aboutsummaryrefslogtreecommitdiff
path: root/gcc/config/h8300/h8300.c
blob: 9a516c4f068878aaa61354ff41002060ef497523 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
/* Subroutines for insn-output.c for Hitachi H8/300.
   Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
   2001, 2002 Free Software Foundation, Inc.
   Contributed by Steve Chamberlain (sac@cygnus.com),
   Jim Wilson (wilson@cygnus.com), and Doug Evans (dje@cygnus.com).

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

#include "config.h"
#include "system.h"
#include "rtl.h"
#include "tree.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "recog.h"
#include "expr.h"
#include "function.h"
#include "toplev.h"
#include "c-pragma.h"
#include "tm_p.h"
#include "ggc.h"
#include "target.h"
#include "target-def.h"

/* Forward declarations.  */
static const char *byte_reg PARAMS ((rtx, int));
static int h8300_interrupt_function_p PARAMS ((tree));
static int h8300_monitor_function_p PARAMS ((tree));
static int h8300_os_task_function_p PARAMS ((tree));
static void dosize PARAMS ((FILE *, const char *, unsigned int));
static int round_frame_size PARAMS ((int));
static unsigned int compute_saved_regs PARAMS ((void));
static void push PARAMS ((FILE *, int));
static void pop PARAMS ((FILE *, int));
static const char *cond_string PARAMS ((enum rtx_code));
static unsigned int h8300_asm_insn_count PARAMS ((const char *));
const struct attribute_spec h8300_attribute_table[];
static tree h8300_handle_fndecl_attribute PARAMS ((tree *, tree, tree, int, bool *));
static tree h8300_handle_eightbit_data_attribute PARAMS ((tree *, tree, tree, int, bool *));
static tree h8300_handle_tiny_data_attribute PARAMS ((tree *, tree, tree, int, bool *));
static void h8300_output_function_prologue PARAMS ((FILE *, HOST_WIDE_INT));
static void h8300_output_function_epilogue PARAMS ((FILE *, HOST_WIDE_INT));
static void h8300_insert_attributes PARAMS ((tree, tree *));
#ifndef OBJECT_FORMAT_ELF
static void h8300_asm_named_section PARAMS ((const char *, unsigned int));
#endif
static void h8300_encode_label PARAMS ((tree));
static void h8300_encode_section_info PARAMS ((tree, int));
static const char *h8300_strip_name_encoding PARAMS ((const char *));

/* CPU_TYPE, says what cpu we're compiling for.  */
int cpu_type;

/* True if the current function is an interrupt handler
   (either via #pragma or an attribute specification).  */
static int interrupt_handler;

/* True if the current function is an OS Task
   (via an attribute specification).  */
static int os_task;

/* True if the current function is a monitor
   (via an attribute specification).  */
static int monitor;

/* True if a #pragma saveall has been seen for the current function.  */
static int pragma_saveall;

static const char *const names_big[] =
{ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7" };

static const char *const names_extended[] =
{ "er0", "er1", "er2", "er3", "er4", "er5", "er6", "er7" };

static const char *const names_upper_extended[] =
{ "e0", "e1", "e2", "e3", "e4", "e5", "e6", "e7" };

/* Points to one of the above.  */
/* ??? The above could be put in an array indexed by CPU_TYPE.  */
const char * const *h8_reg_names;

/* Various operations needed by the following, indexed by CPU_TYPE.  */

const char *h8_push_op, *h8_pop_op, *h8_mov_op;

/* Initialize the GCC target structure.  */
#undef TARGET_ATTRIBUTE_TABLE
#define TARGET_ATTRIBUTE_TABLE h8300_attribute_table

#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"

#undef TARGET_ASM_FUNCTION_PROLOGUE
#define TARGET_ASM_FUNCTION_PROLOGUE h8300_output_function_prologue
#undef TARGET_ASM_FUNCTION_EPILOGUE
#define TARGET_ASM_FUNCTION_EPILOGUE h8300_output_function_epilogue
#undef TARGET_ENCODE_SECTION_INFO
#define TARGET_ENCODE_SECTION_INFO h8300_encode_section_info
#undef TARGET_STRIP_NAME_ENCODING
#define TARGET_STRIP_NAME_ENCODING h8300_strip_name_encoding

#undef TARGET_INSERT_ATTRIBUTES
#define TARGET_INSERT_ATTRIBUTES h8300_insert_attributes

struct gcc_target targetm = TARGET_INITIALIZER;

/* See below where shifts are handled for explanation of this enum.  */

enum shift_alg
{
  SHIFT_INLINE,
  SHIFT_ROT_AND,
  SHIFT_SPECIAL,
  SHIFT_LOOP
};

/* Symbols of the various shifts which can be used as indices.  */

enum shift_type
{
  SHIFT_ASHIFT, SHIFT_LSHIFTRT, SHIFT_ASHIFTRT
};

/* Macros to keep the shift algorithm tables small.  */
#define INL SHIFT_INLINE
#define ROT SHIFT_ROT_AND
#define LOP SHIFT_LOOP
#define SPC SHIFT_SPECIAL

/* The shift algorithms for each machine, mode, shift type, and shift
   count are defined below.  The three tables below correspond to
   QImode, HImode, and SImode, respectively.  Each table is organized
   by, in the order of indecies, machine, shift type, and shift count.  */

static enum shift_alg shift_alg_qi[3][3][8] = {
  {
    /* TARGET_H8300  */
    /* 0    1    2    3    4    5    6    7  */
    { INL, INL, INL, INL, INL, ROT, ROT, ROT }, /* SHIFT_ASHIFT   */
    { INL, INL, INL, INL, INL, ROT, ROT, ROT }, /* SHIFT_LSHIFTRT */
    { INL, INL, INL, INL, INL, LOP, LOP, SPC }  /* SHIFT_ASHIFTRT */
  },
  {
    /* TARGET_H8300H  */
    /* 0    1    2    3    4    5    6    7  */
    { INL, INL, INL, INL, INL, ROT, ROT, ROT }, /* SHIFT_ASHIFT   */
    { INL, INL, INL, INL, INL, ROT, ROT, ROT }, /* SHIFT_LSHIFTRT */
    { INL, INL, INL, INL, INL, LOP, LOP, SPC }  /* SHIFT_ASHIFTRT */
  },
  {
    /* TARGET_H8300S  */
    /*  0    1    2    3    4    5    6    7  */
    { INL, INL, INL, INL, INL, INL, ROT, ROT }, /* SHIFT_ASHIFT   */
    { INL, INL, INL, INL, INL, INL, ROT, ROT }, /* SHIFT_LSHIFTRT */
    { INL, INL, INL, INL, INL, INL, INL, SPC }  /* SHIFT_ASHIFTRT */
  }
};

static enum shift_alg shift_alg_hi[3][3][16] = {
  {
    /* TARGET_H8300  */
    /*  0    1    2    3    4    5    6    7  */
    /*  8    9   10   11   12   13   14   15  */
    { INL, INL, INL, INL, INL, INL, INL, SPC,
      SPC, SPC, SPC, SPC, SPC, SPC, SPC, SPC }, /* SHIFT_ASHIFT   */
    { INL, INL, INL, INL, INL, LOP, LOP, SPC,
      SPC, SPC, SPC, SPC, SPC, SPC, SPC, SPC }, /* SHIFT_LSHIFTRT */
    { INL, INL, INL, INL, INL, LOP, LOP, SPC,
      SPC, SPC, SPC, SPC, SPC, SPC, SPC, SPC }, /* SHIFT_ASHIFTRT */
  },
  {
    /* TARGET_H8300H  */
    /*  0    1    2    3    4    5    6    7  */
    /*  8    9   10   11   12   13   14   15  */
    { INL, INL, INL, INL, INL, INL, INL, SPC,
      SPC, SPC, SPC, SPC, SPC, ROT, ROT, ROT }, /* SHIFT_ASHIFT   */
    { INL, INL, INL, INL, INL, INL, INL, SPC,
      SPC, SPC, SPC, SPC, SPC, ROT, ROT, ROT }, /* SHIFT_LSHIFTRT */
    { INL, INL, INL, INL, INL, INL, INL, SPC,
      SPC, SPC, SPC, SPC, SPC, SPC, SPC, SPC }, /* SHIFT_ASHIFTRT */
  },
  {
    /* TARGET_H8300S  */
    /*  0    1    2    3    4    5    6    7  */
    /*  8    9   10   11   12   13   14   15  */
    { INL, INL, INL, INL, INL, INL, INL, INL,
      SPC, SPC, SPC, SPC, SPC, ROT, ROT, ROT }, /* SHIFT_ASHIFT   */
    { INL, INL, INL, INL, INL, INL, INL, INL,
      SPC, SPC, SPC, SPC, SPC, ROT, ROT, ROT }, /* SHIFT_LSHIFTRT */
    { INL, INL, INL, INL, INL, INL, INL, INL,
      SPC, SPC, SPC, SPC, SPC, SPC, SPC, SPC }, /* SHIFT_ASHIFTRT */
  }
};

static enum shift_alg shift_alg_si[3][3][32] = {
  {
    /* TARGET_H8300  */
    /*  0    1    2    3    4    5    6    7  */
    /*  8    9   10   11   12   13   14   15  */
    /* 16   17   18   19   20   21   22   23  */
    /* 24   25   26   27   28   29   30   31  */
    { INL, INL, INL, LOP, LOP, LOP, LOP, LOP,
      SPC, LOP, LOP, LOP, LOP, LOP, LOP, LOP,
      SPC, SPC, SPC, SPC, SPC, LOP, LOP, LOP,
      SPC, SPC, SPC, SPC, LOP, LOP, LOP, SPC }, /* SHIFT_ASHIFT   */
    { INL, INL, INL, LOP, LOP, LOP, LOP, LOP,
      SPC, SPC, LOP, LOP, LOP, LOP, LOP, SPC,
      SPC, SPC, SPC, LOP, LOP, LOP, LOP, LOP,
      SPC, SPC, SPC, SPC, SPC, LOP, LOP, SPC }, /* SHIFT_LSHIFTRT */
    { INL, INL, INL, LOP, LOP, LOP, LOP, LOP,
      SPC, LOP, LOP, LOP, LOP, LOP, LOP, SPC,
      SPC, SPC, LOP, LOP, LOP, LOP, LOP, LOP,
      SPC, SPC, SPC, LOP, LOP, LOP, LOP, SPC }, /* SHIFT_ASHIFTRT */
  },
  {
    /* TARGET_H8300H  */
    /*  0    1    2    3    4    5    6    7  */
    /*  8    9   10   11   12   13   14   15  */
    /* 16   17   18   19   20   21   22   23  */
    /* 24   25   26   27   28   29   30   31  */
    { INL, INL, INL, INL, INL, LOP, LOP, LOP,
      SPC, LOP, LOP, LOP, LOP, LOP, LOP, SPC,
      SPC, SPC, SPC, SPC, LOP, LOP, LOP, LOP,
      SPC, LOP, LOP, LOP, ROT, ROT, ROT, SPC }, /* SHIFT_ASHIFT   */
    { INL, INL, INL, INL, INL, LOP, LOP, LOP,
      SPC, LOP, LOP, LOP, LOP, LOP, LOP, SPC,
      SPC, SPC, SPC, SPC, LOP, LOP, LOP, LOP,
      SPC, LOP, LOP, LOP, ROT, ROT, ROT, SPC }, /* SHIFT_LSHIFTRT */
    { INL, INL, INL, INL, INL, LOP, LOP, LOP,
      SPC, LOP, LOP, LOP, LOP, LOP, LOP, LOP,
      SPC, SPC, SPC, SPC, LOP, LOP, LOP, LOP,
      SPC, LOP, LOP, LOP, LOP, LOP, LOP, SPC }, /* SHIFT_ASHIFTRT */
  },
  {
    /* TARGET_H8300S  */
    /*  0    1    2    3    4    5    6    7  */
    /*  8    9   10   11   12   13   14   15  */
    /* 16   17   18   19   20   21   22   23  */
    /* 24   25   26   27   28   29   30   31  */
    { INL, INL, INL, INL, INL, INL, INL, INL,
      INL, INL, INL, LOP, LOP, LOP, LOP, SPC,
      SPC, SPC, SPC, SPC, SPC, SPC, LOP, LOP,
      SPC, SPC, LOP, LOP, ROT, ROT, ROT, SPC }, /* SHIFT_ASHIFT   */
    { INL, INL, INL, INL, INL, INL, INL, INL,
      INL, INL, INL, LOP, LOP, LOP, LOP, SPC,
      SPC, SPC, SPC, SPC, SPC, SPC, LOP, LOP,
      SPC, SPC, LOP, LOP, ROT, ROT, ROT, SPC }, /* SHIFT_LSHIFTRT */
    { INL, INL, INL, INL, INL, INL, INL, INL,
      INL, INL, INL, LOP, LOP, LOP, LOP, LOP,
      SPC, SPC, SPC, SPC, SPC, SPC, LOP, LOP,
      SPC, SPC, LOP, LOP, LOP, LOP, LOP, SPC }, /* SHIFT_ASHIFTRT */
  }
};

#undef INL
#undef ROT
#undef LOP
#undef SPC

enum h8_cpu
{
  H8_300,
  H8_300H,
  H8_S
};

/* Initialize various cpu specific globals at start up.  */

void
h8300_init_once ()
{
  static const char *const h8_push_ops[2] = { "push" , "push.l" };
  static const char *const h8_pop_ops[2]  = { "pop"  , "pop.l"  };
  static const char *const h8_mov_ops[2]  = { "mov.w", "mov.l"  };

  if (TARGET_H8300)
    {
      cpu_type = (int) CPU_H8300;
      h8_reg_names = names_big;
    }
  else
    {
      /* For this we treat the H8/300H and H8S the same.  */
      cpu_type = (int) CPU_H8300H;
      h8_reg_names = names_extended;
    }
  h8_push_op = h8_push_ops[cpu_type];
  h8_pop_op = h8_pop_ops[cpu_type];
  h8_mov_op = h8_mov_ops[cpu_type];

  if (!TARGET_H8300S && TARGET_MAC)
    {
      error ("-ms2600 is used without -ms");
      target_flags |= MASK_H8300S;
    }
  
  if (TARGET_H8300 && TARGET_NORMAL_MODE)
    {
      error ("-mn used without -mh or -ms");
      target_flags ^= MASK_NORMAL_MODE;
    }

  /* Some of the shifts are optimized for speed by default.
     See http://gcc.gnu.org/ml/gcc-patches/2002-07/msg01858.html
     If optimizing for size, change shift_alg for those shift to
     SHIFT_LOOP.  */
  if (optimize_size)
    {
      /* H8/300 */
      shift_alg_hi[H8_300][SHIFT_ASHIFT][5] = SHIFT_LOOP;
      shift_alg_hi[H8_300][SHIFT_ASHIFT][6] = SHIFT_LOOP;
      shift_alg_hi[H8_300][SHIFT_ASHIFT][13] = SHIFT_LOOP;
      shift_alg_hi[H8_300][SHIFT_ASHIFT][14] = SHIFT_LOOP;

      shift_alg_hi[H8_300][SHIFT_LSHIFTRT][13] = SHIFT_LOOP;
      shift_alg_hi[H8_300][SHIFT_LSHIFTRT][14] = SHIFT_LOOP;

      shift_alg_hi[H8_300][SHIFT_ASHIFTRT][13] = SHIFT_LOOP;
      shift_alg_hi[H8_300][SHIFT_ASHIFTRT][14] = SHIFT_LOOP;

      /* H8/300H */
      shift_alg_hi[H8_300H][SHIFT_ASHIFT][5] = SHIFT_LOOP;
      shift_alg_hi[H8_300H][SHIFT_ASHIFT][6] = SHIFT_LOOP;

      shift_alg_hi[H8_300H][SHIFT_LSHIFTRT][5] = SHIFT_LOOP;
      shift_alg_hi[H8_300H][SHIFT_LSHIFTRT][6] = SHIFT_LOOP;

      shift_alg_hi[H8_300H][SHIFT_ASHIFTRT][5] = SHIFT_LOOP;
      shift_alg_hi[H8_300H][SHIFT_ASHIFTRT][6] = SHIFT_LOOP;
      shift_alg_hi[H8_300H][SHIFT_ASHIFTRT][13] = SHIFT_LOOP;
      shift_alg_hi[H8_300H][SHIFT_ASHIFTRT][14] = SHIFT_LOOP;

      /* H8S */
      shift_alg_hi[H8_S][SHIFT_ASHIFTRT][13] = SHIFT_LOOP;
      shift_alg_hi[H8_S][SHIFT_ASHIFTRT][14] = SHIFT_LOOP;
    }
}

static const char *
byte_reg (x, b)
     rtx x;
     int b;
{
  static const char *const names_small[] = {
    "r0l", "r0h", "r1l", "r1h", "r2l", "r2h", "r3l", "r3h",
    "r4l", "r4h", "r5l", "r5h", "r6l", "r6h", "r7l", "r7h"
  };

  return names_small[REGNO (x) * 2 + b];
}

/* REGNO must be saved/restored across calls if this macro is true.  */

#define WORD_REG_USED(regno)						\
  (regno < 7								\
   /* No need to save registers if this function will not return.  */	\
   && ! TREE_THIS_VOLATILE (current_function_decl)			\
   && (pragma_saveall							\
       /* Save any call saved register that was used.  */		\
       || (regs_ever_live[regno] && !call_used_regs[regno])		\
       /* Save the frame pointer if it was used.  */			\
       || (regno == FRAME_POINTER_REGNUM && regs_ever_live[regno])	\
       /* Save any register used in an interrupt handler.  */		\
       || (interrupt_handler && regs_ever_live[regno])			\
       /* Save call clobbered registers in non-leaf interrupt		\
	  handlers.  */							\
       || (interrupt_handler						\
	   && call_used_regs[regno]					\
	   && !current_function_is_leaf)))

/* Output assembly language to FILE for the operation OP with operand size
   SIZE to adjust the stack pointer.  */

static void
dosize (file, op, size)
     FILE *file;
     const char *op;
     unsigned int size;
{
  /* On the H8/300H and H8S, for sizes <= 8 bytes, it is as good or
     better to use adds/subs insns rather than add.l/sub.l with an
     immediate value.

     Also, on the H8/300, if we don't have a temporary to hold the
     size of the frame in the prologue, we simply emit a sequence of
     subs since this shouldn't happen often.  */
  if ((TARGET_H8300 && size <= 4)
      || ((TARGET_H8300H || TARGET_H8300S) && size <= 8)
      || (TARGET_H8300 && interrupt_handler)
      || (TARGET_H8300 && current_function_needs_context
	  && ! strcmp (op, "sub")))
    {
      unsigned HOST_WIDE_INT amount;

      /* Try different amounts in descending order.  */
      for (amount = (TARGET_H8300H || TARGET_H8300S) ? 4 : 2;
	   amount > 0;
	   amount /= 2)
	{
	  for (; size >= amount; size -= amount)
	    fprintf (file, "\t%ss\t#%d,sp\n", op, amount);
	}
    }
  else
    {
      if (TARGET_H8300)
	fprintf (file, "\tmov.w\t#%d,r3\n\t%s.w\tr3,sp\n", size, op);
      else
	fprintf (file, "\t%s.l\t#%d,sp\n", op, size);
    }
}

/* Round up frame size SIZE.  */

static int
round_frame_size (size)
     int size;
{
  return ((size + STACK_BOUNDARY / BITS_PER_UNIT - 1)
	  & -STACK_BOUNDARY / BITS_PER_UNIT);
}

/* Compute which registers to push/pop.
   Return a bit vector of registers.  */

static unsigned int
compute_saved_regs ()
{
  unsigned int saved_regs = 0;
  int regno;

  /* Construct a bit vector of registers to be pushed/popped.  */
  for (regno = 0; regno <= FRAME_POINTER_REGNUM; regno++)
    {
      if (WORD_REG_USED (regno))
	saved_regs |= 1 << regno;
    }

  /* Don't push/pop the frame pointer as it is treated separately.  */
  if (frame_pointer_needed)
    saved_regs &= ~(1 << FRAME_POINTER_REGNUM);

  return saved_regs;
}

/* Output assembly language code to push register RN.  */

static void
push (file, rn)
     FILE *file;
     int rn;
{
  fprintf (file, "\t%s\t%s\n", h8_push_op, h8_reg_names[rn]);
}

/* Output assembly language code to pop register RN.  */

static void
pop (file, rn)
     FILE *file;
     int rn;
{
  fprintf (file, "\t%s\t%s\n", h8_pop_op, h8_reg_names[rn]);
}

/* This is what the stack looks like after the prolog of
   a function with a frame has been set up:

   <args>
   PC
   FP			<- fp
   <locals>
   <saved registers>	<- sp

   This is what the stack looks like after the prolog of
   a function which doesn't have a frame:

   <args>
   PC
   <locals>
   <saved registers>	<- sp
*/

/* Output assembly language code for the function prologue.  */

static void
h8300_output_function_prologue (file, size)
     FILE *file;
     HOST_WIDE_INT size;
{
  int fsize = round_frame_size (size);
  int idx;
  int saved_regs;
  int n_regs;

  /* Note a function with the interrupt attribute and set interrupt_handler
     accordingly.  */
  if (h8300_interrupt_function_p (current_function_decl))
    interrupt_handler = 1;

  /* If the current function has the OS_Task attribute set, then
     we have a naked prologue.  */
  if (h8300_os_task_function_p (current_function_decl))
    {
      fprintf (file, ";OS_Task prologue\n");
      os_task = 1;
      return;
    }

  if (h8300_monitor_function_p (current_function_decl))
    {
      /* My understanding of monitor functions is they act just
	 like interrupt functions, except the prologue must
	 mask interrupts.  */
      fprintf (file, ";monitor prologue\n");
      interrupt_handler = 1;
      monitor = 1;
      if (TARGET_H8300)
	{
	  fprintf (file, "\tsubs\t#2,sp\n");
	  push (file, 0);
	  fprintf (file, "\tstc\tccr,r0l\n");
	  fprintf (file, "\tmov.b\tr0l,@(2,sp)\n");
	  pop (file, 0);
	  fprintf (file, "\torc\t#128,ccr\n");
	}
      else if (TARGET_H8300H)
	{
	  push (file, 0);
	  fprintf (file, "\tstc\tccr,r0l\n");
	  fprintf (file, "\tmov.b\tr0l,@(4,sp)\n");
	  pop (file, 0);
	  fprintf (file, "\torc\t#128,ccr\n");
	}
      else if (TARGET_H8300S)
	{
	  fprintf (file, "\tstc\texr,@-sp\n");
	  push (file, 0);
	  fprintf (file, "\tstc\tccr,r0l\n");
	  fprintf (file, "\tmov.b\tr0l,@(6,sp)\n");
	  pop (file, 0);
	  fprintf (file, "\torc\t#128,ccr\n");
	}
      else
	abort ();
    }

  if (frame_pointer_needed)
    {
      /* Push fp.  */
      push (file, FRAME_POINTER_REGNUM);
      fprintf (file, "\t%s\t%s,%s\n", h8_mov_op,
	       h8_reg_names[STACK_POINTER_REGNUM],
	       h8_reg_names[FRAME_POINTER_REGNUM]);
    }

  /* Leave room for locals.  */
  dosize (file, "sub", fsize);

  /* Push the rest of the registers in ascending order.  */
  saved_regs = compute_saved_regs ();
  for (idx = 0; idx < FIRST_PSEUDO_REGISTER; idx += n_regs)
    {
      int regno = idx;

      n_regs = 1;
      if (saved_regs & (1 << regno))
	{
	  if (TARGET_H8300S)
	    {
	      /* See how many registers we can push at the same time.  */
	      if ((regno == 0 || regno == 4)
		  && ((saved_regs >> regno) & 0x0f) == 0x0f)
		n_regs = 4;

	      else if ((regno == 0 || regno == 4)
		       && ((saved_regs >> regno) & 0x07) == 0x07)
		n_regs = 3;

	      else if ((regno == 0 || regno == 2 || regno == 4 || regno == 6)
		       && ((saved_regs >> regno) & 0x03) == 0x03)
		n_regs = 2;
	    }

	  if (n_regs == 1)
	    push (file, regno);
	  else
	    fprintf (file, "\tstm.l\t%s-%s,@-sp\n",
		     h8_reg_names[regno],
		     h8_reg_names[regno + (n_regs - 1)]);
	}
    }
}

/* Output assembly language code for the function epilogue.  */

static void
h8300_output_function_epilogue (file, size)
     FILE *file;
     HOST_WIDE_INT size;
{
  int fsize = round_frame_size (size);
  int idx;
  rtx insn = get_last_insn ();
  int saved_regs;
  int n_regs;

  if (os_task)
    {
      /* OS_Task epilogues are nearly naked -- they just have an
	 rts instruction.  */
      fprintf (file, ";OS_task epilogue\n");
      fprintf (file, "\trts\n");
      goto out;
    }

  /* Monitor epilogues are the same as interrupt function epilogues.
     Just make a note that we're in an monitor epilogue.  */
  if (monitor)
    fprintf (file, ";monitor epilogue\n");

  /* If the last insn was a BARRIER, we don't have to write any code.  */
  if (GET_CODE (insn) == NOTE)
    insn = prev_nonnote_insn (insn);
  if (insn && GET_CODE (insn) == BARRIER)
    goto out;

  /* Pop the saved registers in descending order.  */
  saved_regs = compute_saved_regs ();
  for (idx = 0; idx < FIRST_PSEUDO_REGISTER; idx += n_regs)
    {
      int regno = (FIRST_PSEUDO_REGISTER - 1) - idx;

      n_regs = 1;
      if (saved_regs & (1 << regno))
	{
	  if (TARGET_H8300S)
	    {
	      /* See how many registers we can pop at the same time.  */
	      if ((regno == 7 || regno == 3)
		  && ((saved_regs >> (regno - 3)) & 0x0f) == 0x0f)
		n_regs = 4;

	      else if ((regno == 6 || regno == 2)
		       && ((saved_regs >> (regno - 2)) & 0x07) == 0x07)
		n_regs = 3;

	      else if ((regno == 7 || regno == 5 || regno == 3 || regno == 1)
		       && ((saved_regs >> (regno - 1)) & 0x03) == 0x03)
		n_regs = 2;
	    }

	  if (n_regs == 1)
	    pop (file, regno);
	  else
	    fprintf (file, "\tldm.l\t@sp+,%s-%s\n",
		     h8_reg_names[regno - (n_regs - 1)],
		     h8_reg_names[regno]);
	}
    }

  /* Deallocate locals.  */
  dosize (file, "add", fsize);

  /* Pop frame pointer if we had one.  */
  if (frame_pointer_needed)
    pop (file, FRAME_POINTER_REGNUM);

  if (interrupt_handler)
    fprintf (file, "\trte\n");
  else
    fprintf (file, "\trts\n");

 out:
  interrupt_handler = 0;
  os_task = 0;
  monitor = 0;
  pragma_saveall = 0;
}

/* Output assembly code for the start of the file.  */

void
asm_file_start (file)
     FILE *file;
{
  fprintf (file, ";\tGCC For the Hitachi H8/300\n");
  fprintf (file, ";\tBy Hitachi America Ltd and Cygnus Support\n");

  if (optimize_size)
    fprintf (file, "; -Os\n");
  else if (optimize)
    fprintf (file, "; -O%d\n", optimize);
  if (TARGET_H8300H)
    fprintf (file, "\n\t.h8300h\n");
  else if (TARGET_H8300S)
    fprintf (file, "\n\t.h8300s\n");
  else
    fprintf (file, "\n\n");
  output_file_directive (file, main_input_filename);
}

/* Output assembly language code for the end of file.  */

void
asm_file_end (file)
     FILE *file;
{
  fprintf (file, "\t.end\n");
}

/* Return true if OP is a valid source operand for an integer move
   instruction.  */

int
general_operand_src (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (GET_CODE (op) == MEM && GET_CODE (XEXP (op, 0)) == POST_INC)
    return 1;
  return general_operand (op, mode);
}

/* Return true if OP is a valid destination operand for an integer move
   instruction.  */

int
general_operand_dst (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (GET_CODE (op) == MEM && GET_CODE (XEXP (op, 0)) == PRE_DEC)
    return 1;
  return general_operand (op, mode);
}

/* Return true if OP is a constant that contains only one 1 in its
   binary representation.  */

int
single_one_operand (operand, mode)
     rtx operand;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  if (GET_CODE (operand) == CONST_INT)
    {
      /* We really need to do this masking because 0x80 in QImode is
	 represented as -128 for example.  */
      unsigned HOST_WIDE_INT mask =
	(GET_MODE_BITSIZE (mode) < HOST_BITS_PER_WIDE_INT)
	? ((unsigned HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (mode)) - 1
	: ~0;
      unsigned HOST_WIDE_INT value = INTVAL (operand);

      if (exact_log2 (value & mask) >= 0)
	return 1;
    }

  return 0;
}

/* Return true if OP is a constant that contains only one 0 in its
   binary representation.  */

int
single_zero_operand (operand, mode)
     rtx operand;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  if (GET_CODE (operand) == CONST_INT)
    {
      /* We really need to do this masking because 0x80 in QImode is
	 represented as -128 for example.  */
      unsigned HOST_WIDE_INT mask =
	(GET_MODE_BITSIZE (mode) < HOST_BITS_PER_WIDE_INT)
	? ((unsigned HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (mode)) - 1
	: ~0;
      unsigned HOST_WIDE_INT value = INTVAL (operand);

      if (exact_log2 (~value & mask) >= 0)
	return 1;
    }

  return 0;
}

/* Return true if OP is a valid call operand.  */

int
call_insn_operand (op, mode)
     rtx op;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  if (GET_CODE (op) == MEM)
    {
      rtx inside = XEXP (op, 0);
      if (register_operand (inside, Pmode))
	return 1;
      if (CONSTANT_ADDRESS_P (inside))
	return 1;
    }
  return 0;
}

/* Return 1 if an addition/subtraction of a constant integer can be
   transformed into two consecutive adds/subs that are faster than the
   straightforward way.  Otherwise, return 0.  */

int
two_insn_adds_subs_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (GET_CODE (op) == CONST_INT)
    {
      HOST_WIDE_INT value = INTVAL (op);

      /* Force VALUE to be positive so that we do not have to consider
         the negative case.  */
      if (value < 0)
	value = -value;
      if (TARGET_H8300H || TARGET_H8300S)
	{
	  /* A constant addition/subtraction takes 2 states in QImode,
	     4 states in HImode, and 6 states in SImode.  Thus, the
	     only case we can win is when SImode is used, in which
	     case, two adds/subs are used, taking 4 states.  */
	  if (mode == SImode
	      && (value == 2 + 1
		  || value == 4 + 1
		  || value == 4 + 2
		  || value == 4 + 4))
	    return 1;
	}
      else
	{
	  /* We do not profit directly by splitting addition or
	     subtraction of 3 and 4.  However, since these are
	     implemented as a sequence of adds or subs, they do not
	     clobber (cc0) unlike a sequence of add.b and add.x.  */
	  if (mode == HImode
	      && (value == 2 + 1
		  || value == 2 + 2))
	    return 1;
	}
    }

  return 0;
}

/* Split an add of a small constant into two adds/subs insns.  */

void
split_adds_subs (mode, operands)
     enum machine_mode mode;
     rtx *operands;
{
  HOST_WIDE_INT val = INTVAL (operands[1]);
  rtx reg = operands[0];
  HOST_WIDE_INT sign = 1;
  HOST_WIDE_INT amount;

  /* Force VAL to be positive so that we do not have to consider the
     sign.  */
  if (val < 0)
    {
      val = -val;
      sign = -1;
    }

  /* Try different amounts in descending order.  */
  for (amount = (TARGET_H8300H || TARGET_H8300S) ? 4 : 2;
       amount > 0;
       amount /= 2)
    {
      for (; val >= amount; val -= amount)
	{
	  rtx tmp = gen_rtx_PLUS (mode, reg, GEN_INT (sign * amount));
	  emit_insn (gen_rtx_SET (VOIDmode, reg, tmp));
	}
    }

  return;
}

/* Return true if OP is a valid call operand, and OP represents
   an operand for a small call (4 bytes instead of 6 bytes).  */

int
small_call_insn_operand (op, mode)
     rtx op;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  if (GET_CODE (op) == MEM)
    {
      rtx inside = XEXP (op, 0);

      /* Register indirect is a small call.  */
      if (register_operand (inside, Pmode))
	return 1;

      /* A call through the function vector is a small
	 call too.  */
      if (GET_CODE (inside) == SYMBOL_REF
	  && SYMBOL_REF_FLAG (inside))
	return 1;
    }
  /* Otherwise it's a large call.  */
  return 0;
}

/* Return true if OP is a valid jump operand.  */

int
jump_address_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (GET_CODE (op) == REG)
    return mode == Pmode;

  if (GET_CODE (op) == MEM)
    {
      rtx inside = XEXP (op, 0);
      if (register_operand (inside, Pmode))
	return 1;
      if (CONSTANT_ADDRESS_P (inside))
	return 1;
    }
  return 0;
}

/* Recognize valid operands for bit-field instructions.  */

extern int rtx_equal_function_value_matters;

int
bit_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  /* We can except any general operand, expept that MEM operands must
     be limited to those that use addresses valid for the 'U' constraint.  */
  if (!general_operand (op, mode))
    return 0;

  /* Accept any mem during RTL generation.  Otherwise, the code that does
     insv and extzv will think that we can not handle memory.  However,
     to avoid reload problems, we only accept 'U' MEM operands after RTL
     generation.  This means that any named pattern which uses this predicate
     must force its operands to match 'U' before emitting RTL.  */

  if (GET_CODE (op) == REG)
    return 1;
  if (GET_CODE (op) == SUBREG)
    return 1;
  if (!rtx_equal_function_value_matters)
    /* We're building rtl.  */
    return GET_CODE (op) == MEM;
  else
    return (GET_CODE (op) == MEM
	    && EXTRA_CONSTRAINT (op, 'U'));
}

int
bit_memory_operand (op, mode)
     rtx op;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  return (GET_CODE (op) == MEM
	  && EXTRA_CONSTRAINT (op, 'U'));
}

/* Handle machine specific pragmas for compatibility with existing
   compilers for the H8/300.

   pragma saveall generates prolog/epilog code which saves and
   restores all the registers on function entry.

   pragma interrupt saves and restores all registers, and exits with
   an rte instruction rather than an rts.  A pointer to a function
   with this attribute may be safely used in an interrupt vector.  */

void
h8300_pr_interrupt (pfile)
     cpp_reader *pfile ATTRIBUTE_UNUSED;
{
  interrupt_handler = 1;
}

void
h8300_pr_saveall (pfile)
     cpp_reader *pfile ATTRIBUTE_UNUSED;
{
  pragma_saveall = 1;
}

/* If the next function argument with MODE and TYPE is to be passed in
   a register, return a reg RTX for the hard register in which to pass
   the argument.  CUM represents the state after the last argument.
   If the argument is to be pushed, NULL_RTX is returned.  */

rtx
function_arg (cum, mode, type, named)
     CUMULATIVE_ARGS *cum;
     enum machine_mode mode;
     tree type;
     int named;
{
  static const char *const hand_list[] = {
    "__main",
    "__cmpsi2",
    "__divhi3",
    "__modhi3",
    "__udivhi3",
    "__umodhi3",
    "__divsi3",
    "__modsi3",
    "__udivsi3",
    "__umodsi3",
    "__mulhi3",
    "__mulsi3",
    "__reg_memcpy",
    "__reg_memset",
    "__ucmpsi2",
    0,
  };

  rtx result = NULL_RTX;
  const char *fname;
  int regpass = 0;

  /* Never pass unnamed arguments in registers.  */
  if (!named)
    return NULL_RTX;

  /* Pass 3 regs worth of data in regs when user asked on the command line.  */
  if (TARGET_QUICKCALL)
    regpass = 3;

  /* If calling hand written assembler, use 4 regs of args.  */
  if (cum->libcall)
    {
      const char * const *p;

      fname = XSTR (cum->libcall, 0);

      /* See if this libcall is one of the hand coded ones.  */
      for (p = hand_list; *p && strcmp (*p, fname) != 0; p++)
	;

      if (*p)
	regpass = 4;
    }

  if (regpass)
    {
      int size;

      if (mode == BLKmode)
	size = int_size_in_bytes (type);
      else
	size = GET_MODE_SIZE (mode);

      if (size + cum->nbytes <= regpass * UNITS_PER_WORD
	  && cum->nbytes / UNITS_PER_WORD <= 3)
	result = gen_rtx_REG (mode, cum->nbytes / UNITS_PER_WORD);
    }

  return result;
}

/* Return the cost of the rtx R with code CODE.  */

int
const_costs (r, c, outer_code)
     rtx r;
     enum rtx_code c;
     enum rtx_code outer_code;
{
  switch (c)
    {
    case CONST_INT:
      switch (INTVAL (r))
	{
	case 0:
	  return 0;
	case 1:
	case 2:
	case -1:
	case -2:
	  return 0 + (outer_code == SET);
	case 4:
	case -4:
	  if (TARGET_H8300H || TARGET_H8300S)
	    return 0 + (outer_code == SET);
	  else
	    return 1;
	default:
	  return 1;
	}

    case CONST:
    case LABEL_REF:
    case SYMBOL_REF:
      return 3;

    case CONST_DOUBLE:
      return 20;

    default:
      return 4;
    }
}

/* Documentation for the machine specific operand escapes:

   'E' like s but negative.
   'F' like t but negative.
   'G' constant just the negative
   'R' print operand as a byte:8 address if appropriate, else fall back to
       'X' handling.
   'S' print operand as a long word
   'T' print operand as a word
   'V' find the set bit, and print its number.
   'W' find the clear bit, and print its number.
   'X' print operand as a byte
   'Y' print either l or h depending on whether last 'Z' operand < 8 or >= 8.
       If this operand isn't a register, fall back to 'R' handling.
   'Z' print int & 7.
   'b' print the bit opcode
   'e' first word of 32 bit value - if reg, then least reg. if mem
       then least. if const then most sig word
   'f' second word of 32 bit value - if reg, then biggest reg. if mem
       then +2. if const then least sig word
   'j' print operand as condition code.
   'k' print operand as reverse condition code.
   's' print as low byte of 16 bit value
   't' print as high byte of 16 bit value
   'w' print as low byte of 32 bit value
   'x' print as 2nd byte of 32 bit value
   'y' print as 3rd byte of 32 bit value
   'z' print as msb of 32 bit value
*/

/* Return assembly language string which identifies a comparison type.  */

static const char *
cond_string (code)
     enum rtx_code code;
{
  switch (code)
    {
    case NE:
      return "ne";
    case EQ:
      return "eq";
    case GE:
      return "ge";
    case GT:
      return "gt";
    case LE:
      return "le";
    case LT:
      return "lt";
    case GEU:
      return "hs";
    case GTU:
      return "hi";
    case LEU:
      return "ls";
    case LTU:
      return "lo";
    default:
      abort ();
    }
}

/* Print operand X using operand code CODE to assembly language output file
   FILE.  */

void
print_operand (file, x, code)
     FILE *file;
     rtx x;
     int code;
{
  /* This is used for communication between codes V,W,Z and Y.  */
  static int bitint;

  switch (code)
    {
    case 'E':
      switch (GET_CODE (x))
	{
	case REG:
	  fprintf (file, "%sl", names_big[REGNO (x)]);
	  break;
	case CONST_INT:
	  fprintf (file, "#%d", (-INTVAL (x)) & 0xff);
	  break;
	default:
	  abort ();
	}
      break;
    case 'F':
      switch (GET_CODE (x))
	{
	case REG:
	  fprintf (file, "%sh", names_big[REGNO (x)]);
	  break;
	case CONST_INT:
	  fprintf (file, "#%d", ((-INTVAL (x)) & 0xff00) >> 8);
	  break;
	default:
	  abort ();
	}
      break;
    case 'G':
      if (GET_CODE (x) != CONST_INT)
	abort ();
      fprintf (file, "#%d", 0xff & (-INTVAL (x)));
      break;
    case 'S':
      if (GET_CODE (x) == REG)
	fprintf (file, "%s", names_extended[REGNO (x)]);
      else
	goto def;
      break;
    case 'T':
      if (GET_CODE (x) == REG)
	fprintf (file, "%s", names_big[REGNO (x)]);
      else
	goto def;
      break;
    case 'V':
      bitint = exact_log2 (INTVAL (x) & 0xff);
      if (bitint == -1)
	abort ();
      fprintf (file, "#%d", bitint);
      break;
    case 'W':
      bitint = exact_log2 ((~INTVAL (x)) & 0xff);
      if (bitint == -1)
	abort ();
      fprintf (file, "#%d", bitint);
      break;
    case 'R':
    case 'X':
      if (GET_CODE (x) == REG)
	fprintf (file, "%s", byte_reg (x, 0));
      else
	goto def;
      break;
    case 'Y':
      if (bitint == -1)
	abort ();
      if (GET_CODE (x) == REG)
	fprintf (file, "%s%c", names_big[REGNO (x)], bitint > 7 ? 'h' : 'l');
      else
	print_operand (file, x, 'R');
      bitint = -1;
      break;
    case 'Z':
      bitint = INTVAL (x);
      fprintf (file, "#%d", bitint & 7);
      break;
    case 'b':
      switch (GET_CODE (x))
	{
	case IOR:
	  fprintf (file, "bor");
	  break;
	case XOR:
	  fprintf (file, "bxor");
	  break;
	case AND:
	  fprintf (file, "band");
	  break;
	default:
	  break;
	}
      break;
    case 'e':
      switch (GET_CODE (x))
	{
	case REG:
	  if (TARGET_H8300)
	    fprintf (file, "%s", names_big[REGNO (x)]);
	  else
	    fprintf (file, "%s", names_upper_extended[REGNO (x)]);
	  break;
	case MEM:
	  print_operand (file, x, 0);
	  break;
	case CONST_INT:
	  fprintf (file, "#%d", ((INTVAL (x) >> 16) & 0xffff));
	  break;
	case CONST_DOUBLE:
	  {
	    long val;
	    REAL_VALUE_TYPE rv;
	    REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
	    REAL_VALUE_TO_TARGET_SINGLE (rv, val);
	    fprintf (file, "#%ld", ((val >> 16) & 0xffff));
	    break;
	  }
	default:
	  abort ();
	  break;
	}
      break;
    case 'f':
      switch (GET_CODE (x))
	{
	case REG:
	  if (TARGET_H8300)
	    fprintf (file, "%s", names_big[REGNO (x) + 1]);
	  else
	    fprintf (file, "%s", names_big[REGNO (x)]);
	  break;
	case MEM:
	  x = adjust_address (x, HImode, 2);
	  print_operand (file, x, 0);
	  break;
	case CONST_INT:
	  fprintf (file, "#%d", INTVAL (x) & 0xffff);
	  break;
	case CONST_DOUBLE:
	  {
	    long val;
	    REAL_VALUE_TYPE rv;
	    REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
	    REAL_VALUE_TO_TARGET_SINGLE (rv, val);
	    fprintf (file, "#%ld", (val & 0xffff));
	    break;
	  }
	default:
	  abort ();
	}
      break;
    case 'j':
      fputs (cond_string (GET_CODE (x)), file);
      break;
    case 'k':
      fputs (cond_string (reverse_condition (GET_CODE (x))), file);
      break;
    case 's':
      if (GET_CODE (x) == CONST_INT)
	fprintf (file, "#%d", (INTVAL (x)) & 0xff);
      else
	fprintf (file, "%s", byte_reg (x, 0));
      break;
    case 't':
      if (GET_CODE (x) == CONST_INT)
	fprintf (file, "#%d", (INTVAL (x) >> 8) & 0xff);
      else
	fprintf (file, "%s", byte_reg (x, 1));
      break;
    case 'u':
      if (GET_CODE (x) != CONST_INT)
	abort ();
      fprintf (file, "%d", INTVAL (x));
      break;
    case 'w':
      if (GET_CODE (x) == CONST_INT)
	fprintf (file, "#%d", INTVAL (x) & 0xff);
      else
	fprintf (file, "%s",
		 byte_reg (x, TARGET_H8300 ? 2 : 0));
      break;
    case 'x':
      if (GET_CODE (x) == CONST_INT)
	fprintf (file, "#%d", (INTVAL (x) >> 8) & 0xff);
      else
	fprintf (file, "%s",
		 byte_reg (x, TARGET_H8300 ? 3 : 1));
      break;
    case 'y':
      if (GET_CODE (x) == CONST_INT)
	fprintf (file, "#%d", (INTVAL (x) >> 16) & 0xff);
      else
	fprintf (file, "%s", byte_reg (x, 0));
      break;
    case 'z':
      if (GET_CODE (x) == CONST_INT)
	fprintf (file, "#%d", (INTVAL (x) >> 24) & 0xff);
      else
	fprintf (file, "%s", byte_reg (x, 1));
      break;

    default:
    def:
      switch (GET_CODE (x))
	{
	case REG:
	  switch (GET_MODE (x))
	    {
	    case QImode:
#if 0 /* Is it asm ("mov.b %0,r2l", ...) */
	      fprintf (file, "%s", byte_reg (x, 0));
#else /* ... or is it asm ("mov.b %0l,r2l", ...) */
	      fprintf (file, "%s", names_big[REGNO (x)]);
#endif
	      break;
	    case HImode:
	      fprintf (file, "%s", names_big[REGNO (x)]);
	      break;
	    case SImode:
	    case SFmode:
	      fprintf (file, "%s", names_extended[REGNO (x)]);
	      break;
	    default:
	      abort ();
	    }
	  break;

	case MEM:
	  {
	    rtx addr = XEXP (x, 0);

	    fprintf (file, "@");
	    output_address (addr);

	    /* We fall back from smaller addressing to larger
	       addressing in various ways depending on CODE.  */
	    switch (code)
	      {
	      case 'R':
		/* Used for mov.b and bit operations.  */
		if (h8300_eightbit_constant_address_p (addr))
		  {
		    fprintf (file, ":8");
		    break;
		  }

		/* Fall through.  We should not get here if we are
		   processing bit operations on H8/300 or H8/300H
		   because 'U' constraint does not allow bit
		   operations on the tiny area on these machines.  */

	      case 'T':
	      case 'S':
		/* Used for mov.w and mov.l.  */
		if (h8300_tiny_constant_address_p (addr))
		  fprintf (file, ":16");
		break;
	      default:
		break;
	      }
	  }
	  break;

	case CONST_INT:
	case SYMBOL_REF:
	case CONST:
	case LABEL_REF:
	  fprintf (file, "#");
	  print_operand_address (file, x);
	  break;
	case CONST_DOUBLE:
	  {
	    long val;
	    REAL_VALUE_TYPE rv;
	    REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
	    REAL_VALUE_TO_TARGET_SINGLE (rv, val);
	    fprintf (file, "#%ld", val);
	    break;
	  }
	default:
	  break;
	}
    }
}

/* Output assembly language output for the address ADDR to FILE.  */

void
print_operand_address (file, addr)
     FILE *file;
     rtx addr;
{
  switch (GET_CODE (addr))
    {
    case REG:
      fprintf (file, "%s", h8_reg_names[REGNO (addr)]);
      break;

    case PRE_DEC:
      fprintf (file, "-%s", h8_reg_names[REGNO (XEXP (addr, 0))]);
      break;

    case POST_INC:
      fprintf (file, "%s+", h8_reg_names[REGNO (XEXP (addr, 0))]);
      break;

    case PLUS:
      fprintf (file, "(");
      if (GET_CODE (XEXP (addr, 0)) == REG)
	{
	  /* reg,foo */
	  print_operand_address (file, XEXP (addr, 1));
	  fprintf (file, ",");
	  print_operand_address (file, XEXP (addr, 0));
	}
      else
	{
	  /* foo+k */
	  print_operand_address (file, XEXP (addr, 0));
	  fprintf (file, "+");
	  print_operand_address (file, XEXP (addr, 1));
	}
      fprintf (file, ")");
      break;

    case CONST_INT:
      {
	/* Since the H8/300 only has 16 bit pointers, negative values are also
	   those >= 32768.  This happens for example with pointer minus a
	   constant.  We don't want to turn (char *p - 2) into
	   (char *p + 65534) because loop unrolling can build upon this
	   (IE: char *p + 131068).  */
	int n = INTVAL (addr);
	if (TARGET_H8300)
	  n = (int) (short) n;
	if (n < 0)
	  /* ??? Why the special case for -ve values?  */
	  fprintf (file, "-%d", -n);
	else
	  fprintf (file, "%d", n);
	break;
      }

    default:
      output_addr_const (file, addr);
      break;
    }
}

/* Output all insn addresses and their sizes into the assembly language
   output file.  This is helpful for debugging whether the length attributes
   in the md file are correct.  This is not meant to be a user selectable
   option.  */

void
final_prescan_insn (insn, operand, num_operands)
     rtx insn, *operand ATTRIBUTE_UNUSED;
     int num_operands ATTRIBUTE_UNUSED;
{
  /* This holds the last insn address.  */
  static int last_insn_address = 0;

  int uid = INSN_UID (insn);

  if (TARGET_RTL_DUMP)
    {
      fprintf (asm_out_file, "\n****************");
      print_rtl (asm_out_file, PATTERN (insn));
      fprintf (asm_out_file, "\n");
    }

  if (TARGET_ADDRESSES)
    {
      fprintf (asm_out_file, "; 0x%x %d\n", INSN_ADDRESSES (uid),
	       INSN_ADDRESSES (uid) - last_insn_address);
      last_insn_address = INSN_ADDRESSES (uid);
    }
}

/* Prepare for an SI sized move.  */

int
do_movsi (operands)
     rtx operands[];
{
  rtx src = operands[1];
  rtx dst = operands[0];
  if (!reload_in_progress && !reload_completed)
    {
      if (!register_operand (dst, GET_MODE (dst)))
	{
	  rtx tmp = gen_reg_rtx (GET_MODE (dst));
	  emit_move_insn (tmp, src);
	  operands[1] = tmp;
	}
    }
  return 0;
}

/* Function for INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET).
   Define the offset between two registers, one to be eliminated, and
   the other its replacement, at the start of a routine.  */

int
h8300_initial_elimination_offset (from, to)
     int from, to;
{
  int offset = 0;

  if (from == ARG_POINTER_REGNUM && to == FRAME_POINTER_REGNUM)
    offset = UNITS_PER_WORD + frame_pointer_needed * UNITS_PER_WORD;
  else if (from == RETURN_ADDRESS_POINTER_REGNUM && to == FRAME_POINTER_REGNUM)
    offset = frame_pointer_needed * UNITS_PER_WORD;
  else
    {
      int regno;

      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
	if (WORD_REG_USED (regno))
	  offset += UNITS_PER_WORD;

      /* See the comments for get_frame_size.  We need to round it up to
	 STACK_BOUNDARY.  */

      offset += round_frame_size (get_frame_size ());

      if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
	offset += UNITS_PER_WORD;	/* Skip saved PC */
    }

  if ((TARGET_H8300H || TARGET_H8300S) && TARGET_NORMAL_MODE)
    offset -= 2;

  return offset;
}

rtx
h8300_return_addr_rtx (count, frame)
     int count;
     rtx frame;
{
  rtx ret;

  if (count == 0)
    ret = gen_rtx_MEM (Pmode,
		       gen_rtx_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM));
  else if (flag_omit_frame_pointer)
    return (rtx) 0;
  else
    ret = gen_rtx_MEM (Pmode,
		       memory_address (Pmode,
				       plus_constant (frame, UNITS_PER_WORD)));
  set_mem_alias_set (ret, get_frame_alias_set ());
  return ret;
}

/* Update the condition code from the insn.  */

void
notice_update_cc (body, insn)
     rtx body;
     rtx insn;
{
  switch (get_attr_cc (insn))
    {
    case CC_NONE:
      /* Insn does not affect CC at all.  */
      break;

    case CC_NONE_0HIT:
      /* Insn does not change CC, but the 0'th operand has been changed.  */
      if (cc_status.value1 != 0
	  && reg_overlap_mentioned_p (recog_data.operand[0], cc_status.value1))
	cc_status.value1 = 0;
      if (cc_status.value2 != 0
	  && reg_overlap_mentioned_p (recog_data.operand[0], cc_status.value2))
	cc_status.value2 = 0;
      break;

    case CC_SET_ZN:
      /* Insn sets the Z,N flags of CC to recog_data.operand[0].
	 The V flag is unusable.  The C flag may or may not be known but
	 that's ok because alter_cond will change tests to use EQ/NE.  */
      CC_STATUS_INIT;
      cc_status.flags |= CC_OVERFLOW_UNUSABLE | CC_NO_CARRY;
      cc_status.value1 = recog_data.operand[0];
      break;

    case CC_SET_ZNV:
      /* Insn sets the Z,N,V flags of CC to recog_data.operand[0].
	 The C flag may or may not be known but that's ok because
	 alter_cond will change tests to use EQ/NE.  */
      CC_STATUS_INIT;
      cc_status.flags |= CC_NO_CARRY;
      cc_status.value1 = recog_data.operand[0];
      if (GET_CODE (body) == SET && REG_P (SET_SRC (body)))
	cc_status.value2 = SET_SRC (body);
      break;

    case CC_COMPARE:
      /* The insn is a compare instruction.  */
      CC_STATUS_INIT;
      cc_status.value1 = SET_SRC (body);
      break;

    case CC_CLOBBER:
      /* Insn doesn't leave CC in a usable state.  */
      CC_STATUS_INIT;
      break;
    }
}

/* Recognize valid operators for bit instructions.  */

int
bit_operator (x, mode)
     rtx x;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  enum rtx_code code = GET_CODE (x);

  return (code == XOR
	  || code == AND
	  || code == IOR);
}

const char *
output_logical_op (mode, operands)
     enum machine_mode mode;
     rtx *operands;
{
  /* Figure out the logical op that we need to perform.  */
  enum rtx_code code = GET_CODE (operands[3]);
  /* Pretend that every byte is affected if both operands are registers.  */
  unsigned HOST_WIDE_INT intval =
    (unsigned HOST_WIDE_INT) ((GET_CODE (operands[2]) == CONST_INT)
			      ? INTVAL (operands[2]) : 0x55555555);
  /* The determinant of the algorithm.  If we perform an AND, 0
     affects a bit.  Otherwise, 1 affects a bit.  */
  unsigned HOST_WIDE_INT det = (code != AND) ? intval : ~intval;
  /* The name of an insn.  */
  const char *opname;
  char insn_buf[100];

  switch (code)
    {
    case AND:
      opname = "and";
      break;
    case IOR:
      opname = "or";
      break;
    case XOR:
      opname = "xor";
      break;
    default:
      abort ();
    }

  switch (mode)
    {
    case HImode:
      /* First, see if we can finish with one insn.  */
      if ((TARGET_H8300H || TARGET_H8300S)
	  && ((det & 0x00ff) != 0)
	  && ((det & 0xff00) != 0))
	{
	  sprintf (insn_buf, "%s.w\t%%T2,%%T0", opname);
	  output_asm_insn (insn_buf, operands);
	}
      else
	{
	  /* Take care of the lower byte.  */
	  if ((det & 0x00ff) != 0)
	    {
	      sprintf (insn_buf, "%s\t%%s2,%%s0", opname);
	      output_asm_insn (insn_buf, operands);
	    }
	  /* Take care of the upper byte.  */
	  if ((det & 0xff00) != 0)
	    {
	      sprintf (insn_buf, "%s\t%%t2,%%t0", opname);
	      output_asm_insn (insn_buf, operands);
	    }
	}
      break;
    case SImode:
      /* First, see if we can finish with one insn.

	 If code is either AND or XOR, we exclude two special cases,
	 0xffffff00 and 0xffff00ff, because insns like sub.w or not.w
	 can do a better job.  */
      if ((TARGET_H8300H || TARGET_H8300S)
	  && ((det & 0x0000ffff) != 0)
	  && ((det & 0xffff0000) != 0)
	  && (code == IOR || det != 0xffffff00)
	  && (code == IOR || det != 0xffff00ff))
	{
	  sprintf (insn_buf, "%s.l\t%%S2,%%S0", opname);
	  output_asm_insn (insn_buf, operands);
	}
      else
	{
	  /* Take care of the lower and upper words individually.  For
	     each word, we try different methods in the order of

	     1) the special insn (in case of AND or XOR),
	     2) the word-wise insn, and
	     3) The byte-wise insn.  */
	  if ((det & 0x0000ffff) == 0x0000ffff
	      && (TARGET_H8300 ? (code == AND) : (code != IOR)))
	    output_asm_insn ((code == AND)
			     ? "sub.w\t%f0,%f0" : "not.w\t%f0",
			     operands);
	  else if ((TARGET_H8300H || TARGET_H8300S)
		   && ((det & 0x000000ff) != 0)
		   && ((det & 0x0000ff00) != 0))
	    {
	      sprintf (insn_buf, "%s.w\t%%f2,%%f0", opname);
	      output_asm_insn (insn_buf, operands);
	    }
	  else
	    {
	      if ((det & 0x000000ff) != 0)
		{
		  sprintf (insn_buf, "%s\t%%w2,%%w0", opname);
		  output_asm_insn (insn_buf, operands);
		}
	      if ((det & 0x0000ff00) != 0)
		{
		  sprintf (insn_buf, "%s\t%%x2,%%x0", opname);
		  output_asm_insn (insn_buf, operands);
		}
	    }

	  if ((det & 0xffff0000) == 0xffff0000
	      && (TARGET_H8300 ? (code == AND) : (code != IOR)))
	    output_asm_insn ((code == AND)
			     ? "sub.w\t%e0,%e0" : "not.w\t%e0",
			     operands);
	  else if (TARGET_H8300H || TARGET_H8300S)
	    {
	      if ((det & 0xffff0000) != 0)
		{
		  sprintf (insn_buf, "%s.w\t%%e2,%%e0", opname);
		  output_asm_insn (insn_buf, operands);
		}
	    }
	  else
	    {
	      if ((det & 0x00ff0000) != 0)
		{
		  sprintf (insn_buf, "%s\t%%y2,%%y0", opname);
		  output_asm_insn (insn_buf, operands);
		}
	      if ((det & 0xff000000) != 0)
		{
		  sprintf (insn_buf, "%s\t%%z2,%%z0", opname);
		  output_asm_insn (insn_buf, operands);
		}
	    }
	}
      break;
    default:
      abort ();
    }
  return "";
}

unsigned int
compute_logical_op_length (mode, operands)
     enum machine_mode mode;
     rtx *operands;
{
  /* Figure out the logical op that we need to perform.  */
  enum rtx_code code = GET_CODE (operands[3]);
  /* Pretend that every byte is affected if both operands are registers.  */
  unsigned HOST_WIDE_INT intval =
    (unsigned HOST_WIDE_INT) ((GET_CODE (operands[2]) == CONST_INT)
			      ? INTVAL (operands[2]) : 0x55555555);
  /* The determinant of the algorithm.  If we perform an AND, 0
     affects a bit.  Otherwise, 1 affects a bit.  */
  unsigned HOST_WIDE_INT det = (code != AND) ? intval : ~intval;
  /* Insn length.  */
  unsigned int length = 0;

  switch (mode)
    {
    case HImode:
      /* First, see if we can finish with one insn.  */
      if ((TARGET_H8300H || TARGET_H8300S)
	  && ((det & 0x00ff) != 0)
	  && ((det & 0xff00) != 0))
	{
	  if (REG_P (operands[2]))
	    length += 2;
	  else
	    length += 4;
	}
      else
	{
	  /* Take care of the lower byte.  */
	  if ((det & 0x00ff) != 0)
	    length += 2;

	  /* Take care of the upper byte.  */
	  if ((det & 0xff00) != 0)
	    length += 2;
	}
      break;
    case SImode:
      /* First, see if we can finish with one insn.

	 If code is either AND or XOR, we exclude two special cases,
	 0xffffff00 and 0xffff00ff, because insns like sub.w or not.w
	 can do a better job.  */
      if ((TARGET_H8300H || TARGET_H8300S)
	  && ((det & 0x0000ffff) != 0)
	  && ((det & 0xffff0000) != 0)
	  && (code == IOR || det != 0xffffff00)
	  && (code == IOR || det != 0xffff00ff))
	{
	  if (REG_P (operands[2]))
	    length += 4;
	  else
	    length += 6;
	}
      else
	{
	  /* Take care of the lower and upper words individually.  For
	     each word, we try different methods in the order of

	     1) the special insn (in case of AND or XOR),
	     2) the word-wise insn, and
	     3) The byte-wise insn.  */
	  if ((det & 0x0000ffff) == 0x0000ffff
	      && (TARGET_H8300 ? (code == AND) : (code != IOR)))
	    {
	      length += 2;
	    }
	  else if ((TARGET_H8300H || TARGET_H8300S)
		   && ((det & 0x000000ff) != 0)
		   && ((det & 0x0000ff00) != 0))
	    {
	      length += 4;
	    }
	  else
	    {
	      if ((det & 0x000000ff) != 0)
		length += 2;

	      if ((det & 0x0000ff00) != 0)
		length += 2;
	    }

	  if ((det & 0xffff0000) == 0xffff0000
	      && (TARGET_H8300 ? (code == AND) : (code != IOR)))
	    {
	      length += 2;
	    }
	  else if (TARGET_H8300H || TARGET_H8300S)
	    {
	      if ((det & 0xffff0000) != 0)
		length += 4;
	    }
	  else
	    {
	      if ((det & 0x00ff0000) != 0)
		length += 2;

	      if ((det & 0xff000000) != 0)
		length += 2;
	    }
	}
      break;
    default:
      abort ();
    }
  return length;
}

int
compute_logical_op_cc (mode, operands)
     enum machine_mode mode;
     rtx *operands;
{
  /* Figure out the logical op that we need to perform.  */
  enum rtx_code code = GET_CODE (operands[3]);
  /* Pretend that every byte is affected if both operands are registers.  */
  unsigned HOST_WIDE_INT intval =
    (unsigned HOST_WIDE_INT) ((GET_CODE (operands[2]) == CONST_INT)
			      ? INTVAL (operands[2]) : 0x55555555);
  /* The determinant of the algorithm.  If we perform an AND, 0
     affects a bit.  Otherwise, 1 affects a bit.  */
  unsigned HOST_WIDE_INT det = (code != AND) ? intval : ~intval;
  /* Condition code.  */
  enum attr_cc cc = CC_CLOBBER;

  switch (mode)
    {
    case HImode:
      /* First, see if we can finish with one insn.  */
      if ((TARGET_H8300H || TARGET_H8300S)
	  && ((det & 0x00ff) != 0)
	  && ((det & 0xff00) != 0))
	{
	  cc = CC_SET_ZNV;
	}
      break;
    case SImode:
      /* First, see if we can finish with one insn.

	 If code is either AND or XOR, we exclude two special cases,
	 0xffffff00 and 0xffff00ff, because insns like sub.w or not.w
	 can do a better job.  */
      if ((TARGET_H8300H || TARGET_H8300S)
	  && ((det & 0x0000ffff) != 0)
	  && ((det & 0xffff0000) != 0)
	  && (code == IOR || det != 0xffffff00)
	  && (code == IOR || det != 0xffff00ff))
	{
	  cc = CC_SET_ZNV;
	}
      break;
    default:
      abort ();
    }
  return cc;
}

/* Shifts.

   We devote a fair bit of code to getting efficient shifts since we
   can only shift one bit at a time on the H8/300 and H8/300H and only
   one or two bits at a time on the H8S.

   All shift code falls into one of the following ways of
   implementation:

   o SHIFT_INLINE: Emit straight line code for the shift; this is used
     when a straight line shift is about the same size or smaller than
     a loop.

   o SHIFT_ROT_AND: Rotate the value the opposite direction, then mask
     off the bits we don't need.  This is used when only a few of the
     bits in the original value will survive in the shifted value.

   o SHIFT_SPECIAL: Often it's possible to move a byte or a word to
     simulate a shift by 8, 16, or 24 bits.  Once moved, a few inline
     shifts can be added if the shift count is slightly more than 8 or
     16.  This case also includes other oddballs that are not worth
     explaning here.

   o SHIFT_LOOP: Emit a loop using one (or two on H8S) bit shifts.

   Here are some thoughts on what the absolutely positively best code
   is.  "Best" here means some rational trade-off between code size
   and speed, where speed is more preferred but not at the expense of
   generating 20 insns.

   Below, a trailing '*' after the shift count indicates the "best"
   mode isn't implemented.  We only describe SHIFT_SPECIAL cases to
   simplify the table.  For other cases, refer to shift_alg_[qhs]i.

   H8/300 QImode shifts
   7      - ASHIFTRT: shll, subx (propagate carry bit to all bits)

   H8/300 HImode shifts
   7      - shift 2nd half other way into carry.
	    copy 1st half into 2nd half
	    rotate 2nd half other way with carry
	    rotate 1st half other way (no carry)
	    mask off bits in 1st half (ASHIFT | LSHIFTRT).
	    sign extend 1st half (ASHIFTRT)
   8      - move byte, zero (ASHIFT | LSHIFTRT) or sign extend other (ASHIFTRT)
   9-12   - do shift by 8, inline remaining shifts
   15     - ASHIFTRT: shll, subx, set other byte

   H8/300 SImode shifts
   7*     - shift other way once, move bytes into place,
            move carry into place (possibly with sign extension)
   8      - move bytes into place, zero or sign extend other
   15*    - shift other way once, move word into place, move carry into place
   16     - move word, zero or sign extend other
   24*    - move bytes into place, zero or sign extend other
   31     - ASHIFTRT: shll top byte, subx, copy to other bytes

   H8/300H QImode shifts (same as H8/300 QImode shifts)
   7      - ASHIFTRT: shll, subx (propagate carry bit to all bits)

   H8/300H HImode shifts
   7      - shift 2nd half other way into carry.
	    copy 1st half into 2nd half
	    rotate entire word other way using carry
	    mask off remaining bits  (ASHIFT | LSHIFTRT)
	    sign extend remaining bits (ASHIFTRT)
   8      - move byte, zero (ASHIFT | LSHIFTRT) or sign extend other (ASHIFTRT)
   9-12   - do shift by 8, inline remaining shifts
   15     - ASHIFTRT: shll, subx, set other byte

   H8/300H SImode shifts
   (These are complicated by the fact that we don't have byte level access to
   the top word.)
   A word is: bytes 3,2,1,0 (msb -> lsb), word 1,0 (msw -> lsw)
   15*    - shift other way once, move word into place, move carry into place
            (with sign extension for ASHIFTRT)
   16     - move word into place, zero or sign extend other
   17-20  - do 16bit shift, then inline remaining shifts
   24*    - ASHIFT: move byte 0(msb) to byte 1, zero byte 0,
                    move word 0 to word 1, zero word 0
            LSHIFTRT: move word 1 to word 0, move byte 1 to byte 0,
                      zero word 1, zero byte 1
            ASHIFTRT: move word 1 to word 0, move byte 1 to byte 0,
                      sign extend byte 0, sign extend word 0
   25-27* - either loop, or
            do 24 bit shift, inline rest
   31     - shll, subx byte 0, sign extend byte 0, sign extend word 0

   H8S QImode shifts
   7      - ASHIFTRT: shll, subx (propagate carry bit to all bits)

   H8S HImode shifts
   8      - move byte, zero (ASHIFT | LSHIFTRT) or sign extend other (ASHIFTRT)
   9-12   - do shift by 8, inline remaining shifts
   15     - ASHIFTRT: shll, subx, set other byte

   H8S SImode shifts
   (These are complicated by the fact that we don't have byte level access to
   the top word.)
   A word is: bytes 3,2,1,0 (msb -> lsb), word 1,0 (msw -> lsw)
   15*    - shift other way once, move word into place, move carry into place
            (with sign extension for ASHIFTRT)
   16     - move word into place, zero or sign extend other
   17-20  - do 16bit shift, then inline remaining shifts
   24*    - ASHIFT: move byte 0(msb) to byte 1, zero byte 0,
                    move word 0 to word 1, zero word 0
            LSHIFTRT: move word 1 to word 0, move byte 1 to byte 0,
                      zero word 1, zero byte 1
            ASHIFTRT: move word 1 to word 0, move byte 1 to byte 0,
                      sign extend byte 0, sign extend word 0
   25-27* - either loop, or
            do 24 bit shift, inline rest
   31     - shll, subx byte 0, sign extend byte 0, sign extend word 0

   Panic!!!  */

int
nshift_operator (x, mode)
     rtx x;
     enum machine_mode mode ATTRIBUTE_UNUSED;
{
  switch (GET_CODE (x))
    {
    case ASHIFTRT:
    case LSHIFTRT:
    case ASHIFT:
      return 1;

    default:
      return 0;
    }
}

/* Called from the .md file to emit code to do shifts.
   Return a boolean indicating success.
   (Currently this is always TRUE).  */

int
expand_a_shift (mode, code, operands)
     enum machine_mode mode;
     int code;
     rtx operands[];
{
  emit_move_insn (operands[0], operands[1]);

  /* Need a loop to get all the bits we want  - we generate the
     code at emit time, but need to allocate a scratch reg now.  */

  emit_insn (gen_rtx_PARALLEL
	     (VOIDmode,
	      gen_rtvec (2,
			 gen_rtx_SET (VOIDmode, operands[0],
				      gen_rtx (code, mode, operands[0],
					       operands[2])),
			 gen_rtx_CLOBBER (VOIDmode,
					  gen_rtx_SCRATCH (QImode)))));

  return 1;
}

/* Symbols of the various modes which can be used as indices.  */

enum shift_mode
{
  QIshift, HIshift, SIshift
};

/* For single bit shift insns, record assembler and what bits of the
   condition code are valid afterwards (represented as various CC_FOO
   bits, 0 means CC isn't left in a usable state).  */

struct shift_insn
{
  const char *const assembler;
  const int cc_valid;
};

/* Assembler instruction shift table.

   These tables are used to look up the basic shifts.
   They are indexed by cpu, shift_type, and mode.  */

static const struct shift_insn shift_one[2][3][3] =
{
/* H8/300 */
  {
/* SHIFT_ASHIFT */
    {
      { "shll\t%X0", CC_NO_CARRY },
      { "add.w\t%T0,%T0", CC_OVERFLOW_UNUSABLE | CC_NO_CARRY },
      { "add.w\t%f0,%f0\n\taddx\t%y0,%y0\n\taddx\t%z0,%z0", 0 }
    },
/* SHIFT_LSHIFTRT */
    {
      { "shlr\t%X0", CC_NO_CARRY },
      { "shlr\t%t0\n\trotxr\t%s0", 0 },
      { "shlr\t%z0\n\trotxr\t%y0\n\trotxr\t%x0\n\trotxr\t%w0", 0 }
    },
/* SHIFT_ASHIFTRT */
    {
      { "shar\t%X0", CC_OVERFLOW_UNUSABLE | CC_NO_CARRY },
      { "shar\t%t0\n\trotxr\t%s0", 0 },
      { "shar\t%z0\n\trotxr\t%y0\n\trotxr\t%x0\n\trotxr\t%w0", 0 }
    }
  },
/* H8/300H */
  {
/* SHIFT_ASHIFT */
    {
      { "shll.b\t%X0", CC_NO_CARRY },
      { "shll.w\t%T0", CC_NO_CARRY },
      { "shll.l\t%S0", CC_NO_CARRY }
    },
/* SHIFT_LSHIFTRT */
    {
      { "shlr.b\t%X0", CC_NO_CARRY },
      { "shlr.w\t%T0", CC_NO_CARRY },
      { "shlr.l\t%S0", CC_NO_CARRY }
    },
/* SHIFT_ASHIFTRT */
    {
      { "shar.b\t%X0", CC_OVERFLOW_UNUSABLE | CC_NO_CARRY },
      { "shar.w\t%T0", CC_OVERFLOW_UNUSABLE | CC_NO_CARRY },
      { "shar.l\t%S0", CC_OVERFLOW_UNUSABLE | CC_NO_CARRY }
    }
  }
};

static const struct shift_insn shift_two[3][3] =
{
/* SHIFT_ASHIFT */
    {
      { "shll.b\t#2,%X0", CC_NO_CARRY },
      { "shll.w\t#2,%T0", CC_NO_CARRY },
      { "shll.l\t#2,%S0", CC_NO_CARRY }
    },
/* SHIFT_LSHIFTRT */
    {
      { "shlr.b\t#2,%X0", CC_NO_CARRY },
      { "shlr.w\t#2,%T0", CC_NO_CARRY },
      { "shlr.l\t#2,%S0", CC_NO_CARRY }
    },
/* SHIFT_ASHIFTRT */
    {
      { "shar.b\t#2,%X0", CC_OVERFLOW_UNUSABLE | CC_NO_CARRY },
      { "shar.w\t#2,%T0", CC_OVERFLOW_UNUSABLE | CC_NO_CARRY },
      { "shar.l\t#2,%S0", CC_OVERFLOW_UNUSABLE | CC_NO_CARRY }
    }
};

/* Rotates are organized by which shift they'll be used in implementing.
   There's no need to record whether the cc is valid afterwards because
   it is the AND insn that will decide this.  */

static const char *const rotate_one[2][3][3] =
{
/* H8/300 */
  {
/* SHIFT_ASHIFT */
    {
      "rotr\t%X0",
      "shlr\t%t0\n\trotxr\t%s0\n\tbst\t#7,%t0",
      0
    },
/* SHIFT_LSHIFTRT */
    {
      "rotl\t%X0",
      "shll\t%s0\n\trotxl\t%t0\n\tbst\t#0,%s0",
      0
    },
/* SHIFT_ASHIFTRT */
    {
      "rotl\t%X0",
      "shll\t%s0\n\trotxl\t%t0\n\tbst\t#0,%s0",
      0
    }
  },
/* H8/300H */
  {
/* SHIFT_ASHIFT */
    {
      "rotr.b\t%X0",
      "rotr.w\t%T0",
      "rotr.l\t%S0"
    },
/* SHIFT_LSHIFTRT */
    {
      "rotl.b\t%X0",
      "rotl.w\t%T0",
      "rotl.l\t%S0"
    },
/* SHIFT_ASHIFTRT */
    {
      "rotl.b\t%X0",
      "rotl.w\t%T0",
      "rotl.l\t%S0"
    }
  }
};

static const char *const rotate_two[3][3] =
{
/* SHIFT_ASHIFT */
    {
      "rotr.b\t#2,%X0",
      "rotr.w\t#2,%T0",
      "rotr.l\t#2,%S0"
    },
/* SHIFT_LSHIFTRT */
    {
      "rotl.b\t#2,%X0",
      "rotl.w\t#2,%T0",
      "rotl.l\t#2,%S0"
    },
/* SHIFT_ASHIFTRT */
    {
      "rotl.b\t#2,%X0",
      "rotl.w\t#2,%T0",
      "rotl.l\t#2,%S0"
    }
};

struct shift_info {
  /* Shift algorithm.  */
  enum shift_alg alg;

  /* The number of bits to be shifted by shift1 and shift2.  Valid
     when ALG is SHIFT_SPECIAL.  */
  unsigned int remainder;

  /* Special insn for a shift.  Valid when ALG is SHIFT_SPECIAL.  */
  const char *special;

  /* Insn for a one-bit shift.  Valid when ALG is either SHIFT_INLINE
     or SHIFT_SPECIAL, and REMAINDER is nonzero.  */
  const char *shift1;

  /* Insn for a two-bit shift.  Valid when ALG is either SHIFT_INLINE
     or SHIFT_SPECIAL, and REMAINDER is nonzero.  */
  const char *shift2;

  /* Valid CC flags.  */
  int cc_valid_p;
};

static void get_shift_alg PARAMS ((enum shift_type,
				   enum shift_mode, unsigned int,
				   struct shift_info *));

/* Given SHIFT_TYPE, SHIFT_MODE, and shift count COUNT, determine the
   best algorithm for doing the shift.  The assembler code is stored
   in the pointers in INFO.  We don't achieve maximum efficiency in
   all cases, but the hooks are here to do so.

   For now we just use lots of switch statements.  Since we don't even come
   close to supporting all the cases, this is simplest.  If this function ever
   gets too big, perhaps resort to a more table based lookup.  Of course,
   at this point you may just wish to do it all in rtl.

   WARNING: The constraints on insns shiftbyn_QI/HI/SI assume shifts of
   1,2,3,4 will be inlined (1,2 for SI).  */

static void
get_shift_alg (shift_type, shift_mode, count, info)
     enum shift_type shift_type;
     enum shift_mode shift_mode;
     unsigned int count;
     struct shift_info *info;
{
  enum h8_cpu cpu;

  /* Find the target CPU.  */
  if (TARGET_H8300)
    cpu = H8_300;
  else if (TARGET_H8300H)
    cpu = H8_300H;
  else
    cpu = H8_S;

  /* Find the shift algorithm.  */
  info->alg = SHIFT_LOOP;
  switch (shift_mode)
    {
    case QIshift:
      if (count < GET_MODE_BITSIZE (QImode))
	info->alg = shift_alg_qi[cpu][shift_type][count];
      break;

    case HIshift:
      if (count < GET_MODE_BITSIZE (HImode))
	info->alg = shift_alg_hi[cpu][shift_type][count];
      break;

    case SIshift:
      if (count < GET_MODE_BITSIZE (SImode))
	info->alg = shift_alg_si[cpu][shift_type][count];
      break;

    default:
      abort ();
    }

  /* Fill in INFO.  Return unless we have SHIFT_SPECIAL.  */
  switch (info->alg)
    {
    case SHIFT_INLINE:
      info->remainder = count;
      /* Fall through.  */

    case SHIFT_LOOP:
      /* It is up to the caller to know that looping clobbers cc.  */
      info->shift1 = shift_one[cpu_type][shift_type][shift_mode].assembler;
      info->shift2 = shift_two[shift_type][shift_mode].assembler;
      info->cc_valid_p = shift_one[cpu_type][shift_type][shift_mode].cc_valid;
      goto end;

    case SHIFT_ROT_AND:
      info->shift1 = rotate_one[cpu_type][shift_type][shift_mode];
      info->shift2 = rotate_two[shift_type][shift_mode];
      info->cc_valid_p = 0;
      goto end;

    case SHIFT_SPECIAL:
      /* REMAINDER is 0 for most cases, so initialize it to 0.  */
      info->remainder = 0;
      info->shift1 = shift_one[cpu_type][shift_type][shift_mode].assembler;
      info->shift2 = shift_two[shift_type][shift_mode].assembler;
      info->cc_valid_p = 0;
      break;
    }

  /* Here we only deal with SHIFT_SPECIAL.  */
  switch (shift_mode)
    {
    case QIshift:
      /* For ASHIFTRT by 7 bits, the sign bit is simply replicated
	 through the entire value.  */
      if (shift_type == SHIFT_ASHIFTRT && count == 7)
	{
	  info->special = "shll\t%X0\n\tsubx\t%X0,%X0";
	  goto end;
	}
      abort ();

    case HIshift:
      if (count == 7)
	{
	  switch (shift_type)
	    {
	    case SHIFT_ASHIFT:
	      if (TARGET_H8300)
		info->special = "shar.b\t%t0\n\tmov.b\t%s0,%t0\n\trotxr.b\t%t0\n\trotr.b\t%s0\n\tand.b\t#0x80,%s0";
	      else
		info->special = "shar.b\t%t0\n\tmov.b\t%s0,%t0\n\trotxr.w\t%T0\n\tand.b\t#0x80,%s0";
	      goto end;
	    case SHIFT_LSHIFTRT:
	      if (TARGET_H8300)
		info->special = "shal.b\t%s0\n\tmov.b\t%t0,%s0\n\trotxl.b\t%s0\n\trotl.b\t%t0\n\tand.b\t#0x01,%t0";
	      else
		info->special = "shal.b\t%s0\n\tmov.b\t%t0,%s0\n\trotxl.w\t%T0\n\tand.b\t#0x01,%t0";
	      goto end;
	    case SHIFT_ASHIFTRT:
	      info->special = "shal.b\t%s0\n\tmov.b\t%t0,%s0\n\trotxl.b\t%s0\n\tsubx\t%t0,%t0";
	      goto end;
	    }
	}
      else if (8 <= count && count <= 13)
	{
	  info->remainder = count - 8;

	  switch (shift_type)
	    {
	    case SHIFT_ASHIFT:
	      info->special = "mov.b\t%s0,%t0\n\tsub.b\t%s0,%s0";
	      info->shift1  = "shal.b\t%t0";
	      info->shift2  = "shal.b\t#2,%t0";
	      goto end;
	    case SHIFT_LSHIFTRT:
	      info->special = "mov.b\t%t0,%s0\n\tsub.b\t%t0,%t0";
	      info->shift1  = "shlr.b\t%s0";
	      info->shift2  = "shlr.b\t#2,%s0";
	      goto end;
	    case SHIFT_ASHIFTRT:
	      if (TARGET_H8300)
		info->special = "mov.b\t%t0,%s0\n\tbld\t#7,%s0\n\tsubx\t%t0,%t0";
	      else
		info->special = "mov.b\t%t0,%s0\n\texts.w\t%T0";
	      info->shift1 = "shar.b\t%s0";
	      info->shift2 = "shar.b\t#2,%s0";
	      goto end;
	    }
	}
      else if (count == 14)
	{
	  switch (shift_type)
	    {
	    case SHIFT_ASHIFT:
	      if (TARGET_H8300)
		info->special = "mov.b\t%s0,%t0\n\trotr.b\t%t0\n\trotr.b\t%t0\n\tand.b\t#0xC0,%t0\n\tsub.b\t%s0,%s0";
	      goto end;
	    case SHIFT_LSHIFTRT:
	      if (TARGET_H8300)
		info->special = "mov.b\t%t0,%s0\n\trotl.b\t%s0\n\trotl.b\t%s0\n\tand.b\t#3,%s0\n\tsub.b\t%t0,%t0";
	      goto end;
	    case SHIFT_ASHIFTRT:
	      if (TARGET_H8300)
		info->special = "mov.b\t%t0,%s0\n\tshll.b\t%s0\n\tsubx.b\t%t0,%t0\n\tshll.b\t%s0\n\tmov.b\t%t0,%s0\n\tbst.b\t#0,%s0";
	      else if (TARGET_H8300H)
		info->special = "shll.b\t%t0\n\tsubx.b\t%s0,%s0\n\tshll.b\t%t0\n\trotxl.b\t%s0\n\texts.w\t%T0";
	      else /* TARGET_H8300S */
		info->special = "mov.b\t%t0,%s0\n\texts.w\t%T0\n\tshar.w\t#2,%T0\n\tshar.w\t#2,%T0\n\tshar.w\t#2,%T0";
	      goto end;
	    }
	}
      else if (count == 15)
	{
	  switch (shift_type)
	    {
	    case SHIFT_ASHIFT:
	      info->special = "bld\t#0,%s0\n\txor\t%s0,%s0\n\txor\t%t0,%t0\n\tbst\t#7,%t0";
	      goto end;
	    case SHIFT_LSHIFTRT:
	      info->special = "bld\t#7,%t0\n\txor\t%s0,%s0\n\txor\t%t0,%t0\n\tbst\t#0,%s0";
	      goto end;
	    case SHIFT_ASHIFTRT:
	      info->special = "shll\t%t0\n\tsubx\t%t0,%t0\n\tmov.b\t%t0,%s0";
	      goto end;
	    }
	}
      abort ();

    case SIshift:
      if (TARGET_H8300 && 8 <= count && count <= 9)
	{
	  info->remainder = count - 8;

	  switch (shift_type)
	    {
	    case SHIFT_ASHIFT:
	      info->special = "mov.b\t%y0,%z0\n\tmov.b\t%x0,%y0\n\tmov.b\t%w0,%x0\n\tsub.b\t%w0,%w0";
	      goto end;
	    case SHIFT_LSHIFTRT:
	      info->special = "mov.b\t%x0,%w0\n\tmov.b\t%y0,%x0\n\tmov.b\t%z0,%y0\n\tsub.b\t%z0,%z0";
	      info->shift1  = "shlr\t%y0\n\trotxr\t%x0\n\trotxr\t%w0";
	      goto end;
	    case SHIFT_ASHIFTRT:
	      info->special = "mov.b\t%x0,%w0\n\tmov.b\t%y0,%x0\n\tmov.b\t%z0,%y0\n\tshll\t%z0\n\tsubx\t%z0,%z0";
	      goto end;
	    }
	}
      else if (count == 8 && !TARGET_H8300)
	{
	  switch (shift_type)
	    {
	    case SHIFT_ASHIFT:
	      info->special = "mov.w\t%e0,%f4\n\tmov.b\t%s4,%t4\n\tmov.b\t%t0,%s4\n\tmov.b\t%s0,%t0\n\tsub.b\t%s0,%s0\n\tmov.w\t%f4,%e0";
	      goto end;
	    case SHIFT_LSHIFTRT:
	      info->special = "mov.w\t%e0,%f4\n\tmov.b\t%t0,%s0\n\tmov.b\t%s4,%t0\n\tmov.b\t%t4,%s4\n\textu.w\t%f4\n\tmov.w\t%f4,%e0";
	      goto end;
	    case SHIFT_ASHIFTRT:
	      info->special = "mov.w\t%e0,%f4\n\tmov.b\t%t0,%s0\n\tmov.b\t%s4,%t0\n\tmov.b\t%t4,%s4\n\texts.w\t%f4\n\tmov.w\t%f4,%e0";
	      goto end;
	    }
	}
      else if (count == 15 && TARGET_H8300)
	{
	  switch (shift_type)
	    {
	    case SHIFT_ASHIFT:
	      abort ();
	    case SHIFT_LSHIFTRT:
	      info->special = "bld\t#7,%z0\n\tmov.w\t%e0,%f0\n\txor\t%y0,%y0\n\txor\t%z0,%z0\n\trotxl\t%w0,%w0\n\trotxl\t%x0,%x0\n\trotxl\t%y0,%y0";
	      goto end;
	    case SHIFT_ASHIFTRT:
	      info->special = "bld\t#7,%z0\n\tmov.w\t%e0,%f0\n\trotxl\t%w0,%w0\n\trotxl\t%x0,%x0\n\tsubx\t%y0,%y0\n\tsubx\t%z0,%z0";
	      goto end;
	    }
	}
      else if (count == 15 && !TARGET_H8300)
	{
	  switch (shift_type)
	    {
	    case SHIFT_ASHIFT:
	      info->special = "shlr.w\t%e0\n\tmov.w\t%f0,%e0\n\txor.w\t%f0,%f0\n\trotxr.l\t%S0";
	      goto end;
	    case SHIFT_LSHIFTRT:
	      info->special = "shll.w\t%f0\n\tmov.w\t%e0,%f0\n\txor.w\t%e0,%e0\n\trotxl.l\t%S0";
	      goto end;
	    case SHIFT_ASHIFTRT:
	      abort ();
	    }
	}
      else if ((TARGET_H8300 && 16 <= count && count <= 20)
	       || (TARGET_H8300H && 16 <= count && count <= 19)
	       || (TARGET_H8300S && 16 <= count && count <= 21))
	{
	  info->remainder = count - 16;

	  switch (shift_type)
	    {
	    case SHIFT_ASHIFT:
	      info->special = "mov.w\t%f0,%e0\n\tsub.w\t%f0,%f0";
	      if (TARGET_H8300)
		{
		  info->shift1 = "add.w\t%e0,%e0";
		}
	      else
		{
		  info->shift1 = "shll.l\t%S0";
		  info->shift2 = "shll.l\t#2,%S0";
		}
	      goto end;
	    case SHIFT_LSHIFTRT:
	      info->special = "mov.w\t%e0,%f0\n\tsub.w\t%e0,%e0";
	      if (TARGET_H8300)
		{
		  info->shift1 = "shlr\t%x0\n\trotxr\t%w0";
		}
	      else
		{
		  info->shift1 = "shlr.l\t%S0";
		  info->shift2 = "shlr.l\t#2,%S0";
		}
	      goto end;
	    case SHIFT_ASHIFTRT:
	      if (TARGET_H8300)
		{
		  info->special = "mov.w\t%e0,%f0\n\tshll\t%z0\n\tsubx\t%z0,%z0\n\tmov.b\t%z0,%y0";
		  info->shift1  = "shar\t%x0\n\trotxr\t%w0";
		}
	      else
		{
		  info->special = "mov.w\t%e0,%f0\n\texts.l\t%S0";
		  info->shift1  = "shar.l\t%S0";
		  info->shift2  = "shar.l\t#2,%S0";
		}
	      goto end;
	    }
	}
      else if (TARGET_H8300 && 24 <= count && count <= 28)
	{
	  info->remainder = count - 24;

	  switch (shift_type)
	    {
	    case SHIFT_ASHIFT:
	      info->special = "mov.b\t%w0,%z0\n\tsub.b\t%y0,%y0\n\tsub.w\t%f0,%f0";
	      info->shift1  = "shll.b\t%z0";
	      goto end;
	    case SHIFT_LSHIFTRT:
	      info->special = "mov.b\t%z0,%w0\n\tsub.b\t%x0,%x0\n\tsub.w\t%e0,%e0";
	      info->shift1  = "shlr.b\t%w0";
	      goto end;
	    case SHIFT_ASHIFTRT:
	      info->special = "mov.b\t%z0,%w0\n\tbld\t#7,%w0\n\tsubx\t%x0,%x0\n\tsubx\t%x0,%x0\n\tsubx\t%x0,%x0";
	      info->shift1  = "shar.b\t%w0";
	      goto end;
	    }
	}
      else if ((TARGET_H8300H && count == 24)
	       || (TARGET_H8300S && 24 <= count && count <= 25))
	{
	  info->remainder = count - 24;

	  switch (shift_type)
	    {
	    case SHIFT_ASHIFT:
	      info->special = "mov.b\t%s0,%t0\n\tsub.b\t%s0,%s0\n\tmov.w\t%f0,%e0\n\tsub.w\t%f0,%f0";
	      info->shift1  = "shll.l\t%S0";
	      info->shift2  = "shll.l\t#2,%S0";
	      goto end;
	    case SHIFT_LSHIFTRT:
	      info->special = "mov.w\t%e0,%f0\n\tmov.b\t%t0,%s0\n\textu.w\t%f0\n\textu.l\t%S0";
	      info->shift1  = "shlr.l\t%S0";
	      info->shift2  = "shlr.l\t#2,%S0";
	      goto end;
	    case SHIFT_ASHIFTRT:
	      info->special = "mov.w\t%e0,%f0\n\tmov.b\t%t0,%s0\n\texts.w\t%f0\n\texts.l\t%S0";
	      info->shift1  = "shar.l\t%S0";
	      info->shift2  = "shar.l\t#2,%S0";
	      goto end;
	    }
	}
      else if (count == 31)
	{
	  if (TARGET_H8300)
	    {
	      switch (shift_type)
		{
		case SHIFT_ASHIFT:
		  info->special = "sub.w\t%e0,%e0\n\tshlr\t%w0\n\tmov.w\t%e0,%f0\n\trotxr\t%z0";
		  goto end;
		case SHIFT_LSHIFTRT:
		  info->special = "sub.w\t%f0,%f0\n\tshll\t%z0\n\tmov.w\t%f0,%e0\n\trotxl\t%w0";
		  goto end;
		case SHIFT_ASHIFTRT:
		  info->special = "shll\t%z0\n\tsubx\t%w0,%w0\n\tmov.b\t%w0,%x0\n\tmov.w\t%f0,%e0";
		  goto end;
		}
	    }
	  else
	    {
	      switch (shift_type)
		{
		case SHIFT_ASHIFT:
		  info->special = "shlr.l\t%S0\n\txor.l\t%S0,%S0\n\trotxr.l\t%S0";
		  goto end;
		case SHIFT_LSHIFTRT:
		  info->special = "shll.l\t%S0\n\txor.l\t%S0,%S0\n\trotxl.l\t%S0";
		  goto end;
		case SHIFT_ASHIFTRT:
		  info->special = "shll\t%e0\n\tsubx\t%w0,%w0\n\tmov.b\t%w0,%x0\n\tmov.w\t%f0,%e0";
		  goto end;
		}
	    }
	}
      abort ();

    default:
      abort ();
    }

 end:
  if (!TARGET_H8300S)
    info->shift2 = NULL;
}

/* Given COUNT and MODE of a shift, return 1 if a scratch reg may be
   needed for some shift with COUNT and MODE.  Return 0 otherwise.  */

int
h8300_shift_needs_scratch_p (count, mode)
     int count;
     enum machine_mode mode;
{
  enum h8_cpu cpu;
  int a, lr, ar;

  if (GET_MODE_BITSIZE (mode) <= count)
    return 1;

  /* Find out the target CPU.  */
  if (TARGET_H8300)
    cpu = H8_300;
  else if (TARGET_H8300H)
    cpu = H8_300H;
  else
    cpu = H8_S;

  /* Find the shift algorithm.  */
  switch (mode)
    {
    case QImode:
      a  = shift_alg_qi[cpu][SHIFT_ASHIFT][count];
      lr = shift_alg_qi[cpu][SHIFT_LSHIFTRT][count];
      ar = shift_alg_qi[cpu][SHIFT_ASHIFTRT][count];
      break;

    case HImode:
      a  = shift_alg_hi[cpu][SHIFT_ASHIFT][count];
      lr = shift_alg_hi[cpu][SHIFT_LSHIFTRT][count];
      ar = shift_alg_hi[cpu][SHIFT_ASHIFTRT][count];
      break;

    case SImode:
      a  = shift_alg_si[cpu][SHIFT_ASHIFT][count];
      lr = shift_alg_si[cpu][SHIFT_LSHIFTRT][count];
      ar = shift_alg_si[cpu][SHIFT_ASHIFTRT][count];
      break;

    default:
      abort ();
    }

  /* On H8/300H and H8S, count == 8 uses the scratch register.  */
  return (a == SHIFT_LOOP || lr == SHIFT_LOOP || ar == SHIFT_LOOP
	  || (!TARGET_H8300 && mode == SImode && count == 8));
}

/* Emit the assembler code for doing shifts.  */

const char *
output_a_shift (operands)
     rtx *operands;
{
  static int loopend_lab;
  rtx shift = operands[3];
  enum machine_mode mode = GET_MODE (shift);
  enum rtx_code code = GET_CODE (shift);
  enum shift_type shift_type;
  enum shift_mode shift_mode;
  struct shift_info info;

  loopend_lab++;

  switch (mode)
    {
    case QImode:
      shift_mode = QIshift;
      break;
    case HImode:
      shift_mode = HIshift;
      break;
    case SImode:
      shift_mode = SIshift;
      break;
    default:
      abort ();
    }

  switch (code)
    {
    case ASHIFTRT:
      shift_type = SHIFT_ASHIFTRT;
      break;
    case LSHIFTRT:
      shift_type = SHIFT_LSHIFTRT;
      break;
    case ASHIFT:
      shift_type = SHIFT_ASHIFT;
      break;
    default:
      abort ();
    }

  if (GET_CODE (operands[2]) != CONST_INT)
    {
      /* Indexing by reg, so have to loop and test at top.  */
      output_asm_insn ("mov.b	%X2,%X4", operands);
      fprintf (asm_out_file, "\tble	.Lle%d\n", loopend_lab);

      /* Get the assembler code to do one shift.  */
      get_shift_alg (shift_type, shift_mode, 1, &info);

      fprintf (asm_out_file, ".Llt%d:\n", loopend_lab);
      output_asm_insn (info.shift1, operands);
      output_asm_insn ("add	#0xff,%X4", operands);
      fprintf (asm_out_file, "\tbne	.Llt%d\n", loopend_lab);
      fprintf (asm_out_file, ".Lle%d:\n", loopend_lab);

      return "";
    }
  else
    {
      int n = INTVAL (operands[2]);

      /* If the count is negative, make it 0.  */
      if (n < 0)
	n = 0;
      /* If the count is too big, truncate it.
         ANSI says shifts of GET_MODE_BITSIZE are undefined - we choose to
	 do the intuitive thing.  */
      else if ((unsigned int) n > GET_MODE_BITSIZE (mode))
	n = GET_MODE_BITSIZE (mode);

      get_shift_alg (shift_type, shift_mode, n, &info);

      switch (info.alg)
	{
	case SHIFT_SPECIAL:
	  output_asm_insn (info.special, operands);
	  /* Fall through.  */

	case SHIFT_INLINE:
	  n = info.remainder;

	  /* Emit two bit shifts first.  */
	  if (info.shift2 != NULL)
	    {
	      for (; n > 1; n -= 2)
		output_asm_insn (info.shift2, operands);
	    }

	  /* Now emit one bit shifts for any residual.  */
	  for (; n > 0; n--)
	    output_asm_insn (info.shift1, operands);

	  /* Keep track of CC.  */
	  if (info.cc_valid_p)
	    {
	      cc_status.value1 = operands[0];
	      cc_status.flags |= info.cc_valid_p;
	    }
	  return "";

	case SHIFT_ROT_AND:
	  {
	    int m = GET_MODE_BITSIZE (mode) - n;
	    int mask = (shift_type == SHIFT_ASHIFT
			? ((1 << m) - 1) << n
			: (1 << m) - 1);
	    char insn_buf[200];

	    /* Not all possibilities of rotate are supported.  They shouldn't
	       be generated, but let's watch for 'em.  */
	    if (info.shift1 == 0)
	      abort ();

	    /* Emit two bit rotates first.  */
	    if (info.shift2 != NULL)
	      {
		for (; m > 1; m -= 2)
		  output_asm_insn (info.shift2, operands);
	      }

	    /* Now single bit rotates for any residual.  */
	    for (; m > 0; m--)
	      output_asm_insn (info.shift1, operands);

	    /* Now mask off the high bits.  */
	    if (TARGET_H8300)
	      {
		switch (mode)
		  {
		  case QImode:
		    sprintf (insn_buf, "and\t#%d,%%X0", mask);
		    cc_status.value1 = operands[0];
		    cc_status.flags |= CC_NO_CARRY;
		    break;
		  case HImode:
		    sprintf (insn_buf, "and\t#%d,%%s0\n\tand\t#%d,%%t0",
			     mask & 255, mask >> 8);
		    break;
		  default:
		    abort ();
		  }
	      }
	    else
	      {
		sprintf (insn_buf, "and.%c\t#%d,%%%c0",
			 "bwl"[shift_mode], mask,
			 mode == QImode ? 'X' : mode == HImode ? 'T' : 'S');
		cc_status.value1 = operands[0];
		cc_status.flags |= CC_NO_CARRY;
	      }
	    output_asm_insn (insn_buf, operands);
	    return "";
	  }

	case SHIFT_LOOP:
	  /* A loop to shift by a "large" constant value.
	     If we have shift-by-2 insns, use them.  */
	  if (info.shift2 != NULL)
	    {
	      fprintf (asm_out_file, "\tmov.b	#%d,%sl\n", n / 2,
		       names_big[REGNO (operands[4])]);
	      fprintf (asm_out_file, ".Llt%d:\n", loopend_lab);
	      output_asm_insn (info.shift2, operands);
	      output_asm_insn ("add	#0xff,%X4", operands);
	      fprintf (asm_out_file, "\tbne	.Llt%d\n", loopend_lab);
	      if (n % 2)
		output_asm_insn (info.shift1, operands);
	    }
	  else
	    {
	      fprintf (asm_out_file, "\tmov.b	#%d,%sl\n", n,
		       names_big[REGNO (operands[4])]);
	      fprintf (asm_out_file, ".Llt%d:\n", loopend_lab);
	      output_asm_insn (info.shift1, operands);
	      output_asm_insn ("add	#0xff,%X4", operands);
	      fprintf (asm_out_file, "\tbne	.Llt%d\n", loopend_lab);
	    }
	  return "";

	default:
	  abort ();
	}
    }
}

static unsigned int
h8300_asm_insn_count (template)
     const char *template;
{
  unsigned int count = 1;

  for (; *template; template++)
    if (*template == '\n')
      count++;

  return count;
}

unsigned int
compute_a_shift_length (insn, operands)
     rtx insn ATTRIBUTE_UNUSED;
     rtx *operands;
{
  rtx shift = operands[3];
  enum machine_mode mode = GET_MODE (shift);
  enum rtx_code code = GET_CODE (shift);
  enum shift_type shift_type;
  enum shift_mode shift_mode;
  struct shift_info info;
  unsigned int wlength = 0;

  switch (mode)
    {
    case QImode:
      shift_mode = QIshift;
      break;
    case HImode:
      shift_mode = HIshift;
      break;
    case SImode:
      shift_mode = SIshift;
      break;
    default:
      abort ();
    }

  switch (code)
    {
    case ASHIFTRT:
      shift_type = SHIFT_ASHIFTRT;
      break;
    case LSHIFTRT:
      shift_type = SHIFT_LSHIFTRT;
      break;
    case ASHIFT:
      shift_type = SHIFT_ASHIFT;
      break;
    default:
      abort ();
    }

  if (GET_CODE (operands[2]) != CONST_INT)
    {
      /* Get the assembler code to do one shift.  */
      get_shift_alg (shift_type, shift_mode, 1, &info);

      return (4 + h8300_asm_insn_count (info.shift1)) * 2;
    }
  else
    {
      int n = INTVAL (operands[2]);

      /* If the count is negative, make it 0.  */
      if (n < 0)
	n = 0;
      /* If the count is too big, truncate it.
         ANSI says shifts of GET_MODE_BITSIZE are undefined - we choose to
	 do the intuitive thing.  */
      else if ((unsigned int) n > GET_MODE_BITSIZE (mode))
	n = GET_MODE_BITSIZE (mode);

      get_shift_alg (shift_type, shift_mode, n, &info);

      switch (info.alg)
	{
	case SHIFT_SPECIAL:
	  wlength += h8300_asm_insn_count (info.special);

	  /* Every assembly instruction used in SHIFT_SPECIAL case
	     takes 2 bytes except xor.l, which takes 4 bytes, so if we
	     see xor.l, we just pretend that xor.l counts as two insns
	     so that the insn length will be computed correctly.  */
	  if (strstr (info.special, "xor.l") != NULL)
	    wlength++;

	  /* Fall through.  */

	case SHIFT_INLINE:
	  n = info.remainder;

	  if (info.shift2 != NULL)
	    {
	      wlength += h8300_asm_insn_count (info.shift2) * (n / 2);
	      n = n % 2;
	    }

	  wlength += h8300_asm_insn_count (info.shift1) * n;

	  return 2 * wlength;

	case SHIFT_ROT_AND:
	  {
	    int m = GET_MODE_BITSIZE (mode) - n;

	    /* Not all possibilities of rotate are supported.  They shouldn't
	       be generated, but let's watch for 'em.  */
	    if (info.shift1 == 0)
	      abort ();

	    if (info.shift2 != NULL)
	      {
		wlength += h8300_asm_insn_count (info.shift2) * (m / 2);
		m = m % 2;
	      }

	    wlength += h8300_asm_insn_count (info.shift1) * m;

	    /* Now mask off the high bits.  */
	    switch (mode)
	      {
	      case QImode:
		wlength += 1;
		break;
	      case HImode:
		wlength += 2;
		break;
	      case SImode:
		if (TARGET_H8300)
		  abort ();
		wlength += 3;
		break;
	      default:
		abort ();
	      }
	    return 2 * wlength;
	  }

	case SHIFT_LOOP:
	  /* A loop to shift by a "large" constant value.
	     If we have shift-by-2 insns, use them.  */
	  if (info.shift2 != NULL)
	    {
	      wlength += 3 + h8300_asm_insn_count (info.shift2);
	      if (n % 2)
		wlength += h8300_asm_insn_count (info.shift1);
	    }
	  else
	    {
	      wlength += 3 + h8300_asm_insn_count (info.shift1);
	    }
	  return 2 * wlength;

	default:
	  abort ();
	}
    }
}

/* A rotation by a non-constant will cause a loop to be generated, in
   which a rotation by one bit is used.  A rotation by a constant,
   including the one in the loop, will be taken care of by
   emit_a_rotate () at the insn emit time.  */

int
expand_a_rotate (code, operands)
     enum rtx_code code;
     rtx operands[];
{
  rtx dst = operands[0];
  rtx src = operands[1];
  rtx rotate_amount = operands[2];
  enum machine_mode mode = GET_MODE (dst);
  rtx tmp;

  /* We rotate in place.  */
  emit_move_insn (dst, src);

  if (GET_CODE (rotate_amount) != CONST_INT)
    {
      rtx counter = gen_reg_rtx (QImode);
      rtx start_label = gen_label_rtx ();
      rtx end_label = gen_label_rtx ();

      /* If the rotate amount is less than or equal to 0,
	 we go out of the loop.  */
      emit_cmp_and_jump_insns (rotate_amount, GEN_INT (0), LE, NULL_RTX,
			       QImode, 0, end_label);

      /* Initialize the loop counter.  */
      emit_move_insn (counter, rotate_amount);

      emit_label (start_label);

      /* Rotate by one bit.  */
      tmp = gen_rtx (code, mode, dst, GEN_INT (1));
      emit_insn (gen_rtx_SET (mode, dst, tmp));

      /* Decrement the counter by 1.  */
      tmp = gen_rtx_PLUS (QImode, counter, GEN_INT (-1));
      emit_insn (gen_rtx_SET (VOIDmode, counter, tmp));

      /* If the loop counter is nonzero, we go back to the beginning
	 of the loop.  */
      emit_cmp_and_jump_insns (counter, GEN_INT (0), NE, NULL_RTX, QImode, 1,
			       start_label);

      emit_label (end_label);
    }
  else
    {
      /* Rotate by AMOUNT bits.  */
      tmp = gen_rtx (code, mode, dst, rotate_amount);
      emit_insn (gen_rtx_SET (mode, dst, tmp));
    }

  return 1;
}

/* Emit rotate insns.  */

const char *
emit_a_rotate (code, operands)
     enum rtx_code code;
     rtx *operands;
{
  rtx dst = operands[0];
  rtx rotate_amount = operands[2];
  enum shift_mode rotate_mode;
  enum shift_type rotate_type;
  const char *insn_buf;
  int bits;
  int amount;
  enum machine_mode mode = GET_MODE (dst);

  if (GET_CODE (rotate_amount) != CONST_INT)
    abort ();

  switch (mode)
    {
    case QImode:
      rotate_mode = QIshift;
      break;
    case HImode:
      rotate_mode = HIshift;
      break;
    case SImode:
      rotate_mode = SIshift;
      break;
    default:
      abort ();
    }

  switch (code)
    {
    case ROTATERT:
      rotate_type = SHIFT_ASHIFT;
      break;
    case ROTATE:
      rotate_type = SHIFT_LSHIFTRT;
      break;
    default:
      abort ();
    }

  amount = INTVAL (rotate_amount);

  /* Clean up AMOUNT.  */
  if (amount < 0)
    amount = 0;
  if ((unsigned int) amount > GET_MODE_BITSIZE (mode))
    amount = GET_MODE_BITSIZE (mode);

  /* Determine the faster direction.  After this phase, amount will be
     at most a half of GET_MODE_BITSIZE (mode).  */
  if ((unsigned int) amount > GET_MODE_BITSIZE (mode) / (unsigned) 2)
    {
      /* Flip the direction.  */
      amount = GET_MODE_BITSIZE (mode) - amount;
      rotate_type =
	(rotate_type == SHIFT_ASHIFT) ? SHIFT_LSHIFTRT : SHIFT_ASHIFT;
    }

  /* See if a byte swap (in HImode) or a word swap (in SImode) can
     boost up the rotation.  */
  if ((mode == HImode && TARGET_H8300 && amount >= 5)
      || (mode == HImode && TARGET_H8300H && amount >= 6)
      || (mode == HImode && TARGET_H8300S && amount == 8)
      || (mode == SImode && TARGET_H8300H && amount >= 10)
      || (mode == SImode && TARGET_H8300S && amount >= 13))
    {
      switch (mode)
	{
	case HImode:
	  /* This code works on any family.  */
	  insn_buf = "xor.b\t%s0,%t0\n\txor.b\t%t0,%s0\n\txor.b\t%s0,%t0";
	  output_asm_insn (insn_buf, operands);
	  break;

	case SImode:
	  /* This code works on the H8/300H and H8S.  */
	  insn_buf = "xor.w\t%e0,%f0\n\txor.w\t%f0,%e0\n\txor.w\t%e0,%f0";
	  output_asm_insn (insn_buf, operands);
	  break;

	default:
	  abort ();
	}

      /* Adjust AMOUNT and flip the direction.  */
      amount = GET_MODE_BITSIZE (mode) / 2 - amount;
      rotate_type =
	(rotate_type == SHIFT_ASHIFT) ? SHIFT_LSHIFTRT : SHIFT_ASHIFT;
    }

  /* Emit rotate insns.  */
  for (bits = TARGET_H8300S ? 2 : 1; bits > 0; bits /= 2)
    {
      if (bits == 2)
	insn_buf = rotate_two[rotate_type][rotate_mode];
      else
	insn_buf = rotate_one[cpu_type][rotate_type][rotate_mode];

      for (; amount >= bits; amount -= bits)
	output_asm_insn (insn_buf, operands);
    }

  return "";
}

/* Fix the operands of a gen_xxx so that it could become a bit
   operating insn.  */

int
fix_bit_operand (operands, what, type)
     rtx *operands;
     int what;
     enum rtx_code type;
{
  /* The bit_operand predicate accepts any memory during RTL generation, but
     only 'U' memory afterwards, so if this is a MEM operand, we must force
     it to be valid for 'U' by reloading the address.  */

  if ((what == 0 && single_zero_operand (operands[2], QImode))
      || (what == 1 && single_one_operand (operands[2], QImode)))
    {
      /* OK to have a memory dest.  */
      if (GET_CODE (operands[0]) == MEM
	  && !EXTRA_CONSTRAINT (operands[0], 'U'))
	{
	  rtx mem = gen_rtx_MEM (GET_MODE (operands[0]),
				 copy_to_mode_reg (Pmode,
						   XEXP (operands[0], 0)));
	  MEM_COPY_ATTRIBUTES (mem, operands[0]);
	  operands[0] = mem;
	}

      if (GET_CODE (operands[1]) == MEM
	  && !EXTRA_CONSTRAINT (operands[1], 'U'))
	{
	  rtx mem = gen_rtx_MEM (GET_MODE (operands[1]),
				 copy_to_mode_reg (Pmode,
						   XEXP (operands[1], 0)));
	  MEM_COPY_ATTRIBUTES (mem, operands[0]);
	  operands[1] = mem;
	}
      return 0;
    }

  /* Dest and src op must be register.  */

  operands[1] = force_reg (QImode, operands[1]);
  {
    rtx res = gen_reg_rtx (QImode);
    emit_insn (gen_rtx_SET (VOIDmode, res,
			    gen_rtx (type, QImode, operands[1], operands[2])));
    emit_insn (gen_rtx_SET (VOIDmode, operands[0], res));
  }
  return 1;
}

/* Return nonzero if FUNC is an interrupt function as specified
   by the "interrupt" attribute.  */

static int
h8300_interrupt_function_p (func)
     tree func;
{
  tree a;

  if (TREE_CODE (func) != FUNCTION_DECL)
    return 0;

  a = lookup_attribute ("interrupt_handler", DECL_ATTRIBUTES (func));
  return a != NULL_TREE;
}

/* Return nonzero if FUNC is an OS_Task function as specified
   by the "OS_Task" attribute.  */

static int
h8300_os_task_function_p (func)
     tree func;
{
  tree a;

  if (TREE_CODE (func) != FUNCTION_DECL)
    return 0;

  a = lookup_attribute ("OS_Task", DECL_ATTRIBUTES (func));
  return a != NULL_TREE;
}

/* Return nonzero if FUNC is a monitor function as specified
   by the "monitor" attribute.  */

static int
h8300_monitor_function_p (func)
     tree func;
{
  tree a;

  if (TREE_CODE (func) != FUNCTION_DECL)
    return 0;

  a = lookup_attribute ("monitor", DECL_ATTRIBUTES (func));
  return a != NULL_TREE;
}

/* Return nonzero if FUNC is a function that should be called
   through the function vector.  */

int
h8300_funcvec_function_p (func)
     tree func;
{
  tree a;

  if (TREE_CODE (func) != FUNCTION_DECL)
    return 0;

  a = lookup_attribute ("function_vector", DECL_ATTRIBUTES (func));
  return a != NULL_TREE;
}

/* Return nonzero if DECL is a variable that's in the eight bit
   data area.  */

int
h8300_eightbit_data_p (decl)
     tree decl;
{
  tree a;

  if (TREE_CODE (decl) != VAR_DECL)
    return 0;

  a = lookup_attribute ("eightbit_data", DECL_ATTRIBUTES (decl));
  return a != NULL_TREE;
}

/* Return nonzero if DECL is a variable that's in the tiny
   data area.  */

int
h8300_tiny_data_p (decl)
     tree decl;
{
  tree a;

  if (TREE_CODE (decl) != VAR_DECL)
    return 0;

  a = lookup_attribute ("tiny_data", DECL_ATTRIBUTES (decl));
  return a != NULL_TREE;
}

/* Generate an 'interrupt_handler' attribute for decls.  */

static void
h8300_insert_attributes (node, attributes)
     tree node;
     tree *attributes;
{
  if (!interrupt_handler
      || TREE_CODE (node) != FUNCTION_DECL)
    return;

  /* Add an 'interrupt_handler' attribute.  */
  *attributes = tree_cons (get_identifier ("interrupt_handler"),
			   NULL, *attributes);
}

/* Supported attributes:

   interrupt_handler: output a prologue and epilogue suitable for an
   interrupt handler.

   function_vector: This function should be called through the
   function vector.

   eightbit_data: This variable lives in the 8-bit data area and can
   be referenced with 8-bit absolute memory addresses.

   tiny_data: This variable lives in the tiny data area and can be
   referenced with 16-bit absolute memory references.  */

const struct attribute_spec h8300_attribute_table[] =
{
  /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
  { "interrupt_handler", 0, 0, true,  false, false, h8300_handle_fndecl_attribute },
  { "OS_Task",           0, 0, true,  false, false, h8300_handle_fndecl_attribute },
  { "monitor",           0, 0, true,  false, false, h8300_handle_fndecl_attribute },
  { "function_vector",   0, 0, true,  false, false, h8300_handle_fndecl_attribute },
  { "eightbit_data",     0, 0, true,  false, false, h8300_handle_eightbit_data_attribute },
  { "tiny_data",         0, 0, true,  false, false, h8300_handle_tiny_data_attribute },
  { NULL,                0, 0, false, false, false, NULL }
};


/* Handle an attribute requiring a FUNCTION_DECL; arguments as in
   struct attribute_spec.handler.  */
static tree
h8300_handle_fndecl_attribute (node, name, args, flags, no_add_attrs)
     tree *node;
     tree name;
     tree args ATTRIBUTE_UNUSED;
     int flags ATTRIBUTE_UNUSED;
     bool *no_add_attrs;
{
  if (TREE_CODE (*node) != FUNCTION_DECL)
    {
      warning ("`%s' attribute only applies to functions",
	       IDENTIFIER_POINTER (name));
      *no_add_attrs = true;
    }

  return NULL_TREE;
}

/* Handle an "eightbit_data" attribute; arguments as in
   struct attribute_spec.handler.  */
static tree
h8300_handle_eightbit_data_attribute (node, name, args, flags, no_add_attrs)
     tree *node;
     tree name;
     tree args ATTRIBUTE_UNUSED;
     int flags ATTRIBUTE_UNUSED;
     bool *no_add_attrs;
{
  tree decl = *node;

  if (TREE_STATIC (decl) || DECL_EXTERNAL (decl))
    {
      DECL_SECTION_NAME (decl) = build_string (7, ".eight");
    }
  else
    {
      warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
      *no_add_attrs = true;
    }

  return NULL_TREE;
}

/* Handle an "tiny_data" attribute; arguments as in
   struct attribute_spec.handler.  */
static tree
h8300_handle_tiny_data_attribute (node, name, args, flags, no_add_attrs)
     tree *node;
     tree name;
     tree args ATTRIBUTE_UNUSED;
     int flags ATTRIBUTE_UNUSED;
     bool *no_add_attrs;
{
  tree decl = *node;

  if (TREE_STATIC (decl) || DECL_EXTERNAL (decl))
    {
      DECL_SECTION_NAME (decl) = build_string (6, ".tiny");
    }
  else
    {
      warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
      *no_add_attrs = true;
    }

  return NULL_TREE;
}

static void
h8300_encode_label (decl)
     tree decl;
{
  const char *str = XSTR (XEXP (DECL_RTL (decl), 0), 0);
  int len = strlen (str);
  char *newstr = alloca (len + 2);

  newstr[0] = '&';
  strcpy (&newstr[1], str);

  XSTR (XEXP (DECL_RTL (decl), 0), 0) =
    ggc_alloc_string (newstr, len + 1);
}

/* If we are referencing a function that is supposed to be called
   through the function vector, the SYMBOL_REF_FLAG in the rtl
   so the call patterns can generate the correct code.  */

static void
h8300_encode_section_info (decl, first)
     tree decl;
     int first;
{
  if (TREE_CODE (decl) == FUNCTION_DECL
      && h8300_funcvec_function_p (decl))
    SYMBOL_REF_FLAG (XEXP (DECL_RTL (decl), 0)) = 1;
  else if (TREE_CODE (decl) == VAR_DECL
	   && (TREE_STATIC (decl) || DECL_EXTERNAL (decl)))
    {
      if (h8300_eightbit_data_p (decl))
	SYMBOL_REF_FLAG (XEXP (DECL_RTL (decl), 0)) = 1;
      else if (first && h8300_tiny_data_p (decl))
	h8300_encode_label (decl);
    }
}

/* Undo the effects of the above.  */

static const char *
h8300_strip_name_encoding (str)
     const char *str;
{
  return str + (*str == '*' || *str == '@' || *str == '&');
}

const char *
output_simode_bld (bild, operands)
     int bild;
     rtx operands[];
{
  if (TARGET_H8300)
    {
      /* Clear the destination register.  */
      output_asm_insn ("sub.w\t%e0,%e0\n\tsub.w\t%f0,%f0", operands);

      /* Now output the bit load or bit inverse load, and store it in
	 the destination.  */
      if (bild)
	output_asm_insn ("bild\t%Z2,%Y1", operands);
      else
	output_asm_insn ("bld\t%Z2,%Y1", operands);

      output_asm_insn ("bst\t#0,%w0", operands);
    }
  else
    {
      /* Output the bit load or bit inverse load.  */
      if (bild)
	output_asm_insn ("bild\t%Z2,%Y1", operands);
      else
	output_asm_insn ("bld\t%Z2,%Y1", operands);

      /* Clear the destination register and perform the bit store.  */
      output_asm_insn ("xor.l\t%S0,%S0\n\tbst\t#0,%w0", operands);
    }

  /* All done.  */
  return "";
}

/* Given INSN and its current length LENGTH, return the adjustment
   (in bytes) to correctly compute INSN's length.

   We use this to get the lengths of various memory references correct.  */

int
h8300_adjust_insn_length (insn, length)
     rtx insn;
     int length ATTRIBUTE_UNUSED;
{
  rtx pat = PATTERN (insn);

  /* We must filter these out before calling get_attr_adjust_length.  */
  if (GET_CODE (pat) == USE
      || GET_CODE (pat) == CLOBBER
      || GET_CODE (pat) == SEQUENCE
      || GET_CODE (pat) == ADDR_VEC
      || GET_CODE (pat) == ADDR_DIFF_VEC)
    return 0;

  if (get_attr_adjust_length (insn) == ADJUST_LENGTH_NO)
    return 0;

  /* Adjust length for reg->mem and mem->reg copies.  */
  if (GET_CODE (pat) == SET
      && (GET_CODE (SET_SRC (pat)) == MEM
	  || GET_CODE (SET_DEST (pat)) == MEM))
    {
      /* This insn might need a length adjustment.  */
      rtx addr;

      if (GET_CODE (SET_SRC (pat)) == MEM)
	addr = XEXP (SET_SRC (pat), 0);
      else
	addr = XEXP (SET_DEST (pat), 0);

      if (TARGET_H8300)
	{
	  /* On the H8/300, we subtract the difference between the
             actual length and the longest one, which is @(d:16,ERs).  */

	  /* @Rs is 2 bytes shorter than the longest.  */
	  if (GET_CODE (addr) == REG)
	    return -2;

	  /* @aa:8 is 2 bytes shorter than the longest.  */
	  if (GET_MODE (SET_SRC (pat)) == QImode
	      && h8300_eightbit_constant_address_p (addr))
	    return -2;
	}
      else
	{
	  /* On the H8/300H and H8S, we subtract the difference
             between the actual length and the longest one, which is
             @(d:24,ERs).  */

	  /* @ERs is 6 bytes shorter than the longest.  */
	  if (GET_CODE (addr) == REG)
	    return -6;

	  /* @(d:16,ERs) is 6 bytes shorter than the longest.  */
	  if (GET_CODE (addr) == PLUS
	      && GET_CODE (XEXP (addr, 0)) == REG
	      && GET_CODE (XEXP (addr, 1)) == CONST_INT
	      && INTVAL (XEXP (addr, 1)) > -32768
	      && INTVAL (XEXP (addr, 1)) < 32767)
	    return -4;

	  /* @aa:8 is 6 bytes shorter than the longest.  */
	  if (GET_MODE (SET_SRC (pat)) == QImode
	      && h8300_eightbit_constant_address_p (addr))
	    return -6;

	  /* @aa:16 is 4 bytes shorter than the longest.  */
	  if (h8300_tiny_constant_address_p (addr))
	    return -4;

	  /* @aa:24 is 2 bytes shorter than the longest.  */
	  if (GET_CODE (addr) == CONST_INT)
	    return -2;
	}
    }

  /* Loading some constants needs adjustment.  */
  if (GET_CODE (pat) == SET
      && GET_CODE (SET_SRC (pat)) == CONST_INT
      && GET_MODE (SET_DEST (pat)) == SImode
      && INTVAL (SET_SRC (pat)) != 0)
    {
      int val = INTVAL (SET_SRC (pat));

      if (TARGET_H8300
	  && ((val & 0xffff) == 0
	      || ((val >> 16) & 0xffff) == 0))
	return -2;

      if (TARGET_H8300H || TARGET_H8300S)
	{
	  if (val == (val & 0xff)
	      || val == (val & 0xff00))
	    return 4 - 6;

	  switch (val & 0xffffffff)
	    {
	    case 0xffffffff:
	    case 0xfffffffe:
	    case 0xfffffffc:
	    case 0x0000ffff:
	    case 0x0000fffe:
	    case 0xffff0000:
	    case 0xfffe0000:
	    case 0x00010000:
	    case 0x00020000:
	      return 4 - 6;
	    }
	}
    }

  /* Rotations need various adjustments.  */
  if (GET_CODE (pat) == SET
      && (GET_CODE (SET_SRC (pat)) == ROTATE
	  || GET_CODE (SET_SRC (pat)) == ROTATERT))
    {
      rtx src = SET_SRC (pat);
      enum machine_mode mode = GET_MODE (src);
      int amount;
      int states = 0;

      if (GET_CODE (XEXP (src, 1)) != CONST_INT)
	return 0;

      amount = INTVAL (XEXP (src, 1));

      /* Clean up AMOUNT.  */
      if (amount < 0)
	amount = 0;
      if ((unsigned int) amount > GET_MODE_BITSIZE (mode))
	amount = GET_MODE_BITSIZE (mode);

      /* Determine the faster direction.  After this phase, amount
	 will be at most a half of GET_MODE_BITSIZE (mode).  */
      if ((unsigned int) amount > GET_MODE_BITSIZE (mode) / (unsigned) 2)
	/* Flip the direction.  */
	amount = GET_MODE_BITSIZE (mode) - amount;

      /* See if a byte swap (in HImode) or a word swap (in SImode) can
	 boost up the rotation.  */
      if ((mode == HImode && TARGET_H8300 && amount >= 5)
	  || (mode == HImode && TARGET_H8300H && amount >= 6)
	  || (mode == HImode && TARGET_H8300S && amount == 8)
	  || (mode == SImode && TARGET_H8300H && amount >= 10)
	  || (mode == SImode && TARGET_H8300S && amount >= 13))
	{
	  /* Adjust AMOUNT and flip the direction.  */
	  amount = GET_MODE_BITSIZE (mode) / 2 - amount;
	  states += 6;
	}

      /* We use 2-bit rotatations on the H8S.  */
      if (TARGET_H8300S)
	amount = amount / 2 + amount % 2;

      /* The H8/300 uses three insns to rotate one bit, taking 6
         states.  */
      states += amount * ((TARGET_H8300 && mode == HImode) ? 6 : 2);

      return -(20 - states);
    }

  return 0;
}

#ifndef OBJECT_FORMAT_ELF
static void
h8300_asm_named_section (name, flags)
     const char *name;
     unsigned int flags ATTRIBUTE_UNUSED;
{
  /* ??? Perhaps we should be using default_coff_asm_named_section.  */
  fprintf (asm_out_file, "\t.section %s\n", name);
}
#endif /* ! OBJECT_FORMAT_ELF */

/* Nonzero if X is a constant address suitable as an 8-bit absolute,
   which is a special case of the 'R' operand.  */

int
h8300_eightbit_constant_address_p (x)
     rtx x;
{
  /* The ranges the 8-bit area. */
  const unsigned HOST_WIDE_INT n1 = trunc_int_for_mode (0xff00, HImode);
  const unsigned HOST_WIDE_INT n2 = trunc_int_for_mode (0xffff, HImode);
  const unsigned HOST_WIDE_INT h1 = trunc_int_for_mode (0x00ffff00, SImode);
  const unsigned HOST_WIDE_INT h2 = trunc_int_for_mode (0x00ffffff, SImode);
  const unsigned HOST_WIDE_INT s1 = trunc_int_for_mode (0xffffff00, SImode);
  const unsigned HOST_WIDE_INT s2 = trunc_int_for_mode (0xffffffff, SImode);

  unsigned HOST_WIDE_INT addr;

  /* We accept symbols declared with eightbit_data.  */
  if (GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_FLAG (x))
    return 1;

  if (GET_CODE (x) != CONST_INT)
    return 0;

  addr = INTVAL (x);

  return (0
	  || ((TARGET_H8300 || TARGET_NORMAL_MODE) && IN_RANGE (addr, n1, n2))
	  || (TARGET_H8300H && IN_RANGE (addr, h1, h2))
	  || (TARGET_H8300S && IN_RANGE (addr, s1, s2)));
}

/* Nonzero if X is a constant address suitable as an 16-bit absolute
   on H8/300H and H8S.  */

int
h8300_tiny_constant_address_p (x)
     rtx x;
{
  /* The ranges for the 16-bit area.  */
  const unsigned HOST_WIDE_INT h1 = trunc_int_for_mode (0x00000000, SImode);
  const unsigned HOST_WIDE_INT h2 = trunc_int_for_mode (0x00007fff, SImode);
  const unsigned HOST_WIDE_INT h3 = trunc_int_for_mode (0x00ff8000, SImode);
  const unsigned HOST_WIDE_INT h4 = trunc_int_for_mode (0x00ffffff, SImode);
  const unsigned HOST_WIDE_INT s1 = trunc_int_for_mode (0x00000000, SImode);
  const unsigned HOST_WIDE_INT s2 = trunc_int_for_mode (0x00007fff, SImode);
  const unsigned HOST_WIDE_INT s3 = trunc_int_for_mode (0xffff8000, SImode);
  const unsigned HOST_WIDE_INT s4 = trunc_int_for_mode (0xffffffff, SImode);

  unsigned HOST_WIDE_INT addr;

  /* We accept symbols declared with tiny_data.  */
  if (GET_CODE (x) == SYMBOL_REF && TINY_DATA_NAME_P (XSTR (x, 0)))
    return 1;

  if (GET_CODE (x) != CONST_INT)
    return 0;

  addr = INTVAL (x);

  return (0
	  || ((TARGET_H8300H && !TARGET_NORMAL_MODE)
	      && (IN_RANGE (addr, h1, h2) || IN_RANGE (addr, h3, h4)))
	  || ((TARGET_H8300S && !TARGET_NORMAL_MODE)
	      && (IN_RANGE (addr, s1, s2) || IN_RANGE (addr, s3, s4))));
}