aboutsummaryrefslogtreecommitdiff
path: root/gcc/ada/sem_spark.adb
blob: 4b7ea0f232cfda7f822dfa828fa0d8d8bc81d574 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT COMPILER COMPONENTS                         --
--                                                                          --
--                            S E M _ S P A R K                             --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 2017-2018, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
-- for  more details.  You should have  received  a copy of the GNU General --
-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license.          --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

with Atree;    use Atree;
with Einfo;    use Einfo;
with Errout;   use Errout;
with Namet;    use Namet;
with Nlists;   use Nlists;
with Opt;      use Opt;
with Osint;    use Osint;
with Sem_Prag; use Sem_Prag;
with Sem_Util; use Sem_Util;
with Sem_Aux;  use Sem_Aux;
with Sinfo;    use Sinfo;
with Snames;   use Snames;
with Treepr;   use Treepr;

with Ada.Unchecked_Deallocation;
with GNAT.Dynamic_HTables; use GNAT.Dynamic_HTables;

package body Sem_SPARK is

   -------------------------------------------------
   -- Handling of Permissions Associated to Paths --
   -------------------------------------------------

   package Permissions is
      Elaboration_Context_Max : constant := 1009;
      --  The hash range

      type Elaboration_Context_Index is range 0 .. Elaboration_Context_Max - 1;

      function Elaboration_Context_Hash
        (Key : Entity_Id) return Elaboration_Context_Index;
      --  Function to hash any node of the AST

      type Perm_Kind is (No_Access, Read_Only, Read_Write, Write_Only);
      --  Permission type associated with paths

      subtype Read_Perm is Perm_Kind range Read_Only .. Read_Write;
      subtype Write_Perm is Perm_Kind range Read_Write .. Write_Only;

      type Perm_Tree_Wrapper;

      type Perm_Tree_Access is access Perm_Tree_Wrapper;
      --  A tree of permissions is defined, where the root is a whole object
      --  and tree branches follow access paths in memory. As Perm_Tree is a
      --  discriminated record, a wrapper type is used for the access type
      --  designating a subtree, to make it unconstrained so that it can be
      --  updated.

      --  Nodes in the permission tree are of different kinds

      type Path_Kind is
        (Entire_Object,    --  Scalar object, or folded object of any type
         Reference,        --  Unfolded object of access type
         Array_Component,  --  Unfolded object of array type
         Record_Component  --  Unfolded object of record type
        );

      package Perm_Tree_Maps is new Simple_HTable
        (Header_Num => Elaboration_Context_Index,
         Key        => Node_Id,
         Element    => Perm_Tree_Access,
         No_Element => null,
         Hash       => Elaboration_Context_Hash,
         Equal      => "=");
      --  The instantation of a hash table, with keys being nodes and values
      --  being pointers to trees. This is used to reference easily all
      --  extensions of a Record_Component node (that can have name x, y, ...).

      --  The definition of permission trees. This is a tree, which has a
      --  permission at each node, and depending on the type of the node,
      --  can have zero, one, or more children pointed to by an access to tree.
      type Perm_Tree (Kind : Path_Kind := Entire_Object) is record
         Permission : Perm_Kind;
         --  Permission at this level in the path

         Is_Node_Deep : Boolean;
         --  Whether this node is of a deep type, to be used when moving the
         --  path.

         case Kind is

            --  An entire object is either a leaf (an object which cannot be
            --  extended further in a path) or a subtree in folded form (which
            --  could later be unfolded further in another kind of node). The
            --  field Children_Permission specifies a permission for every
            --  extension of that node if that permission is different from
            --  the node's permission.

            when Entire_Object    =>
               Children_Permission : Perm_Kind;

            --  Unfolded path of access type. The permission of the object
            --  pointed to is given in Get_All.

            when Reference        =>
               Get_All : Perm_Tree_Access;

            --  Unfolded path of array type. The permission of the elements is
            --  given in Get_Elem.

            when Array_Component  =>
               Get_Elem : Perm_Tree_Access;

            --  Unfolded path of record type. The permission of the regular
            --  components is given in Component. The permission of unknown
            --  components (for objects of tagged type) is given in
            --  Other_Components.

            when Record_Component =>
               Component : Perm_Tree_Maps.Instance;
               Other_Components : Perm_Tree_Access;
         end case;
      end record;

      type Perm_Tree_Wrapper is record
         Tree : Perm_Tree;
      end record;
      --  We use this wrapper in order to have unconstrained discriminants

      type Perm_Env is new Perm_Tree_Maps.Instance;
      --  The definition of a permission environment for the analysis. This
      --  is just a hash table of permission trees, each of them rooted with
      --  an Identifier/Expanded_Name.

      type Perm_Env_Access is access Perm_Env;
      --  Access to permission environments

      package Env_Maps is new Simple_HTable
        (Header_Num => Elaboration_Context_Index,
         Key        => Entity_Id,
         Element    => Perm_Env_Access,
         No_Element => null,
         Hash       => Elaboration_Context_Hash,
         Equal      => "=");
      --  The instantiation of a hash table whose elements are permission
      --  environments. This hash table is used to save the environments at
      --  the entry of each loop, with the key being the loop label.

      type Env_Backups is new Env_Maps.Instance;
      --  The type defining the hash table saving the environments at the entry
      --  of each loop.

      package Boolean_Variables_Maps is new Simple_HTable
        (Header_Num => Elaboration_Context_Index,
         Key        => Entity_Id,
         Element    => Boolean,
         No_Element => False,
         Hash       => Elaboration_Context_Hash,
         Equal      => "=");
      --  These maps allow tracking the variables that have been declared but
      --  never used anywhere in the source code. Especially, we do not raise
      --  an error if the variable stays write-only and is declared at package
      --  level, because there is no risk that the variable has been moved,
      --  because it has never been used.

      type Initialization_Map is new Boolean_Variables_Maps.Instance;

      --------------------
      -- Simple Getters --
      --------------------

      --  Simple getters to avoid having .all.Tree.Field everywhere. Of course,
      --  that's only for the top access, as otherwise this reverses the order
      --  in accesses visually.

      function Children_Permission (T : Perm_Tree_Access) return Perm_Kind;
      function Component (T : Perm_Tree_Access) return Perm_Tree_Maps.Instance;
      function Get_All (T : Perm_Tree_Access) return Perm_Tree_Access;
      function Get_Elem (T : Perm_Tree_Access) return Perm_Tree_Access;
      function Is_Node_Deep (T : Perm_Tree_Access) return Boolean;
      function Kind (T : Perm_Tree_Access) return Path_Kind;
      function Other_Components (T : Perm_Tree_Access) return Perm_Tree_Access;
      function Permission (T : Perm_Tree_Access) return Perm_Kind;

      -----------------------
      -- Memory Management --
      -----------------------

      procedure Copy_Env
        (From : Perm_Env;
         To : in out Perm_Env);
      --  Procedure to copy a permission environment

      procedure Copy_Init_Map
        (From : Initialization_Map;
         To : in out Initialization_Map);
      --  Procedure to copy an initialization map

      procedure Copy_Tree
        (From : Perm_Tree_Access;
         To : Perm_Tree_Access);
      --  Procedure to copy a permission tree

      procedure Free_Env
        (PE : in out Perm_Env);
      --  Procedure to free a permission environment

      procedure Free_Perm_Tree
        (PT : in out Perm_Tree_Access);
      --  Procedure to free a permission tree

      --------------------
      -- Error Messages --
      --------------------

      procedure Perm_Mismatch
        (Exp_Perm, Act_Perm : Perm_Kind;
         N                   : Node_Id);
      --  Issues a continuation error message about a mismatch between a
      --  desired permission Exp_Perm and a permission obtained Act_Perm. N
      --  is the node on which the error is reported.

   end Permissions;

   package body Permissions is

      -------------------------
      -- Children_Permission --
      -------------------------

      function Children_Permission
        (T : Perm_Tree_Access)
          return Perm_Kind
      is
      begin
         return T.all.Tree.Children_Permission;
      end Children_Permission;

      ---------------
      -- Component --
      ---------------

      function Component
        (T : Perm_Tree_Access)
          return Perm_Tree_Maps.Instance
      is
      begin
         return T.all.Tree.Component;
      end Component;

      --------------
      -- Copy_Env --
      --------------

      procedure Copy_Env
        (From : Perm_Env;
         To : in out Perm_Env)
      is
         Comp_From : Perm_Tree_Access;
         Key_From : Perm_Tree_Maps.Key_Option;
         Son : Perm_Tree_Access;

      begin
         Reset (To);
         Key_From := Get_First_Key (From);
         while Key_From.Present loop
            Comp_From := Get (From, Key_From.K);
            pragma Assert (Comp_From /= null);

            Son := new Perm_Tree_Wrapper;
            Copy_Tree (Comp_From, Son);

            Set (To, Key_From.K, Son);
            Key_From := Get_Next_Key (From);
         end loop;
      end Copy_Env;

      -------------------
      -- Copy_Init_Map --
      -------------------

      procedure Copy_Init_Map
        (From : Initialization_Map;
         To : in out Initialization_Map)
      is
         Comp_From : Boolean;
         Key_From : Boolean_Variables_Maps.Key_Option;

      begin
         Reset (To);
         Key_From := Get_First_Key (From);
         while Key_From.Present loop
            Comp_From := Get (From, Key_From.K);
            Set (To, Key_From.K, Comp_From);
            Key_From := Get_Next_Key (From);
         end loop;
      end Copy_Init_Map;

      ---------------
      -- Copy_Tree --
      ---------------

      procedure Copy_Tree
        (From : Perm_Tree_Access;
         To : Perm_Tree_Access)
      is
      begin
         To.all := From.all;

         case Kind (From) is
            when Entire_Object =>
               null;

            when Reference =>
               To.all.Tree.Get_All := new Perm_Tree_Wrapper;

               Copy_Tree (Get_All (From), Get_All (To));

            when Array_Component =>
               To.all.Tree.Get_Elem := new Perm_Tree_Wrapper;

               Copy_Tree (Get_Elem (From), Get_Elem (To));

            when Record_Component =>
               declare
                  Comp_From : Perm_Tree_Access;
                  Key_From : Perm_Tree_Maps.Key_Option;
                  Son : Perm_Tree_Access;
                  Hash_Table : Perm_Tree_Maps.Instance;
               begin
               --  We put a new hash table, so that it gets dealiased from the
               --  Component (From) hash table.
                  To.all.Tree.Component := Hash_Table;

                  To.all.Tree.Other_Components :=
                    new Perm_Tree_Wrapper'(Other_Components (From).all);

                  Copy_Tree (Other_Components (From), Other_Components (To));

                  Key_From := Perm_Tree_Maps.Get_First_Key
                    (Component (From));
                  while Key_From.Present loop
                     Comp_From := Perm_Tree_Maps.Get
                       (Component (From), Key_From.K);

                     pragma Assert (Comp_From /= null);
                     Son := new Perm_Tree_Wrapper;

                     Copy_Tree (Comp_From, Son);

                     Perm_Tree_Maps.Set
                       (To.all.Tree.Component, Key_From.K, Son);

                     Key_From := Perm_Tree_Maps.Get_Next_Key
                       (Component (From));
                  end loop;
               end;
         end case;
      end Copy_Tree;

      ------------------------------
      -- Elaboration_Context_Hash --
      ------------------------------

      function Elaboration_Context_Hash
        (Key : Entity_Id) return Elaboration_Context_Index
      is
      begin
         return Elaboration_Context_Index (Key mod Elaboration_Context_Max);
      end Elaboration_Context_Hash;

      --------------
      -- Free_Env --
      --------------

      procedure Free_Env (PE : in out Perm_Env) is
         CompO : Perm_Tree_Access;
      begin
         CompO := Get_First (PE);
         while CompO /= null loop
            Free_Perm_Tree (CompO);
            CompO := Get_Next (PE);
         end loop;
      end Free_Env;

      --------------------
      -- Free_Perm_Tree --
      --------------------

      procedure Free_Perm_Tree
        (PT : in out Perm_Tree_Access)
      is
         procedure Free_Perm_Tree_Dealloc is
           new Ada.Unchecked_Deallocation
             (Perm_Tree_Wrapper, Perm_Tree_Access);
         --  The deallocator for permission_trees

      begin
         case Kind (PT) is
            when Entire_Object =>
               Free_Perm_Tree_Dealloc (PT);

            when Reference =>
               Free_Perm_Tree (PT.all.Tree.Get_All);
               Free_Perm_Tree_Dealloc (PT);

            when Array_Component =>
               Free_Perm_Tree (PT.all.Tree.Get_Elem);

            when Record_Component =>
               declare
                  Comp : Perm_Tree_Access;

               begin
                  Free_Perm_Tree (PT.all.Tree.Other_Components);
                  Comp := Perm_Tree_Maps.Get_First (Component (PT));
                  while Comp /= null loop
                     --  Free every Component subtree

                     Free_Perm_Tree (Comp);
                     Comp := Perm_Tree_Maps.Get_Next (Component (PT));
                  end loop;
               end;
               Free_Perm_Tree_Dealloc (PT);
         end case;
      end Free_Perm_Tree;

      -------------
      -- Get_All --
      -------------

      function Get_All
        (T : Perm_Tree_Access)
          return Perm_Tree_Access
      is
      begin
         return T.all.Tree.Get_All;
      end Get_All;

      --------------
      -- Get_Elem --
      --------------

      function Get_Elem
        (T : Perm_Tree_Access)
          return Perm_Tree_Access
      is
      begin
         return T.all.Tree.Get_Elem;
      end Get_Elem;

      ------------------
      -- Is_Node_Deep --
      ------------------

      function Is_Node_Deep
        (T : Perm_Tree_Access)
          return Boolean
      is
      begin
         return T.all.Tree.Is_Node_Deep;
      end Is_Node_Deep;

      ----------
      -- Kind --
      ----------

      function Kind
        (T : Perm_Tree_Access)
          return Path_Kind
      is
      begin
         return T.all.Tree.Kind;
      end Kind;

      ----------------------
      -- Other_Components --
      ----------------------

      function Other_Components
        (T : Perm_Tree_Access)
          return Perm_Tree_Access
      is
      begin
         return T.all.Tree.Other_Components;
      end Other_Components;

      ----------------
      -- Permission --
      ----------------

      function Permission
        (T : Perm_Tree_Access)
          return Perm_Kind
      is
      begin
         return T.all.Tree.Permission;
      end Permission;

      -------------------
      -- Perm_Mismatch --
      -------------------

      procedure Perm_Mismatch
        (Exp_Perm, Act_Perm : Perm_Kind;
         N                   : Node_Id)
      is
      begin
         Error_Msg_N ("\expected at least `"
                      & Perm_Kind'Image (Exp_Perm) & "`, got `"
                      & Perm_Kind'Image (Act_Perm) & "`", N);
      end Perm_Mismatch;

   end Permissions;

   use Permissions;

   --------------------------------------
   -- Analysis modes for AST traversal --
   --------------------------------------

   --  The different modes for analysis. This allows to checking whether a path
   --  found in the code should be moved, borrowed, or observed.

   type Checking_Mode is

     (Read,
      --  Default mode. Checks that paths have Read_Perm permission.

      Move,
      --  Regular moving semantics (not under 'Access). Checks that paths have
      --  Read_Write permission. After moving a path, its permission is set to
      --  Write_Only and the permission of its extensions is set to No_Access.

      Assign,
      --  Used for the target of an assignment, or an actual parameter with
      --  mode OUT. Checks that paths have Write_Perm permission. After
      --  assigning to a path, its permission is set to Read_Write.

      Super_Move,
      --  Enhanced moving semantics (under 'Access). Checks that paths have
      --  Read_Write permission. After moving a path, its permission is set
      --  to No_Access, as well as the permission of its extensions and the
      --  permission of its prefixes up to the first Reference node.

      Borrow_Out,
      --  Used for actual OUT parameters. Checks that paths have Write_Perm
      --  permission. After checking a path, its permission is set to Read_Only
      --  when of a by-copy type, to No_Access otherwise. After the call, its
      --  permission is set to Read_Write.

      Observe
      --  Used for actual IN parameters of a scalar type. Checks that paths
      --  have Read_Perm permission. After checking a path, its permission
      --  is set to Read_Only.
      --
      --  Also used for formal IN parameters
     );

   type Result_Kind is (Folded, Unfolded, Function_Call);
   --  The type declaration to discriminate in the Perm_Or_Tree type

   --  The result type of the function Get_Perm_Or_Tree. This returns either a
   --  tree when it found the appropriate tree, or a permission when the search
   --  finds a leaf and the subtree we are looking for is folded. In the last
   --  case, we return instead the Children_Permission field of the leaf.

   type Perm_Or_Tree (R : Result_Kind) is record
      case R is
         when Folded        => Found_Permission : Perm_Kind;
         when Unfolded      => Tree_Access : Perm_Tree_Access;
         when Function_Call => null;
      end case;
   end record;

   -----------------------
   -- Local subprograms --
   -----------------------

   function "<=" (P1, P2 : Perm_Kind) return Boolean;
   function ">=" (P1, P2 : Perm_Kind) return Boolean;
   function Glb  (P1, P2 : Perm_Kind) return Perm_Kind;
   function Lub  (P1, P2 : Perm_Kind) return Perm_Kind;

   --  Checking proceduress for safe pointer usage. These procedures traverse
   --  the AST, check nodes for correct permissions according to SPARK RM
   --  6.4.2, and update permissions depending on the node kind.

   procedure Check_Call_Statement (Call : Node_Id);

   procedure Check_Callable_Body (Body_N : Node_Id);
   --  We are not in End_Of_Callee mode, hence we will save the environment
   --  and start from a new one. We will add in the environment all formal
   --  parameters as well as global used during the subprogram, with the
   --  appropriate permissions (write-only for out, read-only for observed,
   --  read-write for others).
   --
   --  After that we analyze the body of the function, and finaly, we check
   --  that each borrowed parameter and global has read-write permission. We
   --  then clean up the environment and put back the saved environment.

   procedure Check_Declaration (Decl : Node_Id);

   procedure Check_Expression (Expr : Node_Id);

   procedure Check_Globals (N : Node_Id; Check_Mode : Checking_Mode);
   --  This procedure takes a global pragma and checks depending on mode:
   --  Mode Read: every in global is readable
   --  Mode Observe: same as Check_Param_Observes but on globals
   --  Mode Borrow_Out: Check_Param_Outs for globals
   --  Mode Move: Check_Param for globals with mode Read
   --  Mode Assign: Check_Param for globals with mode Assign

   procedure Check_List (L : List_Id);
   --  Calls Check_Node on each element of the list

   procedure Check_Loop_Statement (Loop_N : Node_Id);

   procedure Check_Node (N : Node_Id);
   --  Main traversal procedure to check safe pointer usage. This procedure is
   --  mutually recursive with the specialized procedures that follow.

   procedure Check_Package_Body (Pack : Node_Id);

   procedure Check_Param (Formal : Entity_Id; Actual : Node_Id);
   --  This procedure takes a formal and an actual parameter and calls the
   --  analyze node if the parameter is borrowed with mode in out, with the
   --  appropriate Checking_Mode (Move).

   procedure Check_Param_Observes (Formal : Entity_Id; Actual : Node_Id);
   --  This procedure takes a formal and an actual parameter and calls
   --  the analyze node if the parameter is observed, with the appropriate
   --  Checking_Mode.

   procedure Check_Param_Outs (Formal : Entity_Id; Actual : Node_Id);
   --  This procedure takes a formal and an actual parameter and calls the
   --  analyze node if the parameter is of mode out, with the appropriate
   --  Checking_Mode.

   procedure Check_Param_Read (Formal : Entity_Id; Actual : Node_Id);
   --  This procedure takes a formal and an actual parameter and checks the
   --  readability of every in-mode parameter. This includes observed in, and
   --  also borrowed in, that are then checked afterwards.

   procedure Check_Statement (Stmt : Node_Id);

   function Get_Perm (N : Node_Id) return Perm_Kind;
   --  The function that takes a name as input and returns a permission
   --  associated to it.

   function Get_Perm_Or_Tree (N : Node_Id) return Perm_Or_Tree;
   --  This function gets a Node_Id and looks recursively to find the
   --  appropriate subtree for that Node_Id. If the tree is folded on
   --  that node, then it returns the permission given at the right level.

   function Get_Perm_Tree (N : Node_Id) return Perm_Tree_Access;
   --  This function gets a Node_Id and looks recursively to find the
   --  appropriate subtree for that Node_Id. If the tree is folded, then
   --  it unrolls the tree up to the appropriate level.

   function Has_Alias
     (N : Node_Id)
       return Boolean;
   --  Function that returns whether the path given as parameter contains an
   --  extension that is declared as aliased.

   function Has_Array_Component (N : Node_Id) return Boolean;
   --  This function gets a Node_Id and looks recursively to find if the given
   --  path has any array component.

   function Has_Function_Component (N : Node_Id) return Boolean;
   --  This function gets a Node_Id and looks recursively to find if the given
   --  path has any function component.

   procedure Hp (P : Perm_Env);
   --  A procedure that outputs the hash table. This function is used only in
   --  the debugger to look into a hash table.
   pragma Unreferenced (Hp);

   procedure Illegal_Global_Usage (N : Node_Or_Entity_Id);
   pragma No_Return (Illegal_Global_Usage);
   --  A procedure that is called when deep globals or aliased globals are used
   --  without any global aspect.

   function Is_Borrowed_In (E : Entity_Id) return Boolean;
   --  Function that tells if the given entity is a borrowed in a formal
   --  parameter, that is, if it is an access-to-variable type.

   function Is_Deep (E : Entity_Id) return Boolean;
   --  A function that can tell if a type is deep or not. Returns true if the
   --  type passed as argument is deep.

   function Is_Shallow (E : Entity_Id) return Boolean;
   --  A function that can tell if a type is shallow or not. Returns true if
   --  the type passed as argument is shallow.

   function Loop_Of_Exit (N : Node_Id) return Entity_Id;
   --  A function that takes an exit statement node and returns the entity of
   --  the loop that this statement is exiting from.

   procedure Merge_Envs (Target : in out Perm_Env; Source : in out Perm_Env);
   --  Merge Target and Source into Target, and then deallocate the Source

   procedure Perm_Error
     (N : Node_Id;
      Perm : Perm_Kind;
      Found_Perm : Perm_Kind);
   --  A procedure that is called when the permissions found contradict the
   --  rules established by the RM. This function is called with the node, its
   --  entity and the permission that was expected, and adds an error message
   --  with the appropriate values.

   procedure Perm_Error_Subprogram_End
     (E          : Entity_Id;
      Subp       : Entity_Id;
      Perm       : Perm_Kind;
      Found_Perm : Perm_Kind);
   --  A procedure that is called when the permissions found contradict the
   --  rules established by the RM at the end of subprograms. This function
   --  is called with the node, its entity, the node of the returning function
   --  and the permission that was expected, and adds an error message with the
   --  appropriate values.

   procedure Process_Path (N : Node_Id);

   procedure Return_Declarations (L : List_Id);
   --  Check correct permissions on every declared object at the end of a
   --  callee. Used at the end of the body of a callable entity. Checks that
   --  paths of all borrowed formal parameters and global have Read_Write
   --  permission.

   procedure Return_Globals (Subp : Entity_Id);
   --  Takes a subprogram as input, and checks that all borrowed global items
   --  of the subprogram indeed have RW permission at the end of the subprogram
   --  execution.

   procedure Return_Parameter_Or_Global
     (Id   : Entity_Id;
      Mode : Formal_Kind;
      Subp : Entity_Id);
   --  Auxiliary procedure to Return_Parameters and Return_Globals

   procedure Return_Parameters (Subp : Entity_Id);
   --  Takes a subprogram as input, and checks that all borrowed parameters of
   --  the subprogram indeed have RW permission at the end of the subprogram
   --  execution.

   procedure Set_Perm_Extensions (T : Perm_Tree_Access; P : Perm_Kind);
   --  This procedure takes an access to a permission tree and modifies the
   --  tree so that any strict extensions of the given tree become of the
   --  access specified by parameter P.

   procedure Set_Perm_Extensions_Move (T : Perm_Tree_Access; E : Entity_Id);
   --  Set permissions to
   --    No for any extension with more .all
   --    W for any deep extension with same number of .all
   --    RW for any shallow extension with same number of .all

   function Set_Perm_Prefixes_Assign (N : Node_Id) return Perm_Tree_Access;
   --  This function takes a name as an input and sets in the permission
   --  tree the given permission to the given name. The general rule here is
   --  that everybody updates the permission of the subtree it is returning.
   --  The permission of the assigned path has been set to RW by the caller.
   --
   --  Case where we have to normalize a tree after the correct permissions
   --  have been assigned already. We look for the right subtree at the given
   --  path, actualize its permissions, and then call the normalization on its
   --  parent.
   --
   --  Example: We assign x.y and x.z then during Set_Perm_Prefixes_Move will
   --  change the permission of x to RW because all of its components have
   --  permission have permission RW.

   function Set_Perm_Prefixes_Borrow_Out (N : Node_Id) return Perm_Tree_Access;
   --  This function modifies the permissions of a given node_id in the
   --  permission environment as well as in all the prefixes of the path,
   --  given that the path is borrowed with mode out.

   function Set_Perm_Prefixes_Move
     (N : Node_Id; Mode : Checking_Mode)
      return Perm_Tree_Access;
   pragma Precondition (Mode = Move or Mode = Super_Move);
   --  Given a node and a mode (that can be either Move or Super_Move), this
   --  function modifies the permissions of a given node_id in the permission
   --  environment as well as all the prefixes of the path, given that the path
   --  is moved with or without 'Access. The general rule here is everybody
   --  updates the permission of the subtree they are returning.
   --
   --  This case describes a move either under 'Access or without 'Access.

   function Set_Perm_Prefixes_Observe (N : Node_Id) return Perm_Tree_Access;
   --  This function modifies the permissions of a given node_id in the
   --  permission environment as well as all the prefixes of the path,
   --  given that the path is observed.

   procedure Setup_Globals (Subp : Entity_Id);
   --  Takes a subprogram as input, and sets up the environment by adding
   --  global items with appropriate permissions.

   procedure Setup_Parameter_Or_Global
     (Id   : Entity_Id;
      Mode : Formal_Kind);
   --  Auxiliary procedure to Setup_Parameters and Setup_Globals

   procedure Setup_Parameters (Subp : Entity_Id);
   --  Takes a subprogram as input, and sets up the environment by adding
   --  formal parameters with appropriate permissions.

   ----------------------
   -- Global Variables --
   ----------------------

   Current_Perm_Env : Perm_Env;
   --  The permission environment that is used for the analysis. This
   --  environment can be saved, modified, reinitialized, but should be the
   --  only one valid from which to extract the permissions of the paths in
   --  scope. The analysis ensures at each point that this variables contains
   --  a valid permission environment with all bindings in scope.

   Current_Checking_Mode : Checking_Mode := Read;
   --  The current analysis mode. This global variable indicates at each point
   --  of the analysis whether the node being analyzed is moved, borrowed,
   --  assigned, read, ... The full list of possible values can be found in
   --  the declaration of type Checking_Mode.

   Current_Loops_Envs : Env_Backups;
   --  This variable contains saves of permission environments at each loop the
   --  analysis entered. Each saved environment can be reached with the label
   --  of the loop.

   Current_Loops_Accumulators : Env_Backups;
   --  This variable contains the environments used as accumulators for loops,
   --  that consist of the merge of all environments at each exit point of
   --  the loop (which can also be the entry point of the loop in the case of
   --  non-infinite loops), each of them reachable from the label of the loop.
   --  We require that the environment stored in the accumulator be less
   --  restrictive than the saved environment at the beginning of the loop, and
   --  the permission environment after the loop is equal to the accumulator.

   Current_Initialization_Map : Initialization_Map;
   --  This variable contains a map that binds each variable of the analyzed
   --  source code to a boolean that becomes true whenever the variable is used
   --  after declaration. Hence we can exclude from analysis variables that
   --  are just declared and never accessed, typically at package declaration.

   ----------
   -- "<=" --
   ----------

   function "<=" (P1, P2 : Perm_Kind) return Boolean
   is
   begin
      return P2 >= P1;
   end "<=";

   ----------
   -- ">=" --
   ----------

   function ">=" (P1, P2 : Perm_Kind) return Boolean
   is
   begin
      case P2 is
         when No_Access  => return True;
         when Read_Only  => return P1 in Read_Perm;
         when Write_Only => return P1 in Write_Perm;
         when Read_Write => return P1 = Read_Write;
      end case;
   end ">=";

   --------------------------
   -- Check_Call_Statement --
   --------------------------

   procedure Check_Call_Statement (Call : Node_Id) is
      Saved_Env : Perm_Env;

      procedure Iterate_Call is new
        Iterate_Call_Parameters (Check_Param);
      procedure Iterate_Call_Observes is new
        Iterate_Call_Parameters (Check_Param_Observes);
      procedure Iterate_Call_Outs is new
        Iterate_Call_Parameters (Check_Param_Outs);
      procedure Iterate_Call_Read is new
        Iterate_Call_Parameters (Check_Param_Read);

   begin
      --  Save environment, so that the modifications done by analyzing the
      --  parameters are not kept at the end of the call.
      Copy_Env (Current_Perm_Env,
                Saved_Env);

      --  We first check the Read access on every in parameter

      Current_Checking_Mode := Read;
      Iterate_Call_Read (Call);
      Check_Globals (Get_Pragma
                       (Get_Called_Entity (Call), Pragma_Global), Read);

      --  We first observe, then borrow with mode out, and then with other
      --  modes. This ensures that we do not have to check for by-copy types
      --  specially, because we read them before borrowing them.

      Iterate_Call_Observes (Call);
      Check_Globals (Get_Pragma
                       (Get_Called_Entity (Call), Pragma_Global),
                       Observe);

      Iterate_Call_Outs (Call);
      Check_Globals (Get_Pragma
                       (Get_Called_Entity (Call), Pragma_Global),
                       Borrow_Out);

      Iterate_Call (Call);
      Check_Globals (Get_Pragma
                       (Get_Called_Entity (Call), Pragma_Global), Move);

      --  Restore environment, because after borrowing/observing actual
      --  parameters, they get their permission reverted to the ones before
      --  the call.

      Free_Env (Current_Perm_Env);

      Copy_Env (Saved_Env,
                Current_Perm_Env);

      Free_Env (Saved_Env);

      --  We assign the out parameters (necessarily borrowed per RM)
      Current_Checking_Mode := Assign;
      Iterate_Call (Call);
      Check_Globals (Get_Pragma
                       (Get_Called_Entity (Call), Pragma_Global),
                       Assign);

   end Check_Call_Statement;

   -------------------------
   -- Check_Callable_Body --
   -------------------------

   procedure Check_Callable_Body (Body_N : Node_Id) is

      Mode_Before : constant Checking_Mode := Current_Checking_Mode;

      Saved_Env : Perm_Env;
      Saved_Init_Map : Initialization_Map;

      New_Env : Perm_Env;

      Body_Id : constant Entity_Id := Defining_Entity (Body_N);
      Spec_Id : constant Entity_Id := Unique_Entity (Body_Id);

   begin
      --  Check if SPARK pragma is not set to Off

      if Present (SPARK_Pragma (Defining_Entity (Body_N))) then
         if Get_SPARK_Mode_From_Annotation
           (SPARK_Pragma (Defining_Entity (Body_N))) /= Opt.On
         then
            return;
         end if;
      else
         return;
      end if;

      --  Save environment and put a new one in place

      Copy_Env (Current_Perm_Env, Saved_Env);

      --  Save initialization map

      Copy_Init_Map (Current_Initialization_Map, Saved_Init_Map);

      Current_Checking_Mode := Read;
      Current_Perm_Env := New_Env;

      --  Add formals and globals to the environment with adequate permissions

      if Is_Subprogram_Or_Entry (Spec_Id) then
         Setup_Parameters (Spec_Id);
         Setup_Globals (Spec_Id);
      end if;

      --  Analyze the body of the function

      Check_List (Declarations (Body_N));
      Check_Node (Handled_Statement_Sequence (Body_N));

      --  Check the read-write permissions of borrowed parameters/globals

      if Ekind_In (Spec_Id, E_Procedure, E_Entry)
        and then not No_Return (Spec_Id)
      then
         Return_Parameters (Spec_Id);
         Return_Globals (Spec_Id);
      end if;

      --  Free the environments

      Free_Env (Current_Perm_Env);

      Copy_Env (Saved_Env,
                Current_Perm_Env);

      Free_Env (Saved_Env);

      --  Restore initialization map

      Copy_Init_Map (Saved_Init_Map, Current_Initialization_Map);

      Reset (Saved_Init_Map);

      --  The assignment of all out parameters will be done by caller

      Current_Checking_Mode := Mode_Before;
   end Check_Callable_Body;

   -----------------------
   -- Check_Declaration --
   -----------------------

   procedure Check_Declaration (Decl : Node_Id) is
   begin
      case N_Declaration'(Nkind (Decl)) is
         when N_Full_Type_Declaration =>
            --  Nothing to do here ??? NOT TRUE IF CONSTRAINT ON TYPE
            null;

         when N_Object_Declaration =>
            --  First move the right-hand side
            Current_Checking_Mode := Move;
            Check_Node (Expression (Decl));

            declare
               Elem : Perm_Tree_Access;

            begin
               Elem := new Perm_Tree_Wrapper'
                 (Tree =>
                    (Kind                => Entire_Object,
                     Is_Node_Deep        =>
                       Is_Deep (Etype (Defining_Identifier (Decl))),
                     Permission          => Read_Write,
                     Children_Permission => Read_Write));

               --  If unitialized declaration, then set to Write_Only. If a
               --  pointer declaration, it has a null default initialization.
               if Nkind (Expression (Decl)) = N_Empty
                 and then not Has_Full_Default_Initialization
                   (Etype (Defining_Identifier (Decl)))
                 and then not Is_Access_Type
                   (Etype (Defining_Identifier (Decl)))
               then
                  Elem.all.Tree.Permission := Write_Only;
                  Elem.all.Tree.Children_Permission := Write_Only;
               end if;

               --  Create new tree for defining identifier

               Set (Current_Perm_Env,
                    Unique_Entity (Defining_Identifier (Decl)),
                    Elem);

               pragma Assert (Get_First (Current_Perm_Env)
                              /= null);

            end;

         when N_Subtype_Declaration =>
            Check_Node (Subtype_Indication (Decl));

         when N_Iterator_Specification =>
            pragma Assert (Is_Shallow (Etype (Defining_Identifier (Decl))));
            null;

         when N_Loop_Parameter_Specification =>
            pragma Assert (Is_Shallow (Etype (Defining_Identifier (Decl))));
            null;

         --  Checking should not be called directly on these nodes

         when N_Component_Declaration
            | N_Function_Specification
            | N_Entry_Declaration
            | N_Procedure_Specification
         =>
            raise Program_Error;

         --  Ignored constructs for pointer checking

         when N_Formal_Object_Declaration
            | N_Formal_Type_Declaration
            | N_Incomplete_Type_Declaration
            | N_Private_Extension_Declaration
            | N_Private_Type_Declaration
            | N_Protected_Type_Declaration
         =>
            null;

         --  The following nodes are rewritten by semantic analysis

         when N_Expression_Function =>
            raise Program_Error;
      end case;
   end Check_Declaration;

   ----------------------
   -- Check_Expression --
   ----------------------

   procedure Check_Expression (Expr : Node_Id) is
      Mode_Before : constant Checking_Mode := Current_Checking_Mode;
   begin
      case N_Subexpr'(Nkind (Expr)) is
         when N_Procedure_Call_Statement =>
            Check_Call_Statement (Expr);

         when N_Identifier
            | N_Expanded_Name
         =>
            --  Check if identifier is pointing to nothing (On/Off/...)
            if not Present (Entity (Expr)) then
               return;
            end if;

            --  Do not analyze things that are not of object Kind
            if Ekind (Entity (Expr)) not in Object_Kind then
               return;
            end if;

            --  Consider as ident
            Process_Path (Expr);

         --  Switch to read mode and then check the readability of each operand

         when N_Binary_Op =>

            Current_Checking_Mode := Read;
            Check_Node (Left_Opnd (Expr));
            Check_Node (Right_Opnd (Expr));

         --  Switch to read mode and then check the readability of each operand

         when N_Op_Abs
            | N_Op_Minus
            | N_Op_Not
            | N_Op_Plus
         =>
            pragma Assert (Is_Shallow (Etype (Expr)));
            Current_Checking_Mode := Read;
            Check_Node (Right_Opnd (Expr));

         --  Forbid all deep expressions for Attribute ???

         when N_Attribute_Reference =>
            case Attribute_Name (Expr) is
               when Name_Access =>
                  case Current_Checking_Mode is
                     when Read =>
                        Check_Node (Prefix (Expr));

                     when Move =>
                        Current_Checking_Mode := Super_Move;
                        Check_Node (Prefix (Expr));

                     --  Only assign names, not expressions

                     when Assign =>
                        raise Program_Error;

                     --  Prefix in Super_Move should be a name, error here

                     when Super_Move =>
                        raise Program_Error;

                     --  Could only borrow names of mode out, not n'Access

                     when Borrow_Out =>
                        raise Program_Error;

                     when Observe =>
                        Check_Node (Prefix (Expr));
                  end case;

               when Name_Last
                  | Name_First
               =>
                  Current_Checking_Mode := Read;
                  Check_Node (Prefix (Expr));

               when Name_Min =>
                  Current_Checking_Mode := Read;
                  Check_Node (Prefix (Expr));

               when Name_Image =>
                  Check_Node (Prefix (Expr));

               when Name_SPARK_Mode =>
                  null;

               when Name_Value =>
                  Current_Checking_Mode := Read;
                  Check_Node (Prefix (Expr));

               when Name_Update =>
                  Check_List (Expressions (Expr));
                  Check_Node (Prefix (Expr));

               when Name_Pred
                   | Name_Succ
               =>
                  Check_List (Expressions (Expr));
                  Check_Node (Prefix (Expr));

               when Name_Length =>
                  Current_Checking_Mode := Read;
                  Check_Node (Prefix (Expr));

               --  Any Attribute referring to the underlying memory is ignored
               --  in the analysis. This means that taking the address of a
               --  variable makes a silent alias that is not rejected by the
               --  analysis.

               when Name_Address
                   | Name_Alignment
                   | Name_Component_Size
                   | Name_First_Bit
                   | Name_Last_Bit
                   | Name_Size
                   | Name_Position
               =>
                  null;

               --  Attributes referring to types (get values from types), hence
               --  no need to check either for borrows or any loans.

               when Name_Base
                  | Name_Val
               =>
                  null;

               --  Other attributes that fall out of the scope of the analysis

               when others =>
                  null;
            end case;

         when N_In =>
            Current_Checking_Mode := Read;
            Check_Node (Left_Opnd (Expr));
            Check_Node (Right_Opnd (Expr));

         when N_Not_In =>
            Current_Checking_Mode := Read;
            Check_Node (Left_Opnd (Expr));
            Check_Node (Right_Opnd (Expr));

         --  Switch to read mode and then check the readability of each operand

         when N_And_Then
            | N_Or_Else
         =>
            pragma Assert (Is_Shallow (Etype (Expr)));
            Current_Checking_Mode := Read;
            Check_Node (Left_Opnd (Expr));
            Check_Node (Right_Opnd (Expr));

         --  Check the arguments of the call

         when N_Function_Call =>
            Current_Checking_Mode := Read;
            Check_List (Parameter_Associations (Expr));

         when N_Explicit_Dereference =>
            Process_Path (Expr);

         --  Copy environment, run on each branch, and then merge

         when N_If_Expression =>
            declare
               Saved_Env : Perm_Env;

               --  Accumulator for the different branches

               New_Env : Perm_Env;

               Elmt : Node_Id := First (Expressions (Expr));

            begin
               Current_Checking_Mode := Read;

               Check_Node (Elmt);

               Current_Checking_Mode := Mode_Before;

               --  Save environment

               Copy_Env (Current_Perm_Env,
                                 Saved_Env);

               --  Here we have the original env in saved, current with a fresh
               --  copy, and new aliased.

               --  THEN PART

               Next (Elmt);
               Check_Node (Elmt);

               --  Here the new_environment contains curr env after then block

               --  ELSE part

               --  Restore environment before if
               Copy_Env (Current_Perm_Env,
                                 New_Env);

               Free_Env (Current_Perm_Env);

               Copy_Env (Saved_Env,
                                 Current_Perm_Env);

               --  Here new environment contains the environment after then and
               --  current the fresh copy of old one.

               Next (Elmt);
               Check_Node (Elmt);

               Merge_Envs (New_Env,
                                   Current_Perm_Env);

               --  CLEANUP

               Copy_Env (New_Env,
                                 Current_Perm_Env);

               Free_Env (New_Env);
               Free_Env (Saved_Env);
            end;

         when N_Indexed_Component =>
            Process_Path (Expr);

         --  Analyze the expression that is getting qualified

         when N_Qualified_Expression =>
            Check_Node (Expression (Expr));

         when N_Quantified_Expression =>
            declare
               Saved_Env : Perm_Env;
            begin
               Copy_Env (Current_Perm_Env, Saved_Env);
               Current_Checking_Mode := Read;
               Check_Node (Iterator_Specification (Expr));
               Check_Node (Loop_Parameter_Specification (Expr));

               Check_Node (Condition (Expr));
               Free_Env (Current_Perm_Env);
               Copy_Env (Saved_Env, Current_Perm_Env);
               Free_Env (Saved_Env);
            end;

         when N_Reduction_Expression =>
            null;

         when N_Reduction_Expression_Parameter =>
            null;

         --  Analyze the list of associations in the aggregate

         when N_Aggregate =>
            Check_List (Expressions (Expr));
            Check_List (Component_Associations (Expr));

         when N_Allocator =>
            Check_Node (Expression (Expr));

         when N_Case_Expression =>
            declare
               Saved_Env : Perm_Env;

               --  Accumulator for the different branches

               New_Env : Perm_Env;

               Elmt : Node_Id := First (Alternatives (Expr));

            begin
               Current_Checking_Mode := Read;
               Check_Node (Expression (Expr));

               Current_Checking_Mode := Mode_Before;

               --  Save environment

               Copy_Env (Current_Perm_Env,
                                 Saved_Env);

               --  Here we have the original env in saved, current with a fresh
               --  copy, and new aliased.

               --  First alternative

               Check_Node (Elmt);
               Next (Elmt);

               Copy_Env (Current_Perm_Env,
                                 New_Env);

               Free_Env (Current_Perm_Env);

               --  Other alternatives

               while Present (Elmt) loop
                  --  Restore environment

                  Copy_Env (Saved_Env,
                                    Current_Perm_Env);

                  Check_Node (Elmt);

                  --  Merge Current_Perm_Env into New_Env

                  Merge_Envs (New_Env,
                                      Current_Perm_Env);

                  Next (Elmt);
               end loop;

               --  CLEANUP
               Copy_Env (New_Env,
                                 Current_Perm_Env);

               Free_Env (New_Env);
               Free_Env (Saved_Env);
            end;

         --  Analyze the list of associates in the aggregate as well as the
         --  ancestor part.

         when N_Extension_Aggregate =>

            Check_Node (Ancestor_Part (Expr));
            Check_List (Expressions (Expr));

         when N_Range =>
            Check_Node (Low_Bound (Expr));
            Check_Node (High_Bound (Expr));

         --  We arrived at a path. Process it.

         when N_Selected_Component =>
            Process_Path (Expr);

         when N_Slice =>
            Process_Path (Expr);

         when N_Type_Conversion =>
            Check_Node (Expression (Expr));

         when N_Unchecked_Type_Conversion =>
            Check_Node (Expression (Expr));

         --  Checking should not be called directly on these nodes

         when N_Target_Name =>
            raise Program_Error;

         --  Unsupported constructs in SPARK

         when N_Delta_Aggregate =>
            Error_Msg_N ("unsupported construct in SPARK", Expr);

         --  Ignored constructs for pointer checking

         when N_Character_Literal
            | N_Null
            | N_Numeric_Or_String_Literal
            | N_Operator_Symbol
            | N_Raise_Expression
            | N_Raise_xxx_Error
         =>
            null;

         --  The following nodes are never generated in GNATprove mode

         when N_Expression_With_Actions
            | N_Reference
            | N_Unchecked_Expression
         =>
            raise Program_Error;

      end case;
   end Check_Expression;

   -------------------
   -- Check_Globals --
   -------------------

   procedure Check_Globals (N : Node_Id; Check_Mode : Checking_Mode) is
   begin
      if Nkind (N) = N_Empty then
         return;
      end if;

      declare
         pragma Assert
           (List_Length (Pragma_Argument_Associations (N)) = 1);

         PAA      : constant Node_Id :=
           First (Pragma_Argument_Associations (N));
         pragma Assert (Nkind (PAA) = N_Pragma_Argument_Association);

         Row      : Node_Id;
         The_Mode : Name_Id;
         RHS      : Node_Id;

         procedure Process (Mode   : Name_Id;
                            The_Global : Entity_Id);

         procedure Process (Mode   : Name_Id;
                            The_Global : Node_Id)
         is
            Ident_Elt : constant Entity_Id :=
              Unique_Entity (Entity (The_Global));

            Mode_Before : constant Checking_Mode := Current_Checking_Mode;

         begin
            if Ekind (Ident_Elt) = E_Abstract_State then
               return;
            end if;

            case Check_Mode is
               when Read =>
                  case Mode is
                     when Name_Input
                        | Name_Proof_In
                     =>
                        Check_Node (The_Global);

                     when Name_Output
                        | Name_In_Out
                     =>
                        null;

                     when others =>
                        raise Program_Error;

                  end case;

               when Observe =>
                  case Mode is
                     when Name_Input
                        | Name_Proof_In
                     =>
                        if not Is_Borrowed_In (Ident_Elt) then
                           --  Observed in

                           Current_Checking_Mode := Observe;
                           Check_Node (The_Global);
                        end if;

                     when others =>
                        null;

                  end case;

               when Borrow_Out =>

                  case Mode is
                     when Name_Output =>
                        --  Borrowed out
                        Current_Checking_Mode := Borrow_Out;
                        Check_Node (The_Global);

                     when others =>
                        null;

                  end case;

               when Move =>
                  case Mode is
                     when Name_Input
                        | Name_Proof_In
                     =>
                        if Is_Borrowed_In (Ident_Elt) then
                           --  Borrowed in

                           Current_Checking_Mode := Move;
                        else
                           --  Observed

                           return;
                        end if;

                     when Name_Output =>
                        return;

                     when Name_In_Out =>
                        --  Borrowed in out

                        Current_Checking_Mode := Move;

                     when others =>
                        raise Program_Error;
                  end case;

                  Check_Node (The_Global);
               when Assign =>
                  case Mode is
                     when Name_Input
                        | Name_Proof_In
                     =>
                        null;

                     when Name_Output
                        | Name_In_Out
                     =>
                        --  Borrowed out or in out

                        Process_Path (The_Global);

                     when others =>
                        raise Program_Error;
                  end case;

               when others =>
                  raise Program_Error;
            end case;

            Current_Checking_Mode := Mode_Before;
         end Process;

      begin
         if Nkind (Expression (PAA)) = N_Null then
            --  global => null
            --  No globals, nothing to do
            return;

         elsif Nkind_In (Expression (PAA), N_Identifier, N_Expanded_Name) then
            --  global => foo
            --  A single input
            Process (Name_Input, Expression (PAA));

         elsif Nkind (Expression (PAA)) = N_Aggregate
           and then Expressions (Expression (PAA)) /= No_List
         then
            --  global => (foo, bar)
            --  Inputs
            RHS := First (Expressions (Expression (PAA)));
            while Present (RHS) loop
               case Nkind (RHS) is
                  when N_Identifier
                     | N_Expanded_Name
                  =>
                     Process (Name_Input, RHS);

                  when N_Numeric_Or_String_Literal =>
                     Process (Name_Input, Original_Node (RHS));

                  when others =>
                     raise Program_Error;

               end case;
               RHS := Next (RHS);
            end loop;

         elsif Nkind (Expression (PAA)) = N_Aggregate
           and then Component_Associations (Expression (PAA)) /= No_List
         then
            --  global => (mode => foo,
            --             mode => (bar, baz))
            --  A mixture of things

            declare
               CA : constant List_Id :=
                 Component_Associations (Expression (PAA));
            begin
               Row := First (CA);
               while Present (Row) loop
                  pragma Assert (List_Length (Choices (Row)) = 1);
                  The_Mode := Chars (First (Choices (Row)));

                  RHS := Expression (Row);
                  case Nkind (RHS) is
                     when N_Aggregate =>
                        RHS := First (Expressions (RHS));
                        while Present (RHS) loop
                           case Nkind (RHS) is
                              when N_Numeric_Or_String_Literal =>
                                 Process (The_Mode, Original_Node (RHS));

                              when others =>
                                 Process (The_Mode, RHS);

                           end case;
                           RHS := Next (RHS);
                        end loop;

                     when N_Identifier
                        | N_Expanded_Name
                     =>
                        Process (The_Mode, RHS);

                     when N_Null =>
                        null;

                     when N_Numeric_Or_String_Literal =>
                        Process (The_Mode, Original_Node (RHS));

                     when others =>
                        raise Program_Error;

                  end case;

                  Row := Next (Row);
               end loop;
            end;

         else
            raise Program_Error;
         end if;
      end;
   end Check_Globals;

   ----------------
   -- Check_List --
   ----------------

   procedure Check_List (L : List_Id) is
      N : Node_Id;
   begin
      N := First (L);
      while Present (N) loop
         Check_Node (N);
         Next (N);
      end loop;
   end Check_List;

   --------------------------
   -- Check_Loop_Statement --
   --------------------------

   procedure Check_Loop_Statement (Loop_N : Node_Id) is

      --  Local Subprograms

      procedure Check_Is_Less_Restrictive_Env
        (Exiting_Env : Perm_Env;
         Entry_Env   : Perm_Env);
      --  This procedure checks that the Exiting_Env environment is less
      --  restrictive than the Entry_Env environment.

      procedure Check_Is_Less_Restrictive_Tree
        (New_Tree  : Perm_Tree_Access;
         Orig_Tree : Perm_Tree_Access;
         E         : Entity_Id);
      --  Auxiliary procedure to check that the tree New_Tree is less
      --  restrictive than the tree Orig_Tree for the entity E.

      procedure Perm_Error_Loop_Exit
        (E          : Entity_Id;
         Loop_Id    : Node_Id;
         Perm       : Perm_Kind;
         Found_Perm : Perm_Kind);
      --  A procedure that is called when the permissions found contradict
      --  the rules established by the RM at the exit of loops. This function
      --  is called with the entity, the node of the enclosing loop, the
      --  permission that was expected and the permission found, and issues
      --  an appropriate error message.

      -----------------------------------
      -- Check_Is_Less_Restrictive_Env --
      -----------------------------------

      procedure Check_Is_Less_Restrictive_Env
        (Exiting_Env : Perm_Env;
         Entry_Env   : Perm_Env)
      is
         Comp_Entry : Perm_Tree_Maps.Key_Option;
         Iter_Entry, Iter_Exit : Perm_Tree_Access;

      begin
         Comp_Entry := Get_First_Key (Entry_Env);
         while Comp_Entry.Present loop
            Iter_Entry := Get (Entry_Env, Comp_Entry.K);
            pragma Assert (Iter_Entry /= null);
            Iter_Exit := Get (Exiting_Env, Comp_Entry.K);
            pragma Assert (Iter_Exit /= null);
            Check_Is_Less_Restrictive_Tree
              (New_Tree  => Iter_Exit,
               Orig_Tree => Iter_Entry,
               E         => Comp_Entry.K);
            Comp_Entry := Get_Next_Key (Entry_Env);
         end loop;
      end Check_Is_Less_Restrictive_Env;

      ------------------------------------
      -- Check_Is_Less_Restrictive_Tree --
      ------------------------------------

      procedure Check_Is_Less_Restrictive_Tree
        (New_Tree  : Perm_Tree_Access;
         Orig_Tree : Perm_Tree_Access;
         E         : Entity_Id)
      is
         -----------------------
         -- Local Subprograms --
         -----------------------

         procedure Check_Is_Less_Restrictive_Tree_Than
           (Tree : Perm_Tree_Access;
            Perm : Perm_Kind;
            E    : Entity_Id);
         --  Auxiliary procedure to check that the tree N is less restrictive
         --  than the given permission P.

         procedure Check_Is_More_Restrictive_Tree_Than
           (Tree : Perm_Tree_Access;
            Perm : Perm_Kind;
            E    : Entity_Id);
         --  Auxiliary procedure to check that the tree N is more restrictive
         --  than the given permission P.

         -----------------------------------------
         -- Check_Is_Less_Restrictive_Tree_Than --
         -----------------------------------------

         procedure Check_Is_Less_Restrictive_Tree_Than
           (Tree : Perm_Tree_Access;
            Perm : Perm_Kind;
            E    : Entity_Id)
         is
         begin
            if not (Permission (Tree) >= Perm) then
               Perm_Error_Loop_Exit
                 (E, Loop_N, Permission (Tree), Perm);
            end if;

            case Kind (Tree) is
               when Entire_Object =>
                  if not (Children_Permission (Tree) >= Perm) then
                     Perm_Error_Loop_Exit
                       (E, Loop_N, Children_Permission (Tree), Perm);

                  end if;

               when Reference =>
                  Check_Is_Less_Restrictive_Tree_Than
                    (Get_All (Tree), Perm, E);

               when Array_Component =>
                  Check_Is_Less_Restrictive_Tree_Than
                    (Get_Elem (Tree), Perm, E);

               when Record_Component =>
                  declare
                     Comp : Perm_Tree_Access;
                  begin
                     Comp := Perm_Tree_Maps.Get_First (Component (Tree));
                     while Comp /= null loop
                        Check_Is_Less_Restrictive_Tree_Than (Comp, Perm, E);
                        Comp :=
                          Perm_Tree_Maps.Get_Next (Component (Tree));
                     end loop;

                     Check_Is_Less_Restrictive_Tree_Than
                       (Other_Components (Tree), Perm, E);
                  end;
            end case;
         end Check_Is_Less_Restrictive_Tree_Than;

         -----------------------------------------
         -- Check_Is_More_Restrictive_Tree_Than --
         -----------------------------------------

         procedure Check_Is_More_Restrictive_Tree_Than
           (Tree : Perm_Tree_Access;
            Perm : Perm_Kind;
            E    : Entity_Id)
         is
         begin
            if not (Perm >= Permission (Tree)) then
               Perm_Error_Loop_Exit
                 (E, Loop_N, Permission (Tree), Perm);
            end if;

            case Kind (Tree) is
               when Entire_Object =>
                  if not (Perm >= Children_Permission (Tree)) then
                     Perm_Error_Loop_Exit
                       (E, Loop_N, Children_Permission (Tree), Perm);
                  end if;

               when Reference =>
                  Check_Is_More_Restrictive_Tree_Than
                    (Get_All (Tree), Perm, E);

               when Array_Component =>
                  Check_Is_More_Restrictive_Tree_Than
                    (Get_Elem (Tree), Perm, E);

               when Record_Component =>
                  declare
                     Comp : Perm_Tree_Access;
                  begin
                     Comp := Perm_Tree_Maps.Get_First (Component (Tree));
                     while Comp /= null loop
                        Check_Is_More_Restrictive_Tree_Than (Comp, Perm, E);
                        Comp :=
                          Perm_Tree_Maps.Get_Next (Component (Tree));
                     end loop;

                     Check_Is_More_Restrictive_Tree_Than
                       (Other_Components (Tree), Perm, E);
                  end;
            end case;
         end Check_Is_More_Restrictive_Tree_Than;

      --  Start of processing for Check_Is_Less_Restrictive_Tree

      begin
         if not (Permission (New_Tree) <= Permission (Orig_Tree)) then
            Perm_Error_Loop_Exit
              (E          => E,
               Loop_Id    => Loop_N,
               Perm       => Permission (New_Tree),
               Found_Perm => Permission (Orig_Tree));
         end if;

         case Kind (New_Tree) is

            --  Potentially folded tree. We check the other tree Orig_Tree to
            --  check whether it is folded or not. If folded we just compare
            --  their Permission and Children_Permission, if not, then we
            --  look at the Children_Permission of the folded tree against
            --  the unfolded tree Orig_Tree.

            when Entire_Object =>
               case Kind (Orig_Tree) is
               when Entire_Object =>
                  if not (Children_Permission (New_Tree) <=
                          Children_Permission (Orig_Tree))
                  then
                     Perm_Error_Loop_Exit
                       (E, Loop_N,
                        Children_Permission (New_Tree),
                        Children_Permission (Orig_Tree));
                  end if;

               when Reference =>
                  Check_Is_More_Restrictive_Tree_Than
                    (Get_All (Orig_Tree), Children_Permission (New_Tree), E);

               when Array_Component =>
                  Check_Is_More_Restrictive_Tree_Than
                    (Get_Elem (Orig_Tree), Children_Permission (New_Tree), E);

               when Record_Component =>
                  declare
                     Comp : Perm_Tree_Access;
                  begin
                     Comp := Perm_Tree_Maps.Get_First
                       (Component (Orig_Tree));
                     while Comp /= null loop
                        Check_Is_More_Restrictive_Tree_Than
                          (Comp, Children_Permission (New_Tree), E);
                        Comp := Perm_Tree_Maps.Get_Next
                          (Component (Orig_Tree));
                     end loop;

                     Check_Is_More_Restrictive_Tree_Than
                       (Other_Components (Orig_Tree),
                        Children_Permission (New_Tree), E);
                  end;
               end case;

            when Reference =>
               case Kind (Orig_Tree) is
               when Entire_Object =>
                  Check_Is_Less_Restrictive_Tree_Than
                    (Get_All (New_Tree), Children_Permission (Orig_Tree), E);

               when Reference =>
                  Check_Is_Less_Restrictive_Tree
                    (Get_All (New_Tree), Get_All (Orig_Tree), E);

               when others =>
                  raise Program_Error;
               end case;

            when Array_Component =>
               case Kind (Orig_Tree) is
               when Entire_Object =>
                  Check_Is_Less_Restrictive_Tree_Than
                    (Get_Elem (New_Tree), Children_Permission (Orig_Tree), E);

               when Array_Component =>
                  Check_Is_Less_Restrictive_Tree
                    (Get_Elem (New_Tree), Get_Elem (Orig_Tree), E);

               when others =>
                  raise Program_Error;
               end case;

            when Record_Component =>
               declare
                  CompN : Perm_Tree_Access;
               begin
                  CompN :=
                    Perm_Tree_Maps.Get_First (Component (New_Tree));
                  case Kind (Orig_Tree) is
                  when Entire_Object =>
                     while CompN /= null loop
                        Check_Is_Less_Restrictive_Tree_Than
                          (CompN, Children_Permission (Orig_Tree), E);

                        CompN :=
                          Perm_Tree_Maps.Get_Next (Component (New_Tree));
                     end loop;

                     Check_Is_Less_Restrictive_Tree_Than
                       (Other_Components (New_Tree),
                        Children_Permission (Orig_Tree),
                        E);

                  when Record_Component =>
                     declare

                        KeyO : Perm_Tree_Maps.Key_Option;
                        CompO : Perm_Tree_Access;
                     begin
                        KeyO := Perm_Tree_Maps.Get_First_Key
                          (Component (Orig_Tree));
                        while KeyO.Present loop
                           pragma Assert (CompO /= null);

                           Check_Is_Less_Restrictive_Tree (CompN, CompO, E);

                           KeyO := Perm_Tree_Maps.Get_Next_Key
                             (Component (Orig_Tree));
                           CompN := Perm_Tree_Maps.Get
                             (Component (New_Tree), KeyO.K);
                           CompO := Perm_Tree_Maps.Get
                             (Component (Orig_Tree), KeyO.K);
                        end loop;

                        Check_Is_Less_Restrictive_Tree
                          (Other_Components (New_Tree),
                           Other_Components (Orig_Tree),
                           E);
                     end;

                  when others =>
                     raise Program_Error;
                  end case;
               end;
         end case;
      end Check_Is_Less_Restrictive_Tree;

      --------------------------
      -- Perm_Error_Loop_Exit --
      --------------------------

      procedure Perm_Error_Loop_Exit
        (E          : Entity_Id;
         Loop_Id    : Node_Id;
         Perm       : Perm_Kind;
         Found_Perm : Perm_Kind)
      is
      begin
         Error_Msg_Node_2 := Loop_Id;
         Error_Msg_N ("insufficient permission for & when exiting loop &", E);
         Perm_Mismatch (Exp_Perm => Perm,
                        Act_Perm => Found_Perm,
                        N        => Loop_Id);
      end Perm_Error_Loop_Exit;

      --  Local variables

      Loop_Name : constant Entity_Id := Entity (Identifier (Loop_N));
      Loop_Env  : constant Perm_Env_Access := new Perm_Env;

   begin
      --  Save environment prior to the loop

      Copy_Env (From => Current_Perm_Env, To => Loop_Env.all);

      --  Add saved environment to loop environment

      Set (Current_Loops_Envs, Loop_Name, Loop_Env);

      --  If the loop is not a plain-loop, then it may either never be entered,
      --  or it may be exited after a number of iterations. Hence add the
      --  current permission environment as the initial loop exit environment.
      --  Otherwise, the loop exit environment remains empty until it is
      --  populated by analyzing exit statements.

      if Present (Iteration_Scheme (Loop_N)) then
         declare
            Exit_Env  : constant Perm_Env_Access := new Perm_Env;
         begin
            Copy_Env (From => Current_Perm_Env, To => Exit_Env.all);
            Set (Current_Loops_Accumulators, Loop_Name, Exit_Env);
         end;
      end if;

      --  Analyze loop

      Check_Node (Iteration_Scheme (Loop_N));
      Check_List (Statements (Loop_N));

      --  Check that environment gets less restrictive at end of loop

      Check_Is_Less_Restrictive_Env
        (Exiting_Env => Current_Perm_Env,
         Entry_Env   => Loop_Env.all);

      --  Set environment to the one for exiting the loop

      declare
         Exit_Env : constant Perm_Env_Access :=
           Get (Current_Loops_Accumulators, Loop_Name);
      begin
         Free_Env (Current_Perm_Env);

         --  In the normal case, Exit_Env is not null and we use it. In the
         --  degraded case of a plain-loop without exit statements, Exit_Env is
         --  null, and we use the initial permission environment at the start
         --  of the loop to continue analysis. Any environment would be fine
         --  here, since the code after the loop is dead code, but this way we
         --  avoid spurious errors by having at least variables in scope inside
         --  the environment.

         if Exit_Env /= null then
            Copy_Env (From => Exit_Env.all, To => Current_Perm_Env);
         else
            Copy_Env (From => Loop_Env.all, To => Current_Perm_Env);
         end if;

         Free_Env (Loop_Env.all);
         Free_Env (Exit_Env.all);
      end;
   end Check_Loop_Statement;

   ----------------
   -- Check_Node --
   ----------------

   procedure Check_Node (N : Node_Id) is
      Mode_Before : constant Checking_Mode := Current_Checking_Mode;
   begin
      case Nkind (N) is
         when N_Declaration =>
            Check_Declaration (N);

         when N_Subexpr =>
            Check_Expression (N);

         when N_Subtype_Indication =>
            Check_Node (Constraint (N));

         when N_Body_Stub =>
            Check_Node (Get_Body_From_Stub (N));

         when N_Statement_Other_Than_Procedure_Call =>
            Check_Statement (N);

         when N_Package_Body =>
            Check_Package_Body (N);

         when N_Subprogram_Body
            | N_Entry_Body
            | N_Task_Body
         =>
            Check_Callable_Body (N);

         when N_Protected_Body =>
            Check_List (Declarations (N));

         when N_Package_Declaration =>
            declare
               Spec : constant Node_Id := Specification (N);
            begin
               Current_Checking_Mode := Read;
               Check_List (Visible_Declarations (Spec));
               Check_List (Private_Declarations (Spec));

               Return_Declarations (Visible_Declarations (Spec));
               Return_Declarations (Private_Declarations (Spec));
            end;

         when N_Iteration_Scheme =>
            Current_Checking_Mode := Read;
            Check_Node (Condition (N));
            Check_Node (Iterator_Specification (N));
            Check_Node (Loop_Parameter_Specification (N));

         when N_Case_Expression_Alternative =>
            Current_Checking_Mode := Read;
            Check_List (Discrete_Choices (N));
            Current_Checking_Mode := Mode_Before;
            Check_Node (Expression (N));

         when N_Case_Statement_Alternative =>
            Current_Checking_Mode := Read;
            Check_List (Discrete_Choices (N));
            Current_Checking_Mode := Mode_Before;
            Check_List (Statements (N));

         when N_Component_Association =>
            Check_Node (Expression (N));

         when N_Handled_Sequence_Of_Statements =>
            Check_List (Statements (N));

         when N_Parameter_Association =>
            Check_Node (Explicit_Actual_Parameter (N));

         when N_Range_Constraint =>
            Check_Node (Range_Expression (N));

         when N_Index_Or_Discriminant_Constraint =>
            Check_List (Constraints (N));

         --  Checking should not be called directly on these nodes

         when N_Abortable_Part
            | N_Accept_Alternative
            | N_Access_Definition
            | N_Access_Function_Definition
            | N_Access_Procedure_Definition
            | N_Access_To_Object_Definition
            | N_Aspect_Specification
            | N_Compilation_Unit
            | N_Compilation_Unit_Aux
            | N_Component_Clause
            | N_Component_Definition
            | N_Component_List
            | N_Constrained_Array_Definition
            | N_Contract
            | N_Decimal_Fixed_Point_Definition
            | N_Defining_Character_Literal
            | N_Defining_Identifier
            | N_Defining_Operator_Symbol
            | N_Defining_Program_Unit_Name
            | N_Delay_Alternative
            | N_Derived_Type_Definition
            | N_Designator
            | N_Discriminant_Association
            | N_Discriminant_Specification
            | N_Elsif_Part
            | N_Entry_Body_Formal_Part
            | N_Enumeration_Type_Definition
            | N_Entry_Call_Alternative
            | N_Entry_Index_Specification
            | N_Error
            | N_Exception_Handler
            | N_Floating_Point_Definition
            | N_Formal_Decimal_Fixed_Point_Definition
            | N_Formal_Derived_Type_Definition
            | N_Formal_Discrete_Type_Definition
            | N_Formal_Floating_Point_Definition
            | N_Formal_Incomplete_Type_Definition
            | N_Formal_Modular_Type_Definition
            | N_Formal_Ordinary_Fixed_Point_Definition
            | N_Formal_Private_Type_Definition
            | N_Formal_Signed_Integer_Type_Definition
            | N_Generic_Association
            | N_Mod_Clause
            | N_Modular_Type_Definition
            | N_Ordinary_Fixed_Point_Definition
            | N_Package_Specification
            | N_Parameter_Specification
            | N_Pragma_Argument_Association
            | N_Protected_Definition
            | N_Push_Pop_xxx_Label
            | N_Real_Range_Specification
            | N_Record_Definition
            | N_SCIL_Dispatch_Table_Tag_Init
            | N_SCIL_Dispatching_Call
            | N_SCIL_Membership_Test
            | N_Signed_Integer_Type_Definition
            | N_Subunit
            | N_Task_Definition
            | N_Terminate_Alternative
            | N_Triggering_Alternative
            | N_Unconstrained_Array_Definition
            | N_Unused_At_Start
            | N_Unused_At_End
            | N_Variant
            | N_Variant_Part
         =>
            raise Program_Error;

         --  Unsupported constructs in SPARK

         when N_Iterated_Component_Association =>
            Error_Msg_N ("unsupported construct in SPARK", N);

         --  Ignored constructs for pointer checking

         when N_Abstract_Subprogram_Declaration
            | N_At_Clause
            | N_Attribute_Definition_Clause
            | N_Call_Marker
            | N_Delta_Constraint
            | N_Digits_Constraint
            | N_Empty
            | N_Enumeration_Representation_Clause
            | N_Exception_Declaration
            | N_Exception_Renaming_Declaration
            | N_Formal_Package_Declaration
            | N_Formal_Subprogram_Declaration
            | N_Freeze_Entity
            | N_Freeze_Generic_Entity
            | N_Function_Instantiation
            | N_Generic_Function_Renaming_Declaration
            | N_Generic_Package_Declaration
            | N_Generic_Package_Renaming_Declaration
            | N_Generic_Procedure_Renaming_Declaration
            | N_Generic_Subprogram_Declaration
            | N_Implicit_Label_Declaration
            | N_Itype_Reference
            | N_Label
            | N_Number_Declaration
            | N_Object_Renaming_Declaration
            | N_Others_Choice
            | N_Package_Instantiation
            | N_Package_Renaming_Declaration
            | N_Pragma
            | N_Procedure_Instantiation
            | N_Record_Representation_Clause
            | N_Subprogram_Declaration
            | N_Subprogram_Renaming_Declaration
            | N_Task_Type_Declaration
            | N_Use_Package_Clause
            | N_With_Clause
            | N_Use_Type_Clause
            | N_Validate_Unchecked_Conversion
            | N_Variable_Reference_Marker
         =>
            null;

         --  The following nodes are rewritten by semantic analysis

         when N_Single_Protected_Declaration
            | N_Single_Task_Declaration
         =>
            raise Program_Error;
      end case;

      Current_Checking_Mode := Mode_Before;
   end Check_Node;

   ------------------------
   -- Check_Package_Body --
   ------------------------

   procedure Check_Package_Body (Pack : Node_Id) is
      Saved_Env : Perm_Env;
      CorSp : Node_Id;

   begin
      if Present (SPARK_Pragma (Defining_Entity (Pack))) then
         if Get_SPARK_Mode_From_Annotation
           (SPARK_Pragma (Defining_Entity (Pack))) /= Opt.On
         then
            return;
         end if;
      else
         return;
      end if;

      CorSp := Parent (Corresponding_Spec (Pack));
      while Nkind (CorSp) /= N_Package_Specification loop
         CorSp := Parent (CorSp);
      end loop;

      Check_List (Visible_Declarations (CorSp));

      --  Save environment

      Copy_Env (Current_Perm_Env,
                Saved_Env);

      Check_List (Private_Declarations (CorSp));

      --  Set mode to Read, and then analyze declarations and statements

      Current_Checking_Mode := Read;

      Check_List (Declarations (Pack));
      Check_Node (Handled_Statement_Sequence (Pack));

      --  Check RW for every stateful variable (i.e. in declarations)

      Return_Declarations (Private_Declarations (CorSp));
      Return_Declarations (Visible_Declarations (CorSp));
      Return_Declarations (Declarations (Pack));

      --  Restore previous environment (i.e. delete every nonvisible
      --  declaration) from environment.

      Free_Env (Current_Perm_Env);
      Copy_Env (Saved_Env,
                Current_Perm_Env);
   end Check_Package_Body;

   -----------------
   -- Check_Param --
   -----------------

   procedure Check_Param (Formal : Entity_Id; Actual : Node_Id) is
      Mode : constant Entity_Kind := Ekind (Formal);
      Mode_Before : constant Checking_Mode := Current_Checking_Mode;

   begin
      case Current_Checking_Mode is
         when Read =>
            case Formal_Kind'(Mode) is
               when E_In_Parameter =>
                  if Is_Borrowed_In (Formal) then
                     --  Borrowed in

                     Current_Checking_Mode := Move;
                  else
                     --  Observed

                     return;
                  end if;

               when E_Out_Parameter =>
                  return;

               when E_In_Out_Parameter =>
                  --  Borrowed in out

                  Current_Checking_Mode := Move;

            end case;

            Check_Node (Actual);

         when Assign =>
            case Formal_Kind'(Mode) is
               when E_In_Parameter =>
                  null;

               when E_Out_Parameter
                  | E_In_Out_Parameter
               =>
                  --  Borrowed out or in out

                  Process_Path (Actual);

            end case;

         when others =>
            raise Program_Error;

      end case;
      Current_Checking_Mode := Mode_Before;
   end Check_Param;

   --------------------------
   -- Check_Param_Observes --
   --------------------------

   procedure Check_Param_Observes (Formal : Entity_Id; Actual : Node_Id) is
      Mode : constant Entity_Kind := Ekind (Formal);
      Mode_Before : constant Checking_Mode := Current_Checking_Mode;

   begin
      case Mode is
         when E_In_Parameter =>
            if not Is_Borrowed_In (Formal) then
               --  Observed in

               Current_Checking_Mode := Observe;
               Check_Node (Actual);
            end if;

         when others =>
            null;

      end case;

      Current_Checking_Mode := Mode_Before;
   end Check_Param_Observes;

   ----------------------
   -- Check_Param_Outs --
   ----------------------

   procedure Check_Param_Outs (Formal : Entity_Id; Actual : Node_Id) is
      Mode : constant Entity_Kind := Ekind (Formal);
      Mode_Before : constant Checking_Mode := Current_Checking_Mode;

   begin

      case Mode is
         when E_Out_Parameter =>
            --  Borrowed out
            Current_Checking_Mode := Borrow_Out;
            Check_Node (Actual);

         when others =>
            null;

      end case;

      Current_Checking_Mode := Mode_Before;
   end Check_Param_Outs;

   ----------------------
   -- Check_Param_Read --
   ----------------------

   procedure Check_Param_Read (Formal : Entity_Id; Actual : Node_Id) is
      Mode : constant Entity_Kind := Ekind (Formal);

   begin
      pragma Assert (Current_Checking_Mode = Read);

      case Formal_Kind'(Mode) is
         when E_In_Parameter =>
            Check_Node (Actual);

         when E_Out_Parameter
            | E_In_Out_Parameter
         =>
            null;

      end case;
   end Check_Param_Read;

   -------------------------
   -- Check_Safe_Pointers --
   -------------------------

   procedure Check_Safe_Pointers (N : Node_Id) is

      --  Local subprograms

      procedure Check_List (L : List_Id);
      --  Call the main analysis procedure on each element of the list

      procedure Initialize;
      --  Initialize global variables before starting the analysis of a body

      ----------------
      -- Check_List --
      ----------------

      procedure Check_List (L : List_Id) is
         N : Node_Id;
      begin
         N := First (L);
         while Present (N) loop
            Check_Safe_Pointers (N);
            Next (N);
         end loop;
      end Check_List;

      ----------------
      -- Initialize --
      ----------------

      procedure Initialize is
      begin
         Reset (Current_Loops_Envs);
         Reset (Current_Loops_Accumulators);
         Reset (Current_Perm_Env);
         Reset (Current_Initialization_Map);
      end Initialize;

      --  Local variables

      Prag : Node_Id;
      --  SPARK_Mode pragma in application

   --  Start of processing for Check_Safe_Pointers

   begin
      Initialize;

      case Nkind (N) is
         when N_Compilation_Unit =>
            Check_Safe_Pointers (Unit (N));

         when N_Package_Body
            | N_Package_Declaration
            | N_Subprogram_Body
         =>
            Prag := SPARK_Pragma (Defining_Entity (N));
            if Present (Prag) then
               if Get_SPARK_Mode_From_Annotation (Prag) = Opt.Off then
                  return;
               else
                  Check_Node (N);
               end if;

            elsif Nkind (N) = N_Package_Body then
               Check_List (Declarations (N));

            elsif Nkind (N) = N_Package_Declaration then
               Check_List (Private_Declarations (Specification (N)));
               Check_List (Visible_Declarations (Specification (N)));
            end if;

         when others =>
            null;
      end case;
   end Check_Safe_Pointers;

   ---------------------
   -- Check_Statement --
   ---------------------

   procedure Check_Statement (Stmt : Node_Id) is
      Mode_Before : constant Checking_Mode := Current_Checking_Mode;
   begin
      case N_Statement_Other_Than_Procedure_Call'(Nkind (Stmt)) is
         when N_Entry_Call_Statement =>
            Check_Call_Statement (Stmt);

         --  Move right-hand side first, and then assign left-hand side

         when N_Assignment_Statement =>
            if Is_Deep (Etype (Expression (Stmt))) then
               Current_Checking_Mode := Move;
            else
               Current_Checking_Mode := Read;
            end if;

            Check_Node (Expression (Stmt));
            Current_Checking_Mode := Assign;
            Check_Node (Name (Stmt));

         when N_Block_Statement =>
            declare
               Saved_Env : Perm_Env;

            begin
               --  Save environment

               Copy_Env (Current_Perm_Env,
                                 Saved_Env);

               --  Analyze declarations and Handled_Statement_Sequences

               Current_Checking_Mode := Read;
               Check_List (Declarations (Stmt));
               Check_Node (Handled_Statement_Sequence (Stmt));

               --  Restore environment

               Free_Env (Current_Perm_Env);
               Copy_Env (Saved_Env,
                                 Current_Perm_Env);
            end;

         when N_Case_Statement =>
            declare
               Saved_Env : Perm_Env;

               --  Accumulator for the different branches

               New_Env : Perm_Env;

               Elmt : Node_Id := First (Alternatives (Stmt));

            begin
               Current_Checking_Mode := Read;
               Check_Node (Expression (Stmt));
               Current_Checking_Mode := Mode_Before;

               --  Save environment

               Copy_Env (Current_Perm_Env,
                                 Saved_Env);

               --  Here we have the original env in saved, current with a fresh
               --  copy, and new aliased.

               --  First alternative

               Check_Node (Elmt);
               Next (Elmt);

               Copy_Env (Current_Perm_Env,
                                 New_Env);
               Free_Env (Current_Perm_Env);

               --  Other alternatives

               while Present (Elmt) loop
                  --  Restore environment

                  Copy_Env (Saved_Env,
                                    Current_Perm_Env);

                  Check_Node (Elmt);

                  --  Merge Current_Perm_Env into New_Env

                  Merge_Envs (New_Env,
                                      Current_Perm_Env);

                  Next (Elmt);
               end loop;

               --  CLEANUP
               Copy_Env (New_Env,
                                 Current_Perm_Env);

               Free_Env (New_Env);
               Free_Env (Saved_Env);
            end;

         when N_Delay_Relative_Statement =>
            Check_Node (Expression (Stmt));

         when N_Delay_Until_Statement =>
            Check_Node (Expression (Stmt));

         when N_Loop_Statement =>
            Check_Loop_Statement (Stmt);

         --  If deep type expression, then move, else read

         when N_Simple_Return_Statement =>
            case Nkind (Expression (Stmt)) is
               when N_Empty =>
                  declare
                     --  ??? This does not take into account the fact that
                     --  a simple return inside an extended return statement
                     --  applies to the extended return statement.
                     Subp : constant Entity_Id :=
                       Return_Applies_To (Return_Statement_Entity (Stmt));
                  begin
                     Return_Parameters (Subp);
                     Return_Globals (Subp);
                  end;

               when others =>
                  if Is_Deep (Etype (Expression (Stmt))) then
                     Current_Checking_Mode := Move;
                  elsif Is_Shallow (Etype (Expression (Stmt))) then
                     Current_Checking_Mode := Read;
                  else
                     raise Program_Error;
                  end if;

                  Check_Node (Expression (Stmt));
            end case;

         when N_Extended_Return_Statement =>
            Check_List (Return_Object_Declarations (Stmt));
            Check_Node (Handled_Statement_Sequence (Stmt));

            Return_Declarations (Return_Object_Declarations (Stmt));

            declare
               --  ??? This does not take into account the fact that a simple
               --  return inside an extended return statement applies to the
               --  extended return statement.
               Subp : constant Entity_Id :=
                 Return_Applies_To (Return_Statement_Entity (Stmt));
            begin
               Return_Parameters (Subp);
               Return_Globals (Subp);
            end;

         --  Merge the current_Perm_Env with the accumulator for the given loop

         when N_Exit_Statement =>
            declare
               Loop_Name : constant Entity_Id := Loop_Of_Exit (Stmt);

               Saved_Accumulator : constant Perm_Env_Access :=
                 Get (Current_Loops_Accumulators, Loop_Name);

               Environment_Copy : constant Perm_Env_Access :=
                 new Perm_Env;
            begin

               Copy_Env (Current_Perm_Env,
                                 Environment_Copy.all);

               if Saved_Accumulator = null then
                  Set (Current_Loops_Accumulators,
                       Loop_Name, Environment_Copy);
               else
                  Merge_Envs (Saved_Accumulator.all,
                                      Environment_Copy.all);
               end if;
            end;

         --  Copy environment, run on each branch, and then merge

         when N_If_Statement =>
            declare
               Saved_Env : Perm_Env;

               --  Accumulator for the different branches

               New_Env : Perm_Env;

            begin

               Check_Node (Condition (Stmt));

               --  Save environment

               Copy_Env (Current_Perm_Env,
                                 Saved_Env);

               --  Here we have the original env in saved, current with a fresh
               --  copy.

               --  THEN PART

               Check_List (Then_Statements (Stmt));

               Copy_Env (Current_Perm_Env,
                                 New_Env);

               Free_Env (Current_Perm_Env);

               --  Here the new_environment contains curr env after then block

               --  ELSIF part
               declare
                  Elmt : Node_Id;

               begin
                  Elmt := First (Elsif_Parts (Stmt));
                  while Present (Elmt) loop
                     --  Transfer into accumulator, and restore from save

                     Copy_Env (Saved_Env,
                                       Current_Perm_Env);

                     Check_Node (Condition (Elmt));
                     Check_List (Then_Statements (Stmt));

                     --  Merge Current_Perm_Env into New_Env

                     Merge_Envs (New_Env,
                                         Current_Perm_Env);

                     Next (Elmt);
                  end loop;
               end;

               --  ELSE part

               --  Restore environment before if

               Copy_Env (Saved_Env,
                                 Current_Perm_Env);

               --  Here new environment contains the environment after then and
               --  current the fresh copy of old one.

               Check_List (Else_Statements (Stmt));

               Merge_Envs (New_Env,
                                   Current_Perm_Env);

               --  CLEANUP

               Copy_Env (New_Env,
                                 Current_Perm_Env);

               Free_Env (New_Env);
               Free_Env (Saved_Env);
            end;

         --  Unsupported constructs in SPARK

         when N_Abort_Statement
            | N_Accept_Statement
            | N_Asynchronous_Select
            | N_Code_Statement
            | N_Conditional_Entry_Call
            | N_Goto_Statement
            | N_Requeue_Statement
            | N_Selective_Accept
            | N_Timed_Entry_Call
         =>
            Error_Msg_N ("unsupported construct in SPARK", Stmt);

         --  Ignored constructs for pointer checking

         when N_Null_Statement
            | N_Raise_Statement
         =>
            null;

         --  The following nodes are never generated in GNATprove mode

         when N_Compound_Statement
            | N_Free_Statement
         =>
            raise Program_Error;
      end case;
   end Check_Statement;

   --------------
   -- Get_Perm --
   --------------

   function Get_Perm (N : Node_Id) return Perm_Kind is
      Tree_Or_Perm : constant Perm_Or_Tree := Get_Perm_Or_Tree (N);

   begin
      case Tree_Or_Perm.R is
         when Folded =>
            return Tree_Or_Perm.Found_Permission;

         when Unfolded =>
            pragma Assert (Tree_Or_Perm.Tree_Access /= null);
            return Permission (Tree_Or_Perm.Tree_Access);

         --  We encoutered a function call, hence the memory area is fresh,
         --  which means that the association permission is RW.

         when Function_Call =>
            return Read_Write;

      end case;
   end Get_Perm;

   ----------------------
   -- Get_Perm_Or_Tree --
   ----------------------

   function Get_Perm_Or_Tree (N : Node_Id) return Perm_Or_Tree is
   begin
      case Nkind (N) is

         --  Base identifier. Normally those are the roots of the trees stored
         --  in the permission environment.

         when N_Defining_Identifier =>
            raise Program_Error;

         when N_Identifier
            | N_Expanded_Name
         =>
            declare
               P : constant Entity_Id := Entity (N);

               C : constant Perm_Tree_Access :=
                 Get (Current_Perm_Env, Unique_Entity (P));

            begin
               --  Setting the initialization map to True, so that this
               --  variable cannot be ignored anymore when looking at end
               --  of elaboration of package.

               Set (Current_Initialization_Map, Unique_Entity (P), True);

               if C = null then
                  --  No null possible here, there are no parents for the path.
                  --  This means we are using a global variable without adding
                  --  it in environment with a global aspect.

                  Illegal_Global_Usage (N);
               else
                  return (R => Unfolded, Tree_Access => C);
               end if;
            end;

         when N_Type_Conversion
            | N_Unchecked_Type_Conversion
            | N_Qualified_Expression
         =>
            return Get_Perm_Or_Tree (Expression (N));

         --  Happening when we try to get the permission of a variable that
         --  is a formal parameter. We get instead the defining identifier
         --  associated with the parameter (which is the one that has been
         --  stored for indexing).

         when N_Parameter_Specification =>
            return Get_Perm_Or_Tree (Defining_Identifier (N));

         --  We get the permission tree of its prefix, and then get either the
         --  subtree associated with that specific selection, or if we have a
         --  leaf that folds its children, we take the children's permission
         --  and return it using the discriminant Folded.

         when N_Selected_Component =>
            declare
               C : constant Perm_Or_Tree :=
                 Get_Perm_Or_Tree (Prefix (N));

            begin
               case C.R is
                  when Folded
                     | Function_Call
                  =>
                     return C;

                  when Unfolded =>
                     pragma Assert (C.Tree_Access /= null);

                     pragma Assert (Kind (C.Tree_Access) = Entire_Object
                                    or else
                                    Kind (C.Tree_Access) = Record_Component);

                     if Kind (C.Tree_Access) = Record_Component then
                        declare
                           Selected_Component : constant Entity_Id :=
                             Entity (Selector_Name (N));

                           Selected_C : constant Perm_Tree_Access :=
                             Perm_Tree_Maps.Get
                               (Component (C.Tree_Access), Selected_Component);

                        begin
                           if Selected_C = null then
                              return (R => Unfolded,
                                      Tree_Access =>
                                        Other_Components (C.Tree_Access));
                           else
                              return (R => Unfolded,
                                      Tree_Access => Selected_C);
                           end if;
                        end;
                     elsif Kind (C.Tree_Access) = Entire_Object then
                        return (R => Folded, Found_Permission =>
                                  Children_Permission (C.Tree_Access));
                     else
                        raise Program_Error;
                     end if;
               end case;
            end;

         --  We get the permission tree of its prefix, and then get either the
         --  subtree associated with that specific selection, or if we have a
         --  leaf that folds its children, we take the children's permission
         --  and return it using the discriminant Folded.

         when N_Indexed_Component
            | N_Slice
         =>
            declare
               C : constant Perm_Or_Tree :=
                 Get_Perm_Or_Tree (Prefix (N));

            begin
               case C.R is
                  when Folded
                     | Function_Call
                  =>
                     return C;

                  when Unfolded =>
                     pragma Assert (C.Tree_Access /= null);

                     pragma Assert (Kind (C.Tree_Access) = Entire_Object
                                    or else
                                    Kind (C.Tree_Access) = Array_Component);

                     if Kind (C.Tree_Access) = Array_Component then
                        pragma Assert (Get_Elem (C.Tree_Access) /= null);

                        return (R => Unfolded,
                                Tree_Access => Get_Elem (C.Tree_Access));
                     elsif Kind (C.Tree_Access) = Entire_Object then
                        return (R => Folded, Found_Permission =>
                                  Children_Permission (C.Tree_Access));
                     else
                        raise Program_Error;
                     end if;
               end case;
            end;

         --  We get the permission tree of its prefix, and then get either the
         --  subtree associated with that specific selection, or if we have a
         --  leaf that folds its children, we take the children's permission
         --  and return it using the discriminant Folded.

         when N_Explicit_Dereference =>
            declare
               C : constant Perm_Or_Tree :=
                 Get_Perm_Or_Tree (Prefix (N));

            begin
               case C.R is
                  when Folded
                     | Function_Call
                  =>
                     return C;

                  when Unfolded =>
                     pragma Assert (C.Tree_Access /= null);

                     pragma Assert (Kind (C.Tree_Access) = Entire_Object
                                    or else
                                    Kind (C.Tree_Access) = Reference);

                     if Kind (C.Tree_Access) = Reference then
                        if Get_All (C.Tree_Access) = null then
                           --  Hash_Table_Error
                           raise Program_Error;
                        else
                           return
                             (R => Unfolded,
                              Tree_Access => Get_All (C.Tree_Access));
                        end if;
                     elsif Kind (C.Tree_Access) = Entire_Object then
                        return (R => Folded, Found_Permission =>
                                  Children_Permission (C.Tree_Access));
                     else
                        raise Program_Error;
                     end if;
               end case;
            end;

         --  The name contains a function call, hence the given path is always
         --  new. We do not have to check for anything.

         when N_Function_Call =>
            return (R => Function_Call);

         when others =>
            raise Program_Error;
      end case;
   end Get_Perm_Or_Tree;

   -------------------
   -- Get_Perm_Tree --
   -------------------

   function Get_Perm_Tree
     (N : Node_Id)
       return Perm_Tree_Access
   is
   begin
      case Nkind (N) is

         --  Base identifier. Normally those are the roots of the trees stored
         --  in the permission environment.

         when N_Defining_Identifier =>
            raise Program_Error;

         when N_Identifier
            | N_Expanded_Name
         =>
            declare
               P : constant Node_Id := Entity (N);

               C : constant Perm_Tree_Access :=
                 Get (Current_Perm_Env, Unique_Entity (P));

            begin
               --  Setting the initialization map to True, so that this
               --  variable cannot be ignored anymore when looking at end
               --  of elaboration of package.

               Set (Current_Initialization_Map, Unique_Entity (P), True);

               if C = null then
                  --  No null possible here, there are no parents for the path.
                  --  This means we are using a global variable without adding
                  --  it in environment with a global aspect.

                  Illegal_Global_Usage (N);
               else
                  return C;
               end if;
            end;

         when N_Type_Conversion
            | N_Unchecked_Type_Conversion
            | N_Qualified_Expression
         =>
            return Get_Perm_Tree (Expression (N));

         when N_Parameter_Specification =>
            return Get_Perm_Tree (Defining_Identifier (N));

         --  We get the permission tree of its prefix, and then get either the
         --  subtree associated with that specific selection, or if we have a
         --  leaf that folds its children, we unroll it in one step.

         when N_Selected_Component =>
            declare
               C : constant Perm_Tree_Access :=
                 Get_Perm_Tree (Prefix (N));

            begin
               if C = null then
                  --  If null then it means we went through a function call

                  return null;
               end if;

               pragma Assert (Kind (C) = Entire_Object
                              or else Kind (C) = Record_Component);

               if Kind (C) = Record_Component then
                  --  The tree is unfolded. We just return the subtree.

                  declare
                     Selected_Component : constant Entity_Id :=
                       Entity (Selector_Name (N));
                     Selected_C : constant Perm_Tree_Access :=
                       Perm_Tree_Maps.Get
                         (Component (C), Selected_Component);

                  begin
                     if Selected_C = null then
                        return Other_Components (C);
                     end if;

                     return Selected_C;
                  end;
               elsif Kind (C) = Entire_Object then
                  declare
                     --  Expand the tree. Replace the node with
                     --  Record_Component.

                     Elem : Node_Id;

                     --  Create the unrolled nodes

                     Son : Perm_Tree_Access;

                     Child_Perm : constant Perm_Kind :=
                       Children_Permission (C);

                  begin

                     --  We change the current node from Entire_Object to
                     --  Record_Component with same permission and an empty
                     --  hash table as component list.

                     C.all.Tree :=
                       (Kind             => Record_Component,
                        Is_Node_Deep     => Is_Node_Deep (C),
                        Permission       => Permission (C),
                        Component        => Perm_Tree_Maps.Nil,
                        Other_Components =>
                           new Perm_Tree_Wrapper'
                          (Tree =>
                               (Kind                => Entire_Object,
                                --  Is_Node_Deep is true, to be conservative
                                Is_Node_Deep        => True,
                                Permission          => Child_Perm,
                                Children_Permission => Child_Perm)
                          )
                       );

                     --  We fill the hash table with all sons of the record,
                     --  with basic Entire_Objects nodes.
                     Elem := First_Component_Or_Discriminant
                       (Etype (Prefix (N)));

                     while Present (Elem) loop
                        Son := new Perm_Tree_Wrapper'
                          (Tree =>
                             (Kind                => Entire_Object,
                              Is_Node_Deep        => Is_Deep (Etype (Elem)),
                              Permission          => Child_Perm,
                              Children_Permission => Child_Perm));

                        Perm_Tree_Maps.Set
                          (C.all.Tree.Component, Elem, Son);

                        Next_Component_Or_Discriminant (Elem);
                     end loop;

                     --  we return the tree to the sons, so that the recursion
                     --  can continue.

                     declare
                        Selected_Component : constant Entity_Id :=
                          Entity (Selector_Name (N));

                        Selected_C : constant Perm_Tree_Access :=
                          Perm_Tree_Maps.Get
                            (Component (C), Selected_Component);

                     begin
                        pragma Assert (Selected_C /= null);

                        return Selected_C;
                     end;

                  end;
               else
                  raise Program_Error;
               end if;
            end;

         --  We set the permission tree of its prefix, and then we extract from
         --  the returned pointer the subtree. If folded, we unroll the tree at
         --  one step.

         when N_Indexed_Component
            | N_Slice
         =>
            declare
               C : constant Perm_Tree_Access :=
                 Get_Perm_Tree (Prefix (N));

            begin
               if C = null then
                  --  If null then we went through a function call

                  return null;
               end if;

               pragma Assert (Kind (C) = Entire_Object
                              or else Kind (C) = Array_Component);

               if Kind (C) = Array_Component then
                  --  The tree is unfolded. We just return the elem subtree

                  pragma Assert (Get_Elem (C) = null);

                  return Get_Elem (C);
               elsif Kind (C) = Entire_Object then
                  declare
                     --  Expand the tree. Replace node with Array_Component.

                     Son : Perm_Tree_Access;

                  begin
                     Son := new Perm_Tree_Wrapper'
                       (Tree =>
                          (Kind                => Entire_Object,
                           Is_Node_Deep        => Is_Node_Deep (C),
                           Permission          => Children_Permission (C),
                           Children_Permission => Children_Permission (C)));

                     --  We change the current node from Entire_Object
                     --  to Array_Component with same permission and the
                     --  previously defined son.

                     C.all.Tree := (Kind         => Array_Component,
                                    Is_Node_Deep => Is_Node_Deep (C),
                                    Permission   => Permission (C),
                                    Get_Elem     => Son);

                     return Get_Elem (C);
                  end;
               else
                  raise Program_Error;
               end if;
            end;

         --  We get the permission tree of its prefix, and then get either the
         --  subtree associated with that specific selection, or if we have a
         --  leaf that folds its children, we unroll the tree.

         when N_Explicit_Dereference =>
            declare
               C : Perm_Tree_Access;

            begin
               C := Get_Perm_Tree (Prefix (N));

               if C = null then
                  --  If null, we went through a function call

                  return null;
               end if;

               pragma Assert (Kind (C) = Entire_Object
                              or else Kind (C) = Reference);

               if Kind (C) = Reference then
                  --  The tree is unfolded. We return the elem subtree

                  if Get_All (C) = null then
                     --  Hash_Table_Error
                     raise Program_Error;
                  end if;

                  return Get_All (C);
               elsif Kind (C) = Entire_Object then
                  declare
                     --  Expand the tree. Replace the node with Reference.

                     Son : Perm_Tree_Access;

                  begin
                     Son := new Perm_Tree_Wrapper'
                       (Tree =>
                          (Kind                => Entire_Object,
                           Is_Node_Deep        => Is_Deep (Etype (N)),
                           Permission          => Children_Permission (C),
                           Children_Permission => Children_Permission (C)));

                     --  We change the current node from Entire_Object to
                     --  Reference with same permission and the previous son.

                     pragma Assert (Is_Node_Deep (C));

                     C.all.Tree := (Kind         => Reference,
                                    Is_Node_Deep => Is_Node_Deep (C),
                                    Permission   => Permission (C),
                                    Get_All      => Son);

                     return Get_All (C);
                  end;
               else
                  raise Program_Error;
               end if;
            end;

         --  No permission tree for function calls

         when N_Function_Call =>
            return null;

         when others =>
            raise Program_Error;
      end case;
   end Get_Perm_Tree;

   ---------
   -- Glb --
   ---------

   function Glb (P1, P2 : Perm_Kind) return Perm_Kind
   is
   begin
      case P1 is
         when No_Access =>
            return No_Access;

         when Read_Only =>
            case P2 is
               when No_Access
                  | Write_Only
               =>
                  return No_Access;

               when Read_Perm =>
                  return Read_Only;
            end case;

         when Write_Only =>
            case P2 is
               when No_Access
                  | Read_Only
               =>
                  return No_Access;

               when Write_Perm =>
                  return Write_Only;
            end case;

         when Read_Write =>
            return P2;
      end case;
   end Glb;

   ---------------
   -- Has_Alias --
   ---------------

   function Has_Alias
     (N : Node_Id)
       return Boolean
   is
      function Has_Alias_Deep (Typ : Entity_Id) return Boolean;
      function Has_Alias_Deep (Typ : Entity_Id) return Boolean
      is
         Comp : Node_Id;
      begin

         if Is_Array_Type (Typ)
           and then Has_Aliased_Components (Typ)
         then
            return True;

            --  Note: Has_Aliased_Components applies only to arrays

         elsif Is_Record_Type (Typ) then
            --  It is possible to have an aliased discriminant, so they must be
            --  checked along with normal components.

            Comp := First_Component_Or_Discriminant (Typ);
            while Present (Comp) loop
               if Is_Aliased (Comp)
                 or else Is_Aliased (Etype (Comp))
               then
                  return True;
               end if;

               if Has_Alias_Deep (Etype (Comp)) then
                  return True;
               end if;

               Next_Component_Or_Discriminant (Comp);
            end loop;
            return False;
         else
            return Is_Aliased (Typ);
         end if;
      end Has_Alias_Deep;

   begin
      case Nkind (N) is

         when N_Identifier
            | N_Expanded_Name
         =>
            return Has_Alias_Deep (Etype (N));

         when N_Defining_Identifier =>
            return Has_Alias_Deep (Etype (N));

         when N_Type_Conversion
            | N_Unchecked_Type_Conversion
            | N_Qualified_Expression
         =>
            return Has_Alias (Expression (N));

         when N_Parameter_Specification =>
            return Has_Alias (Defining_Identifier (N));

         when N_Selected_Component =>
            case Nkind (Selector_Name (N)) is
               when N_Identifier =>
                  if Is_Aliased (Entity (Selector_Name (N))) then
                     return True;
                  end if;

               when others => null;

            end case;

            return Has_Alias (Prefix (N));

         when N_Indexed_Component
            | N_Slice
         =>
            return Has_Alias (Prefix (N));

         when N_Explicit_Dereference =>
            return True;

         when N_Function_Call =>
            return False;

         when N_Attribute_Reference =>
            if Is_Deep (Etype (Prefix (N))) then
               raise Program_Error;
            end if;
            return False;

         when others =>
            return False;
      end case;
   end Has_Alias;

   -------------------------
   -- Has_Array_Component --
   -------------------------

   function Has_Array_Component (N : Node_Id) return Boolean is
   begin
      case Nkind (N) is
         --  Base identifier. There is no array component here.

         when N_Identifier
            | N_Expanded_Name
            | N_Defining_Identifier
         =>
            return False;

         --  We check if the expression inside the conversion has an array
         --  component.

         when N_Type_Conversion
            | N_Unchecked_Type_Conversion
            | N_Qualified_Expression
         =>
            return Has_Array_Component (Expression (N));

         --  We check if the prefix has an array component

         when N_Selected_Component =>
            return Has_Array_Component (Prefix (N));

         --  We found the array component, return True

         when N_Indexed_Component
            | N_Slice
         =>
            return True;

         --  We check if the prefix has an array component

         when N_Explicit_Dereference =>
            return Has_Array_Component (Prefix (N));

         when N_Function_Call =>
            return False;

         when others =>
            raise Program_Error;
      end case;
   end Has_Array_Component;

   ----------------------------
   -- Has_Function_Component --
   ----------------------------

   function Has_Function_Component (N : Node_Id) return Boolean is
   begin
      case Nkind (N) is
         --  Base identifier. There is no function component here.

         when N_Identifier
            | N_Expanded_Name
            | N_Defining_Identifier
         =>
            return False;

         --  We check if the expression inside the conversion has a function
         --  component.

         when N_Type_Conversion
            | N_Unchecked_Type_Conversion
            | N_Qualified_Expression
         =>
            return Has_Function_Component (Expression (N));

         --  We check if the prefix has a function component

         when N_Selected_Component =>
            return Has_Function_Component (Prefix (N));

         --  We check if the prefix has a function component

         when N_Indexed_Component
            | N_Slice
         =>
            return Has_Function_Component (Prefix (N));

         --  We check if the prefix has a function component

         when N_Explicit_Dereference =>
            return Has_Function_Component (Prefix (N));

         --  We found the function component, return True

         when N_Function_Call =>
            return True;

         when others =>
            raise Program_Error;

      end case;
   end Has_Function_Component;

   --------
   -- Hp --
   --------

   procedure Hp (P : Perm_Env) is
      Elem : Perm_Tree_Maps.Key_Option;

   begin
      Elem := Get_First_Key (P);
      while Elem.Present loop
         Print_Node_Briefly (Elem.K);
         Elem := Get_Next_Key (P);
      end loop;
   end Hp;

   --------------------------
   -- Illegal_Global_Usage --
   --------------------------

   procedure Illegal_Global_Usage (N : Node_Or_Entity_Id)  is
   begin
      Error_Msg_NE ("cannot use global variable & of deep type", N, N);
      Error_Msg_N ("\without prior declaration in a Global aspect", N);

      Errout.Finalize (Last_Call => True);
      Errout.Output_Messages;
      Exit_Program (E_Errors);
   end Illegal_Global_Usage;

   --------------------
   -- Is_Borrowed_In --
   --------------------

   function Is_Borrowed_In (E : Entity_Id) return Boolean is
   begin
      return Is_Access_Type (Etype (E))
        and then not Is_Access_Constant (Etype (E));
   end Is_Borrowed_In;

   -------------
   -- Is_Deep --
   -------------

   function Is_Deep (E : Entity_Id) return Boolean is
      function Is_Private_Entity_Mode_Off (E : Entity_Id) return Boolean;

      function Is_Private_Entity_Mode_Off (E : Entity_Id) return Boolean is
         Decl : Node_Id;
         Pack_Decl : Node_Id;

      begin
         if Is_Itype (E) then
            Decl := Associated_Node_For_Itype (E);
         else
            Decl := Parent (E);
         end if;

         Pack_Decl := Parent (Parent (Decl));

         if Nkind (Pack_Decl) /= N_Package_Declaration then
            return False;
         end if;

         return
           Present (SPARK_Aux_Pragma (Defining_Entity (Pack_Decl)))
           and then Get_SPARK_Mode_From_Annotation
             (SPARK_Aux_Pragma (Defining_Entity (Pack_Decl))) = Off;
      end Is_Private_Entity_Mode_Off;
   begin
      pragma Assert (Is_Type (E));

      case Ekind (E) is
         when Scalar_Kind =>
            return False;

         when Access_Kind =>
            return True;

         --  Just check the depth of its component type

         when E_Array_Type
            | E_Array_Subtype
         =>
            return Is_Deep (Component_Type (E));

         when E_String_Literal_Subtype =>
            return False;

         --  Per RM 8.11 for class-wide types

         when E_Class_Wide_Subtype
            | E_Class_Wide_Type
         =>
            return True;

         --  ??? What about hidden components

         when E_Record_Type
            | E_Record_Subtype
            =>
            declare
               Elmt : Entity_Id;

            begin
               Elmt := First_Component_Or_Discriminant (E);
               while Present (Elmt) loop
                  if Is_Deep (Etype (Elmt)) then
                     return True;
                  else
                     Next_Component_Or_Discriminant (Elmt);
                  end if;
               end loop;

               return False;
            end;

         when Private_Kind =>
            if Is_Private_Entity_Mode_Off (E) then
               return False;
            else
               if Present (Full_View (E)) then
                  return Is_Deep (Full_View (E));
               else
                  return True;
               end if;
            end if;

         when E_Incomplete_Type =>
            return True;

         when E_Incomplete_Subtype =>
            return True;

         --  No problem with synchronized types

         when E_Protected_Type
            | E_Protected_Subtype
            | E_Task_Subtype
            | E_Task_Type
          =>
            return False;

         when E_Exception_Type =>
            return False;

         when others =>
            raise Program_Error;
      end case;
   end Is_Deep;

   ----------------
   -- Is_Shallow --
   ----------------

   function Is_Shallow (E : Entity_Id) return Boolean is
   begin
      pragma Assert (Is_Type (E));
      return not Is_Deep (E);
   end Is_Shallow;

   ------------------
   -- Loop_Of_Exit --
   ------------------

   function Loop_Of_Exit (N : Node_Id) return Entity_Id is
      Nam : Node_Id := Name (N);
      Stmt : Node_Id := N;
   begin
      if No (Nam) then
         while Present (Stmt) loop
            Stmt := Parent (Stmt);
            if Nkind (Stmt) = N_Loop_Statement then
               Nam := Identifier (Stmt);
               exit;
            end if;
         end loop;
      end if;
      return Entity (Nam);
   end Loop_Of_Exit;
   ---------
   -- Lub --
   ---------

   function Lub (P1, P2 : Perm_Kind) return Perm_Kind
   is
   begin
      case P1 is
         when No_Access =>
            return P2;

         when Read_Only =>
            case P2 is
               when No_Access
                  | Read_Only
               =>
                  return Read_Only;

               when Write_Perm =>
                  return Read_Write;
            end case;

         when Write_Only =>
            case P2 is
               when No_Access
                  | Write_Only
               =>
                  return Write_Only;

               when Read_Perm =>
                  return Read_Write;
            end case;

         when Read_Write =>
            return Read_Write;
      end case;
   end Lub;

   ----------------
   -- Merge_Envs --
   ----------------

   procedure Merge_Envs
     (Target : in out Perm_Env;
      Source : in out Perm_Env)
   is
      procedure Merge_Trees
        (Target : Perm_Tree_Access;
         Source : Perm_Tree_Access);

      procedure Merge_Trees
        (Target : Perm_Tree_Access;
         Source : Perm_Tree_Access)
      is
         procedure Apply_Glb_Tree
           (A : Perm_Tree_Access;
            P : Perm_Kind);

         procedure Apply_Glb_Tree
           (A : Perm_Tree_Access;
            P : Perm_Kind)
         is
         begin
            A.all.Tree.Permission := Glb (Permission (A), P);

            case Kind (A) is
               when Entire_Object =>
                  A.all.Tree.Children_Permission :=
                    Glb (Children_Permission (A), P);

               when Reference =>
                  Apply_Glb_Tree (Get_All (A), P);

               when Array_Component =>
                  Apply_Glb_Tree (Get_Elem (A), P);

               when Record_Component =>
                  declare
                     Comp : Perm_Tree_Access;
                  begin
                     Comp := Perm_Tree_Maps.Get_First (Component (A));
                     while Comp /= null loop
                        Apply_Glb_Tree (Comp, P);
                        Comp := Perm_Tree_Maps.Get_Next (Component (A));
                     end loop;

                     Apply_Glb_Tree (Other_Components (A), P);
                  end;
            end case;
         end Apply_Glb_Tree;

         Perm : constant Perm_Kind :=
           Glb (Permission (Target), Permission (Source));

      begin
         pragma Assert (Is_Node_Deep (Target) = Is_Node_Deep (Source));
         Target.all.Tree.Permission := Perm;

         case Kind (Target) is
            when Entire_Object =>
               declare
                  Child_Perm : constant Perm_Kind :=
                    Children_Permission (Target);

               begin
                  case Kind (Source) is
                  when Entire_Object =>
                     Target.all.Tree.Children_Permission :=
                       Glb (Child_Perm, Children_Permission (Source));

                  when Reference =>
                     Copy_Tree (Source, Target);
                     Target.all.Tree.Permission := Perm;
                     Apply_Glb_Tree (Get_All (Target), Child_Perm);

                  when Array_Component =>
                     Copy_Tree (Source, Target);
                     Target.all.Tree.Permission := Perm;
                     Apply_Glb_Tree (Get_Elem (Target), Child_Perm);

                  when Record_Component =>
                     Copy_Tree (Source, Target);
                     Target.all.Tree.Permission := Perm;
                     declare
                        Comp : Perm_Tree_Access;

                     begin
                        Comp :=
                          Perm_Tree_Maps.Get_First (Component (Target));
                        while Comp /= null loop
                           --  Apply glb tree on every component subtree

                           Apply_Glb_Tree (Comp, Child_Perm);
                           Comp := Perm_Tree_Maps.Get_Next
                             (Component (Target));
                        end loop;
                     end;
                     Apply_Glb_Tree (Other_Components (Target), Child_Perm);

                  end case;
               end;
            when Reference =>
               case Kind (Source) is
               when Entire_Object =>
                  Apply_Glb_Tree (Get_All (Target),
                                  Children_Permission (Source));

               when Reference =>
                  Merge_Trees (Get_All (Target), Get_All (Source));

               when others =>
                  raise Program_Error;

               end case;

            when Array_Component =>
               case Kind (Source) is
               when Entire_Object =>
                  Apply_Glb_Tree (Get_Elem (Target),
                                  Children_Permission (Source));

               when Array_Component =>
                  Merge_Trees (Get_Elem (Target), Get_Elem (Source));

               when others =>
                  raise Program_Error;

               end case;

            when Record_Component =>
               case Kind (Source) is
               when Entire_Object =>
                  declare
                     Child_Perm : constant Perm_Kind :=
                       Children_Permission (Source);

                     Comp : Perm_Tree_Access;

                  begin
                     Comp := Perm_Tree_Maps.Get_First
                       (Component (Target));
                     while Comp /= null loop
                        --  Apply glb tree on every component subtree

                        Apply_Glb_Tree (Comp, Child_Perm);
                        Comp :=
                          Perm_Tree_Maps.Get_Next (Component (Target));
                     end loop;
                     Apply_Glb_Tree (Other_Components (Target), Child_Perm);
                  end;

               when Record_Component =>
                  declare
                     Key_Source : Perm_Tree_Maps.Key_Option;
                     CompTarget : Perm_Tree_Access;
                     CompSource : Perm_Tree_Access;

                  begin
                     Key_Source := Perm_Tree_Maps.Get_First_Key
                       (Component (Source));

                     while Key_Source.Present loop
                        CompSource := Perm_Tree_Maps.Get
                          (Component (Source), Key_Source.K);
                        CompTarget := Perm_Tree_Maps.Get
                          (Component (Target), Key_Source.K);

                        pragma Assert (CompSource /= null);
                        Merge_Trees (CompTarget, CompSource);

                        Key_Source := Perm_Tree_Maps.Get_Next_Key
                          (Component (Source));
                     end loop;

                     Merge_Trees (Other_Components (Target),
                                  Other_Components (Source));
                  end;

               when others =>
                  raise Program_Error;

               end case;
         end case;
      end Merge_Trees;

      CompTarget : Perm_Tree_Access;
      CompSource : Perm_Tree_Access;
      KeyTarget : Perm_Tree_Maps.Key_Option;

   begin
      KeyTarget := Get_First_Key (Target);
      --  Iterate over every tree of the environment in the target, and merge
      --  it with the source if there is such a similar one that exists. If
      --  there is none, then skip.
      while KeyTarget.Present loop

         CompSource := Get (Source, KeyTarget.K);
         CompTarget := Get (Target, KeyTarget.K);

         pragma Assert (CompTarget /= null);

         if CompSource /= null then
            Merge_Trees (CompTarget, CompSource);
            Remove (Source, KeyTarget.K);
         end if;

         KeyTarget := Get_Next_Key (Target);
      end loop;

      --  Iterate over every tree of the environment of the source. And merge
      --  again. If there is not any tree of the target then just copy the tree
      --  from source to target.
      declare
         KeySource : Perm_Tree_Maps.Key_Option;
      begin
         KeySource := Get_First_Key (Source);
         while KeySource.Present loop

            CompSource := Get (Source, KeySource.K);
            CompTarget := Get (Target, KeySource.K);

            if CompTarget = null then
               CompTarget := new Perm_Tree_Wrapper'(CompSource.all);
               Copy_Tree (CompSource, CompTarget);
               Set (Target, KeySource.K, CompTarget);
            else
               Merge_Trees (CompTarget, CompSource);
            end if;

            KeySource := Get_Next_Key (Source);
         end loop;
      end;

      Free_Env (Source);
   end Merge_Envs;

   ----------------
   -- Perm_Error --
   ----------------

   procedure Perm_Error
     (N : Node_Id;
      Perm : Perm_Kind;
      Found_Perm : Perm_Kind)
   is
      procedure Set_Root_Object
        (Path  : Node_Id;
         Obj   : out Entity_Id;
         Deref : out Boolean);
      --  Set the root object Obj, and whether the path contains a dereference,
      --  from a path Path.

      ---------------------
      -- Set_Root_Object --
      ---------------------

      procedure Set_Root_Object
        (Path  : Node_Id;
         Obj   : out Entity_Id;
         Deref : out Boolean)
      is
      begin
         case Nkind (Path) is
            when N_Identifier
               | N_Expanded_Name
            =>
               Obj := Entity (Path);
               Deref := False;

            when N_Type_Conversion
               | N_Unchecked_Type_Conversion
               | N_Qualified_Expression
            =>
               Set_Root_Object (Expression (Path), Obj, Deref);

            when N_Indexed_Component
               | N_Selected_Component
               | N_Slice
            =>
               Set_Root_Object (Prefix (Path), Obj, Deref);

            when N_Explicit_Dereference =>
               Set_Root_Object (Prefix (Path), Obj, Deref);
               Deref := True;

            when others =>
               raise Program_Error;
         end case;
      end Set_Root_Object;

      --  Local variables

      Root : Entity_Id;
      Is_Deref : Boolean;

   --  Start of processing for Perm_Error

   begin
      Set_Root_Object (N, Root, Is_Deref);

      if Is_Deref then
         Error_Msg_NE
           ("insufficient permission on dereference from &", N, Root);
      else
         Error_Msg_NE ("insufficient permission for &", N, Root);
      end if;

      Perm_Mismatch (Perm, Found_Perm, N);
   end Perm_Error;

   -------------------------------
   -- Perm_Error_Subprogram_End --
   -------------------------------

   procedure Perm_Error_Subprogram_End
     (E          : Entity_Id;
      Subp       : Entity_Id;
      Perm       : Perm_Kind;
      Found_Perm : Perm_Kind)
   is
   begin
      Error_Msg_Node_2 := Subp;
      Error_Msg_NE ("insufficient permission for & when returning from &",
                    Subp, E);
      Perm_Mismatch (Perm, Found_Perm, Subp);
   end Perm_Error_Subprogram_End;

   ------------------
   -- Process_Path --
   ------------------

   procedure Process_Path (N : Node_Id) is
      Root : constant Entity_Id := Get_Enclosing_Object (N);
   begin
      --  We ignore if yielding to synchronized

      if Present (Root)
        and then Is_Synchronized_Object (Root)
      then
         return;
      end if;

      --  We ignore shallow unaliased. They are checked in flow analysis,
      --  allowing backward compatibility.

      if not Has_Alias (N)
        and then Is_Shallow (Etype (N))
      then
         return;
      end if;

      declare
         Perm_N : constant Perm_Kind := Get_Perm (N);

      begin

         case Current_Checking_Mode is
            --  Check permission R, do nothing

            when Read =>
               if Perm_N not in Read_Perm then
                  Perm_Error (N, Read_Only, Perm_N);
               end if;

            --  If shallow type no need for RW, only R

            when Move =>
               if Is_Shallow (Etype (N)) then
                  if Perm_N not in Read_Perm then
                     Perm_Error (N, Read_Only, Perm_N);
                  end if;
               else
                  --  Check permission RW if deep

                  if Perm_N /= Read_Write then
                     Perm_Error (N, Read_Write, Perm_N);
                  end if;

                  declare
                     --  Set permission to W to the path and any of its prefix

                     Tree : constant Perm_Tree_Access :=
                       Set_Perm_Prefixes_Move (N, Move);

                  begin
                     if Tree = null then
                        --  We went through a function call, no permission to
                        --  modify.

                        return;
                     end if;

                     --  Set permissions to
                     --  No for any extension with more .all
                     --  W for any deep extension with same number of .all
                     --  RW for any shallow extension with same number of .all

                     Set_Perm_Extensions_Move (Tree, Etype (N));
                  end;
               end if;

            --  Check permission RW

            when Super_Move =>
               if Perm_N /= Read_Write then
                  Perm_Error (N, Read_Write, Perm_N);
               end if;

               declare
                  --  Set permission to No to the path and any of its prefix up
                  --  to the first .all and then W.

                  Tree : constant Perm_Tree_Access :=
                    Set_Perm_Prefixes_Move (N, Super_Move);

               begin
                  if Tree = null then
                     --  We went through a function call, no permission to
                     --  modify.

                     return;
                  end if;

                  --  Set permissions to No on any strict extension of the path

                  Set_Perm_Extensions (Tree, No_Access);
               end;

            --  Check permission W

            when Assign =>
               if Perm_N not in Write_Perm then
                  Perm_Error (N, Write_Only, Perm_N);
               end if;

               --  If the tree has an array component, then the permissions do
               --  not get modified by the assignment.

               if Has_Array_Component (N) then
                  return;
               end if;

               --  Same if has function component

               if Has_Function_Component (N) then
                  return;
               end if;

               declare
                  --  Get the permission tree for the path

                  Tree : constant Perm_Tree_Access :=
                    Get_Perm_Tree (N);

                  Dummy : Perm_Tree_Access;

               begin
                  if Tree = null then
                     --  We went through a function call, no permission to
                     --  modify.

                     return;
                  end if;

                  --  Set permission RW for it and all of its extensions

                  Tree.all.Tree.Permission := Read_Write;

                  Set_Perm_Extensions (Tree, Read_Write);

                  --  Normalize the permission tree

                  Dummy := Set_Perm_Prefixes_Assign (N);
               end;

            --  Check permission W

            when Borrow_Out =>
               if Perm_N not in Write_Perm then
                  Perm_Error (N, Write_Only, Perm_N);
               end if;

               declare
                  --  Set permission to No to the path and any of its prefixes

                  Tree : constant Perm_Tree_Access :=
                    Set_Perm_Prefixes_Borrow_Out (N);

               begin
                  if Tree = null then
                     --  We went through a function call, no permission to
                     --  modify.

                     return;
                  end if;

                  --  Set permissions to No on any strict extension of the path

                  Set_Perm_Extensions (Tree, No_Access);
               end;

            when Observe =>
               if Perm_N not in Read_Perm then
                  Perm_Error (N, Read_Only, Perm_N);
               end if;

               if Is_By_Copy_Type (Etype (N)) then
                  return;
               end if;

               declare
                  --  Set permission to No on the path and any of its prefixes

                  Tree : constant Perm_Tree_Access :=
                    Set_Perm_Prefixes_Observe (N);

               begin
                  if Tree = null then
                     --  We went through a function call, no permission to
                     --  modify.

                     return;
                  end if;

                  --  Set permissions to No on any strict extension of the path

                  Set_Perm_Extensions (Tree, Read_Only);
               end;
         end case;
      end;
   end Process_Path;

   -------------------------
   -- Return_Declarations --
   -------------------------

   procedure Return_Declarations (L : List_Id) is

      procedure Return_Declaration (Decl : Node_Id);
      --  Check correct permissions for every declared object

      ------------------------
      -- Return_Declaration --
      ------------------------

      procedure Return_Declaration (Decl : Node_Id) is
      begin
         if Nkind (Decl) = N_Object_Declaration then
            --  Check RW for object declared, unless the object has never been
            --  initialized.

            if Get (Current_Initialization_Map,
                    Unique_Entity (Defining_Identifier (Decl))) = False
            then
               return;
            end if;

            --  We ignore shallow unaliased. They are checked in flow analysis,
            --  allowing backward compatibility.

            if not Has_Alias (Defining_Identifier (Decl))
              and then Is_Shallow (Etype (Defining_Identifier (Decl)))
            then
               return;
            end if;

            declare
               Elem : constant Perm_Tree_Access :=
                 Get (Current_Perm_Env,
                      Unique_Entity (Defining_Identifier (Decl)));

            begin
               if Elem = null then
                  --  Here we are on a declaration. Hence it should have been
                  --  added in the environment when analyzing this node with
                  --  mode Read. Hence it is not possible to find a null
                  --  pointer here.

                  --  Hash_Table_Error
                  raise Program_Error;
               end if;

               if Permission (Elem) /= Read_Write then
                  Perm_Error (Decl, Read_Write, Permission (Elem));
               end if;
            end;
         end if;
      end Return_Declaration;

      --  Local Variables

      N : Node_Id;

   --  Start of processing for Return_Declarations

   begin
      N := First (L);
      while Present (N) loop
         Return_Declaration (N);
         Next (N);
      end loop;
   end Return_Declarations;

   --------------------
   -- Return_Globals --
   --------------------

   procedure Return_Globals (Subp : Entity_Id) is

      procedure Return_Globals_From_List
        (First_Item : Node_Id;
         Kind       : Formal_Kind);
      --  Return global items from the list starting at Item

      procedure Return_Globals_Of_Mode (Global_Mode : Name_Id);
      --  Return global items for the mode Global_Mode

      ------------------------------
      -- Return_Globals_From_List --
      ------------------------------

      procedure Return_Globals_From_List
        (First_Item : Node_Id;
         Kind       : Formal_Kind)
      is
         Item : Node_Id := First_Item;
         E    : Entity_Id;

      begin
         while Present (Item) loop
            E := Entity (Item);

            --  Ignore abstract states, which play no role in pointer aliasing

            if Ekind (E) = E_Abstract_State then
               null;
            else
               Return_Parameter_Or_Global (E, Kind, Subp);
            end if;
            Next_Global (Item);
         end loop;
      end Return_Globals_From_List;

      ----------------------------
      -- Return_Globals_Of_Mode --
      ----------------------------

      procedure Return_Globals_Of_Mode (Global_Mode : Name_Id) is
         Kind : Formal_Kind;

      begin
         case Global_Mode is
            when Name_Input | Name_Proof_In =>
               Kind := E_In_Parameter;
            when Name_Output =>
               Kind := E_Out_Parameter;
            when Name_In_Out =>
               Kind := E_In_Out_Parameter;
            when others =>
               raise Program_Error;
         end case;

         --  Return both global items from Global and Refined_Global pragmas

         Return_Globals_From_List (First_Global (Subp, Global_Mode), Kind);
         Return_Globals_From_List
           (First_Global (Subp, Global_Mode, Refined => True), Kind);
      end Return_Globals_Of_Mode;

   --  Start of processing for Return_Globals

   begin
      Return_Globals_Of_Mode (Name_Proof_In);
      Return_Globals_Of_Mode (Name_Input);
      Return_Globals_Of_Mode (Name_Output);
      Return_Globals_Of_Mode (Name_In_Out);
   end Return_Globals;

   --------------------------------
   -- Return_Parameter_Or_Global --
   --------------------------------

   procedure Return_Parameter_Or_Global
     (Id   : Entity_Id;
      Mode : Formal_Kind;
      Subp : Entity_Id)
   is
      Elem : constant Perm_Tree_Access := Get (Current_Perm_Env, Id);
      pragma Assert (Elem /= null);

   begin
      --  Shallow unaliased parameters and globals cannot introduce pointer
      --  aliasing.

      if not Has_Alias (Id) and then Is_Shallow (Etype (Id)) then
         null;

      --  Observed IN parameters and globals need not return a permission to
      --  the caller.

      elsif Mode = E_In_Parameter and then not Is_Borrowed_In (Id) then
         null;

      --  All other parameters and globals should return with mode RW to the
      --  caller.

      else
         if Permission (Elem) /= Read_Write then
            Perm_Error_Subprogram_End
              (E          => Id,
               Subp       => Subp,
               Perm       => Read_Write,
               Found_Perm => Permission (Elem));
         end if;
      end if;
   end Return_Parameter_Or_Global;

   -----------------------
   -- Return_Parameters --
   -----------------------

   procedure Return_Parameters (Subp : Entity_Id) is
      Formal : Entity_Id;

   begin
      Formal := First_Formal (Subp);
      while Present (Formal) loop
         Return_Parameter_Or_Global (Formal, Ekind (Formal), Subp);
         Next_Formal (Formal);
      end loop;
   end Return_Parameters;

   -------------------------
   -- Set_Perm_Extensions --
   -------------------------

   procedure Set_Perm_Extensions
     (T : Perm_Tree_Access;
      P : Perm_Kind)
   is
      procedure Free_Perm_Tree_Children (T : Perm_Tree_Access);

      procedure Free_Perm_Tree_Children (T : Perm_Tree_Access)
      is
      begin
         case Kind (T) is
            when Entire_Object =>
               null;

            when Reference =>
               Free_Perm_Tree (T.all.Tree.Get_All);

            when Array_Component =>
               Free_Perm_Tree (T.all.Tree.Get_Elem);

            --  Free every Component subtree

            when Record_Component =>
               declare
                  Comp : Perm_Tree_Access;

               begin
                  Comp := Perm_Tree_Maps.Get_First (Component (T));
                  while Comp /= null loop
                     Free_Perm_Tree (Comp);
                     Comp := Perm_Tree_Maps.Get_Next (Component (T));
                  end loop;

                  Free_Perm_Tree (T.all.Tree.Other_Components);
               end;
         end case;
      end Free_Perm_Tree_Children;

      Son : constant Perm_Tree :=
        Perm_Tree'
          (Kind                => Entire_Object,
           Is_Node_Deep        => Is_Node_Deep (T),
           Permission          => Permission (T),
           Children_Permission => P);

   begin
      Free_Perm_Tree_Children (T);
      T.all.Tree := Son;
   end Set_Perm_Extensions;

   ------------------------------
   -- Set_Perm_Extensions_Move --
   ------------------------------

   procedure Set_Perm_Extensions_Move
     (T : Perm_Tree_Access;
      E : Entity_Id)
   is
   begin
      if not Is_Node_Deep (T) then
         --  We are a shallow extension with same number of .all

         Set_Perm_Extensions (T, Read_Write);
         return;
      end if;

      --  We are a deep extension here (or the moved deep path)

      T.all.Tree.Permission := Write_Only;

      case T.all.Tree.Kind is
         --  Unroll the tree depending on the type

         when Entire_Object =>
            case Ekind (E) is
               when Scalar_Kind
                  | E_String_Literal_Subtype
               =>
                  Set_Perm_Extensions (T, No_Access);

               --  No need to unroll here, directly put sons to No_Access

               when Access_Kind =>
                  if Ekind (E) in Access_Subprogram_Kind then
                     null;
                  else
                     Set_Perm_Extensions (T, No_Access);
                  end if;

               --  No unrolling done, too complicated

               when E_Class_Wide_Subtype
                  | E_Class_Wide_Type
                  | E_Incomplete_Type
                  | E_Incomplete_Subtype
                  | E_Exception_Type
                  | E_Task_Type
                  | E_Task_Subtype
               =>
                  Set_Perm_Extensions (T, No_Access);

               --  Expand the tree. Replace the node with Array component.

               when E_Array_Type
                  | E_Array_Subtype =>
                  declare
                     Son : Perm_Tree_Access;

                  begin
                     Son := new Perm_Tree_Wrapper'
                       (Tree =>
                          (Kind                => Entire_Object,
                           Is_Node_Deep        => Is_Node_Deep (T),
                           Permission          => Read_Write,
                           Children_Permission => Read_Write));

                     Set_Perm_Extensions_Move (Son, Component_Type (E));

                     --  We change the current node from Entire_Object to
                     --  Reference with Write_Only and the previous son.

                     pragma Assert (Is_Node_Deep (T));

                     T.all.Tree := (Kind         => Array_Component,
                                    Is_Node_Deep => Is_Node_Deep (T),
                                    Permission   => Write_Only,
                                    Get_Elem     => Son);
                  end;

               --  Unroll, and set permission extensions with component type

               when E_Record_Type
                  | E_Record_Subtype
                  | E_Record_Type_With_Private
                  | E_Record_Subtype_With_Private
                  | E_Protected_Type
                  | E_Protected_Subtype
               =>
                  declare
                     --  Expand the tree. Replace the node with
                     --  Record_Component.

                     Elem : Node_Id;

                     Son : Perm_Tree_Access;

                  begin
                     --  We change the current node from Entire_Object to
                     --  Record_Component with same permission and an empty
                     --  hash table as component list.

                     pragma Assert (Is_Node_Deep (T));

                     T.all.Tree :=
                       (Kind             => Record_Component,
                        Is_Node_Deep     => Is_Node_Deep (T),
                        Permission       => Write_Only,
                        Component        => Perm_Tree_Maps.Nil,
                        Other_Components =>
                           new Perm_Tree_Wrapper'
                          (Tree =>
                               (Kind                => Entire_Object,
                                Is_Node_Deep        => True,
                                Permission          => Read_Write,
                                Children_Permission => Read_Write)
                          )
                       );

                     --  We fill the hash table with all sons of the record,
                     --  with basic Entire_Objects nodes.
                     Elem := First_Component_Or_Discriminant (E);
                     while Present (Elem) loop
                        Son := new Perm_Tree_Wrapper'
                          (Tree =>
                             (Kind                => Entire_Object,
                              Is_Node_Deep        => Is_Deep (Etype (Elem)),
                              Permission          => Read_Write,
                              Children_Permission => Read_Write));

                        Set_Perm_Extensions_Move (Son, Etype (Elem));

                        Perm_Tree_Maps.Set
                          (T.all.Tree.Component, Elem, Son);

                        Next_Component_Or_Discriminant (Elem);
                     end loop;
                  end;

               when E_Private_Type
                  | E_Private_Subtype
                  | E_Limited_Private_Type
                  | E_Limited_Private_Subtype
               =>
                  Set_Perm_Extensions_Move (T, Underlying_Type (E));

               when others =>
                  raise Program_Error;
            end case;

         when Reference =>
            --  Now the son does not have the same number of .all
            Set_Perm_Extensions (T, No_Access);

         when Array_Component =>
            Set_Perm_Extensions_Move (Get_Elem (T), Component_Type (E));

         when Record_Component =>
            declare
               Comp : Perm_Tree_Access;
               It : Node_Id;

            begin
               It := First_Component_Or_Discriminant (E);
               while It /= Empty loop
                  Comp := Perm_Tree_Maps.Get (Component (T), It);
                  pragma Assert (Comp /= null);
                  Set_Perm_Extensions_Move (Comp, It);
                  It := Next_Component_Or_Discriminant (E);
               end loop;

               Set_Perm_Extensions (Other_Components (T), No_Access);
            end;
      end case;
   end Set_Perm_Extensions_Move;

   ------------------------------
   -- Set_Perm_Prefixes_Assign --
   ------------------------------

   function Set_Perm_Prefixes_Assign
     (N : Node_Id)
       return Perm_Tree_Access
   is
      C : constant Perm_Tree_Access := Get_Perm_Tree (N);

   begin
      pragma Assert (Current_Checking_Mode = Assign);

      --  The function should not be called if has_function_component

      pragma Assert (C /= null);

      case Kind (C) is
         when Entire_Object =>
            pragma Assert (Children_Permission (C) = Read_Write);
            C.all.Tree.Permission := Read_Write;

         when Reference =>
            pragma Assert (Get_All (C) /= null);

            C.all.Tree.Permission :=
              Lub (Permission (C), Permission (Get_All (C)));

         when Array_Component =>
            pragma Assert (C.all.Tree.Get_Elem /= null);

            --  Given that it is not possible to know which element has been
            --  assigned, then the permissions do not get changed in case of
            --  Array_Component.

            null;

         when Record_Component =>
            declare
               Perm : Perm_Kind := Read_Write;

               Comp : Perm_Tree_Access;

            begin
               --  We take the Glb of all the descendants, and then update the
               --  permission of the node with it.
               Comp := Perm_Tree_Maps.Get_First (Component (C));
               while Comp /= null loop
                  Perm := Glb (Perm, Permission (Comp));
                  Comp := Perm_Tree_Maps.Get_Next (Component (C));
               end loop;

               Perm := Glb (Perm, Permission (Other_Components (C)));

               C.all.Tree.Permission := Lub (Permission (C), Perm);
            end;
      end case;

      case Nkind (N) is
         --  Base identifier. End recursion here.

         when N_Identifier
            | N_Expanded_Name
            | N_Defining_Identifier
         =>
            return null;

         when N_Type_Conversion
            | N_Unchecked_Type_Conversion
            | N_Qualified_Expression
         =>
            return Set_Perm_Prefixes_Assign (Expression (N));

         when N_Parameter_Specification =>
            raise Program_Error;

         --  Continue recursion on prefix

         when N_Selected_Component =>
            return Set_Perm_Prefixes_Assign (Prefix (N));

         --  Continue recursion on prefix

         when N_Indexed_Component
            | N_Slice
         =>
            return Set_Perm_Prefixes_Assign (Prefix (N));

         --  Continue recursion on prefix

         when N_Explicit_Dereference =>
            return Set_Perm_Prefixes_Assign (Prefix (N));

         when N_Function_Call =>
            raise Program_Error;

         when others =>
            raise Program_Error;

      end case;
   end Set_Perm_Prefixes_Assign;

   ----------------------------------
   -- Set_Perm_Prefixes_Borrow_Out --
   ----------------------------------

   function Set_Perm_Prefixes_Borrow_Out
     (N : Node_Id)
       return Perm_Tree_Access
   is
   begin
      pragma Assert (Current_Checking_Mode = Borrow_Out);

      case Nkind (N) is
         --  Base identifier. Set permission to No.

         when N_Identifier
            | N_Expanded_Name
         =>
            declare
               P : constant Node_Id := Entity (N);

               C : constant Perm_Tree_Access :=
                 Get (Current_Perm_Env, Unique_Entity (P));

               pragma Assert (C /= null);

            begin
               --  Setting the initialization map to True, so that this
               --  variable cannot be ignored anymore when looking at end
               --  of elaboration of package.

               Set (Current_Initialization_Map, Unique_Entity (P), True);

               C.all.Tree.Permission := No_Access;
               return C;
            end;

         when N_Type_Conversion
            | N_Unchecked_Type_Conversion
            | N_Qualified_Expression
         =>
            return Set_Perm_Prefixes_Borrow_Out (Expression (N));

         when N_Parameter_Specification
            | N_Defining_Identifier
         =>
            raise Program_Error;

            --  We set the permission tree of its prefix, and then we extract
            --  our subtree from the returned pointer and assign an adequate
            --  permission to it, if unfolded. If folded, we unroll the tree
            --  in one step.

         when N_Selected_Component =>
            declare
               C : constant Perm_Tree_Access :=
                 Set_Perm_Prefixes_Borrow_Out (Prefix (N));

            begin
               if C = null then
                  --  We went through a function call, do nothing

                  return null;
               end if;

               --  The permission of the returned node should be No

               pragma Assert (Permission (C) = No_Access);

               pragma Assert (Kind (C) = Entire_Object
                              or else Kind (C) = Record_Component);

               if Kind (C) = Record_Component then
                  --  The tree is unfolded. We just modify the permission and
                  --  return the record subtree.

                  declare
                     Selected_Component : constant Entity_Id :=
                       Entity (Selector_Name (N));

                     Selected_C : Perm_Tree_Access :=
                       Perm_Tree_Maps.Get
                         (Component (C), Selected_Component);

                  begin
                     if Selected_C = null then
                        Selected_C := Other_Components (C);
                     end if;

                     pragma Assert (Selected_C /= null);

                     Selected_C.all.Tree.Permission := No_Access;

                     return Selected_C;
                  end;
               elsif Kind (C) = Entire_Object then
                  declare
                     --  Expand the tree. Replace the node with
                     --  Record_Component.

                     Elem : Node_Id;

                     --  Create an empty hash table

                     Hashtbl : Perm_Tree_Maps.Instance;

                     --  We create the unrolled nodes, that will all have same
                     --  permission than parent.

                     Son : Perm_Tree_Access;

                     ChildrenPerm : constant Perm_Kind :=
                       Children_Permission (C);

                  begin
                     --  We change the current node from Entire_Object to
                     --  Record_Component with same permission and an empty
                     --  hash table as component list.

                     C.all.Tree :=
                       (Kind         => Record_Component,
                        Is_Node_Deep => Is_Node_Deep (C),
                        Permission   => Permission (C),
                        Component    => Hashtbl,
                        Other_Components =>
                           new Perm_Tree_Wrapper'
                          (Tree =>
                               (Kind                => Entire_Object,
                                Is_Node_Deep        => True,
                                Permission          => ChildrenPerm,
                                Children_Permission => ChildrenPerm)
                          ));

                     --  We fill the hash table with all sons of the record,
                     --  with basic Entire_Objects nodes.
                     Elem := First_Component_Or_Discriminant
                       (Etype (Prefix (N)));

                     while Present (Elem) loop
                        Son := new Perm_Tree_Wrapper'
                          (Tree =>
                             (Kind                => Entire_Object,
                              Is_Node_Deep        => Is_Deep (Etype (Elem)),
                              Permission          => ChildrenPerm,
                              Children_Permission => ChildrenPerm));

                        Perm_Tree_Maps.Set
                          (C.all.Tree.Component, Elem, Son);

                        Next_Component_Or_Discriminant (Elem);
                     end loop;

                     --  Now we set the right field to No_Access, and then we
                     --  return the tree to the sons, so that the recursion can
                     --  continue.

                     declare
                        Selected_Component : constant Entity_Id :=
                          Entity (Selector_Name (N));

                        Selected_C : Perm_Tree_Access :=
                          Perm_Tree_Maps.Get
                            (Component (C), Selected_Component);

                     begin
                        if Selected_C = null then
                           Selected_C := Other_Components (C);
                        end if;

                        pragma Assert (Selected_C /= null);

                        Selected_C.all.Tree.Permission := No_Access;

                        return Selected_C;
                     end;
                  end;
               else
                  raise Program_Error;
               end if;
            end;

            --  We set the permission tree of its prefix, and then we extract
            --  from the returned pointer the subtree and assign an adequate
            --  permission to it, if unfolded. If folded, we unroll the tree in
            --  one step.

         when N_Indexed_Component
            | N_Slice
         =>
            declare
               C : constant Perm_Tree_Access :=
                 Set_Perm_Prefixes_Borrow_Out (Prefix (N));

            begin
               if C = null then
                  --  We went through a function call, do nothing

                  return null;
               end if;

               --  The permission of the returned node should be either W
               --  (because the recursive call sets <= Write_Only) or No
               --  (if another path has been moved with 'Access).

               pragma Assert (Permission (C) = No_Access);

               pragma Assert (Kind (C) = Entire_Object
                              or else Kind (C) = Array_Component);

               if Kind (C) = Array_Component then
                  --  The tree is unfolded. We just modify the permission and
                  --  return the elem subtree.

                  pragma Assert (Get_Elem (C) /= null);

                  C.all.Tree.Get_Elem.all.Tree.Permission := No_Access;

                  return Get_Elem (C);
               elsif Kind (C) = Entire_Object then
                  declare
                     --  Expand the tree. Replace node with Array_Component.

                     Son : Perm_Tree_Access;

                  begin
                     Son := new Perm_Tree_Wrapper'
                       (Tree =>
                          (Kind                => Entire_Object,
                           Is_Node_Deep        => Is_Node_Deep (C),
                           Permission          => No_Access,
                           Children_Permission => Children_Permission (C)));

                     --  We change the current node from Entire_Object
                     --  to Array_Component with same permission and the
                     --  previously defined son.

                     C.all.Tree := (Kind         => Array_Component,
                                    Is_Node_Deep => Is_Node_Deep (C),
                                    Permission   => No_Access,
                                    Get_Elem     => Son);

                     return Get_Elem (C);
                  end;
               else
                  raise Program_Error;
               end if;
            end;

            --  We set the permission tree of its prefix, and then we extract
            --  from the returned pointer the subtree and assign an adequate
            --  permission to it, if unfolded. If folded, we unroll the tree
            --  at one step.

         when N_Explicit_Dereference =>
            declare
               C : constant Perm_Tree_Access :=
                 Set_Perm_Prefixes_Borrow_Out (Prefix (N));

            begin
               if C = null then
                  --  We went through a function call. Do nothing.

                  return null;
               end if;

               --  The permission of the returned node should be No

               pragma Assert (Permission (C) = No_Access);
               pragma Assert (Kind (C) = Entire_Object
                              or else Kind (C) = Reference);

               if Kind (C) = Reference then
                  --  The tree is unfolded. We just modify the permission and
                  --  return the elem subtree.

                  pragma Assert (Get_All (C) /= null);

                  C.all.Tree.Get_All.all.Tree.Permission := No_Access;

                  return Get_All (C);
               elsif Kind (C) = Entire_Object then
                  declare
                     --  Expand the tree. Replace the node with Reference.

                     Son : Perm_Tree_Access;

                  begin
                     Son := new Perm_Tree_Wrapper'
                       (Tree =>
                          (Kind                => Entire_Object,
                           Is_Node_Deep        => Is_Deep (Etype (N)),
                           Permission          => No_Access,
                           Children_Permission => Children_Permission (C)));

                     --  We change the current node from Entire_Object to
                     --  Reference with No_Access and the previous son.

                     pragma Assert (Is_Node_Deep (C));

                     C.all.Tree := (Kind         => Reference,
                                    Is_Node_Deep => Is_Node_Deep (C),
                                    Permission   => No_Access,
                                    Get_All      => Son);

                     return Get_All (C);
                  end;
               else
                  raise Program_Error;
               end if;
            end;

         when N_Function_Call =>
            return null;

         when others =>
            raise Program_Error;
      end case;
   end Set_Perm_Prefixes_Borrow_Out;

   ----------------------------
   -- Set_Perm_Prefixes_Move --
   ----------------------------

   function Set_Perm_Prefixes_Move
     (N : Node_Id; Mode : Checking_Mode)
       return Perm_Tree_Access
   is
   begin
      case Nkind (N) is

         --  Base identifier. Set permission to W or No depending on Mode.

         when N_Identifier
            | N_Expanded_Name
         =>
            declare
               P : constant Node_Id := Entity (N);
               C : constant Perm_Tree_Access :=
                     Get (Current_Perm_Env, Unique_Entity (P));

            begin
               --  The base tree can be RW (first move from this base path) or
               --  W (already some extensions values moved), or even No_Access
               --  (extensions moved with 'Access). But it cannot be Read_Only
               --  (we get an error).

               if Permission (C) = Read_Only then
                  raise Unrecoverable_Error;
               end if;

               --  Setting the initialization map to True, so that this
               --  variable cannot be ignored anymore when looking at end
               --  of elaboration of package.

               Set (Current_Initialization_Map, Unique_Entity (P), True);

               if C = null then
                  --  No null possible here, there are no parents for the path.
                  --  This means we are using a global variable without adding
                  --  it in environment with a global aspect.

                  Illegal_Global_Usage (N);
               end if;

               if Mode = Super_Move then
                  C.all.Tree.Permission := No_Access;
               else
                  C.all.Tree.Permission := Glb (Write_Only, Permission (C));
               end if;

               return C;
            end;

         when N_Type_Conversion
            | N_Unchecked_Type_Conversion
            | N_Qualified_Expression
         =>
            return Set_Perm_Prefixes_Move (Expression (N), Mode);

         when N_Parameter_Specification
            | N_Defining_Identifier
         =>
            raise Program_Error;

            --  We set the permission tree of its prefix, and then we extract
            --  from the returned pointer our subtree and assign an adequate
            --  permission to it, if unfolded. If folded, we unroll the tree
            --  at one step.

         when N_Selected_Component =>
            declare
               C : constant Perm_Tree_Access :=
                 Set_Perm_Prefixes_Move (Prefix (N), Mode);

            begin
               if C = null then
                  --  We went through a function call, do nothing

                  return null;
               end if;

               --  The permission of the returned node should be either W
               --  (because the recursive call sets <= Write_Only) or No
               --  (if another path has been moved with 'Access).

               pragma Assert (Permission (C) = No_Access
                              or else Permission (C) = Write_Only);

               if Mode = Super_Move then
                  --  The permission of the returned node should be No (thanks
                  --  to the recursion).

                  pragma Assert (Permission (C) = No_Access);
                  null;
               end if;

               pragma Assert (Kind (C) = Entire_Object
                              or else Kind (C) = Record_Component);

               if Kind (C) = Record_Component then
                  --  The tree is unfolded. We just modify the permission and
                  --  return the record subtree.

                  declare
                     Selected_Component : constant Entity_Id :=
                       Entity (Selector_Name (N));

                     Selected_C : Perm_Tree_Access :=
                       Perm_Tree_Maps.Get
                         (Component (C), Selected_Component);

                  begin
                     if Selected_C = null then
                        --  If the hash table returns no element, then we fall
                        --  into the part of Other_Components.
                        pragma Assert (Is_Tagged_Type (Etype (Prefix (N))));

                        Selected_C := Other_Components (C);
                     end if;

                     pragma Assert (Selected_C /= null);

                     --  The Selected_C can have permissions:
                     --  RW : first move in this path
                     --  W  : Already other moves in this path
                     --  No : Already other moves with 'Access

                     pragma Assert (Permission (Selected_C) /= Read_Only);
                     if Mode = Super_Move then
                        Selected_C.all.Tree.Permission := No_Access;
                     else
                        Selected_C.all.Tree.Permission :=
                          Glb (Write_Only, Permission (Selected_C));

                     end if;

                     return Selected_C;
                  end;
               elsif Kind (C) = Entire_Object then
                  declare
                     --  Expand the tree. Replace the node with
                     --  Record_Component.

                     Elem : Node_Id;

                     --  Create an empty hash table

                     Hashtbl : Perm_Tree_Maps.Instance;

                     --  We are in Move or Super_Move mode, hence we can assume
                     --  that the Children_permission is RW, given that there
                     --  are no other paths that could have been moved.

                     pragma Assert (Children_Permission (C) = Read_Write);

                     --  We create the unrolled nodes, that will all have RW
                     --  permission given that we are in move mode. We will
                     --  then set the right node to W.

                     Son : Perm_Tree_Access;

                  begin
                     --  We change the current node from Entire_Object to
                     --  Record_Component with same permission and an empty
                     --  hash table as component list.

                     C.all.Tree :=
                       (Kind             => Record_Component,
                        Is_Node_Deep     => Is_Node_Deep (C),
                        Permission       => Permission (C),
                        Component        => Hashtbl,
                        Other_Components =>
                           new Perm_Tree_Wrapper'
                          (Tree =>
                               (Kind                => Entire_Object,
                                Is_Node_Deep        => True,
                                Permission          => Read_Write,
                                Children_Permission => Read_Write)
                          ));

                     --  We fill the hash table with all sons of the record,
                     --  with basic Entire_Objects nodes.
                     Elem := First_Component_Or_Discriminant
                       (Etype (Prefix (N)));

                     while Present (Elem) loop
                        Son := new Perm_Tree_Wrapper'
                          (Tree =>
                             (Kind                => Entire_Object,
                              Is_Node_Deep        => Is_Deep (Etype (Elem)),
                              Permission          => Read_Write,
                              Children_Permission => Read_Write));

                        Perm_Tree_Maps.Set
                          (C.all.Tree.Component, Elem, Son);

                        Next_Component_Or_Discriminant (Elem);
                     end loop;

                     --  Now we set the right field to Write_Only or No_Access
                     --  depending on mode, and then we return the tree to the
                     --  sons, so that the recursion can continue.

                     declare
                        Selected_Component : constant Entity_Id :=
                          Entity (Selector_Name (N));

                        Selected_C : Perm_Tree_Access :=
                          Perm_Tree_Maps.Get
                            (Component (C), Selected_Component);

                     begin
                        if Selected_C = null then
                           Selected_C := Other_Components (C);
                        end if;

                        pragma Assert (Selected_C /= null);

                        --  Given that this is a newly created Select_C, we can
                        --  safely assume that its permission is Read_Write.

                        pragma Assert (Permission (Selected_C) =
                                         Read_Write);

                        if Mode = Super_Move then
                           Selected_C.all.Tree.Permission := No_Access;
                        else
                           Selected_C.all.Tree.Permission := Write_Only;
                        end if;

                        return Selected_C;
                     end;
                  end;
               else
                  raise Program_Error;
               end if;
            end;

            --  We set the permission tree of its prefix, and then we extract
            --  from the returned pointer the subtree and assign an adequate
            --  permission to it, if unfolded. If folded, we unroll the tree
            --  at one step.

         when N_Indexed_Component
            | N_Slice
         =>
            declare
               C : constant Perm_Tree_Access :=
                 Set_Perm_Prefixes_Move (Prefix (N), Mode);

            begin
               if C = null then
                  --  We went through a function call, do nothing

                  return null;
               end if;

               --  The permission of the returned node should be either
               --  W (because the recursive call sets <= Write_Only)
               --  or No (if another path has been moved with 'Access)

               if Mode = Super_Move then
                  pragma Assert (Permission (C) = No_Access);
                  null;
               else
                  pragma Assert (Permission (C) = Write_Only
                                 or else Permission (C) = No_Access);
                  null;
               end if;

               pragma Assert (Kind (C) = Entire_Object
                              or else Kind (C) = Array_Component);

               if Kind (C) = Array_Component then
                  --  The tree is unfolded. We just modify the permission and
                  --  return the elem subtree.

                  if Get_Elem (C) = null then
                     --  Hash_Table_Error
                     raise Program_Error;
                  end if;

                  --  The Get_Elem can have permissions :
                  --  RW : first move in this path
                  --  W  : Already other moves in this path
                  --  No : Already other moves with 'Access

                  pragma Assert (Permission (Get_Elem (C)) /= Read_Only);

                  if Mode = Super_Move then
                     C.all.Tree.Get_Elem.all.Tree.Permission := No_Access;
                  else
                     C.all.Tree.Get_Elem.all.Tree.Permission :=
                       Glb (Write_Only, Permission (Get_Elem (C)));
                  end if;

                  return Get_Elem (C);
               elsif Kind (C) = Entire_Object then
                  declare
                     --  Expand the tree. Replace node with Array_Component.

                     --  We are in move mode, hence we can assume that the
                     --  Children_permission is RW.

                     pragma Assert (Children_Permission (C) = Read_Write);

                     Son : Perm_Tree_Access;

                  begin
                     Son := new Perm_Tree_Wrapper'
                       (Tree =>
                          (Kind                => Entire_Object,
                           Is_Node_Deep        => Is_Node_Deep (C),
                           Permission          => Read_Write,
                           Children_Permission => Read_Write));

                     if Mode = Super_Move then
                        Son.all.Tree.Permission := No_Access;
                     else
                        Son.all.Tree.Permission := Write_Only;
                     end if;

                     --  We change the current node from Entire_Object
                     --  to Array_Component with same permission and the
                     --  previously defined son.

                     C.all.Tree := (Kind         => Array_Component,
                                    Is_Node_Deep => Is_Node_Deep (C),
                                    Permission   => Permission (C),
                                    Get_Elem     => Son);

                     return Get_Elem (C);
                  end;
               else
                  raise Program_Error;
               end if;
            end;

            --  We set the permission tree of its prefix, and then we extract
            --  from the returned pointer the subtree and assign an adequate
            --  permission to it, if unfolded. If folded, we unroll the tree
            --  at one step.

         when N_Explicit_Dereference =>
            declare
               C : constant Perm_Tree_Access :=
                 Set_Perm_Prefixes_Move (Prefix (N), Move);

            begin
               if C = null then
                  --  We went through a function call: do nothing

                  return null;
               end if;

               --  The permission of the returned node should be only
               --  W (because the recursive call sets <= Write_Only)
               --  No is NOT POSSIBLE here

               pragma Assert (Permission (C) = Write_Only);

               pragma Assert (Kind (C) = Entire_Object
                              or else Kind (C) = Reference);

               if Kind (C) = Reference then
                  --  The tree is unfolded. We just modify the permission and
                  --  return the elem subtree.

                  if Get_All (C) = null then
                     --  Hash_Table_Error
                     raise Program_Error;
                  end if;

                  --  The Get_All can have permissions :
                  --  RW : first move in this path
                  --  W  : Already other moves in this path
                  --  No : Already other moves with 'Access

                  pragma Assert (Permission (Get_All (C)) /= Read_Only);

                  if Mode = Super_Move then
                     C.all.Tree.Get_All.all.Tree.Permission := No_Access;
                  else
                     Get_All (C).all.Tree.Permission :=
                       Glb (Write_Only, Permission (Get_All (C)));
                  end if;
                  return Get_All (C);
               elsif Kind (C) = Entire_Object then
                  declare
                     --  Expand the tree. Replace the node with Reference.

                     --  We are in Move or Super_Move mode, hence we can assume
                     --  that the Children_permission is RW.

                     pragma Assert (Children_Permission (C) = Read_Write);

                     Son : Perm_Tree_Access;

                  begin
                     Son := new Perm_Tree_Wrapper'
                       (Tree =>
                          (Kind                => Entire_Object,
                           Is_Node_Deep        => Is_Deep (Etype (N)),
                           Permission          => Read_Write,
                           Children_Permission => Read_Write));

                     if Mode = Super_Move then
                        Son.all.Tree.Permission := No_Access;
                     else
                        Son.all.Tree.Permission := Write_Only;
                     end if;

                     --  We change the current node from Entire_Object to
                     --  Reference with Write_Only and the previous son.

                     pragma Assert (Is_Node_Deep (C));

                     C.all.Tree := (Kind         => Reference,
                                    Is_Node_Deep => Is_Node_Deep (C),
                                    Permission   => Write_Only,
                                    --  Write_only is equal to C.Permission
                                    Get_All      => Son);

                     return Get_All (C);
                  end;
               else
                  raise Program_Error;
               end if;
            end;

         when N_Function_Call =>
            return null;

         when others =>
            raise Program_Error;
      end case;

   end Set_Perm_Prefixes_Move;

   -------------------------------
   -- Set_Perm_Prefixes_Observe --
   -------------------------------

   function Set_Perm_Prefixes_Observe
     (N : Node_Id)
      return Perm_Tree_Access
   is
   begin
      pragma Assert (Current_Checking_Mode = Observe);

      case Nkind (N) is
         --  Base identifier. Set permission to R.

         when N_Identifier
            | N_Expanded_Name
            | N_Defining_Identifier
         =>
            declare
               P : Node_Id;
               C : Perm_Tree_Access;

            begin
               if Nkind (N) = N_Defining_Identifier then
                  P := N;
               else
                  P := Entity (N);
               end if;

               C := Get (Current_Perm_Env, Unique_Entity (P));
               --  Setting the initialization map to True, so that this
               --  variable cannot be ignored anymore when looking at end
               --  of elaboration of package.

               Set (Current_Initialization_Map, Unique_Entity (P), True);

               if C = null then
                  --  No null possible here, there are no parents for the path.
                  --  This means we are using a global variable without adding
                  --  it in environment with a global aspect.

                  Illegal_Global_Usage (N);
               end if;

               C.all.Tree.Permission := Glb (Read_Only, Permission (C));

               return C;
            end;

         when N_Type_Conversion
            | N_Unchecked_Type_Conversion
            | N_Qualified_Expression
         =>
            return Set_Perm_Prefixes_Observe (Expression (N));

         when N_Parameter_Specification =>
            raise Program_Error;

            --  We set the permission tree of its prefix, and then we extract
            --  from the returned pointer our subtree and assign an adequate
            --  permission to it, if unfolded. If folded, we unroll the tree
            --  at one step.

         when N_Selected_Component =>
            declare
               C : constant Perm_Tree_Access :=
                 Set_Perm_Prefixes_Observe (Prefix (N));

            begin
               if C = null then
                  --  We went through a function call, do nothing

                  return null;
               end if;

               pragma Assert (Kind (C) = Entire_Object
                              or else Kind (C) = Record_Component);

               if Kind (C) = Record_Component then
                  --  The tree is unfolded. We just modify the permission and
                  --  return the record subtree. We put the permission to the
                  --  glb of read_only and its current permission, to consider
                  --  the case of observing x.y while x.z has been moved. Then
                  --  x should be No_Access.

                  declare
                     Selected_Component : constant Entity_Id :=
                       Entity (Selector_Name (N));

                     Selected_C : Perm_Tree_Access :=
                       Perm_Tree_Maps.Get
                         (Component (C), Selected_Component);

                  begin
                     if Selected_C = null then
                        Selected_C := Other_Components (C);
                     end if;

                     pragma Assert (Selected_C /= null);

                     Selected_C.all.Tree.Permission :=
                       Glb (Read_Only, Permission (Selected_C));

                     return Selected_C;
                  end;
               elsif Kind (C) = Entire_Object then
                  declare
                     --  Expand the tree. Replace the node with
                     --  Record_Component.

                     Elem : Node_Id;

                     --  Create an empty hash table

                     Hashtbl : Perm_Tree_Maps.Instance;

                     --  We create the unrolled nodes, that will all have RW
                     --  permission given that we are in move mode. We will
                     --  then set the right node to W.

                     Son : Perm_Tree_Access;

                     Child_Perm : constant Perm_Kind :=
                       Children_Permission (C);

                  begin
                     --  We change the current node from Entire_Object to
                     --  Record_Component with same permission and an empty
                     --  hash table as component list.

                     C.all.Tree :=
                       (Kind             => Record_Component,
                        Is_Node_Deep     => Is_Node_Deep (C),
                        Permission       => Permission (C),
                        Component        => Hashtbl,
                        Other_Components =>
                           new Perm_Tree_Wrapper'
                          (Tree =>
                               (Kind                => Entire_Object,
                                Is_Node_Deep        => True,
                                Permission          => Child_Perm,
                                Children_Permission => Child_Perm)
                          ));

                     --  We fill the hash table with all sons of the record,
                     --  with basic Entire_Objects nodes.
                     Elem := First_Component_Or_Discriminant
                       (Etype (Prefix (N)));

                     while Present (Elem) loop
                        Son := new Perm_Tree_Wrapper'
                          (Tree =>
                             (Kind                => Entire_Object,
                              Is_Node_Deep        => Is_Deep (Etype (Elem)),
                              Permission          => Child_Perm,
                              Children_Permission => Child_Perm));

                        Perm_Tree_Maps.Set
                          (C.all.Tree.Component, Elem, Son);

                        Next_Component_Or_Discriminant (Elem);
                     end loop;

                     --  Now we set the right field to Read_Only. and then we
                     --  return the tree to the sons, so that the recursion can
                     --  continue.

                     declare
                        Selected_Component : constant Entity_Id :=
                          Entity (Selector_Name (N));

                        Selected_C : Perm_Tree_Access :=
                          Perm_Tree_Maps.Get
                            (Component (C), Selected_Component);

                     begin
                        if Selected_C = null then
                           Selected_C := Other_Components (C);
                        end if;

                        pragma Assert (Selected_C /= null);

                        Selected_C.all.Tree.Permission :=
                          Glb (Read_Only, Child_Perm);

                        return Selected_C;
                     end;
                  end;
               else
                  raise Program_Error;
               end if;
            end;

         --  We set the permission tree of its prefix, and then we extract from
         --  the returned pointer the subtree and assign an adequate permission
         --  to it, if unfolded. If folded, we unroll the tree at one step.

         when N_Indexed_Component
            | N_Slice
         =>
            declare
               C : constant Perm_Tree_Access :=
                 Set_Perm_Prefixes_Observe (Prefix (N));

            begin
               if C = null then
                  --  We went through a function call, do nothing

                  return null;
               end if;

               pragma Assert (Kind (C) = Entire_Object
                              or else Kind (C) = Array_Component);

               if Kind (C) = Array_Component then
                  --  The tree is unfolded. We just modify the permission and
                  --  return the elem subtree.

                  pragma Assert (Get_Elem (C) /= null);

                  C.all.Tree.Get_Elem.all.Tree.Permission :=
                    Glb (Read_Only, Permission (Get_Elem (C)));

                  return Get_Elem (C);
               elsif Kind (C) = Entire_Object then
                  declare
                     --  Expand the tree. Replace node with Array_Component.

                     Son : Perm_Tree_Access;

                     Child_Perm : constant Perm_Kind :=
                       Glb (Read_Only, Children_Permission (C));

                  begin
                     Son := new Perm_Tree_Wrapper'
                       (Tree =>
                          (Kind                => Entire_Object,
                           Is_Node_Deep        => Is_Node_Deep (C),
                           Permission          => Child_Perm,
                           Children_Permission => Child_Perm));

                     --  We change the current node from Entire_Object
                     --  to Array_Component with same permission and the
                     --  previously defined son.

                     C.all.Tree := (Kind         => Array_Component,
                                    Is_Node_Deep => Is_Node_Deep (C),
                                    Permission   => Child_Perm,
                                    Get_Elem     => Son);

                     return Get_Elem (C);
                  end;

               else
                  raise Program_Error;
               end if;
            end;

         --  We set the permission tree of its prefix, and then we extract from
         --  the returned pointer the subtree and assign an adequate permission
         --  to it, if unfolded. If folded, we unroll the tree at one step.

         when N_Explicit_Dereference =>
            declare
               C : constant Perm_Tree_Access :=
                 Set_Perm_Prefixes_Observe (Prefix (N));

            begin
               if C = null then
                  --  We went through a function call, do nothing

                  return null;
               end if;

               pragma Assert (Kind (C) = Entire_Object
                              or else Kind (C) = Reference);

               if Kind (C) = Reference then
                  --  The tree is unfolded. We just modify the permission and
                  --  return the elem subtree.

                  pragma Assert (Get_All (C) /= null);

                  C.all.Tree.Get_All.all.Tree.Permission :=
                    Glb (Read_Only, Permission (Get_All (C)));

                  return Get_All (C);
               elsif Kind (C) = Entire_Object then
                  declare
                     --  Expand the tree. Replace the node with Reference.

                     Son : Perm_Tree_Access;

                     Child_Perm : constant Perm_Kind :=
                       Glb (Read_Only, Children_Permission (C));

                  begin
                     Son := new Perm_Tree_Wrapper'
                       (Tree =>
                          (Kind                => Entire_Object,
                           Is_Node_Deep        => Is_Deep (Etype (N)),
                           Permission          => Child_Perm,
                           Children_Permission => Child_Perm));

                     --  We change the current node from Entire_Object to
                     --  Reference with Write_Only and the previous son.

                     pragma Assert (Is_Node_Deep (C));

                     C.all.Tree := (Kind         => Reference,
                                    Is_Node_Deep => Is_Node_Deep (C),
                                    Permission   => Child_Perm,
                                    Get_All      => Son);

                     return Get_All (C);
                  end;
               else
                  raise Program_Error;
               end if;
            end;

         when N_Function_Call =>
            return null;

         when others =>
            raise Program_Error;

      end case;
   end Set_Perm_Prefixes_Observe;

   -------------------
   -- Setup_Globals --
   -------------------

   procedure Setup_Globals (Subp : Entity_Id) is

      procedure Setup_Globals_From_List
        (First_Item : Node_Id;
         Kind       : Formal_Kind);
      --  Set up global items from the list starting at Item

      procedure Setup_Globals_Of_Mode (Global_Mode : Name_Id);
      --  Set up global items for the mode Global_Mode

      -----------------------------
      -- Setup_Globals_From_List --
      -----------------------------

      procedure Setup_Globals_From_List
        (First_Item : Node_Id;
         Kind       : Formal_Kind)
      is
         Item : Node_Id := First_Item;
         E    : Entity_Id;

      begin
         while Present (Item) loop
            E := Entity (Item);

            --  Ignore abstract states, which play no role in pointer aliasing

            if Ekind (E) = E_Abstract_State then
               null;
            else
               Setup_Parameter_Or_Global (E, Kind);
            end if;
            Next_Global (Item);
         end loop;
      end Setup_Globals_From_List;

      ---------------------------
      -- Setup_Globals_Of_Mode --
      ---------------------------

      procedure Setup_Globals_Of_Mode (Global_Mode : Name_Id) is
         Kind : Formal_Kind;

      begin
         case Global_Mode is
            when Name_Input | Name_Proof_In =>
               Kind := E_In_Parameter;
            when Name_Output =>
               Kind := E_Out_Parameter;
            when Name_In_Out =>
               Kind := E_In_Out_Parameter;
            when others =>
               raise Program_Error;
         end case;

         --  Set up both global items from Global and Refined_Global pragmas

         Setup_Globals_From_List (First_Global (Subp, Global_Mode), Kind);
         Setup_Globals_From_List
           (First_Global (Subp, Global_Mode, Refined => True), Kind);
      end Setup_Globals_Of_Mode;

   --  Start of processing for Setup_Globals

   begin
      Setup_Globals_Of_Mode (Name_Proof_In);
      Setup_Globals_Of_Mode (Name_Input);
      Setup_Globals_Of_Mode (Name_Output);
      Setup_Globals_Of_Mode (Name_In_Out);
   end Setup_Globals;

   -------------------------------
   -- Setup_Parameter_Or_Global --
   -------------------------------

   procedure Setup_Parameter_Or_Global
     (Id   : Entity_Id;
      Mode : Formal_Kind)
   is
      Elem : Perm_Tree_Access;

   begin
      Elem := new Perm_Tree_Wrapper'
        (Tree =>
           (Kind                => Entire_Object,
            Is_Node_Deep        => Is_Deep (Etype (Id)),
            Permission          => Read_Write,
            Children_Permission => Read_Write));

      case Mode is
         when E_In_Parameter =>

            --  Borrowed IN: RW for everybody

            if Is_Borrowed_In (Id) then
               Elem.all.Tree.Permission := Read_Write;
               Elem.all.Tree.Children_Permission := Read_Write;

            --  Observed IN: R for everybody

            else
               Elem.all.Tree.Permission := Read_Only;
               Elem.all.Tree.Children_Permission := Read_Only;
            end if;

         --  OUT: borrow, but callee has W only

         when E_Out_Parameter =>
            Elem.all.Tree.Permission := Write_Only;
            Elem.all.Tree.Children_Permission := Write_Only;

         --  IN OUT: borrow and callee has RW

         when E_In_Out_Parameter =>
            Elem.all.Tree.Permission := Read_Write;
            Elem.all.Tree.Children_Permission := Read_Write;
      end case;

      Set (Current_Perm_Env, Id, Elem);
   end Setup_Parameter_Or_Global;

   ----------------------
   -- Setup_Parameters --
   ----------------------

   procedure Setup_Parameters (Subp : Entity_Id) is
      Formal : Entity_Id;

   begin
      Formal := First_Formal (Subp);
      while Present (Formal) loop
         Setup_Parameter_Or_Global (Formal, Ekind (Formal));
         Next_Formal (Formal);
      end loop;
   end Setup_Parameters;

end Sem_SPARK;