/* Inline functions for tree-flow.h Copyright (C) 2001, 2003 Free Software Foundation, Inc. Contributed by Diego Novillo This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #ifndef _TREE_FLOW_INLINE_H #define _TREE_FLOW_INLINE_H 1 /* Inline functions for manipulating various data structures defined in tree-flow.h. See tree-flow.h for documentation. */ static inline var_ann_t var_ann (tree t) { #if defined ENABLE_CHECKING if (t == NULL_TREE || !DECL_P (t) || (t->common.ann && t->common.ann->common.type != VAR_ANN)) abort (); #endif return (var_ann_t) t->common.ann; } static inline var_ann_t get_var_ann (tree var) { var_ann_t ann = var_ann (var); return (ann) ? ann : create_var_ann (var); } static inline stmt_ann_t stmt_ann (tree t) { #if defined ENABLE_CHECKING if (!is_gimple_stmt (t) && !is_essa_node (t)) abort (); #endif return (stmt_ann_t) t->common.ann; } static inline stmt_ann_t get_stmt_ann (tree stmt) { stmt_ann_t ann = stmt_ann (stmt); return (ann) ? ann : create_stmt_ann (stmt); } static inline ssa_name_ann_t ssa_name_ann (tree t) { #if defined ENABLE_CHECKING if (t == NULL_TREE || TREE_CODE (t) != SSA_NAME || (t->common.ann && t->common.ann->common.type != SSA_NAME_ANN)) abort (); #endif return (ssa_name_ann_t) t->common.ann; } static inline ssa_name_ann_t get_ssa_name_ann (tree var) { ssa_name_ann_t ann = ssa_name_ann (var); return (ann) ? ann : create_ssa_name_ann (var); } static inline enum tree_ann_type ann_type (tree_ann ann) { return ann->common.type; } static inline basic_block bb_for_stmt (tree t) { stmt_ann_t ann = stmt_ann (t); return ann ? ann->bb : NULL; } /* Return associated dependence_node with the statement. */ static inline dependence_node dg_node_for_stmt (tree t) { stmt_ann_t ann = stmt_ann (t); return ann ? ann->dg_node : NULL; } static inline varray_type may_aliases (tree var) { var_ann_t ann = var_ann (var); return ann ? ann->may_aliases : NULL; } static inline bool has_hidden_use (tree var) { var_ann_t ann = var_ann (var); return ann ? ann->has_hidden_use : false; } static inline void set_has_hidden_use (tree var) { var_ann_t ann = var_ann (var); if (ann == NULL) ann = create_var_ann (var); ann->has_hidden_use = 1; } static inline int get_lineno (tree expr) { if (expr == NULL_TREE) return -1; if (TREE_CODE (expr) == COMPOUND_EXPR) expr = TREE_OPERAND (expr, 0); if (! EXPR_LOCUS (expr)) return -1; return EXPR_LINENO (expr); } static inline const char * get_filename (tree expr) { if (expr == NULL_TREE) return "???"; if (TREE_CODE (expr) == COMPOUND_EXPR) expr = TREE_OPERAND (expr, 0); if (EXPR_LOCUS (expr) && EXPR_FILENAME (expr)) return EXPR_FILENAME (expr); else return "???"; } static inline void modify_stmt (tree t) { stmt_ann_t ann = stmt_ann (t); if (ann == NULL) ann = create_stmt_ann (t); ann->modified = 1; } static inline void unmodify_stmt (tree t) { stmt_ann_t ann = stmt_ann (t); if (ann == NULL) ann = create_stmt_ann (t); ann->modified = 0; } static inline bool stmt_modified_p (tree t) { stmt_ann_t ann = stmt_ann (t); /* Note that if the statement doesn't yet have an annotation, we consider it modified. This will force the next call to get_stmt_operands to scan the statement. */ return ann ? ann->modified : true; } static inline def_optype get_def_ops (stmt_ann_t ann) { return ann ? ann->def_ops : NULL; } static inline use_optype get_use_ops (stmt_ann_t ann) { return ann ? ann->use_ops : NULL; } static inline vdef_optype get_vdef_ops (stmt_ann_t ann) { return ann ? ann->vdef_ops : NULL; } static inline vuse_optype get_vuse_ops (stmt_ann_t ann) { return ann ? ann->vuse_ops : NULL; } static inline tree * get_use_op_ptr (use_optype uses, unsigned int index) { #ifdef ENABLE_CHECKING if (index >= uses->num_uses) abort(); #endif return uses->uses[index]; } static inline tree * get_def_op_ptr (def_optype defs, unsigned int index) { #ifdef ENABLE_CHECKING if (index >= defs->num_defs) abort(); #endif return defs->defs[index]; } static inline tree * get_vdef_result_ptr(vdef_optype vdefs, unsigned int index) { #ifdef ENABLE_CHECKING if (index >= vdefs->num_vdefs) abort(); #endif return &(vdefs->vdefs[index * 2]); } static inline tree * get_vdef_op_ptr(vdef_optype vdefs, unsigned int index) { #ifdef ENABLE_CHECKING if (index >= vdefs->num_vdefs) abort(); #endif return &(vdefs->vdefs[index * 2 + 1]); } static inline tree * get_vuse_op_ptr(vuse_optype vuses, unsigned int index) { #ifdef ENABLE_CHECKING if (index >= vuses->num_vuses) abort(); #endif return &(vuses->vuses[index]); } static inline void start_ssa_stmt_operands (tree stmt ATTRIBUTE_UNUSED) { #ifdef ENABLE_CHECKING verify_start_operands (stmt); #endif } static inline bitmap addresses_taken (tree stmt) { stmt_ann_t ann = stmt_ann (stmt); return ann ? ann->addresses_taken : NULL; } static dataflow_t get_immediate_uses (tree stmt) { stmt_ann_t ann = stmt_ann (stmt); return ann ? ann->df : NULL; } static inline int num_immediate_uses (dataflow_t df) { varray_type imm; if (!df) return 0; imm = df->immediate_uses; if (!imm) return df->uses[1] ? 2 : 1; return VARRAY_ACTIVE_SIZE (imm) + 2; } static inline tree immediate_use (dataflow_t df, int num) { #ifdef ENABLE_CHECKING if (num >= num_immediate_uses (df)) abort (); #endif if (num < 2) return df->uses[num]; return VARRAY_TREE (df->immediate_uses, num - 2); } static inline bb_ann_t bb_ann (basic_block bb) { return (bb_ann_t)bb->tree_annotations; } static inline tree phi_nodes (basic_block bb) { if (bb->index < 0) return NULL; return bb_ann (bb)->phi_nodes; } /* Set list of phi nodes of a basic block BB to L. */ static inline void set_phi_nodes (basic_block bb, tree l) { tree phi; bb_ann (bb)->phi_nodes = l; for (phi = l; phi; phi = TREE_CHAIN (phi)) set_bb_for_stmt (phi, bb); } /* Return the phi index number for an edge. */ static inline int phi_arg_from_edge (tree phi, edge e) { int i; #if defined ENABLE_CHECKING if (!phi || TREE_CODE (phi) != PHI_NODE) abort(); #endif for (i = 0; i < PHI_NUM_ARGS (phi); i++) if (PHI_ARG_EDGE (phi, i) == e) return i; return -1; } /* Return the phi argument number for an edge. */ static inline struct phi_arg_d * phi_element_for_edge (tree phi, edge e) { int i; i = phi_arg_from_edge (phi, e); if (i != -1) return &(PHI_ARG_ELT (phi, i)); else return (struct phi_arg_d *)NULL; } /* ----------------------------------------------------------------------- */ static inline bool is_exec_stmt (tree t) { return (t && !IS_EMPTY_STMT (t) && t != error_mark_node); } /* Return true if this stmt can be the target of a control transfer stmt such as a goto. */ static inline bool is_label_stmt (tree t) { if (t) switch (TREE_CODE (t)) { case LABEL_DECL: case LABEL_EXPR: case CASE_LABEL_EXPR: return true; default: return false; } return false; } static inline bool may_propagate_copy (tree dest, tree orig) { /* FIXME. GIMPLE is allowing pointer assignments and comparisons of pointers that have different alias sets. This means that these pointers will have different memory tags associated to them. If we allow copy propagation in these cases, statements de-referencing the new pointer will now have a reference to a different memory tag with potentially incorrect SSA information. This was showing up in libjava/java/util/zip/ZipFile.java with code like: struct java.io.BufferedInputStream *T.660; struct java.io.BufferedInputStream *T.647; struct java.io.InputStream *is; struct java.io.InputStream *is.662; [ ... ] T.660 = T.647; is = T.660; <-- This ought to be type-casted is.662 = is; Also, f/name.c exposed a similar problem with a COND_EXPR predicate that was causing DOM to generate and equivalence with two pointers of alias-incompatible types: struct _ffename_space *n; struct _ffename *ns; [ ... ] if (n == ns) goto lab; ... lab: return n; I think that GIMPLE should emit the appropriate type-casts. For the time being, blocking copy-propagation in these cases is the safe thing to do. */ if (TREE_CODE (dest) == SSA_NAME && TREE_CODE (orig) == SSA_NAME && POINTER_TYPE_P (TREE_TYPE (dest)) && POINTER_TYPE_P (TREE_TYPE (orig))) { tree mt_dest = var_ann (SSA_NAME_VAR (dest))->type_mem_tag; tree mt_orig = var_ann (SSA_NAME_VAR (orig))->type_mem_tag; if (mt_dest && mt_orig && mt_dest != mt_orig) return false; } /* If the destination is a SSA_NAME for a virtual operand, then we have some special cases to handle. */ if (TREE_CODE (dest) == SSA_NAME && !is_gimple_reg (dest)) { /* If both operands are SSA_NAMEs referring to virtual operands, then we can always propagate. */ if (TREE_CODE (orig) == SSA_NAME) { if (!is_gimple_reg (orig)) return true; #ifdef ENABLE_CHECKING /* If we have one real and one virtual operand, then something has gone terribly wrong. */ if (is_gimple_reg (orig)) abort (); #endif } /* We have a "copy" from something like a constant into a virtual operand. Reject these. */ return false; } return (!SSA_NAME_OCCURS_IN_ABNORMAL_PHI (dest) && (TREE_CODE (orig) != SSA_NAME || !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (orig)) && !DECL_HARD_REGISTER (SSA_NAME_VAR (dest))); } static inline void set_default_def (tree var, tree def) { var_ann_t ann = var_ann (var); if (ann == NULL) ann = create_var_ann (var); ann->default_def = def; } static inline tree default_def (tree var) { var_ann_t ann = var_ann (var); return ann ? ann->default_def : NULL_TREE; } /* PHI nodes should contain only ssa_names and invariants. A test for ssa_name is definitely simpler; don't let invalid contents slip in in the meantime. */ static inline bool phi_ssa_name_p (tree t) { if (TREE_CODE (t) == SSA_NAME) return true; #ifdef ENABLE_CHECKING if (!is_gimple_min_invariant (t)) abort (); #endif return false; } /* ----------------------------------------------------------------------- */ static inline block_stmt_iterator bsi_start (basic_block bb) { block_stmt_iterator bsi; if (bb->stmt_list) bsi.tsi = tsi_start (bb->stmt_list); else { #ifdef ENABLE_CHECKING if (bb->index >= 0) abort (); #endif bsi.tsi.ptr = NULL; bsi.tsi.container = NULL; } bsi.bb = bb; return bsi; } static inline block_stmt_iterator bsi_after_labels (basic_block bb) { block_stmt_iterator bsi; tree_stmt_iterator next; bsi.bb = bb; if (!bb->stmt_list) { #ifdef ENABLE_CHECKING if (bb->index >= 0) abort (); #endif bsi.tsi.ptr = NULL; bsi.tsi.container = NULL; return bsi; } bsi.tsi = tsi_start (bb->stmt_list); if (tsi_end_p (bsi.tsi)) return bsi; /* Ensure that there are some labels. The rationale is that we want to insert after the bsi that is returned, and these insertions should be placed at the start of the basic block. This would not work if the first statement was not label; rather fail here than enable the user proceed in wrong way. */ if (TREE_CODE (tsi_stmt (bsi.tsi)) != LABEL_EXPR) abort (); next = bsi.tsi; tsi_next (&next); while (!tsi_end_p (next) && TREE_CODE (tsi_stmt (next)) == LABEL_EXPR) { bsi.tsi = next; tsi_next (&next); } return bsi; } static inline block_stmt_iterator bsi_last (basic_block bb) { block_stmt_iterator bsi; if (bb->stmt_list) bsi.tsi = tsi_last (bb->stmt_list); else { #ifdef ENABLE_CHECKING if (bb->index >= 0) abort (); #endif bsi.tsi.ptr = NULL; bsi.tsi.container = NULL; } bsi.bb = bb; return bsi; } static inline bool bsi_end_p (block_stmt_iterator i) { return tsi_end_p (i.tsi); } static inline void bsi_next (block_stmt_iterator *i) { tsi_next (&i->tsi); } static inline void bsi_prev (block_stmt_iterator *i) { tsi_prev (&i->tsi); } static inline tree bsi_stmt (block_stmt_iterator i) { return tsi_stmt (i.tsi); } static inline tree * bsi_stmt_ptr (block_stmt_iterator i) { return tsi_stmt_ptr (i.tsi); } /* Returns the loop of the statement STMT. */ static inline struct loop * loop_of_stmt (tree stmt) { basic_block bb = bb_for_stmt (stmt); if (!bb) return NULL; return bb->loop_father; } static inline bool may_be_aliased (tree var) { return (TREE_ADDRESSABLE (var) || decl_function_context (var) != current_function_decl); } static inline bool is_call_clobbered (tree var) { return needs_to_live_in_memory (var) || bitmap_bit_p (call_clobbered_vars, var_ann (var)->uid); } static inline void mark_call_clobbered (tree var) { var_ann_t ann = var_ann (var); /* Call-clobbered variables need to live in memory. */ DECL_NEEDS_TO_LIVE_IN_MEMORY_INTERNAL (var) = 1; bitmap_set_bit (call_clobbered_vars, ann->uid); } static inline void mark_non_addressable (tree var) { bitmap_clear_bit (call_clobbered_vars, var_ann (var)->uid); DECL_NEEDS_TO_LIVE_IN_MEMORY_INTERNAL (var) = 0; TREE_ADDRESSABLE (var) = 0; } #endif /* _TREE_FLOW_INLINE_H */