// Algorithm implementation -*- C++ -*- // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007 // Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, // USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. /* * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1996 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. */ /** @file stl_algo.h * This is an internal header file, included by other library headers. * You should not attempt to use it directly. */ #ifndef _ALGO_H #define _ALGO_H 1 #include #include // for _Temporary_buffer #include // for rand #include #include _GLIBCXX_BEGIN_NAMESPACE(std) template requires HasStdMove<_InIter::reference> && OutputIterator<_OutIter, HasStdMove<_InIter::reference>::result_type> _OutIter move(_InIter __first, _InIter __last, _OutIter __result) { for (; __first != __last; ++__first, ++__result) *__result = std_move(*__first); return __result; } template requires HasStdMove<_InIter::reference> && OutputIterator<_OutIter, HasStdMove<_InIter::reference>::result_type> _OutIter move_backward(_InIter __first, _InIter __last, _OutIter __result) { while (__first != __last) *--__result = std_move(*--__last); return __result; } /** * @brief Find the median of three values. * @param a A value. * @param b A value. * @param c A value. * @return One of @p a, @p b or @p c. * * If @c {l,m,n} is some convolution of @p {a,b,c} such that @c l<=m<=n * then the value returned will be @c m. * This is an SGI extension. * @ingroup SGIextensions */ template<_GLIBCXX_REQ_PARM(LessThanComparable, _Tp)> inline const _Tp& __median(const _Tp& __a, const _Tp& __b, const _Tp& __c) { if (__a < __b) if (__b < __c) return __b; else if (__a < __c) return __c; else return __a; else if (__a < __c) return __a; else if (__b < __c) return __c; else return __b; } /** * @brief Find the median of three values using a predicate for comparison. * @param a A value. * @param b A value. * @param c A value. * @param comp A binary predicate. * @return One of @p a, @p b or @p c. * * If @c {l,m,n} is some convolution of @p {a,b,c} such that @p comp(l,m) * and @p comp(m,n) are both true then the value returned will be @c m. * This is an SGI extension. * @ingroup SGIextensions */ template)> inline const _Tp& __median(const _Tp& __a, const _Tp& __b, const _Tp& __c, _Compare __comp) { if (__comp(__a, __b)) if (__comp(__b, __c)) return __b; else if (__comp(__a, __c)) return __c; else return __a; else if (__comp(__a, __c)) return __a; else if (__comp(__b, __c)) return __c; else return __b; } /** * @brief Apply a function to every element of a sequence. * @param first An input iterator. * @param last An input iterator. * @param f A unary function object. * @return @p f. * * Applies the function object @p f to each element in the range * @p [first,last). @p f must not modify the order of the sequence. * If @p f has a return value it is ignored. */ template _Function> requires CopyConstructible<_Function> _Function for_each(_Iter __first, _Iter __last, _Function __f) { __glibcxx_requires_valid_range(__first, __last); for ( ; __first != __last; ++__first) __f(*__first); return __f; } /** * @brief Find the first occurrence of a value in a sequence. * @param first An input iterator. * @param last An input iterator. * @param val The value to find. * @return The first iterator @c i in the range @p [first,last) * such that @c *i == @p val, or @p last if no such iterator exists. */ template requires HasEqualTo<_Iter::value_type, _Tp> inline _Iter find(_Iter __first, _Iter __last, const _Tp& __val) { while (__first != __last && !(*__first == __val)) ++__first; return __first; } /** * @brief Find the first element in a sequence for which a predicate is true. * @param first An input iterator. * @param last An input iterator. * @param pred A predicate. * @return The first iterator @c i in the range @p [first,last) * such that @p pred(*i) is true, or @p last if no such iterator exists. */ template _Pred> requires CopyConstructible<_Pred> inline _Iter find_if(_Iter __first, _Iter __last, _Pred __pred) { while (__first != __last && !__pred(*__first)) ++__first; return __first; } /** * @brief Find the first occurrence of a value in a sequence. * * This version of the algorithm is optimized for random access * iterators. * * @param first An input iterator. * @param last An input iterator. * @param val The value to find. * @return The first iterator @c i in the range @p [first,last) * such that @c *i == @p val, or @p last if no such iterator exists. */ template requires HasEqualTo<_Iter::value_type, _Tp> _Iter find(_Iter __first, _Iter __last, const _Tp& __val) { _Iter::difference_type __trip_count = (__last - __first) >> 2; for ( ; __trip_count > 0 ; --__trip_count) { if (*__first == __val) return __first; ++__first; if (*__first == __val) return __first; ++__first; if (*__first == __val) return __first; ++__first; if (*__first == __val) return __first; ++__first; } switch (__last - __first) { case 3: if (*__first == __val) return __first; ++__first; case 2: if (*__first == __val) return __first; ++__first; case 1: if (*__first == __val) return __first; ++__first; case 0: default: return __last; } } /** * @brief Find the first element in a sequence for which a predicate is true. * * This version of the algorithm is optimized for random access * iterators. * * @param first An input iterator. * @param last An input iterator. * @param pred A predicate. * @return The first iterator @c i in the range @p [first,last) * such that @p pred(*i) is true, or @p last if no such iterator exists. */ template _Pred> requires CopyConstructible<_Pred> _Iter find_if(_Iter __first, _Iter __last, _Pred __pred) { _Iter::difference_type __trip_count = (__last - __first) >> 2; for ( ; __trip_count > 0 ; --__trip_count) { if (__pred(*__first)) return __first; ++__first; if (__pred(*__first)) return __first; ++__first; if (__pred(*__first)) return __first; ++__first; if (__pred(*__first)) return __first; ++__first; } switch (__last - __first) { case 3: if (__pred(*__first)) return __first; ++__first; case 2: if (__pred(*__first)) return __first; ++__first; case 1: if (__pred(*__first)) return __first; ++__first; case 0: default: return __last; } } /** * @brief Find two adjacent values in a sequence that are equal. * @param first A forward iterator. * @param last A forward iterator. * @return The first iterator @c i such that @c i and @c i+1 are both * valid iterators in @p [first,last) and such that @c *i == @c *(i+1), * or @p last if no such iterator exists. */ template requires EqualityComparable<_Iter::value_type> _Iter adjacent_find(_Iter __first, _Iter __last) { __glibcxx_requires_valid_range(__first, __last); if (__first == __last) return __last; _Iter __next = __first; while(++__next != __last) { if (*__first == *__next) return __first; __first = __next; } return __last; } /** * @brief Find two adjacent values in a sequence using a predicate. * @param first A forward iterator. * @param last A forward iterator. * @param binary_pred A binary predicate. * @return The first iterator @c i such that @c i and @c i+1 are both * valid iterators in @p [first,last) and such that * @p binary_pred(*i,*(i+1)) is true, or @p last if no such iterator * exists. */ template _Pred> requires CopyConstructible<_Pred> _Iter adjacent_find(_Iter __first, _Iter __last, _Pred __binary_pred) { __glibcxx_requires_valid_range(__first, __last); if (__first == __last) return __last; _Iter __next = __first; while(++__next != __last) { if (__binary_pred(*__first, *__next)) return __first; __first = __next; } return __last; } /** * @brief Count the number of copies of a value in a sequence. * @param first An input iterator. * @param last An input iterator. * @param value The value to be counted. * @return The number of iterators @c i in the range @p [first,last) * for which @c *i == @p value */ template requires HasEqualTo<_Iter::value_type, _Tp> _Iter::difference_type count(_Iter __first, _Iter __last, const _Tp& __value) { __glibcxx_requires_valid_range(__first, __last); _Iter::difference_type __n = 0; for ( ; __first != __last; ++__first) if (*__first == __value) ++__n; return __n; } /** * @brief Count the elements of a sequence for which a predicate is true. * @param first An input iterator. * @param last An input iterator. * @param pred A predicate. * @return The number of iterators @c i in the range @p [first,last) * for which @p pred(*i) is true. */ template _Pred> _Iter::difference_type count_if(_Iter __first, _Iter __last, _Pred __pred) { __glibcxx_requires_valid_range(__first, __last); _Iter::difference_type __n = 0; for ( ; __first != __last; ++__first) if (__pred(*__first)) ++__n; return __n; } /** * @brief Search a sequence for a matching sub-sequence. * @param first1 A forward iterator. * @param last1 A forward iterator. * @param first2 A forward iterator. * @param last2 A forward iterator. * @return The first iterator @c i in the range * @p [first1,last1-(last2-first2)) such that @c *(i+N) == @p *(first2+N) * for each @c N in the range @p [0,last2-first2), or @p last1 if no * such iterator exists. * * Searches the range @p [first1,last1) for a sub-sequence that compares * equal value-by-value with the sequence given by @p [first2,last2) and * returns an iterator to the first element of the sub-sequence, or * @p last1 if the sub-sequence is not found. * * Because the sub-sequence must lie completely within the range * @p [first1,last1) it must start at a position less than * @p last1-(last2-first2) where @p last2-first2 is the length of the * sub-sequence. * This means that the returned iterator @c i will be in the range * @p [first1,last1-(last2-first2)) */ template requires HasEqualTo<_Iter1::value_type, _Iter2::value_type> _Iter1 search(_Iter1 __first1, _Iter1 __last1, _Iter2 __first2, _Iter2 __last2) { __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2); // Test for empty ranges if (__first1 == __last1 || __first2 == __last2) return __first1; // Test for a pattern of length 1. _Iter2 __tmp(__first2); ++__tmp; if (__tmp == __last2) return std::find(__first1, __last1, _Iter2::value_type(*__first2)); // General case. _Iter2 __p1, __p; __p1 = __first2; ++__p1; _Iter1 __current = __first1; while (__first1 != __last1) { __first1 = std::find(__first1, __last1, _Iter2::value_type(*__first2)); if (__first1 == __last1) return __last1; __p = __p1; __current = __first1; if (++__current == __last1) return __last1; while (*__current == *__p) { if (++__p == __last2) return __first1; if (++__current == __last1) return __last1; } ++__first1; } return __first1; } /** * @brief Search a sequence for a matching sub-sequence using a predicate. * @param first1 A forward iterator. * @param last1 A forward iterator. * @param first2 A forward iterator. * @param last2 A forward iterator. * @param predicate A binary predicate. * @return The first iterator @c i in the range * @p [first1,last1-(last2-first2)) such that * @p predicate(*(i+N),*(first2+N)) is true for each @c N in the range * @p [0,last2-first2), or @p last1 if no such iterator exists. * * Searches the range @p [first1,last1) for a sub-sequence that compares * equal value-by-value with the sequence given by @p [first2,last2), * using @p predicate to determine equality, and returns an iterator * to the first element of the sub-sequence, or @p last1 if no such * iterator exists. * * @see search(_ForwardIter1, _ForwardIter1, _ForwardIter2, _ForwardIter2) */ template _Pred> requires CopyConstructible<_Pred> _Iter1 search(_Iter1 __first1, _Iter1 __last1, _Iter2 __first2, _Iter2 __last2, _Pred __predicate) { __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2); // Test for empty ranges if (__first1 == __last1 || __first2 == __last2) return __first1; // Test for a pattern of length 1. _Iter2 __tmp(__first2); ++__tmp; if (__tmp == __last2) { while (__first1 != __last1 && !__predicate(*__first1, *__first2)) ++__first1; return __first1; } // General case. _Iter2 __p1, __p; __p1 = __first2; ++__p1; _Iter1 __current = __first1; while (__first1 != __last1) { while (__first1 != __last1) { if (__predicate(*__first1, *__first2)) break; ++__first1; } while (__first1 != __last1 && !__predicate(*__first1, *__first2)) ++__first1; if (__first1 == __last1) return __last1; __p = __p1; __current = __first1; if (++__current == __last1) return __last1; while (__predicate(*__current, *__p)) { if (++__p == __last2) return __first1; if (++__current == __last1) return __last1; } ++__first1; } return __first1; } /** * @brief Search a sequence for a number of consecutive values. * @param first A forward iterator. * @param last A forward iterator. * @param count The number of consecutive values. * @param val The value to find. * @return The first iterator @c i in the range @p [first,last-count) * such that @c *(i+N) == @p val for each @c N in the range @p [0,count), * or @p last if no such iterator exists. * * Searches the range @p [first,last) for @p count consecutive elements * equal to @p val. */ template requires HasEqualTo<_Iter::value_type, _Tp> _Iter search_n(_Iter __first, _Iter __last, _Iter::difference_type __count, const _Tp& __val) { if (__count <= 0) return __first; if (__count == 1) return std::find(__first, __last, __val); __first = std::find(__first, __last, __val); while (__first != __last) { _Iter::difference_type __n = __count; _Iter __i = __first; ++__i; while (__i != __last && __n != 1 && *__i == __val) { ++__i; --__n; } if (__n == 1) return __first; if (__i == __last) return __last; __first = std::find(++__i, __last, __val); } return __last; } /** * @brief Search a sequence for a number of consecutive values. * @param first A forward iterator. * @param last A forward iterator. * @param count The number of consecutive values. * @param val The value to find. * @return The first iterator @c i in the range @p [first,last-count) * such that @c *(i+N) == @p val for each @c N in the range @p [0,count), * or @p last if no such iterator exists. * * Searches the range @p [first,last) for @p count consecutive elements * equal to @p val. */ template requires HasEqualTo<_Iter::value_type, _Tp> _Iter search_n(_Iter __first, _Iter __last, _Iter::difference_type __count, const _Tp& __val) { if (__count <= 0) return __first; if (__count == 1) return std::find(__first, __last, __val); typedef _Iter::difference_type _DistanceType; _DistanceType __tailSize = __last - __first; const _DistanceType __pattSize = __count; if (__tailSize < __pattSize) return __last; const _DistanceType __skipOffset = __pattSize - 1; _Iter __lookAhead = __first + __skipOffset; __tailSize -= __pattSize; while (1) // the main loop... { // __lookAhead here is always pointing to the last element of next // possible match. while (!(*__lookAhead == __val)) // the skip loop... { if (__tailSize < __pattSize) return __last; // Failure __lookAhead += __pattSize; __tailSize -= __pattSize; } _DistanceType __remainder = __skipOffset; for (_Iter __backTrack = __lookAhead - 1; *__backTrack == __val; --__backTrack) { if (--__remainder == 0) return (__lookAhead - __skipOffset); // Success } if (__remainder > __tailSize) return __last; // Failure __lookAhead += __remainder; __tailSize -= __remainder; } } /** * @brief Search a sequence for a number of consecutive values using a * predicate. * @param first A forward iterator. * @param last A forward iterator. * @param count The number of consecutive values. * @param val The value to find. * @param binary_pred A binary predicate. * @return The first iterator @c i in the range @p [first,last-count) * such that @p binary_pred(*(i+N),val) is true for each @c N in the * range @p [0,count), or @p last if no such iterator exists. * * Searches the range @p [first,last) for @p count consecutive elements * for which the predicate returns true. */ template _Pred> requires CopyConstructible<_Pred> _Iter search_n(_Iter __first, _Iter __last, _Iter::difference_type __count, const _Tp& __val, _Pred __binary_pred) { if (__count <= 0) return __first; if (__count == 1) { while (__first != __last && !__binary_pred(*__first, __val)) ++__first; return __first; } while (__first != __last && !__binary_pred(*__first, __val)) ++__first; while (__first != __last) { _Iter::difference_type __n = __count; _Iter __i = __first; ++__i; while (__i != __last && __n != 1 && __binary_pred(*__i, __val)) { ++__i; --__n; } if (__n == 1) return __first; if (__i == __last) return __last; __first = ++__i; while (__first != __last && !__binary_pred(*__first, __val)) ++__first; } return __last; } /** * @brief Search a sequence for a number of consecutive values using a * predicate. * @param first A forward iterator. * @param last A forward iterator. * @param count The number of consecutive values. * @param val The value to find. * @param binary_pred A binary predicate. * @return The first iterator @c i in the range @p [first,last-count) * such that @p binary_pred(*(i+N),val) is true for each @c N in the * range @p [0,count), or @p last if no such iterator exists. * * Searches the range @p [first,last) for @p count consecutive elements * for which the predicate returns true. */ template _Pred> requires CopyConstructible<_Pred> _Iter search_n(_Iter __first, _Iter __last, _Iter::difference_type __count, const _Tp& __val, _Pred __binary_pred) { if (__count <= 0) return __first; if (__count == 1) { while (__first != __last && !__binary_pred(*__first, __val)) ++__first; return __first; } typedef _Iter::difference_type _DistanceType; _DistanceType __tailSize = __last - __first; const _DistanceType __pattSize = __count; if (__tailSize < __pattSize) return __last; const _DistanceType __skipOffset = __pattSize - 1; _Iter __lookAhead = __first + __skipOffset; __tailSize -= __pattSize; while (1) // the main loop... { // __lookAhead here is always pointing to the last element of next // possible match. while (!__binary_pred(*__lookAhead, __val)) // the skip loop... { if (__tailSize < __pattSize) return __last; // Failure __lookAhead += __pattSize; __tailSize -= __pattSize; } _DistanceType __remainder = __skipOffset; for (_Iter __backTrack = __lookAhead - 1; __binary_pred(*__backTrack, __val); --__backTrack) { if (--__remainder == 0) return (__lookAhead - __skipOffset); // Success } if (__remainder > __tailSize) return __last; // Failure __lookAhead += __remainder; __tailSize -= __remainder; } } /** * @brief Perform an operation on a sequence. * @param first An input iterator. * @param last An input iterator. * @param result An output iterator. * @param unary_op A unary operator. * @return An output iterator equal to @p result+(last-first). * * Applies the operator to each element in the input range and assigns * the results to successive elements of the output sequence. * Evaluates @p *(result+N)=unary_op(*(first+N)) for each @c N in the * range @p [0,last-first). * * @p unary_op must not alter its argument. */ template _UnOp> requires OutputIterator<_OutIter, _UnOp::result_type> && CopyConstructible<_UnOp> _OutIter transform(_InIter __first, _InIter __last, _OutIter __result, _UnOp __unary_op) { __glibcxx_requires_valid_range(__first, __last); for ( ; __first != __last; ++__first, ++__result) *__result = __unary_op(*__first); return __result; } /** * @brief Perform an operation on corresponding elements of two sequences. * @param first1 An input iterator. * @param last1 An input iterator. * @param first2 An input iterator. * @param result An output iterator. * @param binary_op A binary operator. * @return An output iterator equal to @p result+(last-first). * * Applies the operator to the corresponding elements in the two * input ranges and assigns the results to successive elements of the * output sequence. * Evaluates @p *(result+N)=binary_op(*(first1+N),*(first2+N)) for each * @c N in the range @p [0,last1-first1). * * @p binary_op must not alter either of its arguments. */ template _BinOp> requires OutputIterator<_OutIter, _BinOp::result_type> && CopyConstructible<_BinOp> _OutIter transform(_InIter1 __first1, _InIter1 __last1, _InIter2 __first2, _OutIter __result, _BinOp __binary_op) { __glibcxx_requires_valid_range(__first1, __last1); for ( ; __first1 != __last1; ++__first1, ++__first2, ++__result) *__result = __binary_op(*__first1, *__first2); return __result; } /** * @brief Replace each occurrence of one value in a sequence with another * value. * @param first A forward iterator. * @param last A forward iterator. * @param old_value The value to be replaced. * @param new_value The replacement value. * @return replace() returns no value. * * For each iterator @c i in the range @p [first,last) if @c *i == * @p old_value then the assignment @c *i = @p new_value is performed. */ template requires HasEqualTo<_Iter::value_type, _Tp> && OutputIterator<_Iter, const _Tp&> void replace(_Iter __first, _Iter __last, const _Tp& __old_value, const _Tp& __new_value) { __glibcxx_requires_valid_range(__first, __last); for ( ; __first != __last; ++__first) if (*__first == __old_value) *__first = __new_value; } /** * @brief Replace each value in a sequence for which a predicate returns * true with another value. * @param first A forward iterator. * @param last A forward iterator. * @param pred A predicate. * @param new_value The replacement value. * @return replace_if() returns no value. * * For each iterator @c i in the range @p [first,last) if @p pred(*i) * is true then the assignment @c *i = @p new_value is performed. */ template _Pred, typename _Tp> requires OutputIterator<_Iter, const _Tp&> && CopyConstructible<_Pred> void replace_if(_Iter __first, _Iter __last, _Pred __pred, const _Tp& __new_value) { __glibcxx_requires_valid_range(__first, __last); for ( ; __first != __last; ++__first) if (__pred(*__first)) *__first = __new_value; } /** * @brief Copy a sequence, replacing each element of one value with another * value. * @param first An input iterator. * @param last An input iterator. * @param result An output iterator. * @param old_value The value to be replaced. * @param new_value The replacement value. * @return The end of the output sequence, @p result+(last-first). * * Copies each element in the input range @p [first,last) to the * output range @p [result,result+(last-first)) replacing elements * equal to @p old_value with @p new_value. */ template requires OutputIterator<_OutIter, _InIter::reference> && OutputIterator<_OutIter, const _Tp&> && HasEqualTo<_InIter::value_type, _Tp> _OutIter replace_copy(_InIter __first, _InIter __last, _OutIter __result, const _Tp& __old_value, const _Tp& __new_value) { __glibcxx_requires_valid_range(__first, __last); for ( ; __first != __last; ++__first, ++__result) if (*__first == __old_value) *__result = __new_value; else *__result = *__first; return __result; } /** * @brief Copy a sequence, replacing each value for which a predicate * returns true with another value. * @param first An input iterator. * @param last An input iterator. * @param result An output iterator. * @param pred A predicate. * @param new_value The replacement value. * @return The end of the output sequence, @p result+(last-first). * * Copies each element in the range @p [first,last) to the range * @p [result,result+(last-first)) replacing elements for which * @p pred returns true with @p new_value. */ template _Pred, typename _Tp> requires OutputIterator<_OutIter, _InIter::reference> && OutputIterator<_OutIter, const _Tp&> _OutIter replace_copy_if(_InIter __first, _InIter __last, _OutIter __result, _Pred __pred, const _Tp& __new_value) { __glibcxx_requires_valid_range(__first, __last); for ( ; __first != __last; ++__first, ++__result) if (__pred(*__first)) *__result = __new_value; else *__result = *__first; return __result; } /** * @brief Assign the result of a function object to each value in a * sequence. * @param first A forward iterator. * @param last A forward iterator. * @param gen A function object taking no arguments. * @return generate() returns no value. * * Performs the assignment @c *i = @p gen() for each @c i in the range * @p [first,last). */ template requires OutputIterator<_Iter, _Generator::result_type> && CopyConstructible<_Generator> void generate(_Iter __first, _Iter __last, _Generator __gen) { __glibcxx_requires_valid_range(__first, __last); for ( ; __first != __last; ++__first) *__first = __gen(); } /** * @brief Assign the result of a function object to each value in a * sequence. * @param first A forward iterator. * @param n The length of the sequence. * @param gen A function object taking no arguments. * @return The end of the sequence, @p first+n * * Performs the assignment @c *i = @p gen() for each @c i in the range * @p [first,first+n). */ template requires OutputIterator<_Iter, _Generator::result_type> && CopyConstructible<_Generator> _Iter generate_n(_Iter __first, _Size __n, _Generator __gen) { for ( ; __n > 0; --__n, ++__first) *__first = __gen(); return __first; } /** * @brief Copy a sequence, removing elements of a given value. * @param first An input iterator. * @param last An input iterator. * @param result An output iterator. * @param value The value to be removed. * @return An iterator designating the end of the resulting sequence. * * Copies each element in the range @p [first,last) not equal to @p value * to the range beginning at @p result. * remove_copy() is stable, so the relative order of elements that are * copied is unchanged. */ template _OutIter, typename _Tp> requires HasEqualTo<_InIter::value_type, _Tp> _OutIter remove_copy(_InIter __first, _InIter __last, _OutIter __result, const _Tp& __value) { __glibcxx_requires_valid_range(__first, __last); for ( ; __first != __last; ++__first) if (!(*__first == __value)) { *__result = *__first; ++__result; } return __result; } /** * @brief Copy a sequence, removing elements for which a predicate is true. * @param first An input iterator. * @param last An input iterator. * @param result An output iterator. * @param pred A predicate. * @return An iterator designating the end of the resulting sequence. * * Copies each element in the range @p [first,last) for which * @p pred returns true to the range beginning at @p result. * * remove_copy_if() is stable, so the relative order of elements that are * copied is unchanged. */ template _OutIter, Predicate _Pred> requires CopyConstructible<_Pred> _OutIter remove_copy_if(_InIter __first, _InIter __last, _OutIter __result, _Pred __pred) { __glibcxx_requires_valid_range(__first, __last); for ( ; __first != __last; ++__first) if (!__pred(*__first)) { *__result = *__first; ++__result; } return __result; } /** * @brief Remove elements from a sequence. * @param first An input iterator. * @param last An input iterator. * @param value The value to be removed. * @return An iterator designating the end of the resulting sequence. * * All elements equal to @p value are removed from the range * @p [first,last). * * remove() is stable, so the relative order of elements that are * not removed is unchanged. * * Elements between the end of the resulting sequence and @p last * are still present, but their value is unspecified. */ template requires OutputIterator<_Iter, _Iter::reference> && HasEqualTo<_Iter::value_type, _Tp> _Iter remove(_Iter __first, _Iter __last, const _Tp& __value) { __glibcxx_requires_valid_range(__first, __last); __first = std::find(__first, __last, __value); _Iter __i = __first; return __first == __last ? __first : std::remove_copy(++__i, __last, __first, __value); } /** * @brief Remove elements from a sequence using a predicate. * @param first A forward iterator. * @param last A forward iterator. * @param pred A predicate. * @return An iterator designating the end of the resulting sequence. * * All elements for which @p pred returns true are removed from the range * @p [first,last). * * remove_if() is stable, so the relative order of elements that are * not removed is unchanged. * * Elements between the end of the resulting sequence and @p last * are still present, but their value is unspecified. */ template _Pred> requires OutputIterator<_Iter, _Iter::reference> && CopyConstructible<_Pred> _Iter remove_if(_Iter __first, _Iter __last, _Pred __pred) { __glibcxx_requires_valid_range(__first, __last); __first = std::find_if(__first, __last, __pred); _Iter __i = __first; return __first == __last ? __first : std::remove_copy_if(++__i, __last, __first, __pred); } /** * @brief Copy a sequence, removing consecutive duplicate values. * @param first An input iterator. * @param last An input iterator. * @param result An output iterator. * @return An iterator designating the end of the resulting sequence. * * Copies each element in the range @p [first,last) to the range * beginning at @p result, except that only the first element is copied * from groups of consecutive elements that compare equal. * unique_copy() is stable, so the relative order of elements that are * copied is unchanged. * * @if maint * _GLIBCXX_RESOLVE_LIB_DEFECTS * DR 241. Does unique_copy() require CopyConstructible and Assignable? * * _GLIBCXX_RESOLVE_LIB_DEFECTS * DR 538. 241 again: Does unique_copy() require CopyConstructible and * Assignable? * @endif */ template requires OutputIterator<_OutIter, _InIter::reference> && EqualityComparable<_InIter::value_type> _OutIter unique_copy(_InIter __first, _InIter __last, _OutIter __result) { if (__first == __last) return __result; _InIter __next = __first; *__result = *__first; while (++__next != __last) if (!(*__first == *__next)) { __first = __next; *++__result = *__first; } return ++__result; } /** * @brief Copy a sequence, removing consecutive duplicate values. * @param first An input iterator. * @param last An input iterator. * @param result An output iterator. * @return An iterator designating the end of the resulting sequence. * * Copies each element in the range @p [first,last) to the range * beginning at @p result, except that only the first element is copied * from groups of consecutive elements that compare equal. * unique_copy() is stable, so the relative order of elements that are * copied is unchanged. * * @if maint * _GLIBCXX_RESOLVE_LIB_DEFECTS * DR 241. Does unique_copy() require CopyConstructible and Assignable? * * _GLIBCXX_RESOLVE_LIB_DEFECTS * DR 538. 241 again: Does unique_copy() require CopyConstructible and * Assignable? * @endif */ template requires OutputIterator<_OutIter, const _InIter::value_type&> && EqualityComparable<_InIter::value_type> && CopyAssignable<_InIter::value_type> && CopyConstructible<_InIter::value_type> && !ForwardIterator<_InIter> && !ForwardIterator<_OutIter> _OutIter unique_copy(_InIter __first, _InIter __last, _OutIter __result) { if (__first == __last) return __result; _InIter::value_type __value = *__first; *__result = __value; while (++__first != __last) if (!(__value == *__first)) { __value = *__first; *++__result = __value; } return ++__result; } /** * @brief Copy a sequence, removing consecutive duplicate values. * @param first An input iterator. * @param last An input iterator. * @param result An output iterator. * @return An iterator designating the end of the resulting sequence. * * Copies each element in the range @p [first,last) to the range * beginning at @p result, except that only the first element is copied * from groups of consecutive elements that compare equal. * unique_copy() is stable, so the relative order of elements that are * copied is unchanged. * * @if maint * _GLIBCXX_RESOLVE_LIB_DEFECTS * DR 241. Does unique_copy() require CopyConstructible and Assignable? * * _GLIBCXX_RESOLVE_LIB_DEFECTS * DR 538. 241 again: Does unique_copy() require CopyConstructible and * Assignable? * @endif */ template requires OutputIterator<_OutIter, _InIter::reference> && HasEqualTo<_OutIter::value_type, _InIter::value_type> && !ForwardIterator<_InIter> _OutIter unique_copy(_InIter __first, _InIter __last, _OutIter __result) { if (__first == __last) return __result; *__result = *__first; while (++__first != __last) if (!(*__result == *__first)) *++__result = *__first; return ++__result; } /** * @brief Copy a sequence, removing consecutive values using a predicate. * @param first An input iterator. * @param last An input iterator. * @param result An output iterator. * @param binary_pred A binary predicate. * @return An iterator designating the end of the resulting sequence. * * Copies each element in the range @p [first,last) to the range * beginning at @p result, except that only the first element is copied * from groups of consecutive elements for which @p binary_pred returns * true. * unique_copy() is stable, so the relative order of elements that are * copied is unchanged. * * @if maint * _GLIBCXX_RESOLVE_LIB_DEFECTS * DR 241. Does unique_copy() require CopyConstructible and Assignable? * @endif */ template _OutIter, BinaryPredicate _BinaryPred> requires CopyConstructible<_BinaryPred> _OutIter unique_copy(_InIter __first, _InIter __last, _OutIter __result, _BinaryPred __binary_pred) { if (__first == __last) return __result; _InIter __next = __first; *__result = *__first; while (++__next != __last) if (!__binary_pred(*__first, *__next)) { __first = __next; *++__result = *__first; } return ++__result; } /** * @brief Copy a sequence, removing consecutive values using a predicate. * @param first An input iterator. * @param last An input iterator. * @param result An output iterator. * @param binary_pred A binary predicate. * @return An iterator designating the end of the resulting sequence. * * Copies each element in the range @p [first,last) to the range * beginning at @p result, except that only the first element is copied * from groups of consecutive elements for which @p binary_pred returns * true. * unique_copy() is stable, so the relative order of elements that are * copied is unchanged. * * @if maint * _GLIBCXX_RESOLVE_LIB_DEFECTS * DR 241. Does unique_copy() require CopyConstructible and Assignable? * @endif */ template _Pred> requires OutputIterator<_OutIter, const _InIter::value_type&> && CopyAssignable<_InIter::value_type> && CopyConstructible<_InIter::value_type> && CopyConstructible<_Pred> && !ForwardIterator<_InIter> && !ForwardIterator<_OutIter> _OutIter unique_copy(_InIter __first, _InIter __last, _OutIter __result, _Pred __binary_pred) { if (__first == __last) return __result; _InIter::value_type __value = *__first; *__result = __value; while (++__first != __last) if (!__binary_pred(__value, *__first)) { __value = *__first; *++__result = __value; } return ++__result; } /** * @brief Copy a sequence, removing consecutive values using a predicate. * @param first An input iterator. * @param last An input iterator. * @param result An output iterator. * @param binary_pred A binary predicate. * @return An iterator designating the end of the resulting sequence. * * Copies each element in the range @p [first,last) to the range * beginning at @p result, except that only the first element is copied * from groups of consecutive elements for which @p binary_pred returns * true. * unique_copy() is stable, so the relative order of elements that are * copied is unchanged. * * @if maint * _GLIBCXX_RESOLVE_LIB_DEFECTS * DR 241. Does unique_copy() require CopyConstructible and Assignable? * @endif */ template _Pred> requires OutputIterator<_OutIter, _InIter::reference> && CopyConstructible<_Pred> && !ForwardIterator<_InIter> _OutIter unique_copy(_InIter __first, _InIter __last, _OutIter __result, _Pred __binary_pred) { if (__first == __last) return __result; *__result = *__first; while (++__first != __last) if (!__binary_pred(*__result, *__first)) *++__result = *__first; return ++__result; } /** * @brief Remove consecutive duplicate values from a sequence. * @param first A forward iterator. * @param last A forward iterator. * @return An iterator designating the end of the resulting sequence. * * Removes all but the first element from each group of consecutive * values that compare equal. * unique() is stable, so the relative order of elements that are * not removed is unchanged. * Elements between the end of the resulting sequence and @p last * are still present, but their value is unspecified. */ template requires OutputIterator<_Iter, _Iter::reference> && EqualityComparable<_Iter::value_type> _Iter unique(_Iter __first, _Iter __last) { __glibcxx_requires_valid_range(__first, __last); // Skip the beginning, if already unique. __first = std::adjacent_find(__first, __last); if (__first == __last) return __last; // Do the real copy work. _Iter __dest = __first; ++__first; while (++__first != __last) if (!(*__dest == *__first)) *++__dest = *__first; return ++__dest; } /** * @brief Remove consecutive values from a sequence using a predicate. * @param first A forward iterator. * @param last A forward iterator. * @param binary_pred A binary predicate. * @return An iterator designating the end of the resulting sequence. * * Removes all but the first element from each group of consecutive * values for which @p binary_pred returns true. * unique() is stable, so the relative order of elements that are * not removed is unchanged. * Elements between the end of the resulting sequence and @p last * are still present, but their value is unspecified. */ template _Pred> requires OutputIterator<_Iter, _Iter::reference> && CopyConstructible<_Pred> _Iter unique(_Iter __first, _Iter __last, _Pred __binary_pred) { __glibcxx_requires_valid_range(__first, __last); // Skip the beginning, if already unique. __first = std::adjacent_find(__first, __last, __binary_pred); if (__first == __last) return __last; // Do the real copy work. _Iter __dest = __first; ++__first; while (++__first != __last) if (!__binary_pred(*__dest, *__first)) *++__dest = *__first; return ++__dest; } /** * @brief Reverse a sequence. * @param first A bidirectional iterator. * @param last A bidirectional iterator. * @return reverse() returns no value. * * Reverses the order of the elements in the range @p [first,last), * so that the first element becomes the last etc. * For every @c i such that @p 0<=i<=(last-first)/2), @p reverse() * swaps @p *(first+i) and @p *(last-(i+1)) */ template requires HasSwap<_Iter::reference, _Iter::reference> void reverse(_Iter __first, _Iter __last) { while (true) if (__first == __last || __first == --__last) return; else { swap(*__first, *__last); ++__first; } } /** * @brief Reverse a sequence. * @param first A bidirectional iterator. * @param last A bidirectional iterator. * @return reverse() returns no value. * * Reverses the order of the elements in the range @p [first,last), * so that the first element becomes the last etc. * For every @c i such that @p 0<=i<=(last-first)/2), @p reverse() * swaps @p *(first+i) and @p *(last-(i+1)) */ template requires HasSwap<_Iter::reference, _Iter::reference> void reverse(_Iter __first, _Iter __last) { if (__first == __last) return; --__last; while (__first < __last) { swap(*__first, *__last); ++__first; --__last; } } /** * @brief Copy a sequence, reversing its elements. * @param first A bidirectional iterator. * @param last A bidirectional iterator. * @param result An output iterator. * @return An iterator designating the end of the resulting sequence. * * Copies the elements in the range @p [first,last) to the range * @p [result,result+(last-first)) such that the order of the * elements is reversed. * For every @c i such that @p 0<=i<=(last-first), @p reverse_copy() * performs the assignment @p *(result+(last-first)-i) = *(first+i). * The ranges @p [first,last) and @p [result,result+(last-first)) * must not overlap. */ template _OutIter> _OutIter reverse_copy(_InIter __first, _InIter __last, _OutIter __result) { __glibcxx_requires_valid_range(__first, __last); while (__first != __last) { --__last; *__result = *__last; ++__result; } return __result; } /** * @if maint * This is a helper function for the rotate algorithm specialized on RAIs. * It returns the greatest common divisor of two integer values. * @endif */ template _EuclideanRingElement __gcd(_EuclideanRingElement __m, _EuclideanRingElement __n) { while (__n != 0) { _EuclideanRingElement __t = __m % __n; __m = __n; __n = __t; } return __m; } /** * @brief Rotate the elements of a sequence. * @param first A forward iterator. * @param middle A forward iterator. * @param last A forward iterator. * @return Nothing. * * Rotates the elements of the range @p [first,last) by @p (middle-first) * positions so that the element at @p middle is moved to @p first, the * element at @p middle+1 is moved to @first+1 and so on for each element * in the range @p [first,last). * * This effectively swaps the ranges @p [first,middle) and * @p [middle,last). * * Performs @p *(first+(n+(last-middle))%(last-first))=*(first+n) for * each @p n in the range @p [0,last-first). */ template requires HasSwap<_Iter::reference, _Iter::reference> void rotate(_Iter __first, _Iter __middle,_Iter __last) { if (__first == __middle || __last == __middle) return; _Iter __first2 = __middle; do { swap(*__first, *__first2); ++__first; ++__first2; if (__first == __middle) __middle = __first2; } while (__first2 != __last); __first2 = __middle; while (__first2 != __last) { swap(*__first, *__first2); ++__first; ++__first2; if (__first == __middle) __middle = __first2; else if (__first2 == __last) __first2 = __middle; } } /** * @brief Rotate the elements of a sequence. * @param first A forward iterator. * @param middle A forward iterator. * @param last A forward iterator. * @return Nothing. * * Rotates the elements of the range @p [first,last) by @p (middle-first) * positions so that the element at @p middle is moved to @p first, the * element at @p middle+1 is moved to @first+1 and so on for each element * in the range @p [first,last). * * This effectively swaps the ranges @p [first,middle) and * @p [middle,last). * * Performs @p *(first+(n+(last-middle))%(last-first))=*(first+n) for * each @p n in the range @p [0,last-first). */ template requires HasSwap<_Iter::reference, _Iter::reference> void rotate(_Iter __first, _Iter __middle, _Iter __last) { if (__first == __middle || __last == __middle) return; std::reverse(__first, __middle); std::reverse(__middle, __last); while (__first != __middle && __middle != __last) { --__last; swap(*__first, *__last); ++__first; } if (__first == __middle) std::reverse(__middle, __last); else std::reverse(__first, __middle); } /** * @brief Rotate the elements of a sequence. * @param first A forward iterator. * @param middle A forward iterator. * @param last A forward iterator. * @return Nothing. * * Rotates the elements of the range @p [first,last) by @p (middle-first) * positions so that the element at @p middle is moved to @p first, the * element at @p middle+1 is moved to @first+1 and so on for each element * in the range @p [first,last). * * This effectively swaps the ranges @p [first,middle) and * @p [middle,last). * * Performs @p *(first+(n+(last-middle))%(last-first))=*(first+n) for * each @p n in the range @p [0,last-first). */ template requires ShuffleIterator<_Iter> void rotate(_Iter __first, _Iter __middle, _Iter __last) { if (__first == __middle || __last == __middle) return; typedef _Iter::difference_type _Distance; typedef _Iter::value_type _ValueType; const _Distance __n = __last - __first; const _Distance __k = __middle - __first; const _Distance __l = __n - __k; if (__k == __l) { std::swap_ranges(__first, __middle, __middle); return; } const _Distance __d = __gcd(__n, __k); for (_Distance __i = 0; __i < __d; __i++) { _ValueType __tmp(std_move(*__first)); _Iter __p = __first; if (__k < __l) { for (_Distance __j = 0; __j < __l / __d; __j++) { if (__p > __first + __l) { *__p = std_move(*(__p - __l)); __p -= __l; } *__p = std_move(*(__p + __k)); __p += __k; } } else { for (_Distance __j = 0; __j < __k / __d - 1; __j ++) { if (__p < __last - __k) { *__p = std_move(*(__p + __k)); __p += __k; } *__p = std_move(* (__p - __l)); __p -= __l; } } *__p = std_move(__tmp); ++__first; } } /** * @brief Copy a sequence, rotating its elements. * @param first A forward iterator. * @param middle A forward iterator. * @param last A forward iterator. * @param result An output iterator. * @return An iterator designating the end of the resulting sequence. * * Copies the elements of the range @p [first,last) to the range * beginning at @result, rotating the copied elements by @p (middle-first) * positions so that the element at @p middle is moved to @p result, the * element at @p middle+1 is moved to @result+1 and so on for each element * in the range @p [first,last). * * Performs @p *(result+(n+(last-middle))%(last-first))=*(first+n) for * each @p n in the range @p [0,last-first). */ template _OutIter> _OutIter rotate_copy(_InIter __first, _InIter __middle, _InIter __last, _OutIter __result) { __glibcxx_requires_valid_range(__first, __middle); __glibcxx_requires_valid_range(__middle, __last); return std::copy(__first, __middle, std::copy(__middle, __last, __result)); } /** * @brief Randomly shuffle the elements of a sequence. * @param first A forward iterator. * @param last A forward iterator. * @return Nothing. * * Reorder the elements in the range @p [first,last) using a random * distribution, so that every possible ordering of the sequence is * equally likely. */ template requires HasSwap<_Iter::reference, _Iter::reference> inline void random_shuffle(_Iter __first, _Iter __last) { __glibcxx_requires_valid_range(__first, __last); if (__first != __last) for (_Iter __i = __first + 1; __i != __last; ++__i) { _Iter __other(__first + (std::rand() % (__i - __first) + 1)); swap(*__i, *__other); } } /** * @brief Shuffle the elements of a sequence using a random number * generator. * @param first A forward iterator. * @param last A forward iterator. * @param rand The RNG functor or function. * @return Nothing. * * Reorders the elements in the range @p [first,last) using @p rand to * provide a random distribution. Calling @p rand(N) for a positive * integer @p N should return a randomly chosen integer from the * range [0,N). */ template _Rand> requires Convertible<_Rand::result_type, _Iter::difference_type> && HasSwap<_Iter::reference, _Iter::reference> && CopyConstructible<_Rand> void random_shuffle(_Iter __first, _Iter __last, _Rand& __rand) { __glibcxx_requires_valid_range(__first, __last); if (__first == __last) return; for (_Iter __i = __first + 1; __i != __last; ++__i) { _Iter __other(__first + __rand((__i - __first) + 1)); swap(*__i, *__other); } } /** * @brief Move elements for which a predicate is true to the beginning * of a sequence. * @param first A forward iterator. * @param last A forward iterator. * @param pred A predicate functor. * @return An iterator @p middle such that @p pred(i) is true for each * iterator @p i in the range @p [first,middle) and false for each @p i * in the range @p [middle,last). * * @p pred must not modify its operand. @p partition() does not preserve * the relative ordering of elements in each group, use * @p stable_partition() if this is needed. */ template _Pred> requires HasSwap<_Iter::reference, _Iter::reference> && CopyConstructible<_Pred> _Iter partition(_Iter __first, _Iter __last, _Pred __pred) { if (__first == __last) return __first; while (__pred(*__first)) if (++__first == __last) return __first; _Iter __next = __first; while (++__next != __last) if (__pred(*__next)) { std::iter_swap(__first, __next); ++__first; } return __first; } /** * @brief Move elements for which a predicate is true to the beginning * of a sequence. * @param first A forward iterator. * @param last A forward iterator. * @param pred A predicate functor. * @return An iterator @p middle such that @p pred(i) is true for each * iterator @p i in the range @p [first,middle) and false for each @p i * in the range @p [middle,last). * * @p pred must not modify its operand. @p partition() does not preserve * the relative ordering of elements in each group, use * @p stable_partition() if this is needed. */ template _Pred> requires HasSwap<_Iter::reference, _Iter::reference> && CopyConstructible<_Pred> _Iter partition(_Iter __first, _Iter __last, _Pred __pred) { while (true) { while (true) if (__first == __last) return __first; else if (__pred(*__first)) ++__first; else break; --__last; while (true) if (__first == __last) return __first; else if (!__pred(*__last)) --__last; else break; std::iter_swap(__first, __last); ++__first; } } /** * @if maint * This is a helper function... * @endif */ template _Pred> requires ShuffleIterator<_Iter> _Iter __inplace_stable_partition(_Iter __first, _Iter __last, _Pred __pred, _Iter::difference_type __len) { if (__len == 1) return __pred(*__first) ? __last : __first; _Iter __middle = __first; std::advance(__middle, __len / 2); _Iter __begin = std::__inplace_stable_partition(__first, __middle, __pred, __len / 2); _Iter __end = std::__inplace_stable_partition(__middle, __last, __pred, __len - __len / 2); std::rotate(__begin, __middle, __end); std::advance(__begin, std::distance(__middle, __end)); return __begin; } /** * @if maint * This is a helper function... * @endif */ template _Pred> _Iter __stable_partition_adaptive(_Iter __first, _Iter __last, _Pred __pred, _GLIBCXX_ITERATOR_TRAITS(ForwardIterator, _Iter)::difference_type __len, _Pointer __buffer, _GLIBCXX_ITERATOR_TRAITS(ForwardIterator, _Iter)::difference_type __buffer_size) { if (__len <= __buffer_size) { _Iter __result1 = __first; late_check { _Pointer __result2 = __buffer; for ( ; __first != __last ; ++__first) if (__pred(*__first)) { *__result1 = *__first; ++__result1; } else { *__result2 = *__first; ++__result2; } std::copy(__buffer, __result2, __result1); } return __result1; } else { _Iter __middle = __first; std::advance(__middle, __len / 2); _Iter __begin = std::__stable_partition_adaptive(__first, __middle, __pred, __len / 2, __buffer, __buffer_size); _Iter __end = std::__stable_partition_adaptive(__middle, __last, __pred, __len - __len / 2, __buffer, __buffer_size); late_check { std::rotate(__begin, __middle, __end); } std::advance(__begin, std::distance(__middle, __end)); return __begin; } } /** * @brief Move elements for which a predicate is true to the beginning * of a sequence, preserving relative ordering. * @param first A forward iterator. * @param last A forward iterator. * @param pred A predicate functor. * @return An iterator @p middle such that @p pred(i) is true for each * iterator @p i in the range @p [first,middle) and false for each @p i * in the range @p [middle,last). * * Performs the same function as @p partition() with the additional * guarantee that the relative ordering of elements in each group is * preserved, so any two elements @p x and @p y in the range * @p [first,last) such that @p pred(x)==pred(y) will have the same * relative ordering after calling @p stable_partition(). */ template _Pred> requires ShuffleIterator<_Iter> _Iter stable_partition(_Iter __first, _Iter __last, _Pred __pred) { __glibcxx_requires_valid_range(__first, __last); if (__first == __last) return __first; else { typedef _Iter::value_type _ValueType; typedef _Iter::difference_type _DistanceType; _Temporary_buffer<_Iter, _ValueType> __buf(__first, __last); if (__buf.size() > 0) return std::__stable_partition_adaptive(__first, __last, __pred, _DistanceType(__buf.requested_size()), __buf.begin(), __buf.size()); else return std::__inplace_stable_partition(__first, __last, __pred, _DistanceType(__buf.requested_size())); } } /** * @if maint * This is a helper function... * @endif */ template requires LessThanComparable<_Iter::value_type> && HasSwap<_Iter::reference, _Iter::reference> _Iter __unguarded_partition(_Iter __first, _Iter __last, _GLIBCXX_ITERATOR_TRAITS_NEST(_Iter, value_type) __pivot) { while (true) { while (*__first < __pivot) ++__first; --__last; while (__pivot < *__last) --__last; if (!(__first < __last)) return __first; std::iter_swap(__first, __last); ++__first; } } /** * @if maint * This is a helper function... * @endif */ template _Compare> requires HasSwap<_Iter::reference, _Iter::reference> _Iter __unguarded_partition(_Iter __first, _Iter __last, _Iter::value_type __pivot, _Compare __comp) { while (true) { while (__comp(*__first, __pivot)) ++__first; --__last; while (__comp(__pivot, *__last)) --__last; if (!(__first < __last)) return __first; std::iter_swap(__first, __last); ++__first; } } /** * @if maint * @doctodo * This controls some aspect of the sort routines. * @endif */ enum { _S_threshold = 16 }; /** * @if maint * This is a helper function for the sort routine. * @endif */ template requires ShuffleIterator<_Iter> && LessThanComparable<_Iter::value_type> void __unguarded_linear_insert(_Iter __last, _Iter::value_type __val) { _Iter __next = __last; --__next; while (__val < *__next) { *__last = std_move(*__next); __last = __next; --__next; } *__last = std_move(__val); } /** * @if maint * This is a helper function for the sort routine. * @endif */ template _Compare> requires ShuffleIterator<_Iter> void __unguarded_linear_insert(_Iter __last, _Iter::value_type __val, _Compare __comp) { _Iter __next = __last; --__next; while (__comp(__val, *__next)) { *__last = std_move(*__next); __last = __next; --__next; } *__last = std_move(__val); } /** * @if maint * This is a helper function for the sort routine. * @endif */ template requires ShuffleIterator<_Iter> && LessThanComparable<_Iter::value_type> void __insertion_sort(_Iter __first, _Iter __last) { if (__first == __last) return; for (_Iter __i = __first + 1; __i != __last; ++__i) { _Iter::value_type __val(std_move(*__i)); if (__val < *__first) { late_check { std::copy_backward(__first, __i, __i + 1); } *__first = std_move(__val); } else std::__unguarded_linear_insert(__i, __val); } } /** * @if maint * This is a helper function for the sort routine. * @endif */ template _Compare> requires ShuffleIterator<_Iter> void __insertion_sort(_Iter __first, _Iter __last, _Compare __comp) { if (__first == __last) return; for (_Iter __i = __first + 1; __i != __last; ++__i) { _Iter::value_type __val(std_move(*__i)); if (__comp(__val, *__first)) { late_check { std::copy_backward(__first, __i, __i + 1); } *__first = std_move(__val); } else std::__unguarded_linear_insert(__i, __val, __comp); } } /** * @if maint * This is a helper function for the sort routine. * @endif */ template requires ShuffleIterator<_Iter> && LessThanComparable<_Iter::value_type> inline void __unguarded_insertion_sort(_Iter __first, _Iter __last) { for (_Iter __i = __first; __i != __last; ++__i) std::__unguarded_linear_insert(__i, *__i); } /** * @if maint * This is a helper function for the sort routine. * @endif */ template _Compare> requires ShuffleIterator<_Iter> inline void __unguarded_insertion_sort(_Iter __first, _Iter __last, _Compare __comp) { for (_Iter __i = __first; __i != __last; ++__i) std::__unguarded_linear_insert(__i, *__i, __comp); } /** * @if maint * This is a helper function for the sort routine. * @endif */ template requires ShuffleIterator<_Iter> && LessThanComparable<_Iter::value_type> void __final_insertion_sort(_Iter __first, _Iter __last) { if (__last - __first > int(_S_threshold)) { std::__insertion_sort(__first, __first + int(_S_threshold)); std::__unguarded_insertion_sort(__first + int(_S_threshold), __last); } else std::__insertion_sort(__first, __last); } /** * @if maint * This is a helper function for the sort routine. * @endif */ template _Compare> requires ShuffleIterator<_Iter> void __final_insertion_sort(_Iter __first, _Iter __last, _Compare __comp) { if (__last - __first > int(_S_threshold)) { std::__insertion_sort(__first, __first + int(_S_threshold), __comp); std::__unguarded_insertion_sort(__first + int(_S_threshold), __last, __comp); } else std::__insertion_sort(__first, __last, __comp); } /** * @if maint * This is a helper function for the sort routines. * @endif */ template void __heap_select(_RandomAccessIterator __first, _RandomAccessIterator __middle, _RandomAccessIterator __last) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType; std::make_heap(__first, __middle); for (_RandomAccessIterator __i = __middle; __i < __last; ++__i) if (*__i < *__first) std::__pop_heap(__first, __middle, __i); } /** * @if maint * This is a helper function for the sort routines. * @endif */ template void __heap_select(_RandomAccessIterator __first, _RandomAccessIterator __middle, _RandomAccessIterator __last, _Compare __comp) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType; std::make_heap(__first, __middle, __comp); for (_RandomAccessIterator __i = __middle; __i < __last; ++__i) if (__comp(*__i, *__first)) std::__pop_heap(__first, __middle, __i, __comp); } /** * @if maint * This is a helper function for the sort routines. * @endif */ template<_GLIBCXX_REQ_PARM(IntegralLike, _Size)> inline _Size __lg(_Size __n) { _Size __k; for (__k = 0; __n != 1; __n >>= 1) ++__k; return __k; } /** * @brief Sort the smallest elements of a sequence. * @param first An iterator. * @param middle Another iterator. * @param last Another iterator. * @return Nothing. * * Sorts the smallest @p (middle-first) elements in the range * @p [first,last) and moves them to the range @p [first,middle). The * order of the remaining elements in the range @p [middle,last) is * undefined. * After the sort if @p i and @j are iterators in the range * @p [first,middle) such that @i precedes @j and @k is an iterator in * the range @p [middle,last) then @p *j<*i and @p *k<*i are both false. */ template requires OutputIterator<_Iter, _Iter::reference> && OutputIterator<_Iter, const _Iter::value_type&> && LessThanComparable<_Iter::value_type> && CopyConstructible<_Iter::value_type> && ShuffleIterator<_Iter> inline void partial_sort(_Iter __first, _Iter __middle, _Iter __last) { __glibcxx_requires_valid_range(__first, __middle); __glibcxx_requires_valid_range(__middle, __last); std::__heap_select(__first, __middle, __last); std::sort_heap(__first, __middle); } /** * @brief Sort the smallest elements of a sequence using a predicate * for comparison. * @param first An iterator. * @param middle Another iterator. * @param last Another iterator. * @param comp A comparison functor. * @return Nothing. * * Sorts the smallest @p (middle-first) elements in the range * @p [first,last) and moves them to the range @p [first,middle). The * order of the remaining elements in the range @p [middle,last) is * undefined. * After the sort if @p i and @j are iterators in the range * @p [first,middle) such that @i precedes @j and @k is an iterator in * the range @p [middle,last) then @p *comp(j,*i) and @p comp(*k,*i) * are both false. */ template _Compare> requires ShuffleIterator<_Iter> && CopyConstructible<_Compare> inline void partial_sort(_Iter __first, _Iter __middle, _Iter __last, _Compare __comp) { __glibcxx_requires_valid_range(__first, __middle); __glibcxx_requires_valid_range(__middle, __last); std::__heap_select(__first, __middle, __last, __comp); std::sort_heap(__first, __middle, __comp); } /** * @brief Copy the smallest elements of a sequence. * @param first An iterator. * @param last Another iterator. * @param result_first A random-access iterator. * @param result_last Another random-access iterator. * @return An iterator indicating the end of the resulting sequence. * * Copies and sorts the smallest N values from the range @p [first,last) * to the range beginning at @p result_first, where the number of * elements to be copied, @p N, is the smaller of @p (last-first) and * @p (result_last-result_first). * After the sort if @p i and @j are iterators in the range * @p [result_first,result_first+N) such that @i precedes @j then * @p *j<*i is false. * The value returned is @p result_first+N. */ template requires ShuffleIterator<_RAIter> && OutputIterator<_RAIter, _InIter::reference> && HasLess<_InIter::value_type, _RAIter::value_type> && LessThanComparable<_RAIter::value_type> _RAIter partial_sort_copy(_InIter __first, _InIter __last, _RAIter __result_first, _RAIter __result_last) { typedef _InIter::value_type _InputValueType; typedef _RAIter::value_type _OutputValueType; typedef _RAIter::difference_type _DistanceType; __glibcxx_requires_valid_range(__first, __last); __glibcxx_requires_valid_range(__result_first, __result_last); if (__result_first == __result_last) return __result_last; _RAIter __result_real_last = __result_first; while(__first != __last && __result_real_last != __result_last) { *__result_real_last = *__first; ++__result_real_last; ++__first; } std::make_heap(__result_first, __result_real_last); while (__first != __last) { if (*__first < *__result_first) { late_check { // error: conversion from // ‘std::Iterator<_Iter>::reference’ to non-scalar // type ‘value_type’ requested // DPG: It looks like __adjust_heap is getting an // archetype into its signature somehow. std::__adjust_heap(__result_first, _DistanceType(0), _DistanceType(__result_real_last - __result_first), *__first); } } ++__first; } std::sort_heap(__result_first, __result_real_last); return __result_real_last; } /** * @brief Copy the smallest elements of a sequence using a predicate for * comparison. * @param first An input iterator. * @param last Another input iterator. * @param result_first A random-access iterator. * @param result_last Another random-access iterator. * @param comp A comparison functor. * @return An iterator indicating the end of the resulting sequence. * * Copies and sorts the smallest N values from the range @p [first,last) * to the range beginning at @p result_first, where the number of * elements to be copied, @p N, is the smaller of @p (last-first) and * @p (result_last-result_first). * After the sort if @p i and @j are iterators in the range * @p [result_first,result_first+N) such that @i precedes @j then * @p comp(*j,*i) is false. * The value returned is @p result_first+N. */ template requires ShuffleIterator<_RAIter> && OutputIterator<_RAIter, _InIter::reference> && BinaryPredicate<_Compare, _InIter::value_type, _RAIter::value_type> && StrictWeakOrder<_Compare, _RAIter::value_type> _RAIter partial_sort_copy(_InIter __first, _InIter __last, _RAIter __result_first, _RAIter __result_last, _Compare __comp) { typedef _InIter::value_type _InputValueType; typedef _RAIter::value_type _OutputValueType; typedef _InIter::difference_type _DistanceType; __glibcxx_requires_valid_range(__first, __last); __glibcxx_requires_valid_range(__result_first, __result_last); if (__result_first == __result_last) return __result_last; _RAIter __result_real_last = __result_first; while(__first != __last && __result_real_last != __result_last) { *__result_real_last = *__first; ++__result_real_last; ++__first; } std::make_heap(__result_first, __result_real_last, __comp); while (__first != __last) { if (__comp(*__first, *__result_first)) late_check { // error: conversion from // ‘std::InputIterator<_Iter>::difference_type’ to // non-scalar type ‘difference_type’ requested // DPG: Looks like another archetype issue std::__adjust_heap(__result_first, _DistanceType(0), _DistanceType(__result_real_last - __result_first), _InputValueType(*__first), __comp); } ++__first; } std::sort_heap(__result_first, __result_real_last, __comp); return __result_real_last; } /** * @if maint * This is a helper function for the sort routine. * @endif */ template requires OutputIterator<_Iter, _Iter::reference> && OutputIterator<_Iter, const _Iter::value_type&> && ShuffleIterator<_Iter> && LessThanComparable<_Iter::value_type> && CopyConstructible<_Iter::value_type> void __introsort_loop(_Iter __first, _Iter __last, _Size __depth_limit) { typedef _Iter::value_type _ValueType; while (__last - __first > int(_S_threshold)) { if (__depth_limit == 0) { std::partial_sort(__first, __last, __last); return; } --__depth_limit; _Iter __cut = std::__unguarded_partition (__first, __last, _ValueType(std::__median(_ValueType(*__first), _ValueType(*(__first + (__last - __first) / 2)), _ValueType(*(__last - 1))))); std::__introsort_loop(__cut, __last, __depth_limit); __last = __cut; } } /** * @if maint * This is a helper function for the sort routine. * @endif */ template _Compare> requires ShuffleIterator<_Iter> && CopyConstructible<_Compare> void __introsort_loop(_Iter __first, _Iter __last, _Size __depth_limit, _Compare __comp) { typedef _Iter::value_type _ValueType; while (__last - __first > int(_S_threshold)) { if (__depth_limit == 0) { std::partial_sort(__first, __last, __last, __comp); return; } --__depth_limit; _Iter __cut = std::__unguarded_partition (__first, __last, _ValueType(std::__median(_ValueType(*__first), _ValueType(*(__first + (__last - __first) / 2)), _ValueType(*(__last - 1)), __comp)), __comp); std::__introsort_loop(__cut, __last, __depth_limit, __comp); __last = __cut; } } /** * @brief Sort the elements of a sequence. * @param first An iterator. * @param last Another iterator. * @return Nothing. * * Sorts the elements in the range @p [first,last) in ascending order, * such that @p *(i+1)<*i is false for each iterator @p i in the range * @p [first,last-1). * * The relative ordering of equivalent elements is not preserved, use * @p stable_sort() if this is needed. */ template requires OutputIterator<_Iter, _Iter::reference> && OutputIterator<_Iter, const _Iter::value_type&> && LessThanComparable<_Iter::value_type> && ShuffleIterator<_Iter> && CopyConstructible<_Iter::value_type> inline void sort(_Iter __first, _Iter __last) { __glibcxx_requires_valid_range(__first, __last); if (__first != __last) { std::__introsort_loop(__first, __last, _Iter::difference_type(std::__lg(__last - __first) * 2)); std::__final_insertion_sort(__first, __last); } } /** * @brief Sort the elements of a sequence using a predicate for comparison. * @param first An iterator. * @param last Another iterator. * @param comp A comparison functor. * @return Nothing. * * Sorts the elements in the range @p [first,last) in ascending order, * such that @p comp(*(i+1),*i) is false for every iterator @p i in the * range @p [first,last-1). * * The relative ordering of equivalent elements is not preserved, use * @p stable_sort() if this is needed. */ template _Compare> requires ShuffleIterator<_Iter> && CopyConstructible<_Compare> inline void sort(_Iter __first, _Iter __last, _Compare __comp) { __glibcxx_requires_valid_range(__first, __last); if (__first != __last) { std::__introsort_loop(__first, __last, _Iter::difference_type(std::__lg(__last - __first) * 2), __comp); std::__final_insertion_sort(__first, __last, __comp); } } /** * @brief Finds the first position in which @a val could be inserted * without changing the ordering. * @param first An iterator. * @param last Another iterator. * @param val The search term. * @return An iterator pointing to the first element "not less than" @a val, * or end() if every element is less than @a val. * @ingroup binarysearch */ template requires HasLess<_Iter::value_type, _Tp> _Iter lower_bound(_Iter __first, _Iter __last, const _Tp& __val) { typedef _Iter::value_type _ValueType; typedef _Iter::difference_type _DistanceType; __glibcxx_requires_partitioned(__first, __last, __val); _DistanceType __len = std::distance(__first, __last); _DistanceType __half; _Iter __middle; while (__len > 0) { __half = __len >> 1; __middle = __first; std::advance(__middle, __half); if (*__middle < __val) { __first = __middle; ++__first; __len = __len - __half - 1; } else __len = __half; } return __first; } /** * @brief Finds the first position in which @a val could be inserted * without changing the ordering. * @param first An iterator. * @param last Another iterator. * @param val The search term. * @param comp A functor to use for comparisons. * @return An iterator pointing to the first element "not less than" @a val, * or end() if every element is less than @a val. * @ingroup binarysearch * * The comparison function should have the same effects on ordering as * the function used for the initial sort. */ template _Compare> requires CopyConstructible<_Compare> _Iter lower_bound(_Iter __first, _Iter __last, const _Tp& __val, _Compare __comp) { typedef _Iter::value_type _ValueType; typedef _Iter::difference_type _DistanceType; __glibcxx_requires_partitioned_pred(__first, __last, __val, __comp); _DistanceType __len = std::distance(__first, __last); _DistanceType __half; _Iter __middle; while (__len > 0) { __half = __len >> 1; __middle = __first; std::advance(__middle, __half); if (__comp(*__middle, __val)) { __first = __middle; ++__first; __len = __len - __half - 1; } else __len = __half; } return __first; } /** * @brief Finds the last position in which @a val could be inserted * without changing the ordering. * @param first An iterator. * @param last Another iterator. * @param val The search term. * @return An iterator pointing to the first element greater than @a val, * or end() if no elements are greater than @a val. * @ingroup binarysearch */ template requires HasLess<_Tp, _Iter::value_type> _Iter upper_bound(_Iter __first, _Iter __last, const _Tp& __val) { typedef _Iter::value_type _ValueType; typedef _Iter::difference_type _DistanceType; __glibcxx_requires_partitioned(__first, __last, __val); _DistanceType __len = std::distance(__first, __last); _DistanceType __half; _Iter __middle; while (__len > 0) { __half = __len >> 1; __middle = __first; std::advance(__middle, __half); if (__val < *__middle) __len = __half; else { __first = __middle; ++__first; __len = __len - __half - 1; } } return __first; } /** * @brief Finds the last position in which @a val could be inserted * without changing the ordering. * @param first An iterator. * @param last Another iterator. * @param val The search term. * @param comp A functor to use for comparisons. * @return An iterator pointing to the first element greater than @a val, * or end() if no elements are greater than @a val. * @ingroup binarysearch * * The comparison function should have the same effects on ordering as * the function used for the initial sort. */ template _Compare> requires CopyConstructible<_Compare> _Iter upper_bound(_Iter __first, _Iter __last, const _Tp& __val, _Compare __comp) { typedef _Iter::value_type _ValueType; typedef _Iter::difference_type _DistanceType; __glibcxx_requires_partitioned_pred(__first, __last, __val, __comp); _DistanceType __len = std::distance(__first, __last); _DistanceType __half; _Iter __middle; while (__len > 0) { __half = __len >> 1; __middle = __first; std::advance(__middle, __half); if (__comp(__val, *__middle)) __len = __half; else { __first = __middle; ++__first; __len = __len - __half - 1; } } return __first; } /** * @if maint * This is a helper function for the merge routines. * @endif */ template requires ShuffleIterator<_Iter> && LessThanComparable<_Iter::value_type> void __merge_without_buffer(_Iter __first, _Iter __middle, _Iter __last, _Iter::difference_type __len1, _Iter::difference_type __len2) { if (__len1 == 0 || __len2 == 0) return; if (__len1 + __len2 == 2) { if (*__middle < *__first) std::iter_swap(__first, __middle); return; } _Iter __first_cut = __first; _Iter __second_cut = __middle; _Iter::difference_type __len11 = 0; _Iter::difference_type __len22 = 0; if (__len1 > __len2) { __len11 = __len1 / 2; std::advance(__first_cut, __len11); __second_cut = std::lower_bound(__middle, __last, _Iter::value_type(*__first_cut)); __len22 = std::distance(__middle, __second_cut); } else { __len22 = __len2 / 2; std::advance(__second_cut, __len22); __first_cut = std::upper_bound(__first, __middle, _Iter::value_type(*__second_cut)); __len11 = std::distance(__first, __first_cut); } std::rotate(__first_cut, __middle, __second_cut); _Iter __new_middle = __first_cut; std::advance(__new_middle, std::distance(__middle, __second_cut)); std::__merge_without_buffer(__first, __first_cut, __new_middle, __len11, __len22); std::__merge_without_buffer(__new_middle, __second_cut, __last, __len1 - __len11, __len2 - __len22); } /** * @if maint * This is a helper function for the merge routines. * @endif */ template _Compare> requires ShuffleIterator<_Iter> && CopyConstructible<_Compare> void __merge_without_buffer(_Iter __first, _Iter __middle, _Iter __last, _Iter::difference_type __len1, _Iter::difference_type __len2, _Compare __comp) { if (__len1 == 0 || __len2 == 0) return; if (__len1 + __len2 == 2) { if (__comp(*__middle, *__first)) std::iter_swap(__first, __middle); return; } _Iter __first_cut = __first; _Iter __second_cut = __middle; _Iter::difference_type __len11 = 0; _Iter::difference_type __len22 = 0; if (__len1 > __len2) { __len11 = __len1 / 2; std::advance(__first_cut, __len11); __second_cut = std::lower_bound(__middle, __last, _Iter::value_type(*__first_cut), __comp); __len22 = std::distance(__middle, __second_cut); } else { __len22 = __len2 / 2; std::advance(__second_cut, __len22); __first_cut = std::upper_bound(__first, __middle, _Iter::value_type(*__second_cut), __comp); __len11 = std::distance(__first, __first_cut); } std::rotate(__first_cut, __middle, __second_cut); _Iter __new_middle = __first_cut; std::advance(__new_middle, std::distance(__middle, __second_cut)); std::__merge_without_buffer(__first, __first_cut, __new_middle, __len11, __len22, __comp); std::__merge_without_buffer(__new_middle, __second_cut, __last, __len1 - __len11, __len2 - __len22, __comp); } /** * @if maint * This is a helper function for the stable sorting routines. * @endif */ template requires ShuffleIterator<_Iter> && LessThanComparable<_Iter::value_type> void __inplace_stable_sort(_Iter __first, _Iter __last) { if (__last - __first < 15) { std::__insertion_sort(__first, __last); return; } _Iter __middle = __first + (__last - __first) / 2; std::__inplace_stable_sort(__first, __middle); std::__inplace_stable_sort(__middle, __last); std::__merge_without_buffer(__first, __middle, __last, __middle - __first, __last - __middle); } /** * @if maint * This is a helper function for the stable sorting routines. * @endif */ template _Compare> requires ShuffleIterator<_Iter> && CopyConstructible<_Compare> void __inplace_stable_sort(_Iter __first, _Iter __last, _Compare __comp) { if (__last - __first < 15) { std::__insertion_sort(__first, __last, __comp); return; } _Iter __middle = __first + (__last - __first) / 2; std::__inplace_stable_sort(__first, __middle, __comp); std::__inplace_stable_sort(__middle, __last, __comp); std::__merge_without_buffer(__first, __middle, __last, __middle - __first, __last - __middle, __comp); } /** * @brief Merges two sorted ranges. * @param first1 An iterator. * @param first2 Another iterator. * @param last1 Another iterator. * @param last2 Another iterator. * @param result An iterator pointing to the end of the merged range. * @return An iterator pointing to the first element "not less than" @a val. * * Merges the ranges [first1,last1) and [first2,last2) into the sorted range * [result, result + (last1-first1) + (last2-first2)). Both input ranges * must be sorted, and the output range must not overlap with either of * the input ranges. The sort is @e stable, that is, for equivalent * elements in the two ranges, elements from the first range will always * come before elements from the second. */ template requires OutputIterator<_OutIter, _InIter1::reference> && OutputIterator<_OutIter, _InIter2::reference> && HasLess<_InIter2::value_type, _InIter1::value_type> _OutIter merge(_InIter1 __first1, _InIter1 __last1, _InIter2 __first2, _InIter2 __last2, _OutIter __result) { __glibcxx_requires_sorted(__first1, __last1); __glibcxx_requires_sorted(__first2, __last2); while (__first1 != __last1 && __first2 != __last2) { if (*__first2 < *__first1) { *__result = *__first2; ++__first2; } else { *__result = *__first1; ++__first1; } ++__result; } return std::copy(__first2, __last2, std::copy(__first1, __last1, __result)); } /** * @brief Merges two sorted ranges. * @param first1 An iterator. * @param first2 Another iterator. * @param last1 Another iterator. * @param last2 Another iterator. * @param result An iterator pointing to the end of the merged range. * @param comp A functor to use for comparisons. * @return An iterator pointing to the first element "not less than" @a val. * * Merges the ranges [first1,last1) and [first2,last2) into the sorted range * [result, result + (last1-first1) + (last2-first2)). Both input ranges * must be sorted, and the output range must not overlap with either of * the input ranges. The sort is @e stable, that is, for equivalent * elements in the two ranges, elements from the first range will always * come before elements from the second. * * The comparison function should have the same effects on ordering as * the function used for the initial sort. */ template _Compare> requires OutputIterator<_OutIter, _InIter1::reference> && OutputIterator<_OutIter, _InIter2::reference> && CopyConstructible<_Compare> _OutIter merge(_InIter1 __first1, _InIter1 __last1, _InIter2 __first2, _InIter2 __last2, _OutIter __result, _Compare __comp) { __glibcxx_requires_sorted_pred(__first1, __last1, __comp); __glibcxx_requires_sorted_pred(__first2, __last2, __comp); while (__first1 != __last1 && __first2 != __last2) { if (__comp(*__first2, *__first1)) { *__result = *__first2; ++__first2; } else { *__result = *__first1; ++__first1; } ++__result; } return std::copy(__first2, __last2, std::copy(__first1, __last1, __result)); } template void __merge_sort_loop(_RandomAccessIterator1 __first, _RandomAccessIterator1 __last, _RandomAccessIterator2 __result, _Distance __step_size) { const _Distance __two_step = 2 * __step_size; while (__last - __first >= __two_step) { __result = std::merge(__first, __first + __step_size, __first + __step_size, __first + __two_step, __result); __first += __two_step; } __step_size = std::min(_Distance(__last - __first), __step_size); std::merge(__first, __first + __step_size, __first + __step_size, __last, __result); } template void __merge_sort_loop(_RandomAccessIterator1 __first, _RandomAccessIterator1 __last, _RandomAccessIterator2 __result, _Distance __step_size, _Compare __comp) { const _Distance __two_step = 2 * __step_size; while (__last - __first >= __two_step) { __result = std::merge(__first, __first + __step_size, __first + __step_size, __first + __two_step, __result, __comp); __first += __two_step; } __step_size = std::min(_Distance(__last - __first), __step_size); std::merge(__first, __first + __step_size, __first + __step_size, __last, __result, __comp); } enum { _S_chunk_size = 7 }; template void __chunk_insertion_sort(_RandomAccessIterator __first, _RandomAccessIterator __last, _Distance __chunk_size) { while (__last - __first >= __chunk_size) { std::__insertion_sort(__first, __first + __chunk_size); __first += __chunk_size; } std::__insertion_sort(__first, __last); } template void __chunk_insertion_sort(_RandomAccessIterator __first, _RandomAccessIterator __last, _Distance __chunk_size, _Compare __comp) { while (__last - __first >= __chunk_size) { std::__insertion_sort(__first, __first + __chunk_size, __comp); __first += __chunk_size; } std::__insertion_sort(__first, __last, __comp); } template void __merge_sort_with_buffer(_RandomAccessIterator __first, _RandomAccessIterator __last, _Pointer __buffer) { typedef typename iterator_traits<_RandomAccessIterator>::difference_type _Distance; const _Distance __len = __last - __first; const _Pointer __buffer_last = __buffer + __len; _Distance __step_size = _S_chunk_size; std::__chunk_insertion_sort(__first, __last, __step_size); while (__step_size < __len) { std::__merge_sort_loop(__first, __last, __buffer, __step_size); __step_size *= 2; std::__merge_sort_loop(__buffer, __buffer_last, __first, __step_size); __step_size *= 2; } } template void __merge_sort_with_buffer(_RandomAccessIterator __first, _RandomAccessIterator __last, _Pointer __buffer, _Compare __comp) { typedef typename iterator_traits<_RandomAccessIterator>::difference_type _Distance; const _Distance __len = __last - __first; const _Pointer __buffer_last = __buffer + __len; _Distance __step_size = _S_chunk_size; std::__chunk_insertion_sort(__first, __last, __step_size, __comp); while (__step_size < __len) { std::__merge_sort_loop(__first, __last, __buffer, __step_size, __comp); __step_size *= 2; std::__merge_sort_loop(__buffer, __buffer_last, __first, __step_size, __comp); __step_size *= 2; } } /** * @if maint * This is a helper function for the merge routines. * @endif */ template _BidirectionalIterator3 __merge_backward(_BidirectionalIterator1 __first1, _BidirectionalIterator1 __last1, _BidirectionalIterator2 __first2, _BidirectionalIterator2 __last2, _BidirectionalIterator3 __result) { if (__first1 == __last1) return std::copy_backward(__first2, __last2, __result); if (__first2 == __last2) return std::copy_backward(__first1, __last1, __result); --__last1; --__last2; while (true) { if (*__last2 < *__last1) { *--__result = *__last1; if (__first1 == __last1) return std::copy_backward(__first2, ++__last2, __result); --__last1; } else { *--__result = *__last2; if (__first2 == __last2) return std::copy_backward(__first1, ++__last1, __result); --__last2; } } } /** * @if maint * This is a helper function for the merge routines. * @endif */ template _BidirectionalIterator3 __merge_backward(_BidirectionalIterator1 __first1, _BidirectionalIterator1 __last1, _BidirectionalIterator2 __first2, _BidirectionalIterator2 __last2, _BidirectionalIterator3 __result, _Compare __comp) { if (__first1 == __last1) return std::copy_backward(__first2, __last2, __result); if (__first2 == __last2) return std::copy_backward(__first1, __last1, __result); --__last1; --__last2; while (true) { if (__comp(*__last2, *__last1)) { *--__result = *__last1; if (__first1 == __last1) return std::copy_backward(__first2, ++__last2, __result); --__last1; } else { *--__result = *__last2; if (__first2 == __last2) return std::copy_backward(__first1, ++__last1, __result); --__last2; } } } /** * @if maint * This is a helper function for the merge routines. * @endif */ template _BidirectionalIterator1 __rotate_adaptive(_BidirectionalIterator1 __first, _BidirectionalIterator1 __middle, _BidirectionalIterator1 __last, _Distance __len1, _Distance __len2, _BidirectionalIterator2 __buffer, _Distance __buffer_size) { _BidirectionalIterator2 __buffer_end; if (__len1 > __len2 && __len2 <= __buffer_size) { __buffer_end = std::copy(__middle, __last, __buffer); std::copy_backward(__first, __middle, __last); return std::copy(__buffer, __buffer_end, __first); } else if (__len1 <= __buffer_size) { __buffer_end = std::copy(__first, __middle, __buffer); std::copy(__middle, __last, __first); return std::copy_backward(__buffer, __buffer_end, __last); } else { std::rotate(__first, __middle, __last); std::advance(__first, std::distance(__middle, __last)); return __first; } } /** * @if maint * This is a helper function for the merge routines. * @endif */ template void __merge_adaptive(_BidirectionalIterator __first, _BidirectionalIterator __middle, _BidirectionalIterator __last, _Distance __len1, _Distance __len2, _Pointer __buffer, _Distance __buffer_size) { if (__len1 <= __len2 && __len1 <= __buffer_size) { _Pointer __buffer_end = std::copy(__first, __middle, __buffer); std::merge(__buffer, __buffer_end, __middle, __last, __first); } else if (__len2 <= __buffer_size) { _Pointer __buffer_end = std::copy(__middle, __last, __buffer); std::__merge_backward(__first, __middle, __buffer, __buffer_end, __last); } else { _BidirectionalIterator __first_cut = __first; _BidirectionalIterator __second_cut = __middle; _Distance __len11 = 0; _Distance __len22 = 0; if (__len1 > __len2) { __len11 = __len1 / 2; std::advance(__first_cut, __len11); __second_cut = std::lower_bound(__middle, __last, *__first_cut); __len22 = std::distance(__middle, __second_cut); } else { __len22 = __len2 / 2; std::advance(__second_cut, __len22); __first_cut = std::upper_bound(__first, __middle, *__second_cut); __len11 = std::distance(__first, __first_cut); } _BidirectionalIterator __new_middle = std::__rotate_adaptive(__first_cut, __middle, __second_cut, __len1 - __len11, __len22, __buffer, __buffer_size); std::__merge_adaptive(__first, __first_cut, __new_middle, __len11, __len22, __buffer, __buffer_size); std::__merge_adaptive(__new_middle, __second_cut, __last, __len1 - __len11, __len2 - __len22, __buffer, __buffer_size); } } /** * @if maint * This is a helper function for the merge routines. * @endif */ template void __merge_adaptive(_BidirectionalIterator __first, _BidirectionalIterator __middle, _BidirectionalIterator __last, _Distance __len1, _Distance __len2, _Pointer __buffer, _Distance __buffer_size, _Compare __comp) { if (__len1 <= __len2 && __len1 <= __buffer_size) { _Pointer __buffer_end = std::copy(__first, __middle, __buffer); std::merge(__buffer, __buffer_end, __middle, __last, __first, __comp); } else if (__len2 <= __buffer_size) { _Pointer __buffer_end = std::copy(__middle, __last, __buffer); std::__merge_backward(__first, __middle, __buffer, __buffer_end, __last, __comp); } else { _BidirectionalIterator __first_cut = __first; _BidirectionalIterator __second_cut = __middle; _Distance __len11 = 0; _Distance __len22 = 0; if (__len1 > __len2) { __len11 = __len1 / 2; std::advance(__first_cut, __len11); __second_cut = std::lower_bound(__middle, __last, *__first_cut, __comp); __len22 = std::distance(__middle, __second_cut); } else { __len22 = __len2 / 2; std::advance(__second_cut, __len22); __first_cut = std::upper_bound(__first, __middle, *__second_cut, __comp); __len11 = std::distance(__first, __first_cut); } _BidirectionalIterator __new_middle = std::__rotate_adaptive(__first_cut, __middle, __second_cut, __len1 - __len11, __len22, __buffer, __buffer_size); std::__merge_adaptive(__first, __first_cut, __new_middle, __len11, __len22, __buffer, __buffer_size, __comp); std::__merge_adaptive(__new_middle, __second_cut, __last, __len1 - __len11, __len2 - __len22, __buffer, __buffer_size, __comp); } } /** * @brief Merges two sorted ranges in place. * @param first An iterator. * @param middle Another iterator. * @param last Another iterator. * @return Nothing. * * Merges two sorted and consecutive ranges, [first,middle) and * [middle,last), and puts the result in [first,last). The output will * be sorted. The sort is @e stable, that is, for equivalent * elements in the two ranges, elements from the first range will always * come before elements from the second. * * If enough additional memory is available, this takes (last-first)-1 * comparisons. Otherwise an NlogN algorithm is used, where N is * distance(first,last). */ template requires ShuffleIterator<_Iter> && LessThanComparable<_Iter::value_type> void inplace_merge(_Iter __first, _Iter __middle, _Iter __last) { typedef _Iter::value_type _ValueType; typedef _Iter::difference_type _DistanceType; __glibcxx_requires_sorted(__first, __middle); __glibcxx_requires_sorted(__middle, __last); if (__first == __middle || __middle == __last) return; _DistanceType __len1 = std::distance(__first, __middle); _DistanceType __len2 = std::distance(__middle, __last); _Temporary_buffer<_Iter, _ValueType> __buf(__first, __last); if (__buf.begin() == 0) std::__merge_without_buffer(__first, __middle, __last, __len1, __len2); else std::__merge_adaptive(__first, __middle, __last, __len1, __len2, __buf.begin(), _DistanceType(__buf.size())); } /** * @brief Merges two sorted ranges in place. * @param first An iterator. * @param middle Another iterator. * @param last Another iterator. * @param comp A functor to use for comparisons. * @return Nothing. * * Merges two sorted and consecutive ranges, [first,middle) and * [middle,last), and puts the result in [first,last). The output will * be sorted. The sort is @e stable, that is, for equivalent * elements in the two ranges, elements from the first range will always * come before elements from the second. * * If enough additional memory is available, this takes (last-first)-1 * comparisons. Otherwise an NlogN algorithm is used, where N is * distance(first,last). * * The comparison function should have the same effects on ordering as * the function used for the initial sort. */ template _Compare> requires ShuffleIterator<_Iter> && CopyConstructible<_Compare> void inplace_merge(_Iter __first, _Iter __middle, _Iter __last, _Compare __comp) { typedef _Iter::value_type _ValueType; typedef _Iter::difference_type _DistanceType; __glibcxx_requires_sorted_pred(__first, __middle, __comp); __glibcxx_requires_sorted_pred(__middle, __last, __comp); if (__first == __middle || __middle == __last) return; const _DistanceType __len1 = std::distance(__first, __middle); const _DistanceType __len2 = std::distance(__middle, __last); _Temporary_buffer<_Iter, _ValueType> __buf(__first, __last); if (__buf.begin() == 0) std::__merge_without_buffer(__first, __middle, __last, __len1, __len2, __comp); else std::__merge_adaptive(__first, __middle, __last, __len1, __len2, __buf.begin(), _DistanceType(__buf.size()), __comp); } template void __stable_sort_adaptive(_RandomAccessIterator __first, _RandomAccessIterator __last, _Pointer __buffer, _Distance __buffer_size) { const _Distance __len = (__last - __first + 1) / 2; const _RandomAccessIterator __middle = __first + __len; if (__len > __buffer_size) { std::__stable_sort_adaptive(__first, __middle, __buffer, __buffer_size); std::__stable_sort_adaptive(__middle, __last, __buffer, __buffer_size); } else { std::__merge_sort_with_buffer(__first, __middle, __buffer); std::__merge_sort_with_buffer(__middle, __last, __buffer); } std::__merge_adaptive(__first, __middle, __last, _Distance(__middle - __first), _Distance(__last - __middle), __buffer, __buffer_size); } template void __stable_sort_adaptive(_RandomAccessIterator __first, _RandomAccessIterator __last, _Pointer __buffer, _Distance __buffer_size, _Compare __comp) { const _Distance __len = (__last - __first + 1) / 2; const _RandomAccessIterator __middle = __first + __len; if (__len > __buffer_size) { std::__stable_sort_adaptive(__first, __middle, __buffer, __buffer_size, __comp); std::__stable_sort_adaptive(__middle, __last, __buffer, __buffer_size, __comp); } else { std::__merge_sort_with_buffer(__first, __middle, __buffer, __comp); std::__merge_sort_with_buffer(__middle, __last, __buffer, __comp); } std::__merge_adaptive(__first, __middle, __last, _Distance(__middle - __first), _Distance(__last - __middle), __buffer, __buffer_size, __comp); } /** * @brief Sort the elements of a sequence, preserving the relative order * of equivalent elements. * @param first An iterator. * @param last Another iterator. * @return Nothing. * * Sorts the elements in the range @p [first,last) in ascending order, * such that @p *(i+1)<*i is false for each iterator @p i in the range * @p [first,last-1). * * The relative ordering of equivalent elements is preserved, so any two * elements @p x and @p y in the range @p [first,last) such that * @p x requires ShuffleIterator<_Iter> && LessThanComparable<_Iter::value_type> inline void stable_sort(_Iter __first, _Iter __last) { typedef _Iter::value_type _ValueType; typedef _Iter::difference_type _DistanceType; __glibcxx_requires_valid_range(__first, __last); _Temporary_buffer<_Iter, _ValueType> __buf(__first, __last); if (__buf.begin() == 0) std::__inplace_stable_sort(__first, __last); else std::__stable_sort_adaptive(__first, __last, __buf.begin(), _DistanceType(__buf.size())); } /** * @brief Sort the elements of a sequence using a predicate for comparison, * preserving the relative order of equivalent elements. * @param first An iterator. * @param last Another iterator. * @param comp A comparison functor. * @return Nothing. * * Sorts the elements in the range @p [first,last) in ascending order, * such that @p comp(*(i+1),*i) is false for each iterator @p i in the * range @p [first,last-1). * * The relative ordering of equivalent elements is preserved, so any two * elements @p x and @p y in the range @p [first,last) such that * @p comp(x,y) is false and @p comp(y,x) is false will have the same * relative ordering after calling @p stable_sort(). */ template _Compare> requires ShuffleIterator<_Iter> && CopyConstructible<_Compare> inline void stable_sort(_Iter __first, _Iter __last, _Compare __comp) { typedef _Iter::value_type _ValueType; typedef _Iter::difference_type _DistanceType; __glibcxx_requires_valid_range(__first, __last); _Temporary_buffer<_Iter, _ValueType> __buf(__first, __last); if (__buf.begin() == 0) std::__inplace_stable_sort(__first, __last, __comp); else std::__stable_sort_adaptive(__first, __last, __buf.begin(), _DistanceType(__buf.size()), __comp); } template void __introselect(_RandomAccessIterator __first, _RandomAccessIterator __nth, _RandomAccessIterator __last, _Size __depth_limit) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType; while (__last - __first > 3) { if (__depth_limit == 0) { std::__heap_select(__first, __nth + 1, __last); // Place the nth largest element in its final position. std::iter_swap(__first, __nth); return; } --__depth_limit; _RandomAccessIterator __cut = std::__unguarded_partition(__first, __last, _ValueType(std::__median(*__first, *(__first + (__last - __first) / 2), *(__last - 1)))); if (__cut <= __nth) __first = __cut; else __last = __cut; } std::__insertion_sort(__first, __last); } template void __introselect(_RandomAccessIterator __first, _RandomAccessIterator __nth, _RandomAccessIterator __last, _Size __depth_limit, _Compare __comp) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType; while (__last - __first > 3) { if (__depth_limit == 0) { std::__heap_select(__first, __nth + 1, __last, __comp); // Place the nth largest element in its final position. std::iter_swap(__first, __nth); return; } --__depth_limit; _RandomAccessIterator __cut = std::__unguarded_partition(__first, __last, _ValueType(std::__median(*__first, *(__first + (__last - __first) / 2), *(__last - 1), __comp)), __comp); if (__cut <= __nth) __first = __cut; else __last = __cut; } std::__insertion_sort(__first, __last, __comp); } /** * @brief Sort a sequence just enough to find a particular position. * @param first An iterator. * @param nth Another iterator. * @param last Another iterator. * @return Nothing. * * Rearranges the elements in the range @p [first,last) so that @p *nth * is the same element that would have been in that position had the * whole sequence been sorted. * whole sequence been sorted. The elements either side of @p *nth are * not completely sorted, but for any iterator @i in the range * @p [first,nth) and any iterator @j in the range @p [nth,last) it * holds that @p *j<*i is false. */ template _GLIBCXX_WHERE(LessThanComparable<_Iter::value_type>, HasSwap<_Iter::reference, _Iter::reference>, CopyAssignable<_Iter::reference>, CopyConstructible<_Iter::value_type>) inline void nth_element(_Iter __first, _Iter __nth, _Iter __last) { __glibcxx_requires_valid_range(__first, __nth); __glibcxx_requires_valid_range(__nth, __last); if (__first == __last || __nth == __last) return; std::__introselect(__first, __nth, __last, std::__lg(__last - __first) * 2); } /** * @brief Sort a sequence just enough to find a particular position * using a predicate for comparison. * @param first An iterator. * @param nth Another iterator. * @param last Another iterator. * @param comp A comparison functor. * @return Nothing. * * Rearranges the elements in the range @p [first,last) so that @p *nth * is the same element that would have been in that position had the * whole sequence been sorted. The elements either side of @p *nth are * not completely sorted, but for any iterator @i in the range * @p [first,nth) and any iterator @j in the range @p [nth,last) it * holds that @p comp(*j,*i) is false. */ template _Compare> _GLIBCXX_WHERE(HasSwap<_Iter::reference, _Iter::reference>, CopyAssignable<_Iter::reference>, CopyConstructible<_Iter::value_type>) inline void nth_element(_Iter __first, _Iter __nth, _Iter __last, _Compare __comp) { __glibcxx_requires_valid_range(__first, __nth); __glibcxx_requires_valid_range(__nth, __last); if (__first == __last || __nth == __last) return; std::__introselect(__first, __nth, __last, std::__lg(__last - __first) * 2, __comp); } /** * @brief Finds the largest subrange in which @a val could be inserted * at any place in it without changing the ordering. * @param first An iterator. * @param last Another iterator. * @param val The search term. * @return An pair of iterators defining the subrange. * @ingroup binarysearch * * This is equivalent to * @code * std::make_pair(lower_bound(first, last, val), * upper_bound(first, last, val)) * @endcode * but does not actually call those functions. */ template requires HasLess<_Tp, _Iter::value_type> && HasLess<_Iter::value_type, _Tp> pair<_Iter, _Iter> equal_range(_Iter __first, _Iter __last, const _Tp& __val) { typedef _Iter::value_type _ValueType; typedef _Iter::difference_type _DistanceType; __glibcxx_requires_partitioned(__first, __last, __val); _DistanceType __len = std::distance(__first, __last); _DistanceType __half; _Iter __middle, __left, __right; while (__len > 0) { __half = __len >> 1; __middle = __first; std::advance(__middle, __half); if (*__middle < __val) { __first = __middle; ++__first; __len = __len - __half - 1; } else if (__val < *__middle) __len = __half; else { __left = std::lower_bound(__first, __middle, __val); std::advance(__first, __len); __right = std::upper_bound(++__middle, __first, __val); return pair<_Iter, _Iter>(__left, __right); } } return pair<_Iter, _Iter>(__first, __first); } /** * @brief Finds the largest subrange in which @a val could be inserted * at any place in it without changing the ordering. * @param first An iterator. * @param last Another iterator. * @param val The search term. * @param comp A functor to use for comparisons. * @return An pair of iterators defining the subrange. * @ingroup binarysearch * * This is equivalent to * @code * std::make_pair(lower_bound(first, last, val, comp), * upper_bound(first, last, val, comp)) * @endcode * but does not actually call those functions. */ template requires BinaryPredicate<_Compare, _Iter::value_type, _Tp> && BinaryPredicate<_Compare, _Tp, _Iter::value_type> pair<_Iter, _Iter> equal_range(_Iter __first, _Iter __last, const _Tp& __val, _Compare __comp) { typedef _Iter::value_type _ValueType; typedef _Iter::difference_type _DistanceType; __glibcxx_requires_partitioned_pred(__first, __last, __val, __comp); _DistanceType __len = std::distance(__first, __last); _DistanceType __half; _Iter __middle, __left, __right; while (__len > 0) { __half = __len >> 1; __middle = __first; std::advance(__middle, __half); if (__comp(*__middle, __val)) { __first = __middle; ++__first; __len = __len - __half - 1; } else if (__comp(__val, *__middle)) __len = __half; else { __left = std::lower_bound(__first, __middle, __val, __comp); std::advance(__first, __len); __right = std::upper_bound(++__middle, __first, __val, __comp); return pair<_Iter, _Iter>(__left, __right); } } return pair<_Iter, _Iter>(__first, __first); } /** * @brief Determines whether an element exists in a range. * @param first An iterator. * @param last Another iterator. * @param val The search term. * @return True if @a val (or its equivelent) is in [@a first,@a last ]. * @ingroup binarysearch * * Note that this does not actually return an iterator to @a val. For * that, use std::find or a container's specialized find member functions. */ template requires HasLess<_Tp, _Iter::value_type> && HasLess<_Iter::value_type, _Tp> bool binary_search(_Iter __first, _Iter __last, const _Tp& __val) { __glibcxx_requires_partitioned(__first, __last, __val); _Iter __i = std::lower_bound(__first, __last, __val); return __i != __last && !(__val < *__i); } /** * @brief Determines whether an element exists in a range. * @param first An iterator. * @param last Another iterator. * @param val The search term. * @param comp A functor to use for comparisons. * @return True if @a val (or its equivelent) is in [@a first,@a last ]. * @ingroup binarysearch * * Note that this does not actually return an iterator to @a val. For * that, use std::find or a container's specialized find member functions. * * The comparison function should have the same effects on ordering as * the function used for the initial sort. */ template requires BinaryPredicate<_Compare, _Iter::value_type, _Tp> && BinaryPredicate<_Compare, _Tp, _Iter::value_type> bool binary_search(_Iter __first, _Iter __last, const _Tp& __val, _Compare __comp) { __glibcxx_requires_partitioned_pred(__first, __last, __val, __comp); _Iter __i = std::lower_bound(__first, __last, __val, __comp); return __i != __last && !__comp(__val, *__i); } // Set algorithms: includes, set_union, set_intersection, set_difference, // set_symmetric_difference. All of these algorithms have the precondition // that their input ranges are sorted and the postcondition that their output // ranges are sorted. /** * @brief Determines whether all elements of a sequence exists in a range. * @param first1 Start of search range. * @param last1 End of search range. * @param first2 Start of sequence * @param last2 End of sequence. * @return True if each element in [first2,last2) is contained in order * within [first1,last1). False otherwise. * @ingroup setoperations * * This operation expects both [first1,last1) and [first2,last2) to be * sorted. Searches for the presence of each element in [first2,last2) * within [first1,last1). The iterators over each range only move forward, * so this is a linear algorithm. If an element in [first2,last2) is not * found before the search iterator reaches @a last2, false is returned. */ template requires HasLess<_Iter1::value_type, _Iter2::value_type> && HasLess<_Iter2::value_type, _Iter1::value_type> bool includes(_Iter1 __first1, _Iter1 __last1, _Iter2 __first2, _Iter2 __last2) { __glibcxx_requires_sorted(__first1, __last1); __glibcxx_requires_sorted(__first2, __last2); while (__first1 != __last1 && __first2 != __last2) if (*__first2 < *__first1) return false; else if(*__first1 < *__first2) ++__first1; else ++__first1, ++__first2; return __first2 == __last2; } /** * @brief Determines whether all elements of a sequence exists in a range * using comparison. * @param first1 Start of search range. * @param last1 End of search range. * @param first2 Start of sequence * @param last2 End of sequence. * @param comp Comparison function to use. * @return True if each element in [first2,last2) is contained in order * within [first1,last1) according to comp. False otherwise. * @ingroup setoperations * * This operation expects both [first1,last1) and [first2,last2) to be * sorted. Searches for the presence of each element in [first2,last2) * within [first1,last1), using comp to decide. The iterators over each * range only move forward, so this is a linear algorithm. If an element * in [first2,last2) is not found before the search iterator reaches @a * last2, false is returned. */ template requires BinaryPredicate<_Compare, _Iter1::value_type, _Iter2::value_type> && BinaryPredicate<_Compare, _Iter2::value_type, _Iter1::value_type> bool includes(_Iter1 __first1, _Iter1 __last1, _Iter2 __first2, _Iter2 __last2, _Compare __comp) { __glibcxx_requires_sorted_pred(__first1, __last1, __comp); __glibcxx_requires_sorted_pred(__first2, __last2, __comp); while (__first1 != __last1 && __first2 != __last2) if (__comp(*__first2, *__first1)) return false; else if(__comp(*__first1, *__first2)) ++__first1; else ++__first1, ++__first2; return __first2 == __last2; } /** * @brief Return the union of two sorted ranges. * @param first1 Start of first range. * @param last1 End of first range. * @param first2 Start of second range. * @param last2 End of second range. * @return End of the output range. * @ingroup setoperations * * This operation iterates over both ranges, copying elements present in * each range in order to the output range. Iterators increment for each * range. When the current element of one range is less than the other, * that element is copied and the iterator advanced. If an element is * contained in both ranges, the element from the first range is copied and * both ranges advance. The output range may not overlap either input * range. */ template requires OutputIterator<_OutIter, _InIter1::reference> && OutputIterator<_OutIter, _InIter2::reference> && HasLess<_InIter2::value_type, _InIter1::value_type> && HasLess<_InIter1::value_type, _InIter2::value_type> _OutIter set_union(_InIter1 __first1, _InIter1 __last1, _InIter2 __first2, _InIter2 __last2, _OutIter __result) { __glibcxx_requires_sorted(__first1, __last1); __glibcxx_requires_sorted(__first2, __last2); while (__first1 != __last1 && __first2 != __last2) { if (*__first1 < *__first2) { *__result = *__first1; ++__first1; } else if (*__first2 < *__first1) { *__result = *__first2; ++__first2; } else { *__result = *__first1; ++__first1; ++__first2; } ++__result; } return std::copy(__first2, __last2, std::copy(__first1, __last1, __result)); } /** * @brief Return the union of two sorted ranges using a comparison functor. * @param first1 Start of first range. * @param last1 End of first range. * @param first2 Start of second range. * @param last2 End of second range. * @param comp The comparison functor. * @return End of the output range. * @ingroup setoperations * * This operation iterates over both ranges, copying elements present in * each range in order to the output range. Iterators increment for each * range. When the current element of one range is less than the other * according to @a comp, that element is copied and the iterator advanced. * If an equivalent element according to @a comp is contained in both * ranges, the element from the first range is copied and both ranges * advance. The output range may not overlap either input range. */ template requires OutputIterator<_OutIter, _InIter1::reference> && OutputIterator<_OutIter, _InIter2::reference> && BinaryPredicate<_Compare, _InIter1::value_type, _InIter2::value_type> && BinaryPredicate<_Compare, _InIter2::value_type, _InIter1::value_type> _OutIter set_union(_InIter1 __first1, _InIter1 __last1, _InIter2 __first2, _InIter2 __last2, _OutIter __result, _Compare __comp) { __glibcxx_requires_sorted_pred(__first1, __last1, __comp); __glibcxx_requires_sorted_pred(__first2, __last2, __comp); while (__first1 != __last1 && __first2 != __last2) { if (__comp(*__first1, *__first2)) { *__result = *__first1; ++__first1; } else if (__comp(*__first2, *__first1)) { *__result = *__first2; ++__first2; } else { *__result = *__first1; ++__first1; ++__first2; } ++__result; } return std::copy(__first2, __last2, std::copy(__first1, __last1, __result)); } /** * @brief Return the intersection of two sorted ranges. * @param first1 Start of first range. * @param last1 End of first range. * @param first2 Start of second range. * @param last2 End of second range. * @return End of the output range. * @ingroup setoperations * * This operation iterates over both ranges, copying elements present in * both ranges in order to the output range. Iterators increment for each * range. When the current element of one range is less than the other, * that iterator advances. If an element is contained in both ranges, the * element from the first range is copied and both ranges advance. The * output range may not overlap either input range. */ template requires OutputIterator<_OutIter, _InIter1::reference> && OutputIterator<_OutIter, _InIter2::reference> && HasLess<_InIter2::value_type, _InIter1::value_type> && HasLess<_InIter1::value_type, _InIter2::value_type> _OutIter set_intersection(_InIter1 __first1, _InIter1 __last1, _InIter2 __first2, _InIter2 __last2, _OutIter __result) { __glibcxx_requires_sorted(__first1, __last1); __glibcxx_requires_sorted(__first2, __last2); while (__first1 != __last1 && __first2 != __last2) if (*__first1 < *__first2) ++__first1; else if (*__first2 < *__first1) ++__first2; else { *__result = *__first1; ++__first1; ++__first2; ++__result; } return __result; } /** * @brief Return the intersection of two sorted ranges using comparison * functor. * @param first1 Start of first range. * @param last1 End of first range. * @param first2 Start of second range. * @param last2 End of second range. * @param comp The comparison functor. * @return End of the output range. * @ingroup setoperations * * This operation iterates over both ranges, copying elements present in * both ranges in order to the output range. Iterators increment for each * range. When the current element of one range is less than the other * according to @a comp, that iterator advances. If an element is * contained in both ranges according to @a comp, the element from the * first range is copied and both ranges advance. The output range may not * overlap either input range. */ template requires OutputIterator<_OutIter, _InIter1::reference> && OutputIterator<_OutIter, _InIter2::reference> && BinaryPredicate<_Compare, _InIter1::value_type, _InIter2::value_type> && BinaryPredicate<_Compare, _InIter2::value_type, _InIter1::value_type> _OutIter set_intersection(_InIter1 __first1, _InIter1 __last1, _InIter2 __first2, _InIter2 __last2, _OutIter __result, _Compare __comp) { __glibcxx_requires_sorted_pred(__first1, __last1, __comp); __glibcxx_requires_sorted_pred(__first2, __last2, __comp); while (__first1 != __last1 && __first2 != __last2) if (__comp(*__first1, *__first2)) ++__first1; else if (__comp(*__first2, *__first1)) ++__first2; else { *__result = *__first1; ++__first1; ++__first2; ++__result; } return __result; } /** * @brief Return the difference of two sorted ranges. * @param first1 Start of first range. * @param last1 End of first range. * @param first2 Start of second range. * @param last2 End of second range. * @return End of the output range. * @ingroup setoperations * * This operation iterates over both ranges, copying elements present in * the first range but not the second in order to the output range. * Iterators increment for each range. When the current element of the * first range is less than the second, that element is copied and the * iterator advances. If the current element of the second range is less, * the iterator advances, but no element is copied. If an element is * contained in both ranges, no elements are copied and both ranges * advance. The output range may not overlap either input range. */ template requires OutputIterator<_OutIter, _InIter1::reference> && OutputIterator<_OutIter, _InIter2::reference> && HasLess<_InIter2::value_type, _InIter1::value_type> && HasLess<_InIter1::value_type, _InIter2::value_type> _OutIter set_difference(_InIter1 __first1, _InIter1 __last1, _InIter2 __first2, _InIter2 __last2, _OutIter __result) { __glibcxx_requires_sorted(__first1, __last1); __glibcxx_requires_sorted(__first2, __last2); while (__first1 != __last1 && __first2 != __last2) if (*__first1 < *__first2) { *__result = *__first1; ++__first1; ++__result; } else if (*__first2 < *__first1) ++__first2; else { ++__first1; ++__first2; } return std::copy(__first1, __last1, __result); } /** * @brief Return the difference of two sorted ranges using comparison * functor. * @param first1 Start of first range. * @param last1 End of first range. * @param first2 Start of second range. * @param last2 End of second range. * @param comp The comparison functor. * @return End of the output range. * @ingroup setoperations * * This operation iterates over both ranges, copying elements present in * the first range but not the second in order to the output range. * Iterators increment for each range. When the current element of the * first range is less than the second according to @a comp, that element * is copied and the iterator advances. If the current element of the * second range is less, no element is copied and the iterator advances. * If an element is contained in both ranges according to @a comp, no * elements are copied and both ranges advance. The output range may not * overlap either input range. */ template requires OutputIterator<_OutIter, _InIter1::reference> && OutputIterator<_OutIter, _InIter2::reference> && BinaryPredicate<_Compare, _InIter1::value_type, _InIter2::value_type> && BinaryPredicate<_Compare, _InIter2::value_type, _InIter1::value_type> _OutIter set_difference(_InIter1 __first1, _InIter1 __last1, _InIter2 __first2, _InIter2 __last2, _OutIter __result, _Compare __comp) { __glibcxx_requires_sorted_pred(__first1, __last1, __comp); __glibcxx_requires_sorted_pred(__first2, __last2, __comp); while (__first1 != __last1 && __first2 != __last2) if (__comp(*__first1, *__first2)) { *__result = *__first1; ++__first1; ++__result; } else if (__comp(*__first2, *__first1)) ++__first2; else { ++__first1; ++__first2; } return std::copy(__first1, __last1, __result); } /** * @brief Return the symmetric difference of two sorted ranges. * @param first1 Start of first range. * @param last1 End of first range. * @param first2 Start of second range. * @param last2 End of second range. * @return End of the output range. * @ingroup setoperations * * This operation iterates over both ranges, copying elements present in * one range but not the other in order to the output range. Iterators * increment for each range. When the current element of one range is less * than the other, that element is copied and the iterator advances. If an * element is contained in both ranges, no elements are copied and both * ranges advance. The output range may not overlap either input range. */ template requires OutputIterator<_OutIter, _InIter1::reference> && OutputIterator<_OutIter, _InIter2::reference> && HasLess<_InIter2::value_type, _InIter1::value_type> && HasLess<_InIter1::value_type, _InIter2::value_type> _OutIter set_symmetric_difference(_InIter1 __first1, _InIter1 __last1, _InIter2 __first2, _InIter2 __last2, _OutIter __result) { __glibcxx_requires_sorted(__first1, __last1); __glibcxx_requires_sorted(__first2, __last2); while (__first1 != __last1 && __first2 != __last2) if (*__first1 < *__first2) { *__result = *__first1; ++__first1; ++__result; } else if (*__first2 < *__first1) { *__result = *__first2; ++__first2; ++__result; } else { ++__first1; ++__first2; } return std::copy(__first2, __last2, std::copy(__first1, __last1, __result)); } /** * @brief Return the symmetric difference of two sorted ranges using * comparison functor. * @param first1 Start of first range. * @param last1 End of first range. * @param first2 Start of second range. * @param last2 End of second range. * @param comp The comparison functor. * @return End of the output range. * @ingroup setoperations * * This operation iterates over both ranges, copying elements present in * one range but not the other in order to the output range. Iterators * increment for each range. When the current element of one range is less * than the other according to @a comp, that element is copied and the * iterator advances. If an element is contained in both ranges according * to @a comp, no elements are copied and both ranges advance. The output * range may not overlap either input range. */ template requires OutputIterator<_OutIter, _InIter1::reference> && OutputIterator<_OutIter, _InIter2::reference> && BinaryPredicate<_Compare, _InIter1::value_type, _InIter2::value_type> && BinaryPredicate<_Compare, _InIter2::value_type, _InIter1::value_type> _OutIter set_symmetric_difference(_InIter1 __first1, _InIter1 __last1, _InIter2 __first2, _InIter2 __last2, _OutIter __result, _Compare __comp) { __glibcxx_requires_sorted_pred(__first1, __last1, __comp); __glibcxx_requires_sorted_pred(__first2, __last2, __comp); while (__first1 != __last1 && __first2 != __last2) if (__comp(*__first1, *__first2)) { *__result = *__first1; ++__first1; ++__result; } else if (__comp(*__first2, *__first1)) { *__result = *__first2; ++__first2; ++__result; } else { ++__first1; ++__first2; } return std::copy(__first2, __last2, std::copy(__first1, __last1, __result)); } // min_element and max_element, with and without an explicitly supplied // comparison function. /** * @brief Return the maximum element in a range. * @param first Start of range. * @param last End of range. * @return Iterator referencing the first instance of the largest value. */ template requires LessThanComparable<_Iter::value_type> _Iter max_element(_Iter __first, _Iter __last) { __glibcxx_requires_valid_range(__first, __last); if (__first == __last) return __first; _Iter __result = __first; while (++__first != __last) if (*__result < *__first) __result = __first; return __result; } /** * @brief Return the maximum element in a range using comparison functor. * @param first Start of range. * @param last End of range. * @param comp Comparison functor. * @return Iterator referencing the first instance of the largest value * according to comp. */ template _Compare> requires CopyConstructible<_Compare> _Iter max_element(_Iter __first, _Iter __last, _Compare __comp) { __glibcxx_requires_valid_range(__first, __last); if (__first == __last) return __first; _Iter __result = __first; while (++__first != __last) if (__comp(*__result, *__first)) __result = __first; return __result; } /** * @brief Return the minimum element in a range. * @param first Start of range. * @param last End of range. * @return Iterator referencing the first instance of the smallest value. */ template requires LessThanComparable<_Iter::value_type> _Iter min_element(_Iter __first, _Iter __last) { __glibcxx_requires_valid_range(__first, __last); if (__first == __last) return __first; _Iter __result = __first; while (++__first != __last) if (*__first < *__result) __result = __first; return __result; } /** * @brief Return the minimum element in a range using comparison functor. * @param first Start of range. * @param last End of range. * @param comp Comparison functor. * @return Iterator referencing the first instance of the smallest value * according to comp. */ template _Compare> requires CopyConstructible<_Compare> _Iter min_element(_Iter __first, _Iter __last, _Compare __comp) { __glibcxx_requires_valid_range(__first, __last); if (__first == __last) return __first; _Iter __result = __first; while (++__first != __last) if (__comp(*__first, *__result)) __result = __first; return __result; } // next_permutation and prev_permutation, with and without an explicitly // supplied comparison function. /** * @brief Permute range into the next "dictionary" ordering. * @param first Start of range. * @param last End of range. * @return False if wrapped to first permutation, true otherwise. * * Treats all permutations of the range as a set of "dictionary" sorted * sequences. Permutes the current sequence into the next one of this set. * Returns true if there are more sequences to generate. If the sequence * is the largest of the set, the smallest is generated and false returned. */ template requires LessThanComparable<_Iter::value_type> && HasSwap<_Iter::reference, _Iter::reference> bool next_permutation(_Iter __first, _Iter __last) { __glibcxx_requires_valid_range(__first, __last); if (__first == __last) return false; _Iter __i = __first; ++__i; if (__i == __last) return false; __i = __last; --__i; for(;;) { _Iter __ii = __i; --__i; if (*__i < *__ii) { _Iter __j = __last; while (!(*__i < *--__j)) {} std::iter_swap(__i, __j); std::reverse(__ii, __last); return true; } if (__i == __first) { std::reverse(__first, __last); return false; } } } /** * @brief Permute range into the next "dictionary" ordering using * comparison functor. * @param first Start of range. * @param last End of range. * @param comp * @return False if wrapped to first permutation, true otherwise. * * Treats all permutations of the range [first,last) as a set of * "dictionary" sorted sequences ordered by @a comp. Permutes the current * sequence into the next one of this set. Returns true if there are more * sequences to generate. If the sequence is the largest of the set, the * smallest is generated and false returned. */ template _Compare> requires HasSwap<_Iter::reference, _Iter::reference> && CopyConstructible<_Compare> bool next_permutation(_Iter __first, _Iter __last, _Compare __comp) { __glibcxx_requires_valid_range(__first, __last); if (__first == __last) return false; _Iter __i = __first; ++__i; if (__i == __last) return false; __i = __last; --__i; for(;;) { _Iter __ii = __i; --__i; if (__comp(*__i, *__ii)) { _Iter __j = __last; while (!__comp(*__i, *--__j)) {} std::iter_swap(__i, __j); std::reverse(__ii, __last); return true; } if (__i == __first) { std::reverse(__first, __last); return false; } } } /** * @brief Permute range into the previous "dictionary" ordering. * @param first Start of range. * @param last End of range. * @return False if wrapped to last permutation, true otherwise. * * Treats all permutations of the range as a set of "dictionary" sorted * sequences. Permutes the current sequence into the previous one of this * set. Returns true if there are more sequences to generate. If the * sequence is the smallest of the set, the largest is generated and false * returned. */ template requires LessThanComparable<_Iter::value_type> && HasSwap<_Iter::reference, _Iter::reference> bool prev_permutation(_Iter __first, _Iter __last) { __glibcxx_requires_valid_range(__first, __last); if (__first == __last) return false; _Iter __i = __first; ++__i; if (__i == __last) return false; __i = __last; --__i; for(;;) { _Iter __ii = __i; --__i; if (*__ii < *__i) { _Iter __j = __last; while (!(*--__j < *__i)) {} std::iter_swap(__i, __j); std::reverse(__ii, __last); return true; } if (__i == __first) { std::reverse(__first, __last); return false; } } } /** * @brief Permute range into the previous "dictionary" ordering using * comparison functor. * @param first Start of range. * @param last End of range. * @param comp * @return False if wrapped to last permutation, true otherwise. * * Treats all permutations of the range [first,last) as a set of * "dictionary" sorted sequences ordered by @a comp. Permutes the current * sequence into the previous one of this set. Returns true if there are * more sequences to generate. If the sequence is the smallest of the set, * the largest is generated and false returned. */ template _Compare> requires HasSwap<_Iter::reference, _Iter::reference> bool prev_permutation(_Iter __first, _Iter __last, _Compare __comp) { __glibcxx_requires_valid_range(__first, __last); if (__first == __last) return false; _Iter __i = __first; ++__i; if (__i == __last) return false; __i = __last; --__i; for(;;) { _Iter __ii = __i; --__i; if (__comp(*__ii, *__i)) { _Iter __j = __last; while (!__comp(*--__j, *__i)) {} std::iter_swap(__i, __j); std::reverse(__ii, __last); return true; } if (__i == __first) { std::reverse(__first, __last); return false; } } } /** * @brief Find element from a set in a sequence. * @param first1 Start of range to search. * @param last1 End of range to search. * @param first2 Start of match candidates. * @param last2 End of match candidates. * @return The first iterator @c i in the range * @p [first1,last1) such that @c *i == @p *(i2) such that i2 is an * interator in [first2,last2), or @p last1 if no such iterator exists. * * Searches the range @p [first1,last1) for an element that is equal to * some element in the range [first2,last2). If found, returns an iterator * in the range [first1,last1), otherwise returns @p last1. */ template requires HasEqualTo<_InIter::value_type, _ForIter::value_type> _InIter find_first_of(_InIter __first1, _InIter __last1, _ForIter __first2, _ForIter __last2) { __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2); for ( ; __first1 != __last1; ++__first1) for (_ForIter __iter = __first2; __iter != __last2; ++__iter) if (*__first1 == *__iter) return __first1; return __last1; } /** * @brief Find element from a set in a sequence using a predicate. * @param first1 Start of range to search. * @param last1 End of range to search. * @param first2 Start of match candidates. * @param last2 End of match candidates. * @param comp Predicate to use. * @return The first iterator @c i in the range * @p [first1,last1) such that @c comp(*i, @p *(i2)) is true and i2 is an * interator in [first2,last2), or @p last1 if no such iterator exists. * * Searches the range @p [first1,last1) for an element that is equal to * some element in the range [first2,last2). If found, returns an iterator in * the range [first1,last1), otherwise returns @p last1. */ template _Pred> requires CopyConstructible<_Pred> _InIter find_first_of(_InIter __first1, _InIter __last1, _ForIter __first2, _ForIter __last2, _Pred __comp) { __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2); for ( ; __first1 != __last1; ++__first1) for (_ForIter __iter = __first2; __iter != __last2; ++__iter) if (__comp(*__first1, *__iter)) return __first1; return __last1; } /** * @brief Find last matching subsequence in a sequence. * @param first1 Start of range to search. * @param last1 End of range to search. * @param first2 Start of sequence to match. * @param last2 End of sequence to match. * @return The last iterator @c i in the range * @p [first1,last1-(last2-first2)) such that @c *(i+N) == @p *(first2+N) * for each @c N in the range @p [0,last2-first2), or @p last1 if no * such iterator exists. * * Searches the range @p [first1,last1) for a sub-sequence that compares * equal value-by-value with the sequence given by @p [first2,last2) and * returns an iterator to the first element of the sub-sequence, or * @p last1 if the sub-sequence is not found. The sub-sequence will be the * last such subsequence contained in [first,last1). * * Because the sub-sequence must lie completely within the range * @p [first1,last1) it must start at a position less than * @p last1-(last2-first2) where @p last2-first2 is the length of the * sub-sequence. * This means that the returned iterator @c i will be in the range * @p [first1,last1-(last2-first2)) */ template requires HasEqualTo<_Iter1::value_type, _Iter2::value_type> _Iter1 find_end(_Iter1 __first1, _Iter1 __last1, _Iter2 __first2, _Iter2 __last2) { if (__first2 == __last2) return __last1; else { _Iter1 __result = __last1; while (1) { _Iter1 __new_result = std::search(__first1, __last1, __first2, __last2); if (__new_result == __last1) return __result; else { __result = __new_result; __first1 = __new_result; ++__first1; } } } } /** * @brief Find last matching subsequence in a sequence using a predicate. * @param first1 Start of range to search. * @param last1 End of range to search. * @param first2 Start of sequence to match. * @param last2 End of sequence to match. * @param comp The predicate to use. * @return The last iterator @c i in the range * @p [first1,last1-(last2-first2)) such that @c predicate(*(i+N), @p * (first2+N)) is true for each @c N in the range @p [0,last2-first2), or * @p last1 if no such iterator exists. * * Searches the range @p [first1,last1) for a sub-sequence that compares * equal value-by-value with the sequence given by @p [first2,last2) using * comp as a predicate and returns an iterator to the first element of the * sub-sequence, or @p last1 if the sub-sequence is not found. The * sub-sequence will be the last such subsequence contained in * [first,last1). * * Because the sub-sequence must lie completely within the range * @p [first1,last1) it must start at a position less than * @p last1-(last2-first2) where @p last2-first2 is the length of the * sub-sequence. * This means that the returned iterator @c i will be in the range * @p [first1,last1-(last2-first2)) */ template _Pred> requires CopyConstructible<_Pred> _Iter1 find_end(_Iter1 __first1, _Iter1 __last1, _Iter2 __first2, _Iter2 __last2, _Pred __comp) { if (__first2 == __last2) return __last1; else { _Iter1 __result = __last1; while (1) { _Iter1 __new_result = std::search(__first1, __last1, __first2, __last2, __comp); if (__new_result == __last1) return __result; else { __result = __new_result; __first1 = __new_result; ++__first1; } } } } /** * @brief Find last matching subsequence in a sequence. * @param first1 Start of range to search. * @param last1 End of range to search. * @param first2 Start of sequence to match. * @param last2 End of sequence to match. * @return The last iterator @c i in the range * @p [first1,last1-(last2-first2)) such that @c *(i+N) == @p *(first2+N) * for each @c N in the range @p [0,last2-first2), or @p last1 if no * such iterator exists. * * Searches the range @p [first1,last1) for a sub-sequence that compares * equal value-by-value with the sequence given by @p [first2,last2) and * returns an iterator to the first element of the sub-sequence, or * @p last1 if the sub-sequence is not found. The sub-sequence will be the * last such subsequence contained in [first,last1). * * Because the sub-sequence must lie completely within the range * @p [first1,last1) it must start at a position less than * @p last1-(last2-first2) where @p last2-first2 is the length of the * sub-sequence. * This means that the returned iterator @c i will be in the range * @p [first1,last1-(last2-first2)) */ template requires HasEqualTo::value_type, BidirectionalIterator<_Iter2>::value_type> _Iter1 find_end(_Iter1 __first1, _Iter1 __last1, _Iter2 __first2, _Iter2 __last2) { late_check { typedef reverse_iterator<_Iter1> _RevIterator1; typedef reverse_iterator<_Iter2> _RevIterator2; _RevIterator1 __rlast1(__first1); _RevIterator2 __rlast2(__first2); _RevIterator1 __rresult = std::search(_RevIterator1(__last1), __rlast1, _RevIterator2(__last2), __rlast2); if (__rresult == __rlast1) return __last1; else { _Iter1 __result = __rresult.base(); std::advance(__result, -std::distance(__first2, __last2)); return __result; } } } /** * @brief Find last matching subsequence in a sequence using a predicate. * @param first1 Start of range to search. * @param last1 End of range to search. * @param first2 Start of sequence to match. * @param last2 End of sequence to match. * @param comp The predicate to use. * @return The last iterator @c i in the range * @p [first1,last1-(last2-first2)) such that @c predicate(*(i+N), @p * (first2+N)) is true for each @c N in the range @p [0,last2-first2), or * @p last1 if no such iterator exists. * * Searches the range @p [first1,last1) for a sub-sequence that compares * equal value-by-value with the sequence given by @p [first2,last2) using * comp as a predicate and returns an iterator to the first element of the * sub-sequence, or @p last1 if the sub-sequence is not found. The * sub-sequence will be the last such subsequence contained in * [first,last1). * * Because the sub-sequence must lie completely within the range * @p [first1,last1) it must start at a position less than * @p last1-(last2-first2) where @p last2-first2 is the length of the * sub-sequence. * This means that the returned iterator @c i will be in the range * @p [first1,last1-(last2-first2)) */ template::value_type, BidirectionalIterator<_Iter2>::value_type> _Pred> requires CopyConstructible<_Pred> _Iter1 find_end(_Iter1 __first1, _Iter1 __last1, _Iter2 __first2, _Iter2 __last2, _Pred __comp) { late_check { typedef reverse_iterator<_Iter1> _RevIterator1; typedef reverse_iterator<_Iter2> _RevIterator2; _RevIterator1 __rlast1(__first1); _RevIterator2 __rlast2(__first2); _RevIterator1 __rresult = std::search(_RevIterator1(__last1), __rlast1, _RevIterator2(__last2), __rlast2, __comp); if (__rresult == __rlast1) return __last1; else { _Iter1 __result = __rresult.base(); std::advance(__result, -std::distance(__first2, __last2)); return __result; } } } _GLIBCXX_END_NAMESPACE #endif /* _ALGO_H */