AND. */ bool aarch64_sve_bitmask_immediate_p (rtx x) { rtx elt; return (const_vec_duplicate_p (x, &elt) && CONST_INT_P (elt) && aarch64_bitmask_imm (INTVAL (elt), GET_MODE_INNER (GET_MODE (x)))); } /* Return true if X is a valid immediate for the SVE DUP and CPY instructions. */ bool aarch64_sve_dup_immediate_p (rtx x) { rtx elt; if (!const_vec_duplicate_p (x, &elt) || !CONST_INT_P (elt)) return false; HOST_WIDE_INT val = INTVAL (elt); if (val & 0xff) return IN_RANGE (val, -0x80, 0x7f); return IN_RANGE (val, -0x8000, 0x7f00); } /* Return true if X is a valid immediate operand for an SVE CMP instruction. SIGNED_P says whether the operand is signed rather than unsigned. */ bool aarch64_sve_cmp_immediate_p (rtx x, bool signed_p) { rtx elt; return (const_vec_duplicate_p (x, &elt) && CONST_INT_P (elt) && (signed_p ? IN_RANGE (INTVAL (elt), -16, 15) : IN_RANGE (INTVAL (elt), 0, 127))); } /* Return true if X is a valid immediate operand for an SVE FADD or FSUB instruction. Negate X first if NEGATE_P is true. */ bool aarch64_sve_float_arith_immediate_p (rtx x, bool negate_p) { rtx elt; REAL_VALUE_TYPE r; if (!const_vec_duplicate_p (x, &elt) || GET_CODE (elt) != CONST_DOUBLE) return false; r = *CONST_DOUBLE_REAL_VALUE (elt); if (negate_p) r = real_value_negate (&r); if (real_equal (&r, &dconst1)) return true; if (real_equal (&r, &dconsthalf)) return true; return false; } /* Return true if X is a valid immediate operand for an SVE FMUL instruction. */ bool aarch64_sve_float_mul_immediate_p (rtx x) { rtx elt; /* GCC will never generate a multiply with an immediate of 2, so there is no point testing for it (even though it is a valid constant). */ return (const_vec_duplicate_p (x, &elt) && GET_CODE (elt) == CONST_DOUBLE && real_equal (CONST_DOUBLE_REAL_VALUE (elt), &dconsthalf)); } /* Return true if replicating VAL32 is a valid 2-byte or 4-byte immediate for the Advanced SIMD operation described by WHICH and INSN. If INFO is nonnull, use it to describe valid immediates. */ static bool aarch64_advsimd_valid_immediate_hs (unsigned int val32, simd_immediate_info *info, enum simd_immediate_check which, simd_immediate_info::insn_type insn) { /* Try a 4-byte immediate with LSL. */ for (unsigned int shift = 0; shift < 32; shift += 8) if ((val32 & (0xff << shift)) == val32) { if (info) *info = simd_immediate_info (SImode, val32 >> shift, insn, simd_immediate_info::LSL, shift); return true; } /* Try a 2-byte immediate with LSL. */ unsigned int imm16 = val32 & 0xffff; if (imm16 == (val32 >> 16)) for (unsigned int shift = 0; shift < 16; shift += 8) if ((imm16 & (0xff << shift)) == imm16) { if (info) *info = simd_immediate_info (HImode, imm16 >> shift, insn, simd_immediate_info::LSL, shift); return true; } /* Try a 4-byte immediate with MSL, except for cases that MVN can handle. */ if (which == AARCH64_CHECK_MOV) for (unsigned int shift = 8; shift < 24; shift += 8) { unsigned int low = (1 << shift) - 1; if (((val32 & (0xff << shift)) | low) == val32) { if (info) *info = simd_immediate_info (SImode, val32 >> shift, insn, simd_immediate_info::MSL, shift); return true; } } return false; } /* Return true if replicating VAL64 is a valid immediate for the Advanced SIMD operation described by WHICH. If INFO is nonnull, use it to describe valid immediates. */ static bool aarch64_advsimd_valid_immediate (unsigned HOST_WIDE_INT val64, simd_immediate_info *info, enum simd_immediate_check which) { unsigned int val32 = val64 & 0xffffffff; unsigned int val16 = val64 & 0xffff; unsigned int val8 = val64 & 0xff; if (val32 == (val64 >> 32)) { if ((which & AARCH64_CHECK_ORR) != 0 && aarch64_advsimd_valid_immediate_hs (val32, info, which, simd_immediate_info::MOV)) return true; if ((which & AARCH64_CHECK_BIC) != 0 && aarch64_advsimd_valid_immediate_hs (~val32, info, which, simd_immediate_info::MVN)) return true; /* Try using a replicated byte. */ if (which == AARCH64_CHECK_MOV && val16 == (val32 >> 16) && val8 == (val16 >> 8)) { if (info) *info = simd_immediate_info (QImode, val8); return true; } } /* Try using a bit-to-bytemask. */ if (which == AARCH64_CHECK_MOV) { unsigned int i; for (i = 0; i < 64; i += 8) { unsigned char byte = (val64 >> i) & 0xff; if (byte != 0 && byte != 0xff) break; } if (i == 64) { if (info) *info = simd_immediate_info (DImode, val64); return true; } } return false; } /* Return true if replicating VAL64 gives a valid immediate for an SVE MOV instruction. If INFO is nonnull, use it to describe valid immediates. */ static bool aarch64_sve_valid_immediate (unsigned HOST_WIDE_INT val64, simd_immediate_info *info) { scalar_int_mode mode = DImode; unsigned int val32 = val64 & 0xffffffff; if (val32 == (val64 >> 32)) { mode = SImode; unsigned int val16 = val32 & 0xffff; if (val16 == (val32 >> 16)) { mode = HImode; unsigned int val8 = val16 & 0xff; if (val8 == (val16 >> 8)) mode = QImode; } } HOST_WIDE_INT val = trunc_int_for_mode (val64, mode); if (IN_RANGE (val, -0x80, 0x7f)) { /* DUP with no shift. */ if (info) *info = simd_immediate_info (mode, val); return true; } if ((val & 0xff) == 0 && IN_RANGE (val, -0x8000, 0x7f00)) { /* DUP with LSL #8. */ if (info) *info = simd_immediate_info (mode, val); return true; } if (aarch64_bitmask_imm (val64, mode)) { /* DUPM. */ if (info) *info = simd_immediate_info (mode, val); return true; } return false; } /* Return true if OP is a valid SIMD immediate for the operation described by WHICH. If INFO is nonnull, use it to describe valid immediates. */ bool aarch64_simd_valid_immediate (rtx op, simd_immediate_info *info, enum simd_immediate_check which) { machine_mode mode = GET_MODE (op); unsigned int vec_flags = aarch64_classify_vector_mode (mode); if (vec_flags == 0 || vec_flags == (VEC_ADVSIMD | VEC_STRUCT)) return false; scalar_mode elt_mode = GET_MODE_INNER (mode); rtx base, step; unsigned int n_elts; if (GET_CODE (op) == CONST_VECTOR && CONST_VECTOR_DUPLICATE_P (op)) n_elts = CONST_VECTOR_NPATTERNS (op); else if ((vec_flags & VEC_SVE_DATA) && const_vec_series_p (op, &base, &step)) { gcc_assert (GET_MODE_CLASS (mode) == MODE_VECTOR_INT); if (!aarch64_sve_index_immediate_p (base) || !aarch64_sve_index_immediate_p (step)) return false; if (info) *info = simd_immediate_info (elt_mode, base, step); return true; } else if (GET_CODE (op) == CONST_VECTOR && CONST_VECTOR_NUNITS (op).is_constant (&n_elts)) /* N_ELTS set above. */; else return false; /* Handle PFALSE and PTRUE. */ if (vec_flags & VEC_SVE_PRED) return (op == CONST0_RTX (mode) || op == CONSTM1_RTX (mode)); scalar_float_mode elt_float_mode; if (n_elts == 1 && is_a (elt_mode, &elt_float_mode)) { rtx elt = CONST_VECTOR_ENCODED_ELT (op, 0); if (aarch64_float_const_zero_rtx_p (elt) || aarch64_float_const_representable_p (elt)) { if (info) *info = simd_immediate_info (elt_float_mode, elt); return true; } } unsigned int elt_size = GET_MODE_SIZE (elt_mode); if (elt_size > 8) return false; scalar_int_mode elt_int_mode = int_mode_for_mode (elt_mode).require (); /* Expand the vector constant out into a byte vector, with the least significant byte of the register first. */ auto_vec bytes; bytes.reserve (n_elts * elt_size); for (unsigned int i = 0; i < n_elts; i++) { /* The vector is provided in gcc endian-neutral fashion. For aarch64_be Advanced SIMD, it must be laid out in the vector register in reverse order. */ bool swap_p = ((vec_flags & VEC_ADVSIMD) != 0 && BYTES_BIG_ENDIAN); rtx elt = CONST_VECTOR_ELT (op, swap_p ? (n_elts - 1 - i) : i); if (elt_mode != elt_int_mode) elt = gen_lowpart (elt_int_mode, elt); if (!CONST_INT_P (elt)) return false; unsigned HOST_WIDE_INT elt_val = INTVAL (elt); for (unsigned int byte = 0; byte < elt_size; byte++) { bytes.quick_push (elt_val & 0xff); elt_val >>= BITS_PER_UNIT; } } /* The immediate must repeat every eight bytes. */ unsigned int nbytes = bytes.length (); for (unsigned i = 8; i < nbytes; ++i) if (bytes[i] != bytes[i - 8]) return false; /* Get the repeating 8-byte value as an integer. No endian correction is needed here because bytes is already in lsb-first order. */ unsigned HOST_WIDE_INT val64 = 0; for (unsigned int i = 0; i < 8; i++) val64 |= ((unsigned HOST_WIDE_INT) bytes[i % nbytes] << (i * BITS_PER_UNIT)); if (vec_flags & VEC_SVE_DATA) return aarch64_sve_valid_immediate (val64, info); else return aarch64_advsimd_valid_immediate (val64, info, which); } /* Check whether X is a VEC_SERIES-like constant that starts at 0 and has a step in the range of INDEX. Return the index expression if so, otherwise return null. */ rtx aarch64_check_zero_based_sve_index_immediate (rtx x) { rtx base, step; if (const_vec_series_p (x, &base, &step) && base == const0_rtx && aarch64_sve_index_immediate_p (step)) return step; return NULL_RTX; } /* Check of immediate shift constants are within range. */ bool aarch64_simd_shift_imm_p (rtx x, machine_mode mode, bool left) { int bit_width = GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT; if (left) return aarch64_const_vec_all_same_in_range_p (x, 0, bit_width - 1); else return aarch64_const_vec_all_same_in_range_p (x, 1, bit_width); } /* Return the bitmask CONST_INT to select the bits required by a zero extract operation of width WIDTH at bit position POS. */ rtx aarch64_mask_from_zextract_ops (rtx width, rtx pos) { gcc_assert (CONST_INT_P (width)); gcc_assert (CONST_INT_P (pos)); unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << UINTVAL (width)) - 1; return GEN_INT (mask << UINTVAL (pos)); } bool aarch64_mov_operand_p (rtx x, machine_mode mode) { if (GET_CODE (x) == HIGH && aarch64_valid_symref (XEXP (x, 0), GET_MODE (XEXP (x, 0)))) return true; if (CONST_INT_P (x)) return true; if (VECTOR_MODE_P (GET_MODE (x))) return aarch64_simd_valid_immediate (x, NULL); if (GET_CODE (x) == SYMBOL_REF && mode == DImode && CONSTANT_ADDRESS_P (x)) return true; if (aarch64_sve_cnt_immediate_p (x)) return true; return aarch64_classify_symbolic_expression (x) == SYMBOL_TINY_ABSOLUTE; } /* Return a const_int vector of VAL. */ rtx aarch64_simd_gen_const_vector_dup (machine_mode mode, HOST_WIDE_INT val) { rtx c = gen_int_mode (val, GET_MODE_INNER (mode)); return gen_const_vec_duplicate (mode, c); } /* Check OP is a legal scalar immediate for the MOVI instruction. */ bool aarch64_simd_scalar_immediate_valid_for_move (rtx op, scalar_int_mode mode) { machine_mode vmode; vmode = aarch64_simd_container_mode (mode, 64); rtx op_v = aarch64_simd_gen_const_vector_dup (vmode, INTVAL (op)); return aarch64_simd_valid_immediate (op_v, NULL); } /* Construct and return a PARALLEL RTX vector with elements numbering the lanes of either the high (HIGH == TRUE) or low (HIGH == FALSE) half of the vector - from the perspective of the architecture. This does not line up with GCC's perspective on lane numbers, so we end up with different masks depending on our target endian-ness. The diagram below may help. We must draw the distinction when building masks which select one half of the vector. An instruction selecting architectural low-lanes for a big-endian target, must be described using a mask selecting GCC high-lanes. Big-Endian Little-Endian GCC 0 1 2 3 3 2 1 0 | x | x | x | x | | x | x | x | x | Architecture 3 2 1 0 3 2 1 0 Low Mask: { 2, 3 } { 0, 1 } High Mask: { 0, 1 } { 2, 3 } MODE Is the mode of the vector and NUNITS is the number of units in it. */ rtx aarch64_simd_vect_par_cnst_half (machine_mode mode, int nunits, bool high) { rtvec v = rtvec_alloc (nunits / 2); int high_base = nunits / 2; int low_base = 0; int base; rtx t1; int i; if (BYTES_BIG_ENDIAN) base = high ? low_base : high_base; else base = high ? high_base : low_base; for (i = 0; i < nunits / 2; i++) RTVEC_ELT (v, i) = GEN_INT (base + i); t1 = gen_rtx_PARALLEL (mode, v); return t1; } /* Check OP for validity as a PARALLEL RTX vector with elements numbering the lanes of either the high (HIGH == TRUE) or low lanes, from the perspective of the architecture. See the diagram above aarch64_simd_vect_par_cnst_half for more details. */ bool aarch64_simd_check_vect_par_cnst_half (rtx op, machine_mode mode, bool high) { int nelts; if (!VECTOR_MODE_P (mode) || !GET_MODE_NUNITS (mode).is_constant (&nelts)) return false; rtx ideal = aarch64_simd_vect_par_cnst_half (mode, nelts, high); HOST_WIDE_INT count_op = XVECLEN (op, 0); HOST_WIDE_INT count_ideal = XVECLEN (ideal, 0); int i = 0; if (count_op != count_ideal) return false; for (i = 0; i < count_ideal; i++) { rtx elt_op = XVECEXP (op, 0, i); rtx elt_ideal = XVECEXP (ideal, 0, i); if (!CONST_INT_P (elt_op) || INTVAL (elt_ideal) != INTVAL (elt_op)) return false; } return true; } /* Bounds-check lanes. Ensure OPERAND lies between LOW (inclusive) and HIGH (exclusive). */ void aarch64_simd_lane_bounds (rtx operand, HOST_WIDE_INT low, HOST_WIDE_INT high, const_tree exp) { HOST_WIDE_INT lane; gcc_assert (CONST_INT_P (operand)); lane = INTVAL (operand); if (lane < low || lane >= high) { if (exp) error ("%Klane %wd out of range %wd - %wd", exp, lane, low, high - 1); else error ("lane %wd out of range %wd - %wd", lane, low, high - 1); } } /* Peform endian correction on lane number N, which indexes a vector of mode MODE, and return the result as an SImode rtx. */ rtx aarch64_endian_lane_rtx (machine_mode mode, unsigned int n) { return gen_int_mode (ENDIAN_LANE_N (GET_MODE_NUNITS (mode), n), SImode); } /* Return TRUE if OP is a valid vector addressing mode. */ bool aarch64_simd_mem_operand_p (rtx op) { return MEM_P (op) && (GET_CODE (XEXP (op, 0)) == POST_INC || REG_P (XEXP (op, 0))); } /* Return true if OP is a valid MEM operand for an SVE LD1R instruction. */ bool aarch64_sve_ld1r_operand_p (rtx op) { struct aarch64_address_info addr; scalar_mode mode; return (MEM_P (op) && is_a (GET_MODE (op), &mode) && aarch64_classify_address (&addr, XEXP (op, 0), mode, false) && addr.type == ADDRESS_REG_IMM && offset_6bit_unsigned_scaled_p (mode, addr.const_offset)); } /* Return true if OP is a valid MEM operand for an SVE LDR instruction. The conditions for STR are the same. */ bool aarch64_sve_ldr_operand_p (rtx op) { struct aarch64_address_info addr; return (MEM_P (op) && aarch64_classify_address (&addr, XEXP (op, 0), GET_MODE (op), false, ADDR_QUERY_ANY) && addr.type == ADDRESS_REG_IMM); } /* Return true if OP is a valid MEM operand for an SVE_STRUCT mode. We need to be able to access the individual pieces, so the range is different from LD[234] and ST[234]. */ bool aarch64_sve_struct_memory_operand_p (rtx op) { if (!MEM_P (op)) return false; machine_mode mode = GET_MODE (op); struct aarch64_address_info addr; if (!aarch64_classify_address (&addr, XEXP (op, 0), SVE_BYTE_MODE, false, ADDR_QUERY_ANY) || addr.type != ADDRESS_REG_IMM) return false; poly_int64 first = addr.const_offset; poly_int64 last = first + GET_MODE_SIZE (mode) - BYTES_PER_SVE_VECTOR; return (offset_4bit_signed_scaled_p (SVE_BYTE_MODE, first) && offset_4bit_signed_scaled_p (SVE_BYTE_MODE, last)); } /* Emit a register copy from operand to operand, taking care not to early-clobber source registers in the process. COUNT is the number of components into which the copy needs to be decomposed. */ void aarch64_simd_emit_reg_reg_move (rtx *operands, machine_mode mode, unsigned int count) { unsigned int i; int rdest = REGNO (operands[0]); int rsrc = REGNO (operands[1]); if (!reg_overlap_mentioned_p (operands[0], operands[1]) || rdest < rsrc) for (i = 0; i < count; i++) emit_move_insn (gen_rtx_REG (mode, rdest + i), gen_rtx_REG (mode, rsrc + i)); else for (i = 0; i < count; i++) emit_move_insn (gen_rtx_REG (mode, rdest + count - i - 1), gen_rtx_REG (mode, rsrc + count - i - 1)); } /* Compute and return the length of aarch64_simd_reglist, where is one of VSTRUCT modes: OI, CI, or XI. */ int aarch64_simd_attr_length_rglist (machine_mode mode) { /* This is only used (and only meaningful) for Advanced SIMD, not SVE. */ return (GET_MODE_SIZE (mode).to_constant () / UNITS_PER_VREG) * 4; } /* Implement target hook TARGET_VECTOR_ALIGNMENT. The AAPCS64 sets the maximum alignment of a vector to 128 bits. SVE predicates have an alignment of 16 bits. */ static HOST_WIDE_INT aarch64_simd_vector_alignment (const_tree type) { if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST) /* ??? Checking the mode isn't ideal, but VECTOR_BOOLEAN_TYPE_P can be set for non-predicate vectors of booleans. Modes are the most direct way we have of identifying real SVE predicate types. */ return GET_MODE_CLASS (TYPE_MODE (type)) == MODE_VECTOR_BOOL ? 16 : 128; HOST_WIDE_INT align = tree_to_shwi (TYPE_SIZE (type)); return MIN (align, 128); } /* Implement target hook TARGET_VECTORIZE_PREFERRED_VECTOR_ALIGNMENT. */ static HOST_WIDE_INT aarch64_vectorize_preferred_vector_alignment (const_tree type) { if (aarch64_sve_data_mode_p (TYPE_MODE (type))) { /* If the length of the vector is fixed, try to align to that length, otherwise don't try to align at all. */ HOST_WIDE_INT result; if (!BITS_PER_SVE_VECTOR.is_constant (&result)) result = TYPE_ALIGN (TREE_TYPE (type)); return result; } return TYPE_ALIGN (type); } /* Implement target hook TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE. */ static bool aarch64_simd_vector_alignment_reachable (const_tree type, bool is_packed) { if (is_packed) return false; /* For fixed-length vectors, check that the vectorizer will aim for full-vector alignment. This isn't true for generic GCC vectors that are wider than the ABI maximum of 128 bits. */ if (TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST && (wi::to_widest (TYPE_SIZE (type)) != aarch64_vectorize_preferred_vector_alignment (type))) return false; /* Vectors whose size is <= BIGGEST_ALIGNMENT are naturally aligned. */ return true; } /* Return true if the vector misalignment factor is supported by the target. */ static bool aarch64_builtin_support_vector_misalignment (machine_mode mode, const_tree type, int misalignment, bool is_packed) { if (TARGET_SIMD && STRICT_ALIGNMENT) { /* Return if movmisalign pattern is not supported for this mode. */ if (optab_handler (movmisalign_optab, mode) == CODE_FOR_nothing) return false; /* Misalignment factor is unknown at compile time. */ if (misalignment == -1) return false; } return default_builtin_support_vector_misalignment (mode, type, misalignment, is_packed); } /* If VALS is a vector constant that can be loaded into a register using DUP, generate instructions to do so and return an RTX to assign to the register. Otherwise return NULL_RTX. */ static rtx aarch64_simd_dup_constant (rtx vals) { machine_mode mode = GET_MODE (vals); machine_mode inner_mode = GET_MODE_INNER (mode); rtx x; if (!const_vec_duplicate_p (vals, &x)) return NULL_RTX; /* We can load this constant by using DUP and a constant in a single ARM register. This will be cheaper than a vector load. */ x = copy_to_mode_reg (inner_mode, x); return gen_vec_duplicate (mode, x); } /* Generate code to load VALS, which is a PARALLEL containing only constants (for vec_init) or CONST_VECTOR, efficiently into a register. Returns an RTX to copy into the register, or NULL_RTX for a PARALLEL that can not be converted into a CONST_VECTOR. */ static rtx aarch64_simd_make_constant (rtx vals) { machine_mode mode = GET_MODE (vals); rtx const_dup; rtx const_vec = NULL_RTX; int n_const = 0; int i; if (GET_CODE (vals) == CONST_VECTOR) const_vec = vals; else if (GET_CODE (vals) == PARALLEL) { /* A CONST_VECTOR must contain only CONST_INTs and CONST_DOUBLEs, but CONSTANT_P allows more (e.g. SYMBOL_REF). Only store valid constants in a CONST_VECTOR. */ int n_elts = XVECLEN (vals, 0); for (i = 0; i < n_elts; ++i) { rtx x = XVECEXP (vals, 0, i); if (CONST_INT_P (x) || CONST_DOUBLE_P (x)) n_const++; } if (n_const == n_elts) const_vec = gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0)); } else gcc_unreachable (); if (const_vec != NULL_RTX && aarch64_simd_valid_immediate (const_vec, NULL)) /* Load using MOVI/MVNI. */ return const_vec; else if ((const_dup = aarch64_simd_dup_constant (vals)) != NULL_RTX) /* Loaded using DUP. */ return const_dup; else if (const_vec != NULL_RTX) /* Load from constant pool. We can not take advantage of single-cycle LD1 because we need a PC-relative addressing mode. */ return const_vec; else /* A PARALLEL containing something not valid inside CONST_VECTOR. We can not construct an initializer. */ return NULL_RTX; } /* Expand a vector initialisation sequence, such that TARGET is initialised to contain VALS. */ void aarch64_expand_vector_init (rtx target, rtx vals) { machine_mode mode = GET_MODE (target); scalar_mode inner_mode = GET_MODE_INNER (mode); /* The number of vector elements. */ int n_elts = XVECLEN (vals, 0); /* The number of vector elements which are not constant. */ int n_var = 0; rtx any_const = NULL_RTX; /* The first element of vals. */ rtx v0 = XVECEXP (vals, 0, 0); bool all_same = true; /* Count the number of variable elements to initialise. */ for (int i = 0; i < n_elts; ++i) { rtx x = XVECEXP (vals, 0, i); if (!(CONST_INT_P (x) || CONST_DOUBLE_P (x))) ++n_var; else any_const = x; all_same &= rtx_equal_p (x, v0); } /* No variable elements, hand off to aarch64_simd_make_constant which knows how best to handle this. */ if (n_var == 0) { rtx constant = aarch64_simd_make_constant (vals); if (constant != NULL_RTX) { emit_move_insn (target, constant); return; } } /* Splat a single non-constant element if we can. */ if (all_same) { rtx x = copy_to_mode_reg (inner_mode, v0); aarch64_emit_move (target, gen_vec_duplicate (mode, x)); return; } enum insn_code icode = optab_handler (vec_set_optab, mode); gcc_assert (icode != CODE_FOR_nothing); /* If there are only variable elements, try to optimize the insertion using dup for the most common element followed by insertions. */ /* The algorithm will fill matches[*][0] with the earliest matching element, and matches[X][1] with the count of duplicate elements (if X is the earliest element which has duplicates). */ if (n_var == n_elts && n_elts <= 16) { int matches[16][2] = {0}; for (int i = 0; i < n_elts; i++) { for (int j = 0; j <= i; j++) { if (rtx_equal_p (XVECEXP (vals, 0, i), XVECEXP (vals, 0, j))) { matches[i][0] = j; matches[j][1]++; break; } } } int maxelement = 0; int maxv = 0; for (int i = 0; i < n_elts; i++) if (matches[i][1] > maxv) { maxelement = i; maxv = matches[i][1]; } /* Create a duplicate of the most common element, unless all elements are equally useless to us, in which case just immediately set the vector register using the first element. */ if (maxv == 1) { /* For vectors of two 64-bit elements, we can do even better. */ if (n_elts == 2 && (inner_mode == E_DImode || inner_mode == E_DFmode)) { rtx x0 = XVECEXP (vals, 0, 0); rtx x1 = XVECEXP (vals, 0, 1); /* Combine can pick up this case, but handling it directly here leaves clearer RTL. This is load_pair_lanes, and also gives us a clean-up for store_pair_lanes. */ if (memory_operand (x0, inner_mode) && memory_operand (x1, inner_mode) && !STRICT_ALIGNMENT && rtx_equal_p (XEXP (x1, 0), plus_constant (Pmode, XEXP (x0, 0), GET_MODE_SIZE (inner_mode)))) { rtx t; if (inner_mode == DFmode) t = gen_load_pair_lanesdf (target, x0, x1); else t = gen_load_pair_lanesdi (target, x0, x1); emit_insn (t); return; } } /* The subreg-move sequence below will move into lane zero of the vector register. For big-endian we want that position to hold the last element of VALS. */ maxelement = BYTES_BIG_ENDIAN ? n_elts - 1 : 0; rtx x = copy_to_mode_reg (inner_mode, XVECEXP (vals, 0, maxelement)); aarch64_emit_move (target, lowpart_subreg (mode, x, inner_mode)); } else { rtx x = copy_to_mode_reg (inner_mode, XVECEXP (vals, 0, maxelement)); aarch64_emit_move (target, gen_vec_duplicate (mode, x)); } /* Insert the rest. */ for (int i = 0; i < n_elts; i++) { rtx x = XVECEXP (vals, 0, i); if (matches[i][0] == maxelement) continue; x = copy_to_mode_reg (inner_mode, x); emit_insn (GEN_FCN (icode) (target, x, GEN_INT (i))); } return; } /* Initialise a vector which is part-variable. We want to first try to build those lanes which are constant in the most efficient way we can. */ if (n_var != n_elts) { rtx copy = copy_rtx (vals); /* Load constant part of vector. We really don't care what goes into the parts we will overwrite, but we're more likely to be able to load the constant efficiently if it has fewer, larger, repeating parts (see aarch64_simd_valid_immediate). */ for (int i = 0; i < n_elts; i++) { rtx x = XVECEXP (vals, 0, i); if (CONST_INT_P (x) || CONST_DOUBLE_P (x)) continue; rtx subst = any_const; for (int bit = n_elts / 2; bit > 0; bit /= 2) { /* Look in the copied vector, as more elements are const. */ rtx test = XVECEXP (copy, 0, i ^ bit); if (CONST_INT_P (test) || CONST_DOUBLE_P (test)) { subst = test; break; } } XVECEXP (copy, 0, i) = subst; } aarch64_expand_vector_init (target, copy); } /* Insert the variable lanes directly. */ for (int i = 0; i < n_elts; i++) { rtx x = XVECEXP (vals, 0, i); if (CONST_INT_P (x) || CONST_DOUBLE_P (x)) continue; x = copy_to_mode_reg (inner_mode, x); emit_insn (GEN_FCN (icode) (target, x, GEN_INT (i))); } } static unsigned HOST_WIDE_INT aarch64_shift_truncation_mask (machine_mode mode) { if (!SHIFT_COUNT_TRUNCATED || aarch64_vector_data_mode_p (mode)) return 0; return GET_MODE_UNIT_BITSIZE (mode) - 1; } /* Select a format to encode pointers in exception handling data. */ int aarch64_asm_preferred_eh_data_format (int code ATTRIBUTE_UNUSED, int global) { int type; switch (aarch64_cmodel) { case AARCH64_CMODEL_TINY: case AARCH64_CMODEL_TINY_PIC: case AARCH64_CMODEL_SMALL: case AARCH64_CMODEL_SMALL_PIC: case AARCH64_CMODEL_SMALL_SPIC: /* text+got+data < 4Gb. 4-byte signed relocs are sufficient for everything. */ type = DW_EH_PE_sdata4; break; default: /* No assumptions here. 8-byte relocs required. */ type = DW_EH_PE_sdata8; break; } return (global ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | type; } /* The last .arch and .tune assembly strings that we printed. */ static std::string aarch64_last_printed_arch_string; static std::string aarch64_last_printed_tune_string; /* Implement ASM_DECLARE_FUNCTION_NAME. Output the ISA features used by the function fndecl. */ void aarch64_declare_function_name (FILE *stream, const char* name, tree fndecl) { tree target_parts = DECL_FUNCTION_SPECIFIC_TARGET (fndecl); struct cl_target_option *targ_options; if (target_parts) targ_options = TREE_TARGET_OPTION (target_parts); else targ_options = TREE_TARGET_OPTION (target_option_current_node); gcc_assert (targ_options); const struct processor *this_arch = aarch64_get_arch (targ_options->x_explicit_arch); unsigned long isa_flags = targ_options->x_aarch64_isa_flags; std::string extension = aarch64_get_extension_string_for_isa_flags (isa_flags, this_arch->flags); /* Only update the assembler .arch string if it is distinct from the last such string we printed. */ std::string to_print = this_arch->name + extension; if (to_print != aarch64_last_printed_arch_string) { asm_fprintf (asm_out_file, "\t.arch %s\n", to_print.c_str ()); aarch64_last_printed_arch_string = to_print; } /* Print the cpu name we're tuning for in the comments, might be useful to readers of the generated asm. Do it only when it changes from function to function and verbose assembly is requested. */ const struct processor *this_tune = aarch64_get_tune_cpu (targ_options->x_explicit_tune_core); if (flag_debug_asm && aarch64_last_printed_tune_string != this_tune->name) { asm_fprintf (asm_out_file, "\t" ASM_COMMENT_START ".tune %s\n", this_tune->name); aarch64_last_printed_tune_string = this_tune->name; } /* Don't forget the type directive for ELF. */ ASM_OUTPUT_TYPE_DIRECTIVE (stream, name, "function"); ASM_OUTPUT_LABEL (stream, name); } /* Implements TARGET_ASM_FILE_START. Output the assembly header. */ static void aarch64_start_file (void) { struct cl_target_option *default_options = TREE_TARGET_OPTION (target_option_default_node); const struct processor *default_arch = aarch64_get_arch (default_options->x_explicit_arch); unsigned long default_isa_flags = default_options->x_aarch64_isa_flags; std::string extension = aarch64_get_extension_string_for_isa_flags (default_isa_flags, default_arch->flags); aarch64_last_printed_arch_string = default_arch->name + extension; aarch64_last_printed_tune_string = ""; asm_fprintf (asm_out_file, "\t.arch %s\n", aarch64_last_printed_arch_string.c_str ()); default_file_start (); } /* Emit load exclusive. */ static void aarch64_emit_load_exclusive (machine_mode mode, rtx rval, rtx mem, rtx model_rtx) { emit_insn (gen_aarch64_load_exclusive (mode, rval, mem, model_rtx)); } /* Emit store exclusive. */ static void aarch64_emit_store_exclusive (machine_mode mode, rtx bval, rtx rval, rtx mem, rtx model_rtx) { emit_insn (gen_aarch64_store_exclusive (mode, bval, rval, mem, model_rtx)); } /* Mark the previous jump instruction as unlikely. */ static void aarch64_emit_unlikely_jump (rtx insn) { rtx_insn *jump = emit_jump_insn (insn); add_reg_br_prob_note (jump, profile_probability::very_unlikely ()); } /* Expand a compare and swap pattern. */ void aarch64_expand_compare_and_swap (rtx operands[]) { rtx bval, rval, mem, oldval, newval, is_weak, mod_s, mod_f, x; machine_mode mode, cmp_mode; bval = operands[0]; rval = operands[1]; mem = operands[2]; oldval = operands[3]; newval = operands[4]; is_weak = operands[5]; mod_s = operands[6]; mod_f = operands[7]; mode = GET_MODE (mem); cmp_mode = mode; /* Normally the succ memory model must be stronger than fail, but in the unlikely event of fail being ACQUIRE and succ being RELEASE we need to promote succ to ACQ_REL so that we don't lose the acquire semantics. */ if (is_mm_acquire (memmodel_from_int (INTVAL (mod_f))) && is_mm_release (memmodel_from_int (INTVAL (mod_s)))) mod_s = GEN_INT (MEMMODEL_ACQ_REL); switch (mode) { case E_QImode: case E_HImode: /* For short modes, we're going to perform the comparison in SImode, so do the zero-extension now. */ cmp_mode = SImode; rval = gen_reg_rtx (SImode); oldval = convert_modes (SImode, mode, oldval, true); /* Fall through. */ case E_SImode: case E_DImode: /* Force the value into a register if needed. */ if (!aarch64_plus_operand (oldval, mode)) oldval = force_reg (cmp_mode, oldval); break; default: gcc_unreachable (); } if (TARGET_LSE) emit_insn (gen_aarch64_compare_and_swap_lse (mode, rval, mem, oldval, newval, is_weak, mod_s, mod_f)); else emit_insn (gen_aarch64_compare_and_swap (mode, rval, mem, oldval, newval, is_weak, mod_s, mod_f)); if (mode == QImode || mode == HImode) emit_move_insn (operands[1], gen_lowpart (mode, rval)); x = gen_rtx_REG (CCmode, CC_REGNUM); x = gen_rtx_EQ (SImode, x, const0_rtx); emit_insn (gen_rtx_SET (bval, x)); } /* Test whether the target supports using a atomic load-operate instruction. CODE is the operation and AFTER is TRUE if the data in memory after the operation should be returned and FALSE if the data before the operation should be returned. Returns FALSE if the operation isn't supported by the architecture. */ bool aarch64_atomic_ldop_supported_p (enum rtx_code code) { if (!TARGET_LSE) return false; switch (code) { case SET: case AND: case IOR: case XOR: case MINUS: case PLUS: return true; default: return false; } } /* Emit a barrier, that is appropriate for memory model MODEL, at the end of a sequence implementing an atomic operation. */ static void aarch64_emit_post_barrier (enum memmodel model) { const enum memmodel base_model = memmodel_base (model); if (is_mm_sync (model) && (base_model == MEMMODEL_ACQUIRE || base_model == MEMMODEL_ACQ_REL || base_model == MEMMODEL_SEQ_CST)) { emit_insn (gen_mem_thread_fence (GEN_INT (MEMMODEL_SEQ_CST))); } } /* Emit an atomic compare-and-swap operation. RVAL is the destination register for the data in memory. EXPECTED is the value expected to be in memory. DESIRED is the value to store to memory. MEM is the memory location. MODEL is the memory ordering to use. */ void aarch64_gen_atomic_cas (rtx rval, rtx mem, rtx expected, rtx desired, rtx model) { machine_mode mode; mode = GET_MODE (mem); /* Move the expected value into the CAS destination register. */ emit_insn (gen_rtx_SET (rval, expected)); /* Emit the CAS. */ emit_insn (gen_aarch64_atomic_cas (mode, rval, mem, desired, model)); /* Compare the expected value with the value loaded by the CAS, to establish whether the swap was made. */ aarch64_gen_compare_reg (EQ, rval, expected); } /* Split a compare and swap pattern. */ void aarch64_split_compare_and_swap (rtx operands[]) { rtx rval, mem, oldval, newval, scratch; machine_mode mode; bool is_weak; rtx_code_label *label1, *label2; rtx x, cond; enum memmodel model; rtx model_rtx; rval = operands[0]; mem = operands[1]; oldval = operands[2]; newval = operands[3]; is_weak = (operands[4] != const0_rtx); model_rtx = operands[5]; scratch = operands[7]; mode = GET_MODE (mem); model = memmodel_from_int (INTVAL (model_rtx)); /* When OLDVAL is zero and we want the strong version we can emit a tighter loop: .label1: LD[A]XR rval, [mem] CBNZ rval, .label2 ST[L]XR scratch, newval, [mem] CBNZ scratch, .label1 .label2: CMP rval, 0. */ bool strong_zero_p = !is_weak && oldval == const0_rtx; label1 = NULL; if (!is_weak) { label1 = gen_label_rtx (); emit_label (label1); } label2 = gen_label_rtx (); /* The initial load can be relaxed for a __sync operation since a final barrier will be emitted to stop code hoisting. */ if (is_mm_sync (model)) aarch64_emit_load_exclusive (mode, rval, mem, GEN_INT (MEMMODEL_RELAXED)); else aarch64_emit_load_exclusive (mode, rval, mem, model_rtx); if (strong_zero_p) { if (aarch64_track_speculation) { /* Emit an explicit compare instruction, so that we can correctly track the condition codes. */ rtx cc_reg = aarch64_gen_compare_reg (NE, rval, const0_rtx); x = gen_rtx_NE (GET_MODE (cc_reg), cc_reg, const0_rtx); } else x = gen_rtx_NE (VOIDmode, rval, const0_rtx); x = gen_rtx_IF_THEN_ELSE (VOIDmode, x, gen_rtx_LABEL_REF (Pmode, label2), pc_rtx); aarch64_emit_unlikely_jump (gen_rtx_SET (pc_rtx, x)); } else { cond = aarch64_gen_compare_reg (NE, rval, oldval); x = gen_rtx_NE (VOIDmode, cond, const0_rtx); x = gen_rtx_IF_THEN_ELSE (VOIDmode, x, gen_rtx_LABEL_REF (Pmode, label2), pc_rtx); aarch64_emit_unlikely_jump (gen_rtx_SET (pc_rtx, x)); } aarch64_emit_store_exclusive (mode, scratch, mem, newval, model_rtx); if (!is_weak) { if (aarch64_track_speculation) { /* Emit an explicit compare instruction, so that we can correctly track the condition codes. */ rtx cc_reg = aarch64_gen_compare_reg (NE, scratch, const0_rtx); x = gen_rtx_NE (GET_MODE (cc_reg), cc_reg, const0_rtx); } else x = gen_rtx_NE (VOIDmode, scratch, const0_rtx); x = gen_rtx_IF_THEN_ELSE (VOIDmode, x, gen_rtx_LABEL_REF (Pmode, label1), pc_rtx); aarch64_emit_unlikely_jump (gen_rtx_SET (pc_rtx, x)); } else { cond = gen_rtx_REG (CCmode, CC_REGNUM); x = gen_rtx_COMPARE (CCmode, scratch, const0_rtx); emit_insn (gen_rtx_SET (cond, x)); } emit_label (label2); /* If we used a CBNZ in the exchange loop emit an explicit compare with RVAL to set the condition flags. If this is not used it will be removed by later passes. */ if (strong_zero_p) { cond = gen_rtx_REG (CCmode, CC_REGNUM); x = gen_rtx_COMPARE (CCmode, rval, const0_rtx); emit_insn (gen_rtx_SET (cond, x)); } /* Emit any final barrier needed for a __sync operation. */ if (is_mm_sync (model)) aarch64_emit_post_barrier (model); } /* Emit a BIC instruction. */ static void aarch64_emit_bic (machine_mode mode, rtx dst, rtx s1, rtx s2, int shift) { rtx shift_rtx = GEN_INT (shift); rtx (*gen) (rtx, rtx, rtx, rtx); switch (mode) { case E_SImode: gen = gen_and_one_cmpl_lshrsi3; break; case E_DImode: gen = gen_and_one_cmpl_lshrdi3; break; default: gcc_unreachable (); } emit_insn (gen (dst, s2, shift_rtx, s1)); } /* Emit an atomic swap. */ static void aarch64_emit_atomic_swap (machine_mode mode, rtx dst, rtx value, rtx mem, rtx model) { emit_insn (gen_aarch64_atomic_swp (mode, dst, mem, value, model)); } /* Emit an atomic load+operate. CODE is the operation. OUT_DATA is the location to store the data read from memory. OUT_RESULT is the location to store the result of the operation. MEM is the memory location to read and modify. MODEL_RTX is the memory ordering to use. VALUE is the second operand for the operation. Either OUT_DATA or OUT_RESULT, but not both, can be NULL. */ void aarch64_gen_atomic_ldop (enum rtx_code code, rtx out_data, rtx out_result, rtx mem, rtx value, rtx model_rtx) { machine_mode mode = GET_MODE (mem); machine_mode wmode = (mode == DImode ? DImode : SImode); const bool short_mode = (mode < SImode); int ldop_code; rtx src; rtx x; if (out_data) out_data = gen_lowpart (mode, out_data); if (out_result) out_result = gen_lowpart (mode, out_result); /* Make sure the value is in a register, putting it into a destination register if it needs to be manipulated. */ if (!register_operand (value, mode) || code == AND || code == MINUS) { src = out_result ? out_result : out_data; emit_move_insn (src, gen_lowpart (mode, value)); } else src = value; gcc_assert (register_operand (src, mode)); /* Preprocess the data for the operation as necessary. If the operation is a SET then emit a swap instruction and finish. */ switch (code) { case SET: aarch64_emit_atomic_swap (mode, out_data, src, mem, model_rtx); return; case MINUS: /* Negate the value and treat it as a PLUS. */ { rtx neg_src; /* Resize the value if necessary. */ if (short_mode) src = gen_lowpart (wmode, src); neg_src = gen_rtx_NEG (wmode, src); emit_insn (gen_rtx_SET (src, neg_src)); if (short_mode) src = gen_lowpart (mode, src); } /* Fall-through. */ case PLUS: ldop_code = UNSPECV_ATOMIC_LDOP_PLUS; break; case IOR: ldop_code = UNSPECV_ATOMIC_LDOP_OR; break; case XOR: ldop_code = UNSPECV_ATOMIC_LDOP_XOR; break; case AND: { rtx not_src; /* Resize the value if necessary. */ if (short_mode) src = gen_lowpart (wmode, src); not_src = gen_rtx_NOT (wmode, src); emit_insn (gen_rtx_SET (src, not_src)); if (short_mode) src = gen_lowpart (mode, src); } ldop_code = UNSPECV_ATOMIC_LDOP_BIC; break; default: /* The operation can't be done with atomic instructions. */ gcc_unreachable (); } emit_insn (gen_aarch64_atomic_load (ldop_code, mode, out_data, mem, src, model_rtx)); /* If necessary, calculate the data in memory after the update by redoing the operation from values in registers. */ if (!out_result) return; if (short_mode) { src = gen_lowpart (wmode, src); out_data = gen_lowpart (wmode, out_data); out_result = gen_lowpart (wmode, out_result); } x = NULL_RTX; switch (code) { case MINUS: case PLUS: x = gen_rtx_PLUS (wmode, out_data, src); break; case IOR: x = gen_rtx_IOR (wmode, out_data, src); break; case XOR: x = gen_rtx_XOR (wmode, out_data, src); break; case AND: aarch64_emit_bic (wmode, out_result, out_data, src, 0); return; default: gcc_unreachable (); } emit_set_insn (out_result, x); return; } /* Split an atomic operation. */ void aarch64_split_atomic_op (enum rtx_code code, rtx old_out, rtx new_out, rtx mem, rtx value, rtx model_rtx, rtx cond) { machine_mode mode = GET_MODE (mem); machine_mode wmode = (mode == DImode ? DImode : SImode); const enum memmodel model = memmodel_from_int (INTVAL (model_rtx)); const bool is_sync = is_mm_sync (model); rtx_code_label *label; rtx x; /* Split the atomic operation into a sequence. */ label = gen_label_rtx (); emit_label (label); if (new_out) new_out = gen_lowpart (wmode, new_out); if (old_out) old_out = gen_lowpart (wmode, old_out); else old_out = new_out; value = simplify_gen_subreg (wmode, value, mode, 0); /* The initial load can be relaxed for a __sync operation since a final barrier will be emitted to stop code hoisting. */ if (is_sync) aarch64_emit_load_exclusive (mode, old_out, mem, GEN_INT (MEMMODEL_RELAXED)); else aarch64_emit_load_exclusive (mode, old_out, mem, model_rtx); switch (code) { case SET: new_out = value; break; case NOT: x = gen_rtx_AND (wmode, old_out, value); emit_insn (gen_rtx_SET (new_out, x)); x = gen_rtx_NOT (wmode, new_out); emit_insn (gen_rtx_SET (new_out, x)); break; case MINUS: if (CONST_INT_P (value)) { value = GEN_INT (-INTVAL (value)); code = PLUS; } /* Fall through. */ default: x = gen_rtx_fmt_ee (code, wmode, old_out, value); emit_insn (gen_rtx_SET (new_out, x)); break; } aarch64_emit_store_exclusive (mode, cond, mem, gen_lowpart (mode, new_out), model_rtx); if (aarch64_track_speculation) { /* Emit an explicit compare instruction, so that we can correctly track the condition codes. */ rtx cc_reg = aarch64_gen_compare_reg (NE, cond, const0_rtx); x = gen_rtx_NE (GET_MODE (cc_reg), cc_reg, const0_rtx); } else x = gen_rtx_NE (VOIDmode, cond, const0_rtx); x = gen_rtx_IF_THEN_ELSE (VOIDmode, x, gen_rtx_LABEL_REF (Pmode, label), pc_rtx); aarch64_emit_unlikely_jump (gen_rtx_SET (pc_rtx, x)); /* Emit any final barrier needed for a __sync operation. */ if (is_sync) aarch64_emit_post_barrier (model); } static void aarch64_init_libfuncs (void) { /* Half-precision float operations. The compiler handles all operations with NULL libfuncs by converting to SFmode. */ /* Conversions. */ set_conv_libfunc (trunc_optab, HFmode, SFmode, "__gnu_f2h_ieee"); set_conv_libfunc (sext_optab, SFmode, HFmode, "__gnu_h2f_ieee"); /* Arithmetic. */ set_optab_libfunc (add_optab, HFmode, NULL); set_optab_libfunc (sdiv_optab, HFmode, NULL); set_optab_libfunc (smul_optab, HFmode, NULL); set_optab_libfunc (neg_optab, HFmode, NULL); set_optab_libfunc (sub_optab, HFmode, NULL); /* Comparisons. */ set_optab_libfunc (eq_optab, HFmode, NULL); set_optab_libfunc (ne_optab, HFmode, NULL); set_optab_libfunc (lt_optab, HFmode, NULL); set_optab_libfunc (le_optab, HFmode, NULL); set_optab_libfunc (ge_optab, HFmode, NULL); set_optab_libfunc (gt_optab, HFmode, NULL); set_optab_libfunc (unord_optab, HFmode, NULL); } /* Target hook for c_mode_for_suffix. */ static machine_mode aarch64_c_mode_for_suffix (char suffix) { if (suffix == 'q') return TFmode; return VOIDmode; } /* We can only represent floating point constants which will fit in "quarter-precision" values. These values are characterised by a sign bit, a 4-bit mantissa and a 3-bit exponent. And are given by: (-1)^s * (n/16) * 2^r Where: 's' is the sign bit. 'n' is an integer in the range 16 <= n <= 31. 'r' is an integer in the range -3 <= r <= 4. */ /* Return true iff X can be represented by a quarter-precision floating point immediate operand X. Note, we cannot represent 0.0. */ bool aarch64_float_const_representable_p (rtx x) { /* This represents our current view of how many bits make up the mantissa. */ int point_pos = 2 * HOST_BITS_PER_WIDE_INT - 1; int exponent; unsigned HOST_WIDE_INT mantissa, mask; REAL_VALUE_TYPE r, m; bool fail; if (!CONST_DOUBLE_P (x)) return false; if (GET_MODE (x) == VOIDmode || (GET_MODE (x) == HFmode && !TARGET_FP_F16INST)) return false; r = *CONST_DOUBLE_REAL_VALUE (x); /* We cannot represent infinities, NaNs or +/-zero. We won't know if we have +zero until we analyse the mantissa, but we can reject the other invalid values. */ if (REAL_VALUE_ISINF (r) || REAL_VALUE_ISNAN (r) || REAL_VALUE_MINUS_ZERO (r)) return false; /* Extract exponent. */ r = real_value_abs (&r); exponent = REAL_EXP (&r); /* For the mantissa, we expand into two HOST_WIDE_INTS, apart from the highest (sign) bit, with a fixed binary point at bit point_pos. m1 holds the low part of the mantissa, m2 the high part. WARNING: If we ever have a representation using more than 2 * H_W_I - 1 bits for the mantissa, this can fail (low bits will be lost). */ real_ldexp (&m, &r, point_pos - exponent); wide_int w = real_to_integer (&m, &fail, HOST_BITS_PER_WIDE_INT * 2); /* If the low part of the mantissa has bits set we cannot represent the value. */ if (w.ulow () != 0) return false; /* We have rejected the lower HOST_WIDE_INT, so update our understanding of how many bits lie in the mantissa and look only at the high HOST_WIDE_INT. */ mantissa = w.elt (1); point_pos -= HOST_BITS_PER_WIDE_INT; /* We can only represent values with a mantissa of the form 1.xxxx. */ mask = ((unsigned HOST_WIDE_INT)1 << (point_pos - 5)) - 1; if ((mantissa & mask) != 0) return false; /* Having filtered unrepresentable values, we may now remove all but the highest 5 bits. */ mantissa >>= point_pos - 5; /* We cannot represent the value 0.0, so reject it. This is handled elsewhere. */ if (mantissa == 0) return false; /* Then, as bit 4 is always set, we can mask it off, leaving the mantissa in the range [0, 15]. */ mantissa &= ~(1 << 4); gcc_assert (mantissa <= 15); /* GCC internally does not use IEEE754-like encoding (where normalized significands are in the range [1, 2). GCC uses [0.5, 1) (see real.c). Our mantissa values are shifted 4 places to the left relative to normalized IEEE754 so we must modify the exponent returned by REAL_EXP by 5 places to correct for GCC's representation. */ exponent = 5 - exponent; return (exponent >= 0 && exponent <= 7); } /* Returns the string with the instruction for AdvSIMD MOVI, MVNI, ORR or BIC immediate with a CONST_VECTOR of MODE and WIDTH. WHICH selects whether to output MOVI/MVNI, ORR or BIC immediate. */ char* aarch64_output_simd_mov_immediate (rtx const_vector, unsigned width, enum simd_immediate_check which) { bool is_valid; static char templ[40]; const char *mnemonic; const char *shift_op; unsigned int lane_count = 0; char element_char; struct simd_immediate_info info; /* This will return true to show const_vector is legal for use as either a AdvSIMD MOVI instruction (or, implicitly, MVNI), ORR or BIC immediate. It will also update INFO to show how the immediate should be generated. WHICH selects whether to check for MOVI/MVNI, ORR or BIC. */ is_valid = aarch64_simd_valid_immediate (const_vector, &info, which); gcc_assert (is_valid); element_char = sizetochar (GET_MODE_BITSIZE (info.elt_mode)); lane_count = width / GET_MODE_BITSIZE (info.elt_mode); if (GET_MODE_CLASS (info.elt_mode) == MODE_FLOAT) { gcc_assert (info.shift == 0 && info.insn == simd_immediate_info::MOV); /* For FP zero change it to a CONST_INT 0 and use the integer SIMD move immediate path. */ if (aarch64_float_const_zero_rtx_p (info.value)) info.value = GEN_INT (0); else { const unsigned int buf_size = 20; char float_buf[buf_size] = {'\0'}; real_to_decimal_for_mode (float_buf, CONST_DOUBLE_REAL_VALUE (info.value), buf_size, buf_size, 1, info.elt_mode); if (lane_count == 1) snprintf (templ, sizeof (templ), "fmov\t%%d0, %s", float_buf); else snprintf (templ, sizeof (templ), "fmov\t%%0.%d%c, %s", lane_count, element_char, float_buf); return templ; } } gcc_assert (CONST_INT_P (info.value)); if (which == AARCH64_CHECK_MOV) { mnemonic = info.insn == simd_immediate_info::MVN ? "mvni" : "movi"; shift_op = info.modifier == simd_immediate_info::MSL ? "msl" : "lsl"; if (lane_count == 1) snprintf (templ, sizeof (templ), "%s\t%%d0, " HOST_WIDE_INT_PRINT_HEX, mnemonic, UINTVAL (info.value)); else if (info.shift) snprintf (templ, sizeof (templ), "%s\t%%0.%d%c, " HOST_WIDE_INT_PRINT_HEX ", %s %d", mnemonic, lane_count, element_char, UINTVAL (info.value), shift_op, info.shift); else snprintf (templ, sizeof (templ), "%s\t%%0.%d%c, " HOST_WIDE_INT_PRINT_HEX, mnemonic, lane_count, element_char, UINTVAL (info.value)); } else { /* For AARCH64_CHECK_BIC and AARCH64_CHECK_ORR. */ mnemonic = info.insn == simd_immediate_info::MVN ? "bic" : "orr"; if (info.shift) snprintf (templ, sizeof (templ), "%s\t%%0.%d%c, #" HOST_WIDE_INT_PRINT_DEC ", %s #%d", mnemonic, lane_count, element_char, UINTVAL (info.value), "lsl", info.shift); else snprintf (templ, sizeof (templ), "%s\t%%0.%d%c, #" HOST_WIDE_INT_PRINT_DEC, mnemonic, lane_count, element_char, UINTVAL (info.value)); } return templ; } char* aarch64_output_scalar_simd_mov_immediate (rtx immediate, scalar_int_mode mode) { /* If a floating point number was passed and we desire to use it in an integer mode do the conversion to integer. */ if (CONST_DOUBLE_P (immediate) && GET_MODE_CLASS (mode) == MODE_INT) { unsigned HOST_WIDE_INT ival; if (!aarch64_reinterpret_float_as_int (immediate, &ival)) gcc_unreachable (); immediate = gen_int_mode (ival, mode); } machine_mode vmode; /* use a 64 bit mode for everything except for DI/DF mode, where we use a 128 bit vector mode. */ int width = GET_MODE_BITSIZE (mode) == 64 ? 128 : 64; vmode = aarch64_simd_container_mode (mode, width); rtx v_op = aarch64_simd_gen_const_vector_dup (vmode, INTVAL (immediate)); return aarch64_output_simd_mov_immediate (v_op, width); } /* Return the output string to use for moving immediate CONST_VECTOR into an SVE register. */ char * aarch64_output_sve_mov_immediate (rtx const_vector) { static char templ[40]; struct simd_immediate_info info; char element_char; bool is_valid = aarch64_simd_valid_immediate (const_vector, &info); gcc_assert (is_valid); element_char = sizetochar (GET_MODE_BITSIZE (info.elt_mode)); if (info.step) { snprintf (templ, sizeof (templ), "index\t%%0.%c, #" HOST_WIDE_INT_PRINT_DEC ", #" HOST_WIDE_INT_PRINT_DEC, element_char, INTVAL (info.value), INTVAL (info.step)); return templ; } if (GET_MODE_CLASS (info.elt_mode) == MODE_FLOAT) { if (aarch64_float_const_zero_rtx_p (info.value)) info.value = GEN_INT (0); else { const int buf_size = 20; char float_buf[buf_size] = {}; real_to_decimal_for_mode (float_buf, CONST_DOUBLE_REAL_VALUE (info.value), buf_size, buf_size, 1, info.elt_mode); snprintf (templ, sizeof (templ), "fmov\t%%0.%c, #%s", element_char, float_buf); return templ; } } snprintf (templ, sizeof (templ), "mov\t%%0.%c, #" HOST_WIDE_INT_PRINT_DEC, element_char, INTVAL (info.value)); return templ; } /* Return the asm format for a PTRUE instruction whose destination has mode MODE. SUFFIX is the element size suffix. */ char * aarch64_output_ptrue (machine_mode mode, char suffix) { unsigned int nunits; static char buf[sizeof ("ptrue\t%0.N, vlNNNNN")]; if (GET_MODE_NUNITS (mode).is_constant (&nunits)) snprintf (buf, sizeof (buf), "ptrue\t%%0.%c, vl%d", suffix, nunits); else snprintf (buf, sizeof (buf), "ptrue\t%%0.%c, all", suffix); return buf; } /* Split operands into moves from op[1] + op[2] into op[0]. */ void aarch64_split_combinev16qi (rtx operands[3]) { unsigned int dest = REGNO (operands[0]); unsigned int src1 = REGNO (operands[1]); unsigned int src2 = REGNO (operands[2]); machine_mode halfmode = GET_MODE (operands[1]); unsigned int halfregs = REG_NREGS (operands[1]); rtx destlo, desthi; gcc_assert (halfmode == V16QImode); if (src1 == dest && src2 == dest + halfregs) { /* No-op move. Can't split to nothing; emit something. */ emit_note (NOTE_INSN_DELETED); return; } /* Preserve register attributes for variable tracking. */ destlo = gen_rtx_REG_offset (operands[0], halfmode, dest, 0); desthi = gen_rtx_REG_offset (operands[0], halfmode, dest + halfregs, GET_MODE_SIZE (halfmode)); /* Special case of reversed high/low parts. */ if (reg_overlap_mentioned_p (operands[2], destlo) && reg_overlap_mentioned_p (operands[1], desthi)) { emit_insn (gen_xorv16qi3 (operands[1], operands[1], operands[2])); emit_insn (gen_xorv16qi3 (operands[2], operands[1], operands[2])); emit_insn (gen_xorv16qi3 (operands[1], operands[1], operands[2])); } else if (!reg_overlap_mentioned_p (operands[2], destlo)) { /* Try to avoid unnecessary moves if part of the result is in the right place already. */ if (src1 != dest) emit_move_insn (destlo, operands[1]); if (src2 != dest + halfregs) emit_move_insn (desthi, operands[2]); } else { if (src2 != dest + halfregs) emit_move_insn (desthi, operands[2]); if (src1 != dest) emit_move_insn (destlo, operands[1]); } } /* vec_perm support. */ struct expand_vec_perm_d { rtx target, op0, op1; vec_perm_indices perm; machine_mode vmode; unsigned int vec_flags; bool one_vector_p; bool testing_p; }; /* Generate a variable permutation. */ static void aarch64_expand_vec_perm_1 (rtx target, rtx op0, rtx op1, rtx sel) { machine_mode vmode = GET_MODE (target); bool one_vector_p = rtx_equal_p (op0, op1); gcc_checking_assert (vmode == V8QImode || vmode == V16QImode); gcc_checking_assert (GET_MODE (op0) == vmode); gcc_checking_assert (GET_MODE (op1) == vmode); gcc_checking_assert (GET_MODE (sel) == vmode); gcc_checking_assert (TARGET_SIMD); if (one_vector_p) { if (vmode == V8QImode) { /* Expand the argument to a V16QI mode by duplicating it. */ rtx pair = gen_reg_rtx (V16QImode); emit_insn (gen_aarch64_combinev8qi (pair, op0, op0)); emit_insn (gen_aarch64_tbl1v8qi (target, pair, sel)); } else { emit_insn (gen_aarch64_tbl1v16qi (target, op0, sel)); } } else { rtx pair; if (vmode == V8QImode) { pair = gen_reg_rtx (V16QImode); emit_insn (gen_aarch64_combinev8qi (pair, op0, op1)); emit_insn (gen_aarch64_tbl1v8qi (target, pair, sel)); } else { pair = gen_reg_rtx (OImode); emit_insn (gen_aarch64_combinev16qi (pair, op0, op1)); emit_insn (gen_aarch64_tbl2v16qi (target, pair, sel)); } } } /* Expand a vec_perm with the operands given by TARGET, OP0, OP1 and SEL. NELT is the number of elements in the vector. */ void aarch64_expand_vec_perm (rtx target, rtx op0, rtx op1, rtx sel, unsigned int nelt) { machine_mode vmode = GET_MODE (target); bool one_vector_p = rtx_equal_p (op0, op1); rtx mask; /* The TBL instruction does not use a modulo index, so we must take care of that ourselves. */ mask = aarch64_simd_gen_const_vector_dup (vmode, one_vector_p ? nelt - 1 : 2 * nelt - 1); sel = expand_simple_binop (vmode, AND, sel, mask, NULL, 0, OPTAB_LIB_WIDEN); /* For big-endian, we also need to reverse the index within the vector (but not which vector). */ if (BYTES_BIG_ENDIAN) { /* If one_vector_p, mask is a vector of (nelt - 1)'s already. */ if (!one_vector_p) mask = aarch64_simd_gen_const_vector_dup (vmode, nelt - 1); sel = expand_simple_binop (vmode, XOR, sel, mask, NULL, 0, OPTAB_LIB_WIDEN); } aarch64_expand_vec_perm_1 (target, op0, op1, sel); } /* Generate (set TARGET (unspec [OP0 OP1] CODE)). */ static void emit_unspec2 (rtx target, int code, rtx op0, rtx op1) { emit_insn (gen_rtx_SET (target, gen_rtx_UNSPEC (GET_MODE (target), gen_rtvec (2, op0, op1), code))); } /* Expand an SVE vec_perm with the given operands. */ void aarch64_expand_sve_vec_perm (rtx target, rtx op0, rtx op1, rtx sel) { machine_mode data_mode = GET_MODE (target); machine_mode sel_mode = GET_MODE (sel); /* Enforced by the pattern condition. */ int nunits = GET_MODE_NUNITS (sel_mode).to_constant (); /* Note: vec_perm indices are supposed to wrap when they go beyond the size of the two value vectors, i.e. the upper bits of the indices are effectively ignored. SVE TBL instead produces 0 for any out-of-range indices, so we need to modulo all the vec_perm indices to ensure they are all in range. */ rtx sel_reg = force_reg (sel_mode, sel); /* Check if the sel only references the first values vector. */ if (GET_CODE (sel) == CONST_VECTOR && aarch64_const_vec_all_in_range_p (sel, 0, nunits - 1)) { emit_unspec2 (target, UNSPEC_TBL, op0, sel_reg); return; } /* Check if the two values vectors are the same. */ if (rtx_equal_p (op0, op1)) { rtx max_sel = aarch64_simd_gen_const_vector_dup (sel_mode, nunits - 1); rtx sel_mod = expand_simple_binop (sel_mode, AND, sel_reg, max_sel, NULL, 0, OPTAB_DIRECT); emit_unspec2 (target, UNSPEC_TBL, op0, sel_mod); return; } /* Run TBL on for each value vector and combine the results. */ rtx res0 = gen_reg_rtx (data_mode); rtx res1 = gen_reg_rtx (data_mode); rtx neg_num_elems = aarch64_simd_gen_const_vector_dup (sel_mode, -nunits); if (GET_CODE (sel) != CONST_VECTOR || !aarch64_const_vec_all_in_range_p (sel, 0, 2 * nunits - 1)) { rtx max_sel = aarch64_simd_gen_const_vector_dup (sel_mode, 2 * nunits - 1); sel_reg = expand_simple_binop (sel_mode, AND, sel_reg, max_sel, NULL, 0, OPTAB_DIRECT); } emit_unspec2 (res0, UNSPEC_TBL, op0, sel_reg); rtx sel_sub = expand_simple_binop (sel_mode, PLUS, sel_reg, neg_num_elems, NULL, 0, OPTAB_DIRECT); emit_unspec2 (res1, UNSPEC_TBL, op1, sel_sub); if (GET_MODE_CLASS (data_mode) == MODE_VECTOR_INT) emit_insn (gen_rtx_SET (target, gen_rtx_IOR (data_mode, res0, res1))); else emit_unspec2 (target, UNSPEC_IORF, res0, res1); } /* Recognize patterns suitable for the TRN instructions. */ static bool aarch64_evpc_trn (struct expand_vec_perm_d *d) { HOST_WIDE_INT odd; poly_uint64 nelt = d->perm.length (); rtx out, in0, in1, x; machine_mode vmode = d->vmode; if (GET_MODE_UNIT_SIZE (vmode) > 8) return false; /* Note that these are little-endian tests. We correct for big-endian later. */ if (!d->perm[0].is_constant (&odd) || (odd != 0 && odd != 1) || !d->perm.series_p (0, 2, odd, 2) || !d->perm.series_p (1, 2, nelt + odd, 2)) return false; /* Success! */ if (d->testing_p) return true; in0 = d->op0; in1 = d->op1; /* We don't need a big-endian lane correction for SVE; see the comment at the head of aarch64-sve.md for details. */ if (BYTES_BIG_ENDIAN && d->vec_flags == VEC_ADVSIMD) { x = in0, in0 = in1, in1 = x; odd = !odd; } out = d->target; emit_set_insn (out, gen_rtx_UNSPEC (vmode, gen_rtvec (2, in0, in1), odd ? UNSPEC_TRN2 : UNSPEC_TRN1)); return true; } /* Recognize patterns suitable for the UZP instructions. */ static bool aarch64_evpc_uzp (struct expand_vec_perm_d *d) { HOST_WIDE_INT odd; rtx out, in0, in1, x; machine_mode vmode = d->vmode; if (GET_MODE_UNIT_SIZE (vmode) > 8) return false; /* Note that these are little-endian tests. We correct for big-endian later. */ if (!d->perm[0].is_constant (&odd) || (odd != 0 && odd != 1) || !d->perm.series_p (0, 1, odd, 2)) return false; /* Success! */ if (d->testing_p) return true; in0 = d->op0; in1 = d->op1; /* We don't need a big-endian lane correction for SVE; see the comment at the head of aarch64-sve.md for details. */ if (BYTES_BIG_ENDIAN && d->vec_flags == VEC_ADVSIMD) { x = in0, in0 = in1, in1 = x; odd = !odd; } out = d->target; emit_set_insn (out, gen_rtx_UNSPEC (vmode, gen_rtvec (2, in0, in1), odd ? UNSPEC_UZP2 : UNSPEC_UZP1)); return true; } /* Recognize patterns suitable for the ZIP instructions. */ static bool aarch64_evpc_zip (struct expand_vec_perm_d *d) { unsigned int high; poly_uint64 nelt = d->perm.length (); rtx out, in0, in1, x; machine_mode vmode = d->vmode; if (GET_MODE_UNIT_SIZE (vmode) > 8) return false; /* Note that these are little-endian tests. We correct for big-endian later. */ poly_uint64 first = d->perm[0]; if ((maybe_ne (first, 0U) && maybe_ne (first * 2, nelt)) || !d->perm.series_p (0, 2, first, 1) || !d->perm.series_p (1, 2, first + nelt, 1)) return false; high = maybe_ne (first, 0U); /* Success! */ if (d->testing_p) return true; in0 = d->op0; in1 = d->op1; /* We don't need a big-endian lane correction for SVE; see the comment at the head of aarch64-sve.md for details. */ if (BYTES_BIG_ENDIAN && d->vec_flags == VEC_ADVSIMD) { x = in0, in0 = in1, in1 = x; high = !high; } out = d->target; emit_set_insn (out, gen_rtx_UNSPEC (vmode, gen_rtvec (2, in0, in1), high ? UNSPEC_ZIP2 : UNSPEC_ZIP1)); return true; } /* Recognize patterns for the EXT insn. */ static bool aarch64_evpc_ext (struct expand_vec_perm_d *d) { HOST_WIDE_INT location; rtx offset; /* The first element always refers to the first vector. Check if the extracted indices are increasing by one. */ if (d->vec_flags == VEC_SVE_PRED || !d->perm[0].is_constant (&location) || !d->perm.series_p (0, 1, location, 1)) return false; /* Success! */ if (d->testing_p) return true; /* The case where (location == 0) is a no-op for both big- and little-endian, and is removed by the mid-end at optimization levels -O1 and higher. We don't need a big-endian lane correction for SVE; see the comment at the head of aarch64-sve.md for details. */ if (BYTES_BIG_ENDIAN && location != 0 && d->vec_flags == VEC_ADVSIMD) { /* After setup, we want the high elements of the first vector (stored at the LSB end of the register), and the low elements of the second vector (stored at the MSB end of the register). So swap. */ std::swap (d->op0, d->op1); /* location != 0 (above), so safe to assume (nelt - location) < nelt. to_constant () is safe since this is restricted to Advanced SIMD vectors. */ location = d->perm.length ().to_constant () - location; } offset = GEN_INT (location); emit_set_insn (d->target, gen_rtx_UNSPEC (d->vmode, gen_rtvec (3, d->op0, d->op1, offset), UNSPEC_EXT)); return true; } /* Recognize patterns for the REV{64,32,16} insns, which reverse elements within each 64-bit, 32-bit or 16-bit granule. */ static bool aarch64_evpc_rev_local (struct expand_vec_perm_d *d) { HOST_WIDE_INT diff; unsigned int i, size, unspec; machine_mode pred_mode; if (d->vec_flags == VEC_SVE_PRED || !d->one_vector_p || !d->perm[0].is_constant (&diff)) return false; size = (diff + 1) * GET_MODE_UNIT_SIZE (d->vmode); if (size == 8) { unspec = UNSPEC_REV64; pred_mode = VNx2BImode; } else if (size == 4) { unspec = UNSPEC_REV32; pred_mode = VNx4BImode; } else if (size == 2) { unspec = UNSPEC_REV16; pred_mode = VNx8BImode; } else return false; unsigned int step = diff + 1; for (i = 0; i < step; ++i) if (!d->perm.series_p (i, step, diff - i, step)) return false; /* Success! */ if (d->testing_p) return true; rtx src = gen_rtx_UNSPEC (d->vmode, gen_rtvec (1, d->op0), unspec); if (d->vec_flags == VEC_SVE_DATA) { rtx pred = force_reg (pred_mode, CONSTM1_RTX (pred_mode)); src = gen_rtx_UNSPEC (d->vmode, gen_rtvec (2, pred, src), UNSPEC_MERGE_PTRUE); } emit_set_insn (d->target, src); return true; } /* Recognize patterns for the REV insn, which reverses elements within a full vector. */ static bool aarch64_evpc_rev_global (struct expand_vec_perm_d *d) { poly_uint64 nelt = d->perm.length (); if (!d->one_vector_p || d->vec_flags != VEC_SVE_DATA) return false; if (!d->perm.series_p (0, 1, nelt - 1, -1)) return false; /* Success! */ if (d->testing_p) return true; rtx src = gen_rtx_UNSPEC (d->vmode, gen_rtvec (1, d->op0), UNSPEC_REV); emit_set_insn (d->target, src); return true; } static bool aarch64_evpc_dup (struct expand_vec_perm_d *d) { rtx out = d->target; rtx in0; HOST_WIDE_INT elt; machine_mode vmode = d->vmode; rtx lane; if (d->vec_flags == VEC_SVE_PRED || d->perm.encoding ().encoded_nelts () != 1 || !d->perm[0].is_constant (&elt)) return false; if (d->vec_flags == VEC_SVE_DATA && elt >= 64 * GET_MODE_UNIT_SIZE (vmode)) return false; /* Success! */ if (d->testing_p) return true; /* The generic preparation in aarch64_expand_vec_perm_const_1 swaps the operand order and the permute indices if it finds d->perm[0] to be in the second operand. Thus, we can always use d->op0 and need not do any extra arithmetic to get the correct lane number. */ in0 = d->op0; lane = GEN_INT (elt); /* The pattern corrects for big-endian. */ rtx parallel = gen_rtx_PARALLEL (vmode, gen_rtvec (1, lane)); rtx select = gen_rtx_VEC_SELECT (GET_MODE_INNER (vmode), in0, parallel); emit_set_insn (out, gen_rtx_VEC_DUPLICATE (vmode, select)); return true; } static bool aarch64_evpc_tbl (struct expand_vec_perm_d *d) { rtx rperm[MAX_COMPILE_TIME_VEC_BYTES], sel; machine_mode vmode = d->vmode; /* Make sure that the indices are constant. */ unsigned int encoded_nelts = d->perm.encoding ().encoded_nelts (); for (unsigned int i = 0; i < encoded_nelts; ++i) if (!d->perm[i].is_constant ()) return false; if (d->testing_p) return true; /* Generic code will try constant permutation twice. Once with the original mode and again with the elements lowered to QImode. So wait and don't do the selector expansion ourselves. */ if (vmode != V8QImode && vmode != V16QImode) return false; /* to_constant is safe since this routine is specific to Advanced SIMD vectors. */ unsigned int nelt = d->perm.length ().to_constant (); for (unsigned int i = 0; i < nelt; ++i) /* If big-endian and two vectors we end up with a weird mixed-endian mode on NEON. Reverse the index within each word but not the word itself. to_constant is safe because we checked is_constant above. */ rperm[i] = GEN_INT (BYTES_BIG_ENDIAN ? d->perm[i].to_constant () ^ (nelt - 1) : d->perm[i].to_constant ()); sel = gen_rtx_CONST_VECTOR (vmode, gen_rtvec_v (nelt, rperm)); sel = force_reg (vmode, sel); aarch64_expand_vec_perm_1 (d->target, d->op0, d->op1, sel); return true; } /* Try to implement D using an SVE TBL instruction. */ static bool aarch64_evpc_sve_tbl (struct expand_vec_perm_d *d) { unsigned HOST_WIDE_INT nelt; /* Permuting two variable-length vectors could overflow the index range. */ if (!d->one_vector_p && !d->perm.length ().is_constant (&nelt)) return false; if (d->testing_p) return true; machine_mode sel_mode = mode_for_int_vector (d->vmode).require (); rtx sel = vec_perm_indices_to_rtx (sel_mode, d->perm); aarch64_expand_sve_vec_perm (d->target, d->op0, d->op1, sel); return true; } static bool aarch64_expand_vec_perm_const_1 (struct expand_vec_perm_d *d) { /* The pattern matching functions above are written to look for a small number to begin the sequence (0, 1, N/2). If we begin with an index from the second operand, we can swap the operands. */ poly_int64 nelt = d->perm.length (); if (known_ge (d->perm[0], nelt)) { d->perm.rotate_inputs (1); std::swap (d->op0, d->op1); } if ((d->vec_flags == VEC_ADVSIMD || d->vec_flags == VEC_SVE_DATA || d->vec_flags == VEC_SVE_PRED) && known_gt (nelt, 1)) { if (aarch64_evpc_rev_local (d)) return true; else if (aarch64_evpc_rev_global (d)) return true; else if (aarch64_evpc_ext (d)) return true; else if (aarch64_evpc_dup (d)) return true; else if (aarch64_evpc_zip (d)) return true; else if (aarch64_evpc_uzp (d)) return true; else if (aarch64_evpc_trn (d)) return true; if (d->vec_flags == VEC_SVE_DATA) return aarch64_evpc_sve_tbl (d); else if (d->vec_flags == VEC_SVE_DATA) return aarch64_evpc_tbl (d); } return false; } /* Implement TARGET_VECTORIZE_VEC_PERM_CONST. */ static bool aarch64_vectorize_vec_perm_const (machine_mode vmode, rtx target, rtx op0, rtx op1, const vec_perm_indices &sel) { struct expand_vec_perm_d d; /* Check whether the mask can be applied to a single vector. */ if (op0 && rtx_equal_p (op0, op1)) d.one_vector_p = true; else if (sel.all_from_input_p (0)) { d.one_vector_p = true; op1 = op0; } else if (sel.all_from_input_p (1)) { d.one_vector_p = true; op0 = op1; } else d.one_vector_p = false; d.perm.new_vector (sel.encoding (), d.one_vector_p ? 1 : 2, sel.nelts_per_input ()); d.vmode = vmode; d.vec_flags = aarch64_classify_vector_mode (d.vmode); d.target = target; d.op0 = op0; d.op1 = op1; d.testing_p = !target; if (!d.testing_p) return aarch64_expand_vec_perm_const_1 (&d); rtx_insn *last = get_last_insn (); bool ret = aarch64_expand_vec_perm_const_1 (&d); gcc_assert (last == get_last_insn ()); return ret; } /* Generate a byte permute mask for a register of mode MODE, which has NUNITS units. */ rtx aarch64_reverse_mask (machine_mode mode, unsigned int nunits) { /* We have to reverse each vector because we dont have a permuted load that can reverse-load according to ABI rules. */ rtx mask; rtvec v = rtvec_alloc (16); unsigned int i, j; unsigned int usize = GET_MODE_UNIT_SIZE (mode); gcc_assert (BYTES_BIG_ENDIAN); gcc_assert (AARCH64_VALID_SIMD_QREG_MODE (mode)); for (i = 0; i < nunits; i++) for (j = 0; j < usize; j++) RTVEC_ELT (v, i * usize + j) = GEN_INT ((i + 1) * usize - 1 - j); mask = gen_rtx_CONST_VECTOR (V16QImode, v); return force_reg (V16QImode, mask); } /* Return true if X is a valid second operand for the SVE instruction that implements integer comparison OP_CODE. */ static bool aarch64_sve_cmp_operand_p (rtx_code op_code, rtx x) { if (register_operand (x, VOIDmode)) return true; switch (op_code) { case LTU: case LEU: case GEU: case GTU: return aarch64_sve_cmp_immediate_p (x, false); case LT: case LE: case GE: case GT: case NE: case EQ: return aarch64_sve_cmp_immediate_p (x, true); default: gcc_unreachable (); } } /* Use predicated SVE instructions to implement the equivalent of: (set TARGET OP) given that PTRUE is an all-true predicate of the appropriate mode. */ static void aarch64_emit_sve_ptrue_op (rtx target, rtx ptrue, rtx op) { rtx unspec = gen_rtx_UNSPEC (GET_MODE (target), gen_rtvec (2, ptrue, op), UNSPEC_MERGE_PTRUE); rtx_insn *insn = emit_set_insn (target, unspec); set_unique_reg_note (insn, REG_EQUAL, copy_rtx (op)); } /* Likewise, but also clobber the condition codes. */ static void aarch64_emit_sve_ptrue_op_cc (rtx target, rtx ptrue, rtx op) { rtx unspec = gen_rtx_UNSPEC (GET_MODE (target), gen_rtvec (2, ptrue, op), UNSPEC_MERGE_PTRUE); rtx_insn *insn = emit_insn (gen_set_clobber_cc (target, unspec)); set_unique_reg_note (insn, REG_EQUAL, copy_rtx (op)); } /* Return the UNSPEC_COND_* code for comparison CODE. */ static unsigned int aarch64_unspec_cond_code (rtx_code code) { switch (code) { case NE: return UNSPEC_COND_NE; case EQ: return UNSPEC_COND_EQ; case LT: return UNSPEC_COND_LT; case GT: return UNSPEC_COND_GT; case LE: return UNSPEC_COND_LE; case GE: return UNSPEC_COND_GE; default: gcc_unreachable (); } } /* Emit: (set TARGET (unspec [PRED OP0 OP1] UNSPEC_COND_)) where is the operation associated with comparison CODE. This form of instruction is used when (and (CODE OP0 OP1) PRED) would have different semantics, such as when PRED might not be all-true and when comparing inactive lanes could have side effects. */ static void aarch64_emit_sve_predicated_cond (rtx target, rtx_code code, rtx pred, rtx op0, rtx op1) { rtx unspec = gen_rtx_UNSPEC (GET_MODE (pred), gen_rtvec (3, pred, op0, op1), aarch64_unspec_cond_code (code)); emit_set_insn (target, unspec); } /* Expand an SVE integer comparison using the SVE equivalent of: (set TARGET (CODE OP0 OP1)). */ void aarch64_expand_sve_vec_cmp_int (rtx target, rtx_code code, rtx op0, rtx op1) { machine_mode pred_mode = GET_MODE (target); machine_mode data_mode = GET_MODE (op0); if (!aarch64_sve_cmp_operand_p (code, op1)) op1 = force_reg (data_mode, op1); rtx ptrue = force_reg (pred_mode, CONSTM1_RTX (pred_mode)); rtx cond = gen_rtx_fmt_ee (code, pred_mode, op0, op1); aarch64_emit_sve_ptrue_op_cc (target, ptrue, cond); } /* Emit the SVE equivalent of: (set TMP1 (CODE1 OP0 OP1)) (set TMP2 (CODE2 OP0 OP1)) (set TARGET (ior:PRED_MODE TMP1 TMP2)) PTRUE is an all-true predicate with the same mode as TARGET. */ static void aarch64_emit_sve_or_conds (rtx target, rtx_code code1, rtx_code code2, rtx ptrue, rtx op0, rtx op1) { machine_mode pred_mode = GET_MODE (ptrue); rtx tmp1 = gen_reg_rtx (pred_mode); aarch64_emit_sve_ptrue_op (tmp1, ptrue, gen_rtx_fmt_ee (code1, pred_mode, op0, op1)); rtx tmp2 = gen_reg_rtx (pred_mode); aarch64_emit_sve_ptrue_op (tmp2, ptrue, gen_rtx_fmt_ee (code2, pred_mode, op0, op1)); aarch64_emit_binop (target, ior_optab, tmp1, tmp2); } /* Emit the SVE equivalent of: (set TMP (CODE OP0 OP1)) (set TARGET (not TMP)) PTRUE is an all-true predicate with the same mode as TARGET. */ static void aarch64_emit_sve_inverted_cond (rtx target, rtx ptrue, rtx_code code, rtx op0, rtx op1) { machine_mode pred_mode = GET_MODE (ptrue); rtx tmp = gen_reg_rtx (pred_mode); aarch64_emit_sve_ptrue_op (tmp, ptrue, gen_rtx_fmt_ee (code, pred_mode, op0, op1)); aarch64_emit_unop (target, one_cmpl_optab, tmp); } /* Expand an SVE floating-point comparison using the SVE equivalent of: (set TARGET (CODE OP0 OP1)) If CAN_INVERT_P is true, the caller can also handle inverted results; return true if the result is in fact inverted. */ bool aarch64_expand_sve_vec_cmp_float (rtx target, rtx_code code, rtx op0, rtx op1, bool can_invert_p) { machine_mode pred_mode = GET_MODE (target); machine_mode data_mode = GET_MODE (op0); rtx ptrue = force_reg (pred_mode, CONSTM1_RTX (pred_mode)); switch (code) { case UNORDERED: /* UNORDERED has no immediate form. */ op1 = force_reg (data_mode, op1); /* fall through */ case LT: case LE: case GT: case GE: case EQ: case NE: { /* There is native support for the comparison. */ rtx cond = gen_rtx_fmt_ee (code, pred_mode, op0, op1); aarch64_emit_sve_ptrue_op (target, ptrue, cond); return false; } case LTGT: /* This is a trapping operation (LT or GT). */ aarch64_emit_sve_or_conds (target, LT, GT, ptrue, op0, op1); return false; case UNEQ: if (!flag_trapping_math) { /* This would trap for signaling NaNs. */ op1 = force_reg (data_mode, op1); aarch64_emit_sve_or_conds (target, UNORDERED, EQ, ptrue, op0, op1); return false; } /* fall through */ case UNLT: case UNLE: case UNGT: case UNGE: if (flag_trapping_math) { /* Work out which elements are ordered. */ rtx ordered = gen_reg_rtx (pred_mode); op1 = force_reg (data_mode, op1); aarch64_emit_sve_inverted_cond (ordered, ptrue, UNORDERED, op0, op1); /* Test the opposite condition for the ordered elements, then invert the result. */ if (code == UNEQ) code = NE; else code = reverse_condition_maybe_unordered (code); if (can_invert_p) { aarch64_emit_sve_predicated_cond (target, code, ordered, op0, op1); return true; } rtx tmp = gen_reg_rtx (pred_mode); aarch64_emit_sve_predicated_cond (tmp, code, ordered, op0, op1); aarch64_emit_unop (target, one_cmpl_optab, tmp); return false; } break; case ORDERED: /* ORDERED has no immediate form. */ op1 = force_reg (data_mode, op1); break; default: gcc_unreachable (); } /* There is native support for the inverse comparison. */ code = reverse_condition_maybe_unordered (code); if (can_invert_p) { rtx cond = gen_rtx_fmt_ee (code, pred_mode, op0, op1); aarch64_emit_sve_ptrue_op (target, ptrue, cond); return true; } aarch64_emit_sve_inverted_cond (target, ptrue, code, op0, op1); return false; } /* Expand an SVE vcond pattern with operands OPS. DATA_MODE is the mode of the data being selected and CMP_MODE is the mode of the values being compared. */ void aarch64_expand_sve_vcond (machine_mode data_mode, machine_mode cmp_mode, rtx *ops) { machine_mode pred_mode = aarch64_get_mask_mode (GET_MODE_NUNITS (cmp_mode), GET_MODE_SIZE (cmp_mode)).require (); rtx pred = gen_reg_rtx (pred_mode); if (FLOAT_MODE_P (cmp_mode)) { if (aarch64_expand_sve_vec_cmp_float (pred, GET_CODE (ops[3]), ops[4], ops[5], true)) std::swap (ops[1], ops[2]); } else aarch64_expand_sve_vec_cmp_int (pred, GET_CODE (ops[3]), ops[4], ops[5]); rtvec vec = gen_rtvec (3, pred, ops[1], ops[2]); emit_set_insn (ops[0], gen_rtx_UNSPEC (data_mode, vec, UNSPEC_SEL)); } /* Implement TARGET_MODES_TIEABLE_P. In principle we should always return true. However due to issues with register allocation it is preferable to avoid tieing integer scalar and FP scalar modes. Executing integer operations in general registers is better than treating them as scalar vector operations. This reduces latency and avoids redundant int<->FP moves. So tie modes if they are either the same class, or vector modes with other vector modes, vector structs or any scalar mode. */ static bool aarch64_modes_tieable_p (machine_mode mode1, machine_mode mode2) { if (GET_MODE_CLASS (mode1) == GET_MODE_CLASS (mode2)) return true; /* We specifically want to allow elements of "structure" modes to be tieable to the structure. This more general condition allows other rarer situations too. The reason we don't extend this to predicate modes is that there are no predicate structure modes nor any specific instructions for extracting part of a predicate register. */ if (aarch64_vector_data_mode_p (mode1) && aarch64_vector_data_mode_p (mode2)) return true; /* Also allow any scalar modes with vectors. */ if (aarch64_vector_mode_supported_p (mode1) || aarch64_vector_mode_supported_p (mode2)) return true; return false; } /* Return a new RTX holding the result of moving POINTER forward by AMOUNT bytes. */ static rtx aarch64_move_pointer (rtx pointer, poly_int64 amount) { rtx next = plus_constant (Pmode, XEXP (pointer, 0), amount); return adjust_automodify_address (pointer, GET_MODE (pointer), next, amount); } /* Return a new RTX holding the result of moving POINTER forward by the size of the mode it points to. */ static rtx aarch64_progress_pointer (rtx pointer) { return aarch64_move_pointer (pointer, GET_MODE_SIZE (GET_MODE (pointer))); } /* Copy one MODE sized block from SRC to DST, then progress SRC and DST by MODE bytes. */ static void aarch64_copy_one_block_and_progress_pointers (rtx *src, rtx *dst, machine_mode mode) { rtx reg = gen_reg_rtx (mode); /* "Cast" the pointers to the correct mode. */ *src = adjust_address (*src, mode, 0); *dst = adjust_address (*dst, mode, 0); /* Emit the memcpy. */ emit_move_insn (reg, *src); emit_move_insn (*dst, reg); /* Move the pointers forward. */ *src = aarch64_progress_pointer (*src); *dst = aarch64_progress_pointer (*dst); } /* Expand movmem, as if from a __builtin_memcpy. Return true if we succeed, otherwise return false. */ bool aarch64_expand_movmem (rtx *operands) { int n, mode_bits; rtx dst = operands[0]; rtx src = operands[1]; rtx base; machine_mode cur_mode = BLKmode, next_mode; bool speed_p = !optimize_function_for_size_p (cfun); /* When optimizing for size, give a better estimate of the length of a memcpy call, but use the default otherwise. Moves larger than 8 bytes will always require an even number of instructions to do now. And each operation requires both a load+store, so devide the max number by 2. */ int max_num_moves = (speed_p ? 16 : AARCH64_CALL_RATIO) / 2; /* We can't do anything smart if the amount to copy is not constant. */ if (!CONST_INT_P (operands[2])) return false; n = INTVAL (operands[2]); /* Try to keep the number of instructions low. For all cases we will do at most two moves for the residual amount, since we'll always overlap the remainder. */ if (((n / 16) + (n % 16 ? 2 : 0)) > max_num_moves) return false; base = copy_to_mode_reg (Pmode, XEXP (dst, 0)); dst = adjust_automodify_address (dst, VOIDmode, base, 0); base = copy_to_mode_reg (Pmode, XEXP (src, 0)); src = adjust_automodify_address (src, VOIDmode, base, 0); /* Convert n to bits to make the rest of the code simpler. */ n = n * BITS_PER_UNIT; while (n > 0) { /* Find the largest mode in which to do the copy in without over reading or writing. */ opt_scalar_int_mode mode_iter; FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT) if (GET_MODE_BITSIZE (mode_iter.require ()) <= n) cur_mode = mode_iter.require (); gcc_assert (cur_mode != BLKmode); mode_bits = GET_MODE_BITSIZE (cur_mode).to_constant (); aarch64_copy_one_block_and_progress_pointers (&src, &dst, cur_mode); n -= mode_bits; /* Do certain trailing copies as overlapping if it's going to be cheaper. i.e. less instructions to do so. For instance doing a 15 byte copy it's more efficient to do two overlapping 8 byte copies than 8 + 6 + 1. */ next_mode = smallest_mode_for_size (n, MODE_INT); int n_bits = GET_MODE_BITSIZE (next_mode).to_constant (); if (n > 0 && n_bits > n && n_bits <= 8 * BITS_PER_UNIT) { src = aarch64_move_pointer (src, (n - n_bits) / BITS_PER_UNIT); dst = aarch64_move_pointer (dst, (n - n_bits) / BITS_PER_UNIT); n = n_bits; } } return true; } /* Split a DImode store of a CONST_INT SRC to MEM DST as two SImode stores. Handle the case when the constant has identical bottom and top halves. This is beneficial when the two stores can be merged into an STP and we avoid synthesising potentially expensive immediates twice. Return true if such a split is possible. */ bool aarch64_split_dimode_const_store (rtx dst, rtx src) { rtx lo = gen_lowpart (SImode, src); rtx hi = gen_highpart_mode (SImode, DImode, src); bool size_p = optimize_function_for_size_p (cfun); if (!rtx_equal_p (lo, hi)) return false; unsigned int orig_cost = aarch64_internal_mov_immediate (NULL_RTX, src, false, DImode); unsigned int lo_cost = aarch64_internal_mov_immediate (NULL_RTX, lo, false, SImode); /* We want to transform: MOV x1, 49370 MOVK x1, 0x140, lsl 16 MOVK x1, 0xc0da, lsl 32 MOVK x1, 0x140, lsl 48 STR x1, [x0] into: MOV w1, 49370 MOVK w1, 0x140, lsl 16 STP w1, w1, [x0] So we want to perform this only when we save two instructions or more. When optimizing for size, however, accept any code size savings we can. */ if (size_p && orig_cost <= lo_cost) return false; if (!size_p && (orig_cost <= lo_cost + 1)) return false; rtx mem_lo = adjust_address (dst, SImode, 0); if (!aarch64_mem_pair_operand (mem_lo, SImode)) return false; rtx tmp_reg = gen_reg_rtx (SImode); aarch64_expand_mov_immediate (tmp_reg, lo); rtx mem_hi = aarch64_move_pointer (mem_lo, GET_MODE_SIZE (SImode)); /* Don't emit an explicit store pair as this may not be always profitable. Let the sched-fusion logic decide whether to merge them. */ emit_move_insn (mem_lo, tmp_reg); emit_move_insn (mem_hi, tmp_reg); return true; } /* Generate RTL for a conditional branch with rtx comparison CODE in mode CC_MODE. The destination of the unlikely conditional branch is LABEL_REF. */ void aarch64_gen_unlikely_cbranch (enum rtx_code code, machine_mode cc_mode, rtx label_ref) { rtx x; x = gen_rtx_fmt_ee (code, VOIDmode, gen_rtx_REG (cc_mode, CC_REGNUM), const0_rtx); x = gen_rtx_IF_THEN_ELSE (VOIDmode, x, gen_rtx_LABEL_REF (VOIDmode, label_ref), pc_rtx); aarch64_emit_unlikely_jump (gen_rtx_SET (pc_rtx, x)); } /* Generate DImode scratch registers for 128-bit (TImode) addition. OP1 represents the TImode destination operand 1 OP2 represents the TImode destination operand 2 LOW_DEST represents the low half (DImode) of TImode operand 0 LOW_IN1 represents the low half (DImode) of TImode operand 1 LOW_IN2 represents the low half (DImode) of TImode operand 2 HIGH_DEST represents the high half (DImode) of TImode operand 0 HIGH_IN1 represents the high half (DImode) of TImode operand 1 HIGH_IN2 represents the high half (DImode) of TImode operand 2. */ void aarch64_addti_scratch_regs (rtx op1, rtx op2, rtx *low_dest, rtx *low_in1, rtx *low_in2, rtx *high_dest, rtx *high_in1, rtx *high_in2) { *low_dest = gen_reg_rtx (DImode); *low_in1 = gen_lowpart (DImode, op1); *low_in2 = simplify_gen_subreg (DImode, op2, TImode, subreg_lowpart_offset (DImode, TImode)); *high_dest = gen_reg_rtx (DImode); *high_in1 = gen_highpart (DImode, op1); *high_in2 = simplify_gen_subreg (DImode, op2, TImode, subreg_highpart_offset (DImode, TImode)); } /* Generate DImode scratch registers for 128-bit (TImode) subtraction. This function differs from 'arch64_addti_scratch_regs' in that OP1 can be an immediate constant (zero). We must call subreg_highpart_offset with DImode and TImode arguments, otherwise VOIDmode will be used for the const_int which generates an internal error from subreg_size_highpart_offset which does not expect a size of zero. OP1 represents the TImode destination operand 1 OP2 represents the TImode destination operand 2 LOW_DEST represents the low half (DImode) of TImode operand 0 LOW_IN1 represents the low half (DImode) of TImode operand 1 LOW_IN2 represents the low half (DImode) of TImode operand 2 HIGH_DEST represents the high half (DImode) of TImode operand 0 HIGH_IN1 represents the high half (DImode) of TImode operand 1 HIGH_IN2 represents the high half (DImode) of TImode operand 2. */ void aarch64_subvti_scratch_regs (rtx op1, rtx op2, rtx *low_dest, rtx *low_in1, rtx *low_in2, rtx *high_dest, rtx *high_in1, rtx *high_in2) { *low_dest = gen_reg_rtx (DImode); *low_in1 = simplify_gen_subreg (DImode, op1, TImode, subreg_lowpart_offset (DImode, TImode)); *low_in2 = simplify_gen_subreg (DImode, op2, TImode, subreg_lowpart_offset (DImode, TImode)); *high_dest = gen_reg_rtx (DImode); *high_in1 = simplify_gen_subreg (DImode, op1, TImode, subreg_highpart_offset (DImode, TImode)); *high_in2 = simplify_gen_subreg (DImode, op2, TImode, subreg_highpart_offset (DImode, TImode)); } /* Generate RTL for 128-bit (TImode) subtraction with overflow. OP0 represents the TImode destination operand 0 LOW_DEST represents the low half (DImode) of TImode operand 0 LOW_IN1 represents the low half (DImode) of TImode operand 1 LOW_IN2 represents the low half (DImode) of TImode operand 2 HIGH_DEST represents the high half (DImode) of TImode operand 0 HIGH_IN1 represents the high half (DImode) of TImode operand 1 HIGH_IN2 represents the high half (DImode) of TImode operand 2. */ void aarch64_expand_subvti (rtx op0, rtx low_dest, rtx low_in1, rtx low_in2, rtx high_dest, rtx high_in1, rtx high_in2) { if (low_in2 == const0_rtx) { low_dest = low_in1; emit_insn (gen_subdi3_compare1 (high_dest, high_in1, force_reg (DImode, high_in2))); } else { if (CONST_INT_P (low_in2)) { low_in2 = force_reg (DImode, GEN_INT (-UINTVAL (low_in2))); high_in2 = force_reg (DImode, high_in2); emit_insn (gen_adddi3_compareC (low_dest, low_in1, low_in2)); } else emit_insn (gen_subdi3_compare1 (low_dest, low_in1, low_in2)); emit_insn (gen_subdi3_carryinCV (high_dest, force_reg (DImode, high_in1), high_in2)); } emit_move_insn (gen_lowpart (DImode, op0), low_dest); emit_move_insn (gen_highpart (DImode, op0), high_dest); } /* Implement the TARGET_ASAN_SHADOW_OFFSET hook. */ static unsigned HOST_WIDE_INT aarch64_asan_shadow_offset (void) { return (HOST_WIDE_INT_1 << 36); } static rtx aarch64_gen_ccmp_first (rtx_insn **prep_seq, rtx_insn **gen_seq, int code, tree treeop0, tree treeop1) { machine_mode op_mode, cmp_mode, cc_mode = CCmode; rtx op0, op1; int unsignedp = TYPE_UNSIGNED (TREE_TYPE (treeop0)); insn_code icode; struct expand_operand ops[4]; start_sequence (); expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL); op_mode = GET_MODE (op0); if (op_mode == VOIDmode) op_mode = GET_MODE (op1); switch (op_mode) { case E_QImode: case E_HImode: case E_SImode: cmp_mode = SImode; icode = CODE_FOR_cmpsi; break; case E_DImode: cmp_mode = DImode; icode = CODE_FOR_cmpdi; break; case E_SFmode: cmp_mode = SFmode; cc_mode = aarch64_select_cc_mode ((rtx_code) code, op0, op1); icode = cc_mode == CCFPEmode ? CODE_FOR_fcmpesf : CODE_FOR_fcmpsf; break; case E_DFmode: cmp_mode = DFmode; cc_mode = aarch64_select_cc_mode ((rtx_code) code, op0, op1); icode = cc_mode == CCFPEmode ? CODE_FOR_fcmpedf : CODE_FOR_fcmpdf; break; default: end_sequence (); return NULL_RTX; } op0 = prepare_operand (icode, op0, 0, op_mode, cmp_mode, unsignedp); op1 = prepare_operand (icode, op1, 1, op_mode, cmp_mode, unsignedp); if (!op0 || !op1) { end_sequence (); return NULL_RTX; } *prep_seq = get_insns (); end_sequence (); create_fixed_operand (&ops[0], op0); create_fixed_operand (&ops[1], op1); start_sequence (); if (!maybe_expand_insn (icode, 2, ops)) { end_sequence (); return NULL_RTX; } *gen_seq = get_insns (); end_sequence (); return gen_rtx_fmt_ee ((rtx_code) code, cc_mode, gen_rtx_REG (cc_mode, CC_REGNUM), const0_rtx); } static rtx aarch64_gen_ccmp_next (rtx_insn **prep_seq, rtx_insn **gen_seq, rtx prev, int cmp_code, tree treeop0, tree treeop1, int bit_code) { rtx op0, op1, target; machine_mode op_mode, cmp_mode, cc_mode = CCmode; int unsignedp = TYPE_UNSIGNED (TREE_TYPE (treeop0)); insn_code icode; struct expand_operand ops[6]; int aarch64_cond; push_to_sequence (*prep_seq); expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL); op_mode = GET_MODE (op0); if (op_mode == VOIDmode) op_mode = GET_MODE (op1); switch (op_mode) { case E_QImode: case E_HImode: case E_SImode: cmp_mode = SImode; icode = CODE_FOR_ccmpsi; break; case E_DImode: cmp_mode = DImode; icode = CODE_FOR_ccmpdi; break; case E_SFmode: cmp_mode = SFmode; cc_mode = aarch64_select_cc_mode ((rtx_code) cmp_code, op0, op1); icode = cc_mode == CCFPEmode ? CODE_FOR_fccmpesf : CODE_FOR_fccmpsf; break; case E_DFmode: cmp_mode = DFmode; cc_mode = aarch64_select_cc_mode ((rtx_code) cmp_code, op0, op1); icode = cc_mode == CCFPEmode ? CODE_FOR_fccmpedf : CODE_FOR_fccmpdf; break; default: end_sequence (); return NULL_RTX; } op0 = prepare_operand (icode, op0, 2, op_mode, cmp_mode, unsignedp); op1 = prepare_operand (icode, op1, 3, op_mode, cmp_mode, unsignedp); if (!op0 || !op1) { end_sequence (); return NULL_RTX; } *prep_seq = get_insns (); end_sequence (); target = gen_rtx_REG (cc_mode, CC_REGNUM); aarch64_cond = aarch64_get_condition_code_1 (cc_mode, (rtx_code) cmp_code); if (bit_code != AND) { prev = gen_rtx_fmt_ee (REVERSE_CONDITION (GET_CODE (prev), GET_MODE (XEXP (prev, 0))), VOIDmode, XEXP (prev, 0), const0_rtx); aarch64_cond = AARCH64_INVERSE_CONDITION_CODE (aarch64_cond); } create_fixed_operand (&ops[0], XEXP (prev, 0)); create_fixed_operand (&ops[1], target); create_fixed_operand (&ops[2], op0); create_fixed_operand (&ops[3], op1); create_fixed_operand (&ops[4], prev); create_fixed_operand (&ops[5], GEN_INT (aarch64_cond)); push_to_sequence (*gen_seq); if (!maybe_expand_insn (icode, 6, ops)) { end_sequence (); return NULL_RTX; } *gen_seq = get_insns (); end_sequence (); return gen_rtx_fmt_ee ((rtx_code) cmp_code, VOIDmode, target, const0_rtx); } #undef TARGET_GEN_CCMP_FIRST #define TARGET_GEN_CCMP_FIRST aarch64_gen_ccmp_first #undef TARGET_GEN_CCMP_NEXT #define TARGET_GEN_CCMP_NEXT aarch64_gen_ccmp_next /* Implement TARGET_SCHED_MACRO_FUSION_P. Return true if target supports instruction fusion of some sort. */ static bool aarch64_macro_fusion_p (void) { return aarch64_tune_params.fusible_ops != AARCH64_FUSE_NOTHING; } /* Implement TARGET_SCHED_MACRO_FUSION_PAIR_P. Return true if PREV and CURR should be kept together during scheduling. */ static bool aarch_macro_fusion_pair_p (rtx_insn *prev, rtx_insn *curr) { rtx set_dest; rtx prev_set = single_set (prev); rtx curr_set = single_set (curr); /* prev and curr are simple SET insns i.e. no flag setting or branching. */ bool simple_sets_p = prev_set && curr_set && !any_condjump_p (curr); if (!aarch64_macro_fusion_p ()) return false; if (simple_sets_p && aarch64_fusion_enabled_p (AARCH64_FUSE_MOV_MOVK)) { /* We are trying to match: prev (mov) == (set (reg r0) (const_int imm16)) curr (movk) == (set (zero_extract (reg r0) (const_int 16) (const_int 16)) (const_int imm16_1)) */ set_dest = SET_DEST (curr_set); if (GET_CODE (set_dest) == ZERO_EXTRACT && CONST_INT_P (SET_SRC (curr_set)) && CONST_INT_P (SET_SRC (prev_set)) && CONST_INT_P (XEXP (set_dest, 2)) && INTVAL (XEXP (set_dest, 2)) == 16 && REG_P (XEXP (set_dest, 0)) && REG_P (SET_DEST (prev_set)) && REGNO (XEXP (set_dest, 0)) == REGNO (SET_DEST (prev_set))) { return true; } } if (simple_sets_p && aarch64_fusion_enabled_p (AARCH64_FUSE_ADRP_ADD)) { /* We're trying to match: prev (adrp) == (set (reg r1) (high (symbol_ref ("SYM")))) curr (add) == (set (reg r0) (lo_sum (reg r1) (symbol_ref ("SYM")))) Note that r0 need not necessarily be the same as r1, especially during pre-regalloc scheduling. */ if (satisfies_constraint_Ush (SET_SRC (prev_set)) && REG_P (SET_DEST (prev_set)) && REG_P (SET_DEST (curr_set))) { if (GET_CODE (SET_SRC (curr_set)) == LO_SUM && REG_P (XEXP (SET_SRC (curr_set), 0)) && REGNO (XEXP (SET_SRC (curr_set), 0)) == REGNO (SET_DEST (prev_set)) && rtx_equal_p (XEXP (SET_SRC (prev_set), 0), XEXP (SET_SRC (curr_set), 1))) return true; } } if (simple_sets_p && aarch64_fusion_enabled_p (AARCH64_FUSE_MOVK_MOVK)) { /* We're trying to match: prev (movk) == (set (zero_extract (reg r0) (const_int 16) (const_int 32)) (const_int imm16_1)) curr (movk) == (set (zero_extract (reg r0) (const_int 16) (const_int 48)) (const_int imm16_2)) */ if (GET_CODE (SET_DEST (prev_set)) == ZERO_EXTRACT && GET_CODE (SET_DEST (curr_set)) == ZERO_EXTRACT && REG_P (XEXP (SET_DEST (prev_set), 0)) && REG_P (XEXP (SET_DEST (curr_set), 0)) && REGNO (XEXP (SET_DEST (prev_set), 0)) == REGNO (XEXP (SET_DEST (curr_set), 0)) && CONST_INT_P (XEXP (SET_DEST (prev_set), 2)) && CONST_INT_P (XEXP (SET_DEST (curr_set), 2)) && INTVAL (XEXP (SET_DEST (prev_set), 2)) == 32 && INTVAL (XEXP (SET_DEST (curr_set), 2)) == 48 && CONST_INT_P (SET_SRC (prev_set)) && CONST_INT_P (SET_SRC (curr_set))) return true; } if (simple_sets_p && aarch64_fusion_enabled_p (AARCH64_FUSE_ADRP_LDR)) { /* We're trying to match: prev (adrp) == (set (reg r0) (high (symbol_ref ("SYM")))) curr (ldr) == (set (reg r1) (mem (lo_sum (reg r0) (symbol_ref ("SYM"))))) or curr (ldr) == (set (reg r1) (zero_extend (mem (lo_sum (reg r0) (symbol_ref ("SYM")))))) */ if (satisfies_constraint_Ush (SET_SRC (prev_set)) && REG_P (SET_DEST (prev_set)) && REG_P (SET_DEST (curr_set))) { rtx curr_src = SET_SRC (curr_set); if (GET_CODE (curr_src) == ZERO_EXTEND) curr_src = XEXP (curr_src, 0); if (MEM_P (curr_src) && GET_CODE (XEXP (curr_src, 0)) == LO_SUM && REG_P (XEXP (XEXP (curr_src, 0), 0)) && REGNO (XEXP (XEXP (curr_src, 0), 0)) == REGNO (SET_DEST (prev_set)) && rtx_equal_p (XEXP (XEXP (curr_src, 0), 1), XEXP (SET_SRC (prev_set), 0))) return true; } } if (aarch64_fusion_enabled_p (AARCH64_FUSE_AES_AESMC) && aarch_crypto_can_dual_issue (prev, curr)) return true; if (aarch64_fusion_enabled_p (AARCH64_FUSE_CMP_BRANCH) && any_condjump_p (curr)) { enum attr_type prev_type = get_attr_type (prev); unsigned int condreg1, condreg2; rtx cc_reg_1; aarch64_fixed_condition_code_regs (&condreg1, &condreg2); cc_reg_1 = gen_rtx_REG (CCmode, condreg1); if (reg_referenced_p (cc_reg_1, PATTERN (curr)) && prev && modified_in_p (cc_reg_1, prev)) { /* FIXME: this misses some which is considered simple arthematic instructions for ThunderX. Simple shifts are missed here. */ if (prev_type == TYPE_ALUS_SREG || prev_type == TYPE_ALUS_IMM || prev_type == TYPE_LOGICS_REG || prev_type == TYPE_LOGICS_IMM) return true; } } if (prev_set && curr_set && aarch64_fusion_enabled_p (AARCH64_FUSE_ALU_BRANCH) && any_condjump_p (curr)) { /* We're trying to match: prev (alu_insn) == (set (r0) plus ((r0) (r1/imm))) curr (cbz) == (set (pc) (if_then_else (eq/ne) (r0) (const_int 0)) (label_ref ("SYM")) (pc)) */ if (SET_DEST (curr_set) == (pc_rtx) && GET_CODE (SET_SRC (curr_set)) == IF_THEN_ELSE && REG_P (XEXP (XEXP (SET_SRC (curr_set), 0), 0)) && REG_P (SET_DEST (prev_set)) && REGNO (SET_DEST (prev_set)) == REGNO (XEXP (XEXP (SET_SRC (curr_set), 0), 0))) { /* Fuse ALU operations followed by conditional branch instruction. */ switch (get_attr_type (prev)) { case TYPE_ALU_IMM: case TYPE_ALU_SREG: case TYPE_ADC_REG: case TYPE_ADC_IMM: case TYPE_ADCS_REG: case TYPE_ADCS_IMM: case TYPE_LOGIC_REG: case TYPE_LOGIC_IMM: case TYPE_CSEL: case TYPE_ADR: case TYPE_MOV_IMM: case TYPE_SHIFT_REG: case TYPE_SHIFT_IMM: case TYPE_BFM: case TYPE_RBIT: case TYPE_REV: case TYPE_EXTEND: return true; default:; } } } return false; } /* Return true iff the instruction fusion described by OP is enabled. */ bool aarch64_fusion_enabled_p (enum aarch64_fusion_pairs op) { return (aarch64_tune_params.fusible_ops & op) != 0; } /* If MEM is in the form of [base+offset], extract the two parts of address and set to BASE and OFFSET, otherwise return false after clearing BASE and OFFSET. */ bool extract_base_offset_in_addr (rtx mem, rtx *base, rtx *offset) { rtx addr; gcc_assert (MEM_P (mem)); addr = XEXP (mem, 0); if (REG_P (addr)) { *base = addr; *offset = const0_rtx; return true; } if (GET_CODE (addr) == PLUS && REG_P (XEXP (addr, 0)) && CONST_INT_P (XEXP (addr, 1))) { *base = XEXP (addr, 0); *offset = XEXP (addr, 1); return true; } *base = NULL_RTX; *offset = NULL_RTX; return false; } /* Types for scheduling fusion. */ enum sched_fusion_type { SCHED_FUSION_NONE = 0, SCHED_FUSION_LD_SIGN_EXTEND, SCHED_FUSION_LD_ZERO_EXTEND, SCHED_FUSION_LD, SCHED_FUSION_ST, SCHED_FUSION_NUM }; /* If INSN is a load or store of address in the form of [base+offset], extract the two parts and set to BASE and OFFSET. Return scheduling fusion type this INSN is. */ static enum sched_fusion_type fusion_load_store (rtx_insn *insn, rtx *base, rtx *offset) { rtx x, dest, src; enum sched_fusion_type fusion = SCHED_FUSION_LD; gcc_assert (INSN_P (insn)); x = PATTERN (insn); if (GET_CODE (x) != SET) return SCHED_FUSION_NONE; src = SET_SRC (x); dest = SET_DEST (x); machine_mode dest_mode = GET_MODE (dest); if (!aarch64_mode_valid_for_sched_fusion_p (dest_mode)) return SCHED_FUSION_NONE; if (GET_CODE (src) == SIGN_EXTEND) { fusion = SCHED_FUSION_LD_SIGN_EXTEND; src = XEXP (src, 0); if (GET_CODE (src) != MEM || GET_MODE (src) != SImode) return SCHED_FUSION_NONE; } else if (GET_CODE (src) == ZERO_EXTEND) { fusion = SCHED_FUSION_LD_ZERO_EXTEND; src = XEXP (src, 0); if (GET_CODE (src) != MEM || GET_MODE (src) != SImode) return SCHED_FUSION_NONE; } if (GET_CODE (src) == MEM && REG_P (dest)) extract_base_offset_in_addr (src, base, offset); else if (GET_CODE (dest) == MEM && (REG_P (src) || src == const0_rtx)) { fusion = SCHED_FUSION_ST; extract_base_offset_in_addr (dest, base, offset); } else return SCHED_FUSION_NONE; if (*base == NULL_RTX || *offset == NULL_RTX) fusion = SCHED_FUSION_NONE; return fusion; } /* Implement the TARGET_SCHED_FUSION_PRIORITY hook. Currently we only support to fuse ldr or str instructions, so FUSION_PRI and PRI are only calculated for these instructions. For other instruction, FUSION_PRI and PRI are simply set to MAX_PRI - 1. In the future, other type instruction fusion can be added by returning different priorities. It's important that irrelevant instructions get the largest FUSION_PRI. */ static void aarch64_sched_fusion_priority (rtx_insn *insn, int max_pri, int *fusion_pri, int *pri) { int tmp, off_val; rtx base, offset; enum sched_fusion_type fusion; gcc_assert (INSN_P (insn)); tmp = max_pri - 1; fusion = fusion_load_store (insn, &base, &offset); if (fusion == SCHED_FUSION_NONE) { *pri = tmp; *fusion_pri = tmp; return; } /* Set FUSION_PRI according to fusion type and base register. */ *fusion_pri = tmp - fusion * FIRST_PSEUDO_REGISTER - REGNO (base); /* Calculate PRI. */ tmp /= 2; /* INSN with smaller offset goes first. */ off_val = (int)(INTVAL (offset)); if (off_val >= 0) tmp -= (off_val & 0xfffff); else tmp += ((- off_val) & 0xfffff); *pri = tmp; return; } /* Implement the TARGET_SCHED_ADJUST_PRIORITY hook. Adjust priority of sha1h instructions so they are scheduled before other SHA1 instructions. */ static int aarch64_sched_adjust_priority (rtx_insn *insn, int priority) { rtx x = PATTERN (insn); if (GET_CODE (x) == SET) { x = SET_SRC (x); if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_SHA1H) return priority + 10; } return priority; } /* Given OPERANDS of consecutive load/store, check if we can merge them into ldp/stp. LOAD is true if they are load instructions. MODE is the mode of memory operands. */ bool aarch64_operands_ok_for_ldpstp (rtx *operands, bool load, machine_mode mode) { HOST_WIDE_INT offval_1, offval_2, msize; enum reg_class rclass_1, rclass_2; rtx mem_1, mem_2, reg_1, reg_2, base_1, base_2, offset_1, offset_2; if (load) { mem_1 = operands[1]; mem_2 = operands[3]; reg_1 = operands[0]; reg_2 = operands[2]; gcc_assert (REG_P (reg_1) && REG_P (reg_2)); if (REGNO (reg_1) == REGNO (reg_2)) return false; } else { mem_1 = operands[0]; mem_2 = operands[2]; reg_1 = operands[1]; reg_2 = operands[3]; } /* The mems cannot be volatile. */ if (MEM_VOLATILE_P (mem_1) || MEM_VOLATILE_P (mem_2)) return false; /* If we have SImode and slow unaligned ldp, check the alignment to be at least 8 byte. */ if (mode == SImode && (aarch64_tune_params.extra_tuning_flags & AARCH64_EXTRA_TUNE_SLOW_UNALIGNED_LDPW) && !optimize_size && MEM_ALIGN (mem_1) < 8 * BITS_PER_UNIT) return false; /* Check if the addresses are in the form of [base+offset]. */ extract_base_offset_in_addr (mem_1, &base_1, &offset_1); if (base_1 == NULL_RTX || offset_1 == NULL_RTX) return false; extract_base_offset_in_addr (mem_2, &base_2, &offset_2); if (base_2 == NULL_RTX || offset_2 == NULL_RTX) return false; /* Check if the bases are same. */ if (!rtx_equal_p (base_1, base_2)) return false; /* The operands must be of the same size. */ gcc_assert (known_eq (GET_MODE_SIZE (GET_MODE (mem_1)), GET_MODE_SIZE (GET_MODE (mem_2)))); offval_1 = INTVAL (offset_1); offval_2 = INTVAL (offset_2); /* We should only be trying this for fixed-sized modes. There is no SVE LDP/STP instruction. */ msize = GET_MODE_SIZE (mode).to_constant (); /* Check if the offsets are consecutive. */ if (offval_1 != (offval_2 + msize) && offval_2 != (offval_1 + msize)) return false; /* Check if the addresses are clobbered by load. */ if (load) { if (reg_mentioned_p (reg_1, mem_1)) return false; /* In increasing order, the last load can clobber the address. */ if (offval_1 > offval_2 && reg_mentioned_p (reg_2, mem_2)) return false; } /* One of the memory accesses must be a mempair operand. If it is not the first one, they need to be swapped by the peephole. */ if (!aarch64_mem_pair_operand (mem_1, GET_MODE (mem_1)) && !aarch64_mem_pair_operand (mem_2, GET_MODE (mem_2))) return false; if (REG_P (reg_1) && FP_REGNUM_P (REGNO (reg_1))) rclass_1 = FP_REGS; else rclass_1 = GENERAL_REGS; if (REG_P (reg_2) && FP_REGNUM_P (REGNO (reg_2))) rclass_2 = FP_REGS; else rclass_2 = GENERAL_REGS; /* Check if the registers are of same class. */ if (rclass_1 != rclass_2) return false; return true; } /* Given OPERANDS of consecutive load/store that can be merged, swap them if they are not in ascending order. */ void aarch64_swap_ldrstr_operands (rtx* operands, bool load) { rtx mem_1, mem_2, base_1, base_2, offset_1, offset_2; HOST_WIDE_INT offval_1, offval_2; if (load) { mem_1 = operands[1]; mem_2 = operands[3]; } else { mem_1 = operands[0]; mem_2 = operands[2]; } extract_base_offset_in_addr (mem_1, &base_1, &offset_1); extract_base_offset_in_addr (mem_2, &base_2, &offset_2); offval_1 = INTVAL (offset_1); offval_2 = INTVAL (offset_2); if (offval_1 > offval_2) { /* Irrespective of whether this is a load or a store, we do the same swap. */ std::swap (operands[0], operands[2]); std::swap (operands[1], operands[3]); } } /* Taking X and Y to be HOST_WIDE_INT pointers, return the result of a comparison between the two. */ int aarch64_host_wide_int_compare (const void *x, const void *y) { return wi::cmps (* ((const HOST_WIDE_INT *) x), * ((const HOST_WIDE_INT *) y)); } /* Taking X and Y to be pairs of RTX, one pointing to a MEM rtx and the other pointing to a REG rtx containing an offset, compare the offsets of the two pairs. Return: 1 iff offset (X) > offset (Y) 0 iff offset (X) == offset (Y) -1 iff offset (X) < offset (Y) */ int aarch64_ldrstr_offset_compare (const void *x, const void *y) { const rtx * operands_1 = (const rtx *) x; const rtx * operands_2 = (const rtx *) y; rtx mem_1, mem_2, base, offset_1, offset_2; if (MEM_P (operands_1[0])) mem_1 = operands_1[0]; else mem_1 = operands_1[1]; if (MEM_P (operands_2[0])) mem_2 = operands_2[0]; else mem_2 = operands_2[1]; /* Extract the offsets. */ extract_base_offset_in_addr (mem_1, &base, &offset_1); extract_base_offset_in_addr (mem_2, &base, &offset_2); gcc_assert (offset_1 != NULL_RTX && offset_2 != NULL_RTX); return wi::cmps (INTVAL (offset_1), INTVAL (offset_2)); } /* Given OPERANDS of consecutive load/store, check if we can merge them into ldp/stp by adjusting the offset. LOAD is true if they are load instructions. MODE is the mode of memory operands. Given below consecutive stores: str w1, [xb, 0x100] str w1, [xb, 0x104] str w1, [xb, 0x108] str w1, [xb, 0x10c] Though the offsets are out of the range supported by stp, we can still pair them after adjusting the offset, like: add scratch, xb, 0x100 stp w1, w1, [scratch] stp w1, w1, [scratch, 0x8] The peephole patterns detecting this opportunity should guarantee the scratch register is avaliable. */ bool aarch64_operands_adjust_ok_for_ldpstp (rtx *operands, bool load, scalar_mode mode) { const int num_insns = 4; enum reg_class rclass; HOST_WIDE_INT offvals[num_insns], msize; rtx mem[num_insns], reg[num_insns], base[num_insns], offset[num_insns]; if (load) { for (int i = 0; i < num_insns; i++) { reg[i] = operands[2 * i]; mem[i] = operands[2 * i + 1]; gcc_assert (REG_P (reg[i])); } /* Do not attempt to merge the loads if the loads clobber each other. */ for (int i = 0; i < 8; i += 2) for (int j = i + 2; j < 8; j += 2) if (reg_overlap_mentioned_p (operands[i], operands[j])) return false; } else for (int i = 0; i < num_insns; i++) { mem[i] = operands[2 * i]; reg[i] = operands[2 * i + 1]; } /* Skip if memory operand is by itself valid for ldp/stp. */ if (!MEM_P (mem[0]) || aarch64_mem_pair_operand (mem[0], mode)) return false; for (int i = 0; i < num_insns; i++) { /* The mems cannot be volatile. */ if (MEM_VOLATILE_P (mem[i])) return false; /* Check if the addresses are in the form of [base+offset]. */ extract_base_offset_in_addr (mem[i], base + i, offset + i); if (base[i] == NULL_RTX || offset[i] == NULL_RTX) return false; } /* Check if the registers are of same class. */ rclass = REG_P (reg[0]) && FP_REGNUM_P (REGNO (reg[0])) ? FP_REGS : GENERAL_REGS; for (int i = 1; i < num_insns; i++) if (REG_P (reg[i]) && FP_REGNUM_P (REGNO (reg[i]))) { if (rclass != FP_REGS) return false; } else { if (rclass != GENERAL_REGS) return false; } /* Only the last register in the order in which they occur may be clobbered by the load. */ if (rclass == GENERAL_REGS && load) for (int i = 0; i < num_insns - 1; i++) if (reg_mentioned_p (reg[i], mem[i])) return false; /* Check if the bases are same. */ for (int i = 0; i < num_insns - 1; i++) if (!rtx_equal_p (base[i], base[i + 1])) return false; for (int i = 0; i < num_insns; i++) offvals[i] = INTVAL (offset[i]); msize = GET_MODE_SIZE (mode); /* Check if the offsets can be put in the right order to do a ldp/stp. */ qsort (offvals, num_insns, sizeof (HOST_WIDE_INT), aarch64_host_wide_int_compare); if (!(offvals[1] == offvals[0] + msize && offvals[3] == offvals[2] + msize)) return false; /* Check that offsets are within range of each other. The ldp/stp instructions have 7 bit immediate offsets, so use 0x80. */ if (offvals[2] - offvals[0] >= msize * 0x80) return false; /* The offsets must be aligned with respect to each other. */ if (offvals[0] % msize != offvals[2] % msize) return false; /* If we have SImode and slow unaligned ldp, check the alignment to be at least 8 byte. */ if (mode == SImode && (aarch64_tune_params.extra_tuning_flags & AARCH64_EXTRA_TUNE_SLOW_UNALIGNED_LDPW) && !optimize_size && MEM_ALIGN (mem[0]) < 8 * BITS_PER_UNIT) return false; return true; } /* Given OPERANDS of consecutive load/store, this function pairs them into LDP/STP after adjusting the offset. It depends on the fact that the operands can be sorted so the offsets are correct for STP. MODE is the mode of memory operands. CODE is the rtl operator which should be applied to all memory operands, it's SIGN_EXTEND, ZERO_EXTEND or UNKNOWN. */ bool aarch64_gen_adjusted_ldpstp (rtx *operands, bool load, scalar_mode mode, RTX_CODE code) { rtx base, offset_1, offset_3, t1, t2; rtx mem_1, mem_2, mem_3, mem_4; rtx temp_operands[8]; HOST_WIDE_INT off_val_1, off_val_3, base_off, new_off_1, new_off_3, stp_off_upper_limit, stp_off_lower_limit, msize; /* We make changes on a copy as we may still bail out. */ for (int i = 0; i < 8; i ++) temp_operands[i] = operands[i]; /* Sort the operands. */ qsort (temp_operands, 4, 2 * sizeof (rtx *), aarch64_ldrstr_offset_compare); if (load) { mem_1 = temp_operands[1]; mem_2 = temp_operands[3]; mem_3 = temp_operands[5]; mem_4 = temp_operands[7]; } else { mem_1 = temp_operands[0]; mem_2 = temp_operands[2]; mem_3 = temp_operands[4]; mem_4 = temp_operands[6]; gcc_assert (code == UNKNOWN); } extract_base_offset_in_addr (mem_1, &base, &offset_1); extract_base_offset_in_addr (mem_3, &base, &offset_3); gcc_assert (base != NULL_RTX && offset_1 != NULL_RTX && offset_3 != NULL_RTX); /* Adjust offset so it can fit in LDP/STP instruction. */ msize = GET_MODE_SIZE (mode); stp_off_upper_limit = msize * (0x40 - 1); stp_off_lower_limit = - msize * 0x40; off_val_1 = INTVAL (offset_1); off_val_3 = INTVAL (offset_3); /* The base offset is optimally half way between the two STP/LDP offsets. */ if (msize <= 4) base_off = (off_val_1 + off_val_3) / 2; else /* However, due to issues with negative LDP/STP offset generation for larger modes, for DF, DI and vector modes. we must not use negative addresses smaller than 9 signed unadjusted bits can store. This provides the most range in this case. */ base_off = off_val_1; /* Adjust the base so that it is aligned with the addresses but still optimal. */ if (base_off % msize != off_val_1 % msize) /* Fix the offset, bearing in mind we want to make it bigger not smaller. */ base_off += (((base_off % msize) - (off_val_1 % msize)) + msize) % msize; else if (msize <= 4) /* The negative range of LDP/STP is one larger than the positive range. */ base_off += msize; /* Check if base offset is too big or too small. We can attempt to resolve this issue by setting it to the maximum value and seeing if the offsets still fit. */ if (base_off >= 0x1000) { base_off = 0x1000 - 1; /* We must still make sure that the base offset is aligned with respect to the address. But it may may not be made any bigger. */ base_off -= (((base_off % msize) - (off_val_1 % msize)) + msize) % msize; } /* Likewise for the case where the base is too small. */ if (base_off <= -0x1000) { base_off = -0x1000 + 1; base_off += (((base_off % msize) - (off_val_1 % msize)) + msize) % msize; } /* Offset of the first STP/LDP. */ new_off_1 = off_val_1 - base_off; /* Offset of the second STP/LDP. */ new_off_3 = off_val_3 - base_off; /* The offsets must be within the range of the LDP/STP instructions. */ if (new_off_1 > stp_off_upper_limit || new_off_1 < stp_off_lower_limit || new_off_3 > stp_off_upper_limit || new_off_3 < stp_off_lower_limit) return false; replace_equiv_address_nv (mem_1, plus_constant (Pmode, operands[8], new_off_1), true); replace_equiv_address_nv (mem_2, plus_constant (Pmode, operands[8], new_off_1 + msize), true); replace_equiv_address_nv (mem_3, plus_constant (Pmode, operands[8], new_off_3), true); replace_equiv_address_nv (mem_4, plus_constant (Pmode, operands[8], new_off_3 + msize), true); if (!aarch64_mem_pair_operand (mem_1, mode) || !aarch64_mem_pair_operand (mem_3, mode)) return false; if (code == ZERO_EXTEND) { mem_1 = gen_rtx_ZERO_EXTEND (DImode, mem_1); mem_2 = gen_rtx_ZERO_EXTEND (DImode, mem_2); mem_3 = gen_rtx_ZERO_EXTEND (DImode, mem_3); mem_4 = gen_rtx_ZERO_EXTEND (DImode, mem_4); } else if (code == SIGN_EXTEND) { mem_1 = gen_rtx_SIGN_EXTEND (DImode, mem_1); mem_2 = gen_rtx_SIGN_EXTEND (DImode, mem_2); mem_3 = gen_rtx_SIGN_EXTEND (DImode, mem_3); mem_4 = gen_rtx_SIGN_EXTEND (DImode, mem_4); } if (load) { operands[0] = temp_operands[0]; operands[1] = mem_1; operands[2] = temp_operands[2]; operands[3] = mem_2; operands[4] = temp_operands[4]; operands[5] = mem_3; operands[6] = temp_operands[6]; operands[7] = mem_4; } else { operands[0] = mem_1; operands[1] = temp_operands[1]; operands[2] = mem_2; operands[3] = temp_operands[3]; operands[4] = mem_3; operands[5] = temp_operands[5]; operands[6] = mem_4; operands[7] = temp_operands[7]; } /* Emit adjusting instruction. */ emit_insn (gen_rtx_SET (operands[8], plus_constant (DImode, base, base_off))); /* Emit ldp/stp instructions. */ t1 = gen_rtx_SET (operands[0], operands[1]); t2 = gen_rtx_SET (operands[2], operands[3]); emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, t1, t2))); t1 = gen_rtx_SET (operands[4], operands[5]); t2 = gen_rtx_SET (operands[6], operands[7]); emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, t1, t2))); return true; } /* Implement TARGET_VECTORIZE_EMPTY_MASK_IS_EXPENSIVE. Assume for now that it isn't worth branching around empty masked ops (including masked stores). */ static bool aarch64_empty_mask_is_expensive (unsigned) { return false; } /* Return 1 if pseudo register should be created and used to hold GOT address for PIC code. */ bool aarch64_use_pseudo_pic_reg (void) { return aarch64_cmodel == AARCH64_CMODEL_SMALL_SPIC; } /* Implement TARGET_UNSPEC_MAY_TRAP_P. */ static int aarch64_unspec_may_trap_p (const_rtx x, unsigned flags) { switch (XINT (x, 1)) { case UNSPEC_GOTSMALLPIC: case UNSPEC_GOTSMALLPIC28K: case UNSPEC_GOTTINYPIC: return 0; default: break; } return default_unspec_may_trap_p (x, flags); } /* If X is a positive CONST_DOUBLE with a value that is a power of 2 return the log2 of that value. Otherwise return -1. */ int aarch64_fpconst_pow_of_2 (rtx x) { const REAL_VALUE_TYPE *r; if (!CONST_DOUBLE_P (x)) return -1; r = CONST_DOUBLE_REAL_VALUE (x); if (REAL_VALUE_NEGATIVE (*r) || REAL_VALUE_ISNAN (*r) || REAL_VALUE_ISINF (*r) || !real_isinteger (r, DFmode)) return -1; return exact_log2 (real_to_integer (r)); } /* If X is a vector of equal CONST_DOUBLE values and that value is Y, return the aarch64_fpconst_pow_of_2 of Y. Otherwise return -1. */ int aarch64_vec_fpconst_pow_of_2 (rtx x) { int nelts; if (GET_CODE (x) != CONST_VECTOR || !CONST_VECTOR_NUNITS (x).is_constant (&nelts)) return -1; if (GET_MODE_CLASS (GET_MODE (x)) != MODE_VECTOR_FLOAT) return -1; int firstval = aarch64_fpconst_pow_of_2 (CONST_VECTOR_ELT (x, 0)); if (firstval <= 0) return -1; for (int i = 1; i < nelts; i++) if (aarch64_fpconst_pow_of_2 (CONST_VECTOR_ELT (x, i)) != firstval) return -1; return firstval; } /* Implement TARGET_PROMOTED_TYPE to promote 16-bit floating point types to float. __fp16 always promotes through this hook. _Float16 may promote if TARGET_FLT_EVAL_METHOD is 16, but we do that through the generic excess precision logic rather than here. */ static tree aarch64_promoted_type (const_tree t) { if (SCALAR_FLOAT_TYPE_P (t) && TYPE_MAIN_VARIANT (t) == aarch64_fp16_type_node) return float_type_node; return NULL_TREE; } /* Implement the TARGET_OPTAB_SUPPORTED_P hook. */ static bool aarch64_optab_supported_p (int op, machine_mode mode1, machine_mode, optimization_type opt_type) { switch (op) { case rsqrt_optab: return opt_type == OPTIMIZE_FOR_SPEED && use_rsqrt_p (mode1); default: return true; } } /* Implement the TARGET_DWARF_POLY_INDETERMINATE_VALUE hook. */ static unsigned int aarch64_dwarf_poly_indeterminate_value (unsigned int i, unsigned int *factor, int *offset) { /* Polynomial invariant 1 == (VG / 2) - 1. */ gcc_assert (i == 1); *factor = 2; *offset = 1; return AARCH64_DWARF_VG; } /* Implement TARGET_LIBGCC_FLOATING_POINT_MODE_SUPPORTED_P - return TRUE if MODE is HFmode, and punt to the generic implementation otherwise. */ static bool aarch64_libgcc_floating_mode_supported_p (scalar_float_mode mode) { return (mode == HFmode ? true : default_libgcc_floating_mode_supported_p (mode)); } /* Implement TARGET_SCALAR_MODE_SUPPORTED_P - return TRUE if MODE is HFmode, and punt to the generic implementation otherwise. */ static bool aarch64_scalar_mode_supported_p (scalar_mode mode) { return (mode == HFmode ? true : default_scalar_mode_supported_p (mode)); } /* Set the value of FLT_EVAL_METHOD. ISO/IEC TS 18661-3 defines two values that we'd like to make use of: 0: evaluate all operations and constants, whose semantic type has at most the range and precision of type float, to the range and precision of float; evaluate all other operations and constants to the range and precision of the semantic type; N, where _FloatN is a supported interchange floating type evaluate all operations and constants, whose semantic type has at most the range and precision of _FloatN type, to the range and precision of the _FloatN type; evaluate all other operations and constants to the range and precision of the semantic type; If we have the ARMv8.2-A extensions then we support _Float16 in native precision, so we should set this to 16. Otherwise, we support the type, but want to evaluate expressions in float precision, so set this to 0. */ static enum flt_eval_method aarch64_excess_precision (enum excess_precision_type type) { switch (type) { case EXCESS_PRECISION_TYPE_FAST: case EXCESS_PRECISION_TYPE_STANDARD: /* We can calculate either in 16-bit range and precision or 32-bit range and precision. Make that decision based on whether we have native support for the ARMv8.2-A 16-bit floating-point instructions or not. */ return (TARGET_FP_F16INST ? FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16 : FLT_EVAL_METHOD_PROMOTE_TO_FLOAT); case EXCESS_PRECISION_TYPE_IMPLICIT: return FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16; default: gcc_unreachable (); } return FLT_EVAL_METHOD_UNPREDICTABLE; } /* Implement TARGET_SCHED_CAN_SPECULATE_INSN. Return true if INSN can be scheduled for speculative execution. Reject the long-running division and square-root instructions. */ static bool aarch64_sched_can_speculate_insn (rtx_insn *insn) { switch (get_attr_type (insn)) { case TYPE_SDIV: case TYPE_UDIV: case TYPE_FDIVS: case TYPE_FDIVD: case TYPE_FSQRTS: case TYPE_FSQRTD: case TYPE_NEON_FP_SQRT_S: case TYPE_NEON_FP_SQRT_D: case TYPE_NEON_FP_SQRT_S_Q: case TYPE_NEON_FP_SQRT_D_Q: case TYPE_NEON_FP_DIV_S: case TYPE_NEON_FP_DIV_D: case TYPE_NEON_FP_DIV_S_Q: case TYPE_NEON_FP_DIV_D_Q: return false; default: return true; } } /* Implement TARGET_COMPUTE_PRESSURE_CLASSES. */ static int aarch64_compute_pressure_classes (reg_class *classes) { int i = 0; classes[i++] = GENERAL_REGS; classes[i++] = FP_REGS; /* PR_REGS isn't a useful pressure class because many predicate pseudo registers need to go in PR_LO_REGS at some point during their lifetime. Splitting it into two halves has the effect of making all predicates count against PR_LO_REGS, so that we try whenever possible to restrict the number of live predicates to 8. This greatly reduces the amount of spilling in certain loops. */ classes[i++] = PR_LO_REGS; classes[i++] = PR_HI_REGS; return i; } /* Implement TARGET_CAN_CHANGE_MODE_CLASS. */ static bool aarch64_can_change_mode_class (machine_mode from, machine_mode to, reg_class_t) { if (BYTES_BIG_ENDIAN) { bool from_sve_p = aarch64_sve_data_mode_p (from); bool to_sve_p = aarch64_sve_data_mode_p (to); /* Don't allow changes between SVE data modes and non-SVE modes. See the comment at the head of aarch64-sve.md for details. */ if (from_sve_p != to_sve_p) return false; /* Don't allow changes in element size: lane 0 of the new vector would not then be lane 0 of the old vector. See the comment above aarch64_maybe_expand_sve_subreg_move for a more detailed description. In the worst case, this forces a register to be spilled in one mode and reloaded in the other, which handles the endianness correctly. */ if (from_sve_p && GET_MODE_UNIT_SIZE (from) != GET_MODE_UNIT_SIZE (to)) return false; } return true; } /* Implement TARGET_EARLY_REMAT_MODES. */ static void aarch64_select_early_remat_modes (sbitmap modes) { /* SVE values are not normally live across a call, so it should be worth doing early rematerialization even in VL-specific mode. */ for (int i = 0; i < NUM_MACHINE_MODES; ++i) { machine_mode mode = (machine_mode) i; unsigned int vec_flags = aarch64_classify_vector_mode (mode); if (vec_flags & VEC_ANY_SVE) bitmap_set_bit (modes, i); } } /* Override the default target speculation_safe_value. */ static rtx aarch64_speculation_safe_value (machine_mode mode, rtx result, rtx val, rtx failval) { /* Maybe we should warn if falling back to hard barriers. They are likely to be noticably more expensive than the alternative below. */ if (!aarch64_track_speculation) return default_speculation_safe_value (mode, result, val, failval); if (!REG_P (val)) val = copy_to_mode_reg (mode, val); if (!aarch64_reg_or_zero (failval, mode)) failval = copy_to_mode_reg (mode, failval); switch (mode) { case E_QImode: emit_insn (gen_despeculate_copyqi (result, val, failval)); break; case E_HImode: emit_insn (gen_despeculate_copyhi (result, val, failval)); break; case E_SImode: emit_insn (gen_despeculate_copysi (result, val, failval)); break; case E_DImode: emit_insn (gen_despeculate_copydi (result, val, failval)); break; case E_TImode: emit_insn (gen_despeculate_copyti (result, val, failval)); break; default: gcc_unreachable (); } return result; } /* Target-specific selftests. */ #if CHECKING_P namespace selftest { /* Selftest for the RTL loader. Verify that the RTL loader copes with a dump from print_rtx_function. This is essentially just a test that class function_reader can handle a real dump, but it also verifies that lookup_reg_by_dump_name correctly handles hard regs. The presence of hard reg names in the dump means that the test is target-specific, hence it is in this file. */ static void aarch64_test_loading_full_dump () { rtl_dump_test t (SELFTEST_LOCATION, locate_file ("aarch64/times-two.rtl")); ASSERT_STREQ ("times_two", IDENTIFIER_POINTER (DECL_NAME (cfun->decl))); rtx_insn *insn_1 = get_insn_by_uid (1); ASSERT_EQ (NOTE, GET_CODE (insn_1)); rtx_insn *insn_15 = get_insn_by_uid (15); ASSERT_EQ (INSN, GET_CODE (insn_15)); ASSERT_EQ (USE, GET_CODE (PATTERN (insn_15))); /* Verify crtl->return_rtx. */ ASSERT_EQ (REG, GET_CODE (crtl->return_rtx)); ASSERT_EQ (0, REGNO (crtl->return_rtx)); ASSERT_EQ (SImode, GET_MODE (crtl->return_rtx)); } /* Run all target-specific selftests. */ static void aarch64_run_selftests (void) { aarch64_test_loading_full_dump (); } } // namespace selftest #endif /* #if CHECKING_P */ #undef TARGET_ADDRESS_COST #define TARGET_ADDRESS_COST aarch64_address_cost /* This hook will determines whether unnamed bitfields affect the alignment of the containing structure. The hook returns true if the structure should inherit the alignment requirements of an unnamed bitfield's type. */ #undef TARGET_ALIGN_ANON_BITFIELD #define TARGET_ALIGN_ANON_BITFIELD hook_bool_void_true #undef TARGET_ASM_ALIGNED_DI_OP #define TARGET_ASM_ALIGNED_DI_OP "\t.xword\t" #undef TARGET_ASM_ALIGNED_HI_OP #define TARGET_ASM_ALIGNED_HI_OP "\t.hword\t" #undef TARGET_ASM_ALIGNED_SI_OP #define TARGET_ASM_ALIGNED_SI_OP "\t.word\t" #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK #define TARGET_ASM_CAN_OUTPUT_MI_THUNK \ hook_bool_const_tree_hwi_hwi_const_tree_true #undef TARGET_ASM_FILE_START #define TARGET_ASM_FILE_START aarch64_start_file #undef TARGET_ASM_OUTPUT_MI_THUNK #define TARGET_ASM_OUTPUT_MI_THUNK aarch64_output_mi_thunk #undef TARGET_ASM_SELECT_RTX_SECTION #define TARGET_ASM_SELECT_RTX_SECTION aarch64_select_rtx_section #undef TARGET_ASM_TRAMPOLINE_TEMPLATE #define TARGET_ASM_TRAMPOLINE_TEMPLATE aarch64_asm_trampoline_template #undef TARGET_BUILD_BUILTIN_VA_LIST #define TARGET_BUILD_BUILTIN_VA_LIST aarch64_build_builtin_va_list #undef TARGET_CALLEE_COPIES #define TARGET_CALLEE_COPIES hook_bool_CUMULATIVE_ARGS_mode_tree_bool_false #undef TARGET_CAN_ELIMINATE #define TARGET_CAN_ELIMINATE aarch64_can_eliminate #undef TARGET_CAN_INLINE_P #define TARGET_CAN_INLINE_P aarch64_can_inline_p #undef TARGET_CANNOT_FORCE_CONST_MEM #define TARGET_CANNOT_FORCE_CONST_MEM aarch64_cannot_force_const_mem #undef TARGET_CASE_VALUES_THRESHOLD #define TARGET_CASE_VALUES_THRESHOLD aarch64_case_values_threshold #undef TARGET_CONDITIONAL_REGISTER_USAGE #define TARGET_CONDITIONAL_REGISTER_USAGE aarch64_conditional_register_usage /* Only the least significant bit is used for initialization guard variables. */ #undef TARGET_CXX_GUARD_MASK_BIT #define TARGET_CXX_GUARD_MASK_BIT hook_bool_void_true #undef TARGET_C_MODE_FOR_SUFFIX #define TARGET_C_MODE_FOR_SUFFIX aarch64_c_mode_for_suffix #ifdef TARGET_BIG_ENDIAN_DEFAULT #undef TARGET_DEFAULT_TARGET_FLAGS #define TARGET_DEFAULT_TARGET_FLAGS (MASK_BIG_END) #endif #undef TARGET_CLASS_MAX_NREGS #define TARGET_CLASS_MAX_NREGS aarch64_class_max_nregs #undef TARGET_BUILTIN_DECL #define TARGET_BUILTIN_DECL aarch64_builtin_decl #undef TARGET_BUILTIN_RECIPROCAL #define TARGET_BUILTIN_RECIPROCAL aarch64_builtin_reciprocal #undef TARGET_C_EXCESS_PRECISION #define TARGET_C_EXCESS_PRECISION aarch64_excess_precision #undef TARGET_EXPAND_BUILTIN #define TARGET_EXPAND_BUILTIN aarch64_expand_builtin #undef TARGET_EXPAND_BUILTIN_VA_START #define TARGET_EXPAND_BUILTIN_VA_START aarch64_expand_builtin_va_start #undef TARGET_FOLD_BUILTIN #define TARGET_FOLD_BUILTIN aarch64_fold_builtin #undef TARGET_FUNCTION_ARG #define TARGET_FUNCTION_ARG aarch64_function_arg #undef TARGET_FUNCTION_ARG_ADVANCE #define TARGET_FUNCTION_ARG_ADVANCE aarch64_function_arg_advance #undef TARGET_FUNCTION_ARG_BOUNDARY #define TARGET_FUNCTION_ARG_BOUNDARY aarch64_function_arg_boundary #undef TARGET_FUNCTION_ARG_PADDING #define TARGET_FUNCTION_ARG_PADDING aarch64_function_arg_padding #undef TARGET_GET_RAW_RESULT_MODE #define TARGET_GET_RAW_RESULT_MODE aarch64_get_reg_raw_mode #undef TARGET_GET_RAW_ARG_MODE #define TARGET_GET_RAW_ARG_MODE aarch64_get_reg_raw_mode #undef TARGET_FUNCTION_OK_FOR_SIBCALL #define TARGET_FUNCTION_OK_FOR_SIBCALL aarch64_function_ok_for_sibcall #undef TARGET_FUNCTION_VALUE #define TARGET_FUNCTION_VALUE aarch64_function_value #undef TARGET_FUNCTION_VALUE_REGNO_P #define TARGET_FUNCTION_VALUE_REGNO_P aarch64_function_value_regno_p #undef TARGET_GIMPLE_FOLD_BUILTIN #define TARGET_GIMPLE_FOLD_BUILTIN aarch64_gimple_fold_builtin #undef TARGET_GIMPLIFY_VA_ARG_EXPR #define TARGET_GIMPLIFY_VA_ARG_EXPR aarch64_gimplify_va_arg_expr #undef TARGET_INIT_BUILTINS #define TARGET_INIT_BUILTINS aarch64_init_builtins #undef TARGET_IRA_CHANGE_PSEUDO_ALLOCNO_CLASS #define TARGET_IRA_CHANGE_PSEUDO_ALLOCNO_CLASS \ aarch64_ira_change_pseudo_allocno_class #undef TARGET_LEGITIMATE_ADDRESS_P #define TARGET_LEGITIMATE_ADDRESS_P aarch64_legitimate_address_hook_p #undef TARGET_LEGITIMATE_CONSTANT_P #define TARGET_LEGITIMATE_CONSTANT_P aarch64_legitimate_constant_p #undef TARGET_LEGITIMIZE_ADDRESS_DISPLACEMENT #define TARGET_LEGITIMIZE_ADDRESS_DISPLACEMENT \ aarch64_legitimize_address_displacement #undef TARGET_LIBGCC_CMP_RETURN_MODE #define TARGET_LIBGCC_CMP_RETURN_MODE aarch64_libgcc_cmp_return_mode #undef TARGET_LIBGCC_FLOATING_MODE_SUPPORTED_P #define TARGET_LIBGCC_FLOATING_MODE_SUPPORTED_P \ aarch64_libgcc_floating_mode_supported_p #undef TARGET_MANGLE_TYPE #define TARGET_MANGLE_TYPE aarch64_mangle_type #undef TARGET_MEMORY_MOVE_COST #define TARGET_MEMORY_MOVE_COST aarch64_memory_move_cost #undef TARGET_MIN_DIVISIONS_FOR_RECIP_MUL #define TARGET_MIN_DIVISIONS_FOR_RECIP_MUL aarch64_min_divisions_for_recip_mul #undef TARGET_MUST_PASS_IN_STACK #define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size /* This target hook should return true if accesses to volatile bitfields should use the narrowest mode possible. It should return false if these accesses should use the bitfield container type. */ #undef TARGET_NARROW_VOLATILE_BITFIELD #define TARGET_NARROW_VOLATILE_BITFIELD hook_bool_void_false #undef TARGET_OPTION_OVERRIDE #define TARGET_OPTION_OVERRIDE aarch64_override_options #undef TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE #define TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE \ aarch64_override_options_after_change #undef TARGET_OPTION_SAVE #define TARGET_OPTION_SAVE aarch64_option_save #undef TARGET_OPTION_RESTORE #define TARGET_OPTION_RESTORE aarch64_option_restore #undef TARGET_OPTION_PRINT #define TARGET_OPTION_PRINT aarch64_option_print #undef TARGET_OPTION_VALID_ATTRIBUTE_P #define TARGET_OPTION_VALID_ATTRIBUTE_P aarch64_option_valid_attribute_p #undef TARGET_SET_CURRENT_FUNCTION #define TARGET_SET_CURRENT_FUNCTION aarch64_set_current_function #undef TARGET_PASS_BY_REFERENCE #define TARGET_PASS_BY_REFERENCE aarch64_pass_by_reference #undef TARGET_PREFERRED_RELOAD_CLASS #define TARGET_PREFERRED_RELOAD_CLASS aarch64_preferred_reload_class #undef TARGET_SCHED_REASSOCIATION_WIDTH #define TARGET_SCHED_REASSOCIATION_WIDTH aarch64_reassociation_width #undef TARGET_PROMOTED_TYPE #define TARGET_PROMOTED_TYPE aarch64_promoted_type #undef TARGET_SECONDARY_RELOAD #define TARGET_SECONDARY_RELOAD aarch64_secondary_reload #undef TARGET_SHIFT_TRUNCATION_MASK #define TARGET_SHIFT_TRUNCATION_MASK aarch64_shift_truncation_mask #undef TARGET_SETUP_INCOMING_VARARGS #define TARGET_SETUP_INCOMING_VARARGS aarch64_setup_incoming_varargs #undef TARGET_STRUCT_VALUE_RTX #define TARGET_STRUCT_VALUE_RTX aarch64_struct_value_rtx #undef TARGET_REGISTER_MOVE_COST #define TARGET_REGISTER_MOVE_COST aarch64_register_move_cost #undef TARGET_RETURN_IN_MEMORY #define TARGET_RETURN_IN_MEMORY aarch64_return_in_memory #undef TARGET_RETURN_IN_MSB #define TARGET_RETURN_IN_MSB aarch64_return_in_msb #undef TARGET_RTX_COSTS #define TARGET_RTX_COSTS aarch64_rtx_costs_wrapper #undef TARGET_SCALAR_MODE_SUPPORTED_P #define TARGET_SCALAR_MODE_SUPPORTED_P aarch64_scalar_mode_supported_p #undef TARGET_SCHED_ISSUE_RATE #define TARGET_SCHED_ISSUE_RATE aarch64_sched_issue_rate #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \ aarch64_sched_first_cycle_multipass_dfa_lookahead #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD \ aarch64_first_cycle_multipass_dfa_lookahead_guard #undef TARGET_SHRINK_WRAP_GET_SEPARATE_COMPONENTS #define TARGET_SHRINK_WRAP_GET_SEPARATE_COMPONENTS \ aarch64_get_separate_components #undef TARGET_SHRINK_WRAP_COMPONENTS_FOR_BB #define TARGET_SHRINK_WRAP_COMPONENTS_FOR_BB \ aarch64_components_for_bb #undef TARGET_SHRINK_WRAP_DISQUALIFY_COMPONENTS #define TARGET_SHRINK_WRAP_DISQUALIFY_COMPONENTS \ aarch64_disqualify_components #undef TARGET_SHRINK_WRAP_EMIT_PROLOGUE_COMPONENTS #define TARGET_SHRINK_WRAP_EMIT_PROLOGUE_COMPONENTS \ aarch64_emit_prologue_components #undef TARGET_SHRINK_WRAP_EMIT_EPILOGUE_COMPONENTS #define TARGET_SHRINK_WRAP_EMIT_EPILOGUE_COMPONENTS \ aarch64_emit_epilogue_components #undef TARGET_SHRINK_WRAP_SET_HANDLED_COMPONENTS #define TARGET_SHRINK_WRAP_SET_HANDLED_COMPONENTS \ aarch64_set_handled_components #undef TARGET_TRAMPOLINE_INIT #define TARGET_TRAMPOLINE_INIT aarch64_trampoline_init #undef TARGET_USE_BLOCKS_FOR_CONSTANT_P #define TARGET_USE_BLOCKS_FOR_CONSTANT_P aarch64_use_blocks_for_constant_p #undef TARGET_VECTOR_MODE_SUPPORTED_P #define TARGET_VECTOR_MODE_SUPPORTED_P aarch64_vector_mode_supported_p #undef TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT #define TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT \ aarch64_builtin_support_vector_misalignment #undef TARGET_ARRAY_MODE #define TARGET_ARRAY_MODE aarch64_array_mode #undef TARGET_ARRAY_MODE_SUPPORTED_P #define TARGET_ARRAY_MODE_SUPPORTED_P aarch64_array_mode_supported_p #undef TARGET_VECTORIZE_ADD_STMT_COST #define TARGET_VECTORIZE_ADD_STMT_COST aarch64_add_stmt_cost #undef TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST #define TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST \ aarch64_builtin_vectorization_cost #undef TARGET_VECTORIZE_PREFERRED_SIMD_MODE #define TARGET_VECTORIZE_PREFERRED_SIMD_MODE aarch64_preferred_simd_mode #undef TARGET_VECTORIZE_BUILTINS #define TARGET_VECTORIZE_BUILTINS #undef TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION #define TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION \ aarch64_builtin_vectorized_function #undef TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_SIZES #define TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_SIZES \ aarch64_autovectorize_vector_sizes #undef TARGET_ATOMIC_ASSIGN_EXPAND_FENV #define TARGET_ATOMIC_ASSIGN_EXPAND_FENV \ aarch64_atomic_assign_expand_fenv /* Section anchor support. */ #undef TARGET_MIN_ANCHOR_OFFSET #define TARGET_MIN_ANCHOR_OFFSET -256 /* Limit the maximum anchor offset to 4k-1, since that's the limit for a byte offset; we can do much more for larger data types, but have no way to determine the size of the access. We assume accesses are aligned. */ #undef TARGET_MAX_ANCHOR_OFFSET #define TARGET_MAX_ANCHOR_OFFSET 4095 #undef TARGET_VECTOR_ALIGNMENT #define TARGET_VECTOR_ALIGNMENT aarch64_simd_vector_alignment #undef TARGET_VECTORIZE_PREFERRED_VECTOR_ALIGNMENT #define TARGET_VECTORIZE_PREFERRED_VECTOR_ALIGNMENT \ aarch64_vectorize_preferred_vector_alignment #undef TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE #define TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE \ aarch64_simd_vector_alignment_reachable /* vec_perm support. */ #undef TARGET_VECTORIZE_VEC_PERM_CONST #define TARGET_VECTORIZE_VEC_PERM_CONST \ aarch64_vectorize_vec_perm_const #undef TARGET_VECTORIZE_GET_MASK_MODE #define TARGET_VECTORIZE_GET_MASK_MODE aarch64_get_mask_mode #undef TARGET_VECTORIZE_EMPTY_MASK_IS_EXPENSIVE #define TARGET_VECTORIZE_EMPTY_MASK_IS_EXPENSIVE \ aarch64_empty_mask_is_expensive #undef TARGET_PREFERRED_ELSE_VALUE #define TARGET_PREFERRED_ELSE_VALUE \ aarch64_preferred_else_value #undef TARGET_INIT_LIBFUNCS #define TARGET_INIT_LIBFUNCS aarch64_init_libfuncs #undef TARGET_FIXED_CONDITION_CODE_REGS #define TARGET_FIXED_CONDITION_CODE_REGS aarch64_fixed_condition_code_regs #undef TARGET_FLAGS_REGNUM #define TARGET_FLAGS_REGNUM CC_REGNUM #undef TARGET_CALL_FUSAGE_CONTAINS_NON_CALLEE_CLOBBERS #define TARGET_CALL_FUSAGE_CONTAINS_NON_CALLEE_CLOBBERS true #undef TARGET_ASAN_SHADOW_OFFSET #define TARGET_ASAN_SHADOW_OFFSET aarch64_asan_shadow_offset #undef TARGET_LEGITIMIZE_ADDRESS #define TARGET_LEGITIMIZE_ADDRESS aarch64_legitimize_address #undef TARGET_SCHED_CAN_SPECULATE_INSN #define TARGET_SCHED_CAN_SPECULATE_INSN aarch64_sched_can_speculate_insn #undef TARGET_CAN_USE_DOLOOP_P #define TARGET_CAN_USE_DOLOOP_P can_use_doloop_if_innermost #undef TARGET_SCHED_ADJUST_PRIORITY #define TARGET_SCHED_ADJUST_PRIORITY aarch64_sched_adjust_priority #undef TARGET_SCHED_MACRO_FUSION_P #define TARGET_SCHED_MACRO_FUSION_P aarch64_macro_fusion_p #undef TARGET_SCHED_MACRO_FUSION_PAIR_P #define TARGET_SCHED_MACRO_FUSION_PAIR_P aarch_macro_fusion_pair_p #undef TARGET_SCHED_FUSION_PRIORITY #define TARGET_SCHED_FUSION_PRIORITY aarch64_sched_fusion_priority #undef TARGET_UNSPEC_MAY_TRAP_P #define TARGET_UNSPEC_MAY_TRAP_P aarch64_unspec_may_trap_p #undef TARGET_USE_PSEUDO_PIC_REG #define TARGET_USE_PSEUDO_PIC_REG aarch64_use_pseudo_pic_reg #undef TARGET_PRINT_OPERAND #define TARGET_PRINT_OPERAND aarch64_print_operand #undef TARGET_PRINT_OPERAND_ADDRESS #define TARGET_PRINT_OPERAND_ADDRESS aarch64_print_operand_address #undef TARGET_OPTAB_SUPPORTED_P #define TARGET_OPTAB_SUPPORTED_P aarch64_optab_supported_p #undef TARGET_OMIT_STRUCT_RETURN_REG #define TARGET_OMIT_STRUCT_RETURN_REG true #undef TARGET_DWARF_POLY_INDETERMINATE_VALUE #define TARGET_DWARF_POLY_INDETERMINATE_VALUE \ aarch64_dwarf_poly_indeterminate_value /* The architecture reserves bits 0 and 1 so use bit 2 for descriptors. */ #undef TARGET_CUSTOM_FUNCTION_DESCRIPTORS #define TARGET_CUSTOM_FUNCTION_DESCRIPTORS 4 #undef TARGET_HARD_REGNO_NREGS #define TARGET_HARD_REGNO_NREGS aarch64_hard_regno_nregs #undef TARGET_HARD_REGNO_MODE_OK #define TARGET_HARD_REGNO_MODE_OK aarch64_hard_regno_mode_ok #undef TARGET_MODES_TIEABLE_P #define TARGET_MODES_TIEABLE_P aarch64_modes_tieable_p #undef TARGET_HARD_REGNO_CALL_PART_CLOBBERED #define TARGET_HARD_REGNO_CALL_PART_CLOBBERED \ aarch64_hard_regno_call_part_clobbered #undef TARGET_CONSTANT_ALIGNMENT #define TARGET_CONSTANT_ALIGNMENT aarch64_constant_alignment #undef TARGET_COMPUTE_PRESSURE_CLASSES #define TARGET_COMPUTE_PRESSURE_CLASSES aarch64_compute_pressure_classes #undef TARGET_CAN_CHANGE_MODE_CLASS #define TARGET_CAN_CHANGE_MODE_CLASS aarch64_can_change_mode_class #undef TARGET_SELECT_EARLY_REMAT_MODES #define TARGET_SELECT_EARLY_REMAT_MODES aarch64_select_early_remat_modes #undef TARGET_SPECULATION_SAFE_VALUE #define TARGET_SPECULATION_SAFE_VALUE aarch64_speculation_safe_value #if CHECKING_P #undef TARGET_RUN_TARGET_SELFTESTS #define TARGET_RUN_TARGET_SELFTESTS selftest::aarch64_run_selftests #endif /* #if CHECKING_P */ struct gcc_target targetm = TARGET_INITIALIZER; #include "gt-aarch64.h"