// Reference-counted versatile string base -*- C++ -*- // Copyright (C) 2005 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, // USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. /** @file ext/rc_string_base.h * This file is a GNU extension to the Standard C++ Library. * This is an internal header file, included by other library headers. * You should not attempt to use it directly. */ #ifndef _RC_STRING_BASE_H #define _RC_STRING_BASE_H 1 #include namespace __gnu_cxx { /** * @if maint * Documentation? What's that? * Nathan Myers . * * A string looks like this: * * @code * [_Rep] * _M_length * [__rc_string_base] _M_capacity * _M_dataplus _M_refcount * _M_p ----------------> unnamed array of char_type * @endcode * * Where the _M_p points to the first character in the string, and * you cast it to a pointer-to-_Rep and subtract 1 to get a * pointer to the header. * * This approach has the enormous advantage that a string object * requires only one allocation. All the ugliness is confined * within a single pair of inline functions, which each compile to * a single "add" instruction: _Rep::_M_refdata(), and * __rc_string_base::_M_rep(); and the allocation function which gets a * block of raw bytes and with room enough and constructs a _Rep * object at the front. * * The reason you want _M_data pointing to the character array and * not the _Rep is so that the debugger can see the string * contents. (Probably we should add a non-inline member to get * the _Rep for the debugger to use, so users can check the actual * string length.) * * Note that the _Rep object is a POD so that you can have a * static "empty string" _Rep object already "constructed" before * static constructors have run. The reference-count encoding is * chosen so that a 0 indicates one reference, so you never try to * destroy the empty-string _Rep object. * * All but the last paragraph is considered pretty conventional * for a C++ string implementation. * @endif */ template class __rc_string_base : protected __vstring_utility<_CharT, _Traits, _Alloc> { public: typedef _Traits traits_type; typedef typename _Traits::char_type value_type; typedef _Alloc allocator_type; typedef typename __vstring_utility<_CharT, _Traits, _Alloc>:: _CharT_alloc_type _CharT_alloc_type; typedef typename _CharT_alloc_type::size_type size_type; // The maximum number of individual char_type elements of an // individual string is determined by _S_max_size. This is the // value that will be returned by max_size(). (Whereas npos // is the maximum number of bytes the allocator can allocate.) // If one was to divvy up the theoretical largest size string, // with a terminating character and m _CharT elements, it'd // look like this: // npos = sizeof(_Rep) + (m * sizeof(_CharT)) + sizeof(_CharT) // Solving for m: // m = ((npos - sizeof(_Rep))/sizeof(CharT)) - 1 // In addition, this implementation quarters this amount. static const size_type _S_max_size; private: static const _CharT _S_terminal; // _Rep: string representation // Invariants: // 1. String really contains _M_length + 1 characters: due to 21.3.4 // must be kept null-terminated. // 2. _M_capacity >= _M_length // Allocated memory is always (_M_capacity + 1) * sizeof(_CharT). // 3. _M_refcount has three states: // -1: leaked, one reference, no ref-copies allowed, non-const. // 0: one reference, non-const. // n>0: n + 1 references, operations require a lock, const. // 4. All fields==0 is an empty string, given the extra storage // beyond-the-end for a null terminator; thus, the shared // empty string representation needs no constructor. struct _Rep { size_type _M_length; size_type _M_capacity; _Atomic_word _M_refcount; typedef typename _Alloc::template rebind::other _Raw_alloc; _CharT* _M_refdata() { return reinterpret_cast<_CharT*>(this + 1); } void _M_set_length(size_type __n) { _M_refcount = 0; // One reference. _M_length = __n; // grrr. (per 21.3.4) // You cannot leave those LWG people alone for a second. traits_type::assign(_M_refdata()[__n], _S_terminal); } // Create & Destroy static _Rep* _S_create(size_type, size_type, const _Alloc&); void _M_destroy(const _Alloc&) throw(); _CharT* _M_clone(const _Alloc&, size_type __res = 0); }; struct _Rep_empty : _Rep { _CharT _M_terminal; }; // Use empty-base optimization: http://www.cantrip.org/emptyopt.html struct _Alloc_hider : _Alloc { _Alloc_hider(_CharT* __dat, const _Alloc& __a) : _Alloc(__a), _M_p(__dat) { } _CharT* _M_p; // The actual data. }; // Data Member (private): mutable _Alloc_hider _M_dataplus; static _Rep_empty& _S_empty_rep() { static _Rep_empty _Empty_rep; return _Empty_rep; } _CharT* _M_data(_CharT* __p) { return (_M_dataplus._M_p = __p); } _Rep* _M_rep() const { return &((reinterpret_cast<_Rep*>(_M_data()))[-1]); } _CharT* _M_refcopy() const throw() { #ifndef _GLIBCXX_FULLY_DYNAMIC_STRING if (__builtin_expect(_M_rep() != &_S_empty_rep(), false)) #endif __atomic_add(&_M_rep()->_M_refcount, 1); return _M_data(); } // XXX MT _CharT* _M_grab(const _Alloc& __alloc1, const _Alloc& __alloc2) const { return (!_M_is_leaked() && __alloc1 == __alloc2) ? _M_refcopy() : _M_rep()->_M_clone(__alloc1); } void _M_dispose(const _Alloc& __a) { #ifndef _GLIBCXX_FULLY_DYNAMIC_STRING if (__builtin_expect(_M_rep() != &_S_empty_rep(), false)) #endif if (__exchange_and_add(&_M_rep()->_M_refcount, -1) <= 0) _M_rep()->_M_destroy(__a); } // XXX MT void _M_leak_hard(); // _S_construct_aux is used to implement the 21.3.1 para 15 which // requires special behaviour if _InIter is an integral type template static _CharT* _S_construct_aux(_InIterator __beg, _InIterator __end, const _Alloc& __a, __false_type) { typedef typename iterator_traits<_InIterator>::iterator_category _Tag; return _S_construct(__beg, __end, __a, _Tag()); } template static _CharT* _S_construct_aux(_InIterator __beg, _InIterator __end, const _Alloc& __a, __true_type) { return _S_construct(static_cast(__beg), static_cast(__end), __a); } template static _CharT* _S_construct(_InIterator __beg, _InIterator __end, const _Alloc& __a) { typedef typename std::__is_integer<_InIterator>::__type _Integral; return _S_construct_aux(__beg, __end, __a, _Integral()); } // For Input Iterators, used in istreambuf_iterators, etc. template static _CharT* _S_construct(_InIterator __beg, _InIterator __end, const _Alloc& __a, std::input_iterator_tag); // For forward_iterators up to random_access_iterators, used for // string::iterator, _CharT*, etc. template static _CharT* _S_construct(_FwdIterator __beg, _FwdIterator __end, const _Alloc& __a, std::forward_iterator_tag); static _CharT* _S_construct(size_type __req, _CharT __c, const _Alloc& __a); public: _CharT* _M_data() const { return _M_dataplus._M_p; } size_type _M_length() const { return _M_rep()->_M_length; } size_type _M_capacity() const { return _M_rep()->_M_capacity; } bool _M_is_shared() const { return _M_rep()->_M_refcount > 0; } bool _M_is_leaked() const { return _M_rep()->_M_refcount < 0; } void _M_set_sharable() { _M_rep()->_M_refcount = 0; } void _M_set_leaked() { _M_rep()->_M_refcount = -1; } void _M_set_length(size_type __n) { _M_rep()->_M_set_length(__n); } void _M_leak() // for use in begin() & non-const op[] { if (!_M_is_leaked()) _M_leak_hard(); } __rc_string_base() #ifndef _GLIBCXX_FULLY_DYNAMIC_STRING : _M_dataplus(_S_empty_rep()._M_refdata(), _Alloc()) { } #else : _M_dataplus(_S_construct(size_type(), _CharT(), _Alloc()), _Alloc()) { } #endif __rc_string_base(const _Alloc& __a); __rc_string_base(const __rc_string_base& __rcs); __rc_string_base(size_type __n, _CharT __c, const _Alloc& __a); template __rc_string_base(_InputIterator __beg, _InputIterator __end, const _Alloc& __a); ~__rc_string_base() { _M_dispose(_M_get_allocator()); } allocator_type _M_get_allocator() const { return _M_dataplus; } void _M_swap(__rc_string_base& __rcs) { _CharT* __tmp = _M_data(); _M_data(__rcs._M_data()); __rcs._M_data(__tmp); } void _M_assign(const __rc_string_base& __rcs); void _M_reserve(size_type __res); void _M_mutate(size_type __pos, size_type __len1, size_type __len2); }; template const typename __rc_string_base<_CharT, _Traits, _Alloc>::size_type __rc_string_base<_CharT, _Traits, _Alloc>:: _S_max_size = (((static_cast(-1) - sizeof(_Rep)) / sizeof(_CharT)) - 1) / 4; template const _CharT __rc_string_base<_CharT, _Traits, _Alloc>::_S_terminal = _CharT(); template typename __rc_string_base<_CharT, _Traits, _Alloc>::_Rep* __rc_string_base<_CharT, _Traits, _Alloc>::_Rep:: _S_create(size_type __capacity, size_type __old_capacity, const _Alloc& __alloc) { // _GLIBCXX_RESOLVE_LIB_DEFECTS // 83. String::npos vs. string::max_size() if (__capacity > _S_max_size) std::__throw_length_error(__N("__rc_string_base::_Rep::_S_create")); // The standard places no restriction on allocating more memory // than is strictly needed within this layer at the moment or as // requested by an explicit application call to reserve(). // Many malloc implementations perform quite poorly when an // application attempts to allocate memory in a stepwise fashion // growing each allocation size by only 1 char. Additionally, // it makes little sense to allocate less linear memory than the // natural blocking size of the malloc implementation. // Unfortunately, we would need a somewhat low-level calculation // with tuned parameters to get this perfect for any particular // malloc implementation. Fortunately, generalizations about // common features seen among implementations seems to suffice. // __pagesize need not match the actual VM page size for good // results in practice, thus we pick a common value on the low // side. __malloc_header_size is an estimate of the amount of // overhead per memory allocation (in practice seen N * sizeof // (void*) where N is 0, 2 or 4). According to folklore, // picking this value on the high side is better than // low-balling it (especially when this algorithm is used with // malloc implementations that allocate memory blocks rounded up // to a size which is a power of 2). const size_type __pagesize = 4096; const size_type __malloc_header_size = 4 * sizeof(void*); // The below implements an exponential growth policy, necessary to // meet amortized linear time requirements of the library: see // http://gcc.gnu.org/ml/libstdc++/2001-07/msg00085.html. // It's active for allocations requiring an amount of memory above // system pagesize. This is consistent with the requirements of the // standard: http://gcc.gnu.org/ml/libstdc++/2001-07/msg00130.html if (__capacity > __old_capacity && __capacity < 2 * __old_capacity) __capacity = 2 * __old_capacity; // NB: Need an array of char_type[__capacity], plus a terminating // null char_type() element, plus enough for the _Rep data structure, // plus sizeof(size_type) - 1 to upper round to a size multiple // of sizeof(size_type). // Whew. Seemingly so needy, yet so elemental. size_type __size = ((__capacity + 1) * sizeof(_CharT) + sizeof(_Rep) + sizeof(size_type) - 1); const size_type __adj_size = __size + __malloc_header_size; if (__adj_size > __pagesize && __capacity > __old_capacity) { const size_type __extra = __pagesize - __adj_size % __pagesize; __capacity += __extra / sizeof(_CharT); // Never allocate a string bigger than _S_max_size. if (__capacity > _S_max_size) __capacity = _S_max_size; __size = ((__capacity + 1) * sizeof(_CharT) + sizeof(_Rep) + sizeof(size_type) - 1); } // NB: Might throw, but no worries about a leak, mate: _Rep() // does not throw. void* __place = _Raw_alloc(__alloc).allocate(__size / sizeof(size_type)); _Rep *__p = new (__place) _Rep; __p->_M_capacity = __capacity; return __p; } template void __rc_string_base<_CharT, _Traits, _Alloc>::_Rep:: _M_destroy(const _Alloc& __a) throw () { const size_type __size = ((_M_capacity + 1) * sizeof(_CharT) + sizeof(_Rep) + sizeof(size_type) - 1); _Raw_alloc(__a).deallocate(reinterpret_cast(this), __size / sizeof(size_type)); } template _CharT* __rc_string_base<_CharT, _Traits, _Alloc>::_Rep:: _M_clone(const _Alloc& __alloc, size_type __res) { // Requested capacity of the clone. const size_type __requested_cap = _M_length + __res; _Rep* __r = _Rep::_S_create(__requested_cap, _M_capacity, __alloc); if (_M_length) _S_copy(__r->_M_refdata(), _M_refdata(), _M_length); __r->_M_set_length(_M_length); return __r->_M_refdata(); } template __rc_string_base<_CharT, _Traits, _Alloc>:: __rc_string_base(const _Alloc& __a) : _M_dataplus(_S_construct(size_type(), _CharT(), __a), __a) { } template __rc_string_base<_CharT, _Traits, _Alloc>:: __rc_string_base(const __rc_string_base& __rcs) : _M_dataplus(__rcs._M_grab(_Alloc(__rcs._M_get_allocator()), __rcs._M_get_allocator()), __rcs._M_get_allocator()) { } template __rc_string_base<_CharT, _Traits, _Alloc>:: __rc_string_base(size_type __n, _CharT __c, const _Alloc& __a) : _M_dataplus(_S_construct(__n, __c, __a), __a) { } template template __rc_string_base<_CharT, _Traits, _Alloc>:: __rc_string_base(_InputIterator __beg, _InputIterator __end, const _Alloc& __a) : _M_dataplus(_S_construct(__beg, __end, __a), __a) { } template void __rc_string_base<_CharT, _Traits, _Alloc>:: _M_leak_hard() { #ifndef _GLIBCXX_FULLY_DYNAMIC_STRING if (_M_rep() == &_S_empty_rep()) return; #endif if (_M_is_shared()) _M_mutate(0, 0, 0); _M_set_leaked(); } // NB: This is the special case for Input Iterators, used in // istreambuf_iterators, etc. // Input Iterators have a cost structure very different from // pointers, calling for a different coding style. template template _CharT* __rc_string_base<_CharT, _Traits, _Alloc>:: _S_construct(_InIterator __beg, _InIterator __end, const _Alloc& __a, std::input_iterator_tag) { #ifndef _GLIBCXX_FULLY_DYNAMIC_STRING if (__beg == __end && __a == _Alloc()) return _S_empty_rep()._M_refdata(); #endif // Avoid reallocation for common case. _CharT __buf[128]; size_type __len = 0; while (__beg != __end && __len < sizeof(__buf) / sizeof(_CharT)) { __buf[__len++] = *__beg; ++__beg; } _Rep* __r = _Rep::_S_create(__len, size_type(0), __a); _S_copy(__r->_M_refdata(), __buf, __len); try { while (__beg != __end) { if (__len == __r->_M_capacity) { // Allocate more space. _Rep* __another = _Rep::_S_create(__len + 1, __len, __a); _S_copy(__another->_M_refdata(), __r->_M_refdata(), __len); __r->_M_destroy(__a); __r = __another; } __r->_M_refdata()[__len++] = *__beg; ++__beg; } } catch(...) { __r->_M_destroy(__a); __throw_exception_again; } __r->_M_set_length(__len); return __r->_M_refdata(); } template template _CharT* __rc_string_base<_CharT, _Traits, _Alloc>:: _S_construct(_InIterator __beg, _InIterator __end, const _Alloc& __a, std::forward_iterator_tag) { #ifndef _GLIBCXX_FULLY_DYNAMIC_STRING if (__beg == __end && __a == _Alloc()) return _S_empty_rep()._M_refdata(); #endif // NB: Not required, but considered best practice. if (__builtin_expect(__is_null_p(__beg) && __beg != __end, 0)) std::__throw_logic_error(__N("__rc_string_base::" "_S_construct NULL not valid")); const size_type __dnew = static_cast(std::distance(__beg, __end)); // Check for out_of_range and length_error exceptions. _Rep* __r = _Rep::_S_create(__dnew, size_type(0), __a); try { _S_copy_chars(__r->_M_refdata(), __beg, __end); } catch(...) { __r->_M_destroy(__a); __throw_exception_again; } __r->_M_set_length(__dnew); return __r->_M_refdata(); } template _CharT* __rc_string_base<_CharT, _Traits, _Alloc>:: _S_construct(size_type __n, _CharT __c, const _Alloc& __a) { #ifndef _GLIBCXX_FULLY_DYNAMIC_STRING if (__n == 0 && __a == _Alloc()) return _S_empty_rep()._M_refdata(); #endif // Check for out_of_range and length_error exceptions. _Rep* __r = _Rep::_S_create(__n, size_type(0), __a); if (__n) _S_assign(__r->_M_refdata(), __n, __c); __r->_M_set_length(__n); return __r->_M_refdata(); } template void __rc_string_base<_CharT, _Traits, _Alloc>:: _M_assign(const __rc_string_base& __rcs) { if (_M_rep() != __rcs._M_rep()) { const allocator_type __a = _M_get_allocator(); _CharT* __tmp = __rcs._M_grab(__a, __rcs._M_get_allocator()); _M_dispose(__a); _M_data(__tmp); } } template void __rc_string_base<_CharT, _Traits, _Alloc>:: _M_reserve(size_type __res) { if (__res != _M_capacity() || _M_is_shared()) { // Make sure we don't shrink below the current size. if (__res < _M_length()) __res = _M_length(); const allocator_type __a = _M_get_allocator(); _CharT* __tmp = _M_rep()->_M_clone(__a, __res - _M_length()); _M_dispose(__a); _M_data(__tmp); } } template void __rc_string_base<_CharT, _Traits, _Alloc>:: _M_mutate(size_type __pos, size_type __len1, size_type __len2) { const size_type __old_size = _M_length(); const size_type __new_size = __old_size + __len2 - __len1; const size_type __how_much = __old_size - __pos - __len1; if (__new_size > _M_capacity() || _M_is_shared()) { // Must reallocate. const allocator_type __a = _M_get_allocator(); _Rep* __r = _Rep::_S_create(__new_size, _M_capacity(), __a); if (__pos) _S_copy(__r->_M_refdata(), _M_data(), __pos); if (__how_much) _S_copy(__r->_M_refdata() + __pos + __len2, _M_data() + __pos + __len1, __how_much); _M_dispose(__a); _M_data(__r->_M_refdata()); } else if (__how_much && __len1 != __len2) { // Work in-place. _S_move(_M_data() + __pos + __len2, _M_data() + __pos + __len1, __how_much); } _M_rep()->_M_set_length(__new_size); } } // namespace __gnu_cxx #endif /* _RC_STRING_BASE_H */