aboutsummaryrefslogtreecommitdiff
path: root/gcc/config/aarch64/aarch64-sve-builtins.cc
blob: 27736b99f1b129dc22131a4df25bb975f8b23d28 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
/* ACLE support for AArch64 SVE
   Copyright (C) 2018-2019 Free Software Foundation, Inc.

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3, or (at your option)
   any later version.

   GCC is distributed in the hope that it will be useful, but
   WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.  */

#define IN_TARGET_CODE 1

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "rtl.h"
#include "tm_p.h"
#include "memmodel.h"
#include "insn-codes.h"
#include "optabs.h"
#include "recog.h"
#include "diagnostic.h"
#include "expr.h"
#include "basic-block.h"
#include "function.h"
#include "fold-const.h"
#include "gimple.h"
#include "gimple-iterator.h"
#include "gimplify.h"
#include "explow.h"
#include "emit-rtl.h"
#include "tree-vector-builder.h"
#include "stor-layout.h"
#include "regs.h"
#include "alias.h"
#include "gimple-fold.h"
#include "langhooks.h"
#include "stringpool.h"
#include "aarch64-sve-builtins.h"
#include "aarch64-sve-builtins-base.h"
#include "aarch64-sve-builtins-shapes.h"

namespace aarch64_sve {

/* Static information about each single-predicate or single-vector
   ABI and ACLE type.  */
struct vector_type_info
{
  /* The name of the type as declared by arm_sve.h.  */
  const char *acle_name;

  /* The name of the type specified in AAPCS64.  The type is always
     available under this name, even when arm_sve.h isn't included.  */
  const char *abi_name;

  /* The C++ mangling of ABI_NAME.  */
  const char *mangled_name;
};

/* Describes a function decl.  */
class GTY(()) registered_function
{
public:
  /* The ACLE function that the decl represents.  */
  function_instance instance GTY ((skip));

  /* The decl itself.  */
  tree decl;

  /* The architecture extensions that the function requires, as a set of
     AARCH64_FL_* flags.  */
  uint64_t required_extensions;

  /* True if the decl represents an overloaded function that needs to be
     resolved by function_resolver.  */
  bool overloaded_p;
};

/* Hash traits for registered_function.  */
struct registered_function_hasher : nofree_ptr_hash <registered_function>
{
  typedef function_instance compare_type;

  static hashval_t hash (value_type);
  static bool equal (value_type, const compare_type &);
};

/* Information about each single-predicate or single-vector type.  */
static CONSTEXPR const vector_type_info vector_types[] = {
#define DEF_SVE_TYPE(ACLE_NAME, NCHARS, ABI_NAME, SCALAR_TYPE) \
  { #ACLE_NAME, #ABI_NAME, #NCHARS #ABI_NAME },
#include "aarch64-sve-builtins.def"
};

/* The function name suffix associated with each predication type.  */
static const char *const pred_suffixes[NUM_PREDS + 1] = {
  "",
  "",
  "_m",
  "_x",
  "_z",
  ""
};

/* Static information about each mode_suffix_index.  */
CONSTEXPR const mode_suffix_info mode_suffixes[] = {
#define VECTOR_TYPE_none NUM_VECTOR_TYPES
#define DEF_SVE_MODE(NAME, BASE, DISPLACEMENT, UNITS) \
  { "_" #NAME, VECTOR_TYPE_##BASE, VECTOR_TYPE_##DISPLACEMENT, UNITS_##UNITS },
#include "aarch64-sve-builtins.def"
#undef VECTOR_TYPE_none
  { "", NUM_VECTOR_TYPES, NUM_VECTOR_TYPES, UNITS_none }
};

/* Static information about each type_suffix_index.  */
CONSTEXPR const type_suffix_info type_suffixes[NUM_TYPE_SUFFIXES + 1] = {
#define DEF_SVE_TYPE_SUFFIX(NAME, ACLE_TYPE, CLASS, BITS, MODE) \
  { "_" #NAME, \
    VECTOR_TYPE_##ACLE_TYPE, \
    TYPE_##CLASS, \
    BITS, \
    BITS / BITS_PER_UNIT, \
    TYPE_##CLASS == TYPE_signed || TYPE_##CLASS == TYPE_unsigned, \
    TYPE_##CLASS == TYPE_unsigned, \
    TYPE_##CLASS == TYPE_float, \
    TYPE_##CLASS == TYPE_bool, \
    0, \
    MODE },
#include "aarch64-sve-builtins.def"
  { "", NUM_VECTOR_TYPES, TYPE_bool, 0, 0, false, false, false, false,
    0, VOIDmode }
};

/* Define a TYPES_<combination> macro for each combination of type
   suffixes that an ACLE function can have, where <combination> is the
   name used in DEF_SVE_FUNCTION entries.

   Use S (T) for single type suffix T and D (T1, T2) for a pair of type
   suffixes T1 and T2.  Use commas to separate the suffixes.

   Although the order shouldn't matter, the convention is to sort the
   suffixes lexicographically after dividing suffixes into a type
   class ("b", "f", etc.) and a numerical bit count.  */

/* _b8 _b16 _b32 _b64.  */
#define TYPES_all_pred(S, D) \
  S (b8), S (b16), S (b32), S (b64)

/* _f16 _f32 _f64.  */
#define TYPES_all_float(S, D) \
  S (f16), S (f32), S (f64)

/* _s8 _s16 _s32 _s64.  */
#define TYPES_all_signed(S, D) \
  S (s8), S (s16), S (s32), S (s64)

/*     _f16 _f32 _f64
   _s8 _s16 _s32 _s64.  */
#define TYPES_all_float_and_signed(S, D) \
  TYPES_all_float (S, D), TYPES_all_signed (S, D)

/* _u8 _u16 _u32 _u64.  */
#define TYPES_all_unsigned(S, D) \
  S (u8), S (u16), S (u32), S (u64)

/* _s8 _s16 _s32 _s64
   _u8 _u16 _u32 _u64.  */
#define TYPES_all_integer(S, D) \
  TYPES_all_signed (S, D), TYPES_all_unsigned (S, D)

/*     _f16 _f32 _f64
   _s8 _s16 _s32 _s64
   _u8 _u16 _u32 _u64.  */
#define TYPES_all_data(S, D) \
  TYPES_all_float (S, D), TYPES_all_integer (S, D)

/* _b only.  */
#define TYPES_b(S, D) \
  S (b)

/* _s8 _s16 _s32.  */
#define TYPES_bhs_signed(S, D) \
  S (s8), S (s16), S (s32)

/* _u8 _u16 _u32.  */
#define TYPES_bhs_unsigned(S, D) \
  S (u8), S (u16), S (u32)

/* _s8 _s16 _s32
   _u8 _u16 _u32.  */
#define TYPES_bhs_integer(S, D) \
  TYPES_bhs_signed (S, D), TYPES_bhs_unsigned (S, D)

/* _s16
   _u16.  */
#define TYPES_h_integer(S, D) \
  S (s16), S (u16)

/* _f16 _f32.  */
#define TYPES_hs_float(S, D) \
  S (f16), S (f32)

/* _s16 _s32 _s64
   _u16 _u32 _u64.  */
#define TYPES_hsd_integer(S, D) \
  S (s16), S (s32), S (s64), S (u16), S (u32), S (u64)

/* _s32 _u32.  */
#define TYPES_s_integer(S, D) \
  S (s32), S (u32)

/* _s32 _s64
   _u32 _u64.  */
#define TYPES_sd_integer(S, D) \
  S (s32), S (s64), S (u32), S (u64)

/* _f32 _f64
   _s32 _s64
   _u32 _u64.  */
#define TYPES_sd_data(S, D) \
  S (f32), S (f64), TYPES_sd_integer (S, D)

/* _f16 _f32 _f64
	_s32 _s64
	_u32 _u64.  */
#define TYPES_all_float_and_sd_integer(S, D) \
  TYPES_all_float (S, D), TYPES_sd_integer (S, D)

/* _s64
   _u64.  */
#define TYPES_d_integer(S, D) \
  S (s64), S (u64)

/* All the type combinations allowed by svcvt.  */
#define TYPES_cvt(S, D) \
  D (f16, f32), D (f16, f64), \
  D (f16, s16), D (f16, s32), D (f16, s64), \
  D (f16, u16), D (f16, u32), D (f16, u64), \
  \
  D (f32, f16), D (f32, f64), \
  D (f32, s32), D (f32, s64), \
  D (f32, u32), D (f32, u64), \
  \
  D (f64, f16), D (f64, f32), \
  D (f64, s32), D (f64, s64), \
  D (f64, u32), D (f64, u64), \
  \
  D (s16, f16), \
  D (s32, f16), D (s32, f32), D (s32, f64), \
  D (s64, f16), D (s64, f32), D (s64, f64), \
  \
  D (u16, f16), \
  D (u32, f16), D (u32, f32), D (u32, f64), \
  D (u64, f16), D (u64, f32), D (u64, f64)

/* { _s32 _s64 } x { _b8 _b16 _b32 _b64 }
   { _u32 _u64 }.  */
#define TYPES_inc_dec_n1(D, A) \
  D (A, b8), D (A, b16), D (A, b32), D (A, b64)
#define TYPES_inc_dec_n(S, D) \
  TYPES_inc_dec_n1 (D, s32), \
  TYPES_inc_dec_n1 (D, s64), \
  TYPES_inc_dec_n1 (D, u32), \
  TYPES_inc_dec_n1 (D, u64)

/* {     _f16 _f32 _f64 }   {     _f16 _f32 _f64 }
   { _s8 _s16 _s32 _s64 } x { _s8 _s16 _s32 _s64 }
   { _u8 _u16 _u32 _u64 }   { _u8 _u16 _u32 _u64 }.  */
#define TYPES_reinterpret1(D, A) \
  D (A, f16), D (A, f32), D (A, f64), \
  D (A, s8), D (A, s16), D (A, s32), D (A, s64), \
  D (A, u8), D (A, u16), D (A, u32), D (A, u64)
#define TYPES_reinterpret(S, D) \
  TYPES_reinterpret1 (D, f16), \
  TYPES_reinterpret1 (D, f32), \
  TYPES_reinterpret1 (D, f64), \
  TYPES_reinterpret1 (D, s8), \
  TYPES_reinterpret1 (D, s16), \
  TYPES_reinterpret1 (D, s32), \
  TYPES_reinterpret1 (D, s64), \
  TYPES_reinterpret1 (D, u8), \
  TYPES_reinterpret1 (D, u16), \
  TYPES_reinterpret1 (D, u32), \
  TYPES_reinterpret1 (D, u64)

/* { _b8 _b16 _b32 _b64 } x { _s32 _s64 }
			    { _u32 _u64 } */
#define TYPES_while1(D, bn) \
  D (bn, s32), D (bn, s64), D (bn, u32), D (bn, u64)
#define TYPES_while(S, D) \
  TYPES_while1 (D, b8), \
  TYPES_while1 (D, b16), \
  TYPES_while1 (D, b32), \
  TYPES_while1 (D, b64)

/* Describe a pair of type suffixes in which only the first is used.  */
#define DEF_VECTOR_TYPE(X) { TYPE_SUFFIX_ ## X, NUM_TYPE_SUFFIXES }

/* Describe a pair of type suffixes in which both are used.  */
#define DEF_DOUBLE_TYPE(X, Y) { TYPE_SUFFIX_ ## X, TYPE_SUFFIX_ ## Y }

/* Create an array that can be used in aarch64-sve-builtins.def to
   select the type suffixes in TYPES_<NAME>.  */
#define DEF_SVE_TYPES_ARRAY(NAME) \
  static const type_suffix_pair types_##NAME[] = { \
    TYPES_##NAME (DEF_VECTOR_TYPE, DEF_DOUBLE_TYPE), \
    { NUM_TYPE_SUFFIXES, NUM_TYPE_SUFFIXES } \
  }

/* For functions that don't take any type suffixes.  */
static const type_suffix_pair types_none[] = {
  { NUM_TYPE_SUFFIXES, NUM_TYPE_SUFFIXES },
  { NUM_TYPE_SUFFIXES, NUM_TYPE_SUFFIXES }
};

/* Create an array for each TYPES_<combination> macro above.  */
DEF_SVE_TYPES_ARRAY (all_pred);
DEF_SVE_TYPES_ARRAY (all_float);
DEF_SVE_TYPES_ARRAY (all_signed);
DEF_SVE_TYPES_ARRAY (all_float_and_signed);
DEF_SVE_TYPES_ARRAY (all_unsigned);
DEF_SVE_TYPES_ARRAY (all_integer);
DEF_SVE_TYPES_ARRAY (all_data);
DEF_SVE_TYPES_ARRAY (b);
DEF_SVE_TYPES_ARRAY (bhs_signed);
DEF_SVE_TYPES_ARRAY (bhs_unsigned);
DEF_SVE_TYPES_ARRAY (bhs_integer);
DEF_SVE_TYPES_ARRAY (h_integer);
DEF_SVE_TYPES_ARRAY (hs_float);
DEF_SVE_TYPES_ARRAY (hsd_integer);
DEF_SVE_TYPES_ARRAY (s_integer);
DEF_SVE_TYPES_ARRAY (sd_integer);
DEF_SVE_TYPES_ARRAY (sd_data);
DEF_SVE_TYPES_ARRAY (all_float_and_sd_integer);
DEF_SVE_TYPES_ARRAY (d_integer);
DEF_SVE_TYPES_ARRAY (cvt);
DEF_SVE_TYPES_ARRAY (inc_dec_n);
DEF_SVE_TYPES_ARRAY (reinterpret);
DEF_SVE_TYPES_ARRAY (while);

/* Used by functions that have no governing predicate.  */
static const predication_index preds_none[] = { PRED_none, NUM_PREDS };

/* Used by functions that have a governing predicate but do not have an
   explicit suffix.  */
static const predication_index preds_implicit[] = { PRED_implicit, NUM_PREDS };

/* Used by functions that allow merging, zeroing and "don't care"
   predication.  */
static const predication_index preds_mxz[] = {
  PRED_m, PRED_x, PRED_z, NUM_PREDS
};

/* Used by functions that have the mxz predicated forms above, and in addition
   have an unpredicated form.  */
static const predication_index preds_mxz_or_none[] = {
  PRED_m, PRED_x, PRED_z, PRED_none, NUM_PREDS
};

/* Used by functions that allow merging and zeroing predication but have
   no "_x" form.  */
static const predication_index preds_mz[] = { PRED_m, PRED_z, NUM_PREDS };

/* Used by functions that have an unpredicated form and a _z predicated
   form.  */
static const predication_index preds_z_or_none[] = {
  PRED_z, PRED_none, NUM_PREDS
};

/* Used by (mostly predicate) functions that only support "_z" predication.  */
static const predication_index preds_z[] = { PRED_z, NUM_PREDS };

/* A list of all SVE ACLE functions.  */
static CONSTEXPR const function_group_info function_groups[] = {
#define DEF_SVE_FUNCTION(NAME, SHAPE, TYPES, PREDS) \
  { #NAME, &functions::NAME, &shapes::SHAPE, types_##TYPES, preds_##PREDS, \
    REQUIRED_EXTENSIONS | AARCH64_FL_SVE },
#include "aarch64-sve-builtins.def"
};

/* The scalar type associated with each vector type.  */
GTY(()) tree scalar_types[NUM_VECTOR_TYPES];

/* The single-predicate and single-vector types, with their built-in
   "__SV..._t" name.  Allow an index of NUM_VECTOR_TYPES, which always
   yields a null tree.  */
static GTY(()) tree abi_vector_types[NUM_VECTOR_TYPES + 1];

/* Same, but with the arm_sve.h "sv..._t" name.  */
GTY(()) tree acle_vector_types[MAX_TUPLE_SIZE][NUM_VECTOR_TYPES + 1];

/* The svpattern enum type.  */
GTY(()) tree acle_svpattern;

/* The svprfop enum type.  */
GTY(()) tree acle_svprfop;

/* The list of all registered function decls, indexed by code.  */
static GTY(()) vec<registered_function *, va_gc> *registered_functions;

/* All registered function decls, hashed on the function_instance
   that they implement.  This is used for looking up implementations of
   overloaded functions.  */
static hash_table<registered_function_hasher> *function_table;

/* True if we've already complained about attempts to use functions
   when the required extension is disabled.  */
static bool reported_missing_extension_p;

/* If TYPE is an ACLE vector type, return the associated vector_type,
   otherwise return NUM_VECTOR_TYPES.  */
static vector_type_index
find_vector_type (const_tree type)
{
  /* A linear search should be OK here, since the code isn't hot and
     the number of types is only small.  */
  type = TYPE_MAIN_VARIANT (type);
  for (unsigned int i = 0; i < NUM_VECTOR_TYPES; ++i)
    if (type == abi_vector_types[i])
      return vector_type_index (i);
  return NUM_VECTOR_TYPES;
}

/* If TYPE is a valid SVE element type, return the corresponding type
   suffix, otherwise return NUM_TYPE_SUFFIXES.  */
static type_suffix_index
find_type_suffix_for_scalar_type (const_tree type)
{
  /* A linear search should be OK here, since the code isn't hot and
     the number of types is only small.  */
  type = TYPE_MAIN_VARIANT (type);
  for (unsigned int suffix_i = 0; suffix_i < NUM_TYPE_SUFFIXES; ++suffix_i)
    if (!type_suffixes[suffix_i].bool_p)
      {
	vector_type_index vector_i = type_suffixes[suffix_i].vector_type;
	if (type == TYPE_MAIN_VARIANT (scalar_types[vector_i]))
	  return type_suffix_index (suffix_i);
      }
  return NUM_TYPE_SUFFIXES;
}

/* Report an error against LOCATION that the user has tried to use
   function FNDECL when extension EXTENSION is disabled.  */
static void
report_missing_extension (location_t location, tree fndecl,
			  const char *extension)
{
  /* Avoid reporting a slew of messages for a single oversight.  */
  if (reported_missing_extension_p)
    return;

  error_at (location, "ACLE function %qD requires ISA extension %qs",
	    fndecl, extension);
  inform (location, "you can enable %qs using the command-line"
	  " option %<-march%>, or by using the %<target%>"
	  " attribute or pragma", extension);
  reported_missing_extension_p = true;
}

/* Check whether all the AARCH64_FL_* values in REQUIRED_EXTENSIONS are
   enabled, given that those extensions are required for function FNDECL.
   Report an error against LOCATION if not.  */
static bool
check_required_extensions (location_t location, tree fndecl,
			   uint64_t required_extensions)
{
  uint64_t missing_extensions = required_extensions & ~aarch64_isa_flags;
  if (missing_extensions == 0)
    return true;

  static const struct { uint64_t flag; const char *name; } extensions[] = {
#define AARCH64_OPT_EXTENSION(EXT_NAME, FLAG_CANONICAL, FLAGS_ON, FLAGS_OFF, \
			      SYNTHETIC, FEATURE_STRING) \
    { FLAG_CANONICAL, EXT_NAME },
#include "aarch64-option-extensions.def"
  };

  for (unsigned int i = 0; i < ARRAY_SIZE (extensions); ++i)
    if (missing_extensions & extensions[i].flag)
      {
	report_missing_extension (location, fndecl, extensions[i].name);
	return false;
      }
  gcc_unreachable ();
}

/* Report that LOCATION has a call to FNDECL in which argument ARGNO
   was not an integer constant expression.  ARGNO counts from zero.  */
static void
report_non_ice (location_t location, tree fndecl, unsigned int argno)
{
  error_at (location, "argument %d of %qE must be an integer constant"
	    " expression", argno + 1, fndecl);
}

/* Report that LOCATION has a call to FNDECL in which argument ARGNO has
   the value ACTUAL, whereas the function requires a value in the range
   [MIN, MAX].  ARGNO counts from zero.  */
static void
report_out_of_range (location_t location, tree fndecl, unsigned int argno,
		     HOST_WIDE_INT actual, HOST_WIDE_INT min,
		     HOST_WIDE_INT max)
{
  error_at (location, "passing %wd to argument %d of %qE, which expects"
	    " a value in the range [%wd, %wd]", actual, argno + 1, fndecl,
	    min, max);
}

/* Report that LOCATION has a call to FNDECL in which argument ARGNO has
   the value ACTUAL, whereas the function requires either VALUE0 or
   VALUE1.  ARGNO counts from zero.  */
static void
report_neither_nor (location_t location, tree fndecl, unsigned int argno,
		    HOST_WIDE_INT actual, HOST_WIDE_INT value0,
		    HOST_WIDE_INT value1)
{
  error_at (location, "passing %wd to argument %d of %qE, which expects"
	    " either %wd or %wd", actual, argno + 1, fndecl, value0, value1);
}

/* Report that LOCATION has a call to FNDECL in which argument ARGNO has
   the value ACTUAL, whereas the function requires one of VALUE0..3.
   ARGNO counts from zero.  */
static void
report_not_one_of (location_t location, tree fndecl, unsigned int argno,
		   HOST_WIDE_INT actual, HOST_WIDE_INT value0,
		   HOST_WIDE_INT value1, HOST_WIDE_INT value2,
		   HOST_WIDE_INT value3)
{
  error_at (location, "passing %wd to argument %d of %qE, which expects"
	    " %wd, %wd, %wd or %wd", actual, argno + 1, fndecl, value0, value1,
	    value2, value3);
}

/* Report that LOCATION has a call to FNDECL in which argument ARGNO has
   the value ACTUAL, whereas the function requires a valid value of
   enum type ENUMTYPE.  ARGNO counts from zero.  */
static void
report_not_enum (location_t location, tree fndecl, unsigned int argno,
		 HOST_WIDE_INT actual, tree enumtype)
{
  error_at (location, "passing %wd to argument %d of %qE, which expects"
	    " a valid %qT value", actual, argno + 1, fndecl, enumtype);
}

/* Return a hash code for a function_instance.  */
hashval_t
function_instance::hash () const
{
  inchash::hash h;
  /* BASE uniquely determines BASE_NAME, so we don't need to hash both.  */
  h.add_ptr (base);
  h.add_ptr (shape);
  h.add_int (mode_suffix_id);
  h.add_int (type_suffix_ids[0]);
  h.add_int (type_suffix_ids[1]);
  h.add_int (pred);
  return h.end ();
}

/* Return a set of CP_* flags that describe what the function could do,
   taking the command-line flags into account.  */
unsigned int
function_instance::call_properties () const
{
  unsigned int flags = base->call_properties (*this);

  /* -fno-trapping-math means that we can assume any FP exceptions
     are not user-visible.  */
  if (!flag_trapping_math)
    flags &= ~CP_RAISE_FP_EXCEPTIONS;

  return flags;
}

/* Return true if calls to the function could read some form of
   global state.  */
bool
function_instance::reads_global_state_p () const
{
  unsigned int flags = call_properties ();

  /* Preserve any dependence on rounding mode, flush to zero mode, etc.
     There is currently no way of turning this off; in particular,
     -fno-rounding-math (which is the default) means that we should make
     the usual assumptions about rounding mode, which for intrinsics means
     acting as the instructions do.  */
  if (flags & CP_READ_FPCR)
    return true;

  /* Handle direct reads of global state.  */
  return flags & (CP_READ_MEMORY | CP_READ_FFR);
}

/* Return true if calls to the function could modify some form of
   global state.  */
bool
function_instance::modifies_global_state_p () const
{
  unsigned int flags = call_properties ();

  /* Preserve any exception state written back to the FPCR,
     unless -fno-trapping-math says this is unnecessary.  */
  if (flags & CP_RAISE_FP_EXCEPTIONS)
    return true;

  /* Treat prefetches as modifying global state, since that's the
     only means we have of keeping them in their correct position.  */
  if (flags & CP_PREFETCH_MEMORY)
    return true;

  /* Handle direct modifications of global state.  */
  return flags & (CP_WRITE_MEMORY | CP_WRITE_FFR);
}

/* Return true if calls to the function could raise a signal.  */
bool
function_instance::could_trap_p () const
{
  unsigned int flags = call_properties ();

  /* Handle functions that could raise SIGFPE.  */
  if (flags & CP_RAISE_FP_EXCEPTIONS)
    return true;

  /* Handle functions that could raise SIGBUS or SIGSEGV.  */
  if (flags & (CP_READ_MEMORY | CP_WRITE_MEMORY))
    return true;

  return false;
}

inline hashval_t
registered_function_hasher::hash (value_type value)
{
  return value->instance.hash ();
}

inline bool
registered_function_hasher::equal (value_type value, const compare_type &key)
{
  return value->instance == key;
}

sve_switcher::sve_switcher ()
  : m_old_isa_flags (aarch64_isa_flags)
{
  /* Changing the ISA flags and have_regs_of_mode should be enough here.
     We shouldn't need to pay the compile-time cost of a full target
     switch.  */
  aarch64_isa_flags = (AARCH64_FL_FP | AARCH64_FL_SIMD | AARCH64_FL_F16
		       | AARCH64_FL_SVE);

  memcpy (m_old_have_regs_of_mode, have_regs_of_mode,
	  sizeof (have_regs_of_mode));
  for (int i = 0; i < NUM_MACHINE_MODES; ++i)
    if (aarch64_sve_mode_p ((machine_mode) i))
      have_regs_of_mode[i] = true;
}

sve_switcher::~sve_switcher ()
{
  memcpy (have_regs_of_mode, m_old_have_regs_of_mode,
	  sizeof (have_regs_of_mode));
  aarch64_isa_flags = m_old_isa_flags;
}

function_builder::function_builder ()
{
  m_overload_type = build_function_type (void_type_node, void_list_node);
  m_direct_overloads = lang_GNU_CXX ();
  gcc_obstack_init (&m_string_obstack);
}

function_builder::~function_builder ()
{
  obstack_free (&m_string_obstack, NULL);
}

/* Add NAME to the end of the function name being built.  */
void
function_builder::append_name (const char *name)
{
  obstack_grow (&m_string_obstack, name, strlen (name));
}

/* Zero-terminate and complete the function name being built.  */
char *
function_builder::finish_name ()
{
  obstack_1grow (&m_string_obstack, 0);
  return (char *) obstack_finish (&m_string_obstack);
}

/* Return the overloaded or full function name for INSTANCE; OVERLOADED_P
   selects which.  Allocate the string on m_string_obstack; the caller
   must use obstack_free to free it after use.  */
char *
function_builder::get_name (const function_instance &instance,
			    bool overloaded_p)
{
  append_name (instance.base_name);
  if (overloaded_p)
    switch (instance.displacement_units ())
      {
      case UNITS_none:
	break;

      case UNITS_bytes:
	append_name ("_offset");
	break;

      case UNITS_elements:
	append_name ("_index");
	break;

      case UNITS_vectors:
	append_name ("_vnum");
	break;
      }
  else
    append_name (instance.mode_suffix ().string);
  for (unsigned int i = 0; i < 2; ++i)
    if (!overloaded_p || instance.shape->explicit_type_suffix_p (i))
      append_name (instance.type_suffix (i).string);
  append_name (pred_suffixes[instance.pred]);
  return finish_name ();
}

/* Add attribute NAME to ATTRS.  */
static tree
add_attribute (const char *name, tree attrs)
{
  return tree_cons (get_identifier (name), NULL_TREE, attrs);
}

/* Return the appropriate function attributes for INSTANCE.  */
tree
function_builder::get_attributes (const function_instance &instance)
{
  tree attrs = NULL_TREE;

  if (!instance.modifies_global_state_p ())
    {
      if (instance.reads_global_state_p ())
	attrs = add_attribute ("pure", attrs);
      else
	attrs = add_attribute ("const", attrs);
    }

  if (!flag_non_call_exceptions || !instance.could_trap_p ())
    attrs = add_attribute ("nothrow", attrs);

  return add_attribute ("leaf", attrs);
}

/* Add a function called NAME with type FNTYPE and attributes ATTRS.
   INSTANCE describes what the function does and OVERLOADED_P indicates
   whether it is overloaded.  REQUIRED_EXTENSIONS are the set of
   architecture extensions that the function requires.  */
registered_function &
function_builder::add_function (const function_instance &instance,
				const char *name, tree fntype, tree attrs,
				uint64_t required_extensions,
				bool overloaded_p)
{
  unsigned int code = vec_safe_length (registered_functions);
  code = (code << AARCH64_BUILTIN_SHIFT) | AARCH64_BUILTIN_SVE;
  tree decl = simulate_builtin_function_decl (input_location, name, fntype,
					      code, NULL, attrs);

  registered_function &rfn = *ggc_alloc <registered_function> ();
  rfn.instance = instance;
  rfn.decl = decl;
  rfn.required_extensions = required_extensions;
  rfn.overloaded_p = overloaded_p;
  vec_safe_push (registered_functions, &rfn);

  return rfn;
}

/* Add a built-in function for INSTANCE, with the argument types given
   by ARGUMENT_TYPES and the return type given by RETURN_TYPE.
   REQUIRED_EXTENSIONS are the set of architecture extensions that the
   function requires.  FORCE_DIRECT_OVERLOADS is true if there is a
   one-to-one mapping between "short" and "full" names, and if standard
   overload resolution therefore isn't necessary.  */
void
function_builder::add_unique_function (const function_instance &instance,
				       tree return_type,
				       vec<tree> &argument_types,
				       uint64_t required_extensions,
				       bool force_direct_overloads)
{
  /* Add the function under its full (unique) name.  */
  char *name = get_name (instance, false);
  tree fntype = build_function_type_array (return_type,
					   argument_types.length (),
					   argument_types.address ());
  tree attrs = get_attributes (instance);
  registered_function &rfn = add_function (instance, name, fntype, attrs,
					   required_extensions, false);

  /* Enter the function into the hash table.  */
  hashval_t hash = instance.hash ();
  registered_function **rfn_slot
    = function_table->find_slot_with_hash (instance, hash, INSERT);
  gcc_assert (!*rfn_slot);
  *rfn_slot = &rfn;

  /* Also add the function under its overloaded alias, if we want
     a separate decl for each instance of an overloaded function.  */
  if (m_direct_overloads || force_direct_overloads)
    {
      char *overload_name = get_name (instance, true);
      if (strcmp (name, overload_name) != 0)
	{
	  /* Attribute lists shouldn't be shared.  */
	  tree attrs = get_attributes (instance);
	  add_function (instance, overload_name, fntype, attrs,
			required_extensions, false);
	}
    }

  obstack_free (&m_string_obstack, name);
}

/* Add one function decl for INSTANCE, to be used with manual overload
   resolution.  REQUIRED_EXTENSIONS are the set of architecture extensions
   that the function requires.

   For simplicity, deal with duplicate attempts to add the same
   function.  */
void
function_builder::add_overloaded_function (const function_instance &instance,
					   uint64_t required_extensions)
{
  char *name = get_name (instance, true);
  if (registered_function **map_value = m_overload_names.get (name))
    gcc_assert ((*map_value)->instance == instance
		&& (*map_value)->required_extensions == required_extensions);
  else
    {
      registered_function &rfn
	= add_function (instance, name, m_overload_type, NULL_TREE,
			required_extensions, true);
      const char *permanent_name = IDENTIFIER_POINTER (DECL_NAME (rfn.decl));
      m_overload_names.put (permanent_name, &rfn);
    }
  obstack_free (&m_string_obstack, name);
}

/* If we are using manual overload resolution, add one function decl
   for each overloaded function in GROUP.  Take the function base name
   from GROUP and the mode from MODE.  */
void
function_builder::add_overloaded_functions (const function_group_info &group,
					    mode_suffix_index mode)
{
  if (m_direct_overloads)
    return;

  unsigned int explicit_type0 = (*group.shape)->explicit_type_suffix_p (0);
  unsigned int explicit_type1 = (*group.shape)->explicit_type_suffix_p (1);
  for (unsigned int pi = 0; group.preds[pi] != NUM_PREDS; ++pi)
    {
      if (!explicit_type0 && !explicit_type1)
	{
	  /* Deal with the common case in which there is one overloaded
	     function for all type combinations.  */
	  function_instance instance (group.base_name, *group.base,
				      *group.shape, mode, types_none[0],
				      group.preds[pi]);
	  add_overloaded_function (instance, group.required_extensions);
	}
      else
	for (unsigned int ti = 0; group.types[ti][0] != NUM_TYPE_SUFFIXES;
	     ++ti)
	  {
	    /* Stub out the types that are determined by overload
	       resolution.  */
	    type_suffix_pair types = {
	      explicit_type0 ? group.types[ti][0] : NUM_TYPE_SUFFIXES,
	      explicit_type1 ? group.types[ti][1] : NUM_TYPE_SUFFIXES
	    };
	    function_instance instance (group.base_name, *group.base,
					*group.shape, mode, types,
					group.preds[pi]);
	    add_overloaded_function (instance, group.required_extensions);
	  }
    }
}

/* Register all the functions in GROUP.  */
void
function_builder::register_function_group (const function_group_info &group)
{
  (*group.shape)->build (*this, group);
}

function_call_info::function_call_info (location_t location_in,
					const function_instance &instance_in,
					tree fndecl_in)
  : function_instance (instance_in), location (location_in), fndecl (fndecl_in)
{
}

function_resolver::function_resolver (location_t location,
				      const function_instance &instance,
				      tree fndecl, vec<tree, va_gc> &arglist)
  : function_call_info (location, instance, fndecl), m_arglist (arglist)
{
}

/* Return the vector type associated with type suffix TYPE.  */
tree
function_resolver::get_vector_type (type_suffix_index type)
{
  return acle_vector_types[0][type_suffixes[type].vector_type];
}

/* Return the <stdint.h> name associated with TYPE.  Using the <stdint.h>
   name should be more user-friendly than the underlying canonical type,
   since it makes the signedness and bitwidth explicit.  */
const char *
function_resolver::get_scalar_type_name (type_suffix_index type)
{
  return vector_types[type_suffixes[type].vector_type].acle_name + 2;
}

/* Return the type of argument I, or error_mark_node if it isn't
   well-formed.  */
tree
function_resolver::get_argument_type (unsigned int i)
{
  tree arg = m_arglist[i];
  return arg == error_mark_node ? arg : TREE_TYPE (arg);
}

/* Return true if argument I is some form of scalar value.  */
bool
function_resolver::scalar_argument_p (unsigned int i)
{
  tree type = get_argument_type (i);
  return (INTEGRAL_TYPE_P (type)
	  /* Allow pointer types, leaving the frontend to warn where
	     necessary.  */
	  || POINTER_TYPE_P (type)
	  || SCALAR_FLOAT_TYPE_P (type));
}

/* Report that the function has no form that takes type suffix TYPE.
   Return error_mark_node.  */
tree
function_resolver::report_no_such_form (type_suffix_index type)
{
  error_at (location, "%qE has no form that takes %qT arguments",
	    fndecl, get_vector_type (type));
  return error_mark_node;
}

/* Silently check whether there is an instance of the function with the
   mode suffix given by MODE and the type suffixes given by TYPE0 and TYPE1.
   Return its function decl if so, otherwise return null.  */
tree
function_resolver::lookup_form (mode_suffix_index mode,
				type_suffix_index type0,
				type_suffix_index type1)
{
  type_suffix_pair types = { type0, type1 };
  function_instance instance (base_name, base, shape, mode, types, pred);
  registered_function *rfn
    = function_table->find_with_hash (instance, instance.hash ());
  return rfn ? rfn->decl : NULL_TREE;
}

/* Resolve the function to one with the mode suffix given by MODE and the
   type suffixes given by TYPE0 and TYPE1.  Return its function decl on
   success, otherwise report an error and return error_mark_node.  */
tree
function_resolver::resolve_to (mode_suffix_index mode,
			       type_suffix_index type0,
			       type_suffix_index type1)
{
  tree res = lookup_form (mode, type0, type1);
  if (!res)
    {
      if (type1 == NUM_TYPE_SUFFIXES)
	return report_no_such_form (type0);
      if (type0 == type_suffix_ids[0])
	return report_no_such_form (type1);
      /* To be filled in when we have other cases.  */
      gcc_unreachable ();
    }
  return res;
}

/* Require argument ARGNO to be a 32-bit or 64-bit scalar integer type.
   Return the associated type suffix on success, otherwise report an
   error and return NUM_TYPE_SUFFIXES.  */
type_suffix_index
function_resolver::infer_integer_scalar_type (unsigned int argno)
{
  tree actual = get_argument_type (argno);
  if (actual == error_mark_node)
    return NUM_TYPE_SUFFIXES;

  /* Allow enums and booleans to decay to integers, for compatibility
     with C++ overloading rules.  */
  if (INTEGRAL_TYPE_P (actual))
    {
      bool uns_p = TYPE_UNSIGNED (actual);
      /* Honor the usual integer promotions, so that resolution works
	 in the same way as for C++.  */
      if (TYPE_PRECISION (actual) < 32)
	return TYPE_SUFFIX_s32;
      if (TYPE_PRECISION (actual) == 32)
	return uns_p ? TYPE_SUFFIX_u32 : TYPE_SUFFIX_s32;
      if (TYPE_PRECISION (actual) == 64)
	return uns_p ? TYPE_SUFFIX_u64 : TYPE_SUFFIX_s64;
    }

  error_at (location, "passing %qT to argument %d of %qE, which expects"
	    " a 32-bit or 64-bit integer type", actual, argno + 1, fndecl);
  return NUM_TYPE_SUFFIXES;
}

/* Require argument ARGNO to be a pointer to a scalar type that has a
   corresponding type suffix.  Return that type suffix on success,
   otherwise report an error and return NUM_TYPE_SUFFIXES.
   GATHER_SCATTER_P is true if the function is a gather/scatter
   operation, and so requires a pointer to 32-bit or 64-bit data.  */
type_suffix_index
function_resolver::infer_pointer_type (unsigned int argno,
				       bool gather_scatter_p)
{
  tree actual = get_argument_type (argno);
  if (actual == error_mark_node)
    return NUM_TYPE_SUFFIXES;

  if (TREE_CODE (actual) != POINTER_TYPE)
    {
      error_at (location, "passing %qT to argument %d of %qE, which"
		" expects a pointer type", actual, argno + 1, fndecl);
      if (VECTOR_TYPE_P (actual) && gather_scatter_p)
	inform (location, "an explicit type suffix is needed"
		" when using a vector of base addresses");
      return NUM_TYPE_SUFFIXES;
    }

  tree target = TREE_TYPE (actual);
  type_suffix_index type = find_type_suffix_for_scalar_type (target);
  if (type == NUM_TYPE_SUFFIXES)
    {
      error_at (location, "passing %qT to argument %d of %qE, but %qT is not"
		" a valid SVE element type", actual, argno + 1, fndecl,
		target);
      return NUM_TYPE_SUFFIXES;
    }
  unsigned int bits = type_suffixes[type].element_bits;
  if (gather_scatter_p && bits != 32 && bits != 64)
    {
      error_at (location, "passing %qT to argument %d of %qE, which"
		" expects a pointer to 32-bit or 64-bit elements",
		actual, argno + 1, fndecl);
      return NUM_TYPE_SUFFIXES;
    }

  return type;
}

/* Require argument ARGNO to be a single vector or a tuple of NUM_VECTORS
   vectors; NUM_VECTORS is 1 for the former.  Return the associated type
   suffix on success, using TYPE_SUFFIX_b for predicates.  Report an error
   and return NUM_TYPE_SUFFIXES on failure.  */
type_suffix_index
function_resolver::infer_vector_or_tuple_type (unsigned int argno,
					       unsigned int num_vectors)
{
  tree actual = get_argument_type (argno);
  if (actual == error_mark_node)
    return NUM_TYPE_SUFFIXES;

  /* A linear search should be OK here, since the code isn't hot and
     the number of types is only small.  */
  for (unsigned int size_i = 0; size_i < MAX_TUPLE_SIZE; ++size_i)
    for (unsigned int suffix_i = 0; suffix_i < NUM_TYPE_SUFFIXES; ++suffix_i)
      {
	vector_type_index type_i = type_suffixes[suffix_i].vector_type;
	tree type = acle_vector_types[size_i][type_i];
	if (type && TYPE_MAIN_VARIANT (actual) == TYPE_MAIN_VARIANT (type))
	  {
	    if (size_i + 1 == num_vectors)
	      return type_suffix_index (suffix_i);

	    if (num_vectors == 1)
	      error_at (location, "passing %qT to argument %d of %qE, which"
			" expects a single SVE vector rather than a tuple",
			actual, argno + 1, fndecl);
	    else if (size_i == 0 && type_i != VECTOR_TYPE_svbool_t)
	      error_at (location, "passing single vector %qT to argument %d"
			" of %qE, which expects a tuple of %d vectors",
			actual, argno + 1, fndecl, num_vectors);
	    else
	      error_at (location, "passing %qT to argument %d of %qE, which"
			" expects a tuple of %d vectors", actual, argno + 1,
			fndecl, num_vectors);
	    return NUM_TYPE_SUFFIXES;
	  }
      }

  if (num_vectors == 1)
    error_at (location, "passing %qT to argument %d of %qE, which"
	      " expects an SVE vector type", actual, argno + 1, fndecl);
  else
    error_at (location, "passing %qT to argument %d of %qE, which"
	      " expects an SVE tuple type", actual, argno + 1, fndecl);
  return NUM_TYPE_SUFFIXES;
}

/* Require argument ARGNO to have some form of vector type.  Return the
   associated type suffix on success, using TYPE_SUFFIX_b for predicates.
   Report an error and return NUM_TYPE_SUFFIXES on failure.  */
type_suffix_index
function_resolver::infer_vector_type (unsigned int argno)
{
  return infer_vector_or_tuple_type (argno, 1);
}

/* Like infer_vector_type, but also require the type to be integral.  */
type_suffix_index
function_resolver::infer_integer_vector_type (unsigned int argno)
{
  type_suffix_index type = infer_vector_type (argno);
  if (type == NUM_TYPE_SUFFIXES)
    return type;

  if (!type_suffixes[type].integer_p)
    {
      error_at (location, "passing %qT to argument %d of %qE, which"
		" expects a vector of integers", get_argument_type (argno),
		argno + 1, fndecl);
      return NUM_TYPE_SUFFIXES;
    }

  return type;
}

/* Like infer_vector_type, but also require the type to be an unsigned
   integer.  */
type_suffix_index
function_resolver::infer_unsigned_vector_type (unsigned int argno)
{
  type_suffix_index type = infer_vector_type (argno);
  if (type == NUM_TYPE_SUFFIXES)
    return type;

  if (!type_suffixes[type].unsigned_p)
    {
      error_at (location, "passing %qT to argument %d of %qE, which"
		" expects a vector of unsigned integers",
		get_argument_type (argno), argno + 1, fndecl);
      return NUM_TYPE_SUFFIXES;
    }

  return type;
}

/* Like infer_vector_type, but also require the element size to be
   32 or 64 bits.  */
type_suffix_index
function_resolver::infer_sd_vector_type (unsigned int argno)
{
  type_suffix_index type = infer_vector_type (argno);
  if (type == NUM_TYPE_SUFFIXES)
    return type;

  unsigned int bits = type_suffixes[type].element_bits;
  if (bits != 32 && bits != 64)
    {
      error_at (location, "passing %qT to argument %d of %qE, which"
		" expects a vector of 32-bit or 64-bit elements",
		get_argument_type (argno), argno + 1, fndecl);
      return NUM_TYPE_SUFFIXES;
    }

  return type;
}

/* If the function operates on tuples of vectors, require argument ARGNO to be
   a tuple with the appropriate number of vectors, otherwise require it to be
   a single vector.  Return the associated type suffix on success, using
   TYPE_SUFFIX_b for predicates.  Report an error and return NUM_TYPE_SUFFIXES
   on failure.  */
type_suffix_index
function_resolver::infer_tuple_type (unsigned int argno)
{
  return infer_vector_or_tuple_type (argno, vectors_per_tuple ());
}

/* Require argument ARGNO to be a vector or scalar argument.  Return true
   if it is, otherwise report an appropriate error.  */
bool
function_resolver::require_vector_or_scalar_type (unsigned int argno)
{
  tree actual = get_argument_type (argno);
  if (actual == error_mark_node)
    return false;

  if (!scalar_argument_p (argno) && !VECTOR_TYPE_P (actual))
    {
      error_at (location, "passing %qT to argument %d of %qE, which"
		" expects a vector or scalar type", actual, argno + 1, fndecl);
      return false;
    }

  return true;
}

/* Require argument ARGNO to have vector type TYPE, in cases where this
   requirement holds for all uses of the function.  Return true if the
   argument has the right form, otherwise report an appropriate error.  */
bool
function_resolver::require_vector_type (unsigned int argno,
					vector_type_index type)
{
  tree expected = acle_vector_types[0][type];
  tree actual = get_argument_type (argno);
  if (actual != error_mark_node
      && TYPE_MAIN_VARIANT (expected) != TYPE_MAIN_VARIANT (actual))
    {
      error_at (location, "passing %qT to argument %d of %qE, which"
		" expects %qT", actual, argno + 1, fndecl, expected);
      return false;
    }
  return true;
}

/* Like require_vector_type, but TYPE is inferred from previous arguments
   rather than being a fixed part of the function signature.  This changes
   the nature of the error messages.  */
bool
function_resolver::require_matching_vector_type (unsigned int argno,
						 type_suffix_index type)
{
  type_suffix_index new_type = infer_vector_type (argno);
  if (new_type == NUM_TYPE_SUFFIXES)
    return false;

  if (type != new_type)
    {
      error_at (location, "passing %qT to argument %d of %qE, but"
		" previous arguments had type %qT",
		get_vector_type (new_type), argno + 1, fndecl,
		get_vector_type (type));
      return false;
    }
  return true;
}

/* Require argument ARGNO to be a vector type with the following properties:

   - the type class must be the same as FIRST_TYPE's if EXPECTED_TCLASS
     is SAME_TYPE_CLASS, otherwise it must be EXPECTED_TCLASS itself.

   - the element size must be:

     - the same as FIRST_TYPE's if EXPECTED_BITS == SAME_SIZE
     - half of FIRST_TYPE's if EXPECTED_BITS == HALF_SIZE
     - a quarter of FIRST_TYPE's if EXPECTED_BITS == QUARTER_SIZE
     - EXPECTED_BITS itself otherwise

   Return true if the argument has the required type, otherwise report
   an appropriate error.

   FIRST_ARGNO is the first argument that is known to have type FIRST_TYPE.
   Usually it comes before ARGNO, but sometimes it is more natural to resolve
   arguments out of order.

   If the required properties depend on FIRST_TYPE then both FIRST_ARGNO and
   ARGNO contribute to the resolution process.  If the required properties
   are fixed, only FIRST_ARGNO contributes to the resolution process.

   This function is a bit of a Swiss army knife.  The complication comes
   from trying to give good error messages when FIRST_ARGNO and ARGNO are
   inconsistent, since either of them might be wrong.  */
bool function_resolver::
require_derived_vector_type (unsigned int argno,
			     unsigned int first_argno,
			     type_suffix_index first_type,
			     type_class_index expected_tclass,
			     unsigned int expected_bits)
{
  /* If the type needs to match FIRST_ARGNO exactly, use the preferred
     error message for that case.  The VECTOR_TYPE_P test excludes tuple
     types, which we handle below instead.  */
  bool both_vectors_p = VECTOR_TYPE_P (get_argument_type (first_argno));
  if (both_vectors_p
      && expected_tclass == SAME_TYPE_CLASS
      && expected_bits == SAME_SIZE)
    {
      /* There's no need to resolve this case out of order.  */
      gcc_assert (argno > first_argno);
      return require_matching_vector_type (argno, first_type);
    }

  /* Use FIRST_TYPE to get the expected type class and element size.  */
  type_class_index orig_expected_tclass = expected_tclass;
  if (expected_tclass == NUM_TYPE_CLASSES)
    expected_tclass = type_suffixes[first_type].tclass;

  unsigned int orig_expected_bits = expected_bits;
  if (expected_bits == SAME_SIZE)
    expected_bits = type_suffixes[first_type].element_bits;
  else if (expected_bits == HALF_SIZE)
    expected_bits = type_suffixes[first_type].element_bits / 2;
  else if (expected_bits == QUARTER_SIZE)
    expected_bits = type_suffixes[first_type].element_bits / 4;

  /* If the expected type doesn't depend on FIRST_TYPE at all,
     just check for the fixed choice of vector type.  */
  if (expected_tclass == orig_expected_tclass
      && expected_bits == orig_expected_bits)
    {
      const type_suffix_info &expected_suffix
	= type_suffixes[find_type_suffix (expected_tclass, expected_bits)];
      return require_vector_type (argno, expected_suffix.vector_type);
    }

  /* Require the argument to be some form of SVE vector type,
     without being specific about the type of vector we want.  */
  type_suffix_index actual_type = infer_vector_type (argno);
  if (actual_type == NUM_TYPE_SUFFIXES)
    return false;

  /* Exit now if we got the right type.  */
  bool tclass_ok_p = (type_suffixes[actual_type].tclass == expected_tclass);
  bool size_ok_p = (type_suffixes[actual_type].element_bits == expected_bits);
  if (tclass_ok_p && size_ok_p)
    return true;

  /* First look for cases in which the actual type contravenes a fixed
     size requirement, without having to refer to FIRST_TYPE.  */
  if (!size_ok_p && expected_bits == orig_expected_bits)
    {
      error_at (location, "passing %qT to argument %d of %qE, which"
		" expects a vector of %d-bit elements",
		get_vector_type (actual_type), argno + 1, fndecl,
		expected_bits);
      return false;
    }

  /* Likewise for a fixed type class requirement.  This is only ever
     needed for signed and unsigned types, so don't create unnecessary
     translation work for other type classes.  */
  if (!tclass_ok_p && orig_expected_tclass == TYPE_signed)
    {
      error_at (location, "passing %qT to argument %d of %qE, which"
		" expects a vector of signed integers",
		get_vector_type (actual_type), argno + 1, fndecl);
      return false;
    }
  if (!tclass_ok_p && orig_expected_tclass == TYPE_unsigned)
    {
      error_at (location, "passing %qT to argument %d of %qE, which"
		" expects a vector of unsigned integers",
		get_vector_type (actual_type), argno + 1, fndecl);
      return false;
    }

  /* Make sure that FIRST_TYPE itself is sensible before using it
     as a basis for an error message.  */
  if (resolve_to (mode_suffix_id, first_type) == error_mark_node)
    return false;

  /* If the arguments have consistent type classes, but a link between
     the sizes has been broken, try to describe the error in those terms.  */
  if (both_vectors_p && tclass_ok_p && orig_expected_bits == SAME_SIZE)
    {
      if (argno < first_argno)
	{
	  std::swap (argno, first_argno);
	  std::swap (actual_type, first_type);
	}
      error_at (location, "arguments %d and %d of %qE must have the"
		" same element size, but the values passed here have type"
		" %qT and %qT respectively", first_argno + 1, argno + 1,
		fndecl, get_vector_type (first_type),
		get_vector_type (actual_type));
      return false;
    }

  /* Likewise in reverse: look for cases in which the sizes are consistent
     but a link between the type classes has been broken.  */
  if (both_vectors_p
      && size_ok_p
      && orig_expected_tclass == SAME_TYPE_CLASS
      && type_suffixes[first_type].integer_p
      && type_suffixes[actual_type].integer_p)
    {
      if (argno < first_argno)
	{
	  std::swap (argno, first_argno);
	  std::swap (actual_type, first_type);
	}
      error_at (location, "arguments %d and %d of %qE must have the"
		" same signedness, but the values passed here have type"
		" %qT and %qT respectively", first_argno + 1, argno + 1,
		fndecl, get_vector_type (first_type),
		get_vector_type (actual_type));
      return false;
    }

  /* The two arguments are wildly inconsistent.  */
  type_suffix_index expected_type
    = find_type_suffix (expected_tclass, expected_bits);
  error_at (location, "passing %qT instead of the expected %qT to argument"
	    " %d of %qE, after passing %qT to argument %d",
	    get_vector_type (actual_type), get_vector_type (expected_type),
	    argno + 1, fndecl, get_argument_type (first_argno),
	    first_argno + 1);
  return false;
}

/* Require argument ARGNO to be a (possibly variable) scalar, using EXPECTED
   as the name of its expected type.  Return true if the argument has the
   right form, otherwise report an appropriate error.  */
bool
function_resolver::require_scalar_type (unsigned int argno,
					const char *expected)
{
  if (!scalar_argument_p (argno))
    {
      error_at (location, "passing %qT to argument %d of %qE, which"
		" expects %qs", get_argument_type (argno), argno + 1,
		fndecl, expected);
      return false;
    }
  return true;
}

/* Require argument ARGNO to be some form of pointer, without being specific
   about its target type.  Return true if the argument has the right form,
   otherwise report an appropriate error.  */
bool
function_resolver::require_pointer_type (unsigned int argno)
{
  if (!scalar_argument_p (argno))
    {
      error_at (location, "passing %qT to argument %d of %qE, which"
		" expects a scalar pointer", get_argument_type (argno),
		argno + 1, fndecl);
      return false;
    }
  return true;
}

/* Argument FIRST_ARGNO is a scalar with type EXPECTED_TYPE, and argument
   ARGNO should be consistent with it.  Return true if it is, otherwise
   report an appropriate error.  */
bool function_resolver::
require_matching_integer_scalar_type (unsigned int argno,
				      unsigned int first_argno,
				      type_suffix_index expected_type)
{
  type_suffix_index actual_type = infer_integer_scalar_type (argno);
  if (actual_type == NUM_TYPE_SUFFIXES)
    return false;

  if (actual_type == expected_type)
    return true;

  error_at (location, "call to %qE is ambiguous; argument %d has type"
	    " %qs but argument %d has type %qs", fndecl,
	    first_argno + 1, get_scalar_type_name (expected_type),
	    argno + 1, get_scalar_type_name (actual_type));
  return false;
}

/* Require argument ARGNO to be a (possibly variable) scalar, expecting it
   to have the following properties:

   - the type class must be the same as for type suffix 0 if EXPECTED_TCLASS
     is SAME_TYPE_CLASS, otherwise it must be EXPECTED_TCLASS itself.

   - the element size must be the same as for type suffix 0 if EXPECTED_BITS
     is SAME_TYPE_SIZE, otherwise it must be EXPECTED_BITS itself.

   Return true if the argument is valid, otherwise report an appropriate error.

   Note that we don't check whether the scalar type actually has the required
   properties, since that's subject to implicit promotions and conversions.
   Instead we just use the expected properties to tune the error message.  */
bool function_resolver::
require_derived_scalar_type (unsigned int argno,
			     type_class_index expected_tclass,
			     unsigned int expected_bits)
{
  gcc_assert (expected_tclass == SAME_TYPE_CLASS
	      || expected_tclass == TYPE_signed
	      || expected_tclass == TYPE_unsigned);

  /* If the expected type doesn't depend on the type suffix at all,
     just check for the fixed choice of scalar type.  */
  if (expected_tclass != SAME_TYPE_CLASS && expected_bits != SAME_SIZE)
    {
      type_suffix_index expected_type
	= find_type_suffix (expected_tclass, expected_bits);
      return require_scalar_type (argno, get_scalar_type_name (expected_type));
    }

  if (scalar_argument_p (argno))
    return true;

  if (expected_tclass == SAME_TYPE_CLASS)
    /* It doesn't really matter whether the element is expected to be
       the same size as type suffix 0.  */
    error_at (location, "passing %qT to argument %d of %qE, which"
	      " expects a scalar element", get_argument_type (argno),
	      argno + 1, fndecl);
  else
    /* It doesn't seem useful to distinguish between signed and unsigned
       scalars here.  */
    error_at (location, "passing %qT to argument %d of %qE, which"
	      " expects a scalar integer", get_argument_type (argno),
	      argno + 1, fndecl);
  return false;
}

/* Require argument ARGNO to be suitable for an integer constant expression.
   Return true if it is, otherwise report an appropriate error.

   function_checker checks whether the argument is actually constant and
   has a suitable range.  The reason for distinguishing immediate arguments
   here is because it provides more consistent error messages than
   require_scalar_type would.  */
bool
function_resolver::require_integer_immediate (unsigned int argno)
{
  if (!scalar_argument_p (argno))
    {
      report_non_ice (location, fndecl, argno);
      return false;
    }
  return true;
}

/* Require argument ARGNO to be a vector base in a gather-style address.
   Return its type on success, otherwise return NUM_VECTOR_TYPES.  */
vector_type_index
function_resolver::infer_vector_base_type (unsigned int argno)
{
  type_suffix_index type = infer_vector_type (argno);
  if (type == NUM_TYPE_SUFFIXES)
    return NUM_VECTOR_TYPES;

  if (type == TYPE_SUFFIX_u32 || type == TYPE_SUFFIX_u64)
    return type_suffixes[type].vector_type;

  error_at (location, "passing %qT to argument %d of %qE, which"
	    " expects %qs or %qs", get_argument_type (argno),
	    argno + 1, fndecl, "svuint32_t", "svuint64_t");
  return NUM_VECTOR_TYPES;
}

/* Require argument ARGNO to be a vector displacement in a gather-style
   address.  Return its type on success, otherwise return NUM_VECTOR_TYPES.  */
vector_type_index
function_resolver::infer_vector_displacement_type (unsigned int argno)
{
  type_suffix_index type = infer_integer_vector_type (argno);
  if (type == NUM_TYPE_SUFFIXES)
    return NUM_VECTOR_TYPES;

  if (type_suffixes[type].integer_p
      && (type_suffixes[type].element_bits == 32
	  || type_suffixes[type].element_bits == 64))
    return type_suffixes[type].vector_type;

  error_at (location, "passing %qT to argument %d of %qE, which"
	    " expects a vector of 32-bit or 64-bit integers",
	    get_argument_type (argno), argno + 1, fndecl);
  return NUM_VECTOR_TYPES;
}

/* Require argument ARGNO to be a vector displacement in a gather-style
   address.  There are three possible uses:

   - for loading into elements of type TYPE (when LOAD_P is true)
   - for storing from elements of type TYPE (when LOAD_P is false)
   - for prefetching data (when TYPE is NUM_TYPE_SUFFIXES)

   The overloaded function's mode suffix determines the units of the
   displacement (bytes for "_offset", elements for "_index").

   Return the associated mode on success, otherwise report an error
   and return MODE_none.  */
mode_suffix_index
function_resolver::resolve_sv_displacement (unsigned int argno,
					    type_suffix_index type,
					    bool load_p)
{
  if (type == NUM_TYPE_SUFFIXES)
    {
      /* For prefetches, the base is a void pointer and the displacement
	 can be any valid offset or index type.  */
      vector_type_index displacement_vector_type
	= infer_vector_displacement_type (argno);
      if (displacement_vector_type == NUM_VECTOR_TYPES)
	return MODE_none;

      mode_suffix_index mode = find_mode_suffix (NUM_VECTOR_TYPES,
						 displacement_vector_type,
						 displacement_units ());
      gcc_assert (mode != MODE_none);
      return mode;
    }

  /* Check for some form of vector type, without naming any in particular
     as being expected.  */
  type_suffix_index displacement_type = infer_vector_type (argno);
  if (displacement_type == NUM_TYPE_SUFFIXES)
    return MODE_none;

  /* If the displacement type is consistent with the data vector type,
     try to find the associated mode suffix.  This will fall through
     for non-integral displacement types.  */
  unsigned int required_bits = type_suffixes[type].element_bits;
  if (type_suffixes[displacement_type].element_bits == required_bits)
    {
      vector_type_index displacement_vector_type
	= type_suffixes[displacement_type].vector_type;
      mode_suffix_index mode = find_mode_suffix (NUM_VECTOR_TYPES,
						 displacement_vector_type,
						 displacement_units ());
      if (mode != MODE_none)
	return mode;
    }

  if (type_suffix_ids[0] == NUM_TYPE_SUFFIXES)
    {
      /* TYPE has been inferred rather than specified by the user,
	 so mention it in the error messages.  */
      if (load_p)
	error_at (location, "passing %qT to argument %d of %qE, which when"
		  " loading %qT expects a vector of %d-bit integers",
		  get_argument_type (argno), argno + 1, fndecl,
		  get_vector_type (type), required_bits);
      else
	error_at (location, "passing %qT to argument %d of %qE, which when"
		  " storing %qT expects a vector of %d-bit integers",
		  get_argument_type (argno), argno + 1, fndecl,
		  get_vector_type (type), required_bits);
    }
  else
    /* TYPE is part of the function name.  */
    error_at (location, "passing %qT to argument %d of %qE, which"
	      " expects a vector of %d-bit integers",
	      get_argument_type (argno), argno + 1, fndecl, required_bits);
  return MODE_none;
}

/* Require the arguments starting at ARGNO to form a gather-style address.
   There are three possible uses:

   - for loading into elements of type TYPE (when LOAD_P is true)
   - for storing from elements of type TYPE (when LOAD_P is false)
   - for prefetching data (when TYPE is NUM_TYPE_SUFFIXES)

   The three possible addresses are:

   - a vector base with no displacement
   - a vector base and a scalar displacement
   - a scalar (pointer) base and a vector displacement

   The overloaded function's mode suffix determines whether there is
   a displacement, and if so, what units it uses:

   - MODE_none: no displacement
   - MODE_offset: the displacement is measured in bytes
   - MODE_index: the displacement is measured in elements

   Return the mode of the non-overloaded function on success, otherwise
   report an error and return MODE_none.  */
mode_suffix_index
function_resolver::resolve_gather_address (unsigned int argno,
					   type_suffix_index type,
					   bool load_p)
{
  tree actual = get_argument_type (argno);
  if (actual == error_mark_node)
    return MODE_none;

  if (displacement_units () != UNITS_none)
    {
      /* Some form of displacement is needed.  First handle a scalar
	 pointer base and a vector displacement.  */
      if (scalar_argument_p (argno))
	/* Don't check the pointer type here, since there's only one valid
	   choice.  Leave that to the frontend.  */
	return resolve_sv_displacement (argno + 1, type, load_p);

      if (!VECTOR_TYPE_P (actual))
	{
	  error_at (location, "passing %qT to argument %d of %qE,"
		    " which expects a vector or pointer base address",
		    actual, argno + 1, fndecl);
	  return MODE_none;
	}
    }

  /* Check for the correct choice of vector base type.  */
  vector_type_index base_vector_type;
  if (type == NUM_TYPE_SUFFIXES)
    {
      /* Since prefetches have no type suffix, there is a free choice
	 between 32-bit and 64-bit base addresses.  */
      base_vector_type = infer_vector_base_type (argno);
      if (base_vector_type == NUM_VECTOR_TYPES)
	return MODE_none;
    }
  else
    {
      /* Check for some form of vector type, without saying which type
	 we expect.  */
      type_suffix_index base_type = infer_vector_type (argno);
      if (base_type == NUM_TYPE_SUFFIXES)
	return MODE_none;

      /* Check whether the type is the right one.  */
      unsigned int required_bits = type_suffixes[type].element_bits;
      gcc_assert (required_bits == 32 || required_bits == 64);
      type_suffix_index required_type = (required_bits == 32
					 ? TYPE_SUFFIX_u32
					 : TYPE_SUFFIX_u64);
      if (required_type != base_type)
	{
	  error_at (location, "passing %qT to argument %d of %qE,"
		    " which expects %qT", actual, argno + 1, fndecl,
		    get_vector_type (required_type));
	  return MODE_none;
	}
      base_vector_type = type_suffixes[base_type].vector_type;
    }

  /* Check the scalar displacement, if any.  */
  if (displacement_units () != UNITS_none
      && !require_scalar_type (argno + 1, "int64_t"))
    return MODE_none;

  /* Find the appropriate mode suffix.  The checks above should have
     weeded out all erroneous cases.  */
  for (unsigned int mode_i = 0; mode_i < ARRAY_SIZE (mode_suffixes); ++mode_i)
    {
      const mode_suffix_info &mode = mode_suffixes[mode_i];
      if (mode.base_vector_type == base_vector_type
	  && mode.displacement_vector_type == NUM_VECTOR_TYPES
	  && mode.displacement_units == displacement_units ())
	return mode_suffix_index (mode_i);
    }

  gcc_unreachable ();
}

/* Require arguments ARGNO and ARGNO + 1 to form an ADR-style address,
   i.e. one with a vector of base addresses and a vector of displacements.
   The overloaded function's mode suffix determines the units of the
   displacement (bytes for "_offset", elements for "_index").

   Return the associated mode suffix on success, otherwise report
   an error and return MODE_none.  */
mode_suffix_index
function_resolver::resolve_adr_address (unsigned int argno)
{
  vector_type_index base_type = infer_vector_base_type (argno);
  if (base_type == NUM_VECTOR_TYPES)
    return MODE_none;

  vector_type_index displacement_type
    = infer_vector_displacement_type (argno + 1);
  if (displacement_type == NUM_VECTOR_TYPES)
    return MODE_none;

  mode_suffix_index mode = find_mode_suffix (base_type, displacement_type,
					     displacement_units ());
  if (mode == MODE_none)
    {
      if (mode_suffix_id == MODE_offset)
	error_at (location, "cannot combine a base of type %qT with"
		  " an offset of type %qT",
		  get_argument_type (argno), get_argument_type (argno + 1));
      else
	error_at (location, "cannot combine a base of type %qT with"
		  " an index of type %qT",
		  get_argument_type (argno), get_argument_type (argno + 1));
    }
  return mode;
}

/* Require the function to have exactly EXPECTED arguments.  Return true
   if it does, otherwise report an appropriate error.  */
bool
function_resolver::check_num_arguments (unsigned int expected)
{
  if (m_arglist.length () < expected)
    error_at (location, "too few arguments to function %qE", fndecl);
  else if (m_arglist.length () > expected)
    error_at (location, "too many arguments to function %qE", fndecl);
  return m_arglist.length () == expected;
}

/* If the function is predicated, check that the first argument is a
   suitable governing predicate.  Also check that there are NOPS further
   arguments after any governing predicate, but don't check what they are.

   Return true on success, otherwise report a suitable error.
   When returning true:

   - set I to the number of the first unchecked argument.
   - set NARGS to the total number of arguments.  */
bool
function_resolver::check_gp_argument (unsigned int nops,
				      unsigned int &i, unsigned int &nargs)
{
  i = 0;
  if (pred != PRED_none)
    {
      /* Unary merge operations should use resolve_unary instead.  */
      gcc_assert (nops != 1 || pred != PRED_m);
      nargs = nops + 1;
      if (!check_num_arguments (nargs)
	  || !require_vector_type (i, VECTOR_TYPE_svbool_t))
	return false;
      i += 1;
    }
  else
    {
      nargs = nops;
      if (!check_num_arguments (nargs))
	return false;
    }

  return true;
}

/* Finish resolving a function whose final argument can be a vector
   or a scalar, with the function having an implicit "_n" suffix
   in the latter case.  This "_n" form might only exist for certain
   type suffixes.

   ARGNO is the index of the final argument.  The inferred type
   suffix is FIRST_TYPE, which was obtained from argument FIRST_ARGNO.
   EXPECTED_TCLASS and EXPECTED_BITS describe the expected properties
   of the final vector or scalar argument, in the same way as for
   require_derived_vector_type.

   Return the function decl of the resolved function on success,
   otherwise report a suitable error and return error_mark_node.  */
tree function_resolver::
finish_opt_n_resolution (unsigned int argno, unsigned int first_argno,
			 type_suffix_index first_type,
			 type_class_index expected_tclass,
			 unsigned int expected_bits)
{
  tree scalar_form = lookup_form (MODE_n, first_type);

  /* Allow the final argument to be scalar, if an _n form exists.  */
  if (scalar_argument_p (argno))
    {
      if (scalar_form)
	return scalar_form;

      /* Check the vector form normally.  If that succeeds, raise an
	 error about having no corresponding _n form.  */
      tree res = resolve_to (mode_suffix_id, first_type);
      if (res != error_mark_node)
	error_at (location, "passing %qT to argument %d of %qE, but its"
		  " %qT form does not accept scalars",
		  get_argument_type (argno), argno + 1, fndecl,
		  get_vector_type (first_type));
      return error_mark_node;
    }

  /* If an _n form does exist, provide a more accurate message than
     require_derived_vector_type would for arguments that are neither
     vectors nor scalars.  */
  if (scalar_form && !require_vector_or_scalar_type (argno))
    return error_mark_node;

  /* Check for the correct vector type.  */
  if (!require_derived_vector_type (argno, first_argno, first_type,
				    expected_tclass, expected_bits))
    return error_mark_node;

  return resolve_to (mode_suffix_id, first_type);
}

/* Resolve a (possibly predicated) unary function.  If the function uses
   merge predication, there is an extra vector argument before the
   governing predicate that specifies the values of inactive elements.
   This argument has the following properties:

   - the type class must be the same as for active elements if MERGE_TCLASS
     is SAME_TYPE_CLASS, otherwise it must be MERGE_TCLASS itself.

   - the element size must be the same as for active elements if MERGE_BITS
     is SAME_TYPE_SIZE, otherwise it must be MERGE_BITS itself.

   Return the function decl of the resolved function on success,
   otherwise report a suitable error and return error_mark_node.  */
tree
function_resolver::resolve_unary (type_class_index merge_tclass,
				  unsigned int merge_bits)
{
  type_suffix_index type;
  if (pred == PRED_m)
    {
      if (!check_num_arguments (3))
	return error_mark_node;
      if (merge_tclass == SAME_TYPE_CLASS && merge_bits == SAME_SIZE)
	{
	  /* The inactive elements are the same as the active elements,
	     so we can use normal left-to-right resolution.  */
	  if ((type = infer_vector_type (0)) == NUM_TYPE_SUFFIXES
	      || !require_vector_type (1, VECTOR_TYPE_svbool_t)
	      || !require_matching_vector_type (2, type))
	    return error_mark_node;
	}
      else
	{
	  /* The inactive element type is a function of the active one,
	     so resolve the active one first.  */
	  if (!require_vector_type (1, VECTOR_TYPE_svbool_t)
	      || (type = infer_vector_type (2)) == NUM_TYPE_SUFFIXES
	      || !require_derived_vector_type (0, 2, type, merge_tclass,
					       merge_bits))
	    return error_mark_node;
	}
    }
  else
    {
      /* We just need to check the predicate (if any) and the single
	 vector argument.  */
      unsigned int i, nargs;
      if (!check_gp_argument (1, i, nargs)
	  || (type = infer_vector_type (i)) == NUM_TYPE_SUFFIXES)
	return error_mark_node;
    }

  /* Handle convert-like functions in which the first type suffix is
     explicit.  */
  if (type_suffix_ids[0] != NUM_TYPE_SUFFIXES)
    return resolve_to (mode_suffix_id, type_suffix_ids[0], type);

  return resolve_to (mode_suffix_id, type);
}

/* Resolve a (possibly predicated) function that takes NOPS like-typed
   vector arguments followed by NIMM integer immediates.  Return the
   function decl of the resolved function on success, otherwise report
   a suitable error and return error_mark_node.  */
tree
function_resolver::resolve_uniform (unsigned int nops, unsigned int nimm)
{
  unsigned int i, nargs;
  type_suffix_index type;
  if (!check_gp_argument (nops + nimm, i, nargs)
      || (type = infer_vector_type (i)) == NUM_TYPE_SUFFIXES)
    return error_mark_node;

  i += 1;
  for (; i < nargs - nimm; ++i)
    if (!require_matching_vector_type (i, type))
      return error_mark_node;

  for (; i < nargs; ++i)
    if (!require_integer_immediate (i))
      return error_mark_node;

  return resolve_to (mode_suffix_id, type);
}

/* Resolve a (possibly predicated) function that offers a choice between
   taking:

   - NOPS like-typed vector arguments or
   - NOPS - 1 like-typed vector arguments followed by a scalar argument

   Return the function decl of the resolved function on success,
   otherwise report a suitable error and return error_mark_node.  */
tree
function_resolver::resolve_uniform_opt_n (unsigned int nops)
{
  unsigned int i, nargs;
  type_suffix_index type;
  if (!check_gp_argument (nops, i, nargs)
      || (type = infer_vector_type (i)) == NUM_TYPE_SUFFIXES)
    return error_mark_node;

  unsigned int first_arg = i++;
  for (; i < nargs - 1; ++i)
    if (!require_matching_vector_type (i, type))
      return error_mark_node;

  return finish_opt_n_resolution (i, first_arg, type);
}

/* If the call is erroneous, report an appropriate error and return
   error_mark_node.  Otherwise, if the function is overloaded, return
   the decl of the non-overloaded function.  Return NULL_TREE otherwise,
   indicating that the call should be processed in the normal way.  */
tree
function_resolver::resolve ()
{
  return shape->resolve (*this);
}

function_checker::function_checker (location_t location,
				    const function_instance &instance,
				    tree fndecl, tree fntype,
				    unsigned int nargs, tree *args)
  : function_call_info (location, instance, fndecl),
    m_fntype (fntype), m_nargs (nargs), m_args (args),
    /* We don't have to worry about unary _m operations here, since they
       never have arguments that need checking.  */
    m_base_arg (pred != PRED_none ? 1 : 0)
{
}

/* Return true if argument ARGNO exists. which it might not for
   erroneous calls.  It is safe to wave through checks if this
   function returns false.  */
bool
function_checker::argument_exists_p (unsigned int argno)
{
  gcc_assert (argno < (unsigned int) type_num_arguments (m_fntype));
  return argno < m_nargs;
}

/* Check that argument ARGNO is an integer constant expression and
   store its value in VALUE_OUT if so.  The caller should first
   check that argument ARGNO exists.  */
bool
function_checker::require_immediate (unsigned int argno,
				     HOST_WIDE_INT &value_out)
{
  gcc_assert (argno < m_nargs);
  tree arg = m_args[argno];

  /* The type and range are unsigned, so read the argument as an
     unsigned rather than signed HWI.  */
  if (!tree_fits_uhwi_p (arg))
    {
      report_non_ice (location, fndecl, argno);
      return false;
    }

  /* ...but treat VALUE_OUT as signed for error reporting, since printing
     -1 is more user-friendly than the maximum uint64_t value.  */
  value_out = tree_to_uhwi (arg);
  return true;
}

/* Check that argument REL_ARGNO is an integer constant expression that
   has the value VALUE0 or VALUE1.  REL_ARGNO counts from the end of the
   predication arguments.  */
bool
function_checker::require_immediate_either_or (unsigned int rel_argno,
					       HOST_WIDE_INT value0,
					       HOST_WIDE_INT value1)
{
  unsigned int argno = m_base_arg + rel_argno;
  if (!argument_exists_p (argno))
    return true;

  HOST_WIDE_INT actual;
  if (!require_immediate (argno, actual))
    return false;

  if (actual != value0 && actual != value1)
    {
      report_neither_nor (location, fndecl, argno, actual, 90, 270);
      return false;
    }

  return true;
}

/* Check that argument REL_ARGNO is an integer constant expression that has
   a valid value for enumeration type TYPE.  REL_ARGNO counts from the end
   of the predication arguments.  */
bool
function_checker::require_immediate_enum (unsigned int rel_argno, tree type)
{
  unsigned int argno = m_base_arg + rel_argno;
  if (!argument_exists_p (argno))
    return true;

  HOST_WIDE_INT actual;
  if (!require_immediate (argno, actual))
    return false;

  for (tree entry = TYPE_VALUES (type); entry; entry = TREE_CHAIN (entry))
    {
      /* The value is an INTEGER_CST for C and a CONST_DECL wrapper
	 around an INTEGER_CST for C++.  */
      tree value = TREE_VALUE (entry);
      if (TREE_CODE (value) == CONST_DECL)
	value = DECL_INITIAL (value);
      if (wi::to_widest (value) == actual)
	return true;
    }

  report_not_enum (location, fndecl, argno, actual, type);
  return false;
}

/* Check that argument REL_ARGNO is suitable for indexing argument
   REL_ARGNO - 1, in groups of GROUP_SIZE elements.  REL_ARGNO counts
   from the end of the predication arguments.  */
bool
function_checker::require_immediate_lane_index (unsigned int rel_argno,
						unsigned int group_size)
{
  unsigned int argno = m_base_arg + rel_argno;
  if (!argument_exists_p (argno))
    return true;

  /* Get the type of the previous argument.  tree_argument_type wants a
     1-based number, whereas ARGNO is 0-based.  */
  machine_mode mode = TYPE_MODE (type_argument_type (m_fntype, argno));
  gcc_assert (VECTOR_MODE_P (mode));
  unsigned int nlanes = 128 / (group_size * GET_MODE_UNIT_BITSIZE (mode));
  return require_immediate_range (rel_argno, 0, nlanes - 1);
}

/* Check that argument REL_ARGNO is an integer constant expression that
   has one of the given values.  */
bool
function_checker::require_immediate_one_of (unsigned int rel_argno,
					    HOST_WIDE_INT value0,
					    HOST_WIDE_INT value1,
					    HOST_WIDE_INT value2,
					    HOST_WIDE_INT value3)
{
  unsigned int argno = m_base_arg + rel_argno;
  if (!argument_exists_p (argno))
    return true;

  HOST_WIDE_INT actual;
  if (!require_immediate (argno, actual))
    return false;

  if (actual != value0
      && actual != value1
      && actual != value2
      && actual != value3)
    {
      report_not_one_of (location, fndecl, argno, actual,
			 value0, value1, value2, value3);
      return false;
    }

  return true;
}

/* Check that argument REL_ARGNO is an integer constant expression in the
   range [MIN, MAX].  REL_ARGNO counts from the end of the predication
   arguments.  */
bool
function_checker::require_immediate_range (unsigned int rel_argno,
					   HOST_WIDE_INT min,
					   HOST_WIDE_INT max)
{
  unsigned int argno = m_base_arg + rel_argno;
  if (!argument_exists_p (argno))
    return true;

  /* Required because of the tree_to_uhwi -> HOST_WIDE_INT conversion
     in require_immediate.  */
  gcc_assert (min >= 0 && min <= max);
  HOST_WIDE_INT actual;
  if (!require_immediate (argno, actual))
    return false;

  if (!IN_RANGE (actual, min, max))
    {
      report_out_of_range (location, fndecl, argno, actual, min, max);
      return false;
    }

  return true;
}

/* Perform semantic checks on the call.  Return true if the call is valid,
   otherwise report a suitable error.  */
bool
function_checker::check ()
{
  function_args_iterator iter;
  tree type;
  unsigned int i = 0;
  FOREACH_FUNCTION_ARGS (m_fntype, type, iter)
    {
      if (type == void_type_node || i >= m_nargs)
	break;

      if (i >= m_base_arg
	  && TREE_CODE (type) == ENUMERAL_TYPE
	  && !require_immediate_enum (i - m_base_arg, type))
	return false;

      i += 1;
    }

  return shape->check (*this);
}

gimple_folder::gimple_folder (const function_instance &instance, tree fndecl,
			      gimple_stmt_iterator *gsi_in, gcall *call_in)
  : function_call_info (gimple_location (call_in), instance, fndecl),
    gsi (gsi_in), call (call_in), lhs (gimple_call_lhs (call_in))
{
}

/* Convert predicate argument ARGNO so that it has the type appropriate for
   an operation on VECTYPE.  Add any new statements to STMTS.  */
tree
gimple_folder::convert_pred (gimple_seq &stmts, tree vectype,
			     unsigned int argno)
{
  tree predtype = truth_type_for (vectype);
  tree pred = gimple_call_arg (call, argno);
  return gimple_build (&stmts, VIEW_CONVERT_EXPR, predtype, pred);
}

/* Return a pointer to the address in a contiguous load or store,
   given that each memory vector has type VECTYPE.  Add any new
   statements to STMTS.  */
tree
gimple_folder::fold_contiguous_base (gimple_seq &stmts, tree vectype)
{
  tree base = gimple_call_arg (call, 1);
  if (mode_suffix_id == MODE_vnum)
    {
      tree offset = gimple_call_arg (call, 2);
      offset = gimple_convert (&stmts, sizetype, offset);
      offset = gimple_build (&stmts, MULT_EXPR, sizetype, offset,
			     TYPE_SIZE_UNIT (vectype));
      base = gimple_build (&stmts, POINTER_PLUS_EXPR, TREE_TYPE (base),
			   base, offset);
    }
  return base;
}

/* Return the alignment and TBAA argument to an internal load or store
   function like IFN_MASK_LOAD or IFN_MASK_STORE, given that it accesses
   memory elements of type TYPE.  */
tree
gimple_folder::load_store_cookie (tree type)
{
  return build_int_cst (build_pointer_type (type), TYPE_ALIGN_UNIT (type));
}

/* Fold the call to a PTRUE, taking the element size from type suffix 0.  */
gimple *
gimple_folder::fold_to_ptrue ()
{
  tree svbool_type = TREE_TYPE (lhs);
  tree bool_type = TREE_TYPE (svbool_type);
  unsigned int element_bytes = type_suffix (0).element_bytes;

  /* The return type is svbool_t for all type suffixes, thus for b8 we
     want { 1, 1, 1, 1, ... }, for b16 we want { 1, 0, 1, 0, ... }, etc.  */
  tree_vector_builder builder (svbool_type, element_bytes, 1);
  builder.quick_push (build_all_ones_cst (bool_type));
  for (unsigned int i = 1; i < element_bytes; ++i)
    builder.quick_push (build_zero_cst (bool_type));
  return gimple_build_assign (lhs, builder.build ());
}

/* Fold the call to a PFALSE.  */
gimple *
gimple_folder::fold_to_pfalse ()
{
  return gimple_build_assign (lhs, build_zero_cst (TREE_TYPE (lhs)));
}

/* Fold an operation to a constant predicate in which the first VL
   elements are set and the rest are clear.  Take the element size
   from type suffix 0.  */
gimple *
gimple_folder::fold_to_vl_pred (unsigned int vl)
{
  tree vectype = TREE_TYPE (lhs);
  tree element_type = TREE_TYPE (vectype);
  tree minus_one = build_all_ones_cst (element_type);
  tree zero = build_zero_cst (element_type);
  unsigned int element_bytes = type_suffix (0).element_bytes;

  /* Construct COUNT elements that contain the ptrue followed by
     a repeating sequence of COUNT elements.  */
  unsigned int count = constant_lower_bound (TYPE_VECTOR_SUBPARTS (vectype));
  gcc_assert (vl * element_bytes <= count);
  tree_vector_builder builder (vectype, count, 2);
  for (unsigned int i = 0; i < count * 2; ++i)
    {
      bool bit = (i & (element_bytes - 1)) == 0 && i < vl * element_bytes;
      builder.quick_push (bit ? minus_one : zero);
    }
  return gimple_build_assign (lhs, builder.build ());
}

/* Try to fold the call.  Return the new statement on success and null
   on failure.  */
gimple *
gimple_folder::fold ()
{
  /* Don't fold anything when SVE is disabled; emit an error during
     expansion instead.  */
  if (!TARGET_SVE)
    return NULL;

  /* Punt if the function has a return type and no result location is
     provided.  The attributes should allow target-independent code to
     remove the calls if appropriate.  */
  if (!lhs && TREE_TYPE (gimple_call_fntype (call)) != void_type_node)
    return NULL;

  return base->fold (*this);
}

function_expander::function_expander (const function_instance &instance,
				      tree fndecl, tree call_expr_in,
				      rtx possible_target_in)
  : function_call_info (EXPR_LOCATION (call_expr_in), instance, fndecl),
    call_expr (call_expr_in), possible_target (possible_target_in)
{
}

/* Return the handler of direct optab OP for type suffix SUFFIX_I.  */
insn_code
function_expander::direct_optab_handler (optab op, unsigned int suffix_i)
{
  return ::direct_optab_handler (op, vector_mode (suffix_i));
}

/* Choose between signed and unsigned direct optabs SIGNED_OP and
   UNSIGNED_OP based on the signedness of type suffix SUFFIX_I, then
   pick the appropriate optab handler for the mode.  Use MODE as the
   mode if given, otherwise use the mode of type suffix SUFFIX_I.  */
insn_code
function_expander::direct_optab_handler_for_sign (optab signed_op,
						  optab unsigned_op,
						  unsigned int suffix_i,
						  machine_mode mode)
{
  if (mode == VOIDmode)
    mode = vector_mode (suffix_i);
  optab op = type_suffix (suffix_i).unsigned_p ? unsigned_op : signed_op;
  return ::direct_optab_handler (op, mode);
}

/* Return true if X overlaps any input.  */
bool
function_expander::overlaps_input_p (rtx x)
{
  for (unsigned int i = 0; i < args.length (); ++i)
    if (reg_overlap_mentioned_p (x, args[i]))
      return true;
  return false;
}

/* Return the base address for a contiguous load or store function.
   MEM_MODE is the mode of the addressed memory.  */
rtx
function_expander::get_contiguous_base (machine_mode mem_mode)
{
  rtx base = args[1];
  if (mode_suffix_id == MODE_vnum)
    {
      /* Use the size of the memory mode for extending loads and truncating
	 stores.  Use the size of a full vector for non-extending loads
	 and non-truncating stores (including svld[234] and svst[234]).  */
      poly_int64 size = ordered_min (GET_MODE_SIZE (mem_mode),
				     BYTES_PER_SVE_VECTOR);
      rtx offset = gen_int_mode (size, Pmode);
      offset = simplify_gen_binary (MULT, Pmode, args[2], offset);
      base = simplify_gen_binary (PLUS, Pmode, base, offset);
    }
  return base;
}

/* For a function that does the equivalent of:

     OUTPUT = COND ? FN (INPUTS) : FALLBACK;

   return the value of FALLBACK.

   MODE is the mode of OUTPUT.  NOPS is the number of operands in INPUTS.
   MERGE_ARGNO is the argument that provides FALLBACK for _m functions,
   or DEFAULT_MERGE_ARGNO if we should apply the usual rules.

   ARGNO is the caller's index into args.  If the returned value is
   argument 0 (as for unary _m operations), increment ARGNO past the
   returned argument.  */
rtx
function_expander::get_fallback_value (machine_mode mode, unsigned int nops,
				       unsigned int merge_argno,
				       unsigned int &argno)
{
  if (pred == PRED_z)
    return CONST0_RTX (mode);

  gcc_assert (pred == PRED_m || pred == PRED_x);
  if (merge_argno == DEFAULT_MERGE_ARGNO)
    merge_argno = nops == 1 && pred == PRED_m ? 0 : 1;

  if (merge_argno == 0)
    return args[argno++];

  return args[merge_argno];
}

/* Return a REG rtx that can be used for the result of the function,
   using the preferred target if suitable.  */
rtx
function_expander::get_reg_target ()
{
  machine_mode target_mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (fndecl)));
  if (!possible_target || GET_MODE (possible_target) != target_mode)
    possible_target = gen_reg_rtx (target_mode);
  return possible_target;
}

/* As for get_reg_target, but make sure that the returned REG does not
   overlap any inputs.  */
rtx
function_expander::get_nonoverlapping_reg_target ()
{
  if (possible_target && overlaps_input_p (possible_target))
    possible_target = NULL_RTX;
  return get_reg_target ();
}

/* Add an output operand to the instruction we're building, which has
   code ICODE.  Bind the output to the preferred target rtx if possible.  */
void
function_expander::add_output_operand (insn_code icode)
{
  unsigned int opno = m_ops.length ();
  machine_mode mode = insn_data[icode].operand[opno].mode;
  m_ops.safe_grow (opno + 1);
  create_output_operand (&m_ops.last (), possible_target, mode);
}

/* Add an input operand to the instruction we're building, which has
   code ICODE.  Calculate the value of the operand as follows:

   - If the operand is a vector and X is not, broadcast X to fill a
     vector of the appropriate mode.

   - Otherwise, if the operand is a predicate, coerce X to have the
     mode that the instruction expects.  In this case X is known to be
     VNx16BImode (the mode of svbool_t).

   - Otherwise use X directly.  The expand machinery checks that X has
     the right mode for the instruction.  */
void
function_expander::add_input_operand (insn_code icode, rtx x)
{
  unsigned int opno = m_ops.length ();
  const insn_operand_data &operand = insn_data[icode].operand[opno];
  machine_mode mode = operand.mode;
  if (mode == VOIDmode)
    {
      /* The only allowable use of VOIDmode is the wildcard
	 aarch64_any_register_operand, which is used to avoid
	 combinatorial explosion in the reinterpret patterns.  */
      gcc_assert (operand.predicate == aarch64_any_register_operand);
      mode = GET_MODE (x);
    }
  else if (!VECTOR_MODE_P (GET_MODE (x)) && VECTOR_MODE_P (mode))
    x = expand_vector_broadcast (mode, x);
  else if (GET_MODE_CLASS (mode) == MODE_VECTOR_BOOL)
    {
      gcc_assert (GET_MODE (x) == VNx16BImode);
      x = gen_lowpart (mode, x);
    }
  m_ops.safe_grow (m_ops.length () + 1);
  create_input_operand (&m_ops.last (), x, mode);
}

/* Add an integer operand with value X to the instruction.  */
void
function_expander::add_integer_operand (HOST_WIDE_INT x)
{
  m_ops.safe_grow (m_ops.length () + 1);
  create_integer_operand (&m_ops.last (), x);
}

/* Add a memory operand with mode MODE and address ADDR.  */
void
function_expander::add_mem_operand (machine_mode mode, rtx addr)
{
  gcc_assert (VECTOR_MODE_P (mode));
  rtx mem = gen_rtx_MEM (mode, memory_address (mode, addr));
  /* The memory is only guaranteed to be element-aligned.  */
  set_mem_align (mem, GET_MODE_ALIGNMENT (GET_MODE_INNER (mode)));
  add_fixed_operand (mem);
}

/* Add an address operand with value X.  The static operand data says
   what mode and form the address must have.  */
void
function_expander::add_address_operand (rtx x)
{
  m_ops.safe_grow (m_ops.length () + 1);
  create_address_operand (&m_ops.last (), x);
}

/* Add an operand that must be X.  The only way of legitimizing an
   invalid X is to reload the address of a MEM.  */
void
function_expander::add_fixed_operand (rtx x)
{
  m_ops.safe_grow (m_ops.length () + 1);
  create_fixed_operand (&m_ops.last (), x);
}

/* Generate instruction ICODE, given that its operands have already
   been added to M_OPS.  Return the value of the first operand.  */
rtx
function_expander::generate_insn (insn_code icode)
{
  expand_insn (icode, m_ops.length (), m_ops.address ());
  return function_returns_void_p () ? const0_rtx : m_ops[0].value;
}

/* Convert the arguments to a gather/scatter function into the
   associated md operands.  Argument ARGNO is the scalar or vector base and
   argument ARGNO + 1 is the scalar or vector displacement (if applicable).
   The md pattern expects:

   - a scalar base
   - a vector displacement
   - a const_int that is 1 if the displacement is zero-extended from 32 bits
   - a scaling multiplier (1 for bytes, 2 for .h indices, etc.).  */
void
function_expander::prepare_gather_address_operands (unsigned int argno)
{
  machine_mode mem_mode = memory_vector_mode ();
  tree vector_type = base_vector_type ();
  units_index units = displacement_units ();
  if (units == UNITS_none)
    {
      /* Vector base, no displacement.  Convert to an integer zero base
	 and a vector byte offset.  */
      args.quick_insert (argno, const0_rtx);
      units = UNITS_bytes;
    }
  else if (vector_type)
    {
      /* Vector base, scalar displacement.  Convert to a scalar base and
	 a vector byte offset.  */
      std::swap (args[argno], args[argno + 1]);
      if (units == UNITS_elements)
	{
	  /* Convert the original scalar array index to a byte offset.  */
	  rtx size = gen_int_mode (GET_MODE_UNIT_SIZE (mem_mode), DImode);
	  args[argno] = simplify_gen_binary (MULT, DImode, args[argno], size);
	  units = UNITS_bytes;
	}
    }
  else
    {
      /* Scalar base, vector displacement.  This is what the md pattern wants,
	 so we just need to make sure that the scalar base has DImode.  */
      if (Pmode == SImode)
	args[argno] = simplify_gen_unary (ZERO_EXTEND, DImode,
					  args[argno], SImode);
      vector_type = displacement_vector_type ();
    }
  tree scalar_displacement_type = TREE_TYPE (vector_type);

  bool uxtw_p = (TYPE_PRECISION (scalar_displacement_type) < 64
		 && TYPE_UNSIGNED (scalar_displacement_type));
  unsigned int scale = (units == UNITS_bytes
			? 1 : GET_MODE_UNIT_SIZE (mem_mode));

  args.quick_insert (argno + 2, GEN_INT (uxtw_p));
  args.quick_insert (argno + 3, GEN_INT (scale));
}

/* The final argument is an immediate svprfop value.  Add two fake arguments
   to represent the rw and locality operands of a PREFETCH rtx.  */
void
function_expander::prepare_prefetch_operands ()
{
  unsigned int prfop = INTVAL (args.last ());
  /* Bit 3 of the prfop selects stores over loads.  */
  args.quick_push (GEN_INT ((prfop & 8) != 0));
  /* Bits 1 and 2 specify the locality; 0-based for svprfop but
     1-based for PREFETCH.  */
  args.quick_push (GEN_INT (((prfop >> 1) & 3) + 1));
}

/* Add a dummy argument to indicate whether predicate argument ARGNO
   is all-true when interpreted in mode PRED_MODE.  The hint goes
   immediately after ARGNO.  */
void
function_expander::add_ptrue_hint (unsigned int argno, machine_mode pred_mode)
{
  rtx pred = gen_lowpart (pred_mode, args[argno]);
  int hint = (pred == CONSTM1_RTX (pred_mode)
	      ? SVE_KNOWN_PTRUE : SVE_MAYBE_NOT_PTRUE);
  args.quick_insert (argno + 1, gen_int_mode (hint, SImode));
}

/* Rotate inputs args[START:END] one position to the left, so that
   args[START] becomes args[END - 1].  */
void
function_expander::rotate_inputs_left (unsigned int start, unsigned int end)
{
  rtx new_last = args[start];
  for (unsigned int i = start; i < end - 1; ++i)
    args[i] = args[i + 1];
  args[end - 1] = new_last;
}

/* Return true if the negation of argument ARGNO can be folded away,
   replacing it with the negated value if so.  MODE is the associated
   vector mode, but the argument could be a single element.  The main
   case this handles is constant arguments.  */
bool
function_expander::try_negating_argument (unsigned int argno,
					  machine_mode mode)
{
  rtx x = args[argno];
  if (!VECTOR_MODE_P (GET_MODE (x)))
    mode = GET_MODE_INNER (mode);

  x = simplify_unary_operation (NEG, mode, x, mode);
  if (!x)
    return false;

  args[argno] = x;
  return true;
}

/* Implement the call using instruction ICODE, with a 1:1 mapping between
   arguments and input operands.  */
rtx
function_expander::use_exact_insn (insn_code icode)
{
  unsigned int nops = insn_data[icode].n_operands;
  if (!function_returns_void_p ())
    {
      add_output_operand (icode);
      nops -= 1;
    }
  for (unsigned int i = 0; i < nops; ++i)
    add_input_operand (icode, args[i]);
  return generate_insn (icode);
}

/* Implement the call using instruction ICODE, which does not use a
   governing predicate.  We must therefore drop the GP from an _x call.  */
rtx
function_expander::use_unpred_insn (insn_code icode)
{
  /* We can't drop the predicate for _z and _m.  */
  gcc_assert (pred == PRED_x || pred == PRED_none);
  /* Discount the output operand.  */
  unsigned int nops = insn_data[icode].n_operands - 1;
  /* Drop the predicate argument in the case of _x predication.  */
  unsigned int bias = (pred == PRED_x ? 1 : 0);
  unsigned int i = 0;

  add_output_operand (icode);
  for (; i < nops; ++i)
    add_input_operand (icode, args[i + bias]);

  return generate_insn (icode);
}

/* Implement the call using instruction ICODE, which is a predicated
   operation that returns arbitrary values for inactive lanes.  */
rtx
function_expander::use_pred_x_insn (insn_code icode)
{
  /* At present we never need to handle PRED_none, which would involve
     creating a new predicate rather than using one supplied by the user.  */
  gcc_assert (pred == PRED_x);
  /* Discount the output operand.  */
  unsigned int nops = args.length () - 1;

  bool has_float_operand_p = FLOAT_MODE_P (insn_data[icode].operand[0].mode);

  /* Add the normal operands.  */
  add_output_operand (icode);
  add_input_operand (icode, args[0]);
  for (unsigned int i = 0; i < nops; ++i)
    {
      add_input_operand (icode, args[i + 1]);
      if (FLOAT_MODE_P (GET_MODE (args[i + 1])))
	has_float_operand_p = true;
    }

  if (has_float_operand_p)
    {
      /* Add a flag that indicates whether unpredicated instructions
	 are allowed.  */
      rtx pred = m_ops[1].value;
      if (flag_trapping_math && pred != CONST1_RTX (GET_MODE (pred)))
	add_integer_operand (SVE_STRICT_GP);
      else
	add_integer_operand (SVE_RELAXED_GP);
    }

  return generate_insn (icode);
}

/* Implement the call using instruction ICODE, which does the equivalent of:

     OUTPUT = COND ? FN (INPUTS) : FALLBACK;

   The instruction operands are in the order above: OUTPUT, COND, INPUTS
   and FALLBACK.  MERGE_ARGNO is the argument that provides FALLBACK for _m
   functions, or DEFAULT_MERGE_ARGNO if we should apply the usual rules.  */
rtx
function_expander::use_cond_insn (insn_code icode, unsigned int merge_argno)
{
  /* At present we never need to handle PRED_none, which would involve
     creating a new predicate rather than using one supplied by the user.  */
  gcc_assert (pred != PRED_none);
  /* Discount the output, predicate and fallback value.  */
  unsigned int nops = insn_data[icode].n_operands - 3;
  machine_mode mode = insn_data[icode].operand[0].mode;

  unsigned int opno = 0;
  rtx fallback_arg = get_fallback_value (mode, nops, merge_argno, opno);
  rtx pred = args[opno++];

  add_output_operand (icode);
  add_input_operand (icode, pred);
  for (unsigned int i = 0; i < nops; ++i)
    add_input_operand (icode, args[opno + i]);
  add_input_operand (icode, fallback_arg);
  return generate_insn (icode);
}

/* Implement the call using instruction ICODE, which is a select-like
   operation with the following operands:

   0: output
   1: true value
   2: false value
   3: predicate

   MERGE_ARGNO is the argument that provides the "false" value for _m
   functions, or DEFAULT_MERGE_ARGNO if we should apply the usual rules.  */
rtx
function_expander::use_vcond_mask_insn (insn_code icode,
					unsigned int merge_argno)
{
  machine_mode mode = vector_mode (0);

  unsigned int opno = 0;
  rtx false_arg = get_fallback_value (mode, 1, merge_argno, opno);
  rtx pred_arg = args[opno++];
  rtx true_arg = args[opno++];

  add_output_operand (icode);
  add_input_operand (icode, true_arg);
  add_input_operand (icode, false_arg);
  add_input_operand (icode, pred_arg);
  return generate_insn (icode);
}

/* Implement the call using instruction ICODE, which loads memory operand 1
   into register operand 0 under the control of predicate operand 2.
   Extending loads have a further predicate (operand 3) that nominally
   controls the extension.  */
rtx
function_expander::use_contiguous_load_insn (insn_code icode)
{
  machine_mode mem_mode = memory_vector_mode ();

  add_output_operand (icode);
  add_mem_operand (mem_mode, get_contiguous_base (mem_mode));
  add_input_operand (icode, args[0]);
  if (GET_MODE_UNIT_BITSIZE (mem_mode) < type_suffix (0).element_bits)
    add_input_operand (icode, CONSTM1_RTX (VNx16BImode));
  return generate_insn (icode);
}

/* Implement the call using instruction ICODE, which prefetches from
   address operand 1 under the control of predicate operand 0.
   Operands 2, 3 and 4 respectively specify the svprfop value,
   the PREFETCH rw flag and the PREFETCH locality.  */
rtx
function_expander::use_contiguous_prefetch_insn (insn_code icode)
{
  add_input_operand (icode, args[0]);
  add_address_operand (get_contiguous_base (VNx16QImode));
  for (unsigned int i = args.length () - 3; i < args.length (); ++i)
    add_input_operand (icode, args[i]);
  return generate_insn (icode);
}

/* Implement the call using instruction ICODE, which stores register operand 1
   into memory operand 0 under the control of predicate operand 2.  */
rtx
function_expander::use_contiguous_store_insn (insn_code icode)
{
  machine_mode mem_mode = memory_vector_mode ();

  add_mem_operand (mem_mode, get_contiguous_base (mem_mode));
  add_input_operand (icode, args.last ());
  add_input_operand (icode, args[0]);
  return generate_insn (icode);
}

/* Implement the call using one of the following strategies, chosen in order:

   (1) "aarch64_pred_<optab><mode>_z" for PRED_z predicate functions

   (2) "aarch64_pred_<optab><mode>" for PRED_x functions

   (3) a normal unpredicated optab for PRED_none and PRED_x functions,
       dropping the predicate in the latter case

   (4) "cond_<optab><mode>" otherwise

   where <optab> corresponds to:

   - CODE_FOR_SINT for signed integers
   - CODE_FOR_UINT for unsigned integers
   - UNSPEC_FOR_FP for floating-point values

   MERGE_ARGNO is the argument that provides the values of inactive lanes for
   _m functions, or DEFAULT_MERGE_ARGNO if we should apply the usual rules.  */
rtx
function_expander::map_to_rtx_codes (rtx_code code_for_sint,
				     rtx_code code_for_uint,
				     int unspec_for_fp,
				     unsigned int merge_argno)
{
  machine_mode mode = vector_mode (0);
  rtx_code code = (type_suffix (0).unsigned_p ? code_for_uint : code_for_sint);
  insn_code icode;

  /* Handle predicate logic operations, which always use _z predication.  */
  if (type_suffix (0).tclass == TYPE_bool)
    {
      gcc_assert (pred == PRED_z && code_for_uint == code_for_sint);
      return use_exact_insn (code_for_aarch64_pred_z (code, mode));
    }

  /* First try using UNSPEC_PRED_X patterns for _x predication,
     if available.  */
  if (pred == PRED_x)
    {
      if (type_suffix (0).integer_p)
	icode = maybe_code_for_aarch64_pred (code, mode);
      else
	icode = maybe_code_for_aarch64_pred (unspec_for_fp, mode);
      if (icode != CODE_FOR_nothing)
	return use_pred_x_insn (icode);
    }

  /* Otherwise expand PRED_none and PRED_x operations without a predicate.
     Floating-point operations conventionally use the signed rtx code.  */
  if (pred == PRED_none || pred == PRED_x)
    return use_unpred_insn (direct_optab_handler (code_to_optab (code), 0));

  /* Don't use cond_*_optabs here, since not all codes have one yet.  */
  if (type_suffix (0).integer_p)
    icode = code_for_cond (code, mode);
  else
    icode = code_for_cond (unspec_for_fp, mode);
  return use_cond_insn (icode, merge_argno);
}

/* Implement the call using one of the following strategies, chosen in order:

   (1) "aarch64_pred_<optab><mode>" for PRED_x functions; this is a
       predicated pattern

   (2) "aarch64_sve_<optab><mode>" for PRED_none and PRED_x functions;
       this is an unpredicated pattern

   (3) "cond_<optab><mode>" otherwise

   where <optab> corresponds to:

   - UNSPEC_FOR_SINT for signed integers
   - UNSPEC_FOR_UINT for unsigned integers
   - UNSPEC_FOR_FP for floating-point values

   MERGE_ARGNO is the argument that provides the values of inactive lanes for
   _m functions, or DEFAULT_MERGE_ARGNO if we should apply the usual rules.  */
rtx
function_expander::map_to_unspecs (int unspec_for_sint, int unspec_for_uint,
				   int unspec_for_fp, unsigned int merge_argno)
{
  machine_mode mode = vector_mode (0);
  int unspec = (!type_suffix (0).integer_p ? unspec_for_fp
		: type_suffix (0).unsigned_p ? unspec_for_uint
		: unspec_for_sint);

  if (pred == PRED_x)
    {
      insn_code icode = maybe_code_for_aarch64_pred (unspec, mode);
      if (icode != CODE_FOR_nothing)
	return use_pred_x_insn (icode);
    }

  if (pred == PRED_none || pred == PRED_x)
    return use_unpred_insn (code_for_aarch64_sve (unspec, mode));

  insn_code icode = code_for_cond (unspec, vector_mode (0));
  return use_cond_insn (icode, merge_argno);
}

/* Implement the call using an @aarch64 instruction and the
   instructions are parameterized by an rtx_code.  CODE_FOR_SINT
   is the rtx_code for signed integer operations, CODE_FOR_UINT
   is the rtx_code for unsigned integer operations.  */
rtx
function_expander::expand_signed_unpred_op (rtx_code code_for_sint,
					    rtx_code code_for_uint)
{
  insn_code icode;
  if (type_suffix (0).unsigned_p)
    icode = code_for_aarch64 (code_for_uint, code_for_uint, vector_mode (0));
  else
    icode = code_for_aarch64 (code_for_sint, code_for_sint, vector_mode (0));
  return use_unpred_insn (icode);
}

/* Expand the call and return its lhs.  */
rtx
function_expander::expand ()
{
  unsigned int nargs = call_expr_nargs (call_expr);
  args.reserve (nargs);
  for (unsigned int i = 0; i < nargs; ++i)
    args.quick_push (expand_normal (CALL_EXPR_ARG (call_expr, i)));

  return base->expand (*this);
}

/* Register the built-in SVE ABI types, such as __SVBool_t.  */
static void
register_builtin_types ()
{
#define DEF_SVE_TYPE(ACLE_NAME, NCHARS, ABI_NAME, SCALAR_TYPE) \
  scalar_types[VECTOR_TYPE_ ## ACLE_NAME] = SCALAR_TYPE;
#include "aarch64-sve-builtins.def"

  for (unsigned int i = 0; i < NUM_VECTOR_TYPES; ++i)
    {
      tree eltype = scalar_types[i];
      tree vectype;
      if (eltype == boolean_type_node)
	{
	  vectype = build_truth_vector_type_for_mode (BYTES_PER_SVE_VECTOR,
						      VNx16BImode);
	  gcc_assert (TYPE_MODE (vectype) == VNx16BImode
		      && TYPE_MODE (vectype) == TYPE_MODE_RAW (vectype)
		      && TYPE_ALIGN (vectype) == 16
		      && known_eq (wi::to_poly_offset (TYPE_SIZE (vectype)),
				   BYTES_PER_SVE_VECTOR));
	}
      else
	{
	  unsigned int elbytes = tree_to_uhwi (TYPE_SIZE_UNIT (eltype));
	  poly_uint64 nunits = exact_div (BYTES_PER_SVE_VECTOR, elbytes);
	  vectype = build_vector_type (eltype, nunits);
	  gcc_assert (VECTOR_MODE_P (TYPE_MODE (vectype))
		      && TYPE_MODE (vectype) == TYPE_MODE_RAW (vectype)
		      && TYPE_ALIGN (vectype) == 128
		      && known_eq (wi::to_poly_offset (TYPE_SIZE (vectype)),
				   BITS_PER_SVE_VECTOR));
	}
      vectype = build_distinct_type_copy (vectype);
      gcc_assert (vectype == TYPE_MAIN_VARIANT (vectype));
      SET_TYPE_STRUCTURAL_EQUALITY (vectype);
      TYPE_ARTIFICIAL (vectype) = 1;
      TYPE_INDIVISIBLE_P (vectype) = 1;
      abi_vector_types[i] = vectype;
      lang_hooks.types.register_builtin_type (vectype,
					      vector_types[i].abi_name);
    }
}

/* Initialize all compiler built-ins related to SVE that should be
   defined at start-up.  */
void
init_builtins ()
{
  sve_switcher sve;
  register_builtin_types ();
}

/* Register vector type TYPE under its arm_sve.h name.  */
static void
register_vector_type (vector_type_index type)
{
  tree vectype = abi_vector_types[type];
  tree id = get_identifier (vector_types[type].acle_name);
  tree decl = build_decl (input_location, TYPE_DECL, id, vectype);
  decl = lang_hooks.decls.pushdecl (decl);

  /* Record the new ACLE type if pushdecl succeeded without error.  Use
     the ABI type otherwise, so that the type we record at least has the
     right form, even if it doesn't have the right name.  This should give
     better error recovery behavior than installing error_mark_node or
     installing an incorrect type.  */
  if (TREE_CODE (decl) == TYPE_DECL
      && TYPE_MAIN_VARIANT (TREE_TYPE (decl)) == vectype)
    vectype = TREE_TYPE (decl);
  acle_vector_types[0][type] = vectype;
}

/* Register the tuple type that contains NUM_VECTORS vectors of type TYPE.  */
static void
register_tuple_type (unsigned int num_vectors, vector_type_index type)
{
  tree tuple_type = lang_hooks.types.make_type (RECORD_TYPE);

  /* The contents of the type are opaque, so we can define them in any
     way that maps to the correct ABI type.

     Here we choose to use the same layout as for arm_neon.h, but with
     "__val" instead of "val":

	struct svfooxN_t { svfoo_t __val[N]; };

     (It wouldn't be possible to write that directly in C or C++ for
     sizeless types, but that's not a problem for this function.)

     Using arrays simplifies the handling of svget and svset for variable
     arguments.  */
  tree vector_type = acle_vector_types[0][type];
  tree array_type = build_array_type_nelts (vector_type, num_vectors);
  gcc_assert (VECTOR_MODE_P (TYPE_MODE (array_type))
	      && TYPE_MODE_RAW (array_type) == TYPE_MODE (array_type)
	      && TYPE_ALIGN (array_type) == 128);

  tree field = build_decl (input_location, FIELD_DECL,
			   get_identifier ("__val"), array_type);
  DECL_FIELD_CONTEXT (field) = tuple_type;
  TYPE_FIELDS (tuple_type) = field;
  layout_type (tuple_type);
  gcc_assert (VECTOR_MODE_P (TYPE_MODE (tuple_type))
	      && TYPE_MODE_RAW (tuple_type) == TYPE_MODE (tuple_type)
	      && TYPE_ALIGN (tuple_type) == 128);

  /* Work out the structure name.  */
  char buffer[sizeof ("svfloat64x4_t")];
  const char *vector_type_name = vector_types[type].acle_name;
  snprintf (buffer, sizeof (buffer), "%.*sx%d_t",
	    (int) strlen (vector_type_name) - 2, vector_type_name,
	    num_vectors);

  tree decl = build_decl (input_location, TYPE_DECL,
			  get_identifier (buffer), tuple_type);
  TYPE_NAME (tuple_type) = decl;
  TYPE_STUB_DECL (tuple_type) = decl;
  lang_hooks.decls.pushdecl (decl);
  /* ??? Undo the effect of set_underlying_type for C.  The C frontend
     doesn't recognize DECL as a built-in because (as intended) the decl has
     a real location instead of BUILTINS_LOCATION.  The frontend therefore
     treats the decl like a normal C "typedef struct foo foo;", expecting
     the type for tag "struct foo" to have a dummy unnamed TYPE_DECL instead
     of the named one we attached above.  It then sets DECL_ORIGINAL_TYPE
     on the supposedly unnamed decl, creating a circularity that upsets
     dwarf2out.

     We don't want to follow the normal C model and create "struct foo"
     tags for tuple types since (a) the types are supposed to be opaque
     and (b) they couldn't be defined as a real struct anyway.  Treating
     the TYPE_DECLs as "typedef struct foo foo;" without creating
     "struct foo" would lead to confusing error messages.  */
  DECL_ORIGINAL_TYPE (decl) = NULL_TREE;

  acle_vector_types[num_vectors - 1][type] = tuple_type;
}

/* Register the svpattern enum.  */
static void
register_svpattern ()
{
  auto_vec<string_int_pair, 32> values;
#define PUSH(UPPER, LOWER, VALUE) \
    values.quick_push (string_int_pair ("SV_" #UPPER, VALUE));
  AARCH64_FOR_SVPATTERN (PUSH)
#undef PUSH

  acle_svpattern = lang_hooks.types.simulate_enum_decl (input_location,
							"svpattern", values);
}

/* Register the svprfop enum.  */
static void
register_svprfop ()
{
  auto_vec<string_int_pair, 16> values;
#define PUSH(UPPER, LOWER, VALUE) \
    values.quick_push (string_int_pair ("SV_" #UPPER, VALUE));
  AARCH64_FOR_SVPRFOP (PUSH)
#undef PUSH

  acle_svprfop = lang_hooks.types.simulate_enum_decl (input_location,
						      "svprfop", values);
}

/* Implement #pragma GCC aarch64 "arm_sve.h".  */
void
handle_arm_sve_h ()
{
  if (function_table)
    {
      error ("duplicate definition of %qs", "arm_sve.h");
      return;
    }

  sve_switcher sve;

  /* Define the vector and tuple types.  */
  for (unsigned int type_i = 0; type_i < NUM_VECTOR_TYPES; ++type_i)
    {
      vector_type_index type = vector_type_index (type_i);
      register_vector_type (type);
      if (type != VECTOR_TYPE_svbool_t)
	for (unsigned int count = 2; count <= MAX_TUPLE_SIZE; ++count)
	  register_tuple_type (count, type);
    }

  /* Define the enums.  */
  register_svpattern ();
  register_svprfop ();

  /* Define the functions.  */
  function_table = new hash_table<registered_function_hasher> (1023);
  function_builder builder;
  for (unsigned int i = 0; i < ARRAY_SIZE (function_groups); ++i)
    builder.register_function_group (function_groups[i]);
}

/* Return the function decl with SVE function subcode CODE, or error_mark_node
   if no such function exists.  */
tree
builtin_decl (unsigned int code, bool)
{
  if (code >= vec_safe_length (registered_functions))
    return error_mark_node;
  return (*registered_functions)[code]->decl;
}

/* If we're implementing manual overloading, check whether the SVE
   function with subcode CODE is overloaded, and if so attempt to
   determine the corresponding non-overloaded function.  The call
   occurs at location LOCATION and has the arguments given by ARGLIST.

   If the call is erroneous, report an appropriate error and return
   error_mark_node.  Otherwise, if the function is overloaded, return
   the decl of the non-overloaded function.  Return NULL_TREE otherwise,
   indicating that the call should be processed in the normal way.  */
tree
resolve_overloaded_builtin (location_t location, unsigned int code,
			    vec<tree, va_gc> *arglist)
{
  if (code >= vec_safe_length (registered_functions))
    return NULL_TREE;

  registered_function &rfn = *(*registered_functions)[code];
  if (rfn.overloaded_p)
    return function_resolver (location, rfn.instance, rfn.decl,
			      *arglist).resolve ();
  return NULL_TREE;
}

/* Perform any semantic checks needed for a call to the SVE function
   with subcode CODE, such as testing for integer constant expressions.
   The call occurs at location LOCATION and has NARGS arguments,
   given by ARGS.  FNDECL is the original function decl, before
   overload resolution.

   Return true if the call is valid, otherwise report a suitable error.  */
bool
check_builtin_call (location_t location, vec<location_t>, unsigned int code,
		    tree fndecl, unsigned int nargs, tree *args)
{
  const registered_function &rfn = *(*registered_functions)[code];
  if (!check_required_extensions (location, rfn.decl, rfn.required_extensions))
    return false;
  return function_checker (location, rfn.instance, fndecl,
			   TREE_TYPE (rfn.decl), nargs, args).check ();
}

/* Attempt to fold STMT, given that it's a call to the SVE function
   with subcode CODE.  Return the new statement on success and null
   on failure.  Insert any other new statements at GSI.  */
gimple *
gimple_fold_builtin (unsigned int code, gimple_stmt_iterator *gsi, gcall *stmt)
{
  registered_function &rfn = *(*registered_functions)[code];
  return gimple_folder (rfn.instance, rfn.decl, gsi, stmt).fold ();
}

/* Expand a call to the SVE function with subcode CODE.  EXP is the call
   expression and TARGET is the preferred location for the result.
   Return the value of the lhs.  */
rtx
expand_builtin (unsigned int code, tree exp, rtx target)
{
  registered_function &rfn = *(*registered_functions)[code];
  if (!check_required_extensions (EXPR_LOCATION (exp), rfn.decl,
				  rfn.required_extensions))
    return target;
  return function_expander (rfn.instance, rfn.decl, exp, target).expand ();
}

/* Return true if TYPE is the ABI-defined __SVBool_t type.  */
bool
svbool_type_p (const_tree type)
{
  tree abi_type = abi_vector_types[VECTOR_TYPE_svbool_t];
  return type != error_mark_node && TYPE_MAIN_VARIANT (type) == abi_type;
}

/* If TYPE is a built-in type defined by the SVE ABI, return the mangled name,
   otherwise return NULL.  */
const char *
mangle_builtin_type (const_tree type)
{
  if (type == error_mark_node)
    return NULL;

  vector_type_index vtype = find_vector_type (type);
  if (vtype != NUM_VECTOR_TYPES)
    return vector_types[vtype].mangled_name;

  return NULL;
}

/* If TYPE is one of the ABI-defined SVE vector types, or an ACLE-defined
   tuple of them, return the number of vectors it contains.  Return 0
   otherwise.  */
unsigned int
nvectors_if_data_type (const_tree type)
{
  if (type == error_mark_node)
    return 0;

  type = TYPE_MAIN_VARIANT (type);
  if (VECTOR_TYPE_P (type))
    {
      vector_type_index type_id = find_vector_type (type);
      if (type_id != VECTOR_TYPE_svbool_t && type_id != NUM_VECTOR_TYPES)
	return 1;
    }
  else if (TREE_CODE (type) == RECORD_TYPE)
    {
      for (unsigned int size_i = 1; size_i < MAX_TUPLE_SIZE; ++size_i)
	for (unsigned int type_i = 0; type_i < NUM_VECTOR_TYPES; ++type_i)
	  {
	    tree tuple_type = acle_vector_types[size_i][type_i];
	    if (tuple_type && type == TYPE_MAIN_VARIANT (tuple_type))
	      return size_i + 1;
	  }
    }

  return 0;
}

/* Return true if TYPE is a built-in type defined by the SVE ABI.  */
bool
builtin_type_p (const_tree type)
{
  return svbool_type_p (type) || nvectors_if_data_type (type) > 0;
}

}

using namespace aarch64_sve;

inline void
gt_ggc_mx (function_instance *)
{
}

inline void
gt_pch_nx (function_instance *)
{
}

inline void
gt_pch_nx (function_instance *, void (*) (void *, void *), void *)
{
}

#include "gt-aarch64-sve-builtins.h"