/* Fold GENERIC expressions. Copyright (C) 2003 Free Software Foundation, Inc. Contributed by Sebastian Pop This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "errors.h" #include "ggc.h" #include "tree.h" #include "tree-fold-const.h" /* Least common multiple. */ tree tree_fold_lcm (tree a, tree b) { tree pgcd; #if defined ENABLE_CHECKING if (TREE_CODE (a) != INTEGER_CST || TREE_CODE (b) != INTEGER_CST) abort (); #endif if (integer_onep (a)) return b; if (integer_onep (b)) return a; if (integer_zerop (a) || integer_zerop (b)) return integer_zero_node; pgcd = tree_fold_gcd (a, b); if (integer_onep (pgcd)) return tree_fold_multiply (integer_type_node, a, b); else return tree_fold_multiply (integer_type_node, pgcd, tree_fold_lcm (tree_fold_exact_div (integer_type_node, a, pgcd), tree_fold_exact_div (integer_type_node, b, pgcd))); } /* Greatest common divisor. */ tree tree_fold_gcd (tree a, tree b) { tree a_mod_b; tree type = TREE_TYPE (a); #if defined ENABLE_CHECKING if (TREE_CODE (a) != INTEGER_CST || TREE_CODE (b) != INTEGER_CST) abort (); #endif if (integer_zerop (a)) return b; if (integer_zerop (b)) return a; if (tree_int_cst_sgn (a) == -1) a = tree_fold_multiply (type, a, convert (type, integer_minus_one_node)); if (tree_int_cst_sgn (b) == -1) b = tree_fold_multiply (type, b, convert (type, integer_minus_one_node)); while (1) { a_mod_b = fold (build (CEIL_MOD_EXPR, type, a, b)); if (!TREE_INT_CST_LOW (a_mod_b) && !TREE_INT_CST_HIGH (a_mod_b)) return b; a = b; b = a_mod_b; } } /* Bezout: Let a1 and a2 be two integers; there exist two integers u11 and u12 such that, | u11 * a1 + u12 * a2 = gcd (a1, a2). This function computes the greatest common divisor using the Blankinship algorithm. The gcd is returned, and the coefficients of the unimodular matrix U are (u11, u12, u21, u22) such that, | U.A = S | (u11 u12) (a1) = (gcd) | (u21 u22) (a2) (0) FIXME: Use lambda_..._hermite for implementing this function. */ tree tree_fold_bezout (tree a1, tree a2, tree *u11, tree *u12, tree *u21, tree *u22) { tree s1, s2; /* Initialize S with the coefficients of A. */ s1 = a1; s2 = a2; /* Initialize the U matrix */ *u11 = integer_one_node; *u12 = integer_zero_node; *u21 = integer_zero_node; *u22 = integer_one_node; if (integer_zerop (a1) || integer_zerop (a2)) return integer_zero_node; while (!integer_zerop (s2)) { int sign; tree z, zu21, zu22, zs2; sign = tree_int_cst_sgn (s1) * tree_int_cst_sgn (s2); z = tree_fold_floor_div (integer_type_node, tree_fold_abs (integer_type_node, s1), tree_fold_abs (integer_type_node, s2)); zu21 = tree_fold_multiply (integer_type_node, z, *u21); zu22 = tree_fold_multiply (integer_type_node, z, *u22); zs2 = tree_fold_multiply (integer_type_node, z, s2); /* row1 -= z * row2. */ if (sign < 0) { *u11 = tree_fold_plus (integer_type_node, *u11, zu21); *u12 = tree_fold_plus (integer_type_node, *u12, zu22); s1 = tree_fold_plus (integer_type_node, s1, zs2); } else if (sign > 0) { *u11 = tree_fold_minus (integer_type_node, *u11, zu21); *u12 = tree_fold_minus (integer_type_node, *u12, zu22); s1 = tree_fold_minus (integer_type_node, s1, zs2); } else /* Should not happen. */ abort (); /* Interchange row1 and row2. */ { tree flip; flip = *u11; *u11 = *u21; *u21 = flip; flip = *u12; *u12 = *u22; *u22 = flip; flip = s1; s1 = s2; s2 = flip; } } if (tree_int_cst_sgn (s1) < 0) { *u11 = tree_fold_multiply (integer_type_node, *u11, integer_minus_one_node); *u12 = tree_fold_multiply (integer_type_node, *u12, integer_minus_one_node); s1 = tree_fold_multiply (integer_type_node, s1, integer_minus_one_node); } return s1; } /* The factorial. */ tree tree_fold_factorial (tree f) { if (tree_int_cst_sgn (f) <= 0) return integer_one_node; else return tree_fold_multiply (integer_type_node, f, tree_fold_factorial (tree_fold_minus (integer_type_node, f, integer_one_node))); }