aboutsummaryrefslogtreecommitdiff
path: root/gcc/ada/exp_ch3.adb
blob: a09f7f5728823fba05c6a7da9d0f9d4f23e8ca04 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT COMPILER COMPONENTS                         --
--                                                                          --
--                              E X P _ C H 3                               --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 1992-2004 Free Software Foundation, Inc.          --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 2,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
-- for  more details.  You should have  received  a copy of the GNU General --
-- Public License  distributed with GNAT;  see file COPYING.  If not, write --
-- to  the Free Software Foundation,  59 Temple Place - Suite 330,  Boston, --
-- MA 02111-1307, USA.                                                      --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

with Atree;    use Atree;
with Checks;   use Checks;
with Einfo;    use Einfo;
with Elists;   use Elists;
with Errout;   use Errout;
with Exp_Aggr; use Exp_Aggr;
with Exp_Ch4;  use Exp_Ch4;
with Exp_Ch7;  use Exp_Ch7;
with Exp_Ch9;  use Exp_Ch9;
with Exp_Ch11; use Exp_Ch11;
with Exp_Disp; use Exp_Disp;
with Exp_Dist; use Exp_Dist;
with Exp_Smem; use Exp_Smem;
with Exp_Strm; use Exp_Strm;
with Exp_Tss;  use Exp_Tss;
with Exp_Util; use Exp_Util;
with Freeze;   use Freeze;
with Hostparm; use Hostparm;
with Nlists;   use Nlists;
with Nmake;    use Nmake;
with Opt;      use Opt;
with Restrict; use Restrict;
with Rident;   use Rident;
with Rtsfind;  use Rtsfind;
with Sem;      use Sem;
with Sem_Ch3;  use Sem_Ch3;
with Sem_Ch8;  use Sem_Ch8;
with Sem_Eval; use Sem_Eval;
with Sem_Mech; use Sem_Mech;
with Sem_Res;  use Sem_Res;
with Sem_Util; use Sem_Util;
with Sinfo;    use Sinfo;
with Stand;    use Stand;
with Snames;   use Snames;
with Tbuild;   use Tbuild;
with Ttypes;   use Ttypes;
with Uintp;    use Uintp;
with Validsw;  use Validsw;

package body Exp_Ch3 is

   -----------------------
   -- Local Subprograms --
   -----------------------

   procedure Adjust_Discriminants (Rtype : Entity_Id);
   --  This is used when freezing a record type. It attempts to construct
   --  more restrictive subtypes for discriminants so that the max size of
   --  the record can be calculated more accurately. See the body of this
   --  procedure for details.

   procedure Build_Array_Init_Proc (A_Type : Entity_Id; Nod : Node_Id);
   --  Build initialization procedure for given array type. Nod is a node
   --  used for attachment of any actions required in its construction.
   --  It also supplies the source location used for the procedure.

   procedure Build_Class_Wide_Master (T : Entity_Id);
   --  for access to class-wide limited types we must build a task master
   --  because some subsequent extension may add a task component. To avoid
   --  bringing in the tasking run-time whenever an access-to-class-wide
   --  limited type is used, we use the soft-link mechanism and add a level
   --  of indirection to calls to routines that manipulate Master_Ids.

   function Build_Discriminant_Formals
     (Rec_Id : Entity_Id;
      Use_Dl : Boolean) return List_Id;
   --  This function uses the discriminants of a type to build a list of
   --  formal parameters, used in the following function. If the flag Use_Dl
   --  is set, the list is built using the already defined discriminals
   --  of the type. Otherwise new identifiers are created, with the source
   --  names of the discriminants.

   procedure Build_Master_Renaming (N : Node_Id; T : Entity_Id);
   --  If the designated type of an access type is a task type or contains
   --  tasks, we make sure that a _Master variable is declared in the current
   --  scope, and then declare a renaming for it:
   --
   --    atypeM : Master_Id renames _Master;
   --
   --  where atyp is the name of the access type. This declaration is
   --  used when an allocator for the access type is expanded. The node N
   --  is the full declaration of the designated type that contains tasks.
   --  The renaming declaration is inserted before N, and after the Master
   --  declaration.

   procedure Build_Record_Init_Proc (N : Node_Id; Pe : Entity_Id);
   --  Build record initialization procedure. N is the type declaration
   --  node, and Pe is the corresponding entity for the record type.

   procedure Build_Slice_Assignment (Typ : Entity_Id);
   --  Build assignment procedure for one-dimensional arrays of controlled
   --  types. Other array and slice assignments are expanded in-line, but
   --  the code expansion for controlled components (when control actions
   --  are active) can lead to very large blocks that GCC3 handles poorly.

   procedure Build_Variant_Record_Equality (Typ  : Entity_Id);
   --  Create An Equality function for the non-tagged variant record 'Typ'
   --  and attach it to the TSS list

   procedure Check_Stream_Attributes (Typ : Entity_Id);
   --  Check that if a limited extension has a parent with user-defined
   --  stream attributes, any limited component of the extension also has
   --  the corresponding user-defined stream attributes.

   procedure Expand_Tagged_Root (T : Entity_Id);
   --  Add a field _Tag at the beginning of the record. This field carries
   --  the value of the access to the Dispatch table. This procedure is only
   --  called on root (non CPP_Class) types, the _Tag field being inherited
   --  by the descendants.

   procedure Expand_Record_Controller (T : Entity_Id);
   --  T must be a record type that Has_Controlled_Component. Add a field
   --  _controller of type Record_Controller or Limited_Record_Controller
   --  in the record T.

   procedure Freeze_Array_Type (N : Node_Id);
   --  Freeze an array type. Deals with building the initialization procedure,
   --  creating the packed array type for a packed array and also with the
   --  creation of the controlling procedures for the controlled case. The
   --  argument N is the N_Freeze_Entity node for the type.

   procedure Freeze_Enumeration_Type (N : Node_Id);
   --  Freeze enumeration type with non-standard representation. Builds the
   --  array and function needed to convert between enumeration pos and
   --  enumeration representation values. N is the N_Freeze_Entity node
   --  for the type.

   procedure Freeze_Record_Type (N : Node_Id);
   --  Freeze record type. Builds all necessary discriminant checking
   --  and other ancillary functions, and builds dispatch tables where
   --  needed. The argument N is the N_Freeze_Entity node. This processing
   --  applies only to E_Record_Type entities, not to class wide types,
   --  record subtypes, or private types.

   procedure Freeze_Stream_Operations (N : Node_Id; Typ : Entity_Id);
   --  Treat user-defined stream operations as renaming_as_body if the
   --  subprogram they rename is not frozen when the type is frozen.

   function Init_Formals (Typ : Entity_Id) return List_Id;
   --  This function builds the list of formals for an initialization routine.
   --  The first formal is always _Init with the given type. For task value
   --  record types and types containing tasks, three additional formals are
   --  added:
   --
   --    _Master    : Master_Id
   --    _Chain     : in out Activation_Chain
   --    _Task_Name : String
   --
   --  The caller must append additional entries for discriminants if required.

   function In_Runtime (E : Entity_Id) return Boolean;
   --  Check if E is defined in the RTL (in a child of Ada or System). Used
   --  to avoid to bring in the overhead of _Input, _Output for tagged types.

   function Make_Eq_Case
     (E     : Entity_Id;
      CL    : Node_Id;
      Discr : Entity_Id := Empty) return List_Id;
   --  Building block for variant record equality. Defined to share the
   --  code between the tagged and non-tagged case. Given a Component_List
   --  node CL, it generates an 'if' followed by a 'case' statement that
   --  compares all components of local temporaries named X and Y (that
   --  are declared as formals at some upper level). E provides the Sloc to be
   --  used for the generated code. Discr is used as the case statement switch
   --  in the case of Unchecked_Union equality.

   function Make_Eq_If
     (E : Entity_Id;
      L : List_Id) return Node_Id;
   --  Building block for variant record equality. Defined to share the
   --  code between the tagged and non-tagged case. Given the list of
   --  components (or discriminants) L, it generates a return statement
   --  that compares all components of local temporaries named X and Y
   --  (that are declared as formals at some upper level). E provides the Sloc
   --  to be used for the generated code.

   procedure Make_Predefined_Primitive_Specs
     (Tag_Typ     : Entity_Id;
      Predef_List : out List_Id;
      Renamed_Eq  : out Node_Id);
   --  Create a list with the specs of the predefined primitive operations.
   --  The following entries are present for all tagged types, and provide
   --  the results of the corresponding attribute applied to the object.
   --  Dispatching is required in general, since the result of the attribute
   --  will vary with the actual object subtype.
   --
   --     _alignment     provides result of 'Alignment attribute
   --     _size          provides result of 'Size attribute
   --     typSR          provides result of 'Read attribute
   --     typSW          provides result of 'Write attribute
   --     typSI          provides result of 'Input attribute
   --     typSO          provides result of 'Output attribute
   --
   --  The following entries are additionally present for non-limited
   --  tagged types, and implement additional dispatching operations
   --  for predefined operations:
   --
   --     _equality      implements "=" operator
   --     _assign        implements assignment operation
   --     typDF          implements deep finalization
   --     typDA          implements deep adust
   --
   --  The latter two are empty procedures unless the type contains some
   --  controlled components that require finalization actions (the deep
   --  in the name refers to the fact that the action applies to components).
   --
   --  The list is returned in Predef_List. The Parameter Renamed_Eq
   --  either returns the value Empty, or else the defining unit name
   --  for the predefined equality function in the case where the type
   --  has a primitive operation that is a renaming of predefined equality
   --  (but only if there is also an overriding user-defined equality
   --  function). The returned Renamed_Eq will be passed to the
   --  corresponding parameter of Predefined_Primitive_Bodies.

   function Has_New_Non_Standard_Rep (T : Entity_Id) return Boolean;
   --  returns True if there are representation clauses for type T that
   --  are not inherited. If the result is false, the init_proc and the
   --  discriminant_checking functions of the parent can be reused by
   --  a derived type.

   function Predef_Spec_Or_Body
     (Loc      : Source_Ptr;
      Tag_Typ  : Entity_Id;
      Name     : Name_Id;
      Profile  : List_Id;
      Ret_Type : Entity_Id := Empty;
      For_Body : Boolean   := False) return Node_Id;
   --  This function generates the appropriate expansion for a predefined
   --  primitive operation specified by its name, parameter profile and
   --  return type (Empty means this is a procedure). If For_Body is false,
   --  then the returned node is a subprogram declaration. If For_Body is
   --  true, then the returned node is a empty subprogram body containing
   --  no declarations and no statements.

   function Predef_Stream_Attr_Spec
     (Loc      : Source_Ptr;
      Tag_Typ  : Entity_Id;
      Name     : TSS_Name_Type;
      For_Body : Boolean := False) return Node_Id;
   --  Specialized version of Predef_Spec_Or_Body that apply to read, write,
   --  input and output attribute whose specs are constructed in Exp_Strm.

   function Predef_Deep_Spec
     (Loc      : Source_Ptr;
      Tag_Typ  : Entity_Id;
      Name     : TSS_Name_Type;
      For_Body : Boolean := False) return Node_Id;
   --  Specialized version of Predef_Spec_Or_Body that apply to _deep_adjust
   --  and _deep_finalize

   function Predefined_Primitive_Bodies
     (Tag_Typ    : Entity_Id;
      Renamed_Eq : Node_Id) return List_Id;
   --  Create the bodies of the predefined primitives that are described in
   --  Predefined_Primitive_Specs. When not empty, Renamed_Eq must denote
   --  the defining unit name of the type's predefined equality as returned
   --  by Make_Predefined_Primitive_Specs.

   function Predefined_Primitive_Freeze (Tag_Typ : Entity_Id) return List_Id;
   --  Freeze entities of all predefined primitive operations. This is needed
   --  because the bodies of these operations do not normally do any freezeing.

   function Stream_Operations_OK (Typ : Entity_Id) return Boolean;
   --  Check whether stream operations must be emitted for a given type.
   --  Various restrictions prevent the generation of these operations, as
   --  a useful optimization or for certification purposes.

   --------------------------
   -- Adjust_Discriminants --
   --------------------------

   --  This procedure attempts to define subtypes for discriminants that
   --  are more restrictive than those declared. Such a replacement is
   --  possible if we can demonstrate that values outside the restricted
   --  range would cause constraint errors in any case. The advantage of
   --  restricting the discriminant types in this way is tha the maximum
   --  size of the variant record can be calculated more conservatively.

   --  An example of a situation in which we can perform this type of
   --  restriction is the following:

   --    subtype B is range 1 .. 10;
   --    type Q is array (B range <>) of Integer;

   --    type V (N : Natural) is record
   --       C : Q (1 .. N);
   --    end record;

   --  In this situation, we can restrict the upper bound of N to 10, since
   --  any larger value would cause a constraint error in any case.

   --  There are many situations in which such restriction is possible, but
   --  for now, we just look for cases like the above, where the component
   --  in question is a one dimensional array whose upper bound is one of
   --  the record discriminants. Also the component must not be part of
   --  any variant part, since then the component does not always exist.

   procedure Adjust_Discriminants (Rtype : Entity_Id) is
      Loc   : constant Source_Ptr := Sloc (Rtype);
      Comp  : Entity_Id;
      Ctyp  : Entity_Id;
      Ityp  : Entity_Id;
      Lo    : Node_Id;
      Hi    : Node_Id;
      P     : Node_Id;
      Loval : Uint;
      Discr : Entity_Id;
      Dtyp  : Entity_Id;
      Dhi   : Node_Id;
      Dhiv  : Uint;
      Ahi   : Node_Id;
      Ahiv  : Uint;
      Tnn   : Entity_Id;

   begin
      Comp := First_Component (Rtype);
      while Present (Comp) loop

         --  If our parent is a variant, quit, we do not look at components
         --  that are in variant parts, because they may not always exist.

         P := Parent (Comp);   -- component declaration
         P := Parent (P);      -- component list

         exit when Nkind (Parent (P)) = N_Variant;

         --  We are looking for a one dimensional array type

         Ctyp := Etype (Comp);

         if not Is_Array_Type (Ctyp)
           or else Number_Dimensions (Ctyp) > 1
         then
            goto Continue;
         end if;

         --  The lower bound must be constant, and the upper bound is a
         --  discriminant (which is a discriminant of the current record).

         Ityp := Etype (First_Index (Ctyp));
         Lo := Type_Low_Bound (Ityp);
         Hi := Type_High_Bound (Ityp);

         if not Compile_Time_Known_Value (Lo)
           or else Nkind (Hi) /= N_Identifier
           or else No (Entity (Hi))
           or else Ekind (Entity (Hi)) /= E_Discriminant
         then
            goto Continue;
         end if;

         --  We have an array with appropriate bounds

         Loval := Expr_Value (Lo);
         Discr := Entity (Hi);
         Dtyp  := Etype (Discr);

         --  See if the discriminant has a known upper bound

         Dhi := Type_High_Bound (Dtyp);

         if not Compile_Time_Known_Value (Dhi) then
            goto Continue;
         end if;

         Dhiv := Expr_Value (Dhi);

         --  See if base type of component array has known upper bound

         Ahi := Type_High_Bound (Etype (First_Index (Base_Type (Ctyp))));

         if not Compile_Time_Known_Value (Ahi) then
            goto Continue;
         end if;

         Ahiv := Expr_Value (Ahi);

         --  The condition for doing the restriction is that the high bound
         --  of the discriminant is greater than the low bound of the array,
         --  and is also greater than the high bound of the base type index.

         if Dhiv > Loval and then Dhiv > Ahiv then

            --  We can reset the upper bound of the discriminant type to
            --  whichever is larger, the low bound of the component, or
            --  the high bound of the base type array index.

            --  We build a subtype that is declared as

            --     subtype Tnn is discr_type range discr_type'First .. max;

            --  And insert this declaration into the tree. The type of the
            --  discriminant is then reset to this more restricted subtype.

            Tnn := Make_Defining_Identifier (Loc, New_Internal_Name ('T'));

            Insert_Action (Declaration_Node (Rtype),
              Make_Subtype_Declaration (Loc,
                Defining_Identifier => Tnn,
                Subtype_Indication =>
                  Make_Subtype_Indication (Loc,
                    Subtype_Mark => New_Occurrence_Of (Dtyp, Loc),
                    Constraint   =>
                      Make_Range_Constraint (Loc,
                        Range_Expression =>
                          Make_Range (Loc,
                            Low_Bound =>
                              Make_Attribute_Reference (Loc,
                                Attribute_Name => Name_First,
                                Prefix => New_Occurrence_Of (Dtyp, Loc)),
                            High_Bound =>
                              Make_Integer_Literal (Loc,
                                Intval => UI_Max (Loval, Ahiv)))))));

            Set_Etype (Discr, Tnn);
         end if;

      <<Continue>>
         Next_Component (Comp);
      end loop;
   end Adjust_Discriminants;

   ---------------------------
   -- Build_Array_Init_Proc --
   ---------------------------

   procedure Build_Array_Init_Proc (A_Type : Entity_Id; Nod : Node_Id) is
      Loc        : constant Source_Ptr := Sloc (Nod);
      Comp_Type  : constant Entity_Id  := Component_Type (A_Type);
      Index_List : List_Id;
      Proc_Id    : Entity_Id;
      Body_Stmts : List_Id;

      function Init_Component return List_Id;
      --  Create one statement to initialize one array component, designated
      --  by a full set of indices.

      function Init_One_Dimension (N : Int) return List_Id;
      --  Create loop to initialize one dimension of the array. The single
      --  statement in the loop body initializes the inner dimensions if any,
      --  or else the single component. Note that this procedure is called
      --  recursively, with N being the dimension to be initialized. A call
      --  with N greater than the number of dimensions simply generates the
      --  component initialization, terminating the recursion.

      --------------------
      -- Init_Component --
      --------------------

      function Init_Component return List_Id is
         Comp : Node_Id;

      begin
         Comp :=
           Make_Indexed_Component (Loc,
             Prefix => Make_Identifier (Loc, Name_uInit),
             Expressions => Index_List);

         if Needs_Simple_Initialization (Comp_Type) then
            Set_Assignment_OK (Comp);
            return New_List (
              Make_Assignment_Statement (Loc,
                Name => Comp,
                Expression => Get_Simple_Init_Val (Comp_Type, Loc)));

         else
            return
              Build_Initialization_Call (Loc, Comp, Comp_Type, True, A_Type);
         end if;
      end Init_Component;

      ------------------------
      -- Init_One_Dimension --
      ------------------------

      function Init_One_Dimension (N : Int) return List_Id is
         Index      : Entity_Id;

      begin
         --  If the component does not need initializing, then there is nothing
         --  to do here, so we return a null body. This occurs when generating
         --  the dummy Init_Proc needed for Initialize_Scalars processing.

         if not Has_Non_Null_Base_Init_Proc (Comp_Type)
           and then not Needs_Simple_Initialization (Comp_Type)
           and then not Has_Task (Comp_Type)
         then
            return New_List (Make_Null_Statement (Loc));

         --  If all dimensions dealt with, we simply initialize the component

         elsif N > Number_Dimensions (A_Type) then
            return Init_Component;

         --  Here we generate the required loop

         else
            Index :=
              Make_Defining_Identifier (Loc, New_External_Name ('J', N));

            Append (New_Reference_To (Index, Loc), Index_List);

            return New_List (
              Make_Implicit_Loop_Statement (Nod,
                Identifier => Empty,
                Iteration_Scheme =>
                  Make_Iteration_Scheme (Loc,
                    Loop_Parameter_Specification =>
                      Make_Loop_Parameter_Specification (Loc,
                        Defining_Identifier => Index,
                        Discrete_Subtype_Definition =>
                          Make_Attribute_Reference (Loc,
                            Prefix => Make_Identifier (Loc, Name_uInit),
                            Attribute_Name  => Name_Range,
                            Expressions => New_List (
                              Make_Integer_Literal (Loc, N))))),
                Statements =>  Init_One_Dimension (N + 1)));
         end if;
      end Init_One_Dimension;

   --  Start of processing for Build_Array_Init_Proc

   begin
      if Suppress_Init_Proc (A_Type) then
         return;
      end if;

      Index_List := New_List;

      --  We need an initialization procedure if any of the following is true:

      --    1. The component type has an initialization procedure
      --    2. The component type needs simple initialization
      --    3. Tasks are present
      --    4. The type is marked as a publc entity

      --  The reason for the public entity test is to deal properly with the
      --  Initialize_Scalars pragma. This pragma can be set in the client and
      --  not in the declaring package, this means the client will make a call
      --  to the initialization procedure (because one of conditions 1-3 must
      --  apply in this case), and we must generate a procedure (even if it is
      --  null) to satisfy the call in this case.

      --  Exception: do not build an array init_proc for a type whose root type
      --  is Standard.String or Standard.Wide_String, since there is no place
      --  to put the code, and in any case we handle initialization of such
      --  types (in the Initialize_Scalars case, that's the only time the issue
      --  arises) in a special manner anyway which does not need an init_proc.

      if Has_Non_Null_Base_Init_Proc (Comp_Type)
        or else Needs_Simple_Initialization (Comp_Type)
        or else Has_Task (Comp_Type)
        or else (not Restriction_Active (No_Initialize_Scalars)
                   and then Is_Public (A_Type)
                   and then Root_Type (A_Type) /= Standard_String
                   and then Root_Type (A_Type) /= Standard_Wide_String)
      then
         Proc_Id :=
           Make_Defining_Identifier (Loc, Make_Init_Proc_Name (A_Type));

         Body_Stmts := Init_One_Dimension (1);

         Discard_Node (
           Make_Subprogram_Body (Loc,
             Specification =>
               Make_Procedure_Specification (Loc,
                 Defining_Unit_Name => Proc_Id,
                 Parameter_Specifications => Init_Formals (A_Type)),
             Declarations => New_List,
             Handled_Statement_Sequence =>
               Make_Handled_Sequence_Of_Statements (Loc,
                 Statements => Body_Stmts)));

         Set_Ekind          (Proc_Id, E_Procedure);
         Set_Is_Public      (Proc_Id, Is_Public (A_Type));
         Set_Is_Internal    (Proc_Id);
         Set_Has_Completion (Proc_Id);

         if not Debug_Generated_Code then
            Set_Debug_Info_Off (Proc_Id);
         end if;

         --  Set inlined unless controlled stuff or tasks around, in which
         --  case we do not want to inline, because nested stuff may cause
         --  difficulties in interunit inlining, and furthermore there is
         --  in any case no point in inlining such complex init procs.

         if not Has_Task (Proc_Id)
           and then not Controlled_Type (Proc_Id)
         then
            Set_Is_Inlined (Proc_Id);
         end if;

         --  Associate Init_Proc with type, and determine if the procedure
         --  is null (happens because of the Initialize_Scalars pragma case,
         --  where we have to generate a null procedure in case it is called
         --  by a client with Initialize_Scalars set). Such procedures have
         --  to be generated, but do not have to be called, so we mark them
         --  as null to suppress the call.

         Set_Init_Proc (A_Type, Proc_Id);

         if List_Length (Body_Stmts) = 1
           and then Nkind (First (Body_Stmts)) = N_Null_Statement
         then
            Set_Is_Null_Init_Proc (Proc_Id);
         end if;
      end if;
   end Build_Array_Init_Proc;

   -----------------------------
   -- Build_Class_Wide_Master --
   -----------------------------

   procedure Build_Class_Wide_Master (T : Entity_Id) is
      Loc  : constant Source_Ptr := Sloc (T);
      M_Id : Entity_Id;
      Decl : Node_Id;
      P    : Node_Id;

   begin
      --  Nothing to do if there is no task hierarchy

      if Restriction_Active (No_Task_Hierarchy) then
         return;
      end if;

      --  Nothing to do if we already built a master entity for this scope

      if not Has_Master_Entity (Scope (T)) then
         --  first build the master entity
         --    _Master : constant Master_Id := Current_Master.all;
         --  and insert it just before the current declaration

         Decl :=
           Make_Object_Declaration (Loc,
             Defining_Identifier =>
               Make_Defining_Identifier (Loc, Name_uMaster),
             Constant_Present => True,
             Object_Definition => New_Reference_To (Standard_Integer, Loc),
             Expression =>
               Make_Explicit_Dereference (Loc,
                 New_Reference_To (RTE (RE_Current_Master), Loc)));

         P := Parent (T);
         Insert_Before (P, Decl);
         Analyze (Decl);
         Set_Has_Master_Entity (Scope (T));

         --  Now mark the containing scope as a task master

         while Nkind (P) /= N_Compilation_Unit loop
            P := Parent (P);

            --  If we fall off the top, we are at the outer level, and the
            --  environment task is our effective master, so nothing to mark.

            if Nkind (P) = N_Task_Body
              or else Nkind (P) = N_Block_Statement
              or else Nkind (P) = N_Subprogram_Body
            then
               Set_Is_Task_Master (P, True);
               exit;
            end if;
         end loop;
      end if;

      --  Now define the renaming of the master_id

      M_Id :=
        Make_Defining_Identifier (Loc,
          New_External_Name (Chars (T), 'M'));

      Decl :=
        Make_Object_Renaming_Declaration (Loc,
          Defining_Identifier => M_Id,
          Subtype_Mark => New_Reference_To (Standard_Integer, Loc),
          Name => Make_Identifier (Loc, Name_uMaster));
      Insert_Before (Parent (T), Decl);
      Analyze (Decl);

      Set_Master_Id (T, M_Id);

   exception
      when RE_Not_Available =>
         return;
   end Build_Class_Wide_Master;

   --------------------------------
   -- Build_Discr_Checking_Funcs --
   --------------------------------

   procedure Build_Discr_Checking_Funcs (N : Node_Id) is
      Rec_Id            : Entity_Id;
      Loc               : Source_Ptr;
      Enclosing_Func_Id : Entity_Id;
      Sequence          : Nat     := 1;
      Type_Def          : Node_Id;
      V                 : Node_Id;

      function Build_Case_Statement
        (Case_Id : Entity_Id;
         Variant : Node_Id) return Node_Id;
      --  Build a case statement containing only two alternatives. The
      --  first alternative corresponds exactly to the discrete choices
      --  given on the variant with contains the components that we are
      --  generating the checks for. If the discriminant is one of these
      --  return False. The second alternative is an OTHERS choice that
      --  will return True indicating the discriminant did not match.

      function Build_Dcheck_Function
        (Case_Id : Entity_Id;
         Variant : Node_Id) return Entity_Id;
      --  Build the discriminant checking function for a given variant

      procedure Build_Dcheck_Functions (Variant_Part_Node : Node_Id);
      --  Builds the discriminant checking function for each variant of the
      --  given variant part of the record type.

      --------------------------
      -- Build_Case_Statement --
      --------------------------

      function Build_Case_Statement
        (Case_Id : Entity_Id;
         Variant : Node_Id) return Node_Id
      is
         Alt_List       : constant List_Id := New_List;
         Actuals_List   : List_Id;
         Case_Node      : Node_Id;
         Case_Alt_Node  : Node_Id;
         Choice         : Node_Id;
         Choice_List    : List_Id;
         D              : Entity_Id;
         Return_Node    : Node_Id;

      begin
         Case_Node := New_Node (N_Case_Statement, Loc);

         --  Replace the discriminant which controls the variant, with the
         --  name of the formal of the checking function.

         Set_Expression (Case_Node,
           Make_Identifier (Loc, Chars (Case_Id)));

         Choice := First (Discrete_Choices (Variant));

         if Nkind (Choice) = N_Others_Choice then
            Choice_List := New_Copy_List (Others_Discrete_Choices (Choice));
         else
            Choice_List := New_Copy_List (Discrete_Choices (Variant));
         end if;

         if not Is_Empty_List (Choice_List) then
            Case_Alt_Node := New_Node (N_Case_Statement_Alternative, Loc);
            Set_Discrete_Choices (Case_Alt_Node, Choice_List);

            --  In case this is a nested variant, we need to return the result
            --  of the discriminant checking function for the immediately
            --  enclosing variant.

            if Present (Enclosing_Func_Id) then
               Actuals_List := New_List;

               D := First_Discriminant (Rec_Id);
               while Present (D) loop
                  Append (Make_Identifier (Loc, Chars (D)), Actuals_List);
                  Next_Discriminant (D);
               end loop;

               Return_Node :=
                 Make_Return_Statement (Loc,
                   Expression =>
                     Make_Function_Call (Loc,
                       Name =>
                         New_Reference_To (Enclosing_Func_Id,  Loc),
                       Parameter_Associations =>
                         Actuals_List));

            else
               Return_Node :=
                 Make_Return_Statement (Loc,
                   Expression =>
                     New_Reference_To (Standard_False, Loc));
            end if;

            Set_Statements (Case_Alt_Node, New_List (Return_Node));
            Append (Case_Alt_Node, Alt_List);
         end if;

         Case_Alt_Node := New_Node (N_Case_Statement_Alternative, Loc);
         Choice_List := New_List (New_Node (N_Others_Choice, Loc));
         Set_Discrete_Choices (Case_Alt_Node, Choice_List);

         Return_Node :=
           Make_Return_Statement (Loc,
             Expression =>
               New_Reference_To (Standard_True, Loc));

         Set_Statements (Case_Alt_Node, New_List (Return_Node));
         Append (Case_Alt_Node, Alt_List);

         Set_Alternatives (Case_Node, Alt_List);
         return Case_Node;
      end Build_Case_Statement;

      ---------------------------
      -- Build_Dcheck_Function --
      ---------------------------

      function Build_Dcheck_Function
        (Case_Id : Entity_Id;
         Variant : Node_Id) return Entity_Id
      is
         Body_Node           : Node_Id;
         Func_Id             : Entity_Id;
         Parameter_List      : List_Id;
         Spec_Node           : Node_Id;

      begin
         Body_Node := New_Node (N_Subprogram_Body, Loc);
         Sequence := Sequence + 1;

         Func_Id :=
           Make_Defining_Identifier (Loc,
             Chars => New_External_Name (Chars (Rec_Id), 'D', Sequence));

         Spec_Node := New_Node (N_Function_Specification, Loc);
         Set_Defining_Unit_Name (Spec_Node, Func_Id);

         Parameter_List := Build_Discriminant_Formals (Rec_Id, False);

         Set_Parameter_Specifications (Spec_Node, Parameter_List);
         Set_Subtype_Mark (Spec_Node,
                           New_Reference_To (Standard_Boolean,  Loc));
         Set_Specification (Body_Node, Spec_Node);
         Set_Declarations (Body_Node, New_List);

         Set_Handled_Statement_Sequence (Body_Node,
           Make_Handled_Sequence_Of_Statements (Loc,
             Statements => New_List (
               Build_Case_Statement (Case_Id, Variant))));

         Set_Ekind       (Func_Id, E_Function);
         Set_Mechanism   (Func_Id, Default_Mechanism);
         Set_Is_Inlined  (Func_Id, True);
         Set_Is_Pure     (Func_Id, True);
         Set_Is_Public   (Func_Id, Is_Public (Rec_Id));
         Set_Is_Internal (Func_Id, True);

         if not Debug_Generated_Code then
            Set_Debug_Info_Off (Func_Id);
         end if;

         Analyze (Body_Node);

         Append_Freeze_Action (Rec_Id, Body_Node);
         Set_Dcheck_Function (Variant, Func_Id);
         return Func_Id;
      end Build_Dcheck_Function;

      ----------------------------
      -- Build_Dcheck_Functions --
      ----------------------------

      procedure Build_Dcheck_Functions (Variant_Part_Node : Node_Id) is
         Component_List_Node : Node_Id;
         Decl                : Entity_Id;
         Discr_Name          : Entity_Id;
         Func_Id             : Entity_Id;
         Variant             : Node_Id;
         Saved_Enclosing_Func_Id : Entity_Id;

      begin
         --  Build the discriminant checking function for each variant, label
         --  all components of that variant with the function's name.

         Discr_Name := Entity (Name (Variant_Part_Node));
         Variant := First_Non_Pragma (Variants (Variant_Part_Node));

         while Present (Variant) loop
            Func_Id := Build_Dcheck_Function (Discr_Name, Variant);
            Component_List_Node := Component_List (Variant);

            if not Null_Present (Component_List_Node) then
               Decl :=
                 First_Non_Pragma (Component_Items (Component_List_Node));

               while Present (Decl) loop
                  Set_Discriminant_Checking_Func
                    (Defining_Identifier (Decl), Func_Id);

                  Next_Non_Pragma (Decl);
               end loop;

               if Present (Variant_Part (Component_List_Node)) then
                  Saved_Enclosing_Func_Id := Enclosing_Func_Id;
                  Enclosing_Func_Id := Func_Id;
                  Build_Dcheck_Functions (Variant_Part (Component_List_Node));
                  Enclosing_Func_Id := Saved_Enclosing_Func_Id;
               end if;
            end if;

            Next_Non_Pragma (Variant);
         end loop;
      end Build_Dcheck_Functions;

   --  Start of processing for Build_Discr_Checking_Funcs

   begin
      --  Only build if not done already

      if not Discr_Check_Funcs_Built (N) then
         Type_Def := Type_Definition (N);

         if Nkind (Type_Def) = N_Record_Definition then
            if No (Component_List (Type_Def)) then   -- null record.
               return;
            else
               V := Variant_Part (Component_List (Type_Def));
            end if;

         else pragma Assert (Nkind (Type_Def) = N_Derived_Type_Definition);
            if No (Component_List (Record_Extension_Part (Type_Def))) then
               return;
            else
               V := Variant_Part
                      (Component_List (Record_Extension_Part (Type_Def)));
            end if;
         end if;

         Rec_Id := Defining_Identifier (N);

         if Present (V) and then not Is_Unchecked_Union (Rec_Id) then
            Loc := Sloc (N);
            Enclosing_Func_Id := Empty;
            Build_Dcheck_Functions (V);
         end if;

         Set_Discr_Check_Funcs_Built (N);
      end if;
   end Build_Discr_Checking_Funcs;

   --------------------------------
   -- Build_Discriminant_Formals --
   --------------------------------

   function Build_Discriminant_Formals
     (Rec_Id : Entity_Id;
      Use_Dl : Boolean) return List_Id
   is
      Loc             : Source_Ptr       := Sloc (Rec_Id);
      Parameter_List  : constant List_Id := New_List;
      D               : Entity_Id;
      Formal          : Entity_Id;
      Param_Spec_Node : Node_Id;

   begin
      if Has_Discriminants (Rec_Id) then
         D := First_Discriminant (Rec_Id);
         while Present (D) loop
            Loc := Sloc (D);

            if Use_Dl then
               Formal := Discriminal (D);
            else
               Formal := Make_Defining_Identifier (Loc, Chars (D));
            end if;

            Param_Spec_Node :=
              Make_Parameter_Specification (Loc,
                  Defining_Identifier => Formal,
                Parameter_Type =>
                  New_Reference_To (Etype (D), Loc));
            Append (Param_Spec_Node, Parameter_List);
            Next_Discriminant (D);
         end loop;
      end if;

      return Parameter_List;
   end Build_Discriminant_Formals;

   -------------------------------
   -- Build_Initialization_Call --
   -------------------------------

   --  References to a discriminant inside the record type declaration
   --  can appear either in the subtype_indication to constrain a
   --  record or an array, or as part of a larger expression given for
   --  the initial value of a component. In both of these cases N appears
   --  in the record initialization procedure and needs to be replaced by
   --  the formal parameter of the initialization procedure which
   --  corresponds to that discriminant.

   --  In the example below, references to discriminants D1 and D2 in proc_1
   --  are replaced by references to formals with the same name
   --  (discriminals)

   --  A similar replacement is done for calls to any record
   --  initialization procedure for any components that are themselves
   --  of a record type.

   --  type R (D1, D2 : Integer) is record
   --     X : Integer := F * D1;
   --     Y : Integer := F * D2;
   --  end record;

   --  procedure proc_1 (Out_2 : out R; D1 : Integer; D2 : Integer) is
   --  begin
   --     Out_2.D1 := D1;
   --     Out_2.D2 := D2;
   --     Out_2.X := F * D1;
   --     Out_2.Y := F * D2;
   --  end;

   function Build_Initialization_Call
     (Loc               : Source_Ptr;
      Id_Ref            : Node_Id;
      Typ               : Entity_Id;
      In_Init_Proc      : Boolean := False;
      Enclos_Type       : Entity_Id := Empty;
      Discr_Map         : Elist_Id := New_Elmt_List;
      With_Default_Init : Boolean := False) return List_Id
   is
      First_Arg      : Node_Id;
      Args           : List_Id;
      Decls          : List_Id;
      Decl           : Node_Id;
      Discr          : Entity_Id;
      Arg            : Node_Id;
      Proc           : constant Entity_Id := Base_Init_Proc (Typ);
      Init_Type      : constant Entity_Id := Etype (First_Formal (Proc));
      Full_Init_Type : constant Entity_Id := Underlying_Type (Init_Type);
      Res            : constant List_Id   := New_List;
      Full_Type      : Entity_Id := Typ;
      Controller_Typ : Entity_Id;

   begin
      --  Nothing to do if the Init_Proc is null, unless Initialize_Scalars
      --  is active (in which case we make the call anyway, since in the
      --  actual compiled client it may be non null).

      if Is_Null_Init_Proc (Proc) and then not Init_Or_Norm_Scalars then
         return Empty_List;
      end if;

      --  Go to full view if private type. In the case of successive
      --  private derivations, this can require more than one step.

      while Is_Private_Type (Full_Type)
        and then Present (Full_View (Full_Type))
      loop
         Full_Type := Full_View (Full_Type);
      end loop;

      --  If Typ is derived, the procedure is the initialization procedure for
      --  the root type. Wrap the argument in an conversion to make it type
      --  honest. Actually it isn't quite type honest, because there can be
      --  conflicts of views in the private type case. That is why we set
      --  Conversion_OK in the conversion node.
      if (Is_Record_Type (Typ)
           or else Is_Array_Type (Typ)
           or else Is_Private_Type (Typ))
        and then Init_Type /= Base_Type (Typ)
      then
         First_Arg := OK_Convert_To (Etype (Init_Type), Id_Ref);
         Set_Etype (First_Arg, Init_Type);

      else
         First_Arg := Id_Ref;
      end if;

      Args := New_List (Convert_Concurrent (First_Arg, Typ));

      --  In the tasks case, add _Master as the value of the _Master parameter
      --  and _Chain as the value of the _Chain parameter. At the outer level,
      --  these will be variables holding the corresponding values obtained
      --  from GNARL. At inner levels, they will be the parameters passed down
      --  through the outer routines.

      if Has_Task (Full_Type) then
         if Restriction_Active (No_Task_Hierarchy) then

            --  See comments in System.Tasking.Initialization.Init_RTS
            --  for the value 3 (should be rtsfindable constant ???)

            Append_To (Args, Make_Integer_Literal (Loc, 3));
         else
            Append_To (Args, Make_Identifier (Loc, Name_uMaster));
         end if;

         Append_To (Args, Make_Identifier (Loc, Name_uChain));

         --  Ada 2005 (AI-287): In case of default initialized components
         --  with tasks, we generate a null string actual parameter.
         --  This is just a workaround that must be improved later???

         if With_Default_Init then
            Append_To (Args,
              Make_String_Literal (Loc,
                Strval => ""));

         else
            Decls := Build_Task_Image_Decls (Loc, Id_Ref, Enclos_Type);
            Decl  := Last (Decls);

            Append_To (Args,
              New_Occurrence_Of (Defining_Identifier (Decl), Loc));
            Append_List (Decls, Res);
         end if;

      else
         Decls := No_List;
         Decl  := Empty;
      end if;

      --  Add discriminant values if discriminants are present

      if Has_Discriminants (Full_Init_Type) then
         Discr := First_Discriminant (Full_Init_Type);

         while Present (Discr) loop

            --  If this is a discriminated concurrent type, the init_proc
            --  for the corresponding record is being called. Use that
            --  type directly to find the discriminant value, to handle
            --  properly intervening renamed discriminants.

            declare
               T : Entity_Id := Full_Type;

            begin
               if Is_Protected_Type (T) then
                  T := Corresponding_Record_Type (T);

               elsif Is_Private_Type (T)
                 and then Present (Underlying_Full_View (T))
                 and then Is_Protected_Type (Underlying_Full_View (T))
               then
                  T := Corresponding_Record_Type (Underlying_Full_View (T));
               end if;

               Arg :=
                 Get_Discriminant_Value (
                   Discr,
                   T,
                   Discriminant_Constraint (Full_Type));
            end;

            if In_Init_Proc then

               --  Replace any possible references to the discriminant in the
               --  call to the record initialization procedure with references
               --  to the appropriate formal parameter.

               if Nkind (Arg) = N_Identifier
                  and then Ekind (Entity (Arg)) = E_Discriminant
               then
                  Arg := New_Reference_To (Discriminal (Entity (Arg)), Loc);

               --  Case of access discriminants. We replace the reference
               --  to the type by a reference to the actual object

               elsif Nkind (Arg) = N_Attribute_Reference
                 and then Is_Access_Type (Etype (Arg))
                 and then Is_Entity_Name (Prefix (Arg))
                 and then Is_Type (Entity (Prefix (Arg)))
               then
                  Arg :=
                    Make_Attribute_Reference (Loc,
                      Prefix         => New_Copy (Prefix (Id_Ref)),
                      Attribute_Name => Name_Unrestricted_Access);

               --  Otherwise make a copy of the default expression. Note
               --  that we use the current Sloc for this, because we do not
               --  want the call to appear to be at the declaration point.
               --  Within the expression, replace discriminants with their
               --  discriminals.

               else
                  Arg :=
                    New_Copy_Tree (Arg, Map => Discr_Map, New_Sloc => Loc);
               end if;

            else
               if Is_Constrained (Full_Type) then
                  Arg := Duplicate_Subexpr_No_Checks (Arg);
               else
                  --  The constraints come from the discriminant default
                  --  exps, they must be reevaluated, so we use New_Copy_Tree
                  --  but we ensure the proper Sloc (for any embedded calls).

                  Arg := New_Copy_Tree (Arg, New_Sloc => Loc);
               end if;
            end if;

            --  Ada 2005 (AI-287) In case of default initialized components,
            --  we need to generate the corresponding selected component node
            --  to access the discriminant value. In other cases this is not
            --  required because we are inside the init proc and we use the
            --  corresponding formal.

            if With_Default_Init
              and then Nkind (Id_Ref) = N_Selected_Component
            then
               Append_To (Args,
                 Make_Selected_Component (Loc,
                   Prefix => New_Copy_Tree (Prefix (Id_Ref)),
                   Selector_Name => Arg));
            else
               Append_To (Args, Arg);
            end if;

            Next_Discriminant (Discr);
         end loop;
      end if;

      --  If this is a call to initialize the parent component of a derived
      --  tagged type, indicate that the tag should not be set in the parent.

      if Is_Tagged_Type (Full_Init_Type)
        and then not Is_CPP_Class (Full_Init_Type)
        and then Nkind (Id_Ref) = N_Selected_Component
        and then Chars (Selector_Name (Id_Ref)) = Name_uParent
      then
         Append_To (Args, New_Occurrence_Of (Standard_False, Loc));
      end if;

      Append_To (Res,
        Make_Procedure_Call_Statement (Loc,
          Name => New_Occurrence_Of (Proc, Loc),
          Parameter_Associations => Args));

      if Controlled_Type (Typ)
        and then Nkind (Id_Ref) = N_Selected_Component
      then
         if Chars (Selector_Name (Id_Ref)) /= Name_uParent then
            Append_List_To (Res,
              Make_Init_Call (
                Ref         => New_Copy_Tree (First_Arg),
                Typ         => Typ,
                Flist_Ref   =>
                  Find_Final_List (Typ, New_Copy_Tree (First_Arg)),
                With_Attach => Make_Integer_Literal (Loc, 1)));

         --  If the enclosing type is an extension with new controlled
         --  components, it has his own record controller. If the parent
         --  also had a record controller, attach it to the new one.
         --  Build_Init_Statements relies on the fact that in this specific
         --  case the last statement of the result is the attach call to
         --  the controller. If this is changed, it must be synchronized.

         elsif Present (Enclos_Type)
           and then Has_New_Controlled_Component (Enclos_Type)
           and then Has_Controlled_Component (Typ)
         then
            if Is_Return_By_Reference_Type (Typ) then
               Controller_Typ := RTE (RE_Limited_Record_Controller);
            else
               Controller_Typ := RTE (RE_Record_Controller);
            end if;

            Append_List_To (Res,
              Make_Init_Call (
                Ref       =>
                  Make_Selected_Component (Loc,
                    Prefix        => New_Copy_Tree (First_Arg),
                    Selector_Name => Make_Identifier (Loc, Name_uController)),
                Typ       => Controller_Typ,
                Flist_Ref => Find_Final_List (Typ, New_Copy_Tree (First_Arg)),
                With_Attach => Make_Integer_Literal (Loc, 1)));
         end if;
      end if;

      return Res;

   exception
      when RE_Not_Available =>
         return Empty_List;
   end Build_Initialization_Call;

   ---------------------------
   -- Build_Master_Renaming --
   ---------------------------

   procedure Build_Master_Renaming (N : Node_Id; T : Entity_Id) is
      Loc  : constant Source_Ptr := Sloc (N);
      M_Id : Entity_Id;
      Decl : Node_Id;

   begin
      --  Nothing to do if there is no task hierarchy

      if Restriction_Active (No_Task_Hierarchy) then
         return;
      end if;

      M_Id :=
        Make_Defining_Identifier (Loc,
          New_External_Name (Chars (T), 'M'));

      Decl :=
        Make_Object_Renaming_Declaration (Loc,
          Defining_Identifier => M_Id,
          Subtype_Mark => New_Reference_To (RTE (RE_Master_Id), Loc),
          Name => Make_Identifier (Loc, Name_uMaster));
      Insert_Before (N, Decl);
      Analyze (Decl);

      Set_Master_Id (T, M_Id);

   exception
      when RE_Not_Available =>
         return;
   end Build_Master_Renaming;

   ----------------------------
   -- Build_Record_Init_Proc --
   ----------------------------

   procedure Build_Record_Init_Proc (N : Node_Id; Pe : Entity_Id) is
      Loc         : Source_Ptr := Sloc (N);
      Discr_Map   : constant Elist_Id := New_Elmt_List;
      Proc_Id     : Entity_Id;
      Rec_Type    : Entity_Id;
      Set_Tag     : Entity_Id := Empty;

      function Build_Assignment (Id : Entity_Id; N : Node_Id) return List_Id;
      --  Build a assignment statement node which assigns to record
      --  component its default expression if defined. The left hand side
      --  of the assignment is marked Assignment_OK so that initialization
      --  of limited private records works correctly, Return also the
      --  adjustment call for controlled objects

      procedure Build_Discriminant_Assignments (Statement_List : List_Id);
      --  If the record has discriminants, adds assignment statements to
      --  statement list to initialize the discriminant values from the
      --  arguments of the initialization procedure.

      function Build_Init_Statements (Comp_List : Node_Id) return List_Id;
      --  Build a list representing a sequence of statements which initialize
      --  components of the given component list. This may involve building
      --  case statements for the variant parts.

      function Build_Init_Call_Thru (Parameters : List_Id) return List_Id;
      --  Given a non-tagged type-derivation that declares discriminants,
      --  such as
      --
      --  type R (R1, R2 : Integer) is record ... end record;
      --
      --  type D (D1 : Integer) is new R (1, D1);
      --
      --  we make the _init_proc of D be
      --
      --       procedure _init_proc(X : D; D1 : Integer) is
      --       begin
      --          _init_proc( R(X), 1, D1);
      --       end _init_proc;
      --
      --  This function builds the call statement in this _init_proc.

      procedure Build_Init_Procedure;
      --  Build the tree corresponding to the procedure specification and body
      --  of the initialization procedure (by calling all the preceding
      --  auxiliary routines), and install it as the _init TSS.

      procedure Build_Record_Checks (S : Node_Id; Check_List : List_Id);
      --  Add range checks to components of disciminated records. S is a
      --  subtype indication of a record component. Check_List is a list
      --  to which the check actions are appended.

      function Component_Needs_Simple_Initialization
        (T : Entity_Id) return Boolean;
      --  Determines if a component needs simple initialization, given its
      --  type T. This is the same as Needs_Simple_Initialization except
      --  for the following difference: the types Tag and Vtable_Ptr, which
      --  are access types which would normally require simple initialization
      --  to null, do not require initialization as components, since they
      --  are explicitly initialized by other means.

      procedure Constrain_Array
        (SI         : Node_Id;
         Check_List : List_Id);
      --  Called from Build_Record_Checks.
      --  Apply a list of index constraints to an unconstrained array type.
      --  The first parameter is the entity for the resulting subtype.
      --  Check_List is a list to which the check actions are appended.

      procedure Constrain_Index
        (Index      : Node_Id;
         S          : Node_Id;
         Check_List : List_Id);
      --  Called from Build_Record_Checks.
      --  Process an index constraint in a constrained array declaration.
      --  The constraint can be a subtype name, or a range with or without
      --  an explicit subtype mark. The index is the corresponding index of the
      --  unconstrained array. S is the range expression. Check_List is a list
      --  to which the check actions are appended.

      function Parent_Subtype_Renaming_Discrims return Boolean;
      --  Returns True for base types N that rename discriminants, else False

      function Requires_Init_Proc (Rec_Id : Entity_Id) return Boolean;
      --  Determines whether a record initialization procedure needs to be
      --  generated for the given record type.

      ----------------------
      -- Build_Assignment --
      ----------------------

      function Build_Assignment (Id : Entity_Id; N : Node_Id) return List_Id is
         Exp  : Node_Id := N;
         Lhs  : Node_Id;
         Typ  : constant Entity_Id := Underlying_Type (Etype (Id));
         Kind : Node_Kind := Nkind (N);
         Res  : List_Id;

      begin
         Loc := Sloc (N);
         Lhs :=
           Make_Selected_Component (Loc,
             Prefix => Make_Identifier (Loc, Name_uInit),
             Selector_Name => New_Occurrence_Of (Id, Loc));
         Set_Assignment_OK (Lhs);

         --  Case of an access attribute applied to the current instance.
         --  Replace the reference to the type by a reference to the actual
         --  object. (Note that this handles the case of the top level of
         --  the expression being given by such an attribute, but does not
         --  cover uses nested within an initial value expression. Nested
         --  uses are unlikely to occur in practice, but are theoretically
         --  possible. It is not clear how to handle them without fully
         --  traversing the expression. ???

         if Kind = N_Attribute_Reference
           and then (Attribute_Name (N) = Name_Unchecked_Access
                       or else
                     Attribute_Name (N) = Name_Unrestricted_Access)
           and then Is_Entity_Name (Prefix (N))
           and then Is_Type (Entity (Prefix (N)))
           and then Entity (Prefix (N)) = Rec_Type
         then
            Exp :=
              Make_Attribute_Reference (Loc,
                Prefix         => Make_Identifier (Loc, Name_uInit),
                Attribute_Name => Name_Unrestricted_Access);
         end if;

         --  Ada 2005 (AI-231): Generate conversion to the null-excluding
         --  type to force the corresponding run-time check.

         if Ada_Version >= Ada_05
           and then Can_Never_Be_Null (Etype (Id))  -- Lhs
           and then Present (Etype (Exp))
           and then not Can_Never_Be_Null (Etype (Exp))
         then
            Rewrite (Exp, Convert_To (Etype (Id), Relocate_Node (Exp)));
            Analyze_And_Resolve (Exp, Etype (Id));
         end if;

         --  Take a copy of Exp to ensure that later copies of this
         --  component_declaration in derived types see the original tree,
         --  not a node rewritten during expansion of the init_proc.

         Exp := New_Copy_Tree (Exp);

         Res := New_List (
           Make_Assignment_Statement (Loc,
             Name       => Lhs,
             Expression => Exp));

         Set_No_Ctrl_Actions (First (Res));

         --  Adjust the tag if tagged (because of possible view conversions).
         --  Suppress the tag adjustment when Java_VM because JVM tags are
         --  represented implicitly in objects.

         if Is_Tagged_Type (Typ) and then not Java_VM then
            Append_To (Res,
              Make_Assignment_Statement (Loc,
                Name =>
                  Make_Selected_Component (Loc,
                    Prefix =>  New_Copy_Tree (Lhs),
                    Selector_Name =>
                      New_Reference_To (Tag_Component (Typ), Loc)),

                Expression =>
                  Unchecked_Convert_To (RTE (RE_Tag),
                    New_Reference_To (Access_Disp_Table (Typ), Loc))));
         end if;

         --  Adjust the component if controlled except if it is an
         --  aggregate that will be expanded inline

         if Kind = N_Qualified_Expression then
            Kind := Nkind (Expression (N));
         end if;

         if Controlled_Type (Typ)
         and then not (Kind = N_Aggregate or else Kind = N_Extension_Aggregate)
         then
            Append_List_To (Res,
              Make_Adjust_Call (
               Ref          => New_Copy_Tree (Lhs),
               Typ          => Etype (Id),
               Flist_Ref    =>
                 Find_Final_List (Etype (Id), New_Copy_Tree (Lhs)),
               With_Attach  => Make_Integer_Literal (Loc, 1)));
         end if;

         return Res;

      exception
         when RE_Not_Available =>
            return Empty_List;
      end Build_Assignment;

      ------------------------------------
      -- Build_Discriminant_Assignments --
      ------------------------------------

      procedure Build_Discriminant_Assignments (Statement_List : List_Id) is
         D         : Entity_Id;
         Is_Tagged : constant Boolean := Is_Tagged_Type (Rec_Type);

      begin
         if Has_Discriminants (Rec_Type)
           and then not Is_Unchecked_Union (Rec_Type)
         then
            D := First_Discriminant (Rec_Type);

            while Present (D) loop
               --  Don't generate the assignment for discriminants in derived
               --  tagged types if the discriminant is a renaming of some
               --  ancestor discriminant.  This initialization will be done
               --  when initializing the _parent field of the derived record.

               if Is_Tagged and then
                 Present (Corresponding_Discriminant (D))
               then
                  null;

               else
                  Loc := Sloc (D);
                  Append_List_To (Statement_List,
                    Build_Assignment (D,
                      New_Reference_To (Discriminal (D), Loc)));
               end if;

               Next_Discriminant (D);
            end loop;
         end if;
      end Build_Discriminant_Assignments;

      --------------------------
      -- Build_Init_Call_Thru --
      --------------------------

      function Build_Init_Call_Thru (Parameters : List_Id) return List_Id is
         Parent_Proc : constant Entity_Id :=
                         Base_Init_Proc (Etype (Rec_Type));

         Parent_Type : constant Entity_Id :=
                         Etype (First_Formal (Parent_Proc));

         Uparent_Type : constant Entity_Id :=
                          Underlying_Type (Parent_Type);

         First_Discr_Param : Node_Id;

         Parent_Discr : Entity_Id;
         First_Arg    : Node_Id;
         Args         : List_Id;
         Arg          : Node_Id;
         Res          : List_Id;

      begin
         --  First argument (_Init) is the object to be initialized.
         --  ??? not sure where to get a reasonable Loc for First_Arg

         First_Arg :=
           OK_Convert_To (Parent_Type,
             New_Reference_To (Defining_Identifier (First (Parameters)), Loc));

         Set_Etype (First_Arg, Parent_Type);

         Args := New_List (Convert_Concurrent (First_Arg, Rec_Type));

         --  In the tasks case,
         --    add _Master as the value of the _Master parameter
         --    add _Chain as the value of the _Chain parameter.
         --    add _Task_Name as the value of the _Task_Name parameter.
         --  At the outer level, these will be variables holding the
         --  corresponding values obtained from GNARL or the expander.
         --
         --  At inner levels, they will be the parameters passed down through
         --  the outer routines.

         First_Discr_Param := Next (First (Parameters));

         if Has_Task (Rec_Type) then
            if Restriction_Active (No_Task_Hierarchy) then

               --  See comments in System.Tasking.Initialization.Init_RTS
               --  for the value 3.

               Append_To (Args, Make_Integer_Literal (Loc, 3));
            else
               Append_To (Args, Make_Identifier (Loc, Name_uMaster));
            end if;

            Append_To (Args, Make_Identifier (Loc, Name_uChain));
            Append_To (Args, Make_Identifier (Loc, Name_uTask_Name));
            First_Discr_Param := Next (Next (Next (First_Discr_Param)));
         end if;

         --  Append discriminant values

         if Has_Discriminants (Uparent_Type) then
            pragma Assert (not Is_Tagged_Type (Uparent_Type));

            Parent_Discr := First_Discriminant (Uparent_Type);
            while Present (Parent_Discr) loop

               --  Get the initial value for this discriminant
               --  ??? needs to be cleaned up to use parent_Discr_Constr
               --  directly.

               declare
                  Discr_Value : Elmt_Id :=
                                  First_Elmt
                                    (Stored_Constraint (Rec_Type));

                  Discr       : Entity_Id :=
                                  First_Stored_Discriminant (Uparent_Type);
               begin
                  while Original_Record_Component (Parent_Discr) /= Discr loop
                     Next_Stored_Discriminant (Discr);
                     Next_Elmt (Discr_Value);
                  end loop;

                  Arg := Node (Discr_Value);
               end;

               --  Append it to the list

               if Nkind (Arg) = N_Identifier
                  and then Ekind (Entity (Arg)) = E_Discriminant
               then
                  Append_To (Args,
                    New_Reference_To (Discriminal (Entity (Arg)), Loc));

               --  Case of access discriminants. We replace the reference
               --  to the type by a reference to the actual object

--     ??? why is this code deleted without comment

--               elsif Nkind (Arg) = N_Attribute_Reference
--                 and then Is_Entity_Name (Prefix (Arg))
--                 and then Is_Type (Entity (Prefix (Arg)))
--               then
--                  Append_To (Args,
--                    Make_Attribute_Reference (Loc,
--                      Prefix         => New_Copy (Prefix (Id_Ref)),
--                      Attribute_Name => Name_Unrestricted_Access));

               else
                  Append_To (Args, New_Copy (Arg));
               end if;

               Next_Discriminant (Parent_Discr);
            end loop;
         end if;

         Res :=
            New_List (
              Make_Procedure_Call_Statement (Loc,
                Name => New_Occurrence_Of (Parent_Proc, Loc),
                Parameter_Associations => Args));

         return Res;
      end Build_Init_Call_Thru;

      --------------------------
      -- Build_Init_Procedure --
      --------------------------

      procedure Build_Init_Procedure is
         Body_Node             : Node_Id;
         Handled_Stmt_Node     : Node_Id;
         Parameters            : List_Id;
         Proc_Spec_Node        : Node_Id;
         Body_Stmts            : List_Id;
         Record_Extension_Node : Node_Id;
         Init_Tag              : Node_Id;

      begin
         Body_Stmts := New_List;
         Body_Node := New_Node (N_Subprogram_Body, Loc);

         Proc_Id :=
           Make_Defining_Identifier (Loc,
             Chars => Make_Init_Proc_Name (Rec_Type));
         Set_Ekind (Proc_Id, E_Procedure);

         Proc_Spec_Node := New_Node (N_Procedure_Specification, Loc);
         Set_Defining_Unit_Name (Proc_Spec_Node, Proc_Id);

         Parameters := Init_Formals (Rec_Type);
         Append_List_To (Parameters,
           Build_Discriminant_Formals (Rec_Type, True));

         --  For tagged types, we add a flag to indicate whether the routine
         --  is called to initialize a parent component in the init_proc of
         --  a type extension. If the flag is false, we do not set the tag
         --  because it has been set already in the extension.

         if Is_Tagged_Type (Rec_Type)
           and then not Is_CPP_Class (Rec_Type)
         then
            Set_Tag :=
                  Make_Defining_Identifier (Loc, New_Internal_Name ('P'));

            Append_To (Parameters,
              Make_Parameter_Specification (Loc,
                Defining_Identifier => Set_Tag,
                Parameter_Type => New_Occurrence_Of (Standard_Boolean, Loc),
                Expression => New_Occurrence_Of (Standard_True, Loc)));
         end if;

         Set_Parameter_Specifications (Proc_Spec_Node, Parameters);
         Set_Specification (Body_Node, Proc_Spec_Node);
         Set_Declarations (Body_Node, New_List);

         if Parent_Subtype_Renaming_Discrims then

            --  N is a Derived_Type_Definition that renames the parameters
            --  of the ancestor type.  We init it by expanding our discrims
            --  and call the ancestor _init_proc with a type-converted object

            Append_List_To (Body_Stmts,
              Build_Init_Call_Thru (Parameters));

         elsif Nkind (Type_Definition (N)) = N_Record_Definition then
            Build_Discriminant_Assignments (Body_Stmts);

            if not Null_Present (Type_Definition (N)) then
               Append_List_To (Body_Stmts,
                 Build_Init_Statements (
                   Component_List (Type_Definition (N))));
            end if;

         else
            --  N is a Derived_Type_Definition with a possible non-empty
            --  extension. The initialization of a type extension consists
            --  in the initialization of the components in the extension.

            Build_Discriminant_Assignments (Body_Stmts);

            Record_Extension_Node :=
              Record_Extension_Part (Type_Definition (N));

            if not Null_Present (Record_Extension_Node) then
               declare
                  Stmts : constant List_Id :=
                            Build_Init_Statements (
                              Component_List (Record_Extension_Node));

               begin
                  --  The parent field must be initialized first because
                  --  the offset of the new discriminants may depend on it

                  Prepend_To (Body_Stmts, Remove_Head (Stmts));
                  Append_List_To (Body_Stmts, Stmts);
               end;
            end if;
         end if;

         --  Add here the assignment to instantiate the Tag

         --  The assignement corresponds to the code:

         --     _Init._Tag := Typ'Tag;

         --  Suppress the tag assignment when Java_VM because JVM tags are
         --  represented implicitly in objects.

         if Is_Tagged_Type (Rec_Type)
           and then not Is_CPP_Class (Rec_Type)
           and then not Java_VM
         then
            Init_Tag :=
              Make_Assignment_Statement (Loc,
                Name =>
                  Make_Selected_Component (Loc,
                    Prefix => Make_Identifier (Loc, Name_uInit),
                    Selector_Name =>
                      New_Reference_To (Tag_Component (Rec_Type), Loc)),

                Expression =>
                  New_Reference_To (Access_Disp_Table (Rec_Type), Loc));

            --  The tag must be inserted before the assignments to other
            --  components,  because the initial value of the component may
            --  depend ot the tag (eg. through a dispatching operation on
            --  an access to the current type). The tag assignment is not done
            --  when initializing the parent component of a type extension,
            --  because in that case the tag is set in the extension.
            --  Extensions of imported C++ classes add a final complication,
            --  because we cannot inhibit tag setting in the constructor for
            --  the parent. In that case we insert the tag initialization
            --  after the calls to initialize the parent.

            Init_Tag :=
              Make_If_Statement (Loc,
                Condition => New_Occurrence_Of (Set_Tag, Loc),
                Then_Statements => New_List (Init_Tag));

            if not Is_CPP_Class (Etype (Rec_Type)) then
               Prepend_To (Body_Stmts, Init_Tag);

            else
               declare
                  Nod : Node_Id := First (Body_Stmts);

               begin
                  --  We assume the first init_proc call is for the parent

                  while Present (Next (Nod))
                    and then (Nkind (Nod) /= N_Procedure_Call_Statement
                               or else not Is_Init_Proc (Name (Nod)))
                  loop
                     Nod := Next (Nod);
                  end loop;

                  Insert_After (Nod, Init_Tag);
               end;
            end if;
         end if;

         Handled_Stmt_Node := New_Node (N_Handled_Sequence_Of_Statements, Loc);
         Set_Statements (Handled_Stmt_Node, Body_Stmts);
         Set_Exception_Handlers (Handled_Stmt_Node, No_List);
         Set_Handled_Statement_Sequence (Body_Node, Handled_Stmt_Node);

         if not Debug_Generated_Code then
            Set_Debug_Info_Off (Proc_Id);
         end if;

         --  Associate Init_Proc with type, and determine if the procedure
         --  is null (happens because of the Initialize_Scalars pragma case,
         --  where we have to generate a null procedure in case it is called
         --  by a client with Initialize_Scalars set). Such procedures have
         --  to be generated, but do not have to be called, so we mark them
         --  as null to suppress the call.

         Set_Init_Proc (Rec_Type, Proc_Id);

         if List_Length (Body_Stmts) = 1
           and then Nkind (First (Body_Stmts)) = N_Null_Statement
         then
            Set_Is_Null_Init_Proc (Proc_Id);
         end if;
      end Build_Init_Procedure;

      ---------------------------
      -- Build_Init_Statements --
      ---------------------------

      function Build_Init_Statements (Comp_List : Node_Id) return List_Id is
         Check_List     : constant List_Id := New_List;
         Alt_List       : List_Id;
         Statement_List : List_Id;
         Stmts          : List_Id;

         Per_Object_Constraint_Components : Boolean;

         Decl     : Node_Id;
         Variant  : Node_Id;

         Id  : Entity_Id;
         Typ : Entity_Id;

         function Has_Access_Constraint (E : Entity_Id) return Boolean;
         --  Components with access discriminants that depend on the current
         --  instance must be initialized after all other components.

         ---------------------------
         -- Has_Access_Constraint --
         ---------------------------

         function Has_Access_Constraint (E : Entity_Id) return Boolean is
            Disc : Entity_Id;
            T    : constant Entity_Id := Etype (E);

         begin
            if Has_Per_Object_Constraint (E)
              and then Has_Discriminants (T)
            then
               Disc := First_Discriminant (T);
               while Present (Disc) loop
                  if Is_Access_Type (Etype (Disc)) then
                     return True;
                  end if;

                  Next_Discriminant (Disc);
               end loop;

               return False;
            else
               return False;
            end if;
         end Has_Access_Constraint;

      --  Start of processing for Build_Init_Statements

      begin
         if Null_Present (Comp_List) then
            return New_List (Make_Null_Statement (Loc));
         end if;

         Statement_List := New_List;

         --  Loop through components, skipping pragmas, in 2 steps. The first
         --  step deals with regular components. The second step deals with
         --  components have per object constraints, and no explicit initia-
         --  lization.

         Per_Object_Constraint_Components := False;

         --  First step : regular components

         Decl := First_Non_Pragma (Component_Items (Comp_List));
         while Present (Decl) loop
            Loc := Sloc (Decl);
            Build_Record_Checks
              (Subtype_Indication (Component_Definition (Decl)), Check_List);

            Id := Defining_Identifier (Decl);
            Typ := Etype (Id);

            if Has_Access_Constraint (Id)
              and then No (Expression (Decl))
            then
               --  Skip processing for now and ask for a second pass

               Per_Object_Constraint_Components := True;

            else
               --  Case of explicit initialization

               if Present (Expression (Decl)) then
                  Stmts := Build_Assignment (Id, Expression (Decl));

               --  Case of composite component with its own Init_Proc

               elsif Has_Non_Null_Base_Init_Proc (Typ) then
                  Stmts :=
                    Build_Initialization_Call
                      (Loc,
                       Make_Selected_Component (Loc,
                         Prefix => Make_Identifier (Loc, Name_uInit),
                         Selector_Name => New_Occurrence_Of (Id, Loc)),
                       Typ,
                       True,
                       Rec_Type,
                       Discr_Map => Discr_Map);

               --  Case of component needing simple initialization

               elsif Component_Needs_Simple_Initialization (Typ) then
                  Stmts :=
                    Build_Assignment (Id, Get_Simple_Init_Val (Typ, Loc));

               --  Nothing needed for this case

               else
                  Stmts := No_List;
               end if;

               if Present (Check_List) then
                  Append_List_To (Statement_List, Check_List);
               end if;

               if Present (Stmts) then

                  --  Add the initialization of the record controller before
                  --  the _Parent field is attached to it when the attachment
                  --  can occur. It does not work to simply initialize the
                  --  controller first: it must be initialized after the parent
                  --  if the parent holds discriminants that can be used
                  --  to compute the offset of the controller. We assume here
                  --  that the last statement of the initialization call is the
                  --  attachement of the parent (see Build_Initialization_Call)

                  if Chars (Id) = Name_uController
                    and then Rec_Type /= Etype (Rec_Type)
                    and then Has_Controlled_Component (Etype (Rec_Type))
                    and then Has_New_Controlled_Component (Rec_Type)
                  then
                     Insert_List_Before (Last (Statement_List), Stmts);
                  else
                     Append_List_To (Statement_List, Stmts);
                  end if;
               end if;
            end if;

            Next_Non_Pragma (Decl);
         end loop;

         if Per_Object_Constraint_Components then

            --  Second pass: components with per-object constraints

            Decl := First_Non_Pragma (Component_Items (Comp_List));

            while Present (Decl) loop
               Loc := Sloc (Decl);
               Id := Defining_Identifier (Decl);
               Typ := Etype (Id);

               if Has_Access_Constraint (Id)
                 and then No (Expression (Decl))
               then
                  if Has_Non_Null_Base_Init_Proc (Typ) then
                     Append_List_To (Statement_List,
                       Build_Initialization_Call (Loc,
                         Make_Selected_Component (Loc,
                           Prefix => Make_Identifier (Loc, Name_uInit),
                           Selector_Name => New_Occurrence_Of (Id, Loc)),
                         Typ, True, Rec_Type, Discr_Map => Discr_Map));

                  elsif Component_Needs_Simple_Initialization (Typ) then
                     Append_List_To (Statement_List,
                       Build_Assignment (Id, Get_Simple_Init_Val (Typ, Loc)));
                  end if;
               end if;

               Next_Non_Pragma (Decl);
            end loop;
         end if;

         --  Process the variant part

         if Present (Variant_Part (Comp_List)) then
            Alt_List := New_List;
            Variant := First_Non_Pragma (Variants (Variant_Part (Comp_List)));

            while Present (Variant) loop
               Loc := Sloc (Variant);
               Append_To (Alt_List,
                 Make_Case_Statement_Alternative (Loc,
                   Discrete_Choices =>
                     New_Copy_List (Discrete_Choices (Variant)),
                   Statements =>
                     Build_Init_Statements (Component_List (Variant))));

               Next_Non_Pragma (Variant);
            end loop;

            --  The expression of the case statement which is a reference
            --  to one of the discriminants is replaced by the appropriate
            --  formal parameter of the initialization procedure.

            Append_To (Statement_List,
              Make_Case_Statement (Loc,
                Expression =>
                  New_Reference_To (Discriminal (
                    Entity (Name (Variant_Part (Comp_List)))), Loc),
                Alternatives => Alt_List));
         end if;

         --  For a task record type, add the task create call and calls
         --  to bind any interrupt (signal) entries.

         if Is_Task_Record_Type (Rec_Type) then

            --  In the case of the restricted run time the ATCB has already
            --  been preallocated.

            if Restricted_Profile then
               Append_To (Statement_List,
                 Make_Assignment_Statement (Loc,
                   Name => Make_Selected_Component (Loc,
                     Prefix => Make_Identifier (Loc, Name_uInit),
                     Selector_Name => Make_Identifier (Loc, Name_uTask_Id)),
                   Expression => Make_Attribute_Reference (Loc,
                     Prefix =>
                       Make_Selected_Component (Loc,
                         Prefix => Make_Identifier (Loc, Name_uInit),
                         Selector_Name =>
                           Make_Identifier (Loc, Name_uATCB)),
                     Attribute_Name => Name_Unchecked_Access)));
            end if;

            Append_To (Statement_List, Make_Task_Create_Call (Rec_Type));

            declare
               Task_Type : constant Entity_Id :=
                             Corresponding_Concurrent_Type (Rec_Type);
               Task_Decl : constant Node_Id := Parent (Task_Type);
               Task_Def  : constant Node_Id := Task_Definition (Task_Decl);
               Vis_Decl  : Node_Id;
               Ent       : Entity_Id;

            begin
               if Present (Task_Def) then
                  Vis_Decl := First (Visible_Declarations (Task_Def));
                  while Present (Vis_Decl) loop
                     Loc := Sloc (Vis_Decl);

                     if Nkind (Vis_Decl) = N_Attribute_Definition_Clause then
                        if Get_Attribute_Id (Chars (Vis_Decl)) =
                                                       Attribute_Address
                        then
                           Ent := Entity (Name (Vis_Decl));

                           if Ekind (Ent) = E_Entry then
                              Append_To (Statement_List,
                                Make_Procedure_Call_Statement (Loc,
                                  Name => New_Reference_To (
                                    RTE (RE_Bind_Interrupt_To_Entry), Loc),
                                  Parameter_Associations => New_List (
                                    Make_Selected_Component (Loc,
                                      Prefix =>
                                        Make_Identifier (Loc, Name_uInit),
                                      Selector_Name =>
                                        Make_Identifier (Loc, Name_uTask_Id)),
                                    Entry_Index_Expression (
                                      Loc, Ent, Empty, Task_Type),
                                    Expression (Vis_Decl))));
                           end if;
                        end if;
                     end if;

                     Next (Vis_Decl);
                  end loop;
               end if;
            end;
         end if;

         --  For a protected type, add statements generated by
         --  Make_Initialize_Protection.

         if Is_Protected_Record_Type (Rec_Type) then
            Append_List_To (Statement_List,
              Make_Initialize_Protection (Rec_Type));
         end if;

         --  If no initializations when generated for component declarations
         --  corresponding to this Statement_List, append a null statement
         --  to the Statement_List to make it a valid Ada tree.

         if Is_Empty_List (Statement_List) then
            Append (New_Node (N_Null_Statement, Loc), Statement_List);
         end if;

         return Statement_List;

      exception
         when RE_Not_Available =>
         return Empty_List;
      end Build_Init_Statements;

      -------------------------
      -- Build_Record_Checks --
      -------------------------

      procedure Build_Record_Checks (S : Node_Id; Check_List : List_Id) is
         Subtype_Mark_Id : Entity_Id;

      begin
         if Nkind (S) = N_Subtype_Indication then
            Find_Type (Subtype_Mark (S));
            Subtype_Mark_Id := Entity (Subtype_Mark (S));

            --  Remaining processing depends on type

            case Ekind (Subtype_Mark_Id) is

               when Array_Kind =>
                  Constrain_Array (S, Check_List);

               when others =>
                  null;
            end case;
         end if;
      end Build_Record_Checks;

      -------------------------------------------
      -- Component_Needs_Simple_Initialization --
      -------------------------------------------

      function Component_Needs_Simple_Initialization
        (T : Entity_Id) return Boolean
      is
      begin
         return
           Needs_Simple_Initialization (T)
             and then not Is_RTE (T, RE_Tag)
             and then not Is_RTE (T, RE_Vtable_Ptr);
      end Component_Needs_Simple_Initialization;

      ---------------------
      -- Constrain_Array --
      ---------------------

      procedure Constrain_Array
        (SI          : Node_Id;
         Check_List  : List_Id)
      is
         C                     : constant Node_Id := Constraint (SI);
         Number_Of_Constraints : Nat := 0;
         Index                 : Node_Id;
         S, T                  : Entity_Id;

      begin
         T := Entity (Subtype_Mark (SI));

         if Ekind (T) in Access_Kind then
            T := Designated_Type (T);
         end if;

         S := First (Constraints (C));

         while Present (S) loop
            Number_Of_Constraints := Number_Of_Constraints + 1;
            Next (S);
         end loop;

         --  In either case, the index constraint must provide a discrete
         --  range for each index of the array type and the type of each
         --  discrete range must be the same as that of the corresponding
         --  index. (RM 3.6.1)

         S := First (Constraints (C));
         Index := First_Index (T);
         Analyze (Index);

         --  Apply constraints to each index type

         for J in 1 .. Number_Of_Constraints loop
            Constrain_Index (Index, S, Check_List);
            Next (Index);
            Next (S);
         end loop;

      end Constrain_Array;

      ---------------------
      -- Constrain_Index --
      ---------------------

      procedure Constrain_Index
        (Index        : Node_Id;
         S            : Node_Id;
         Check_List   : List_Id)
      is
         T : constant Entity_Id := Etype (Index);

      begin
         if Nkind (S) = N_Range then
            Process_Range_Expr_In_Decl (S, T, Check_List);
         end if;
      end Constrain_Index;

      --------------------------------------
      -- Parent_Subtype_Renaming_Discrims --
      --------------------------------------

      function Parent_Subtype_Renaming_Discrims return Boolean is
         De : Entity_Id;
         Dp : Entity_Id;

      begin
         if Base_Type (Pe) /= Pe then
            return False;
         end if;

         if Etype (Pe) = Pe
           or else not Has_Discriminants (Pe)
           or else Is_Constrained (Pe)
           or else Is_Tagged_Type (Pe)
         then
            return False;
         end if;

         --  If there are no explicit stored discriminants we have inherited
         --  the root type discriminants so far, so no renamings occurred.

         if First_Discriminant (Pe) = First_Stored_Discriminant (Pe) then
            return False;
         end if;

         --  Check if we have done some trivial renaming of the parent
         --  discriminants, i.e. someting like
         --
         --    type DT (X1,X2: int) is new PT (X1,X2);

         De := First_Discriminant (Pe);
         Dp := First_Discriminant (Etype (Pe));

         while Present (De) loop
            pragma Assert (Present (Dp));

            if Corresponding_Discriminant (De) /= Dp then
               return True;
            end if;

            Next_Discriminant (De);
            Next_Discriminant (Dp);
         end loop;

         return Present (Dp);
      end Parent_Subtype_Renaming_Discrims;

      ------------------------
      -- Requires_Init_Proc --
      ------------------------

      function Requires_Init_Proc (Rec_Id : Entity_Id) return Boolean is
         Comp_Decl : Node_Id;
         Id        : Entity_Id;
         Typ       : Entity_Id;

      begin
         --  Definitely do not need one if specifically suppressed

         if Suppress_Init_Proc (Rec_Id) then
            return False;
         end if;

         --  Otherwise we need to generate an initialization procedure if
         --  Is_CPP_Class is False and at least one of the following applies:

         --  1. Discriminants are present, since they need to be initialized
         --     with the appropriate discriminant constraint expressions.
         --     However, the discriminant of an unchecked union does not
         --     count, since the discriminant is not present.

         --  2. The type is a tagged type, since the implicit Tag component
         --     needs to be initialized with a pointer to the dispatch table.

         --  3. The type contains tasks

         --  4. One or more components has an initial value

         --  5. One or more components is for a type which itself requires
         --     an initialization procedure.

         --  6. One or more components is a type that requires simple
         --     initialization (see Needs_Simple_Initialization), except
         --     that types Tag and Vtable_Ptr are excluded, since fields
         --     of these types are initialized by other means.

         --  7. The type is the record type built for a task type (since at
         --     the very least, Create_Task must be called)

         --  8. The type is the record type built for a protected type (since
         --     at least Initialize_Protection must be called)

         --  9. The type is marked as a public entity. The reason we add this
         --     case (even if none of the above apply) is to properly handle
         --     Initialize_Scalars. If a package is compiled without an IS
         --     pragma, and the client is compiled with an IS pragma, then
         --     the client will think an initialization procedure is present
         --     and call it, when in fact no such procedure is required, but
         --     since the call is generated, there had better be a routine
         --     at the other end of the call, even if it does nothing!)

         --  Note: the reason we exclude the CPP_Class case is ???

         if Is_CPP_Class (Rec_Id) then
            return False;

         elsif not Restriction_Active (No_Initialize_Scalars)
           and then Is_Public (Rec_Id)
         then
            return True;

         elsif (Has_Discriminants (Rec_Id)
                  and then not Is_Unchecked_Union (Rec_Id))
           or else Is_Tagged_Type (Rec_Id)
           or else Is_Concurrent_Record_Type (Rec_Id)
           or else Has_Task (Rec_Id)
         then
            return True;
         end if;

         Id := First_Component (Rec_Id);

         while Present (Id) loop
            Comp_Decl := Parent (Id);
            Typ := Etype (Id);

            if Present (Expression (Comp_Decl))
              or else Has_Non_Null_Base_Init_Proc (Typ)
              or else Component_Needs_Simple_Initialization (Typ)
            then
               return True;
            end if;

            Next_Component (Id);
         end loop;

         return False;
      end Requires_Init_Proc;

   --  Start of processing for Build_Record_Init_Proc

   begin
      Rec_Type := Defining_Identifier (N);

      --  This may be full declaration of a private type, in which case
      --  the visible entity is a record, and the private entity has been
      --  exchanged with it in the private part of the current package.
      --  The initialization procedure is built for the record type, which
      --  is retrievable from the private entity.

      if Is_Incomplete_Or_Private_Type (Rec_Type) then
         Rec_Type := Underlying_Type (Rec_Type);
      end if;

      --  If there are discriminants, build the discriminant map to replace
      --  discriminants by their discriminals in complex bound expressions.
      --  These only arise for the corresponding records of protected types.

      if Is_Concurrent_Record_Type (Rec_Type)
        and then Has_Discriminants (Rec_Type)
      then
         declare
            Disc : Entity_Id;

         begin
            Disc := First_Discriminant (Rec_Type);

            while Present (Disc) loop
               Append_Elmt (Disc, Discr_Map);
               Append_Elmt (Discriminal (Disc), Discr_Map);
               Next_Discriminant (Disc);
            end loop;
         end;
      end if;

      --  Derived types that have no type extension can use the initialization
      --  procedure of their parent and do not need a procedure of their own.
      --  This is only correct if there are no representation clauses for the
      --  type or its parent, and if the parent has in fact been frozen so
      --  that its initialization procedure exists.

      if Is_Derived_Type (Rec_Type)
        and then not Is_Tagged_Type (Rec_Type)
        and then not Is_Unchecked_Union (Rec_Type)
        and then not Has_New_Non_Standard_Rep (Rec_Type)
        and then not Parent_Subtype_Renaming_Discrims
        and then Has_Non_Null_Base_Init_Proc (Etype (Rec_Type))
      then
         Copy_TSS (Base_Init_Proc (Etype (Rec_Type)), Rec_Type);

      --  Otherwise if we need an initialization procedure, then build one,
      --  mark it as public and inlinable and as having a completion.

      elsif Requires_Init_Proc (Rec_Type)
        or else Is_Unchecked_Union (Rec_Type)
      then
         Build_Init_Procedure;
         Set_Is_Public (Proc_Id, Is_Public (Pe));

         --  The initialization of protected records is not worth inlining.
         --  In addition, when compiled for another unit for inlining purposes,
         --  it may make reference to entities that have not been elaborated
         --  yet. The initialization of controlled records contains a nested
         --  clean-up procedure that makes it impractical to inline as well,
         --  and leads to undefined symbols if inlined in a different unit.
         --  Similar considerations apply to task types.

         if not Is_Concurrent_Type (Rec_Type)
           and then not Has_Task (Rec_Type)
           and then not Controlled_Type (Rec_Type)
         then
            Set_Is_Inlined  (Proc_Id);
         end if;

         Set_Is_Internal    (Proc_Id);
         Set_Has_Completion (Proc_Id);

         if not Debug_Generated_Code then
            Set_Debug_Info_Off (Proc_Id);
         end if;
      end if;
   end Build_Record_Init_Proc;

   ----------------------------
   -- Build_Slice_Assignment --
   ----------------------------

   --  Generates the following subprogram:

   --    procedure Assign
   --     (Source,   Target   : Array_Type,
   --      Left_Lo,  Left_Hi, Right_Lo, Right_Hi : Index;
   --      Rev :     Boolean)
   --    is
   --       Li1 : Index;
   --       Ri1 : Index;

   --    begin
   --       if Rev  then
   --          Li1 := Left_Hi;
   --          Ri1 := Right_Hi;
   --       else
   --          Li1 := Left_Lo;
   --          Ri1 := Right_Lo;
   --       end if;

   --       loop
   --             if Rev then
   --                exit when Li1 < Left_Lo;
   --             else
   --                exit when Li1 > Left_Hi;
   --             end if;

   --             Target (Li1) := Source (Ri1);

   --             if Rev then
   --                Li1 := Index'pred (Li1);
   --                Ri1 := Index'pred (Ri1);
   --             else
   --                Li1 := Index'succ (Li1);
   --                Ri1 := Index'succ (Ri1);
   --             end if;
   --       end loop;
   --    end Assign;

   procedure Build_Slice_Assignment (Typ : Entity_Id) is
      Loc   : constant Source_Ptr := Sloc (Typ);
      Index : constant Entity_Id  := Base_Type (Etype (First_Index (Typ)));

      --  Build formal parameters of procedure

      Larray   : constant Entity_Id :=
                   Make_Defining_Identifier
                     (Loc, Chars => New_Internal_Name ('A'));
      Rarray   : constant Entity_Id :=
                   Make_Defining_Identifier
                     (Loc, Chars => New_Internal_Name ('R'));
      Left_Lo  : constant Entity_Id :=
                   Make_Defining_Identifier
                     (Loc, Chars => New_Internal_Name ('L'));
      Left_Hi  : constant Entity_Id :=
                   Make_Defining_Identifier
                     (Loc, Chars => New_Internal_Name ('L'));
      Right_Lo : constant Entity_Id :=
                   Make_Defining_Identifier
                     (Loc, Chars => New_Internal_Name ('R'));
      Right_Hi : constant Entity_Id :=
                   Make_Defining_Identifier
                     (Loc, Chars => New_Internal_Name ('R'));
      Rev      : constant Entity_Id :=
                   Make_Defining_Identifier
                     (Loc, Chars => New_Internal_Name ('D'));
      Proc_Name : constant Entity_Id :=
                    Make_Defining_Identifier (Loc,
                      Chars => Make_TSS_Name (Typ, TSS_Slice_Assign));

      Lnn : constant Entity_Id :=
              Make_Defining_Identifier (Loc, New_Internal_Name ('L'));
      Rnn : constant Entity_Id :=
              Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
      --  Subscripts for left and right sides

      Decls : List_Id;
      Loops : Node_Id;
      Stats : List_Id;

   begin
      --  Build declarations for indices

      Decls := New_List;

      Append_To (Decls,
         Make_Object_Declaration (Loc,
           Defining_Identifier => Lnn,
           Object_Definition  =>
             New_Occurrence_Of (Index, Loc)));

      Append_To (Decls,
        Make_Object_Declaration (Loc,
          Defining_Identifier => Rnn,
          Object_Definition  =>
            New_Occurrence_Of (Index, Loc)));

      Stats := New_List;

      --  Build initializations for indices

      declare
         F_Init : constant List_Id := New_List;
         B_Init : constant List_Id := New_List;

      begin
         Append_To (F_Init,
           Make_Assignment_Statement (Loc,
             Name => New_Occurrence_Of (Lnn, Loc),
             Expression => New_Occurrence_Of (Left_Lo, Loc)));

         Append_To (F_Init,
           Make_Assignment_Statement (Loc,
             Name => New_Occurrence_Of (Rnn, Loc),
             Expression => New_Occurrence_Of (Right_Lo, Loc)));

         Append_To (B_Init,
           Make_Assignment_Statement (Loc,
             Name => New_Occurrence_Of (Lnn, Loc),
             Expression => New_Occurrence_Of (Left_Hi, Loc)));

         Append_To (B_Init,
           Make_Assignment_Statement (Loc,
             Name => New_Occurrence_Of (Rnn, Loc),
             Expression => New_Occurrence_Of (Right_Hi, Loc)));

         Append_To (Stats,
           Make_If_Statement (Loc,
             Condition => New_Occurrence_Of (Rev, Loc),
             Then_Statements => B_Init,
             Else_Statements => F_Init));
      end;

      --  Now construct the assignment statement

      Loops :=
        Make_Loop_Statement (Loc,
          Statements => New_List (
            Make_Assignment_Statement (Loc,
              Name =>
                Make_Indexed_Component (Loc,
                  Prefix => New_Occurrence_Of (Larray, Loc),
                  Expressions => New_List (New_Occurrence_Of (Lnn, Loc))),
              Expression =>
                Make_Indexed_Component (Loc,
                  Prefix => New_Occurrence_Of (Rarray, Loc),
                  Expressions => New_List (New_Occurrence_Of (Rnn, Loc))))),
          End_Label  => Empty);

      --  Build exit condition

      declare
         F_Ass : constant List_Id := New_List;
         B_Ass : constant List_Id := New_List;

      begin
         Append_To (F_Ass,
           Make_Exit_Statement (Loc,
             Condition =>
               Make_Op_Gt (Loc,
                 Left_Opnd  => New_Occurrence_Of (Lnn, Loc),
                 Right_Opnd => New_Occurrence_Of (Left_Hi, Loc))));

         Append_To (B_Ass,
           Make_Exit_Statement (Loc,
             Condition =>
               Make_Op_Lt (Loc,
                 Left_Opnd  => New_Occurrence_Of (Lnn, Loc),
                 Right_Opnd => New_Occurrence_Of (Left_Lo, Loc))));

         Prepend_To (Statements (Loops),
           Make_If_Statement (Loc,
             Condition       => New_Occurrence_Of (Rev, Loc),
             Then_Statements => B_Ass,
             Else_Statements => F_Ass));
      end;

      --  Build the increment/decrement statements

      declare
         F_Ass : constant List_Id := New_List;
         B_Ass : constant List_Id := New_List;

      begin
         Append_To (F_Ass,
           Make_Assignment_Statement (Loc,
             Name => New_Occurrence_Of (Lnn, Loc),
             Expression =>
               Make_Attribute_Reference (Loc,
                 Prefix =>
                   New_Occurrence_Of (Index, Loc),
                 Attribute_Name => Name_Succ,
                 Expressions => New_List (
                   New_Occurrence_Of (Lnn, Loc)))));

         Append_To (F_Ass,
           Make_Assignment_Statement (Loc,
             Name => New_Occurrence_Of (Rnn, Loc),
             Expression =>
               Make_Attribute_Reference (Loc,
                 Prefix =>
                   New_Occurrence_Of (Index, Loc),
                 Attribute_Name => Name_Succ,
                 Expressions => New_List (
                   New_Occurrence_Of (Rnn, Loc)))));

         Append_To (B_Ass,
           Make_Assignment_Statement (Loc,
             Name => New_Occurrence_Of (Lnn, Loc),
             Expression =>
               Make_Attribute_Reference (Loc,
                 Prefix =>
                   New_Occurrence_Of (Index, Loc),
                 Attribute_Name => Name_Pred,
                   Expressions => New_List (
                     New_Occurrence_Of (Lnn, Loc)))));

         Append_To (B_Ass,
           Make_Assignment_Statement (Loc,
             Name => New_Occurrence_Of (Rnn, Loc),
             Expression =>
               Make_Attribute_Reference (Loc,
                 Prefix =>
                   New_Occurrence_Of (Index, Loc),
                 Attribute_Name => Name_Pred,
                 Expressions => New_List (
                   New_Occurrence_Of (Rnn, Loc)))));

         Append_To (Statements (Loops),
           Make_If_Statement (Loc,
             Condition => New_Occurrence_Of (Rev, Loc),
             Then_Statements => B_Ass,
             Else_Statements => F_Ass));
      end;

      Append_To (Stats, Loops);

      declare
         Spec    : Node_Id;
         Formals : List_Id := New_List;

      begin
         Formals := New_List (
           Make_Parameter_Specification (Loc,
             Defining_Identifier => Larray,
             Out_Present => True,
             Parameter_Type =>
               New_Reference_To (Base_Type (Typ), Loc)),

           Make_Parameter_Specification (Loc,
             Defining_Identifier => Rarray,
             Parameter_Type =>
               New_Reference_To (Base_Type (Typ), Loc)),

           Make_Parameter_Specification (Loc,
             Defining_Identifier => Left_Lo,
             Parameter_Type =>
               New_Reference_To (Index, Loc)),

           Make_Parameter_Specification (Loc,
             Defining_Identifier => Left_Hi,
             Parameter_Type =>
               New_Reference_To (Index, Loc)),

           Make_Parameter_Specification (Loc,
             Defining_Identifier => Right_Lo,
             Parameter_Type =>
               New_Reference_To (Index, Loc)),

           Make_Parameter_Specification (Loc,
             Defining_Identifier => Right_Hi,
             Parameter_Type =>
               New_Reference_To (Index, Loc)));

         Append_To (Formals,
           Make_Parameter_Specification (Loc,
             Defining_Identifier => Rev,
             Parameter_Type =>
               New_Reference_To (Standard_Boolean, Loc)));

         Spec :=
           Make_Procedure_Specification (Loc,
             Defining_Unit_Name       => Proc_Name,
             Parameter_Specifications => Formals);

         Discard_Node (
           Make_Subprogram_Body (Loc,
             Specification              => Spec,
             Declarations               => Decls,
             Handled_Statement_Sequence =>
               Make_Handled_Sequence_Of_Statements (Loc,
                 Statements => Stats)));
      end;

      Set_TSS (Typ, Proc_Name);
      Set_Is_Pure (Proc_Name);
   end Build_Slice_Assignment;

   ------------------------------------
   -- Build_Variant_Record_Equality --
   ------------------------------------

   --  Generates:

   --    function _Equality (X, Y : T) return Boolean is
   --    begin
   --       --  Compare discriminants

   --       if False or else X.D1 /= Y.D1 or else X.D2 /= Y.D2 then
   --          return False;
   --       end if;

   --       --  Compare components

   --       if False or else X.C1 /= Y.C1 or else X.C2 /= Y.C2 then
   --          return False;
   --       end if;

   --       --  Compare variant part

   --       case X.D1 is
   --          when V1 =>
   --             if False or else X.C2 /= Y.C2 or else X.C3 /= Y.C3 then
   --                return False;
   --             end if;
   --          ...
   --          when Vn =>
   --             if False or else X.Cn /= Y.Cn then
   --                return False;
   --             end if;
   --       end case;
   --       return True;
   --    end _Equality;

   procedure Build_Variant_Record_Equality (Typ : Entity_Id) is
      Loc   : constant Source_Ptr := Sloc (Typ);

      F : constant Entity_Id :=
            Make_Defining_Identifier (Loc,
              Chars => Make_TSS_Name (Typ, TSS_Composite_Equality));

      X : constant Entity_Id :=
           Make_Defining_Identifier (Loc,
             Chars => Name_X);

      Y : constant Entity_Id :=
            Make_Defining_Identifier (Loc,
              Chars => Name_Y);

      Def   : constant Node_Id := Parent (Typ);
      Comps : constant Node_Id := Component_List (Type_Definition (Def));
      Stmts : constant List_Id := New_List;
      Pspecs : constant List_Id := New_List;

   begin
      --  Derived Unchecked_Union types no longer inherit the equality function
      --  of their parent.

      if Is_Derived_Type (Typ)
        and then not Is_Unchecked_Union (Typ)
        and then not Has_New_Non_Standard_Rep (Typ)
      then
         declare
            Parent_Eq : constant Entity_Id :=
                          TSS (Root_Type (Typ), TSS_Composite_Equality);

         begin
            if Present (Parent_Eq) then
               Copy_TSS (Parent_Eq, Typ);
               return;
            end if;
         end;
      end if;

      Discard_Node (
        Make_Subprogram_Body (Loc,
          Specification =>
            Make_Function_Specification (Loc,
              Defining_Unit_Name       => F,
              Parameter_Specifications => Pspecs,
              Subtype_Mark => New_Reference_To (Standard_Boolean, Loc)),
          Declarations               => New_List,
          Handled_Statement_Sequence =>
            Make_Handled_Sequence_Of_Statements (Loc,
              Statements => Stmts)));

      Append_To (Pspecs,
        Make_Parameter_Specification (Loc,
          Defining_Identifier => X,
          Parameter_Type      => New_Reference_To (Typ, Loc)));

      Append_To (Pspecs,
        Make_Parameter_Specification (Loc,
          Defining_Identifier => Y,
          Parameter_Type      => New_Reference_To (Typ, Loc)));

      --  Unchecked_Unions require additional machinery to support equality.
      --  Two extra parameters (A and B) are added to the equality function
      --  parameter list in order to capture the inferred values of the
      --  discriminants in later calls.

      if Is_Unchecked_Union (Typ) then
         declare
            Discr_Type : constant Node_Id := Etype (First_Discriminant (Typ));

            A : constant Node_Id :=
                  Make_Defining_Identifier (Loc,
                    Chars => Name_A);

            B : constant Node_Id :=
                  Make_Defining_Identifier (Loc,
                    Chars => Name_B);

         begin
            --  Add A and B to the parameter list

            Append_To (Pspecs,
              Make_Parameter_Specification (Loc,
                Defining_Identifier => A,
                Parameter_Type => New_Reference_To (Discr_Type, Loc)));

            Append_To (Pspecs,
              Make_Parameter_Specification (Loc,
                Defining_Identifier => B,
                Parameter_Type => New_Reference_To (Discr_Type, Loc)));

            --  Generate the following header code to compare the inferred
            --  discriminants:

            --  if a /= b then
            --     return False;
            --  end if;

            Append_To (Stmts,
              Make_If_Statement (Loc,
                Condition =>
                  Make_Op_Ne (Loc,
                    Left_Opnd => New_Reference_To (A, Loc),
                    Right_Opnd => New_Reference_To (B, Loc)),
                Then_Statements => New_List (
                  Make_Return_Statement (Loc,
                    Expression => New_Occurrence_Of (Standard_False, Loc)))));

            --  Generate component-by-component comparison. Note that we must
            --  propagate one of the inferred discriminant formals to act as
            --  the case statement switch.

            Append_List_To (Stmts,
              Make_Eq_Case (Typ, Comps, A));

         end;

      --  Normal case (not unchecked union)

      else
         Append_To (Stmts,
           Make_Eq_If (Typ,
             Discriminant_Specifications (Def)));

         Append_List_To (Stmts,
           Make_Eq_Case (Typ, Comps));
      end if;

      Append_To (Stmts,
        Make_Return_Statement (Loc,
          Expression => New_Reference_To (Standard_True, Loc)));

      Set_TSS (Typ, F);
      Set_Is_Pure (F);

      if not Debug_Generated_Code then
         Set_Debug_Info_Off (F);
      end if;
   end Build_Variant_Record_Equality;

   -----------------------------
   -- Check_Stream_Attributes --
   -----------------------------

   procedure Check_Stream_Attributes (Typ : Entity_Id) is
      Comp      : Entity_Id;
      Par       : constant Entity_Id := Root_Type (Base_Type (Typ));
      Par_Read  : constant Boolean   := Present (TSS (Par, TSS_Stream_Read));
      Par_Write : constant Boolean   := Present (TSS (Par, TSS_Stream_Write));

   begin
      if Par_Read or else Par_Write then
         Comp := First_Component (Typ);
         while Present (Comp) loop
            if Comes_From_Source (Comp)
              and then  Original_Record_Component (Comp) = Comp
              and then Is_Limited_Type (Etype (Comp))
            then
               if (Par_Read and then
                     No (TSS (Base_Type (Etype (Comp)), TSS_Stream_Read)))
                 or else
                  (Par_Write and then
                     No (TSS (Base_Type (Etype (Comp)), TSS_Stream_Write)))
               then
                  Error_Msg_N
                    ("|component must have Stream attribute",
                       Parent (Comp));
               end if;
            end if;

            Next_Component (Comp);
         end loop;
      end if;
   end Check_Stream_Attributes;

   -----------------------------
   -- Expand_Record_Extension --
   -----------------------------

   --  Add a field _parent at the beginning of the record extension. This is
   --  used to implement inheritance. Here are some examples of expansion:

   --  1. no discriminants
   --      type T2 is new T1 with null record;
   --   gives
   --      type T2 is new T1 with record
   --        _Parent : T1;
   --      end record;

   --  2. renamed discriminants
   --    type T2 (B, C : Int) is new T1 (A => B) with record
   --       _Parent : T1 (A => B);
   --       D : Int;
   --    end;

   --  3. inherited discriminants
   --    type T2 is new T1 with record -- discriminant A inherited
   --       _Parent : T1 (A);
   --       D : Int;
   --    end;

   procedure Expand_Record_Extension (T : Entity_Id; Def : Node_Id) is
      Indic        : constant Node_Id    := Subtype_Indication (Def);
      Loc          : constant Source_Ptr := Sloc (Def);
      Rec_Ext_Part : Node_Id             := Record_Extension_Part (Def);
      Par_Subtype  : Entity_Id;
      Comp_List    : Node_Id;
      Comp_Decl    : Node_Id;
      Parent_N     : Node_Id;
      D            : Entity_Id;
      List_Constr  : constant List_Id    := New_List;

   begin
      --  Expand_Record_Extension is called directly from the semantics, so
      --  we must check to see whether expansion is active before proceeding

      if not Expander_Active then
         return;
      end if;

      --  This may be a derivation of an untagged private type whose full
      --  view is tagged, in which case the Derived_Type_Definition has no
      --  extension part. Build an empty one now.

      if No (Rec_Ext_Part) then
         Rec_Ext_Part :=
           Make_Record_Definition (Loc,
             End_Label      => Empty,
             Component_List => Empty,
             Null_Present   => True);

         Set_Record_Extension_Part (Def, Rec_Ext_Part);
         Mark_Rewrite_Insertion (Rec_Ext_Part);
      end if;

      Comp_List := Component_List (Rec_Ext_Part);

      Parent_N := Make_Defining_Identifier (Loc, Name_uParent);

      --  If the derived type inherits its discriminants the type of the
      --  _parent field must be constrained by the inherited discriminants

      if Has_Discriminants (T)
        and then Nkind (Indic) /= N_Subtype_Indication
        and then not Is_Constrained (Entity (Indic))
      then
         D := First_Discriminant (T);
         while Present (D) loop
            Append_To (List_Constr, New_Occurrence_Of (D, Loc));
            Next_Discriminant (D);
         end loop;

         Par_Subtype :=
           Process_Subtype (
             Make_Subtype_Indication (Loc,
               Subtype_Mark => New_Reference_To (Entity (Indic), Loc),
               Constraint   =>
                 Make_Index_Or_Discriminant_Constraint (Loc,
                   Constraints => List_Constr)),
             Def);

      --  Otherwise the original subtype_indication is just what is needed

      else
         Par_Subtype := Process_Subtype (New_Copy_Tree (Indic), Def);
      end if;

      Set_Parent_Subtype (T, Par_Subtype);

      Comp_Decl :=
        Make_Component_Declaration (Loc,
          Defining_Identifier => Parent_N,
          Component_Definition =>
            Make_Component_Definition (Loc,
              Aliased_Present => False,
              Subtype_Indication => New_Reference_To (Par_Subtype, Loc)));

      if Null_Present (Rec_Ext_Part) then
         Set_Component_List (Rec_Ext_Part,
           Make_Component_List (Loc,
             Component_Items => New_List (Comp_Decl),
             Variant_Part => Empty,
             Null_Present => False));
         Set_Null_Present (Rec_Ext_Part, False);

      elsif Null_Present (Comp_List)
        or else Is_Empty_List (Component_Items (Comp_List))
      then
         Set_Component_Items (Comp_List, New_List (Comp_Decl));
         Set_Null_Present (Comp_List, False);

      else
         Insert_Before (First (Component_Items (Comp_List)), Comp_Decl);
      end if;

      Analyze (Comp_Decl);
   end Expand_Record_Extension;

   ------------------------------------
   -- Expand_N_Full_Type_Declaration --
   ------------------------------------

   procedure Expand_N_Full_Type_Declaration (N : Node_Id) is
      Def_Id : constant Entity_Id := Defining_Identifier (N);
      B_Id   : constant Entity_Id := Base_Type (Def_Id);
      Par_Id : Entity_Id;
      FN     : Node_Id;

   begin
      if Is_Access_Type (Def_Id) then

         --  Anonymous access types are created for the components of the
         --  record parameter for an entry declaration.  No master is created
         --  for such a type.

         if Has_Task (Designated_Type (Def_Id))
           and then Comes_From_Source (N)
         then
            Build_Master_Entity (Def_Id);
            Build_Master_Renaming (Parent (Def_Id), Def_Id);

         --  Create a class-wide master because a Master_Id must be generated
         --  for access-to-limited-class-wide types, whose root may be extended
         --  with task components.

         elsif Is_Class_Wide_Type (Designated_Type (Def_Id))
           and then Is_Limited_Type (Designated_Type (Def_Id))
           and then Tasking_Allowed

            --  Don't create a class-wide master for types whose convention is
            --  Java since these types cannot embed Ada tasks anyway. Note that
            --  the following test cannot catch the following case:
            --
            --      package java.lang.Object is
            --         type Typ is tagged limited private;
            --         type Ref is access all Typ'Class;
            --      private
            --         type Typ is tagged limited ...;
            --         pragma Convention (Typ, Java)
            --      end;
            --
            --  Because the convention appears after we have done the
            --  processing for type Ref.

           and then Convention (Designated_Type (Def_Id)) /= Convention_Java
         then
            Build_Class_Wide_Master (Def_Id);

         elsif Ekind (Def_Id) = E_Access_Protected_Subprogram_Type then
            Expand_Access_Protected_Subprogram_Type (N);
         end if;

      elsif Has_Task (Def_Id) then
         Expand_Previous_Access_Type (Def_Id);
      end if;

      Par_Id := Etype (B_Id);

      --  The parent type is private then we need to inherit
      --  any TSS operations from the full view.

      if Ekind (Par_Id) in Private_Kind
        and then Present (Full_View (Par_Id))
      then
         Par_Id := Base_Type (Full_View (Par_Id));
      end if;

      if Nkind (Type_Definition (Original_Node (N)))
         = N_Derived_Type_Definition
        and then not Is_Tagged_Type (Def_Id)
        and then Present (Freeze_Node (Par_Id))
        and then Present (TSS_Elist (Freeze_Node (Par_Id)))
      then
         Ensure_Freeze_Node (B_Id);
         FN :=  Freeze_Node (B_Id);

         if No (TSS_Elist (FN)) then
            Set_TSS_Elist (FN, New_Elmt_List);
         end if;

         declare
            T_E   : constant Elist_Id := TSS_Elist (FN);
            Elmt  : Elmt_Id;

         begin
            Elmt  := First_Elmt (TSS_Elist (Freeze_Node (Par_Id)));

            while Present (Elmt) loop
               if Chars (Node (Elmt)) /= Name_uInit then
                  Append_Elmt (Node (Elmt), T_E);
               end if;

               Next_Elmt (Elmt);
            end loop;

            --  If the derived type itself is private with a full view, then
            --  associate the full view with the inherited TSS_Elist as well.

            if Ekind (B_Id) in Private_Kind
              and then Present (Full_View (B_Id))
            then
               Ensure_Freeze_Node (Base_Type (Full_View (B_Id)));
               Set_TSS_Elist
                 (Freeze_Node (Base_Type (Full_View (B_Id))), TSS_Elist (FN));
            end if;
         end;
      end if;
   end Expand_N_Full_Type_Declaration;

   ---------------------------------
   -- Expand_N_Object_Declaration --
   ---------------------------------

   --  First we do special processing for objects of a tagged type where this
   --  is the point at which the type is frozen. The creation of the dispatch
   --  table and the initialization procedure have to be deferred to this
   --  point, since we reference previously declared primitive subprograms.

   --  For all types, we call an initialization procedure if there is one

   procedure Expand_N_Object_Declaration (N : Node_Id) is
      Def_Id  : constant Entity_Id  := Defining_Identifier (N);
      Typ     : constant Entity_Id  := Etype (Def_Id);
      Loc     : constant Source_Ptr := Sloc (N);
      Expr    : constant Node_Id    := Expression (N);
      New_Ref : Node_Id;
      Id_Ref  : Node_Id;
      Expr_Q  : Node_Id;

   begin
      --  Don't do anything for deferred constants. All proper actions will
      --  be expanded during the full declaration.

      if No (Expr) and Constant_Present (N) then
         return;
      end if;

      --  Make shared memory routines for shared passive variable

      if Is_Shared_Passive (Def_Id) then
         Make_Shared_Var_Procs (N);
      end if;

      --  If tasks being declared, make sure we have an activation chain
      --  defined for the tasks (has no effect if we already have one), and
      --  also that a Master variable is established and that the appropriate
      --  enclosing construct is established as a task master.

      if Has_Task (Typ) then
         Build_Activation_Chain_Entity (N);
         Build_Master_Entity (Def_Id);
      end if;

      --  Default initialization required, and no expression present

      if No (Expr) then

         --  Expand Initialize call for controlled objects.  One may wonder why
         --  the Initialize Call is not done in the regular Init procedure
         --  attached to the record type. That's because the init procedure is
         --  recursively called on each component, including _Parent, thus the
         --  Init call for a controlled object would generate not only one
         --  Initialize call as it is required but one for each ancestor of
         --  its type. This processing is suppressed if No_Initialization set.

         if not Controlled_Type (Typ)
           or else No_Initialization (N)
         then
            null;

         elsif not Abort_Allowed
           or else not Comes_From_Source (N)
         then
            Insert_Actions_After (N,
              Make_Init_Call (
                Ref         => New_Occurrence_Of (Def_Id, Loc),
                Typ         => Base_Type (Typ),
                Flist_Ref   => Find_Final_List (Def_Id),
                With_Attach => Make_Integer_Literal (Loc, 1)));

         --  Abort allowed

         else
            --  We need to protect the initialize call

            --  begin
            --     Defer_Abort.all;
            --     Initialize (...);
            --  at end
            --     Undefer_Abort.all;
            --  end;

            --  ??? this won't protect the initialize call for controlled
            --  components which are part of the init proc, so this block
            --  should probably also contain the call to _init_proc but this
            --  requires some code reorganization...

            declare
               L   : constant List_Id :=
                      Make_Init_Call (
                        Ref         => New_Occurrence_Of (Def_Id, Loc),
                        Typ         => Base_Type (Typ),
                        Flist_Ref   => Find_Final_List (Def_Id),
                        With_Attach => Make_Integer_Literal (Loc, 1));

               Blk : constant Node_Id :=
                 Make_Block_Statement (Loc,
                   Handled_Statement_Sequence =>
                     Make_Handled_Sequence_Of_Statements (Loc, L));

            begin
               Prepend_To (L, Build_Runtime_Call (Loc, RE_Abort_Defer));
               Set_At_End_Proc (Handled_Statement_Sequence (Blk),
                 New_Occurrence_Of (RTE (RE_Abort_Undefer_Direct), Loc));
               Insert_Actions_After (N, New_List (Blk));
               Expand_At_End_Handler
                 (Handled_Statement_Sequence (Blk), Entity (Identifier (Blk)));
            end;
         end if;

         --  Call type initialization procedure if there is one. We build the
         --  call and put it immediately after the object declaration, so that
         --  it will be expanded in the usual manner. Note that this will
         --  result in proper handling of defaulted discriminants. The call
         --  to the Init_Proc is suppressed if No_Initialization is set.

         if Has_Non_Null_Base_Init_Proc (Typ)
           and then not No_Initialization (N)
         then
            --  The call to the initialization procedure does NOT freeze
            --  the object being initialized. This is because the call is
            --  not a source level call. This works fine, because the only
            --  possible statements depending on freeze status that can
            --  appear after the _Init call are rep clauses which can
            --  safely appear after actual references to the object.

            Id_Ref := New_Reference_To (Def_Id, Loc);
            Set_Must_Not_Freeze (Id_Ref);
            Set_Assignment_OK (Id_Ref);

            Insert_Actions_After (N,
              Build_Initialization_Call (Loc, Id_Ref, Typ));

         --  If simple initialization is required, then set an appropriate
         --  simple initialization expression in place. This special
         --  initialization is required even though No_Init_Flag is present.

         elsif Needs_Simple_Initialization (Typ) then
            Set_No_Initialization (N, False);
            Set_Expression (N, Get_Simple_Init_Val (Typ, Loc));
            Analyze_And_Resolve (Expression (N), Typ);
         end if;

      --  Explicit initialization present

      else
         --  Obtain actual expression from qualified expression

         if Nkind (Expr) = N_Qualified_Expression then
            Expr_Q := Expression (Expr);
         else
            Expr_Q := Expr;
         end if;

         --  When we have the appropriate type of aggregate in the
         --  expression (it has been determined during analysis of the
         --  aggregate by setting the delay flag), let's perform in
         --  place assignment and thus avoid creating a temporary.

         if Is_Delayed_Aggregate (Expr_Q) then
            Convert_Aggr_In_Object_Decl (N);

         else
            --  In most cases, we must check that the initial value meets
            --  any constraint imposed by the declared type. However, there
            --  is one very important exception to this rule. If the entity
            --  has an unconstrained nominal subtype, then it acquired its
            --  constraints from the expression in the first place, and not
            --  only does this mean that the constraint check is not needed,
            --  but an attempt to perform the constraint check can
            --  cause order of elaboration problems.

            if not Is_Constr_Subt_For_U_Nominal (Typ) then

               --  If this is an allocator for an aggregate that has been
               --  allocated in place, delay checks until assignments are
               --  made, because the discriminants are not initialized.

               if Nkind (Expr) = N_Allocator
                 and then No_Initialization (Expr)
               then
                  null;
               else
                  Apply_Constraint_Check (Expr, Typ);
               end if;
            end if;

            --  If the type is controlled we attach the object to the final
            --  list and adjust the target after the copy. This

            if Controlled_Type (Typ) then
               declare
                  Flist : Node_Id;
                  F     : Entity_Id;

               begin
                  --  Attach the result to a dummy final list which will never
                  --  be finalized if Delay_Finalize_Attachis set. It is
                  --  important to attach to a dummy final list rather than
                  --  not attaching at all in order to reset the pointers
                  --  coming from the initial value. Equivalent code exists
                  --  in the sec-stack case in Exp_Ch4.Expand_N_Allocator.

                  if Delay_Finalize_Attach (N) then
                     F :=
                       Make_Defining_Identifier (Loc, New_Internal_Name ('F'));
                     Insert_Action (N,
                       Make_Object_Declaration (Loc,
                         Defining_Identifier => F,
                         Object_Definition   =>
                           New_Reference_To (RTE (RE_Finalizable_Ptr), Loc)));

                     Flist := New_Reference_To (F, Loc);

                  else
                     Flist := Find_Final_List (Def_Id);
                  end if;

                  Insert_Actions_After (N,
                    Make_Adjust_Call (
                      Ref          => New_Reference_To (Def_Id, Loc),
                      Typ          => Base_Type (Typ),
                      Flist_Ref    => Flist,
                      With_Attach  => Make_Integer_Literal (Loc, 1)));
               end;
            end if;

            --  For tagged types, when an init value is given, the tag has
            --  to be re-initialized separately in order to avoid the
            --  propagation of a wrong tag coming from a view conversion
            --  unless the type is class wide (in this case the tag comes
            --  from the init value). Suppress the tag assignment when
            --  Java_VM because JVM tags are represented implicitly
            --  in objects. Ditto for types that are CPP_CLASS.

            if Is_Tagged_Type (Typ)
              and then not Is_Class_Wide_Type (Typ)
              and then not Is_CPP_Class (Typ)
              and then not Java_VM
            then
               --  The re-assignment of the tag has to be done even if
               --  the object is a constant

               New_Ref :=
                 Make_Selected_Component (Loc,
                    Prefix => New_Reference_To (Def_Id, Loc),
                    Selector_Name =>
                      New_Reference_To (Tag_Component (Typ), Loc));

               Set_Assignment_OK (New_Ref);

               Insert_After (N,
                 Make_Assignment_Statement (Loc,
                   Name => New_Ref,
                   Expression =>
                     Unchecked_Convert_To (RTE (RE_Tag),
                       New_Reference_To
                         (Access_Disp_Table (Base_Type (Typ)), Loc))));

            --  For discrete types, set the Is_Known_Valid flag if the
            --  initializing value is known to be valid.

            elsif Is_Discrete_Type (Typ)
              and then Expr_Known_Valid (Expr)
            then
               Set_Is_Known_Valid (Def_Id);

            elsif Is_Access_Type (Typ) then

               --  Ada 2005 (AI-231): Generate conversion to the null-excluding
               --  type to force the corresponding run-time check

               if Ada_Version >= Ada_05
                 and then (Can_Never_Be_Null (Def_Id)
                             or else Can_Never_Be_Null (Typ))
               then
                  Rewrite
                    (Expr_Q,
                     Convert_To (Etype (Def_Id), Relocate_Node (Expr_Q)));
                  Analyze_And_Resolve (Expr_Q, Etype (Def_Id));
               end if;

               --  For access types set the Is_Known_Non_Null flag if the
               --  initializing value is known to be non-null. We can also
               --  set Can_Never_Be_Null if this is a constant.

               if Known_Non_Null (Expr) then
                  Set_Is_Known_Non_Null (Def_Id);

                  if Constant_Present (N) then
                     Set_Can_Never_Be_Null (Def_Id);
                  end if;
               end if;
            end if;

            --  If validity checking on copies, validate initial expression

            if Validity_Checks_On
               and then Validity_Check_Copies
            then
               Ensure_Valid (Expr);
               Set_Is_Known_Valid (Def_Id);
            end if;
         end if;

         if Is_Possibly_Unaligned_Slice (Expr) then

            --  Make a separate assignment that will be expanded into a
            --  loop, to bypass back-end problems with misaligned arrays.

            declare
               Stat : constant Node_Id :=
                       Make_Assignment_Statement (Loc,
                         Name => New_Reference_To (Def_Id, Loc),
                         Expression => Relocate_Node (Expr));

            begin
               Set_Expression (N, Empty);
               Set_No_Initialization (N);
               Set_Assignment_OK (Name (Stat));
               Insert_After (N, Stat);
               Analyze (Stat);
            end;
         end if;
      end if;

      --  For array type, check for size too large
      --  We really need this for record types too???

      if Is_Array_Type (Typ) then
         Apply_Array_Size_Check (N, Typ);
      end if;

   exception
      when RE_Not_Available =>
         return;
   end Expand_N_Object_Declaration;

   ---------------------------------
   -- Expand_N_Subtype_Indication --
   ---------------------------------

   --  Add a check on the range of the subtype. The static case is
   --  partially duplicated by Process_Range_Expr_In_Decl in Sem_Ch3,
   --  but we still need to check here for the static case in order to
   --  avoid generating extraneous expanded code.

   procedure Expand_N_Subtype_Indication (N : Node_Id) is
      Ran : constant Node_Id   := Range_Expression (Constraint (N));
      Typ : constant Entity_Id := Entity (Subtype_Mark (N));

   begin
      if Nkind (Parent (N)) = N_Constrained_Array_Definition or else
         Nkind (Parent (N)) = N_Slice
      then
         Resolve (Ran, Typ);
         Apply_Range_Check (Ran, Typ);
      end if;
   end Expand_N_Subtype_Indication;

   ---------------------------
   -- Expand_N_Variant_Part --
   ---------------------------

   --  If the last variant does not contain the Others choice, replace
   --  it with an N_Others_Choice node since Gigi always wants an Others.
   --  Note that we do not bother to call Analyze on the modified variant
   --  part, since it's only effect would be to compute the contents of
   --  the Others_Discrete_Choices node laboriously, and of course we
   --  already know the list of choices that corresponds to the others
   --  choice (it's the list we are replacing!)

   procedure Expand_N_Variant_Part (N : Node_Id) is
      Last_Var    : constant Node_Id := Last_Non_Pragma (Variants (N));
      Others_Node : Node_Id;

   begin
      if Nkind (First (Discrete_Choices (Last_Var))) /= N_Others_Choice then
         Others_Node := Make_Others_Choice (Sloc (Last_Var));
         Set_Others_Discrete_Choices
           (Others_Node, Discrete_Choices (Last_Var));
         Set_Discrete_Choices (Last_Var, New_List (Others_Node));
      end if;
   end Expand_N_Variant_Part;

   ---------------------------------
   -- Expand_Previous_Access_Type --
   ---------------------------------

   procedure Expand_Previous_Access_Type (Def_Id : Entity_Id) is
      T : Entity_Id := First_Entity (Current_Scope);

   begin
      --  Find all access types declared in the current scope, whose
      --  designated type is Def_Id.

      while Present (T) loop
         if Is_Access_Type (T)
           and then Designated_Type (T) = Def_Id
         then
            Build_Master_Entity (Def_Id);
            Build_Master_Renaming (Parent (Def_Id), T);
         end if;

         Next_Entity (T);
      end loop;
   end Expand_Previous_Access_Type;

   ------------------------------
   -- Expand_Record_Controller --
   ------------------------------

   procedure Expand_Record_Controller (T : Entity_Id) is
      Def             : Node_Id := Type_Definition (Parent (T));
      Comp_List       : Node_Id;
      Comp_Decl       : Node_Id;
      Loc             : Source_Ptr;
      First_Comp      : Node_Id;
      Controller_Type : Entity_Id;
      Ent             : Entity_Id;

   begin
      if Nkind (Def) = N_Derived_Type_Definition then
         Def := Record_Extension_Part (Def);
      end if;

      if Null_Present (Def) then
         Set_Component_List (Def,
           Make_Component_List (Sloc (Def),
             Component_Items => Empty_List,
             Variant_Part => Empty,
             Null_Present => True));
      end if;

      Comp_List := Component_List (Def);

      if Null_Present (Comp_List)
        or else Is_Empty_List (Component_Items (Comp_List))
      then
         Loc := Sloc (Comp_List);
      else
         Loc := Sloc (First (Component_Items (Comp_List)));
      end if;

      if Is_Return_By_Reference_Type (T) then
         Controller_Type := RTE (RE_Limited_Record_Controller);
      else
         Controller_Type := RTE (RE_Record_Controller);
      end if;

      Ent := Make_Defining_Identifier (Loc, Name_uController);

      Comp_Decl :=
        Make_Component_Declaration (Loc,
          Defining_Identifier =>  Ent,
          Component_Definition =>
            Make_Component_Definition (Loc,
              Aliased_Present => False,
              Subtype_Indication => New_Reference_To (Controller_Type, Loc)));

      if Null_Present (Comp_List)
        or else Is_Empty_List (Component_Items (Comp_List))
      then
         Set_Component_Items (Comp_List, New_List (Comp_Decl));
         Set_Null_Present (Comp_List, False);

      else
         --  The controller cannot be placed before the _Parent field
         --  since gigi lays out field in order and _parent must be
         --  first to preserve the polymorphism of tagged types.

         First_Comp := First (Component_Items (Comp_List));

         if Chars (Defining_Identifier (First_Comp)) /= Name_uParent
           and then Chars (Defining_Identifier (First_Comp)) /= Name_uTag
         then
            Insert_Before (First_Comp, Comp_Decl);
         else
            Insert_After (First_Comp, Comp_Decl);
         end if;
      end if;

      New_Scope (T);
      Analyze (Comp_Decl);
      Set_Ekind (Ent, E_Component);
      Init_Component_Location (Ent);

      --  Move the _controller entity ahead in the list of internal
      --  entities of the enclosing record so that it is selected
      --  instead of a potentially inherited one.

      declare
         E    : constant Entity_Id := Last_Entity (T);
         Comp : Entity_Id;

      begin
         pragma Assert (Chars (E) = Name_uController);

         Set_Next_Entity (E, First_Entity (T));
         Set_First_Entity (T, E);

         Comp := Next_Entity (E);
         while Next_Entity (Comp) /= E loop
            Next_Entity (Comp);
         end loop;

         Set_Next_Entity (Comp, Empty);
         Set_Last_Entity (T, Comp);
      end;

      End_Scope;

   exception
      when RE_Not_Available =>
         return;
   end Expand_Record_Controller;

   ------------------------
   -- Expand_Tagged_Root --
   ------------------------

   procedure Expand_Tagged_Root (T : Entity_Id) is
      Def       : constant Node_Id := Type_Definition (Parent (T));
      Comp_List : Node_Id;
      Comp_Decl : Node_Id;
      Sloc_N    : Source_Ptr;

   begin
      if Null_Present (Def) then
         Set_Component_List (Def,
           Make_Component_List (Sloc (Def),
             Component_Items => Empty_List,
             Variant_Part => Empty,
             Null_Present => True));
      end if;

      Comp_List := Component_List (Def);

      if Null_Present (Comp_List)
        or else Is_Empty_List (Component_Items (Comp_List))
      then
         Sloc_N := Sloc (Comp_List);
      else
         Sloc_N := Sloc (First (Component_Items (Comp_List)));
      end if;

      Comp_Decl :=
        Make_Component_Declaration (Sloc_N,
          Defining_Identifier => Tag_Component (T),
          Component_Definition =>
            Make_Component_Definition (Sloc_N,
              Aliased_Present => False,
              Subtype_Indication => New_Reference_To (RTE (RE_Tag), Sloc_N)));

      if Null_Present (Comp_List)
        or else Is_Empty_List (Component_Items (Comp_List))
      then
         Set_Component_Items (Comp_List, New_List (Comp_Decl));
         Set_Null_Present (Comp_List, False);

      else
         Insert_Before (First (Component_Items (Comp_List)), Comp_Decl);
      end if;

      --  We don't Analyze the whole expansion because the tag component has
      --  already been analyzed previously. Here we just insure that the
      --  tree is coherent with the semantic decoration

      Find_Type (Subtype_Indication (Component_Definition (Comp_Decl)));

   exception
      when RE_Not_Available =>
         return;
   end Expand_Tagged_Root;

   -----------------------
   -- Freeze_Array_Type --
   -----------------------

   procedure Freeze_Array_Type (N : Node_Id) is
      Typ  : constant Entity_Id  := Entity (N);
      Base : constant Entity_Id  := Base_Type (Typ);

   begin
      if not Is_Bit_Packed_Array (Typ) then

         --  If the component contains tasks, so does the array type.
         --  This may not be indicated in the array type because the
         --  component may have been a private type at the point of
         --  definition. Same if component type is controlled.

         Set_Has_Task (Base, Has_Task (Component_Type (Typ)));
         Set_Has_Controlled_Component (Base,
           Has_Controlled_Component (Component_Type (Typ))
             or else Is_Controlled (Component_Type (Typ)));

         if No (Init_Proc (Base)) then

            --  If this is an anonymous array created for a declaration
            --  with an initial value, its init_proc will never be called.
            --  The initial value itself may have been expanded into assign-
            --  ments, in which case the object declaration is carries the
            --  No_Initialization flag.

            if Is_Itype (Base)
              and then Nkind (Associated_Node_For_Itype (Base)) =
                                                    N_Object_Declaration
              and then (Present (Expression (Associated_Node_For_Itype (Base)))
                          or else
                        No_Initialization (Associated_Node_For_Itype (Base)))
            then
               null;

            --  We do not need an init proc for string or wide string, since
            --  the only time these need initialization in normalize or
            --  initialize scalars mode, and these types are treated specially
            --  and do not need initialization procedures.

            elsif Root_Type (Base) = Standard_String
              or else Root_Type (Base) = Standard_Wide_String
            then
               null;

            --  Otherwise we have to build an init proc for the subtype

            else
               Build_Array_Init_Proc (Base, N);
            end if;
         end if;

         if Typ = Base and then Has_Controlled_Component (Base) then
            Build_Controlling_Procs (Base);

            if not Is_Limited_Type (Component_Type (Typ))
              and then Number_Dimensions (Typ) = 1
            then
               Build_Slice_Assignment (Typ);
            end if;
         end if;

      --  For packed case, there is a default initialization, except
      --  if the component type is itself a packed structure with an
      --  initialization procedure.

      elsif Present (Init_Proc (Component_Type (Base)))
        and then No (Base_Init_Proc (Base))
      then
         Build_Array_Init_Proc (Base, N);
      end if;
   end Freeze_Array_Type;

   -----------------------------
   -- Freeze_Enumeration_Type --
   -----------------------------

   procedure Freeze_Enumeration_Type (N : Node_Id) is
      Typ           : constant Entity_Id  := Entity (N);
      Loc           : constant Source_Ptr := Sloc (Typ);
      Ent           : Entity_Id;
      Lst           : List_Id;
      Num           : Nat;
      Arr           : Entity_Id;
      Fent          : Entity_Id;
      Ityp          : Entity_Id;
      Is_Contiguous : Boolean;
      Pos_Expr      : Node_Id;
      Last_Repval   : Uint;

      Func : Entity_Id;
      pragma Warnings (Off, Func);

   begin
      --  Various optimization are possible if the given representation
      --  is contiguous.

      Is_Contiguous := True;
      Ent := First_Literal (Typ);
      Last_Repval := Enumeration_Rep (Ent);
      Next_Literal (Ent);

      while Present (Ent) loop
         if Enumeration_Rep (Ent) - Last_Repval /= 1 then
            Is_Contiguous := False;
            exit;
         else
            Last_Repval := Enumeration_Rep (Ent);
         end if;

         Next_Literal (Ent);
      end loop;

      if Is_Contiguous then
         Set_Has_Contiguous_Rep (Typ);
         Ent := First_Literal (Typ);
         Num := 1;
         Lst := New_List (New_Reference_To (Ent, Sloc (Ent)));

      else
         --  Build list of literal references

         Lst := New_List;
         Num := 0;

         Ent := First_Literal (Typ);
         while Present (Ent) loop
            Append_To (Lst, New_Reference_To (Ent, Sloc (Ent)));
            Num := Num + 1;
            Next_Literal (Ent);
         end loop;
      end if;

      --  Now build an array declaration

      --    typA : array (Natural range 0 .. num - 1) of ctype :=
      --             (v, v, v, v, v, ....)

      --  where ctype is the corresponding integer type. If the
      --  representation is contiguous, we only keep the first literal,
      --  which provides the offset for Pos_To_Rep computations.

      Arr :=
        Make_Defining_Identifier (Loc,
          Chars => New_External_Name (Chars (Typ), 'A'));

      Append_Freeze_Action (Typ,
        Make_Object_Declaration (Loc,
          Defining_Identifier => Arr,
          Constant_Present    => True,

          Object_Definition   =>
            Make_Constrained_Array_Definition (Loc,
              Discrete_Subtype_Definitions => New_List (
                Make_Subtype_Indication (Loc,
                  Subtype_Mark => New_Reference_To (Standard_Natural, Loc),
                  Constraint =>
                    Make_Range_Constraint (Loc,
                      Range_Expression =>
                        Make_Range (Loc,
                          Low_Bound  =>
                            Make_Integer_Literal (Loc, 0),
                          High_Bound =>
                            Make_Integer_Literal (Loc, Num - 1))))),

              Component_Definition =>
                Make_Component_Definition (Loc,
                  Aliased_Present => False,
                  Subtype_Indication => New_Reference_To (Typ, Loc))),

          Expression =>
            Make_Aggregate (Loc,
              Expressions => Lst)));

      Set_Enum_Pos_To_Rep (Typ, Arr);

      --  Now we build the function that converts representation values to
      --  position values. This function has the form:

      --    function _Rep_To_Pos (A : etype; F : Boolean) return Integer is
      --    begin
      --       case ityp!(A) is
      --         when enum-lit'Enum_Rep => return posval;
      --         when enum-lit'Enum_Rep => return posval;
      --         ...
      --         when others   =>
      --           [raise Constraint_Error when F "invalid data"]
      --           return -1;
      --       end case;
      --    end;

      --  Note: the F parameter determines whether the others case (no valid
      --  representation) raises Constraint_Error or returns a unique value
      --  of minus one. The latter case is used, e.g. in 'Valid code.

      --  Note: the reason we use Enum_Rep values in the case here is to
      --  avoid the code generator making inappropriate assumptions about
      --  the range of the values in the case where the value is invalid.
      --  ityp is a signed or unsigned integer type of appropriate width.

      --  Note: if exceptions are not supported, then we suppress the raise
      --  and return -1 unconditionally (this is an erroneous program in any
      --  case and there is no obligation to raise Constraint_Error here!)
      --  We also do this if pragma Restrictions (No_Exceptions) is active.

      --  Representations are signed

      if Enumeration_Rep (First_Literal (Typ)) < 0 then

         --  The underlying type is signed. Reset the Is_Unsigned_Type
         --  explicitly, because it might have been inherited from a
         --  parent type.

         Set_Is_Unsigned_Type (Typ, False);

         if Esize (Typ) <= Standard_Integer_Size then
            Ityp := Standard_Integer;
         else
            Ityp := Universal_Integer;
         end if;

      --  Representations are unsigned

      else
         if Esize (Typ) <= Standard_Integer_Size then
            Ityp := RTE (RE_Unsigned);
         else
            Ityp := RTE (RE_Long_Long_Unsigned);
         end if;
      end if;

      --  The body of the function is a case statement. First collect
      --  case alternatives, or optimize the contiguous case.

      Lst := New_List;

      --  If representation is contiguous, Pos is computed by subtracting
      --  the representation of the first literal.

      if Is_Contiguous then
         Ent := First_Literal (Typ);

         if Enumeration_Rep (Ent) = Last_Repval then

            --  Another special case: for a single literal, Pos is zero

            Pos_Expr := Make_Integer_Literal (Loc, Uint_0);

         else
            Pos_Expr :=
              Convert_To (Standard_Integer,
                Make_Op_Subtract (Loc,
                  Left_Opnd =>
                     Unchecked_Convert_To (Ityp,
                       Make_Identifier (Loc, Name_uA)),
                   Right_Opnd =>
                     Make_Integer_Literal (Loc,
                        Intval =>
                          Enumeration_Rep (First_Literal (Typ)))));
         end if;

         Append_To (Lst,
              Make_Case_Statement_Alternative (Loc,
                Discrete_Choices => New_List (
                  Make_Range (Sloc (Enumeration_Rep_Expr (Ent)),
                    Low_Bound =>
                      Make_Integer_Literal (Loc,
                       Intval =>  Enumeration_Rep (Ent)),
                    High_Bound =>
                      Make_Integer_Literal (Loc, Intval => Last_Repval))),

                Statements => New_List (
                  Make_Return_Statement (Loc,
                    Expression => Pos_Expr))));

      else
         Ent := First_Literal (Typ);

         while Present (Ent) loop
            Append_To (Lst,
              Make_Case_Statement_Alternative (Loc,
                Discrete_Choices => New_List (
                  Make_Integer_Literal (Sloc (Enumeration_Rep_Expr (Ent)),
                    Intval => Enumeration_Rep (Ent))),

                Statements => New_List (
                  Make_Return_Statement (Loc,
                    Expression =>
                      Make_Integer_Literal (Loc,
                        Intval => Enumeration_Pos (Ent))))));

            Next_Literal (Ent);
         end loop;
      end if;

      --  In normal mode, add the others clause with the test

      if not Restriction_Active (No_Exception_Handlers) then
         Append_To (Lst,
           Make_Case_Statement_Alternative (Loc,
             Discrete_Choices => New_List (Make_Others_Choice (Loc)),
             Statements => New_List (
               Make_Raise_Constraint_Error (Loc,
                 Condition => Make_Identifier (Loc, Name_uF),
                 Reason    => CE_Invalid_Data),
               Make_Return_Statement (Loc,
                 Expression =>
                   Make_Integer_Literal (Loc, -1)))));

      --  If Restriction (No_Exceptions_Handlers) is active then we always
      --  return -1 (since we cannot usefully raise Constraint_Error in
      --  this case). See description above for further details.

      else
         Append_To (Lst,
           Make_Case_Statement_Alternative (Loc,
             Discrete_Choices => New_List (Make_Others_Choice (Loc)),
             Statements => New_List (
               Make_Return_Statement (Loc,
                 Expression =>
                   Make_Integer_Literal (Loc, -1)))));
      end if;

      --  Now we can build the function body

      Fent :=
        Make_Defining_Identifier (Loc, Make_TSS_Name (Typ, TSS_Rep_To_Pos));

      Func :=
        Make_Subprogram_Body (Loc,
          Specification =>
            Make_Function_Specification (Loc,
              Defining_Unit_Name       => Fent,
              Parameter_Specifications => New_List (
                Make_Parameter_Specification (Loc,
                  Defining_Identifier =>
                    Make_Defining_Identifier (Loc, Name_uA),
                  Parameter_Type => New_Reference_To (Typ, Loc)),
                Make_Parameter_Specification (Loc,
                  Defining_Identifier =>
                    Make_Defining_Identifier (Loc, Name_uF),
                  Parameter_Type => New_Reference_To (Standard_Boolean, Loc))),

              Subtype_Mark => New_Reference_To (Standard_Integer, Loc)),

            Declarations => Empty_List,

            Handled_Statement_Sequence =>
              Make_Handled_Sequence_Of_Statements (Loc,
                Statements => New_List (
                  Make_Case_Statement (Loc,
                    Expression =>
                      Unchecked_Convert_To (Ityp,
                        Make_Identifier (Loc, Name_uA)),
                    Alternatives => Lst))));

      Set_TSS (Typ, Fent);
      Set_Is_Pure (Fent);

      if not Debug_Generated_Code then
         Set_Debug_Info_Off (Fent);
      end if;

   exception
      when RE_Not_Available =>
         return;
   end Freeze_Enumeration_Type;

   ------------------------
   -- Freeze_Record_Type --
   ------------------------

   procedure Freeze_Record_Type (N : Node_Id) is
      Def_Id      : constant Node_Id := Entity (N);
      Comp        : Entity_Id;
      Type_Decl   : constant Node_Id := Parent (Def_Id);
      Predef_List : List_Id;

      Renamed_Eq  : Node_Id := Empty;
      --  Could use some comments ???

   begin
      --  Build discriminant checking functions if not a derived type (for
      --  derived types that are not tagged types, we always use the
      --  discriminant checking functions of the parent type). However, for
      --  untagged types the derivation may have taken place before the
      --  parent was frozen, so we copy explicitly the discriminant checking
      --  functions from the parent into the components of the derived type.

      if not Is_Derived_Type (Def_Id)
        or else Has_New_Non_Standard_Rep (Def_Id)
        or else Is_Tagged_Type (Def_Id)
      then
         Build_Discr_Checking_Funcs (Type_Decl);

      elsif Is_Derived_Type (Def_Id)
        and then not Is_Tagged_Type (Def_Id)

         --  If we have a derived Unchecked_Union, we do not inherit the
         --  discriminant checking functions from the parent type since the
         --  discriminants are non existent.

        and then not Is_Unchecked_Union (Def_Id)
        and then Has_Discriminants (Def_Id)
      then
         declare
            Old_Comp : Entity_Id;

         begin
            Old_Comp :=
              First_Component (Base_Type (Underlying_Type (Etype (Def_Id))));
            Comp := First_Component (Def_Id);
            while Present (Comp) loop
               if Ekind (Comp) = E_Component
                 and then Chars (Comp) = Chars (Old_Comp)
               then
                  Set_Discriminant_Checking_Func (Comp,
                     Discriminant_Checking_Func (Old_Comp));
               end if;

               Next_Component (Old_Comp);
               Next_Component (Comp);
            end loop;
         end;
      end if;

      if Is_Derived_Type (Def_Id)
        and then Is_Limited_Type (Def_Id)
        and then Is_Tagged_Type (Def_Id)
      then
         Check_Stream_Attributes (Def_Id);
      end if;

      --  Update task and controlled component flags, because some of the
      --  component types may have been private at the point of the record
      --  declaration.

      Comp := First_Component (Def_Id);

      while Present (Comp) loop
         if Has_Task (Etype (Comp)) then
            Set_Has_Task (Def_Id);

         elsif Has_Controlled_Component (Etype (Comp))
           or else (Chars (Comp) /= Name_uParent
                     and then Is_Controlled (Etype (Comp)))
         then
            Set_Has_Controlled_Component (Def_Id);
         end if;

         Next_Component (Comp);
      end loop;

      --  Creation of the Dispatch Table. Note that a Dispatch Table is
      --  created for regular tagged types as well as for Ada types
      --  deriving from a C++ Class, but not for tagged types directly
      --  corresponding to the C++ classes. In the later case we assume
      --  that the Vtable is created in the C++ side and we just use it.

      if Is_Tagged_Type (Def_Id) then
         if Is_CPP_Class (Def_Id) then
            Set_All_DT_Position (Def_Id);
            Set_Default_Constructor (Def_Id);

         else
            --  Usually inherited primitives are not delayed but the first
            --  Ada extension of a CPP_Class is an exception since the
            --  address of the inherited subprogram has to be inserted in
            --  the new Ada Dispatch Table and this is a freezing action
            --  (usually the inherited primitive address is inserted in the
            --  DT by Inherit_DT)

            --  Similarly, if this is an inherited operation whose parent
            --  is not frozen yet, it is not in the DT of the parent, and
            --  we generate an explicit freeze node for the inherited
            --  operation, so that it is properly inserted in the DT of the
            --  current type.

            declare
               Elmt : Elmt_Id := First_Elmt (Primitive_Operations (Def_Id));
               Subp : Entity_Id;

            begin
               while Present (Elmt) loop
                  Subp := Node (Elmt);

                  if Present (Alias (Subp)) then
                     if Is_CPP_Class (Etype (Def_Id)) then
                        Set_Has_Delayed_Freeze (Subp);

                     elsif Has_Delayed_Freeze (Alias (Subp))
                       and then not Is_Frozen (Alias (Subp))
                     then
                        Set_Is_Frozen (Subp, False);
                        Set_Has_Delayed_Freeze (Subp);
                     end if;
                  end if;

                  Next_Elmt (Elmt);
               end loop;
            end;

            if Underlying_Type (Etype (Def_Id)) = Def_Id then
               Expand_Tagged_Root (Def_Id);
            end if;

            --  Unfreeze momentarily the type to add the predefined
            --  primitives operations. The reason we unfreeze is so
            --  that these predefined operations will indeed end up
            --  as primitive operations (which must be before the
            --  freeze point).

            Set_Is_Frozen (Def_Id, False);
            Make_Predefined_Primitive_Specs
              (Def_Id, Predef_List, Renamed_Eq);
            Insert_List_Before_And_Analyze (N, Predef_List);
            Set_Is_Frozen (Def_Id, True);
            Set_All_DT_Position (Def_Id);

            --  Add the controlled component before the freezing actions
            --  it is referenced in those actions.

            if Has_New_Controlled_Component (Def_Id) then
               Expand_Record_Controller (Def_Id);
            end if;

            --  Suppress creation of a dispatch table when Java_VM because
            --  the dispatching mechanism is handled internally by the JVM.

            if not Java_VM then
               Append_Freeze_Actions (Def_Id, Make_DT (Def_Id));
            end if;

            --  Make sure that the primitives Initialize, Adjust and
            --  Finalize are Frozen before other TSS subprograms. We
            --  don't want them Frozen inside.

            if Is_Controlled (Def_Id) then
               if not Is_Limited_Type (Def_Id) then
                  Append_Freeze_Actions (Def_Id,
                    Freeze_Entity
                      (Find_Prim_Op (Def_Id, Name_Adjust), Sloc (Def_Id)));
               end if;

               Append_Freeze_Actions (Def_Id,
                 Freeze_Entity
                   (Find_Prim_Op (Def_Id, Name_Initialize), Sloc (Def_Id)));

               Append_Freeze_Actions (Def_Id,
                 Freeze_Entity
                   (Find_Prim_Op (Def_Id, Name_Finalize), Sloc (Def_Id)));
            end if;

            --  Freeze rest of primitive operations

            Append_Freeze_Actions
              (Def_Id, Predefined_Primitive_Freeze (Def_Id));
         end if;

      --  In the non-tagged case, an equality function is provided only
      --  for variant records (that are not unchecked unions).

      elsif Has_Discriminants (Def_Id)
        and then not Is_Limited_Type (Def_Id)
      then
         declare
            Comps : constant Node_Id :=
                      Component_List (Type_Definition (Type_Decl));

         begin
            if Present (Comps)
              and then Present (Variant_Part (Comps))
            then
               Build_Variant_Record_Equality (Def_Id);
            end if;
         end;
      end if;

      --  Before building the record initialization procedure, if we are
      --  dealing with a concurrent record value type, then we must go
      --  through the discriminants, exchanging discriminals between the
      --  concurrent type and the concurrent record value type. See the
      --  section "Handling of Discriminants" in the Einfo spec for details.

      if Is_Concurrent_Record_Type (Def_Id)
        and then Has_Discriminants (Def_Id)
      then
         declare
            Ctyp : constant Entity_Id :=
                     Corresponding_Concurrent_Type (Def_Id);
            Conc_Discr : Entity_Id;
            Rec_Discr  : Entity_Id;
            Temp       : Entity_Id;

         begin
            Conc_Discr := First_Discriminant (Ctyp);
            Rec_Discr  := First_Discriminant (Def_Id);

            while Present (Conc_Discr) loop
               Temp := Discriminal (Conc_Discr);
               Set_Discriminal (Conc_Discr, Discriminal (Rec_Discr));
               Set_Discriminal (Rec_Discr, Temp);

               Set_Discriminal_Link (Discriminal (Conc_Discr), Conc_Discr);
               Set_Discriminal_Link (Discriminal (Rec_Discr),  Rec_Discr);

               Next_Discriminant (Conc_Discr);
               Next_Discriminant (Rec_Discr);
            end loop;
         end;
      end if;

      if Has_Controlled_Component (Def_Id) then
         if No (Controller_Component (Def_Id)) then
            Expand_Record_Controller (Def_Id);
         end if;

         Build_Controlling_Procs (Def_Id);
      end if;

      Adjust_Discriminants (Def_Id);
      Build_Record_Init_Proc (Type_Decl, Def_Id);

      --  For tagged type, build bodies of primitive operations. Note
      --  that we do this after building the record initialization
      --  experiment, since the primitive operations may need the
      --  initialization routine

      if Is_Tagged_Type (Def_Id) then
         Predef_List := Predefined_Primitive_Bodies (Def_Id, Renamed_Eq);
         Append_Freeze_Actions (Def_Id, Predef_List);
      end if;

   end Freeze_Record_Type;

   ------------------------------
   -- Freeze_Stream_Operations --
   ------------------------------

   procedure Freeze_Stream_Operations (N : Node_Id; Typ : Entity_Id) is
      Names     : constant array (1 .. 4) of TSS_Name_Type :=
                    (TSS_Stream_Input,
                     TSS_Stream_Output,
                     TSS_Stream_Read,
                     TSS_Stream_Write);
      Stream_Op : Entity_Id;

   begin
      --  Primitive operations of tagged types are frozen when the dispatch
      --  table is constructed.

      if not Comes_From_Source (Typ)
        or else Is_Tagged_Type (Typ)
      then
         return;
      end if;

      for J in Names'Range loop
         Stream_Op := TSS (Typ, Names (J));

         if Present (Stream_Op)
           and then Is_Subprogram (Stream_Op)
           and then Nkind (Unit_Declaration_Node (Stream_Op)) =
                      N_Subprogram_Declaration
           and then not Is_Frozen (Stream_Op)
         then
            Append_Freeze_Actions
               (Typ, Freeze_Entity (Stream_Op, Sloc (N)));
         end if;
      end loop;
   end Freeze_Stream_Operations;

   -----------------
   -- Freeze_Type --
   -----------------

   --  Full type declarations are expanded at the point at which the type
   --  is frozen. The formal N is the Freeze_Node for the type. Any statements
   --  or declarations generated by the freezing (e.g. the procedure generated
   --  for initialization) are chained in the Acions field list of the freeze
   --  node using Append_Freeze_Actions.

   procedure Freeze_Type (N : Node_Id) is
      Def_Id    : constant Entity_Id := Entity (N);
      RACW_Seen : Boolean := False;

   begin
      --  Process associated access types needing special processing

      if Present (Access_Types_To_Process (N)) then
         declare
            E : Elmt_Id := First_Elmt (Access_Types_To_Process (N));
         begin
            while Present (E) loop

               if Is_Remote_Access_To_Class_Wide_Type (Node (E)) then
                  RACW_Seen := True;
               end if;

               E := Next_Elmt (E);
            end loop;
         end;

         if RACW_Seen then

            --  If there are RACWs designating this type, make stubs now

            Remote_Types_Tagged_Full_View_Encountered (Def_Id);
         end if;
      end if;

      --  Freeze processing for record types

      if Is_Record_Type (Def_Id) then
         if Ekind (Def_Id) = E_Record_Type then
            Freeze_Record_Type (N);

         --  The subtype may have been declared before the type was frozen.
         --  If the type has controlled components it is necessary to create
         --  the entity for the controller explicitly because it did not
         --  exist at the point of the subtype declaration. Only the entity is
         --  needed, the back-end will obtain the layout from the type.
         --  This is only necessary if this is constrained subtype whose
         --  component list is not shared with the base type.

         elsif Ekind (Def_Id) = E_Record_Subtype
           and then Has_Discriminants (Def_Id)
           and then Last_Entity (Def_Id) /= Last_Entity (Base_Type (Def_Id))
           and then Present (Controller_Component (Def_Id))
         then
            declare
               Old_C : constant Entity_Id := Controller_Component (Def_Id);
               New_C : Entity_Id;

            begin
               if Scope (Old_C) = Base_Type (Def_Id) then

                  --  The entity is the one in the parent. Create new one

                  New_C := New_Copy (Old_C);
                  Set_Parent (New_C, Parent (Old_C));
                  New_Scope (Def_Id);
                  Enter_Name (New_C);
                  End_Scope;
               end if;
            end;

         --  Similar process if the controller of the subtype is not
         --  present but the parent has it. This can happen with constrained
         --  record components where the subtype is an itype.

         elsif Ekind (Def_Id) = E_Record_Subtype
           and then Is_Itype (Def_Id)
           and then No (Controller_Component (Def_Id))
           and then Present (Controller_Component (Etype (Def_Id)))
         then
            declare
               Old_C : constant Entity_Id :=
                         Controller_Component (Etype (Def_Id));
               New_C : constant Entity_Id := New_Copy (Old_C);

            begin
               Set_Next_Entity  (New_C, First_Entity (Def_Id));
               Set_First_Entity (Def_Id, New_C);

               --  The freeze node is only used to introduce the controller,
               --  the back-end has no use for it for a discriminated
               --   component.

               Set_Freeze_Node (Def_Id, Empty);
               Set_Has_Delayed_Freeze (Def_Id, False);
               Remove (N);
            end;
         end if;

      --  Freeze processing for array types

      elsif Is_Array_Type (Def_Id) then
         Freeze_Array_Type (N);

      --  Freeze processing for access types

      --  For pool-specific access types, find out the pool object used for
      --  this type, needs actual expansion of it in some cases. Here are the
      --  different cases :

      --  1. Rep Clause "for Def_Id'Storage_Size use 0;"
      --      ---> don't use any storage pool

      --  2. Rep Clause : for Def_Id'Storage_Size use Expr.
      --     Expand:
      --      Def_Id__Pool : Stack_Bounded_Pool (Expr, DT'Size, DT'Alignment);

      --  3. Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
      --      ---> Storage Pool is the specified one

      --  See GNAT Pool packages in the Run-Time for more details

      elsif Ekind (Def_Id) = E_Access_Type
        or else Ekind (Def_Id) = E_General_Access_Type
      then
         declare
            Loc         : constant Source_Ptr := Sloc (N);
            Desig_Type  : constant Entity_Id := Designated_Type (Def_Id);
            Pool_Object : Entity_Id;
            Siz_Exp     : Node_Id;

            Freeze_Action_Typ : Entity_Id;

         begin
            if Has_Storage_Size_Clause (Def_Id) then
               Siz_Exp := Expression (Parent (Storage_Size_Variable (Def_Id)));
            else
               Siz_Exp := Empty;
            end if;

            --  Case 1

            --    Rep Clause "for Def_Id'Storage_Size use 0;"
            --    ---> don't use any storage pool

            if Has_Storage_Size_Clause (Def_Id)
              and then Compile_Time_Known_Value (Siz_Exp)
              and then Expr_Value (Siz_Exp) = 0
            then
               null;

            --  Case 2

            --    Rep Clause : for Def_Id'Storage_Size use Expr.
            --    ---> Expand:
            --           Def_Id__Pool : Stack_Bounded_Pool
            --                            (Expr, DT'Size, DT'Alignment);

            elsif Has_Storage_Size_Clause (Def_Id) then
               declare
                  DT_Size  : Node_Id;
                  DT_Align : Node_Id;

               begin
                  --  For unconstrained composite types we give a size of
                  --  zero so that the pool knows that it needs a special
                  --  algorithm for variable size object allocation.

                  if Is_Composite_Type (Desig_Type)
                    and then not Is_Constrained (Desig_Type)
                  then
                     DT_Size :=
                       Make_Integer_Literal (Loc, 0);

                     DT_Align :=
                       Make_Integer_Literal (Loc, Maximum_Alignment);

                  else
                     DT_Size :=
                       Make_Attribute_Reference (Loc,
                         Prefix => New_Reference_To (Desig_Type, Loc),
                         Attribute_Name => Name_Max_Size_In_Storage_Elements);

                     DT_Align :=
                       Make_Attribute_Reference (Loc,
                         Prefix => New_Reference_To (Desig_Type, Loc),
                         Attribute_Name => Name_Alignment);
                  end if;

                  Pool_Object :=
                    Make_Defining_Identifier (Loc,
                      Chars => New_External_Name (Chars (Def_Id), 'P'));

                  --  We put the code associated with the pools in the
                  --  entity that has the later freeze node, usually the
                  --  acces type but it can also be the designated_type;
                  --  because the pool code requires both those types to be
                  --  frozen

                  if Is_Frozen (Desig_Type)
                    and then (not Present (Freeze_Node (Desig_Type))
                               or else Analyzed (Freeze_Node (Desig_Type)))
                  then
                     Freeze_Action_Typ := Def_Id;

                  --  A Taft amendment type cannot get the freeze actions
                  --  since the full view is not there.

                  elsif Is_Incomplete_Or_Private_Type (Desig_Type)
                    and then No (Full_View (Desig_Type))
                  then
                     Freeze_Action_Typ := Def_Id;

                  else
                     Freeze_Action_Typ := Desig_Type;
                  end if;

                  Append_Freeze_Action (Freeze_Action_Typ,
                    Make_Object_Declaration (Loc,
                      Defining_Identifier => Pool_Object,
                      Object_Definition =>
                        Make_Subtype_Indication (Loc,
                          Subtype_Mark =>
                            New_Reference_To
                              (RTE (RE_Stack_Bounded_Pool), Loc),

                          Constraint =>
                            Make_Index_Or_Discriminant_Constraint (Loc,
                              Constraints => New_List (

                              --  First discriminant is the Pool Size

                                New_Reference_To (
                                  Storage_Size_Variable (Def_Id), Loc),

                              --  Second discriminant is the element size

                                DT_Size,

                              --  Third discriminant is the alignment

                                DT_Align)))));
               end;

               Set_Associated_Storage_Pool (Def_Id, Pool_Object);

            --  Case 3

            --    Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
            --    ---> Storage Pool is the specified one

            elsif Present (Associated_Storage_Pool (Def_Id)) then

               --  Nothing to do the associated storage pool has been attached
               --  when analyzing the rep. clause

               null;
            end if;

            --  For access-to-controlled types (including class-wide types
            --  and Taft-amendment types which potentially have controlled
            --  components), expand the list controller object that will
            --  store the dynamically allocated objects. Do not do this
            --  transformation for expander-generated access types, but do it
            --  for types that are the full view of types derived from other
            --  private types. Also suppress the list controller in the case
            --  of a designated type with convention Java, since this is used
            --  when binding to Java API specs, where there's no equivalent
            --  of a finalization list and we don't want to pull in the
            --  finalization support if not needed.

            if not Comes_From_Source (Def_Id)
               and then not Has_Private_Declaration (Def_Id)
            then
               null;

            elsif (Controlled_Type (Desig_Type)
                    and then Convention (Desig_Type) /= Convention_Java)
              or else
                (Is_Incomplete_Or_Private_Type (Desig_Type)
                   and then No (Full_View (Desig_Type))

                  --  An exception is made for types defined in the run-time
                  --  because Ada.Tags.Tag itself is such a type and cannot
                  --  afford this unnecessary overhead that would generates a
                  --  loop in the expansion scheme...

                  and then not In_Runtime (Def_Id)

                  --  Another exception is if Restrictions (No_Finalization)
                  --  is active, since then we know nothing is controlled.

                  and then not Restriction_Active (No_Finalization))

               --  If the designated type is not frozen yet, its controlled
               --  status must be retrieved explicitly.

              or else (Is_Array_Type (Desig_Type)
                and then not Is_Frozen (Desig_Type)
                and then Controlled_Type (Component_Type (Desig_Type)))
            then
               Set_Associated_Final_Chain (Def_Id,
                 Make_Defining_Identifier (Loc,
                   New_External_Name (Chars (Def_Id), 'L')));

               Append_Freeze_Action (Def_Id,
                 Make_Object_Declaration (Loc,
                   Defining_Identifier => Associated_Final_Chain (Def_Id),
                   Object_Definition   =>
                     New_Reference_To (RTE (RE_List_Controller), Loc)));
            end if;
         end;

      --  Freeze processing for enumeration types

      elsif Ekind (Def_Id) = E_Enumeration_Type then

         --  We only have something to do if we have a non-standard
         --  representation (i.e. at least one literal whose pos value
         --  is not the same as its representation)

         if Has_Non_Standard_Rep (Def_Id) then
            Freeze_Enumeration_Type (N);
         end if;

      --  Private types that are completed by a derivation from a private
      --  type have an internally generated full view, that needs to be
      --  frozen. This must be done explicitly because the two views share
      --  the freeze node, and the underlying full view is not visible when
      --  the freeze node is analyzed.

      elsif Is_Private_Type (Def_Id)
        and then Is_Derived_Type (Def_Id)
        and then Present (Full_View (Def_Id))
        and then Is_Itype (Full_View (Def_Id))
        and then Has_Private_Declaration (Full_View (Def_Id))
        and then Freeze_Node (Full_View (Def_Id)) = N
      then
         Set_Entity (N, Full_View (Def_Id));
         Freeze_Type (N);
         Set_Entity (N, Def_Id);

      --  All other types require no expander action. There are such
      --  cases (e.g. task types and protected types). In such cases,
      --  the freeze nodes are there for use by Gigi.

      end if;

      Freeze_Stream_Operations (N, Def_Id);

   exception
      when RE_Not_Available =>
         return;
   end Freeze_Type;

   -------------------------
   -- Get_Simple_Init_Val --
   -------------------------

   function Get_Simple_Init_Val
     (T   : Entity_Id;
      Loc : Source_Ptr) return Node_Id
   is
      Val    : Node_Id;
      Typ    : Node_Id;
      Result : Node_Id;
      Val_RE : RE_Id;

   begin
      --  For a private type, we should always have an underlying type
      --  (because this was already checked in Needs_Simple_Initialization).
      --  What we do is to get the value for the underlying type and then
      --  do an Unchecked_Convert to the private type.

      if Is_Private_Type (T) then
         Val := Get_Simple_Init_Val (Underlying_Type (T), Loc);

         --  A special case, if the underlying value is null, then qualify
         --  it with the underlying type, so that the null is properly typed
         --  Similarly, if it is an aggregate it must be qualified, because
         --  an unchecked conversion does not provide a context for it.

         if Nkind (Val) = N_Null
           or else Nkind (Val) = N_Aggregate
         then
            Val :=
              Make_Qualified_Expression (Loc,
                Subtype_Mark =>
                  New_Occurrence_Of (Underlying_Type (T), Loc),
                Expression => Val);
         end if;

         Result := Unchecked_Convert_To (T, Val);

         --  Don't truncate result (important for Initialize/Normalize_Scalars)

         if Nkind (Result) = N_Unchecked_Type_Conversion
           and then Is_Scalar_Type (Underlying_Type (T))
         then
            Set_No_Truncation (Result);
         end if;

         return Result;

      --  For scalars, we must have normalize/initialize scalars case

      elsif Is_Scalar_Type (T) then
         pragma Assert (Init_Or_Norm_Scalars);

         --  Processing for Normalize_Scalars case

         if Normalize_Scalars then

            --  First prepare a value (out of subtype range if possible)

            if Is_Real_Type (T) or else Is_Integer_Type (T) then
               Val :=
                 Make_Attribute_Reference (Loc,
                   Prefix => New_Occurrence_Of (Base_Type (T), Loc),
                   Attribute_Name => Name_First);

            elsif Is_Modular_Integer_Type (T) then
               Val :=
                 Make_Attribute_Reference (Loc,
                   Prefix => New_Occurrence_Of (Base_Type (T), Loc),
                   Attribute_Name => Name_Last);

            else
               pragma Assert (Is_Enumeration_Type (T));

               if Esize (T) <= 8 then
                  Typ := RTE (RE_Unsigned_8);
               elsif Esize (T) <= 16 then
                  Typ := RTE (RE_Unsigned_16);
               elsif Esize (T) <= 32 then
                  Typ := RTE (RE_Unsigned_32);
               else
                  Typ := RTE (RE_Unsigned_64);
               end if;

               Val :=
                 Make_Attribute_Reference (Loc,
                   Prefix => New_Occurrence_Of (Typ, Loc),
                   Attribute_Name => Name_Last);
            end if;

         --  Here for Initialize_Scalars case

         else
            if Is_Floating_Point_Type (T) then
               if Root_Type (T) = Standard_Short_Float then
                  Val_RE := RE_IS_Isf;
               elsif Root_Type (T) = Standard_Float then
                  Val_RE := RE_IS_Ifl;
               elsif Root_Type (T) = Standard_Long_Float then
                  Val_RE := RE_IS_Ilf;
               else pragma Assert (Root_Type (T) = Standard_Long_Long_Float);
                  Val_RE := RE_IS_Ill;
               end if;

            elsif Is_Unsigned_Type (Base_Type (T)) then
               if Esize (T) = 8 then
                  Val_RE := RE_IS_Iu1;
               elsif Esize (T) = 16 then
                  Val_RE := RE_IS_Iu2;
               elsif Esize (T) = 32 then
                  Val_RE := RE_IS_Iu4;
               else pragma Assert (Esize (T) = 64);
                  Val_RE := RE_IS_Iu8;
               end if;

            else -- signed type
               if Esize (T) = 8 then
                  Val_RE := RE_IS_Is1;
               elsif Esize (T) = 16 then
                  Val_RE := RE_IS_Is2;
               elsif Esize (T) = 32 then
                  Val_RE := RE_IS_Is4;
               else pragma Assert (Esize (T) = 64);
                  Val_RE := RE_IS_Is8;
               end if;
            end if;

            Val := New_Occurrence_Of (RTE (Val_RE), Loc);
         end if;

         --  The final expression is obtained by doing an unchecked
         --  conversion of this result to the base type of the
         --  required subtype. We use the base type to avoid the
         --  unchecked conversion from chopping bits, and then we
         --  set Kill_Range_Check to preserve the "bad" value.

         Result := Unchecked_Convert_To (Base_Type (T), Val);

         --  Ensure result is not truncated, since we want the "bad" bits
         --  and also kill range check on result.

         if Nkind (Result) = N_Unchecked_Type_Conversion then
            Set_No_Truncation (Result);
            Set_Kill_Range_Check (Result, True);
         end if;

         return Result;

      --  String or Wide_String (must have Initialize_Scalars set)

      elsif Root_Type (T) = Standard_String
              or else
            Root_Type (T) = Standard_Wide_String
      then
         pragma Assert (Init_Or_Norm_Scalars);

         return
           Make_Aggregate (Loc,
             Component_Associations => New_List (
               Make_Component_Association (Loc,
                 Choices => New_List (
                   Make_Others_Choice (Loc)),
                 Expression =>
                   Get_Simple_Init_Val (Component_Type (T), Loc))));

      --  Access type is initialized to null

      elsif Is_Access_Type (T) then
         return
           Make_Null (Loc);

      --  No other possibilities should arise, since we should only be
      --  calling Get_Simple_Init_Val if Needs_Simple_Initialization
      --  returned True, indicating one of the above cases held.

      else
         raise Program_Error;
      end if;

   exception
      when RE_Not_Available =>
         return Empty;
   end Get_Simple_Init_Val;

   ------------------------------
   -- Has_New_Non_Standard_Rep --
   ------------------------------

   function Has_New_Non_Standard_Rep (T : Entity_Id) return Boolean is
   begin
      if not Is_Derived_Type (T) then
         return Has_Non_Standard_Rep (T)
           or else Has_Non_Standard_Rep (Root_Type (T));

      --  If Has_Non_Standard_Rep is not set on the derived type, the
      --  representation is fully inherited.

      elsif not Has_Non_Standard_Rep (T) then
         return False;

      else
         return First_Rep_Item (T) /= First_Rep_Item (Root_Type (T));

         --  May need a more precise check here: the First_Rep_Item may
         --  be a stream attribute, which does not affect the representation
         --  of the type ???
      end if;
   end Has_New_Non_Standard_Rep;

   ----------------
   -- In_Runtime --
   ----------------

   function In_Runtime (E : Entity_Id) return Boolean is
      S1 : Entity_Id := Scope (E);

   begin
      while Scope (S1) /= Standard_Standard loop
         S1 := Scope (S1);
      end loop;

      return Chars (S1) = Name_System or else Chars (S1) = Name_Ada;
   end In_Runtime;

   ------------------
   -- Init_Formals --
   ------------------

   function Init_Formals (Typ : Entity_Id) return List_Id is
      Loc     : constant Source_Ptr := Sloc (Typ);
      Formals : List_Id;

   begin
      --  First parameter is always _Init : in out typ. Note that we need
      --  this to be in/out because in the case of the task record value,
      --  there are default record fields (_Priority, _Size, -Task_Info)
      --  that may be referenced in the generated initialization routine.

      Formals := New_List (
        Make_Parameter_Specification (Loc,
          Defining_Identifier =>
            Make_Defining_Identifier (Loc, Name_uInit),
          In_Present  => True,
          Out_Present => True,
          Parameter_Type => New_Reference_To (Typ, Loc)));

      --  For task record value, or type that contains tasks, add two more
      --  formals, _Master : Master_Id and _Chain : in out Activation_Chain
      --  We also add these parameters for the task record type case.

      if Has_Task (Typ)
        or else (Is_Record_Type (Typ) and then Is_Task_Record_Type (Typ))
      then
         Append_To (Formals,
           Make_Parameter_Specification (Loc,
             Defining_Identifier =>
               Make_Defining_Identifier (Loc, Name_uMaster),
             Parameter_Type => New_Reference_To (RTE (RE_Master_Id), Loc)));

         Append_To (Formals,
           Make_Parameter_Specification (Loc,
             Defining_Identifier =>
               Make_Defining_Identifier (Loc, Name_uChain),
             In_Present => True,
             Out_Present => True,
             Parameter_Type =>
               New_Reference_To (RTE (RE_Activation_Chain), Loc)));

         Append_To (Formals,
           Make_Parameter_Specification (Loc,
             Defining_Identifier =>
               Make_Defining_Identifier (Loc, Name_uTask_Name),
             In_Present => True,
             Parameter_Type =>
               New_Reference_To (Standard_String, Loc)));
      end if;

      return Formals;

   exception
      when RE_Not_Available =>
         return Empty_List;
   end Init_Formals;

   ------------------
   -- Make_Eq_Case --
   ------------------

   --  <Make_Eq_if shared components>
   --  case X.D1 is
   --     when V1 => <Make_Eq_Case> on subcomponents
   --     ...
   --     when Vn => <Make_Eq_Case> on subcomponents
   --  end case;

   function Make_Eq_Case
     (E     : Entity_Id;
      CL    : Node_Id;
      Discr : Entity_Id := Empty) return List_Id
   is
      Loc      : constant Source_Ptr := Sloc (E);
      Result   : constant List_Id    := New_List;
      Variant  : Node_Id;
      Alt_List : List_Id;

   begin
      Append_To (Result, Make_Eq_If (E, Component_Items (CL)));

      if No (Variant_Part (CL)) then
         return Result;
      end if;

      Variant := First_Non_Pragma (Variants (Variant_Part (CL)));

      if No (Variant) then
         return Result;
      end if;

      Alt_List := New_List;

      while Present (Variant) loop
         Append_To (Alt_List,
           Make_Case_Statement_Alternative (Loc,
             Discrete_Choices => New_Copy_List (Discrete_Choices (Variant)),
             Statements => Make_Eq_Case (E, Component_List (Variant))));

         Next_Non_Pragma (Variant);
      end loop;

      --  If we have an Unchecked_Union, use one of the parameters that
      --  captures the discriminants.

      if Is_Unchecked_Union (E) then
         Append_To (Result,
           Make_Case_Statement (Loc,
             Expression => New_Reference_To (Discr, Loc),
             Alternatives => Alt_List));

      else
         Append_To (Result,
           Make_Case_Statement (Loc,
             Expression =>
               Make_Selected_Component (Loc,
                 Prefix => Make_Identifier (Loc, Name_X),
                 Selector_Name => New_Copy (Name (Variant_Part (CL)))),
             Alternatives => Alt_List));
      end if;

      return Result;
   end Make_Eq_Case;

   ----------------
   -- Make_Eq_If --
   ----------------

   --  Generates:

   --    if
   --      X.C1 /= Y.C1
   --        or else
   --      X.C2 /= Y.C2
   --        ...
   --    then
   --       return False;
   --    end if;

   --  or a null statement if the list L is empty

   function Make_Eq_If
     (E : Entity_Id;
      L : List_Id) return Node_Id
   is
      Loc        : constant Source_Ptr := Sloc (E);
      C          : Node_Id;
      Field_Name : Name_Id;
      Cond       : Node_Id;

   begin
      if No (L) then
         return Make_Null_Statement (Loc);

      else
         Cond := Empty;

         C := First_Non_Pragma (L);
         while Present (C) loop
            Field_Name := Chars (Defining_Identifier (C));

            --  The tags must not be compared they are not part of the value.
            --  Note also that in the following, we use Make_Identifier for
            --  the component names. Use of New_Reference_To to identify the
            --  components would be incorrect because the wrong entities for
            --  discriminants could be picked up in the private type case.

            if Field_Name /= Name_uTag then
               Evolve_Or_Else (Cond,
                 Make_Op_Ne (Loc,
                   Left_Opnd =>
                     Make_Selected_Component (Loc,
                       Prefix        => Make_Identifier (Loc, Name_X),
                       Selector_Name =>
                         Make_Identifier (Loc, Field_Name)),

                   Right_Opnd =>
                     Make_Selected_Component (Loc,
                       Prefix        => Make_Identifier (Loc, Name_Y),
                       Selector_Name =>
                         Make_Identifier (Loc, Field_Name))));
            end if;

            Next_Non_Pragma (C);
         end loop;

         if No (Cond) then
            return Make_Null_Statement (Loc);

         else
            return
              Make_Implicit_If_Statement (E,
                Condition => Cond,
                Then_Statements => New_List (
                  Make_Return_Statement (Loc,
                    Expression => New_Occurrence_Of (Standard_False, Loc))));
         end if;
      end if;
   end Make_Eq_If;

   -------------------------------------
   -- Make_Predefined_Primitive_Specs --
   -------------------------------------

   procedure Make_Predefined_Primitive_Specs
     (Tag_Typ     : Entity_Id;
      Predef_List : out List_Id;
      Renamed_Eq  : out Node_Id)
   is
      Loc       : constant Source_Ptr := Sloc (Tag_Typ);
      Res       : constant List_Id    := New_List;
      Prim      : Elmt_Id;
      Eq_Needed : Boolean;
      Eq_Spec   : Node_Id;
      Eq_Name   : Name_Id := Name_Op_Eq;

      function Is_Predefined_Eq_Renaming (Prim : Node_Id) return Boolean;
      --  Returns true if Prim is a renaming of an unresolved predefined
      --  equality operation.

      -------------------------------
      -- Is_Predefined_Eq_Renaming --
      -------------------------------

      function Is_Predefined_Eq_Renaming (Prim : Node_Id) return Boolean is
      begin
         return Chars (Prim) /= Name_Op_Eq
           and then Present (Alias (Prim))
           and then Comes_From_Source (Prim)
           and then Is_Intrinsic_Subprogram (Alias (Prim))
           and then Chars (Alias (Prim)) = Name_Op_Eq;
      end Is_Predefined_Eq_Renaming;

   --  Start of processing for Make_Predefined_Primitive_Specs

   begin
      Renamed_Eq := Empty;

      --  Spec of _Alignment

      Append_To (Res, Predef_Spec_Or_Body (Loc,
        Tag_Typ => Tag_Typ,
        Name    => Name_uAlignment,
        Profile => New_List (
          Make_Parameter_Specification (Loc,
            Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
            Parameter_Type      => New_Reference_To (Tag_Typ, Loc))),

        Ret_Type => Standard_Integer));

      --  Spec of _Size

      Append_To (Res, Predef_Spec_Or_Body (Loc,
        Tag_Typ => Tag_Typ,
        Name    => Name_uSize,
        Profile => New_List (
          Make_Parameter_Specification (Loc,
            Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
            Parameter_Type      => New_Reference_To (Tag_Typ, Loc))),

        Ret_Type => Standard_Long_Long_Integer));

      --  Specs for dispatching stream attributes. We skip these for limited
      --  types, since there is no question of dispatching in the limited case.

      --  We also skip these operations if dispatching is not available
      --  or if streams are not available (since what's the point?)

      if Stream_Operations_OK (Tag_Typ) then
         Append_To (Res,
           Predef_Stream_Attr_Spec (Loc, Tag_Typ, TSS_Stream_Read));
         Append_To (Res,
           Predef_Stream_Attr_Spec (Loc, Tag_Typ, TSS_Stream_Write));
         Append_To (Res,
           Predef_Stream_Attr_Spec (Loc, Tag_Typ, TSS_Stream_Input));
         Append_To (Res,
           Predef_Stream_Attr_Spec (Loc, Tag_Typ, TSS_Stream_Output));
      end if;

      --  Spec of "=" if expanded if the type is not limited and if a
      --  user defined "=" was not already declared for the non-full
      --  view of a private extension

      if not Is_Limited_Type (Tag_Typ) then
         Eq_Needed := True;

         Prim := First_Elmt (Primitive_Operations (Tag_Typ));
         while Present (Prim) loop

            --  If a primitive is encountered that renames the predefined
            --  equality operator before reaching any explicit equality
            --  primitive, then we still need to create a predefined
            --  equality function, because calls to it can occur via
            --  the renaming. A new name is created for the equality
            --  to avoid conflicting with any user-defined equality.
            --  (Note that this doesn't account for renamings of
            --  equality nested within subpackages???)

            if Is_Predefined_Eq_Renaming (Node (Prim)) then
               Eq_Name := New_External_Name (Chars (Node (Prim)), 'E');

            elsif Chars (Node (Prim)) = Name_Op_Eq
              and then (No (Alias (Node (Prim)))
                         or else Nkind (Unit_Declaration_Node (Node (Prim))) =
                                            N_Subprogram_Renaming_Declaration)
              and then Etype (First_Formal (Node (Prim))) =
                         Etype (Next_Formal (First_Formal (Node (Prim))))
              and then Base_Type (Etype (Node (Prim))) = Standard_Boolean

            then
               Eq_Needed := False;
               exit;

            --  If the parent equality is abstract, the inherited equality is
            --  abstract as well, and no body can be created for for it.

            elsif Chars (Node (Prim)) = Name_Op_Eq
              and then Present (Alias (Node (Prim)))
              and then Is_Abstract (Alias (Node (Prim)))
            then
               Eq_Needed := False;
               exit;
            end if;

            Next_Elmt (Prim);
         end loop;

         --  If a renaming of predefined equality was found
         --  but there was no user-defined equality (so Eq_Needed
         --  is still true), then set the name back to Name_Op_Eq.
         --  But in the case where a user-defined equality was
         --  located after such a renaming, then the predefined
         --  equality function is still needed, so Eq_Needed must
         --  be set back to True.

         if Eq_Name /= Name_Op_Eq then
            if Eq_Needed then
               Eq_Name := Name_Op_Eq;
            else
               Eq_Needed := True;
            end if;
         end if;

         if Eq_Needed then
            Eq_Spec := Predef_Spec_Or_Body (Loc,
              Tag_Typ => Tag_Typ,
              Name    => Eq_Name,
              Profile => New_List (
                Make_Parameter_Specification (Loc,
                  Defining_Identifier =>
                    Make_Defining_Identifier (Loc, Name_X),
                    Parameter_Type      => New_Reference_To (Tag_Typ, Loc)),
                Make_Parameter_Specification (Loc,
                  Defining_Identifier =>
                    Make_Defining_Identifier (Loc, Name_Y),
                    Parameter_Type      => New_Reference_To (Tag_Typ, Loc))),
                Ret_Type => Standard_Boolean);
            Append_To (Res, Eq_Spec);

            if Eq_Name /= Name_Op_Eq then
               Renamed_Eq := Defining_Unit_Name (Specification (Eq_Spec));

               Prim := First_Elmt (Primitive_Operations (Tag_Typ));
               while Present (Prim) loop

                  --  Any renamings of equality that appeared before an
                  --  overriding equality must be updated to refer to
                  --  the entity for the predefined equality, otherwise
                  --  calls via the renaming would get incorrectly
                  --  resolved to call the user-defined equality function.

                  if Is_Predefined_Eq_Renaming (Node (Prim)) then
                     Set_Alias (Node (Prim), Renamed_Eq);

                  --  Exit upon encountering a user-defined equality

                  elsif Chars (Node (Prim)) = Name_Op_Eq
                    and then No (Alias (Node (Prim)))
                  then
                     exit;
                  end if;

                  Next_Elmt (Prim);
               end loop;
            end if;
         end if;

         --  Spec for dispatching assignment

         Append_To (Res, Predef_Spec_Or_Body (Loc,
           Tag_Typ => Tag_Typ,
           Name    => Name_uAssign,
           Profile => New_List (
             Make_Parameter_Specification (Loc,
               Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
               Out_Present         => True,
               Parameter_Type      => New_Reference_To (Tag_Typ, Loc)),

             Make_Parameter_Specification (Loc,
               Defining_Identifier => Make_Defining_Identifier (Loc, Name_Y),
               Parameter_Type      => New_Reference_To (Tag_Typ, Loc)))));
      end if;

      --  Specs for finalization actions that may be required in case a
      --  future extension contain a controlled element. We generate those
      --  only for root tagged types where they will get dummy bodies or
      --  when the type has controlled components and their body must be
      --  generated. It is also impossible to provide those for tagged
      --  types defined within s-finimp since it would involve circularity
      --  problems

      if In_Finalization_Root (Tag_Typ) then
         null;

      --  We also skip these if finalization is not available

      elsif Restriction_Active (No_Finalization) then
         null;

      elsif Etype (Tag_Typ) = Tag_Typ or else Controlled_Type (Tag_Typ) then
         if not Is_Limited_Type (Tag_Typ) then
            Append_To (Res,
              Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Adjust));
         end if;

         Append_To (Res, Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Finalize));
      end if;

      Predef_List := Res;
   end Make_Predefined_Primitive_Specs;

   ---------------------------------
   -- Needs_Simple_Initialization --
   ---------------------------------

   function Needs_Simple_Initialization (T : Entity_Id) return Boolean is
   begin
      --  Check for private type, in which case test applies to the
      --  underlying type of the private type.

      if Is_Private_Type (T) then
         declare
            RT : constant Entity_Id := Underlying_Type (T);

         begin
            if Present (RT) then
               return Needs_Simple_Initialization (RT);
            else
               return False;
            end if;
         end;

      --  Cases needing simple initialization are access types, and, if pragma
      --  Normalize_Scalars or Initialize_Scalars is in effect, then all scalar
      --  types.

      elsif Is_Access_Type (T)
        or else (Init_Or_Norm_Scalars and then (Is_Scalar_Type (T)))
      then
         return True;

      --  If Initialize/Normalize_Scalars is in effect, string objects also
      --  need initialization, unless they are created in the course of
      --  expanding an aggregate (since in the latter case they will be
      --  filled with appropriate initializing values before they are used).

      elsif Init_Or_Norm_Scalars
        and then
          (Root_Type (T) = Standard_String
            or else Root_Type (T) = Standard_Wide_String)
        and then
          (not Is_Itype (T)
            or else Nkind (Associated_Node_For_Itype (T)) /= N_Aggregate)
      then
         return True;

      else
         return False;
      end if;
   end Needs_Simple_Initialization;

   ----------------------
   -- Predef_Deep_Spec --
   ----------------------

   function Predef_Deep_Spec
     (Loc      : Source_Ptr;
      Tag_Typ  : Entity_Id;
      Name     : TSS_Name_Type;
      For_Body : Boolean := False) return Node_Id
   is
      Prof   : List_Id;
      Type_B : Entity_Id;

   begin
      if Name = TSS_Deep_Finalize then
         Prof := New_List;
         Type_B := Standard_Boolean;

      else
         Prof := New_List (
           Make_Parameter_Specification (Loc,
             Defining_Identifier => Make_Defining_Identifier (Loc, Name_L),
             In_Present          => True,
             Out_Present         => True,
             Parameter_Type      =>
               New_Reference_To (RTE (RE_Finalizable_Ptr), Loc)));
         Type_B := Standard_Short_Short_Integer;
      end if;

      Append_To (Prof,
           Make_Parameter_Specification (Loc,
             Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
             In_Present          => True,
             Out_Present         => True,
             Parameter_Type      => New_Reference_To (Tag_Typ, Loc)));

      Append_To (Prof,
           Make_Parameter_Specification (Loc,
             Defining_Identifier => Make_Defining_Identifier (Loc, Name_B),
             Parameter_Type      => New_Reference_To (Type_B, Loc)));

      return Predef_Spec_Or_Body (Loc,
        Name     => Make_TSS_Name (Tag_Typ, Name),
        Tag_Typ  => Tag_Typ,
        Profile  => Prof,
        For_Body => For_Body);

   exception
      when RE_Not_Available =>
         return Empty;
   end Predef_Deep_Spec;

   -------------------------
   -- Predef_Spec_Or_Body --
   -------------------------

   function Predef_Spec_Or_Body
     (Loc      : Source_Ptr;
      Tag_Typ  : Entity_Id;
      Name     : Name_Id;
      Profile  : List_Id;
      Ret_Type : Entity_Id := Empty;
      For_Body : Boolean := False) return Node_Id
   is
      Id   : constant Entity_Id := Make_Defining_Identifier (Loc, Name);
      Spec : Node_Id;

   begin
      Set_Is_Public (Id, Is_Public (Tag_Typ));

      --  The internal flag is set to mark these declarations because
      --  they have specific properties. First they are primitives even
      --  if they are not defined in the type scope (the freezing point
      --  is not necessarily in the same scope), furthermore the
      --  predefined equality can be overridden by a user-defined
      --  equality, no body will be generated in this case.

      Set_Is_Internal (Id);

      if not Debug_Generated_Code then
         Set_Debug_Info_Off (Id);
      end if;

      if No (Ret_Type) then
         Spec :=
           Make_Procedure_Specification (Loc,
             Defining_Unit_Name       => Id,
             Parameter_Specifications => Profile);
      else
         Spec :=
           Make_Function_Specification (Loc,
             Defining_Unit_Name       => Id,
             Parameter_Specifications => Profile,
             Subtype_Mark             =>
               New_Reference_To (Ret_Type, Loc));
      end if;

      --  If body case, return empty subprogram body. Note that this is
      --  ill-formed, because there is not even a null statement, and
      --  certainly not a return in the function case. The caller is
      --  expected to do surgery on the body to add the appropriate stuff.

      if For_Body then
         return Make_Subprogram_Body (Loc, Spec, Empty_List, Empty);

      --  For the case of Input/Output attributes applied to an abstract type,
      --  generate abstract specifications. These will never be called,
      --  but we need the slots allocated in the dispatching table so
      --  that typ'Class'Input and typ'Class'Output will work properly.

      elsif (Is_TSS (Name, TSS_Stream_Input)
              or else
             Is_TSS (Name, TSS_Stream_Output))
        and then Is_Abstract (Tag_Typ)
      then
         return Make_Abstract_Subprogram_Declaration (Loc, Spec);

      --  Normal spec case, where we return a subprogram declaration

      else
         return Make_Subprogram_Declaration (Loc, Spec);
      end if;
   end Predef_Spec_Or_Body;

   -----------------------------
   -- Predef_Stream_Attr_Spec --
   -----------------------------

   function Predef_Stream_Attr_Spec
     (Loc      : Source_Ptr;
      Tag_Typ  : Entity_Id;
      Name     : TSS_Name_Type;
      For_Body : Boolean := False) return Node_Id
   is
      Ret_Type : Entity_Id;

   begin
      if Name = TSS_Stream_Input then
         Ret_Type := Tag_Typ;
      else
         Ret_Type := Empty;
      end if;

      return Predef_Spec_Or_Body (Loc,
        Name     => Make_TSS_Name (Tag_Typ, Name),
        Tag_Typ  => Tag_Typ,
        Profile  => Build_Stream_Attr_Profile (Loc, Tag_Typ, Name),
        Ret_Type => Ret_Type,
        For_Body => For_Body);
   end Predef_Stream_Attr_Spec;

   ---------------------------------
   -- Predefined_Primitive_Bodies --
   ---------------------------------

   function Predefined_Primitive_Bodies
     (Tag_Typ    : Entity_Id;
      Renamed_Eq : Node_Id) return List_Id
   is
      Loc       : constant Source_Ptr := Sloc (Tag_Typ);
      Res       : constant List_Id    := New_List;
      Decl      : Node_Id;
      Prim      : Elmt_Id;
      Eq_Needed : Boolean;
      Eq_Name   : Name_Id;
      Ent       : Entity_Id;

   begin
      --  See if we have a predefined "=" operator

      if Present (Renamed_Eq) then
         Eq_Needed := True;
         Eq_Name   := Chars (Renamed_Eq);

      else
         Eq_Needed := False;
         Eq_Name   := No_Name;

         Prim := First_Elmt (Primitive_Operations (Tag_Typ));
         while Present (Prim) loop
            if Chars (Node (Prim)) = Name_Op_Eq
              and then Is_Internal (Node (Prim))
            then
               Eq_Needed := True;
               Eq_Name := Name_Op_Eq;
            end if;

            Next_Elmt (Prim);
         end loop;
      end if;

      --  Body of _Alignment

      Decl := Predef_Spec_Or_Body (Loc,
        Tag_Typ => Tag_Typ,
        Name    => Name_uAlignment,
        Profile => New_List (
          Make_Parameter_Specification (Loc,
            Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
            Parameter_Type      => New_Reference_To (Tag_Typ, Loc))),

        Ret_Type => Standard_Integer,
        For_Body => True);

      Set_Handled_Statement_Sequence (Decl,
        Make_Handled_Sequence_Of_Statements (Loc, New_List (
          Make_Return_Statement (Loc,
            Expression =>
              Make_Attribute_Reference (Loc,
                Prefix => Make_Identifier (Loc, Name_X),
                Attribute_Name  => Name_Alignment)))));

      Append_To (Res, Decl);

      --  Body of _Size

      Decl := Predef_Spec_Or_Body (Loc,
        Tag_Typ => Tag_Typ,
        Name    => Name_uSize,
        Profile => New_List (
          Make_Parameter_Specification (Loc,
            Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
            Parameter_Type      => New_Reference_To (Tag_Typ, Loc))),

        Ret_Type => Standard_Long_Long_Integer,
        For_Body => True);

      Set_Handled_Statement_Sequence (Decl,
        Make_Handled_Sequence_Of_Statements (Loc, New_List (
          Make_Return_Statement (Loc,
            Expression =>
              Make_Attribute_Reference (Loc,
                Prefix => Make_Identifier (Loc, Name_X),
                Attribute_Name  => Name_Size)))));

      Append_To (Res, Decl);

      --  Bodies for Dispatching stream IO routines. We need these only for
      --  non-limited types (in the limited case there is no dispatching).
      --  We also skip them if dispatching or finalization are not available.

      if Stream_Operations_OK (Tag_Typ) then
         if No (TSS (Tag_Typ, TSS_Stream_Read)) then
            Build_Record_Read_Procedure (Loc, Tag_Typ, Decl, Ent);
            Append_To (Res, Decl);
         end if;

         if No (TSS (Tag_Typ, TSS_Stream_Write)) then
            Build_Record_Write_Procedure (Loc, Tag_Typ, Decl, Ent);
            Append_To (Res, Decl);
         end if;

         --  Skip bodies of _Input and _Output for the abstract case, since
         --  the corresponding specs are abstract (see Predef_Spec_Or_Body)

         if not Is_Abstract (Tag_Typ) then
            if No (TSS (Tag_Typ, TSS_Stream_Input)) then
               Build_Record_Or_Elementary_Input_Function
                 (Loc, Tag_Typ, Decl, Ent);
               Append_To (Res, Decl);
            end if;

            if No (TSS (Tag_Typ, TSS_Stream_Output)) then
               Build_Record_Or_Elementary_Output_Procedure
                 (Loc, Tag_Typ, Decl, Ent);
               Append_To (Res, Decl);
            end if;
         end if;
      end if;

      if not Is_Limited_Type (Tag_Typ) then

         --  Body for equality

         if Eq_Needed then

            Decl := Predef_Spec_Or_Body (Loc,
              Tag_Typ => Tag_Typ,
              Name    => Eq_Name,
              Profile => New_List (
                Make_Parameter_Specification (Loc,
                  Defining_Identifier =>
                    Make_Defining_Identifier (Loc, Name_X),
                  Parameter_Type      => New_Reference_To (Tag_Typ, Loc)),

                Make_Parameter_Specification (Loc,
                  Defining_Identifier =>
                    Make_Defining_Identifier (Loc, Name_Y),
                  Parameter_Type      => New_Reference_To (Tag_Typ, Loc))),

              Ret_Type => Standard_Boolean,
              For_Body => True);

            declare
               Def          : constant Node_Id := Parent (Tag_Typ);
               Stmts        : constant List_Id := New_List;
               Variant_Case : Boolean := Has_Discriminants (Tag_Typ);
               Comps        : Node_Id := Empty;
               Typ_Def      : Node_Id := Type_Definition (Def);

            begin
               if Variant_Case then
                  if Nkind (Typ_Def) = N_Derived_Type_Definition then
                     Typ_Def := Record_Extension_Part (Typ_Def);
                  end if;

                  if Present (Typ_Def) then
                     Comps := Component_List (Typ_Def);
                  end if;

                  Variant_Case := Present (Comps)
                    and then Present (Variant_Part (Comps));
               end if;

               if Variant_Case then
                  Append_To (Stmts,
                    Make_Eq_If (Tag_Typ, Discriminant_Specifications (Def)));
                  Append_List_To (Stmts, Make_Eq_Case (Tag_Typ, Comps));
                  Append_To (Stmts,
                    Make_Return_Statement (Loc,
                      Expression => New_Reference_To (Standard_True, Loc)));

               else
                  Append_To (Stmts,
                    Make_Return_Statement (Loc,
                      Expression =>
                        Expand_Record_Equality (Tag_Typ,
                          Typ => Tag_Typ,
                          Lhs => Make_Identifier (Loc, Name_X),
                          Rhs => Make_Identifier (Loc, Name_Y),
                          Bodies => Declarations (Decl))));
               end if;

               Set_Handled_Statement_Sequence (Decl,
                 Make_Handled_Sequence_Of_Statements (Loc, Stmts));
            end;
            Append_To (Res, Decl);
         end if;

         --  Body for dispatching assignment

         Decl := Predef_Spec_Or_Body (Loc,
           Tag_Typ => Tag_Typ,
           Name    => Name_uAssign,
           Profile => New_List (
             Make_Parameter_Specification (Loc,
               Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
               Out_Present         => True,
               Parameter_Type      => New_Reference_To (Tag_Typ, Loc)),

             Make_Parameter_Specification (Loc,
               Defining_Identifier => Make_Defining_Identifier (Loc, Name_Y),
               Parameter_Type      => New_Reference_To (Tag_Typ, Loc))),
           For_Body => True);

         Set_Handled_Statement_Sequence (Decl,
           Make_Handled_Sequence_Of_Statements (Loc, New_List (
             Make_Assignment_Statement (Loc,
               Name       => Make_Identifier (Loc, Name_X),
               Expression => Make_Identifier (Loc, Name_Y)))));

         Append_To (Res, Decl);
      end if;

      --  Generate dummy bodies for finalization actions of types that have
      --  no controlled components.

      --  Skip this processing if we are in the finalization routine in the
      --  runtime itself, otherwise we get hopelessly circularly confused!

      if In_Finalization_Root (Tag_Typ) then
         null;

      --  Skip this if finalization is not available

      elsif Restriction_Active (No_Finalization) then
         null;

      elsif (Etype (Tag_Typ) = Tag_Typ or else Is_Controlled (Tag_Typ))
        and then not Has_Controlled_Component (Tag_Typ)
      then
         if not Is_Limited_Type (Tag_Typ) then
            Decl := Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Adjust, True);

            if Is_Controlled (Tag_Typ) then
               Set_Handled_Statement_Sequence (Decl,
                 Make_Handled_Sequence_Of_Statements (Loc,
                   Make_Adjust_Call (
                     Ref          => Make_Identifier (Loc, Name_V),
                     Typ          => Tag_Typ,
                     Flist_Ref    => Make_Identifier (Loc, Name_L),
                     With_Attach  => Make_Identifier (Loc, Name_B))));

            else
               Set_Handled_Statement_Sequence (Decl,
                 Make_Handled_Sequence_Of_Statements (Loc, New_List (
                   Make_Null_Statement (Loc))));
            end if;

            Append_To (Res, Decl);
         end if;

         Decl := Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Finalize, True);

         if Is_Controlled (Tag_Typ) then
            Set_Handled_Statement_Sequence (Decl,
              Make_Handled_Sequence_Of_Statements (Loc,
                Make_Final_Call (
                  Ref         => Make_Identifier (Loc, Name_V),
                  Typ         => Tag_Typ,
                  With_Detach => Make_Identifier (Loc, Name_B))));

         else
            Set_Handled_Statement_Sequence (Decl,
              Make_Handled_Sequence_Of_Statements (Loc, New_List (
                Make_Null_Statement (Loc))));
         end if;

         Append_To (Res, Decl);
      end if;

      return Res;
   end Predefined_Primitive_Bodies;

   ---------------------------------
   -- Predefined_Primitive_Freeze --
   ---------------------------------

   function Predefined_Primitive_Freeze
     (Tag_Typ : Entity_Id) return List_Id
   is
      Loc     : constant Source_Ptr := Sloc (Tag_Typ);
      Res     : constant List_Id    := New_List;
      Prim    : Elmt_Id;
      Frnodes : List_Id;

   begin
      Prim := First_Elmt (Primitive_Operations (Tag_Typ));
      while Present (Prim) loop
         if Is_Internal (Node (Prim)) then
            Frnodes := Freeze_Entity (Node (Prim), Loc);

            if Present (Frnodes) then
               Append_List_To (Res, Frnodes);
            end if;
         end if;

         Next_Elmt (Prim);
      end loop;

      return Res;
   end Predefined_Primitive_Freeze;

   --------------------------
   -- Stream_Operations_OK --
   --------------------------

   function Stream_Operations_OK (Typ : Entity_Id) return Boolean is
   begin
      return
        not Is_Limited_Type (Typ)
          and then RTE_Available (RE_Tag)
          and then RTE_Available (RE_Root_Stream_Type)
          and then not Restriction_Active (No_Dispatch)
          and then not Restriction_Active (No_Streams);
   end Stream_Operations_OK;
end Exp_Ch3;