aboutsummaryrefslogtreecommitdiff
path: root/gcc/config/mips/mips.c
blob: 521afa4bf1a8861b6e583677eea05f95665744ed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
/* Subroutines used for MIPS code generation.
   Copyright (C) 1989, 1990, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
   1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
   Contributed by A. Lichnewsky, lich@inria.inria.fr.
   Changes by Michael Meissner, meissner@osf.org.
   64 bit r4000 support by Ian Lance Taylor, ian@cygnus.com, and
   Brendan Eich, brendan@microunity.com.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include <signal.h>
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-attr.h"
#include "recog.h"
#include "toplev.h"
#include "output.h"
#include "tree.h"
#include "function.h"
#include "expr.h"
#include "optabs.h"
#include "flags.h"
#include "reload.h"
#include "tm_p.h"
#include "ggc.h"
#include "gstab.h"
#include "hashtab.h"
#include "debug.h"
#include "target.h"
#include "target-def.h"
#include "integrate.h"
#include "langhooks.h"
#include "cfglayout.h"
#include "sched-int.h"
#include "tree-gimple.h"

/* True if X is an unspec wrapper around a SYMBOL_REF or LABEL_REF.  */
#define UNSPEC_ADDRESS_P(X)					\
  (GET_CODE (X) == UNSPEC					\
   && XINT (X, 1) >= UNSPEC_ADDRESS_FIRST			\
   && XINT (X, 1) < UNSPEC_ADDRESS_FIRST + NUM_SYMBOL_TYPES)

/* Extract the symbol or label from UNSPEC wrapper X.  */
#define UNSPEC_ADDRESS(X) \
  XVECEXP (X, 0, 0)

/* Extract the symbol type from UNSPEC wrapper X.  */
#define UNSPEC_ADDRESS_TYPE(X) \
  ((enum mips_symbol_type) (XINT (X, 1) - UNSPEC_ADDRESS_FIRST))

/* The maximum distance between the top of the stack frame and the
   value $sp has when we save & restore registers.

   Use a maximum gap of 0x100 in the mips16 case.  We can then use
   unextended instructions to save and restore registers, and to
   allocate and deallocate the top part of the frame.

   The value in the !mips16 case must be a SMALL_OPERAND and must
   preserve the maximum stack alignment.  */
#define MIPS_MAX_FIRST_STACK_STEP (TARGET_MIPS16 ? 0x100 : 0x7ff0)

/* True if INSN is a mips.md pattern or asm statement.  */
#define USEFUL_INSN_P(INSN)						\
  (INSN_P (INSN)							\
   && GET_CODE (PATTERN (INSN)) != USE					\
   && GET_CODE (PATTERN (INSN)) != CLOBBER				\
   && GET_CODE (PATTERN (INSN)) != ADDR_VEC				\
   && GET_CODE (PATTERN (INSN)) != ADDR_DIFF_VEC)

/* If INSN is a delayed branch sequence, return the first instruction
   in the sequence, otherwise return INSN itself.  */
#define SEQ_BEGIN(INSN)							\
  (INSN_P (INSN) && GET_CODE (PATTERN (INSN)) == SEQUENCE		\
   ? XVECEXP (PATTERN (INSN), 0, 0)					\
   : (INSN))

/* Likewise for the last instruction in a delayed branch sequence.  */
#define SEQ_END(INSN)							\
  (INSN_P (INSN) && GET_CODE (PATTERN (INSN)) == SEQUENCE		\
   ? XVECEXP (PATTERN (INSN), 0, XVECLEN (PATTERN (INSN), 0) - 1)	\
   : (INSN))

/* Execute the following loop body with SUBINSN set to each instruction
   between SEQ_BEGIN (INSN) and SEQ_END (INSN) inclusive.  */
#define FOR_EACH_SUBINSN(SUBINSN, INSN)					\
  for ((SUBINSN) = SEQ_BEGIN (INSN);					\
       (SUBINSN) != NEXT_INSN (SEQ_END (INSN));				\
       (SUBINSN) = NEXT_INSN (SUBINSN))

/* Classifies an address.

   ADDRESS_REG
       A natural register + offset address.  The register satisfies
       mips_valid_base_register_p and the offset is a const_arith_operand.

   ADDRESS_LO_SUM
       A LO_SUM rtx.  The first operand is a valid base register and
       the second operand is a symbolic address.

   ADDRESS_CONST_INT
       A signed 16-bit constant address.

   ADDRESS_SYMBOLIC:
       A constant symbolic address (equivalent to CONSTANT_SYMBOLIC).  */
enum mips_address_type {
  ADDRESS_REG,
  ADDRESS_LO_SUM,
  ADDRESS_CONST_INT,
  ADDRESS_SYMBOLIC
};

/* Classifies the prototype of a builtin function.  */
enum mips_function_type
{
  MIPS_V2SF_FTYPE_V2SF,
  MIPS_V2SF_FTYPE_V2SF_V2SF,
  MIPS_V2SF_FTYPE_V2SF_V2SF_INT,
  MIPS_V2SF_FTYPE_V2SF_V2SF_V2SF_V2SF,
  MIPS_V2SF_FTYPE_SF_SF,
  MIPS_INT_FTYPE_V2SF_V2SF,
  MIPS_INT_FTYPE_V2SF_V2SF_V2SF_V2SF,
  MIPS_INT_FTYPE_SF_SF,
  MIPS_INT_FTYPE_DF_DF,
  MIPS_SF_FTYPE_V2SF,
  MIPS_SF_FTYPE_SF,
  MIPS_SF_FTYPE_SF_SF,
  MIPS_DF_FTYPE_DF,
  MIPS_DF_FTYPE_DF_DF,

  /* For MIPS DSP ASE  */
  MIPS_DI_FTYPE_DI_SI,
  MIPS_DI_FTYPE_DI_SI_SI,
  MIPS_DI_FTYPE_DI_V2HI_V2HI,
  MIPS_DI_FTYPE_DI_V4QI_V4QI,
  MIPS_SI_FTYPE_DI_SI,
  MIPS_SI_FTYPE_PTR_SI,
  MIPS_SI_FTYPE_SI,
  MIPS_SI_FTYPE_SI_SI,
  MIPS_SI_FTYPE_V2HI,
  MIPS_SI_FTYPE_V2HI_V2HI,
  MIPS_SI_FTYPE_V4QI,
  MIPS_SI_FTYPE_V4QI_V4QI,
  MIPS_SI_FTYPE_VOID,
  MIPS_V2HI_FTYPE_SI,
  MIPS_V2HI_FTYPE_SI_SI,
  MIPS_V2HI_FTYPE_V2HI,
  MIPS_V2HI_FTYPE_V2HI_SI,
  MIPS_V2HI_FTYPE_V2HI_V2HI,
  MIPS_V2HI_FTYPE_V4QI,
  MIPS_V2HI_FTYPE_V4QI_V2HI,
  MIPS_V4QI_FTYPE_SI,
  MIPS_V4QI_FTYPE_V2HI_V2HI,
  MIPS_V4QI_FTYPE_V4QI_SI,
  MIPS_V4QI_FTYPE_V4QI_V4QI,
  MIPS_VOID_FTYPE_SI_SI,
  MIPS_VOID_FTYPE_V2HI_V2HI,
  MIPS_VOID_FTYPE_V4QI_V4QI,

  /* The last type.  */
  MIPS_MAX_FTYPE_MAX
};

/* Specifies how a builtin function should be converted into rtl.  */
enum mips_builtin_type
{
  /* The builtin corresponds directly to an .md pattern.  The return
     value is mapped to operand 0 and the arguments are mapped to
     operands 1 and above.  */
  MIPS_BUILTIN_DIRECT,

  /* The builtin corresponds directly to an .md pattern.  There is no return
     value and the arguments are mapped to operands 0 and above.  */
  MIPS_BUILTIN_DIRECT_NO_TARGET,

  /* The builtin corresponds to a comparison instruction followed by
     a mips_cond_move_tf_ps pattern.  The first two arguments are the
     values to compare and the second two arguments are the vector
     operands for the movt.ps or movf.ps instruction (in assembly order).  */
  MIPS_BUILTIN_MOVF,
  MIPS_BUILTIN_MOVT,

  /* The builtin corresponds to a V2SF comparison instruction.  Operand 0
     of this instruction is the result of the comparison, which has mode
     CCV2 or CCV4.  The function arguments are mapped to operands 1 and
     above.  The function's return value is an SImode boolean that is
     true under the following conditions:

     MIPS_BUILTIN_CMP_ANY: one of the registers is true
     MIPS_BUILTIN_CMP_ALL: all of the registers are true
     MIPS_BUILTIN_CMP_LOWER: the first register is true
     MIPS_BUILTIN_CMP_UPPER: the second register is true.  */
  MIPS_BUILTIN_CMP_ANY,
  MIPS_BUILTIN_CMP_ALL,
  MIPS_BUILTIN_CMP_UPPER,
  MIPS_BUILTIN_CMP_LOWER,

  /* As above, but the instruction only sets a single $fcc register.  */
  MIPS_BUILTIN_CMP_SINGLE,

  /* For generating bposge32 branch instructions in MIPS32 DSP ASE.  */
  MIPS_BUILTIN_BPOSGE32
};

/* Invokes MACRO (COND) for each c.cond.fmt condition.  */
#define MIPS_FP_CONDITIONS(MACRO) \
  MACRO (f),	\
  MACRO (un),	\
  MACRO (eq),	\
  MACRO (ueq),	\
  MACRO (olt),	\
  MACRO (ult),	\
  MACRO (ole),	\
  MACRO (ule),	\
  MACRO (sf),	\
  MACRO (ngle),	\
  MACRO (seq),	\
  MACRO (ngl),	\
  MACRO (lt),	\
  MACRO (nge),	\
  MACRO (le),	\
  MACRO (ngt)

/* Enumerates the codes above as MIPS_FP_COND_<X>.  */
#define DECLARE_MIPS_COND(X) MIPS_FP_COND_ ## X
enum mips_fp_condition {
  MIPS_FP_CONDITIONS (DECLARE_MIPS_COND)
};

/* Index X provides the string representation of MIPS_FP_COND_<X>.  */
#define STRINGIFY(X) #X
static const char *const mips_fp_conditions[] = {
  MIPS_FP_CONDITIONS (STRINGIFY)
};

/* A function to save or store a register.  The first argument is the
   register and the second is the stack slot.  */
typedef void (*mips_save_restore_fn) (rtx, rtx);

struct mips16_constant;
struct mips_arg_info;
struct mips_address_info;
struct mips_integer_op;
struct mips_sim;

static enum mips_symbol_type mips_classify_symbol (rtx);
static void mips_split_const (rtx, rtx *, HOST_WIDE_INT *);
static bool mips_offset_within_object_p (rtx, HOST_WIDE_INT);
static bool mips_valid_base_register_p (rtx, enum machine_mode, int);
static bool mips_symbolic_address_p (enum mips_symbol_type, enum machine_mode);
static bool mips_classify_address (struct mips_address_info *, rtx,
				   enum machine_mode, int);
static bool mips_cannot_force_const_mem (rtx);
static int mips_symbol_insns (enum mips_symbol_type);
static bool mips16_unextended_reference_p (enum machine_mode mode, rtx, rtx);
static rtx mips_force_temporary (rtx, rtx);
static rtx mips_split_symbol (rtx, rtx);
static rtx mips_unspec_offset_high (rtx, rtx, rtx, enum mips_symbol_type);
static rtx mips_add_offset (rtx, rtx, HOST_WIDE_INT);
static unsigned int mips_build_shift (struct mips_integer_op *, HOST_WIDE_INT);
static unsigned int mips_build_lower (struct mips_integer_op *,
				      unsigned HOST_WIDE_INT);
static unsigned int mips_build_integer (struct mips_integer_op *,
					unsigned HOST_WIDE_INT);
static void mips_move_integer (rtx, unsigned HOST_WIDE_INT);
static void mips_legitimize_const_move (enum machine_mode, rtx, rtx);
static int m16_check_op (rtx, int, int, int);
static bool mips_rtx_costs (rtx, int, int, int *);
static int mips_address_cost (rtx);
static void mips_emit_compare (enum rtx_code *, rtx *, rtx *, bool);
static void mips_load_call_address (rtx, rtx, int);
static bool mips_function_ok_for_sibcall (tree, tree);
static void mips_block_move_straight (rtx, rtx, HOST_WIDE_INT);
static void mips_adjust_block_mem (rtx, HOST_WIDE_INT, rtx *, rtx *);
static void mips_block_move_loop (rtx, rtx, HOST_WIDE_INT);
static void mips_arg_info (const CUMULATIVE_ARGS *, enum machine_mode,
			   tree, int, struct mips_arg_info *);
static bool mips_get_unaligned_mem (rtx *, unsigned int, int, rtx *, rtx *);
static void mips_set_architecture (const struct mips_cpu_info *);
static void mips_set_tune (const struct mips_cpu_info *);
static bool mips_handle_option (size_t, const char *, int);
static struct machine_function *mips_init_machine_status (void);
static void print_operand_reloc (FILE *, rtx, const char **);
#if TARGET_IRIX
static void irix_output_external_libcall (rtx);
#endif
static void mips_file_start (void);
static void mips_file_end (void);
static bool mips_rewrite_small_data_p (rtx);
static int mips_small_data_pattern_1 (rtx *, void *);
static int mips_rewrite_small_data_1 (rtx *, void *);
static bool mips_function_has_gp_insn (void);
static unsigned int mips_global_pointer	(void);
static bool mips_save_reg_p (unsigned int);
static void mips_save_restore_reg (enum machine_mode, int, HOST_WIDE_INT,
				   mips_save_restore_fn);
static void mips_for_each_saved_reg (HOST_WIDE_INT, mips_save_restore_fn);
static void mips_output_cplocal (void);
static void mips_emit_loadgp (void);
static void mips_output_function_prologue (FILE *, HOST_WIDE_INT);
static void mips_set_frame_expr (rtx);
static rtx mips_frame_set (rtx, rtx);
static void mips_save_reg (rtx, rtx);
static void mips_output_function_epilogue (FILE *, HOST_WIDE_INT);
static void mips_restore_reg (rtx, rtx);
static void mips_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
				  HOST_WIDE_INT, tree);
static int symbolic_expression_p (rtx);
static void mips_select_rtx_section (enum machine_mode, rtx,
				     unsigned HOST_WIDE_INT);
static void mips_function_rodata_section (tree);
static bool mips_in_small_data_p (tree);
static int mips_fpr_return_fields (tree, tree *);
static bool mips_return_in_msb (tree);
static rtx mips_return_fpr_pair (enum machine_mode mode,
				 enum machine_mode mode1, HOST_WIDE_INT,
				 enum machine_mode mode2, HOST_WIDE_INT);
static rtx mips16_gp_pseudo_reg (void);
static void mips16_fp_args (FILE *, int, int);
static void build_mips16_function_stub (FILE *);
static rtx dump_constants_1 (enum machine_mode, rtx, rtx);
static void dump_constants (struct mips16_constant *, rtx);
static int mips16_insn_length (rtx);
static int mips16_rewrite_pool_refs (rtx *, void *);
static void mips16_lay_out_constants (void);
static void mips_sim_reset (struct mips_sim *);
static void mips_sim_init (struct mips_sim *, state_t);
static void mips_sim_next_cycle (struct mips_sim *);
static void mips_sim_wait_reg (struct mips_sim *, rtx, rtx);
static int mips_sim_wait_regs_2 (rtx *, void *);
static void mips_sim_wait_regs_1 (rtx *, void *);
static void mips_sim_wait_regs (struct mips_sim *, rtx);
static void mips_sim_wait_units (struct mips_sim *, rtx);
static void mips_sim_wait_insn (struct mips_sim *, rtx);
static void mips_sim_record_set (rtx, rtx, void *);
static void mips_sim_issue_insn (struct mips_sim *, rtx);
static void mips_sim_issue_nop (struct mips_sim *);
static void mips_sim_finish_insn (struct mips_sim *, rtx);
static void vr4130_avoid_branch_rt_conflict (rtx);
static void vr4130_align_insns (void);
static void mips_avoid_hazard (rtx, rtx, int *, rtx *, rtx);
static void mips_avoid_hazards (void);
static void mips_reorg (void);
static bool mips_strict_matching_cpu_name_p (const char *, const char *);
static bool mips_matching_cpu_name_p (const char *, const char *);
static const struct mips_cpu_info *mips_parse_cpu (const char *);
static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
static bool mips_return_in_memory (tree, tree);
static bool mips_strict_argument_naming (CUMULATIVE_ARGS *);
static void mips_macc_chains_record (rtx);
static void mips_macc_chains_reorder (rtx *, int);
static void vr4130_true_reg_dependence_p_1 (rtx, rtx, void *);
static bool vr4130_true_reg_dependence_p (rtx);
static bool vr4130_swap_insns_p (rtx, rtx);
static void vr4130_reorder (rtx *, int);
static void mips_promote_ready (rtx *, int, int);
static int mips_sched_reorder (FILE *, int, rtx *, int *, int);
static int mips_variable_issue (FILE *, int, rtx, int);
static int mips_adjust_cost (rtx, rtx, rtx, int);
static int mips_issue_rate (void);
static int mips_multipass_dfa_lookahead (void);
static void mips_init_libfuncs (void);
static void mips_setup_incoming_varargs (CUMULATIVE_ARGS *, enum machine_mode,
					 tree, int *, int);
static tree mips_build_builtin_va_list (void);
static tree mips_gimplify_va_arg_expr (tree, tree, tree *, tree *);
static bool mips_pass_by_reference (CUMULATIVE_ARGS *, enum machine_mode mode,
				    tree, bool);
static bool mips_callee_copies (CUMULATIVE_ARGS *, enum machine_mode mode,
				tree, bool);
static int mips_arg_partial_bytes (CUMULATIVE_ARGS *, enum machine_mode mode,
				   tree, bool);
static bool mips_valid_pointer_mode (enum machine_mode);
static bool mips_vector_mode_supported_p (enum machine_mode);
static rtx mips_prepare_builtin_arg (enum insn_code, unsigned int, tree *);
static rtx mips_prepare_builtin_target (enum insn_code, unsigned int, rtx);
static rtx mips_expand_builtin (tree, rtx, rtx, enum machine_mode, int);
static void mips_init_builtins (void);
static rtx mips_expand_builtin_direct (enum insn_code, rtx, tree, bool);
static rtx mips_expand_builtin_movtf (enum mips_builtin_type,
				      enum insn_code, enum mips_fp_condition,
				      rtx, tree);
static rtx mips_expand_builtin_compare (enum mips_builtin_type,
					enum insn_code, enum mips_fp_condition,
					rtx, tree);
static rtx mips_expand_builtin_bposge (enum mips_builtin_type, rtx);
static void mips_encode_section_info (tree, rtx, int);

/* Structure to be filled in by compute_frame_size with register
   save masks, and offsets for the current function.  */

struct mips_frame_info GTY(())
{
  HOST_WIDE_INT total_size;	/* # bytes that the entire frame takes up */
  HOST_WIDE_INT var_size;	/* # bytes that variables take up */
  HOST_WIDE_INT args_size;	/* # bytes that outgoing arguments take up */
  HOST_WIDE_INT cprestore_size;	/* # bytes that the .cprestore slot takes up */
  HOST_WIDE_INT gp_reg_size;	/* # bytes needed to store gp regs */
  HOST_WIDE_INT fp_reg_size;	/* # bytes needed to store fp regs */
  unsigned int mask;		/* mask of saved gp registers */
  unsigned int fmask;		/* mask of saved fp registers */
  HOST_WIDE_INT gp_save_offset;	/* offset from vfp to store gp registers */
  HOST_WIDE_INT fp_save_offset;	/* offset from vfp to store fp registers */
  HOST_WIDE_INT gp_sp_offset;	/* offset from new sp to store gp registers */
  HOST_WIDE_INT fp_sp_offset;	/* offset from new sp to store fp registers */
  bool initialized;		/* true if frame size already calculated */
  int num_gp;			/* number of gp registers saved */
  int num_fp;			/* number of fp registers saved */
};

struct machine_function GTY(()) {
  /* Pseudo-reg holding the value of $28 in a mips16 function which
     refers to GP relative global variables.  */
  rtx mips16_gp_pseudo_rtx;

  /* The number of extra stack bytes taken up by register varargs.
     This area is allocated by the callee at the very top of the frame.  */
  int varargs_size;

  /* Current frame information, calculated by compute_frame_size.  */
  struct mips_frame_info frame;

  /* The register to use as the global pointer within this function.  */
  unsigned int global_pointer;

  /* True if mips_adjust_insn_length should ignore an instruction's
     hazard attribute.  */
  bool ignore_hazard_length_p;

  /* True if the whole function is suitable for .set noreorder and
     .set nomacro.  */
  bool all_noreorder_p;

  /* True if the function is known to have an instruction that needs $gp.  */
  bool has_gp_insn_p;
};

/* Information about a single argument.  */
struct mips_arg_info
{
  /* True if the argument is passed in a floating-point register, or
     would have been if we hadn't run out of registers.  */
  bool fpr_p;

  /* The number of words passed in registers, rounded up.  */
  unsigned int reg_words;

  /* For EABI, the offset of the first register from GP_ARG_FIRST or
     FP_ARG_FIRST.  For other ABIs, the offset of the first register from
     the start of the ABI's argument structure (see the CUMULATIVE_ARGS
     comment for details).

     The value is MAX_ARGS_IN_REGISTERS if the argument is passed entirely
     on the stack.  */
  unsigned int reg_offset;

  /* The number of words that must be passed on the stack, rounded up.  */
  unsigned int stack_words;

  /* The offset from the start of the stack overflow area of the argument's
     first stack word.  Only meaningful when STACK_WORDS is nonzero.  */
  unsigned int stack_offset;
};


/* Information about an address described by mips_address_type.

   ADDRESS_CONST_INT
       No fields are used.

   ADDRESS_REG
       REG is the base register and OFFSET is the constant offset.

   ADDRESS_LO_SUM
       REG is the register that contains the high part of the address,
       OFFSET is the symbolic address being referenced and SYMBOL_TYPE
       is the type of OFFSET's symbol.

   ADDRESS_SYMBOLIC
       SYMBOL_TYPE is the type of symbol being referenced.  */

struct mips_address_info
{
  enum mips_address_type type;
  rtx reg;
  rtx offset;
  enum mips_symbol_type symbol_type;
};


/* One stage in a constant building sequence.  These sequences have
   the form:

	A = VALUE[0]
	A = A CODE[1] VALUE[1]
	A = A CODE[2] VALUE[2]
	...

   where A is an accumulator, each CODE[i] is a binary rtl operation
   and each VALUE[i] is a constant integer.  */
struct mips_integer_op {
  enum rtx_code code;
  unsigned HOST_WIDE_INT value;
};


/* The largest number of operations needed to load an integer constant.
   The worst accepted case for 64-bit constants is LUI,ORI,SLL,ORI,SLL,ORI.
   When the lowest bit is clear, we can try, but reject a sequence with
   an extra SLL at the end.  */
#define MIPS_MAX_INTEGER_OPS 7


/* Global variables for machine-dependent things.  */

/* Threshold for data being put into the small data/bss area, instead
   of the normal data area.  */
int mips_section_threshold = -1;

/* Count the number of .file directives, so that .loc is up to date.  */
int num_source_filenames = 0;

/* Count the number of sdb related labels are generated (to find block
   start and end boundaries).  */
int sdb_label_count = 0;

/* Next label # for each statement for Silicon Graphics IRIS systems.  */
int sym_lineno = 0;

/* Linked list of all externals that are to be emitted when optimizing
   for the global pointer if they haven't been declared by the end of
   the program with an appropriate .comm or initialization.  */

struct extern_list GTY (())
{
  struct extern_list *next;	/* next external */
  const char *name;		/* name of the external */
  int size;			/* size in bytes */
};

static GTY (()) struct extern_list *extern_head = 0;

/* Name of the file containing the current function.  */
const char *current_function_file = "";

/* Number of nested .set noreorder, noat, nomacro, and volatile requests.  */
int set_noreorder;
int set_noat;
int set_nomacro;
int set_volatile;

/* The next branch instruction is a branch likely, not branch normal.  */
int mips_branch_likely;

/* The operands passed to the last cmpMM expander.  */
rtx cmp_operands[2];

/* The target cpu for code generation.  */
enum processor_type mips_arch;
const struct mips_cpu_info *mips_arch_info;

/* The target cpu for optimization and scheduling.  */
enum processor_type mips_tune;
const struct mips_cpu_info *mips_tune_info;

/* Which instruction set architecture to use.  */
int mips_isa;

/* Which ABI to use.  */
int mips_abi = MIPS_ABI_DEFAULT;

/* Cost information to use.  */
const struct mips_rtx_cost_data *mips_cost;

/* Whether we are generating mips16 hard float code.  In mips16 mode
   we always set TARGET_SOFT_FLOAT; this variable is nonzero if
   -msoft-float was not specified by the user, which means that we
   should arrange to call mips32 hard floating point code.  */
int mips16_hard_float;

/* The architecture selected by -mipsN.  */
static const struct mips_cpu_info *mips_isa_info;

/* If TRUE, we split addresses into their high and low parts in the RTL.  */
int mips_split_addresses;

/* Mode used for saving/restoring general purpose registers.  */
static enum machine_mode gpr_mode;

/* Array giving truth value on whether or not a given hard register
   can support a given mode.  */
char mips_hard_regno_mode_ok[(int)MAX_MACHINE_MODE][FIRST_PSEUDO_REGISTER];

/* List of all MIPS punctuation characters used by print_operand.  */
char mips_print_operand_punct[256];

/* Map GCC register number to debugger register number.  */
int mips_dbx_regno[FIRST_PSEUDO_REGISTER];

/* A copy of the original flag_delayed_branch: see override_options.  */
static int mips_flag_delayed_branch;

static GTY (()) int mips_output_filename_first_time = 1;

/* mips_split_p[X] is true if symbols of type X can be split by
   mips_split_symbol().  */
static bool mips_split_p[NUM_SYMBOL_TYPES];

/* mips_lo_relocs[X] is the relocation to use when a symbol of type X
   appears in a LO_SUM.  It can be null if such LO_SUMs aren't valid or
   if they are matched by a special .md file pattern.  */
static const char *mips_lo_relocs[NUM_SYMBOL_TYPES];

/* Likewise for HIGHs.  */
static const char *mips_hi_relocs[NUM_SYMBOL_TYPES];

/* Map hard register number to register class */
const enum reg_class mips_regno_to_class[] =
{
  LEA_REGS,	LEA_REGS,	M16_NA_REGS,	V1_REG,
  M16_REGS,	M16_REGS,	M16_REGS,	M16_REGS,
  LEA_REGS,	LEA_REGS,	LEA_REGS,	LEA_REGS,
  LEA_REGS,	LEA_REGS,	LEA_REGS,	LEA_REGS,
  M16_NA_REGS,	M16_NA_REGS,	LEA_REGS,	LEA_REGS,
  LEA_REGS,	LEA_REGS,	LEA_REGS,	LEA_REGS,
  T_REG,	PIC_FN_ADDR_REG, LEA_REGS,	LEA_REGS,
  LEA_REGS,	LEA_REGS,	LEA_REGS,	LEA_REGS,
  FP_REGS,	FP_REGS,	FP_REGS,	FP_REGS,
  FP_REGS,	FP_REGS,	FP_REGS,	FP_REGS,
  FP_REGS,	FP_REGS,	FP_REGS,	FP_REGS,
  FP_REGS,	FP_REGS,	FP_REGS,	FP_REGS,
  FP_REGS,	FP_REGS,	FP_REGS,	FP_REGS,
  FP_REGS,	FP_REGS,	FP_REGS,	FP_REGS,
  FP_REGS,	FP_REGS,	FP_REGS,	FP_REGS,
  FP_REGS,	FP_REGS,	FP_REGS,	FP_REGS,
  HI_REG,	LO_REG,		NO_REGS,	ST_REGS,
  ST_REGS,	ST_REGS,	ST_REGS,	ST_REGS,
  ST_REGS,	ST_REGS,	ST_REGS,	NO_REGS,
  NO_REGS,	ALL_REGS,	ALL_REGS,	NO_REGS,
  COP0_REGS,	COP0_REGS,	COP0_REGS,	COP0_REGS,
  COP0_REGS,	COP0_REGS,	COP0_REGS,	COP0_REGS,
  COP0_REGS,	COP0_REGS,	COP0_REGS,	COP0_REGS,
  COP0_REGS,	COP0_REGS,	COP0_REGS,	COP0_REGS,
  COP0_REGS,	COP0_REGS,	COP0_REGS,	COP0_REGS,
  COP0_REGS,	COP0_REGS,	COP0_REGS,	COP0_REGS,
  COP0_REGS,	COP0_REGS,	COP0_REGS,	COP0_REGS,
  COP0_REGS,	COP0_REGS,	COP0_REGS,	COP0_REGS,
  COP2_REGS,	COP2_REGS,	COP2_REGS,	COP2_REGS,
  COP2_REGS,	COP2_REGS,	COP2_REGS,	COP2_REGS,
  COP2_REGS,	COP2_REGS,	COP2_REGS,	COP2_REGS,
  COP2_REGS,	COP2_REGS,	COP2_REGS,	COP2_REGS,
  COP2_REGS,	COP2_REGS,	COP2_REGS,	COP2_REGS,
  COP2_REGS,	COP2_REGS,	COP2_REGS,	COP2_REGS,
  COP2_REGS,	COP2_REGS,	COP2_REGS,	COP2_REGS,
  COP2_REGS,	COP2_REGS,	COP2_REGS,	COP2_REGS,
  COP3_REGS,	COP3_REGS,	COP3_REGS,	COP3_REGS,
  COP3_REGS,	COP3_REGS,	COP3_REGS,	COP3_REGS,
  COP3_REGS,	COP3_REGS,	COP3_REGS,	COP3_REGS,
  COP3_REGS,	COP3_REGS,	COP3_REGS,	COP3_REGS,
  COP3_REGS,	COP3_REGS,	COP3_REGS,	COP3_REGS,
  COP3_REGS,	COP3_REGS,	COP3_REGS,	COP3_REGS,
  COP3_REGS,	COP3_REGS,	COP3_REGS,	COP3_REGS,
  COP3_REGS,	COP3_REGS,	COP3_REGS,	COP3_REGS,
  DSP_ACC_REGS,	DSP_ACC_REGS,	DSP_ACC_REGS,	DSP_ACC_REGS,
  DSP_ACC_REGS,	DSP_ACC_REGS,	ALL_REGS,	ALL_REGS,
  ALL_REGS,	ALL_REGS,	ALL_REGS,	ALL_REGS
};

/* Map register constraint character to register class.  */
enum reg_class mips_char_to_class[256];

/* Table of machine dependent attributes.  */
const struct attribute_spec mips_attribute_table[] =
{
  { "long_call",   0, 0, false, true,  true,  NULL },
  { NULL,	   0, 0, false, false, false, NULL }
};

/* A table describing all the processors gcc knows about.  Names are
   matched in the order listed.  The first mention of an ISA level is
   taken as the canonical name for that ISA.

   To ease comparison, please keep this table in the same order as
   gas's mips_cpu_info_table[].  */
const struct mips_cpu_info mips_cpu_info_table[] = {
  /* Entries for generic ISAs */
  { "mips1", PROCESSOR_R3000, 1 },
  { "mips2", PROCESSOR_R6000, 2 },
  { "mips3", PROCESSOR_R4000, 3 },
  { "mips4", PROCESSOR_R8000, 4 },
  { "mips32", PROCESSOR_4KC, 32 },
  { "mips32r2", PROCESSOR_M4K, 33 },
  { "mips64", PROCESSOR_5KC, 64 },

  /* MIPS I */
  { "r3000", PROCESSOR_R3000, 1 },
  { "r2000", PROCESSOR_R3000, 1 }, /* = r3000 */
  { "r3900", PROCESSOR_R3900, 1 },

  /* MIPS II */
  { "r6000", PROCESSOR_R6000, 2 },

  /* MIPS III */
  { "r4000", PROCESSOR_R4000, 3 },
  { "vr4100", PROCESSOR_R4100, 3 },
  { "vr4111", PROCESSOR_R4111, 3 },
  { "vr4120", PROCESSOR_R4120, 3 },
  { "vr4130", PROCESSOR_R4130, 3 },
  { "vr4300", PROCESSOR_R4300, 3 },
  { "r4400", PROCESSOR_R4000, 3 }, /* = r4000 */
  { "r4600", PROCESSOR_R4600, 3 },
  { "orion", PROCESSOR_R4600, 3 }, /* = r4600 */
  { "r4650", PROCESSOR_R4650, 3 },

  /* MIPS IV */
  { "r8000", PROCESSOR_R8000, 4 },
  { "vr5000", PROCESSOR_R5000, 4 },
  { "vr5400", PROCESSOR_R5400, 4 },
  { "vr5500", PROCESSOR_R5500, 4 },
  { "rm7000", PROCESSOR_R7000, 4 },
  { "rm9000", PROCESSOR_R9000, 4 },

  /* MIPS32 */
  { "4kc", PROCESSOR_4KC, 32 },
  { "4km", PROCESSOR_4KC, 32 }, /* = 4kc */
  { "4kp", PROCESSOR_4KP, 32 },

  /* MIPS32 Release 2 */
  { "m4k", PROCESSOR_M4K, 33 },
  { "24k", PROCESSOR_24K, 33 },
  { "24kc", PROCESSOR_24K, 33 },  /* 24K  no FPU */
  { "24kf", PROCESSOR_24K, 33 },  /* 24K 1:2 FPU */
  { "24kx", PROCESSOR_24KX, 33 }, /* 24K 1:1 FPU */

  /* MIPS64 */
  { "5kc", PROCESSOR_5KC, 64 },
  { "5kf", PROCESSOR_5KF, 64 },
  { "20kc", PROCESSOR_20KC, 64 },
  { "sb1", PROCESSOR_SB1, 64 },
  { "sr71000", PROCESSOR_SR71000, 64 },

  /* End marker */
  { 0, 0, 0 }
};

/* Default costs. If these are used for a processor we should look
   up the actual costs.  */
#define DEFAULT_COSTS COSTS_N_INSNS (6),  /* fp_add */       \
                      COSTS_N_INSNS (7),  /* fp_mult_sf */   \
                      COSTS_N_INSNS (8),  /* fp_mult_df */   \
                      COSTS_N_INSNS (23), /* fp_div_sf */    \
                      COSTS_N_INSNS (36), /* fp_div_df */    \
                      COSTS_N_INSNS (10), /* int_mult_si */  \
                      COSTS_N_INSNS (10), /* int_mult_di */  \
                      COSTS_N_INSNS (69), /* int_div_si */   \
                      COSTS_N_INSNS (69), /* int_div_di */   \
                                       2, /* branch_cost */  \
                                       4  /* memory_latency */

/* Need to replace these with the costs of calling the appropriate
   libgcc routine.  */
#define SOFT_FP_COSTS COSTS_N_INSNS (256), /* fp_add */       \
                      COSTS_N_INSNS (256), /* fp_mult_sf */   \
                      COSTS_N_INSNS (256), /* fp_mult_df */   \
                      COSTS_N_INSNS (256), /* fp_div_sf */    \
                      COSTS_N_INSNS (256)  /* fp_div_df */

static struct mips_rtx_cost_data const mips_rtx_cost_data[PROCESSOR_MAX] =
  {
    { /* R3000 */
      COSTS_N_INSNS (2),            /* fp_add */
      COSTS_N_INSNS (4),            /* fp_mult_sf */
      COSTS_N_INSNS (5),            /* fp_mult_df */
      COSTS_N_INSNS (12),           /* fp_div_sf */
      COSTS_N_INSNS (19),           /* fp_div_df */
      COSTS_N_INSNS (12),           /* int_mult_si */
      COSTS_N_INSNS (12),           /* int_mult_di */
      COSTS_N_INSNS (35),           /* int_div_si */
      COSTS_N_INSNS (35),           /* int_div_di */
                       1,           /* branch_cost */
                       4            /* memory_latency */

    },
    { /* 4KC */
      SOFT_FP_COSTS,
      COSTS_N_INSNS (6),            /* int_mult_si */
      COSTS_N_INSNS (6),            /* int_mult_di */
      COSTS_N_INSNS (36),           /* int_div_si */
      COSTS_N_INSNS (36),           /* int_div_di */
                       1,           /* branch_cost */
                       4            /* memory_latency */
    },
    { /* 4KP */
      SOFT_FP_COSTS,
      COSTS_N_INSNS (36),           /* int_mult_si */
      COSTS_N_INSNS (36),           /* int_mult_di */
      COSTS_N_INSNS (37),           /* int_div_si */
      COSTS_N_INSNS (37),           /* int_div_di */
                       1,           /* branch_cost */
                       4            /* memory_latency */
    },
    { /* 5KC */
      SOFT_FP_COSTS,
      COSTS_N_INSNS (4),            /* int_mult_si */
      COSTS_N_INSNS (11),           /* int_mult_di */
      COSTS_N_INSNS (36),           /* int_div_si */
      COSTS_N_INSNS (68),           /* int_div_di */
                       1,           /* branch_cost */
                       4            /* memory_latency */
    },
    { /* 5KF */
      COSTS_N_INSNS (4),            /* fp_add */
      COSTS_N_INSNS (4),            /* fp_mult_sf */
      COSTS_N_INSNS (5),            /* fp_mult_df */
      COSTS_N_INSNS (17),           /* fp_div_sf */
      COSTS_N_INSNS (32),           /* fp_div_df */
      COSTS_N_INSNS (4),            /* int_mult_si */
      COSTS_N_INSNS (11),           /* int_mult_di */
      COSTS_N_INSNS (36),           /* int_div_si */
      COSTS_N_INSNS (68),           /* int_div_di */
                       1,           /* branch_cost */
                       4            /* memory_latency */
    },
    { /* 20KC */
      DEFAULT_COSTS
    },
    { /* 24k */
      COSTS_N_INSNS (8),            /* fp_add */
      COSTS_N_INSNS (8),            /* fp_mult_sf */
      COSTS_N_INSNS (10),           /* fp_mult_df */
      COSTS_N_INSNS (34),           /* fp_div_sf */
      COSTS_N_INSNS (64),           /* fp_div_df */
      COSTS_N_INSNS (5),            /* int_mult_si */
      COSTS_N_INSNS (5),            /* int_mult_di */
      COSTS_N_INSNS (41),           /* int_div_si */
      COSTS_N_INSNS (41),           /* int_div_di */
                       1,           /* branch_cost */
                       4            /* memory_latency */
    },
    { /* 24kx */
      COSTS_N_INSNS (4),            /* fp_add */
      COSTS_N_INSNS (4),            /* fp_mult_sf */
      COSTS_N_INSNS (5),            /* fp_mult_df */
      COSTS_N_INSNS (17),           /* fp_div_sf */
      COSTS_N_INSNS (32),           /* fp_div_df */
      COSTS_N_INSNS (5),            /* int_mult_si */
      COSTS_N_INSNS (5),            /* int_mult_di */
      COSTS_N_INSNS (41),           /* int_div_si */
      COSTS_N_INSNS (41),           /* int_div_di */
                       1,           /* branch_cost */
                       4            /* memory_latency */
    },
    { /* M4k */
      DEFAULT_COSTS
    },
    { /* R3900 */
      COSTS_N_INSNS (2),            /* fp_add */
      COSTS_N_INSNS (4),            /* fp_mult_sf */
      COSTS_N_INSNS (5),            /* fp_mult_df */
      COSTS_N_INSNS (12),           /* fp_div_sf */
      COSTS_N_INSNS (19),           /* fp_div_df */
      COSTS_N_INSNS (2),            /* int_mult_si */
      COSTS_N_INSNS (2),            /* int_mult_di */
      COSTS_N_INSNS (35),           /* int_div_si */
      COSTS_N_INSNS (35),           /* int_div_di */
                       1,           /* branch_cost */
                       4            /* memory_latency */
    },
    { /* R6000 */
      COSTS_N_INSNS (3),            /* fp_add */
      COSTS_N_INSNS (5),            /* fp_mult_sf */
      COSTS_N_INSNS (6),            /* fp_mult_df */
      COSTS_N_INSNS (15),           /* fp_div_sf */
      COSTS_N_INSNS (16),           /* fp_div_df */
      COSTS_N_INSNS (17),           /* int_mult_si */
      COSTS_N_INSNS (17),           /* int_mult_di */
      COSTS_N_INSNS (38),           /* int_div_si */
      COSTS_N_INSNS (38),           /* int_div_di */
                       2,           /* branch_cost */
                       6            /* memory_latency */
    },
    { /* R4000 */
       COSTS_N_INSNS (6),           /* fp_add */
       COSTS_N_INSNS (7),           /* fp_mult_sf */
       COSTS_N_INSNS (8),           /* fp_mult_df */
       COSTS_N_INSNS (23),          /* fp_div_sf */
       COSTS_N_INSNS (36),          /* fp_div_df */
       COSTS_N_INSNS (10),          /* int_mult_si */
       COSTS_N_INSNS (10),          /* int_mult_di */
       COSTS_N_INSNS (69),          /* int_div_si */
       COSTS_N_INSNS (69),          /* int_div_di */
                        2,          /* branch_cost */
                        6           /* memory_latency */
    },
    { /* R4100 */
      DEFAULT_COSTS
    },
    { /* R4111 */
      DEFAULT_COSTS
    },
    { /* R4120 */
      DEFAULT_COSTS
    },
    { /* R4130 */
      /* The only costs that appear to be updated here are
	 integer multiplication.  */
      SOFT_FP_COSTS,
      COSTS_N_INSNS (4),            /* int_mult_si */
      COSTS_N_INSNS (6),            /* int_mult_di */
      COSTS_N_INSNS (69),           /* int_div_si */
      COSTS_N_INSNS (69),           /* int_div_di */
                       1,           /* branch_cost */
                       4            /* memory_latency */
    },
    { /* R4300 */
      DEFAULT_COSTS
    },
    { /* R4600 */
      DEFAULT_COSTS
    },
    { /* R4650 */
      DEFAULT_COSTS
    },
    { /* R5000 */
      COSTS_N_INSNS (6),            /* fp_add */
      COSTS_N_INSNS (4),            /* fp_mult_sf */
      COSTS_N_INSNS (5),            /* fp_mult_df */
      COSTS_N_INSNS (23),           /* fp_div_sf */
      COSTS_N_INSNS (36),           /* fp_div_df */
      COSTS_N_INSNS (5),            /* int_mult_si */
      COSTS_N_INSNS (5),            /* int_mult_di */
      COSTS_N_INSNS (36),           /* int_div_si */
      COSTS_N_INSNS (36),           /* int_div_di */
                       1,           /* branch_cost */
                       4            /* memory_latency */
    },
    { /* R5400 */
      COSTS_N_INSNS (6),            /* fp_add */
      COSTS_N_INSNS (5),            /* fp_mult_sf */
      COSTS_N_INSNS (6),            /* fp_mult_df */
      COSTS_N_INSNS (30),           /* fp_div_sf */
      COSTS_N_INSNS (59),           /* fp_div_df */
      COSTS_N_INSNS (3),            /* int_mult_si */
      COSTS_N_INSNS (4),            /* int_mult_di */
      COSTS_N_INSNS (42),           /* int_div_si */
      COSTS_N_INSNS (74),           /* int_div_di */
                       1,           /* branch_cost */
                       4            /* memory_latency */
    },
    { /* R5500 */
      COSTS_N_INSNS (6),            /* fp_add */
      COSTS_N_INSNS (5),            /* fp_mult_sf */
      COSTS_N_INSNS (6),            /* fp_mult_df */
      COSTS_N_INSNS (30),           /* fp_div_sf */
      COSTS_N_INSNS (59),           /* fp_div_df */
      COSTS_N_INSNS (5),            /* int_mult_si */
      COSTS_N_INSNS (9),            /* int_mult_di */
      COSTS_N_INSNS (42),           /* int_div_si */
      COSTS_N_INSNS (74),           /* int_div_di */
                       1,           /* branch_cost */
                       4            /* memory_latency */
    },
    { /* R7000 */
      /* The only costs that are changed here are
	 integer multiplication.  */
      COSTS_N_INSNS (6),            /* fp_add */
      COSTS_N_INSNS (7),            /* fp_mult_sf */
      COSTS_N_INSNS (8),            /* fp_mult_df */
      COSTS_N_INSNS (23),           /* fp_div_sf */
      COSTS_N_INSNS (36),           /* fp_div_df */
      COSTS_N_INSNS (5),            /* int_mult_si */
      COSTS_N_INSNS (9),            /* int_mult_di */
      COSTS_N_INSNS (69),           /* int_div_si */
      COSTS_N_INSNS (69),           /* int_div_di */
                       1,           /* branch_cost */
                       4            /* memory_latency */
    },
    { /* R8000 */
      DEFAULT_COSTS
    },
    { /* R9000 */
      /* The only costs that are changed here are
	 integer multiplication.  */
      COSTS_N_INSNS (6),            /* fp_add */
      COSTS_N_INSNS (7),            /* fp_mult_sf */
      COSTS_N_INSNS (8),            /* fp_mult_df */
      COSTS_N_INSNS (23),           /* fp_div_sf */
      COSTS_N_INSNS (36),           /* fp_div_df */
      COSTS_N_INSNS (3),            /* int_mult_si */
      COSTS_N_INSNS (8),            /* int_mult_di */
      COSTS_N_INSNS (69),           /* int_div_si */
      COSTS_N_INSNS (69),           /* int_div_di */
                       1,           /* branch_cost */
                       4            /* memory_latency */
    },
    { /* SB1 */
      COSTS_N_INSNS (4),            /* fp_add */
      COSTS_N_INSNS (4),            /* fp_mult_sf */
      COSTS_N_INSNS (4),            /* fp_mult_df */
      COSTS_N_INSNS (24),           /* fp_div_sf */
      COSTS_N_INSNS (32),           /* fp_div_df */
      COSTS_N_INSNS (3),            /* int_mult_si */
      COSTS_N_INSNS (4),            /* int_mult_di */
      COSTS_N_INSNS (36),           /* int_div_si */
      COSTS_N_INSNS (68),           /* int_div_di */
                       1,           /* branch_cost */
                       4            /* memory_latency */
    },
    { /* SR71000 */
      DEFAULT_COSTS
    },
  };


/* Nonzero if -march should decide the default value of MASK_SOFT_FLOAT.  */
#ifndef MIPS_MARCH_CONTROLS_SOFT_FLOAT
#define MIPS_MARCH_CONTROLS_SOFT_FLOAT 0
#endif

/* Initialize the GCC target structure.  */
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP "\t.half\t"
#undef TARGET_ASM_ALIGNED_SI_OP
#define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
#undef TARGET_ASM_ALIGNED_DI_OP
#define TARGET_ASM_ALIGNED_DI_OP "\t.dword\t"

#undef TARGET_ASM_FUNCTION_PROLOGUE
#define TARGET_ASM_FUNCTION_PROLOGUE mips_output_function_prologue
#undef TARGET_ASM_FUNCTION_EPILOGUE
#define TARGET_ASM_FUNCTION_EPILOGUE mips_output_function_epilogue
#undef TARGET_ASM_SELECT_RTX_SECTION
#define TARGET_ASM_SELECT_RTX_SECTION mips_select_rtx_section
#undef TARGET_ASM_FUNCTION_RODATA_SECTION
#define TARGET_ASM_FUNCTION_RODATA_SECTION mips_function_rodata_section

#undef TARGET_SCHED_REORDER
#define TARGET_SCHED_REORDER mips_sched_reorder
#undef TARGET_SCHED_VARIABLE_ISSUE
#define TARGET_SCHED_VARIABLE_ISSUE mips_variable_issue
#undef TARGET_SCHED_ADJUST_COST
#define TARGET_SCHED_ADJUST_COST mips_adjust_cost
#undef TARGET_SCHED_ISSUE_RATE
#define TARGET_SCHED_ISSUE_RATE mips_issue_rate
#undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
#define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \
  mips_multipass_dfa_lookahead

#undef TARGET_DEFAULT_TARGET_FLAGS
#define TARGET_DEFAULT_TARGET_FLAGS		\
  (TARGET_DEFAULT				\
   | TARGET_CPU_DEFAULT				\
   | TARGET_ENDIAN_DEFAULT			\
   | TARGET_FP_EXCEPTIONS_DEFAULT		\
   | MASK_CHECK_ZERO_DIV			\
   | MASK_FUSED_MADD)
#undef TARGET_HANDLE_OPTION
#define TARGET_HANDLE_OPTION mips_handle_option

#undef TARGET_FUNCTION_OK_FOR_SIBCALL
#define TARGET_FUNCTION_OK_FOR_SIBCALL mips_function_ok_for_sibcall

#undef TARGET_VALID_POINTER_MODE
#define TARGET_VALID_POINTER_MODE mips_valid_pointer_mode
#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS mips_rtx_costs
#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST mips_address_cost

#undef TARGET_IN_SMALL_DATA_P
#define TARGET_IN_SMALL_DATA_P mips_in_small_data_p

#undef TARGET_MACHINE_DEPENDENT_REORG
#define TARGET_MACHINE_DEPENDENT_REORG mips_reorg

#undef TARGET_ASM_FILE_START
#undef TARGET_ASM_FILE_END
#define TARGET_ASM_FILE_START mips_file_start
#define TARGET_ASM_FILE_END mips_file_end
#undef TARGET_ASM_FILE_START_FILE_DIRECTIVE
#define TARGET_ASM_FILE_START_FILE_DIRECTIVE true

#undef TARGET_INIT_LIBFUNCS
#define TARGET_INIT_LIBFUNCS mips_init_libfuncs

#undef TARGET_BUILD_BUILTIN_VA_LIST
#define TARGET_BUILD_BUILTIN_VA_LIST mips_build_builtin_va_list
#undef TARGET_GIMPLIFY_VA_ARG_EXPR
#define TARGET_GIMPLIFY_VA_ARG_EXPR mips_gimplify_va_arg_expr

#undef TARGET_PROMOTE_FUNCTION_ARGS
#define TARGET_PROMOTE_FUNCTION_ARGS hook_bool_tree_true
#undef TARGET_PROMOTE_FUNCTION_RETURN
#define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_tree_true
#undef TARGET_PROMOTE_PROTOTYPES
#define TARGET_PROMOTE_PROTOTYPES hook_bool_tree_true

#undef TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY mips_return_in_memory
#undef TARGET_RETURN_IN_MSB
#define TARGET_RETURN_IN_MSB mips_return_in_msb

#undef TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK mips_output_mi_thunk
#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_tree_hwi_hwi_tree_true

#undef TARGET_SETUP_INCOMING_VARARGS
#define TARGET_SETUP_INCOMING_VARARGS mips_setup_incoming_varargs
#undef TARGET_STRICT_ARGUMENT_NAMING
#define TARGET_STRICT_ARGUMENT_NAMING mips_strict_argument_naming
#undef TARGET_MUST_PASS_IN_STACK
#define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
#undef TARGET_PASS_BY_REFERENCE
#define TARGET_PASS_BY_REFERENCE mips_pass_by_reference
#undef TARGET_CALLEE_COPIES
#define TARGET_CALLEE_COPIES mips_callee_copies
#undef TARGET_ARG_PARTIAL_BYTES
#define TARGET_ARG_PARTIAL_BYTES mips_arg_partial_bytes

#undef TARGET_VECTOR_MODE_SUPPORTED_P
#define TARGET_VECTOR_MODE_SUPPORTED_P mips_vector_mode_supported_p

#undef TARGET_INIT_BUILTINS
#define TARGET_INIT_BUILTINS mips_init_builtins
#undef TARGET_EXPAND_BUILTIN
#define TARGET_EXPAND_BUILTIN mips_expand_builtin

#undef TARGET_HAVE_TLS
#define TARGET_HAVE_TLS HAVE_AS_TLS

#undef TARGET_CANNOT_FORCE_CONST_MEM
#define TARGET_CANNOT_FORCE_CONST_MEM mips_cannot_force_const_mem

#undef TARGET_ENCODE_SECTION_INFO
#define TARGET_ENCODE_SECTION_INFO mips_encode_section_info

#undef TARGET_ATTRIBUTE_TABLE
#define TARGET_ATTRIBUTE_TABLE mips_attribute_table

struct gcc_target targetm = TARGET_INITIALIZER;

/* Classify symbol X, which must be a SYMBOL_REF or a LABEL_REF.  */

static enum mips_symbol_type
mips_classify_symbol (rtx x)
{
  if (GET_CODE (x) == LABEL_REF)
    {
      if (TARGET_MIPS16)
	return SYMBOL_CONSTANT_POOL;
      if (TARGET_ABICALLS)
	return SYMBOL_GOT_LOCAL;
      return SYMBOL_GENERAL;
    }

  gcc_assert (GET_CODE (x) == SYMBOL_REF);

  if (SYMBOL_REF_TLS_MODEL (x))
    return SYMBOL_TLS;

  if (CONSTANT_POOL_ADDRESS_P (x))
    {
      if (TARGET_MIPS16)
	return SYMBOL_CONSTANT_POOL;

      if (TARGET_ABICALLS)
	return SYMBOL_GOT_LOCAL;

      if (GET_MODE_SIZE (get_pool_mode (x)) <= mips_section_threshold)
	return SYMBOL_SMALL_DATA;

      return SYMBOL_GENERAL;
    }

  if (SYMBOL_REF_SMALL_P (x))
    return SYMBOL_SMALL_DATA;

  if (TARGET_ABICALLS)
    {
      if (SYMBOL_REF_DECL (x) == 0)
	return SYMBOL_REF_LOCAL_P (x) ? SYMBOL_GOT_LOCAL : SYMBOL_GOT_GLOBAL;

      /* There are three cases to consider:

            - o32 PIC (either with or without explicit relocs)
            - n32/n64 PIC without explicit relocs
            - n32/n64 PIC with explicit relocs

         In the first case, both local and global accesses will use an
         R_MIPS_GOT16 relocation.  We must correctly predict which of
         the two semantics (local or global) the assembler and linker
         will apply.  The choice doesn't depend on the symbol's
         visibility, so we deliberately ignore decl_visibility and
         binds_local_p here.

         In the second case, the assembler will not use R_MIPS_GOT16
         relocations, but it chooses between local and global accesses
         in the same way as for o32 PIC.

         In the third case we have more freedom since both forms of
         access will work for any kind of symbol.  However, there seems
         little point in doing things differently.  */
      if (DECL_P (SYMBOL_REF_DECL (x)) && TREE_PUBLIC (SYMBOL_REF_DECL (x)))
	return SYMBOL_GOT_GLOBAL;

      return SYMBOL_GOT_LOCAL;
    }

  return SYMBOL_GENERAL;
}


/* Split X into a base and a constant offset, storing them in *BASE
   and *OFFSET respectively.  */

static void
mips_split_const (rtx x, rtx *base, HOST_WIDE_INT *offset)
{
  *offset = 0;

  if (GET_CODE (x) == CONST)
    x = XEXP (x, 0);

  if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
    {
      *offset += INTVAL (XEXP (x, 1));
      x = XEXP (x, 0);
    }
  *base = x;
}

/* Classify symbolic expression X, given that it appears in context
   CONTEXT.  */

static enum mips_symbol_type
mips_classify_symbolic_expression (rtx x)
{
  HOST_WIDE_INT offset;

  mips_split_const (x, &x, &offset);
  if (UNSPEC_ADDRESS_P (x))
    return UNSPEC_ADDRESS_TYPE (x);

  return mips_classify_symbol (x);
}

/* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
   to the same object as SYMBOL.  */

static bool
mips_offset_within_object_p (rtx symbol, HOST_WIDE_INT offset)
{
  if (GET_CODE (symbol) != SYMBOL_REF)
    return false;

  if (CONSTANT_POOL_ADDRESS_P (symbol)
      && offset >= 0
      && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
    return true;

  if (SYMBOL_REF_DECL (symbol) != 0
      && offset >= 0
      && offset < int_size_in_bytes (TREE_TYPE (SYMBOL_REF_DECL (symbol))))
    return true;

  return false;
}


/* Return true if X is a symbolic constant that can be calculated in
   the same way as a bare symbol.  If it is, store the type of the
   symbol in *SYMBOL_TYPE.  */

bool
mips_symbolic_constant_p (rtx x, enum mips_symbol_type *symbol_type)
{
  HOST_WIDE_INT offset;

  mips_split_const (x, &x, &offset);
  if (UNSPEC_ADDRESS_P (x))
    *symbol_type = UNSPEC_ADDRESS_TYPE (x);
  else if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
    {
      *symbol_type = mips_classify_symbol (x);
      if (*symbol_type == SYMBOL_TLS)
	return false;
    }
  else
    return false;

  if (offset == 0)
    return true;

  /* Check whether a nonzero offset is valid for the underlying
     relocations.  */
  switch (*symbol_type)
    {
    case SYMBOL_GENERAL:
    case SYMBOL_64_HIGH:
    case SYMBOL_64_MID:
    case SYMBOL_64_LOW:
      /* If the target has 64-bit pointers and the object file only
	 supports 32-bit symbols, the values of those symbols will be
	 sign-extended.  In this case we can't allow an arbitrary offset
	 in case the 32-bit value X + OFFSET has a different sign from X.  */
      if (Pmode == DImode && !ABI_HAS_64BIT_SYMBOLS)
	return mips_offset_within_object_p (x, offset);

      /* In other cases the relocations can handle any offset.  */
      return true;

    case SYMBOL_CONSTANT_POOL:
      /* Allow constant pool references to be converted to LABEL+CONSTANT.
	 In this case, we no longer have access to the underlying constant,
	 but the original symbol-based access was known to be valid.  */
      if (GET_CODE (x) == LABEL_REF)
	return true;

      /* Fall through.  */

    case SYMBOL_SMALL_DATA:
      /* Make sure that the offset refers to something within the
	 underlying object.  This should guarantee that the final
	 PC- or GP-relative offset is within the 16-bit limit.  */
      return mips_offset_within_object_p (x, offset);

    case SYMBOL_GOT_LOCAL:
    case SYMBOL_GOTOFF_PAGE:
      /* The linker should provide enough local GOT entries for a
	 16-bit offset.  Larger offsets may lead to GOT overflow.  */
      return SMALL_OPERAND (offset);

    case SYMBOL_GOT_GLOBAL:
    case SYMBOL_GOTOFF_GLOBAL:
    case SYMBOL_GOTOFF_CALL:
    case SYMBOL_GOTOFF_LOADGP:
    case SYMBOL_TLSGD:
    case SYMBOL_TLSLDM:
    case SYMBOL_DTPREL:
    case SYMBOL_TPREL:
    case SYMBOL_GOTTPREL:
    case SYMBOL_TLS:
      return false;
    }
  gcc_unreachable ();
}


/* Return true if X is a symbolic constant whose value is not split
   into separate relocations.  */

bool
mips_atomic_symbolic_constant_p (rtx x)
{
  enum mips_symbol_type type;
  return mips_symbolic_constant_p (x, &type) && !mips_split_p[type];
}


/* This function is used to implement REG_MODE_OK_FOR_BASE_P.  */

int
mips_regno_mode_ok_for_base_p (int regno, enum machine_mode mode, int strict)
{
  if (regno >= FIRST_PSEUDO_REGISTER)
    {
      if (!strict)
	return true;
      regno = reg_renumber[regno];
    }

  /* These fake registers will be eliminated to either the stack or
     hard frame pointer, both of which are usually valid base registers.
     Reload deals with the cases where the eliminated form isn't valid.  */
  if (regno == ARG_POINTER_REGNUM || regno == FRAME_POINTER_REGNUM)
    return true;

  /* In mips16 mode, the stack pointer can only address word and doubleword
     values, nothing smaller.  There are two problems here:

       (a) Instantiating virtual registers can introduce new uses of the
	   stack pointer.  If these virtual registers are valid addresses,
	   the stack pointer should be too.

       (b) Most uses of the stack pointer are not made explicit until
	   FRAME_POINTER_REGNUM and ARG_POINTER_REGNUM have been eliminated.
	   We don't know until that stage whether we'll be eliminating to the
	   stack pointer (which needs the restriction) or the hard frame
	   pointer (which doesn't).

     All in all, it seems more consistent to only enforce this restriction
     during and after reload.  */
  if (TARGET_MIPS16 && regno == STACK_POINTER_REGNUM)
    return !strict || GET_MODE_SIZE (mode) == 4 || GET_MODE_SIZE (mode) == 8;

  return TARGET_MIPS16 ? M16_REG_P (regno) : GP_REG_P (regno);
}


/* Return true if X is a valid base register for the given mode.
   Allow only hard registers if STRICT.  */

static bool
mips_valid_base_register_p (rtx x, enum machine_mode mode, int strict)
{
  if (!strict && GET_CODE (x) == SUBREG)
    x = SUBREG_REG (x);

  return (REG_P (x)
	  && mips_regno_mode_ok_for_base_p (REGNO (x), mode, strict));
}


/* Return true if symbols of type SYMBOL_TYPE can directly address a value
   with mode MODE.  This is used for both symbolic and LO_SUM addresses.  */

static bool
mips_symbolic_address_p (enum mips_symbol_type symbol_type,
			 enum machine_mode mode)
{
  switch (symbol_type)
    {
    case SYMBOL_GENERAL:
      return !TARGET_MIPS16;

    case SYMBOL_SMALL_DATA:
      return true;

    case SYMBOL_CONSTANT_POOL:
      /* PC-relative addressing is only available for lw and ld.  */
      return GET_MODE_SIZE (mode) == 4 || GET_MODE_SIZE (mode) == 8;

    case SYMBOL_GOT_LOCAL:
      return true;

    case SYMBOL_GOT_GLOBAL:
      /* The address will have to be loaded from the GOT first.  */
      return false;

    case SYMBOL_GOTOFF_PAGE:
    case SYMBOL_GOTOFF_GLOBAL:
    case SYMBOL_GOTOFF_CALL:
    case SYMBOL_GOTOFF_LOADGP:
    case SYMBOL_TLS:
    case SYMBOL_TLSGD:
    case SYMBOL_TLSLDM:
    case SYMBOL_DTPREL:
    case SYMBOL_GOTTPREL:
    case SYMBOL_TPREL:
    case SYMBOL_64_HIGH:
    case SYMBOL_64_MID:
    case SYMBOL_64_LOW:
      return true;
    }
  gcc_unreachable ();
}


/* Return true if X is a valid address for machine mode MODE.  If it is,
   fill in INFO appropriately.  STRICT is true if we should only accept
   hard base registers.  */

static bool
mips_classify_address (struct mips_address_info *info, rtx x,
		       enum machine_mode mode, int strict)
{
  switch (GET_CODE (x))
    {
    case REG:
    case SUBREG:
      info->type = ADDRESS_REG;
      info->reg = x;
      info->offset = const0_rtx;
      return mips_valid_base_register_p (info->reg, mode, strict);

    case PLUS:
      info->type = ADDRESS_REG;
      info->reg = XEXP (x, 0);
      info->offset = XEXP (x, 1);
      return (mips_valid_base_register_p (info->reg, mode, strict)
	      && const_arith_operand (info->offset, VOIDmode));

    case LO_SUM:
      info->type = ADDRESS_LO_SUM;
      info->reg = XEXP (x, 0);
      info->offset = XEXP (x, 1);
      /* We have to trust the creator of the LO_SUM to do something vaguely
	 sane.  Target-independent code that creates a LO_SUM should also
	 create and verify the matching HIGH.  Target-independent code that
	 adds an offset to a LO_SUM must prove that the offset will not
	 induce a carry.  Failure to do either of these things would be
	 a bug, and we are not required to check for it here.  The MIPS
	 backend itself should only create LO_SUMs for valid symbolic
	 constants, with the high part being either a HIGH or a copy
	 of _gp. */
      info->symbol_type = mips_classify_symbolic_expression (info->offset);
      return (mips_valid_base_register_p (info->reg, mode, strict)
	      && mips_symbolic_address_p (info->symbol_type, mode)
	      && mips_lo_relocs[info->symbol_type] != 0);

    case CONST_INT:
      /* Small-integer addresses don't occur very often, but they
	 are legitimate if $0 is a valid base register.  */
      info->type = ADDRESS_CONST_INT;
      return !TARGET_MIPS16 && SMALL_INT (x);

    case CONST:
    case LABEL_REF:
    case SYMBOL_REF:
      info->type = ADDRESS_SYMBOLIC;
      return (mips_symbolic_constant_p (x, &info->symbol_type)
	      && mips_symbolic_address_p (info->symbol_type, mode)
	      && !mips_split_p[info->symbol_type]);

    default:
      return false;
    }
}

/* Return true if X is a thread-local symbol.  */

static bool
mips_tls_operand_p (rtx x)
{
  return GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x) != 0;
}

/* Return true if X can not be forced into a constant pool.  */

static int
mips_tls_symbol_ref_1 (rtx *x, void *data ATTRIBUTE_UNUSED)
{
  return mips_tls_operand_p (*x);
}

/* Return true if X can not be forced into a constant pool.  */

static bool
mips_cannot_force_const_mem (rtx x)
{
  if (! TARGET_HAVE_TLS)
    return false;

  return for_each_rtx (&x, &mips_tls_symbol_ref_1, 0);
}

/* Return the number of instructions needed to load a symbol of the
   given type into a register.  If valid in an address, the same number
   of instructions are needed for loads and stores.  Treat extended
   mips16 instructions as two instructions.  */

static int
mips_symbol_insns (enum mips_symbol_type type)
{
  switch (type)
    {
    case SYMBOL_GENERAL:
      /* In mips16 code, general symbols must be fetched from the
	 constant pool.  */
      if (TARGET_MIPS16)
	return 0;

      /* When using 64-bit symbols, we need 5 preparatory instructions,
	 such as:

	     lui     $at,%highest(symbol)
	     daddiu  $at,$at,%higher(symbol)
	     dsll    $at,$at,16
	     daddiu  $at,$at,%hi(symbol)
	     dsll    $at,$at,16

	 The final address is then $at + %lo(symbol).  With 32-bit
	 symbols we just need a preparatory lui.  */
      return (ABI_HAS_64BIT_SYMBOLS ? 6 : 2);

    case SYMBOL_SMALL_DATA:
      return 1;

    case SYMBOL_CONSTANT_POOL:
      /* This case is for mips16 only.  Assume we'll need an
	 extended instruction.  */
      return 2;

    case SYMBOL_GOT_LOCAL:
    case SYMBOL_GOT_GLOBAL:
      /* Unless -funit-at-a-time is in effect, we can't be sure whether
	 the local/global classification is accurate.  See override_options
	 for details.

	 The worst cases are:

	 (1) For local symbols when generating o32 or o64 code.  The assembler
	     will use:

		 lw	      $at,%got(symbol)
		 nop

	     ...and the final address will be $at + %lo(symbol).

	 (2) For global symbols when -mxgot.  The assembler will use:

	         lui     $at,%got_hi(symbol)
	         (d)addu $at,$at,$gp

	     ...and the final address will be $at + %got_lo(symbol).  */
      return 3;

    case SYMBOL_GOTOFF_PAGE:
    case SYMBOL_GOTOFF_GLOBAL:
    case SYMBOL_GOTOFF_CALL:
    case SYMBOL_GOTOFF_LOADGP:
    case SYMBOL_64_HIGH:
    case SYMBOL_64_MID:
    case SYMBOL_64_LOW:
    case SYMBOL_TLSGD:
    case SYMBOL_TLSLDM:
    case SYMBOL_DTPREL:
    case SYMBOL_GOTTPREL:
    case SYMBOL_TPREL:
      /* Check whether the offset is a 16- or 32-bit value.  */
      return mips_split_p[type] ? 2 : 1;

    case SYMBOL_TLS:
      /* We don't treat a bare TLS symbol as a constant.  */
      return 0;
    }
  gcc_unreachable ();
}

/* Return true if X is a legitimate $sp-based address for mode MDOE.  */

bool
mips_stack_address_p (rtx x, enum machine_mode mode)
{
  struct mips_address_info addr;

  return (mips_classify_address (&addr, x, mode, false)
	  && addr.type == ADDRESS_REG
	  && addr.reg == stack_pointer_rtx);
}

/* Return true if a value at OFFSET bytes from BASE can be accessed
   using an unextended mips16 instruction.  MODE is the mode of the
   value.

   Usually the offset in an unextended instruction is a 5-bit field.
   The offset is unsigned and shifted left once for HIs, twice
   for SIs, and so on.  An exception is SImode accesses off the
   stack pointer, which have an 8-bit immediate field.  */

static bool
mips16_unextended_reference_p (enum machine_mode mode, rtx base, rtx offset)
{
  if (TARGET_MIPS16
      && GET_CODE (offset) == CONST_INT
      && INTVAL (offset) >= 0
      && (INTVAL (offset) & (GET_MODE_SIZE (mode) - 1)) == 0)
    {
      if (GET_MODE_SIZE (mode) == 4 && base == stack_pointer_rtx)
	return INTVAL (offset) < 256 * GET_MODE_SIZE (mode);
      return INTVAL (offset) < 32 * GET_MODE_SIZE (mode);
    }
  return false;
}


/* Return the number of instructions needed to load or store a value
   of mode MODE at X.  Return 0 if X isn't valid for MODE.

   For mips16 code, count extended instructions as two instructions.  */

int
mips_address_insns (rtx x, enum machine_mode mode)
{
  struct mips_address_info addr;
  int factor;

  if (mode == BLKmode)
    /* BLKmode is used for single unaligned loads and stores.  */
    factor = 1;
  else
    /* Each word of a multi-word value will be accessed individually.  */
    factor = (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;

  if (mips_classify_address (&addr, x, mode, false))
    switch (addr.type)
      {
      case ADDRESS_REG:
	if (TARGET_MIPS16
	    && !mips16_unextended_reference_p (mode, addr.reg, addr.offset))
	  return factor * 2;
	return factor;

      case ADDRESS_LO_SUM:
	return (TARGET_MIPS16 ? factor * 2 : factor);

      case ADDRESS_CONST_INT:
	return factor;

      case ADDRESS_SYMBOLIC:
	return factor * mips_symbol_insns (addr.symbol_type);
      }
  return 0;
}


/* Likewise for constant X.  */

int
mips_const_insns (rtx x)
{
  struct mips_integer_op codes[MIPS_MAX_INTEGER_OPS];
  enum mips_symbol_type symbol_type;
  HOST_WIDE_INT offset;

  switch (GET_CODE (x))
    {
    case HIGH:
      if (TARGET_MIPS16
	  || !mips_symbolic_constant_p (XEXP (x, 0), &symbol_type)
	  || !mips_split_p[symbol_type])
	return 0;

      return 1;

    case CONST_INT:
      if (TARGET_MIPS16)
	/* Unsigned 8-bit constants can be loaded using an unextended
	   LI instruction.  Unsigned 16-bit constants can be loaded
	   using an extended LI.  Negative constants must be loaded
	   using LI and then negated.  */
	return (INTVAL (x) >= 0 && INTVAL (x) < 256 ? 1
		: SMALL_OPERAND_UNSIGNED (INTVAL (x)) ? 2
		: INTVAL (x) > -256 && INTVAL (x) < 0 ? 2
		: SMALL_OPERAND_UNSIGNED (-INTVAL (x)) ? 3
		: 0);

      return mips_build_integer (codes, INTVAL (x));

    case CONST_DOUBLE:
    case CONST_VECTOR:
      return (!TARGET_MIPS16 && x == CONST0_RTX (GET_MODE (x)) ? 1 : 0);

    case CONST:
      if (CONST_GP_P (x))
	return 1;

      /* See if we can refer to X directly.  */
      if (mips_symbolic_constant_p (x, &symbol_type))
	return mips_symbol_insns (symbol_type);

      /* Otherwise try splitting the constant into a base and offset.
	 16-bit offsets can be added using an extra addiu.  Larger offsets
	 must be calculated separately and then added to the base.  */
      mips_split_const (x, &x, &offset);
      if (offset != 0)
	{
	  int n = mips_const_insns (x);
	  if (n != 0)
	    {
	      if (SMALL_OPERAND (offset))
		return n + 1;
	      else
		return n + 1 + mips_build_integer (codes, offset);
	    }
	}
      return 0;

    case SYMBOL_REF:
    case LABEL_REF:
      return mips_symbol_insns (mips_classify_symbol (x));

    default:
      return 0;
    }
}


/* Return the number of instructions needed for memory reference X.
   Count extended mips16 instructions as two instructions.  */

int
mips_fetch_insns (rtx x)
{
  gcc_assert (MEM_P (x));
  return mips_address_insns (XEXP (x, 0), GET_MODE (x));
}


/* Return the number of instructions needed for an integer division.  */

int
mips_idiv_insns (void)
{
  int count;

  count = 1;
  if (TARGET_CHECK_ZERO_DIV)
    {
      if (GENERATE_DIVIDE_TRAPS)
        count++;
      else
        count += 2;
    }

  if (TARGET_FIX_R4000 || TARGET_FIX_R4400)
    count++;
  return count;
}

/* This function is used to implement GO_IF_LEGITIMATE_ADDRESS.  It
   returns a nonzero value if X is a legitimate address for a memory
   operand of the indicated MODE.  STRICT is nonzero if this function
   is called during reload.  */

bool
mips_legitimate_address_p (enum machine_mode mode, rtx x, int strict)
{
  struct mips_address_info addr;

  return mips_classify_address (&addr, x, mode, strict);
}


/* Copy VALUE to a register and return that register.  If new psuedos
   are allowed, copy it into a new register, otherwise use DEST.  */

static rtx
mips_force_temporary (rtx dest, rtx value)
{
  if (!no_new_pseudos)
    return force_reg (Pmode, value);
  else
    {
      emit_move_insn (copy_rtx (dest), value);
      return dest;
    }
}


/* Return a LO_SUM expression for ADDR.  TEMP is as for mips_force_temporary
   and is used to load the high part into a register.  */

static rtx
mips_split_symbol (rtx temp, rtx addr)
{
  rtx high;

  if (TARGET_MIPS16)
    high = mips16_gp_pseudo_reg ();
  else
    high = mips_force_temporary (temp, gen_rtx_HIGH (Pmode, copy_rtx (addr)));
  return gen_rtx_LO_SUM (Pmode, high, addr);
}


/* Return an UNSPEC address with underlying address ADDRESS and symbol
   type SYMBOL_TYPE.  */

rtx
mips_unspec_address (rtx address, enum mips_symbol_type symbol_type)
{
  rtx base;
  HOST_WIDE_INT offset;

  mips_split_const (address, &base, &offset);
  base = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, base),
			 UNSPEC_ADDRESS_FIRST + symbol_type);
  return plus_constant (gen_rtx_CONST (Pmode, base), offset);
}


/* If mips_unspec_address (ADDR, SYMBOL_TYPE) is a 32-bit value, add the
   high part to BASE and return the result.  Just return BASE otherwise.
   TEMP is available as a temporary register if needed.

   The returned expression can be used as the first operand to a LO_SUM.  */

static rtx
mips_unspec_offset_high (rtx temp, rtx base, rtx addr,
			 enum mips_symbol_type symbol_type)
{
  if (mips_split_p[symbol_type])
    {
      addr = gen_rtx_HIGH (Pmode, mips_unspec_address (addr, symbol_type));
      addr = mips_force_temporary (temp, addr);
      return mips_force_temporary (temp, gen_rtx_PLUS (Pmode, addr, base));
    }
  return base;
}


/* Return a legitimate address for REG + OFFSET.  TEMP is as for
   mips_force_temporary; it is only needed when OFFSET is not a
   SMALL_OPERAND.  */

static rtx
mips_add_offset (rtx temp, rtx reg, HOST_WIDE_INT offset)
{
  if (!SMALL_OPERAND (offset))
    {
      rtx high;
      if (TARGET_MIPS16)
	{
	  /* Load the full offset into a register so that we can use
	     an unextended instruction for the address itself.  */
	  high = GEN_INT (offset);
	  offset = 0;
	}
      else
	{
	  /* Leave OFFSET as a 16-bit offset and put the excess in HIGH.  */
	  high = GEN_INT (CONST_HIGH_PART (offset));
	  offset = CONST_LOW_PART (offset);
	}
      high = mips_force_temporary (temp, high);
      reg = mips_force_temporary (temp, gen_rtx_PLUS (Pmode, high, reg));
    }
  return plus_constant (reg, offset);
}

/* Emit a call to __tls_get_addr.  SYM is the TLS symbol we are
   referencing, and TYPE is the symbol type to use (either global
   dynamic or local dynamic).  V0 is an RTX for the return value
   location.  The entire insn sequence is returned.  */

static GTY(()) rtx mips_tls_symbol;

static rtx
mips_call_tls_get_addr (rtx sym, enum mips_symbol_type type, rtx v0)
{
  rtx insn, loc, tga, a0;

  a0 = gen_rtx_REG (Pmode, GP_ARG_FIRST);

  if (!mips_tls_symbol)
    mips_tls_symbol = init_one_libfunc ("__tls_get_addr");

  loc = mips_unspec_address (sym, type);

  start_sequence ();

  emit_insn (gen_rtx_SET (Pmode, a0,
			  gen_rtx_LO_SUM (Pmode, pic_offset_table_rtx, loc)));
  tga = gen_rtx_MEM (Pmode, mips_tls_symbol);
  insn = emit_call_insn (gen_call_value (v0, tga, const0_rtx, const0_rtx));
  CONST_OR_PURE_CALL_P (insn) = 1;
  use_reg (&CALL_INSN_FUNCTION_USAGE (insn), v0);
  use_reg (&CALL_INSN_FUNCTION_USAGE (insn), a0);
  insn = get_insns ();

  end_sequence ();

  return insn;
}

/* Generate the code to access LOC, a thread local SYMBOL_REF.  The
   return value will be a valid address and move_operand (either a REG
   or a LO_SUM).  */

static rtx
mips_legitimize_tls_address (rtx loc)
{
  rtx dest, insn, v0, v1, tmp1, tmp2, eqv;
  enum tls_model model;

  v0 = gen_rtx_REG (Pmode, GP_RETURN);
  v1 = gen_rtx_REG (Pmode, GP_RETURN + 1);

  model = SYMBOL_REF_TLS_MODEL (loc);

  switch (model)
    {
    case TLS_MODEL_GLOBAL_DYNAMIC:
      insn = mips_call_tls_get_addr (loc, SYMBOL_TLSGD, v0);
      dest = gen_reg_rtx (Pmode);
      emit_libcall_block (insn, dest, v0, loc);
      break;

    case TLS_MODEL_LOCAL_DYNAMIC:
      insn = mips_call_tls_get_addr (loc, SYMBOL_TLSLDM, v0);
      tmp1 = gen_reg_rtx (Pmode);

      /* Attach a unique REG_EQUIV, to allow the RTL optimizers to
	 share the LDM result with other LD model accesses.  */
      eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
			    UNSPEC_TLS_LDM);
      emit_libcall_block (insn, tmp1, v0, eqv);

      tmp2 = mips_unspec_offset_high (NULL, tmp1, loc, SYMBOL_DTPREL);
      dest = gen_rtx_LO_SUM (Pmode, tmp2,
			     mips_unspec_address (loc, SYMBOL_DTPREL));
      break;

    case TLS_MODEL_INITIAL_EXEC:
      tmp1 = gen_reg_rtx (Pmode);
      tmp2 = mips_unspec_address (loc, SYMBOL_GOTTPREL);
      if (Pmode == DImode)
	{
	  emit_insn (gen_tls_get_tp_di (v1));
	  emit_insn (gen_load_gotdi (tmp1, pic_offset_table_rtx, tmp2));
	}
      else
	{
	  emit_insn (gen_tls_get_tp_si (v1));
	  emit_insn (gen_load_gotsi (tmp1, pic_offset_table_rtx, tmp2));
	}
      dest = gen_reg_rtx (Pmode);
      emit_insn (gen_add3_insn (dest, tmp1, v1));
      break;

    case TLS_MODEL_LOCAL_EXEC:

      if (Pmode == DImode)
	emit_insn (gen_tls_get_tp_di (v1));
      else
	emit_insn (gen_tls_get_tp_si (v1));

      tmp1 = mips_unspec_offset_high (NULL, v1, loc, SYMBOL_TPREL);
      dest = gen_rtx_LO_SUM (Pmode, tmp1,
			     mips_unspec_address (loc, SYMBOL_TPREL));
      break;

    default:
      gcc_unreachable ();
    }

  return dest;
}

/* This function is used to implement LEGITIMIZE_ADDRESS.  If *XLOC can
   be legitimized in a way that the generic machinery might not expect,
   put the new address in *XLOC and return true.  MODE is the mode of
   the memory being accessed.  */

bool
mips_legitimize_address (rtx *xloc, enum machine_mode mode)
{
  enum mips_symbol_type symbol_type;

  if (mips_tls_operand_p (*xloc))
    {
      *xloc = mips_legitimize_tls_address (*xloc);
      return true;
    }

  /* See if the address can split into a high part and a LO_SUM.  */
  if (mips_symbolic_constant_p (*xloc, &symbol_type)
      && mips_symbolic_address_p (symbol_type, mode)
      && mips_split_p[symbol_type])
    {
      *xloc = mips_split_symbol (0, *xloc);
      return true;
    }

  if (GET_CODE (*xloc) == PLUS && GET_CODE (XEXP (*xloc, 1)) == CONST_INT)
    {
      /* Handle REG + CONSTANT using mips_add_offset.  */
      rtx reg;

      reg = XEXP (*xloc, 0);
      if (!mips_valid_base_register_p (reg, mode, 0))
	reg = copy_to_mode_reg (Pmode, reg);
      *xloc = mips_add_offset (0, reg, INTVAL (XEXP (*xloc, 1)));
      return true;
    }

  return false;
}


/* Subroutine of mips_build_integer (with the same interface).
   Assume that the final action in the sequence should be a left shift.  */

static unsigned int
mips_build_shift (struct mips_integer_op *codes, HOST_WIDE_INT value)
{
  unsigned int i, shift;

  /* Shift VALUE right until its lowest bit is set.  Shift arithmetically
     since signed numbers are easier to load than unsigned ones.  */
  shift = 0;
  while ((value & 1) == 0)
    value /= 2, shift++;

  i = mips_build_integer (codes, value);
  codes[i].code = ASHIFT;
  codes[i].value = shift;
  return i + 1;
}


/* As for mips_build_shift, but assume that the final action will be
   an IOR or PLUS operation.  */

static unsigned int
mips_build_lower (struct mips_integer_op *codes, unsigned HOST_WIDE_INT value)
{
  unsigned HOST_WIDE_INT high;
  unsigned int i;

  high = value & ~(unsigned HOST_WIDE_INT) 0xffff;
  if (!LUI_OPERAND (high) && (value & 0x18000) == 0x18000)
    {
      /* The constant is too complex to load with a simple lui/ori pair
	 so our goal is to clear as many trailing zeros as possible.
	 In this case, we know bit 16 is set and that the low 16 bits
	 form a negative number.  If we subtract that number from VALUE,
	 we will clear at least the lowest 17 bits, maybe more.  */
      i = mips_build_integer (codes, CONST_HIGH_PART (value));
      codes[i].code = PLUS;
      codes[i].value = CONST_LOW_PART (value);
    }
  else
    {
      i = mips_build_integer (codes, high);
      codes[i].code = IOR;
      codes[i].value = value & 0xffff;
    }
  return i + 1;
}


/* Fill CODES with a sequence of rtl operations to load VALUE.
   Return the number of operations needed.  */

static unsigned int
mips_build_integer (struct mips_integer_op *codes,
		    unsigned HOST_WIDE_INT value)
{
  if (SMALL_OPERAND (value)
      || SMALL_OPERAND_UNSIGNED (value)
      || LUI_OPERAND (value))
    {
      /* The value can be loaded with a single instruction.  */
      codes[0].code = UNKNOWN;
      codes[0].value = value;
      return 1;
    }
  else if ((value & 1) != 0 || LUI_OPERAND (CONST_HIGH_PART (value)))
    {
      /* Either the constant is a simple LUI/ORI combination or its
	 lowest bit is set.  We don't want to shift in this case.  */
      return mips_build_lower (codes, value);
    }
  else if ((value & 0xffff) == 0)
    {
      /* The constant will need at least three actions.  The lowest
	 16 bits are clear, so the final action will be a shift.  */
      return mips_build_shift (codes, value);
    }
  else
    {
      /* The final action could be a shift, add or inclusive OR.
	 Rather than use a complex condition to select the best
	 approach, try both mips_build_shift and mips_build_lower
	 and pick the one that gives the shortest sequence.
	 Note that this case is only used once per constant.  */
      struct mips_integer_op alt_codes[MIPS_MAX_INTEGER_OPS];
      unsigned int cost, alt_cost;

      cost = mips_build_shift (codes, value);
      alt_cost = mips_build_lower (alt_codes, value);
      if (alt_cost < cost)
	{
	  memcpy (codes, alt_codes, alt_cost * sizeof (codes[0]));
	  cost = alt_cost;
	}
      return cost;
    }
}


/* Move VALUE into register DEST.  */

static void
mips_move_integer (rtx dest, unsigned HOST_WIDE_INT value)
{
  struct mips_integer_op codes[MIPS_MAX_INTEGER_OPS];
  enum machine_mode mode;
  unsigned int i, cost;
  rtx x;

  mode = GET_MODE (dest);
  cost = mips_build_integer (codes, value);

  /* Apply each binary operation to X.  Invariant: X is a legitimate
     source operand for a SET pattern.  */
  x = GEN_INT (codes[0].value);
  for (i = 1; i < cost; i++)
    {
      if (no_new_pseudos)
	emit_move_insn (dest, x), x = dest;
      else
	x = force_reg (mode, x);
      x = gen_rtx_fmt_ee (codes[i].code, mode, x, GEN_INT (codes[i].value));
    }

  emit_insn (gen_rtx_SET (VOIDmode, dest, x));
}


/* Subroutine of mips_legitimize_move.  Move constant SRC into register
   DEST given that SRC satisfies immediate_operand but doesn't satisfy
   move_operand.  */

static void
mips_legitimize_const_move (enum machine_mode mode, rtx dest, rtx src)
{
  rtx base;
  HOST_WIDE_INT offset;
  enum mips_symbol_type symbol_type;

  /* Split moves of big integers into smaller pieces.  In mips16 code,
     it's better to force the constant into memory instead.  */
  if (GET_CODE (src) == CONST_INT && !TARGET_MIPS16)
    {
      mips_move_integer (dest, INTVAL (src));
      return;
    }

  if (mips_tls_operand_p (src))
    {
      emit_move_insn (dest, mips_legitimize_tls_address (src));
      return;
    }

  /* See if the symbol can be split.  For mips16, this is often worse than
     forcing it in the constant pool since it needs the single-register form
     of addiu or daddiu.  */
  if (!TARGET_MIPS16
      && mips_symbolic_constant_p (src, &symbol_type)
      && mips_split_p[symbol_type])
    {
      emit_move_insn (dest, mips_split_symbol (dest, src));
      return;
    }

  /* If we have (const (plus symbol offset)), load the symbol first
     and then add in the offset.  This is usually better than forcing
     the constant into memory, at least in non-mips16 code.  */
  mips_split_const (src, &base, &offset);
  if (!TARGET_MIPS16
      && offset != 0
      && (!no_new_pseudos || SMALL_OPERAND (offset)))
    {
      base = mips_force_temporary (dest, base);
      emit_move_insn (dest, mips_add_offset (0, base, offset));
      return;
    }

  src = force_const_mem (mode, src);

  /* When using explicit relocs, constant pool references are sometimes
     not legitimate addresses.  */
  if (!memory_operand (src, VOIDmode))
    src = replace_equiv_address (src, mips_split_symbol (dest, XEXP (src, 0)));
  emit_move_insn (dest, src);
}


/* If (set DEST SRC) is not a valid instruction, emit an equivalent
   sequence that is valid.  */

bool
mips_legitimize_move (enum machine_mode mode, rtx dest, rtx src)
{
  if (!register_operand (dest, mode) && !reg_or_0_operand (src, mode))
    {
      emit_move_insn (dest, force_reg (mode, src));
      return true;
    }

  /* Check for individual, fully-reloaded mflo and mfhi instructions.  */
  if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
      && REG_P (src) && MD_REG_P (REGNO (src))
      && REG_P (dest) && GP_REG_P (REGNO (dest)))
    {
      int other_regno = REGNO (src) == HI_REGNUM ? LO_REGNUM : HI_REGNUM;
      if (GET_MODE_SIZE (mode) <= 4)
	emit_insn (gen_mfhilo_si (gen_rtx_REG (SImode, REGNO (dest)),
				  gen_rtx_REG (SImode, REGNO (src)),
				  gen_rtx_REG (SImode, other_regno)));
      else
	emit_insn (gen_mfhilo_di (gen_rtx_REG (DImode, REGNO (dest)),
				  gen_rtx_REG (DImode, REGNO (src)),
				  gen_rtx_REG (DImode, other_regno)));
      return true;
    }

  /* We need to deal with constants that would be legitimate
     immediate_operands but not legitimate move_operands.  */
  if (CONSTANT_P (src) && !move_operand (src, mode))
    {
      mips_legitimize_const_move (mode, dest, src);
      set_unique_reg_note (get_last_insn (), REG_EQUAL, copy_rtx (src));
      return true;
    }
  return false;
}

/* We need a lot of little routines to check constant values on the
   mips16.  These are used to figure out how long the instruction will
   be.  It would be much better to do this using constraints, but
   there aren't nearly enough letters available.  */

static int
m16_check_op (rtx op, int low, int high, int mask)
{
  return (GET_CODE (op) == CONST_INT
	  && INTVAL (op) >= low
	  && INTVAL (op) <= high
	  && (INTVAL (op) & mask) == 0);
}

int
m16_uimm3_b (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
  return m16_check_op (op, 0x1, 0x8, 0);
}

int
m16_simm4_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
  return m16_check_op (op, - 0x8, 0x7, 0);
}

int
m16_nsimm4_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
  return m16_check_op (op, - 0x7, 0x8, 0);
}

int
m16_simm5_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
  return m16_check_op (op, - 0x10, 0xf, 0);
}

int
m16_nsimm5_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
  return m16_check_op (op, - 0xf, 0x10, 0);
}

int
m16_uimm5_4 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
  return m16_check_op (op, (- 0x10) << 2, 0xf << 2, 3);
}

int
m16_nuimm5_4 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
  return m16_check_op (op, (- 0xf) << 2, 0x10 << 2, 3);
}

int
m16_simm8_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
  return m16_check_op (op, - 0x80, 0x7f, 0);
}

int
m16_nsimm8_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
  return m16_check_op (op, - 0x7f, 0x80, 0);
}

int
m16_uimm8_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
  return m16_check_op (op, 0x0, 0xff, 0);
}

int
m16_nuimm8_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
  return m16_check_op (op, - 0xff, 0x0, 0);
}

int
m16_uimm8_m1_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
  return m16_check_op (op, - 0x1, 0xfe, 0);
}

int
m16_uimm8_4 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
  return m16_check_op (op, 0x0, 0xff << 2, 3);
}

int
m16_nuimm8_4 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
  return m16_check_op (op, (- 0xff) << 2, 0x0, 3);
}

int
m16_simm8_8 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
  return m16_check_op (op, (- 0x80) << 3, 0x7f << 3, 7);
}

int
m16_nsimm8_8 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
  return m16_check_op (op, (- 0x7f) << 3, 0x80 << 3, 7);
}

static bool
mips_rtx_costs (rtx x, int code, int outer_code, int *total)
{
  enum machine_mode mode = GET_MODE (x);
  bool float_mode_p = FLOAT_MODE_P (mode);

  switch (code)
    {
    case CONST_INT:
      if (TARGET_MIPS16)
        {
	  /* A number between 1 and 8 inclusive is efficient for a shift.
	     Otherwise, we will need an extended instruction.  */
	  if ((outer_code) == ASHIFT || (outer_code) == ASHIFTRT
	      || (outer_code) == LSHIFTRT)
	    {
	      if (INTVAL (x) >= 1 && INTVAL (x) <= 8)
		*total = 0;
	      else
		*total = COSTS_N_INSNS (1);
	      return true;
	    }

	  /* We can use cmpi for an xor with an unsigned 16 bit value.  */
	  if ((outer_code) == XOR
	      && INTVAL (x) >= 0 && INTVAL (x) < 0x10000)
	    {
	      *total = 0;
	      return true;
	    }

	  /* We may be able to use slt or sltu for a comparison with a
	     signed 16 bit value.  (The boundary conditions aren't quite
	     right, but this is just a heuristic anyhow.)  */
	  if (((outer_code) == LT || (outer_code) == LE
	       || (outer_code) == GE || (outer_code) == GT
	       || (outer_code) == LTU || (outer_code) == LEU
	       || (outer_code) == GEU || (outer_code) == GTU)
	      && INTVAL (x) >= -0x8000 && INTVAL (x) < 0x8000)
	    {
	      *total = 0;
	      return true;
	    }

	  /* Equality comparisons with 0 are cheap.  */
	  if (((outer_code) == EQ || (outer_code) == NE)
	      && INTVAL (x) == 0)
	    {
	      *total = 0;
	      return true;
	    }

	  /* Constants in the range 0...255 can be loaded with an unextended
	     instruction.  They are therefore as cheap as a register move.

	     Given the choice between "li R1,0...255" and "move R1,R2"
	     (where R2 is a known constant), it is usually better to use "li",
	     since we do not want to unnecessarily extend the lifetime
	     of R2.  */
	  if (outer_code == SET
	      && INTVAL (x) >= 0
	      && INTVAL (x) < 256)
	    {
	      *total = 0;
	      return true;
	    }
	}
      else
	{
	  /* These can be used anywhere. */
	  *total = 0;
	  return true;
	}

      /* Otherwise fall through to the handling below because
	 we'll need to construct the constant.  */

    case CONST:
    case SYMBOL_REF:
    case LABEL_REF:
    case CONST_DOUBLE:
      if (LEGITIMATE_CONSTANT_P (x))
	{
	  *total = COSTS_N_INSNS (1);
	  return true;
	}
      else
	{
	  /* The value will need to be fetched from the constant pool.  */
	  *total = CONSTANT_POOL_COST;
	  return true;
	}

    case MEM:
      {
	/* If the address is legitimate, return the number of
	   instructions it needs, otherwise use the default handling.  */
	int n = mips_address_insns (XEXP (x, 0), GET_MODE (x));
	if (n > 0)
	  {
	    *total = COSTS_N_INSNS (n + 1);
	    return true;
	  }
	return false;
      }

    case FFS:
      *total = COSTS_N_INSNS (6);
      return true;

    case NOT:
      *total = COSTS_N_INSNS ((mode == DImode && !TARGET_64BIT) ? 2 : 1);
      return true;

    case AND:
    case IOR:
    case XOR:
      if (mode == DImode && !TARGET_64BIT)
        {
          *total = COSTS_N_INSNS (2);
          return true;
        }
      return false;

    case ASHIFT:
    case ASHIFTRT:
    case LSHIFTRT:
      if (mode == DImode && !TARGET_64BIT)
        {
          *total = COSTS_N_INSNS ((GET_CODE (XEXP (x, 1)) == CONST_INT)
                                  ? 4 : 12);
          return true;
        }
      return false;

    case ABS:
      if (float_mode_p)
        *total = COSTS_N_INSNS (1);
      else
        *total = COSTS_N_INSNS (4);
      return true;

    case LO_SUM:
      *total = COSTS_N_INSNS (1);
      return true;

    case PLUS:
    case MINUS:
      if (float_mode_p)
	{
	  *total = mips_cost->fp_add;
	  return true;
	}

      else if (mode == DImode && !TARGET_64BIT)
        {
          *total = COSTS_N_INSNS (4);
          return true;
        }
      return false;

    case NEG:
      if (mode == DImode && !TARGET_64BIT)
        {
          *total = COSTS_N_INSNS (4);
          return true;
        }
      return false;

    case MULT:
      if (mode == SFmode)
	*total = mips_cost->fp_mult_sf;

      else if (mode == DFmode)
	*total = mips_cost->fp_mult_df;

      else if (mode == SImode)
	*total = mips_cost->int_mult_si;

      else
	*total = mips_cost->int_mult_di;

      return true;

    case DIV:
    case MOD:
      if (float_mode_p)
	{
	  if (mode == SFmode)
	    *total = mips_cost->fp_div_sf;
	  else
	    *total = mips_cost->fp_div_df;

	  return true;
	}
      /* Fall through.  */

    case UDIV:
    case UMOD:
      if (mode == DImode)
        *total = mips_cost->int_div_di;
      else
	*total = mips_cost->int_div_si;

      return true;

    case SIGN_EXTEND:
      /* A sign extend from SImode to DImode in 64 bit mode is often
         zero instructions, because the result can often be used
         directly by another instruction; we'll call it one.  */
      if (TARGET_64BIT && mode == DImode
          && GET_MODE (XEXP (x, 0)) == SImode)
        *total = COSTS_N_INSNS (1);
      else
        *total = COSTS_N_INSNS (2);
      return true;

    case ZERO_EXTEND:
      if (TARGET_64BIT && mode == DImode
          && GET_MODE (XEXP (x, 0)) == SImode)
        *total = COSTS_N_INSNS (2);
      else
        *total = COSTS_N_INSNS (1);
      return true;

    case FLOAT:
    case UNSIGNED_FLOAT:
    case FIX:
    case FLOAT_EXTEND:
    case FLOAT_TRUNCATE:
    case SQRT:
      *total = mips_cost->fp_add;
      return true;

    default:
      return false;
    }
}

/* Provide the costs of an addressing mode that contains ADDR.
   If ADDR is not a valid address, its cost is irrelevant.  */

static int
mips_address_cost (rtx addr)
{
  return mips_address_insns (addr, SImode);
}

/* Return one word of double-word value OP, taking into account the fixed
   endianness of certain registers.  HIGH_P is true to select the high part,
   false to select the low part.  */

rtx
mips_subword (rtx op, int high_p)
{
  unsigned int byte;
  enum machine_mode mode;

  mode = GET_MODE (op);
  if (mode == VOIDmode)
    mode = DImode;

  if (TARGET_BIG_ENDIAN ? !high_p : high_p)
    byte = UNITS_PER_WORD;
  else
    byte = 0;

  if (REG_P (op))
    {
      if (FP_REG_P (REGNO (op)))
	return gen_rtx_REG (word_mode, high_p ? REGNO (op) + 1 : REGNO (op));
      if (ACC_HI_REG_P (REGNO (op)))
	return gen_rtx_REG (word_mode, high_p ? REGNO (op) : REGNO (op) + 1);
    }

  if (MEM_P (op))
    return mips_rewrite_small_data (adjust_address (op, word_mode, byte));

  return simplify_gen_subreg (word_mode, op, mode, byte);
}


/* Return true if a 64-bit move from SRC to DEST should be split into two.  */

bool
mips_split_64bit_move_p (rtx dest, rtx src)
{
  if (TARGET_64BIT)
    return false;

  /* FP->FP moves can be done in a single instruction.  */
  if (FP_REG_RTX_P (src) && FP_REG_RTX_P (dest))
    return false;

  /* Check for floating-point loads and stores.  They can be done using
     ldc1 and sdc1 on MIPS II and above.  */
  if (mips_isa > 1)
    {
      if (FP_REG_RTX_P (dest) && MEM_P (src))
	return false;
      if (FP_REG_RTX_P (src) && MEM_P (dest))
	return false;
    }
  return true;
}


/* Split a 64-bit move from SRC to DEST assuming that
   mips_split_64bit_move_p holds.

   Moves into and out of FPRs cause some difficulty here.  Such moves
   will always be DFmode, since paired FPRs are not allowed to store
   DImode values.  The most natural representation would be two separate
   32-bit moves, such as:

	(set (reg:SI $f0) (mem:SI ...))
	(set (reg:SI $f1) (mem:SI ...))

   However, the second insn is invalid because odd-numbered FPRs are
   not allowed to store independent values.  Use the patterns load_df_low,
   load_df_high and store_df_high instead.  */

void
mips_split_64bit_move (rtx dest, rtx src)
{
  if (FP_REG_RTX_P (dest))
    {
      /* Loading an FPR from memory or from GPRs.  */
      emit_insn (gen_load_df_low (copy_rtx (dest), mips_subword (src, 0)));
      emit_insn (gen_load_df_high (dest, mips_subword (src, 1),
				   copy_rtx (dest)));
    }
  else if (FP_REG_RTX_P (src))
    {
      /* Storing an FPR into memory or GPRs.  */
      emit_move_insn (mips_subword (dest, 0), mips_subword (src, 0));
      emit_insn (gen_store_df_high (mips_subword (dest, 1), src));
    }
  else
    {
      /* The operation can be split into two normal moves.  Decide in
	 which order to do them.  */
      rtx low_dest;

      low_dest = mips_subword (dest, 0);
      if (REG_P (low_dest)
	  && reg_overlap_mentioned_p (low_dest, src))
	{
	  emit_move_insn (mips_subword (dest, 1), mips_subword (src, 1));
	  emit_move_insn (low_dest, mips_subword (src, 0));
	}
      else
	{
	  emit_move_insn (low_dest, mips_subword (src, 0));
	  emit_move_insn (mips_subword (dest, 1), mips_subword (src, 1));
	}
    }
}

/* Return the appropriate instructions to move SRC into DEST.  Assume
   that SRC is operand 1 and DEST is operand 0.  */

const char *
mips_output_move (rtx dest, rtx src)
{
  enum rtx_code dest_code, src_code;
  bool dbl_p;

  dest_code = GET_CODE (dest);
  src_code = GET_CODE (src);
  dbl_p = (GET_MODE_SIZE (GET_MODE (dest)) == 8);

  if (dbl_p && mips_split_64bit_move_p (dest, src))
    return "#";

  if ((src_code == REG && GP_REG_P (REGNO (src)))
      || (!TARGET_MIPS16 && src == CONST0_RTX (GET_MODE (dest))))
    {
      if (dest_code == REG)
	{
	  if (GP_REG_P (REGNO (dest)))
	    return "move\t%0,%z1";

	  if (MD_REG_P (REGNO (dest)))
	    return "mt%0\t%z1";

	  if (DSP_ACC_REG_P (REGNO (dest)))
	    {
	      static char retval[] = "mt__\t%z1,%q0";
	      retval[2] = reg_names[REGNO (dest)][4];
	      retval[3] = reg_names[REGNO (dest)][5];
	      return retval;
	    }

	  if (FP_REG_P (REGNO (dest)))
	    return (dbl_p ? "dmtc1\t%z1,%0" : "mtc1\t%z1,%0");

	  if (ALL_COP_REG_P (REGNO (dest)))
	    {
	      static char retval[] = "dmtc_\t%z1,%0";

	      retval[4] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (dest));
	      return (dbl_p ? retval : retval + 1);
	    }
	}
      if (dest_code == MEM)
	return (dbl_p ? "sd\t%z1,%0" : "sw\t%z1,%0");
    }
  if (dest_code == REG && GP_REG_P (REGNO (dest)))
    {
      if (src_code == REG)
	{
	  if (DSP_ACC_REG_P (REGNO (src)))
	    {
	      static char retval[] = "mf__\t%0,%q1";
	      retval[2] = reg_names[REGNO (src)][4];
	      retval[3] = reg_names[REGNO (src)][5];
	      return retval;
	    }

	  if (ST_REG_P (REGNO (src)) && ISA_HAS_8CC)
	    return "lui\t%0,0x3f80\n\tmovf\t%0,%.,%1";

	  if (FP_REG_P (REGNO (src)))
	    return (dbl_p ? "dmfc1\t%0,%1" : "mfc1\t%0,%1");

	  if (ALL_COP_REG_P (REGNO (src)))
	    {
	      static char retval[] = "dmfc_\t%0,%1";

	      retval[4] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (src));
	      return (dbl_p ? retval : retval + 1);
	    }
	}

      if (src_code == MEM)
	return (dbl_p ? "ld\t%0,%1" : "lw\t%0,%1");

      if (src_code == CONST_INT)
	{
	  /* Don't use the X format, because that will give out of
	     range numbers for 64 bit hosts and 32 bit targets.  */
	  if (!TARGET_MIPS16)
	    return "li\t%0,%1\t\t\t# %X1";

	  if (INTVAL (src) >= 0 && INTVAL (src) <= 0xffff)
	    return "li\t%0,%1";

	  if (INTVAL (src) < 0 && INTVAL (src) >= -0xffff)
	    return "#";
	}

      if (src_code == HIGH)
	return "lui\t%0,%h1";

      if (CONST_GP_P (src))
	return "move\t%0,%1";

      if (symbolic_operand (src, VOIDmode))
	return (dbl_p ? "dla\t%0,%1" : "la\t%0,%1");
    }
  if (src_code == REG && FP_REG_P (REGNO (src)))
    {
      if (dest_code == REG && FP_REG_P (REGNO (dest)))
	{
	  if (GET_MODE (dest) == V2SFmode)
	    return "mov.ps\t%0,%1";
	  else
	    return (dbl_p ? "mov.d\t%0,%1" : "mov.s\t%0,%1");
	}

      if (dest_code == MEM)
	return (dbl_p ? "sdc1\t%1,%0" : "swc1\t%1,%0");
    }
  if (dest_code == REG && FP_REG_P (REGNO (dest)))
    {
      if (src_code == MEM)
	return (dbl_p ? "ldc1\t%0,%1" : "lwc1\t%0,%1");
    }
  if (dest_code == REG && ALL_COP_REG_P (REGNO (dest)) && src_code == MEM)
    {
      static char retval[] = "l_c_\t%0,%1";

      retval[1] = (dbl_p ? 'd' : 'w');
      retval[3] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (dest));
      return retval;
    }
  if (dest_code == MEM && src_code == REG && ALL_COP_REG_P (REGNO (src)))
    {
      static char retval[] = "s_c_\t%1,%0";

      retval[1] = (dbl_p ? 'd' : 'w');
      retval[3] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (src));
      return retval;
    }
  gcc_unreachable ();
}

/* Restore $gp from its save slot.  Valid only when using o32 or
   o64 abicalls.  */

void
mips_restore_gp (void)
{
  rtx address, slot;

  gcc_assert (TARGET_ABICALLS && TARGET_OLDABI);

  address = mips_add_offset (pic_offset_table_rtx,
			     frame_pointer_needed
			     ? hard_frame_pointer_rtx
			     : stack_pointer_rtx,
			     current_function_outgoing_args_size);
  slot = gen_rtx_MEM (Pmode, address);

  emit_move_insn (pic_offset_table_rtx, slot);
  if (!TARGET_EXPLICIT_RELOCS)
    emit_insn (gen_blockage ());
}

/* Emit an instruction of the form (set TARGET (CODE OP0 OP1)).  */

static void
mips_emit_binary (enum rtx_code code, rtx target, rtx op0, rtx op1)
{
  emit_insn (gen_rtx_SET (VOIDmode, target,
			  gen_rtx_fmt_ee (code, GET_MODE (target), op0, op1)));
}

/* Return true if CMP1 is a suitable second operand for relational
   operator CODE.  See also the *sCC patterns in mips.md.  */

static bool
mips_relational_operand_ok_p (enum rtx_code code, rtx cmp1)
{
  switch (code)
    {
    case GT:
    case GTU:
      return reg_or_0_operand (cmp1, VOIDmode);

    case GE:
    case GEU:
      return !TARGET_MIPS16 && cmp1 == const1_rtx;

    case LT:
    case LTU:
      return arith_operand (cmp1, VOIDmode);

    case LE:
      return sle_operand (cmp1, VOIDmode);

    case LEU:
      return sleu_operand (cmp1, VOIDmode);

    default:
      gcc_unreachable ();
    }
}

/* Canonicalize LE or LEU comparisons into LT comparisons when
   possible to avoid extra instructions or inverting the
   comparison.  */

static bool
mips_canonicalize_comparison (enum rtx_code *code, rtx *cmp1, 
			      enum machine_mode mode)
{
  HOST_WIDE_INT original, plus_one;

  if (GET_CODE (*cmp1) != CONST_INT)
    return false;
  
  original = INTVAL (*cmp1);
  plus_one = trunc_int_for_mode ((unsigned HOST_WIDE_INT) original + 1, mode);
  
  switch (*code)
    {
    case LE:
      if (original < plus_one)
	{
	  *code = LT;
	  *cmp1 = force_reg (mode, GEN_INT (plus_one));
	  return true;
	}
      break;
      
    case LEU:
      if (plus_one != 0)
	{
	  *code = LTU;
	  *cmp1 = force_reg (mode, GEN_INT (plus_one));
	  return true;
	}
      break;
      
    default:
      return false;
   }
  
  return false;

}

/* Compare CMP0 and CMP1 using relational operator CODE and store the
   result in TARGET.  CMP0 and TARGET are register_operands that have
   the same integer mode.  If INVERT_PTR is nonnull, it's OK to set
   TARGET to the inverse of the result and flip *INVERT_PTR instead.  */

static void
mips_emit_int_relational (enum rtx_code code, bool *invert_ptr,
			  rtx target, rtx cmp0, rtx cmp1)
{
  /* First see if there is a MIPS instruction that can do this operation
     with CMP1 in its current form. If not, try to canonicalize the
     comparison to LT. If that fails, try doing the same for the
     inverse operation.  If that also fails, force CMP1 into a register
     and try again.  */
  if (mips_relational_operand_ok_p (code, cmp1))
    mips_emit_binary (code, target, cmp0, cmp1);
  else if (mips_canonicalize_comparison (&code, &cmp1, GET_MODE (target)))
    mips_emit_binary (code, target, cmp0, cmp1);
  else
    {
      enum rtx_code inv_code = reverse_condition (code);
      if (!mips_relational_operand_ok_p (inv_code, cmp1))
	{
	  cmp1 = force_reg (GET_MODE (cmp0), cmp1);
	  mips_emit_int_relational (code, invert_ptr, target, cmp0, cmp1);
	}
      else if (invert_ptr == 0)
	{
	  rtx inv_target = gen_reg_rtx (GET_MODE (target));
	  mips_emit_binary (inv_code, inv_target, cmp0, cmp1);
	  mips_emit_binary (XOR, target, inv_target, const1_rtx);
	}
      else
	{
	  *invert_ptr = !*invert_ptr;
	  mips_emit_binary (inv_code, target, cmp0, cmp1);
	}
    }
}

/* Return a register that is zero iff CMP0 and CMP1 are equal.
   The register will have the same mode as CMP0.  */

static rtx
mips_zero_if_equal (rtx cmp0, rtx cmp1)
{
  if (cmp1 == const0_rtx)
    return cmp0;

  if (uns_arith_operand (cmp1, VOIDmode))
    return expand_binop (GET_MODE (cmp0), xor_optab,
			 cmp0, cmp1, 0, 0, OPTAB_DIRECT);

  return expand_binop (GET_MODE (cmp0), sub_optab,
		       cmp0, cmp1, 0, 0, OPTAB_DIRECT);
}

/* Convert a comparison into something that can be used in a branch or
   conditional move.  cmp_operands[0] and cmp_operands[1] are the values
   being compared and *CODE is the code used to compare them.

   Update *CODE, *OP0 and *OP1 so that they describe the final comparison.
   If NEED_EQ_NE_P, then only EQ/NE comparisons against zero are possible,
   otherwise any standard branch condition can be used.  The standard branch
   conditions are:

      - EQ/NE between two registers.
      - any comparison between a register and zero.  */

static void
mips_emit_compare (enum rtx_code *code, rtx *op0, rtx *op1, bool need_eq_ne_p)
{
  if (GET_MODE_CLASS (GET_MODE (cmp_operands[0])) == MODE_INT)
    {
      if (!need_eq_ne_p && cmp_operands[1] == const0_rtx)
	{
	  *op0 = cmp_operands[0];
	  *op1 = cmp_operands[1];
	}
      else if (*code == EQ || *code == NE)
	{
	  if (need_eq_ne_p)
	    {
	      *op0 = mips_zero_if_equal (cmp_operands[0], cmp_operands[1]);
	      *op1 = const0_rtx;
	    }
	  else
	    {
	      *op0 = cmp_operands[0];
	      *op1 = force_reg (GET_MODE (*op0), cmp_operands[1]);
	    }
	}
      else
	{
	  /* The comparison needs a separate scc instruction.  Store the
	     result of the scc in *OP0 and compare it against zero.  */
	  bool invert = false;
	  *op0 = gen_reg_rtx (GET_MODE (cmp_operands[0]));
	  *op1 = const0_rtx;
	  mips_emit_int_relational (*code, &invert, *op0,
				    cmp_operands[0], cmp_operands[1]);
	  *code = (invert ? EQ : NE);
	}
    }
  else
    {
      enum rtx_code cmp_code;

      /* Floating-point tests use a separate c.cond.fmt comparison to
	 set a condition code register.  The branch or conditional move
	 will then compare that register against zero.

	 Set CMP_CODE to the code of the comparison instruction and
	 *CODE to the code that the branch or move should use.  */
      switch (*code)
	{
	case NE:
	case LTGT:
	case ORDERED:
	  cmp_code = reverse_condition_maybe_unordered (*code);
	  *code = EQ;
	  break;

	default:
	  cmp_code = *code;
	  *code = NE;
	  break;
	}
      *op0 = (ISA_HAS_8CC
	      ? gen_reg_rtx (CCmode)
	      : gen_rtx_REG (CCmode, FPSW_REGNUM));
      *op1 = const0_rtx;
      mips_emit_binary (cmp_code, *op0, cmp_operands[0], cmp_operands[1]);
    }
}

/* Try comparing cmp_operands[0] and cmp_operands[1] using rtl code CODE.
   Store the result in TARGET and return true if successful.

   On 64-bit targets, TARGET may be wider than cmp_operands[0].  */

bool
mips_emit_scc (enum rtx_code code, rtx target)
{
  if (GET_MODE_CLASS (GET_MODE (cmp_operands[0])) != MODE_INT)
    return false;

  target = gen_lowpart (GET_MODE (cmp_operands[0]), target);
  if (code == EQ || code == NE)
    {
      rtx zie = mips_zero_if_equal (cmp_operands[0], cmp_operands[1]);
      mips_emit_binary (code, target, zie, const0_rtx);
    }
  else
    mips_emit_int_relational (code, 0, target,
			      cmp_operands[0], cmp_operands[1]);
  return true;
}

/* Emit the common code for doing conditional branches.
   operand[0] is the label to jump to.
   The comparison operands are saved away by cmp{si,di,sf,df}.  */

void
gen_conditional_branch (rtx *operands, enum rtx_code code)
{
  rtx op0, op1, target;

  mips_emit_compare (&code, &op0, &op1, TARGET_MIPS16);
  target = gen_rtx_IF_THEN_ELSE (VOIDmode,
				 gen_rtx_fmt_ee (code, GET_MODE (op0),
						 op0, op1),
				 gen_rtx_LABEL_REF (VOIDmode, operands[0]),
				 pc_rtx);
  emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, target));
}

/* Emit the common code for conditional moves.  OPERANDS is the array
   of operands passed to the conditional move define_expand.  */

void
gen_conditional_move (rtx *operands)
{
  enum rtx_code code;
  rtx op0, op1;

  code = GET_CODE (operands[1]);
  mips_emit_compare (&code, &op0, &op1, true);
  emit_insn (gen_rtx_SET (VOIDmode, operands[0],
			  gen_rtx_IF_THEN_ELSE (GET_MODE (operands[0]),
						gen_rtx_fmt_ee (code,
								GET_MODE (op0),
								op0, op1),
						operands[2], operands[3])));
}

/* Emit a conditional trap.  OPERANDS is the array of operands passed to
   the conditional_trap expander.  */

void
mips_gen_conditional_trap (rtx *operands)
{
  rtx op0, op1;
  enum rtx_code cmp_code = GET_CODE (operands[0]);
  enum machine_mode mode = GET_MODE (cmp_operands[0]);

  /* MIPS conditional trap machine instructions don't have GT or LE
     flavors, so we must invert the comparison and convert to LT and
     GE, respectively.  */
  switch (cmp_code)
    {
    case GT: cmp_code = LT; break;
    case LE: cmp_code = GE; break;
    case GTU: cmp_code = LTU; break;
    case LEU: cmp_code = GEU; break;
    default: break;
    }
  if (cmp_code == GET_CODE (operands[0]))
    {
      op0 = cmp_operands[0];
      op1 = cmp_operands[1];
    }
  else
    {
      op0 = cmp_operands[1];
      op1 = cmp_operands[0];
    }
  op0 = force_reg (mode, op0);
  if (!arith_operand (op1, mode))
    op1 = force_reg (mode, op1);

  emit_insn (gen_rtx_TRAP_IF (VOIDmode,
			      gen_rtx_fmt_ee (cmp_code, mode, op0, op1),
			      operands[1]));
}

/* Load function address ADDR into register DEST.  SIBCALL_P is true
   if the address is needed for a sibling call.  */

static void
mips_load_call_address (rtx dest, rtx addr, int sibcall_p)
{
  /* If we're generating PIC, and this call is to a global function,
     try to allow its address to be resolved lazily.  This isn't
     possible for NewABI sibcalls since the value of $gp on entry
     to the stub would be our caller's gp, not ours.  */
  if (TARGET_EXPLICIT_RELOCS
      && !(sibcall_p && TARGET_NEWABI)
      && global_got_operand (addr, VOIDmode))
    {
      rtx high, lo_sum_symbol;

      high = mips_unspec_offset_high (dest, pic_offset_table_rtx,
				      addr, SYMBOL_GOTOFF_CALL);
      lo_sum_symbol = mips_unspec_address (addr, SYMBOL_GOTOFF_CALL);
      if (Pmode == SImode)
	emit_insn (gen_load_callsi (dest, high, lo_sum_symbol));
      else
	emit_insn (gen_load_calldi (dest, high, lo_sum_symbol));
    }
  else
    emit_move_insn (dest, addr);
}


/* Expand a call or call_value instruction.  RESULT is where the
   result will go (null for calls), ADDR is the address of the
   function, ARGS_SIZE is the size of the arguments and AUX is
   the value passed to us by mips_function_arg.  SIBCALL_P is true
   if we are expanding a sibling call, false if we're expanding
   a normal call.  */

void
mips_expand_call (rtx result, rtx addr, rtx args_size, rtx aux, int sibcall_p)
{
  rtx orig_addr, pattern, insn;

  orig_addr = addr;
  if (!call_insn_operand (addr, VOIDmode))
    {
      addr = gen_reg_rtx (Pmode);
      mips_load_call_address (addr, orig_addr, sibcall_p);
    }

  if (TARGET_MIPS16
      && mips16_hard_float
      && build_mips16_call_stub (result, addr, args_size,
				 aux == 0 ? 0 : (int) GET_MODE (aux)))
    return;

  if (result == 0)
    pattern = (sibcall_p
	       ? gen_sibcall_internal (addr, args_size)
	       : gen_call_internal (addr, args_size));
  else if (GET_CODE (result) == PARALLEL && XVECLEN (result, 0) == 2)
    {
      rtx reg1, reg2;

      reg1 = XEXP (XVECEXP (result, 0, 0), 0);
      reg2 = XEXP (XVECEXP (result, 0, 1), 0);
      pattern =
	(sibcall_p
	 ? gen_sibcall_value_multiple_internal (reg1, addr, args_size, reg2)
	 : gen_call_value_multiple_internal (reg1, addr, args_size, reg2));
    }
  else
    pattern = (sibcall_p
	       ? gen_sibcall_value_internal (result, addr, args_size)
	       : gen_call_value_internal (result, addr, args_size));

  insn = emit_call_insn (pattern);

  /* Lazy-binding stubs require $gp to be valid on entry.  */
  if (global_got_operand (orig_addr, VOIDmode))
    use_reg (&CALL_INSN_FUNCTION_USAGE (insn), pic_offset_table_rtx);
}


/* We can handle any sibcall when TARGET_SIBCALLS is true.  */

static bool
mips_function_ok_for_sibcall (tree decl ATTRIBUTE_UNUSED,
			      tree exp ATTRIBUTE_UNUSED)
{
  return TARGET_SIBCALLS;
}

/* Emit code to move general operand SRC into condition-code
   register DEST.  SCRATCH is a scratch TFmode float register.
   The sequence is:

	FP1 = SRC
	FP2 = 0.0f
	DEST = FP2 < FP1

   where FP1 and FP2 are single-precision float registers
   taken from SCRATCH.  */

void
mips_emit_fcc_reload (rtx dest, rtx src, rtx scratch)
{
  rtx fp1, fp2;

  /* Change the source to SFmode.  */
  if (MEM_P (src))
    src = adjust_address (src, SFmode, 0);
  else if (REG_P (src) || GET_CODE (src) == SUBREG)
    src = gen_rtx_REG (SFmode, true_regnum (src));

  fp1 = gen_rtx_REG (SFmode, REGNO (scratch));
  fp2 = gen_rtx_REG (SFmode, REGNO (scratch) + FP_INC);

  emit_move_insn (copy_rtx (fp1), src);
  emit_move_insn (copy_rtx (fp2), CONST0_RTX (SFmode));
  emit_insn (gen_slt_sf (dest, fp2, fp1));
}

/* Emit code to change the current function's return address to
   ADDRESS.  SCRATCH is available as a scratch register, if needed.
   ADDRESS and SCRATCH are both word-mode GPRs.  */

void
mips_set_return_address (rtx address, rtx scratch)
{
  rtx slot_address;

  compute_frame_size (get_frame_size ());
  gcc_assert ((cfun->machine->frame.mask >> 31) & 1);
  slot_address = mips_add_offset (scratch, stack_pointer_rtx,
				  cfun->machine->frame.gp_sp_offset);

  emit_move_insn (gen_rtx_MEM (GET_MODE (address), slot_address), address);
}

/* Emit straight-line code to move LENGTH bytes from SRC to DEST.
   Assume that the areas do not overlap.  */

static void
mips_block_move_straight (rtx dest, rtx src, HOST_WIDE_INT length)
{
  HOST_WIDE_INT offset, delta;
  unsigned HOST_WIDE_INT bits;
  int i;
  enum machine_mode mode;
  rtx *regs;

  /* Work out how many bits to move at a time.  If both operands have
     half-word alignment, it is usually better to move in half words.
     For instance, lh/lh/sh/sh is usually better than lwl/lwr/swl/swr
     and lw/lw/sw/sw is usually better than ldl/ldr/sdl/sdr.
     Otherwise move word-sized chunks.  */
  if (MEM_ALIGN (src) == BITS_PER_WORD / 2
      && MEM_ALIGN (dest) == BITS_PER_WORD / 2)
    bits = BITS_PER_WORD / 2;
  else
    bits = BITS_PER_WORD;

  mode = mode_for_size (bits, MODE_INT, 0);
  delta = bits / BITS_PER_UNIT;

  /* Allocate a buffer for the temporary registers.  */
  regs = alloca (sizeof (rtx) * length / delta);

  /* Load as many BITS-sized chunks as possible.  Use a normal load if
     the source has enough alignment, otherwise use left/right pairs.  */
  for (offset = 0, i = 0; offset + delta <= length; offset += delta, i++)
    {
      regs[i] = gen_reg_rtx (mode);
      if (MEM_ALIGN (src) >= bits)
	emit_move_insn (regs[i], adjust_address (src, mode, offset));
      else
	{
	  rtx part = adjust_address (src, BLKmode, offset);
	  if (!mips_expand_unaligned_load (regs[i], part, bits, 0))
	    gcc_unreachable ();
	}
    }

  /* Copy the chunks to the destination.  */
  for (offset = 0, i = 0; offset + delta <= length; offset += delta, i++)
    if (MEM_ALIGN (dest) >= bits)
      emit_move_insn (adjust_address (dest, mode, offset), regs[i]);
    else
      {
	rtx part = adjust_address (dest, BLKmode, offset);
	if (!mips_expand_unaligned_store (part, regs[i], bits, 0))
	  gcc_unreachable ();
      }

  /* Mop up any left-over bytes.  */
  if (offset < length)
    {
      src = adjust_address (src, BLKmode, offset);
      dest = adjust_address (dest, BLKmode, offset);
      move_by_pieces (dest, src, length - offset,
		      MIN (MEM_ALIGN (src), MEM_ALIGN (dest)), 0);
    }
}

#define MAX_MOVE_REGS 4
#define MAX_MOVE_BYTES (MAX_MOVE_REGS * UNITS_PER_WORD)


/* Helper function for doing a loop-based block operation on memory
   reference MEM.  Each iteration of the loop will operate on LENGTH
   bytes of MEM.

   Create a new base register for use within the loop and point it to
   the start of MEM.  Create a new memory reference that uses this
   register.  Store them in *LOOP_REG and *LOOP_MEM respectively.  */

static void
mips_adjust_block_mem (rtx mem, HOST_WIDE_INT length,
		       rtx *loop_reg, rtx *loop_mem)
{
  *loop_reg = copy_addr_to_reg (XEXP (mem, 0));

  /* Although the new mem does not refer to a known location,
     it does keep up to LENGTH bytes of alignment.  */
  *loop_mem = change_address (mem, BLKmode, *loop_reg);
  set_mem_align (*loop_mem, MIN (MEM_ALIGN (mem), length * BITS_PER_UNIT));
}


/* Move LENGTH bytes from SRC to DEST using a loop that moves MAX_MOVE_BYTES
   per iteration.  LENGTH must be at least MAX_MOVE_BYTES.  Assume that the
   memory regions do not overlap.  */

static void
mips_block_move_loop (rtx dest, rtx src, HOST_WIDE_INT length)
{
  rtx label, src_reg, dest_reg, final_src;
  HOST_WIDE_INT leftover;

  leftover = length % MAX_MOVE_BYTES;
  length -= leftover;

  /* Create registers and memory references for use within the loop.  */
  mips_adjust_block_mem (src, MAX_MOVE_BYTES, &src_reg, &src);
  mips_adjust_block_mem (dest, MAX_MOVE_BYTES, &dest_reg, &dest);

  /* Calculate the value that SRC_REG should have after the last iteration
     of the loop.  */
  final_src = expand_simple_binop (Pmode, PLUS, src_reg, GEN_INT (length),
				   0, 0, OPTAB_WIDEN);

  /* Emit the start of the loop.  */
  label = gen_label_rtx ();
  emit_label (label);

  /* Emit the loop body.  */
  mips_block_move_straight (dest, src, MAX_MOVE_BYTES);

  /* Move on to the next block.  */
  emit_move_insn (src_reg, plus_constant (src_reg, MAX_MOVE_BYTES));
  emit_move_insn (dest_reg, plus_constant (dest_reg, MAX_MOVE_BYTES));

  /* Emit the loop condition.  */
  if (Pmode == DImode)
    emit_insn (gen_cmpdi (src_reg, final_src));
  else
    emit_insn (gen_cmpsi (src_reg, final_src));
  emit_jump_insn (gen_bne (label));

  /* Mop up any left-over bytes.  */
  if (leftover)
    mips_block_move_straight (dest, src, leftover);
}

/* Expand a movmemsi instruction.  */

bool
mips_expand_block_move (rtx dest, rtx src, rtx length)
{
  if (GET_CODE (length) == CONST_INT)
    {
      if (INTVAL (length) <= 2 * MAX_MOVE_BYTES)
	{
	  mips_block_move_straight (dest, src, INTVAL (length));
	  return true;
	}
      else if (optimize)
	{
	  mips_block_move_loop (dest, src, INTVAL (length));
	  return true;
	}
    }
  return false;
}

/* Argument support functions.  */

/* Initialize CUMULATIVE_ARGS for a function.  */

void
init_cumulative_args (CUMULATIVE_ARGS *cum, tree fntype,
		      rtx libname ATTRIBUTE_UNUSED)
{
  static CUMULATIVE_ARGS zero_cum;
  tree param, next_param;

  *cum = zero_cum;
  cum->prototype = (fntype && TYPE_ARG_TYPES (fntype));

  /* Determine if this function has variable arguments.  This is
     indicated by the last argument being 'void_type_mode' if there
     are no variable arguments.  The standard MIPS calling sequence
     passes all arguments in the general purpose registers in this case.  */

  for (param = fntype ? TYPE_ARG_TYPES (fntype) : 0;
       param != 0; param = next_param)
    {
      next_param = TREE_CHAIN (param);
      if (next_param == 0 && TREE_VALUE (param) != void_type_node)
	cum->gp_reg_found = 1;
    }
}


/* Fill INFO with information about a single argument.  CUM is the
   cumulative state for earlier arguments.  MODE is the mode of this
   argument and TYPE is its type (if known).  NAMED is true if this
   is a named (fixed) argument rather than a variable one.  */

static void
mips_arg_info (const CUMULATIVE_ARGS *cum, enum machine_mode mode,
	       tree type, int named, struct mips_arg_info *info)
{
  bool doubleword_aligned_p;
  unsigned int num_bytes, num_words, max_regs;

  /* Work out the size of the argument.  */
  num_bytes = type ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
  num_words = (num_bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;

  /* Decide whether it should go in a floating-point register, assuming
     one is free.  Later code checks for availability.

     The checks against UNITS_PER_FPVALUE handle the soft-float and
     single-float cases.  */
  switch (mips_abi)
    {
    case ABI_EABI:
      /* The EABI conventions have traditionally been defined in terms
	 of TYPE_MODE, regardless of the actual type.  */
      info->fpr_p = ((GET_MODE_CLASS (mode) == MODE_FLOAT
		      || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
		     && GET_MODE_SIZE (mode) <= UNITS_PER_FPVALUE);
      break;

    case ABI_32:
    case ABI_O64:
      /* Only leading floating-point scalars are passed in
	 floating-point registers.  We also handle vector floats the same
	 say, which is OK because they are not covered by the standard ABI.  */
      info->fpr_p = (!cum->gp_reg_found
		     && cum->arg_number < 2
		     && (type == 0 || SCALAR_FLOAT_TYPE_P (type)
			 || VECTOR_FLOAT_TYPE_P (type))
		     && (GET_MODE_CLASS (mode) == MODE_FLOAT
			 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
		     && GET_MODE_SIZE (mode) <= UNITS_PER_FPVALUE);
      break;

    case ABI_N32:
    case ABI_64:
      /* Scalar and complex floating-point types are passed in
	 floating-point registers.  */
      info->fpr_p = (named
		     && (type == 0 || FLOAT_TYPE_P (type))
		     && (GET_MODE_CLASS (mode) == MODE_FLOAT
			 || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
			 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
		     && GET_MODE_UNIT_SIZE (mode) <= UNITS_PER_FPVALUE);

      /* ??? According to the ABI documentation, the real and imaginary
	 parts of complex floats should be passed in individual registers.
	 The real and imaginary parts of stack arguments are supposed
	 to be contiguous and there should be an extra word of padding
	 at the end.

	 This has two problems.  First, it makes it impossible to use a
	 single "void *" va_list type, since register and stack arguments
	 are passed differently.  (At the time of writing, MIPSpro cannot
	 handle complex float varargs correctly.)  Second, it's unclear
	 what should happen when there is only one register free.

	 For now, we assume that named complex floats should go into FPRs
	 if there are two FPRs free, otherwise they should be passed in the
	 same way as a struct containing two floats.  */
      if (info->fpr_p
	  && GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
	  && GET_MODE_UNIT_SIZE (mode) < UNITS_PER_FPVALUE)
	{
	  if (cum->num_gprs >= MAX_ARGS_IN_REGISTERS - 1)
	    info->fpr_p = false;
	  else
	    num_words = 2;
	}
      break;

    default:
      gcc_unreachable ();
    }

  /* See whether the argument has doubleword alignment.  */
  doubleword_aligned_p = FUNCTION_ARG_BOUNDARY (mode, type) > BITS_PER_WORD;

  /* Set REG_OFFSET to the register count we're interested in.
     The EABI allocates the floating-point registers separately,
     but the other ABIs allocate them like integer registers.  */
  info->reg_offset = (mips_abi == ABI_EABI && info->fpr_p
		      ? cum->num_fprs
		      : cum->num_gprs);

  /* Advance to an even register if the argument is doubleword-aligned.  */
  if (doubleword_aligned_p)
    info->reg_offset += info->reg_offset & 1;

  /* Work out the offset of a stack argument.  */
  info->stack_offset = cum->stack_words;
  if (doubleword_aligned_p)
    info->stack_offset += info->stack_offset & 1;

  max_regs = MAX_ARGS_IN_REGISTERS - info->reg_offset;

  /* Partition the argument between registers and stack.  */
  info->reg_words = MIN (num_words, max_regs);
  info->stack_words = num_words - info->reg_words;
}


/* Implement FUNCTION_ARG_ADVANCE.  */

void
function_arg_advance (CUMULATIVE_ARGS *cum, enum machine_mode mode,
		      tree type, int named)
{
  struct mips_arg_info info;

  mips_arg_info (cum, mode, type, named, &info);

  if (!info.fpr_p)
    cum->gp_reg_found = true;

  /* See the comment above the cumulative args structure in mips.h
     for an explanation of what this code does.  It assumes the O32
     ABI, which passes at most 2 arguments in float registers.  */
  if (cum->arg_number < 2 && info.fpr_p)
    cum->fp_code += (mode == SFmode ? 1 : 2) << ((cum->arg_number - 1) * 2);

  if (mips_abi != ABI_EABI || !info.fpr_p)
    cum->num_gprs = info.reg_offset + info.reg_words;
  else if (info.reg_words > 0)
    cum->num_fprs += FP_INC;

  if (info.stack_words > 0)
    cum->stack_words = info.stack_offset + info.stack_words;

  cum->arg_number++;
}

/* Implement FUNCTION_ARG.  */

struct rtx_def *
function_arg (const CUMULATIVE_ARGS *cum, enum machine_mode mode,
	      tree type, int named)
{
  struct mips_arg_info info;

  /* We will be called with a mode of VOIDmode after the last argument
     has been seen.  Whatever we return will be passed to the call
     insn.  If we need a mips16 fp_code, return a REG with the code
     stored as the mode.  */
  if (mode == VOIDmode)
    {
      if (TARGET_MIPS16 && cum->fp_code != 0)
	return gen_rtx_REG ((enum machine_mode) cum->fp_code, 0);

      else
	return 0;
    }

  mips_arg_info (cum, mode, type, named, &info);

  /* Return straight away if the whole argument is passed on the stack.  */
  if (info.reg_offset == MAX_ARGS_IN_REGISTERS)
    return 0;

  if (type != 0
      && TREE_CODE (type) == RECORD_TYPE
      && TARGET_NEWABI
      && TYPE_SIZE_UNIT (type)
      && host_integerp (TYPE_SIZE_UNIT (type), 1)
      && named)
    {
      /* The Irix 6 n32/n64 ABIs say that if any 64 bit chunk of the
	 structure contains a double in its entirety, then that 64 bit
	 chunk is passed in a floating point register.  */
      tree field;

      /* First check to see if there is any such field.  */
      for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
	if (TREE_CODE (field) == FIELD_DECL
	    && TREE_CODE (TREE_TYPE (field)) == REAL_TYPE
	    && TYPE_PRECISION (TREE_TYPE (field)) == BITS_PER_WORD
	    && host_integerp (bit_position (field), 0)
	    && int_bit_position (field) % BITS_PER_WORD == 0)
	  break;

      if (field != 0)
	{
	  /* Now handle the special case by returning a PARALLEL
	     indicating where each 64 bit chunk goes.  INFO.REG_WORDS
	     chunks are passed in registers.  */
	  unsigned int i;
	  HOST_WIDE_INT bitpos;
	  rtx ret;

	  /* assign_parms checks the mode of ENTRY_PARM, so we must
	     use the actual mode here.  */
	  ret = gen_rtx_PARALLEL (mode, rtvec_alloc (info.reg_words));

	  bitpos = 0;
	  field = TYPE_FIELDS (type);
	  for (i = 0; i < info.reg_words; i++)
	    {
	      rtx reg;

	      for (; field; field = TREE_CHAIN (field))
		if (TREE_CODE (field) == FIELD_DECL
		    && int_bit_position (field) >= bitpos)
		  break;

	      if (field
		  && int_bit_position (field) == bitpos
		  && TREE_CODE (TREE_TYPE (field)) == REAL_TYPE
		  && !TARGET_SOFT_FLOAT
		  && TYPE_PRECISION (TREE_TYPE (field)) == BITS_PER_WORD)
		reg = gen_rtx_REG (DFmode, FP_ARG_FIRST + info.reg_offset + i);
	      else
		reg = gen_rtx_REG (DImode, GP_ARG_FIRST + info.reg_offset + i);

	      XVECEXP (ret, 0, i)
		= gen_rtx_EXPR_LIST (VOIDmode, reg,
				     GEN_INT (bitpos / BITS_PER_UNIT));

	      bitpos += BITS_PER_WORD;
	    }
	  return ret;
	}
    }

  /* Handle the n32/n64 conventions for passing complex floating-point
     arguments in FPR pairs.  The real part goes in the lower register
     and the imaginary part goes in the upper register.  */
  if (TARGET_NEWABI
      && info.fpr_p
      && GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
    {
      rtx real, imag;
      enum machine_mode inner;
      int reg;

      inner = GET_MODE_INNER (mode);
      reg = FP_ARG_FIRST + info.reg_offset;
      real = gen_rtx_EXPR_LIST (VOIDmode,
				gen_rtx_REG (inner, reg),
				const0_rtx);
      imag = gen_rtx_EXPR_LIST (VOIDmode,
				gen_rtx_REG (inner, reg + info.reg_words / 2),
				GEN_INT (GET_MODE_SIZE (inner)));
      return gen_rtx_PARALLEL (mode, gen_rtvec (2, real, imag));
    }

  if (!info.fpr_p)
    return gen_rtx_REG (mode, GP_ARG_FIRST + info.reg_offset);
  else if (info.reg_offset == 1)
    /* This code handles the special o32 case in which the second word
       of the argument structure is passed in floating-point registers.  */
    return gen_rtx_REG (mode, FP_ARG_FIRST + FP_INC);
  else
    return gen_rtx_REG (mode, FP_ARG_FIRST + info.reg_offset);
}


/* Implement TARGET_ARG_PARTIAL_BYTES.  */

static int
mips_arg_partial_bytes (CUMULATIVE_ARGS *cum,
			enum machine_mode mode, tree type, bool named)
{
  struct mips_arg_info info;

  mips_arg_info (cum, mode, type, named, &info);
  return info.stack_words > 0 ? info.reg_words * UNITS_PER_WORD : 0;
}


/* Implement FUNCTION_ARG_BOUNDARY.  Every parameter gets at least
   PARM_BOUNDARY bits of alignment, but will be given anything up
   to STACK_BOUNDARY bits if the type requires it.  */

int
function_arg_boundary (enum machine_mode mode, tree type)
{
  unsigned int alignment;

  alignment = type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode);
  if (alignment < PARM_BOUNDARY)
    alignment = PARM_BOUNDARY;
  if (alignment > STACK_BOUNDARY)
    alignment = STACK_BOUNDARY;
  return alignment;
}

/* Return true if FUNCTION_ARG_PADDING (MODE, TYPE) should return
   upward rather than downward.  In other words, return true if the
   first byte of the stack slot has useful data, false if the last
   byte does.  */

bool
mips_pad_arg_upward (enum machine_mode mode, tree type)
{
  /* On little-endian targets, the first byte of every stack argument
     is passed in the first byte of the stack slot.  */
  if (!BYTES_BIG_ENDIAN)
    return true;

  /* Otherwise, integral types are padded downward: the last byte of a
     stack argument is passed in the last byte of the stack slot.  */
  if (type != 0
      ? INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type)
      : GET_MODE_CLASS (mode) == MODE_INT)
    return false;

  /* Big-endian o64 pads floating-point arguments downward.  */
  if (mips_abi == ABI_O64)
    if (type != 0 ? FLOAT_TYPE_P (type) : GET_MODE_CLASS (mode) == MODE_FLOAT)
      return false;

  /* Other types are padded upward for o32, o64, n32 and n64.  */
  if (mips_abi != ABI_EABI)
    return true;

  /* Arguments smaller than a stack slot are padded downward.  */
  if (mode != BLKmode)
    return (GET_MODE_BITSIZE (mode) >= PARM_BOUNDARY);
  else
    return (int_size_in_bytes (type) >= (PARM_BOUNDARY / BITS_PER_UNIT));
}


/* Likewise BLOCK_REG_PADDING (MODE, TYPE, ...).  Return !BYTES_BIG_ENDIAN
   if the least significant byte of the register has useful data.  Return
   the opposite if the most significant byte does.  */

bool
mips_pad_reg_upward (enum machine_mode mode, tree type)
{
  /* No shifting is required for floating-point arguments.  */
  if (type != 0 ? FLOAT_TYPE_P (type) : GET_MODE_CLASS (mode) == MODE_FLOAT)
    return !BYTES_BIG_ENDIAN;

  /* Otherwise, apply the same padding to register arguments as we do
     to stack arguments.  */
  return mips_pad_arg_upward (mode, type);
}

static void
mips_setup_incoming_varargs (CUMULATIVE_ARGS *cum, enum machine_mode mode,
			     tree type, int *pretend_size ATTRIBUTE_UNUSED,
			     int no_rtl)
{
  CUMULATIVE_ARGS local_cum;
  int gp_saved, fp_saved;

  /* The caller has advanced CUM up to, but not beyond, the last named
     argument.  Advance a local copy of CUM past the last "real" named
     argument, to find out how many registers are left over.  */

  local_cum = *cum;
  FUNCTION_ARG_ADVANCE (local_cum, mode, type, 1);

  /* Found out how many registers we need to save.  */
  gp_saved = MAX_ARGS_IN_REGISTERS - local_cum.num_gprs;
  fp_saved = (EABI_FLOAT_VARARGS_P
	      ? MAX_ARGS_IN_REGISTERS - local_cum.num_fprs
	      : 0);

  if (!no_rtl)
    {
      if (gp_saved > 0)
	{
	  rtx ptr, mem;

	  ptr = plus_constant (virtual_incoming_args_rtx,
			       REG_PARM_STACK_SPACE (cfun->decl)
			       - gp_saved * UNITS_PER_WORD);
	  mem = gen_rtx_MEM (BLKmode, ptr);
	  set_mem_alias_set (mem, get_varargs_alias_set ());

	  move_block_from_reg (local_cum.num_gprs + GP_ARG_FIRST,
			       mem, gp_saved);
	}
      if (fp_saved > 0)
	{
	  /* We can't use move_block_from_reg, because it will use
	     the wrong mode.  */
	  enum machine_mode mode;
	  int off, i;

	  /* Set OFF to the offset from virtual_incoming_args_rtx of
	     the first float register.  The FP save area lies below
	     the integer one, and is aligned to UNITS_PER_FPVALUE bytes.  */
	  off = -gp_saved * UNITS_PER_WORD;
	  off &= ~(UNITS_PER_FPVALUE - 1);
	  off -= fp_saved * UNITS_PER_FPREG;

	  mode = TARGET_SINGLE_FLOAT ? SFmode : DFmode;

	  for (i = local_cum.num_fprs; i < MAX_ARGS_IN_REGISTERS; i += FP_INC)
	    {
	      rtx ptr, mem;

	      ptr = plus_constant (virtual_incoming_args_rtx, off);
	      mem = gen_rtx_MEM (mode, ptr);
	      set_mem_alias_set (mem, get_varargs_alias_set ());
	      emit_move_insn (mem, gen_rtx_REG (mode, FP_ARG_FIRST + i));
	      off += UNITS_PER_HWFPVALUE;
	    }
	}
    }
  if (REG_PARM_STACK_SPACE (cfun->decl) == 0)
    cfun->machine->varargs_size = (gp_saved * UNITS_PER_WORD
				   + fp_saved * UNITS_PER_FPREG);
}

/* Create the va_list data type.
   We keep 3 pointers, and two offsets.
   Two pointers are to the overflow area, which starts at the CFA.
     One of these is constant, for addressing into the GPR save area below it.
     The other is advanced up the stack through the overflow region.
   The third pointer is to the GPR save area.  Since the FPR save area
     is just below it, we can address FPR slots off this pointer.
   We also keep two one-byte offsets, which are to be subtracted from the
     constant pointers to yield addresses in the GPR and FPR save areas.
     These are downcounted as float or non-float arguments are used,
     and when they get to zero, the argument must be obtained from the
     overflow region.
   If !EABI_FLOAT_VARARGS_P, then no FPR save area exists, and a single
     pointer is enough.  It's started at the GPR save area, and is
     advanced, period.
   Note that the GPR save area is not constant size, due to optimization
     in the prologue.  Hence, we can't use a design with two pointers
     and two offsets, although we could have designed this with two pointers
     and three offsets.  */

static tree
mips_build_builtin_va_list (void)
{
  if (EABI_FLOAT_VARARGS_P)
    {
      tree f_ovfl, f_gtop, f_ftop, f_goff, f_foff, f_res, record;
      tree array, index;

      record = (*lang_hooks.types.make_type) (RECORD_TYPE);

      f_ovfl = build_decl (FIELD_DECL, get_identifier ("__overflow_argptr"),
			  ptr_type_node);
      f_gtop = build_decl (FIELD_DECL, get_identifier ("__gpr_top"),
			  ptr_type_node);
      f_ftop = build_decl (FIELD_DECL, get_identifier ("__fpr_top"),
			  ptr_type_node);
      f_goff = build_decl (FIELD_DECL, get_identifier ("__gpr_offset"),
			  unsigned_char_type_node);
      f_foff = build_decl (FIELD_DECL, get_identifier ("__fpr_offset"),
			  unsigned_char_type_node);
      /* Explicitly pad to the size of a pointer, so that -Wpadded won't
	 warn on every user file.  */
      index = build_int_cst (NULL_TREE, GET_MODE_SIZE (ptr_mode) - 2 - 1);
      array = build_array_type (unsigned_char_type_node,
			        build_index_type (index));
      f_res = build_decl (FIELD_DECL, get_identifier ("__reserved"), array);

      DECL_FIELD_CONTEXT (f_ovfl) = record;
      DECL_FIELD_CONTEXT (f_gtop) = record;
      DECL_FIELD_CONTEXT (f_ftop) = record;
      DECL_FIELD_CONTEXT (f_goff) = record;
      DECL_FIELD_CONTEXT (f_foff) = record;
      DECL_FIELD_CONTEXT (f_res) = record;

      TYPE_FIELDS (record) = f_ovfl;
      TREE_CHAIN (f_ovfl) = f_gtop;
      TREE_CHAIN (f_gtop) = f_ftop;
      TREE_CHAIN (f_ftop) = f_goff;
      TREE_CHAIN (f_goff) = f_foff;
      TREE_CHAIN (f_foff) = f_res;

      layout_type (record);
      return record;
    }
  else if (TARGET_IRIX && TARGET_IRIX6)
    /* On IRIX 6, this type is 'char *'.  */
    return build_pointer_type (char_type_node);
  else
    /* Otherwise, we use 'void *'.  */
    return ptr_type_node;
}

/* Implement va_start.  */

void
mips_va_start (tree valist, rtx nextarg)
{
  if (EABI_FLOAT_VARARGS_P)
    {
      const CUMULATIVE_ARGS *cum;
      tree f_ovfl, f_gtop, f_ftop, f_goff, f_foff;
      tree ovfl, gtop, ftop, goff, foff;
      tree t;
      int gpr_save_area_size;
      int fpr_save_area_size;
      int fpr_offset;

      cum = &current_function_args_info;
      gpr_save_area_size
	= (MAX_ARGS_IN_REGISTERS - cum->num_gprs) * UNITS_PER_WORD;
      fpr_save_area_size
	= (MAX_ARGS_IN_REGISTERS - cum->num_fprs) * UNITS_PER_FPREG;

      f_ovfl = TYPE_FIELDS (va_list_type_node);
      f_gtop = TREE_CHAIN (f_ovfl);
      f_ftop = TREE_CHAIN (f_gtop);
      f_goff = TREE_CHAIN (f_ftop);
      f_foff = TREE_CHAIN (f_goff);

      ovfl = build (COMPONENT_REF, TREE_TYPE (f_ovfl), valist, f_ovfl,
		    NULL_TREE);
      gtop = build (COMPONENT_REF, TREE_TYPE (f_gtop), valist, f_gtop,
		    NULL_TREE);
      ftop = build (COMPONENT_REF, TREE_TYPE (f_ftop), valist, f_ftop,
		    NULL_TREE);
      goff = build (COMPONENT_REF, TREE_TYPE (f_goff), valist, f_goff,
		    NULL_TREE);
      foff = build (COMPONENT_REF, TREE_TYPE (f_foff), valist, f_foff,
		    NULL_TREE);

      /* Emit code to initialize OVFL, which points to the next varargs
	 stack argument.  CUM->STACK_WORDS gives the number of stack
	 words used by named arguments.  */
      t = make_tree (TREE_TYPE (ovfl), virtual_incoming_args_rtx);
      if (cum->stack_words > 0)
	t = build (PLUS_EXPR, TREE_TYPE (ovfl), t,
		   build_int_cst (NULL_TREE,
				  cum->stack_words * UNITS_PER_WORD));
      t = build (MODIFY_EXPR, TREE_TYPE (ovfl), ovfl, t);
      expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);

      /* Emit code to initialize GTOP, the top of the GPR save area.  */
      t = make_tree (TREE_TYPE (gtop), virtual_incoming_args_rtx);
      t = build (MODIFY_EXPR, TREE_TYPE (gtop), gtop, t);
      expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);

      /* Emit code to initialize FTOP, the top of the FPR save area.
	 This address is gpr_save_area_bytes below GTOP, rounded
	 down to the next fp-aligned boundary.  */
      t = make_tree (TREE_TYPE (ftop), virtual_incoming_args_rtx);
      fpr_offset = gpr_save_area_size + UNITS_PER_FPVALUE - 1;
      fpr_offset &= ~(UNITS_PER_FPVALUE - 1);
      if (fpr_offset)
	t = build (PLUS_EXPR, TREE_TYPE (ftop), t,
		   build_int_cst (NULL_TREE, -fpr_offset));
      t = build (MODIFY_EXPR, TREE_TYPE (ftop), ftop, t);
      expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);

      /* Emit code to initialize GOFF, the offset from GTOP of the
	 next GPR argument.  */
      t = build (MODIFY_EXPR, TREE_TYPE (goff), goff,
		 build_int_cst (NULL_TREE, gpr_save_area_size));
      expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);

      /* Likewise emit code to initialize FOFF, the offset from FTOP
	 of the next FPR argument.  */
      t = build (MODIFY_EXPR, TREE_TYPE (foff), foff,
		 build_int_cst (NULL_TREE, fpr_save_area_size));
      expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
    }
  else
    {
      nextarg = plus_constant (nextarg, -cfun->machine->varargs_size);
      std_expand_builtin_va_start (valist, nextarg);
    }
}

/* Implement va_arg.  */

static tree
mips_gimplify_va_arg_expr (tree valist, tree type, tree *pre_p, tree *post_p)
{
  HOST_WIDE_INT size, rsize;
  tree addr;
  bool indirect;

  indirect = pass_by_reference (NULL, TYPE_MODE (type), type, 0);

  if (indirect)
    type = build_pointer_type (type);

  size = int_size_in_bytes (type);
  rsize = (size + UNITS_PER_WORD - 1) & -UNITS_PER_WORD;

  if (mips_abi != ABI_EABI || !EABI_FLOAT_VARARGS_P)
    addr = std_gimplify_va_arg_expr (valist, type, pre_p, post_p);
  else
    {
      /* Not a simple merged stack.	 */

      tree f_ovfl, f_gtop, f_ftop, f_goff, f_foff;
      tree ovfl, top, off, align;
      HOST_WIDE_INT osize;
      tree t, u;

      f_ovfl = TYPE_FIELDS (va_list_type_node);
      f_gtop = TREE_CHAIN (f_ovfl);
      f_ftop = TREE_CHAIN (f_gtop);
      f_goff = TREE_CHAIN (f_ftop);
      f_foff = TREE_CHAIN (f_goff);

      /* We maintain separate pointers and offsets for floating-point
	 and integer arguments, but we need similar code in both cases.
	 Let:

	 TOP be the top of the register save area;
	 OFF be the offset from TOP of the next register;
	 ADDR_RTX be the address of the argument;
	 RSIZE be the number of bytes used to store the argument
	 when it's in the register save area;
	 OSIZE be the number of bytes used to store it when it's
	 in the stack overflow area; and
	 PADDING be (BYTES_BIG_ENDIAN ? OSIZE - RSIZE : 0)

	 The code we want is:

	 1: off &= -rsize;	  // round down
	 2: if (off != 0)
	 3:   {
	 4:	 addr_rtx = top - off;
	 5:	 off -= rsize;
	 6:   }
	 7: else
	 8:   {
	 9:	 ovfl += ((intptr_t) ovfl + osize - 1) & -osize;
	 10:	 addr_rtx = ovfl + PADDING;
	 11:	 ovfl += osize;
	 14:   }

	 [1] and [9] can sometimes be optimized away.  */

      ovfl = build (COMPONENT_REF, TREE_TYPE (f_ovfl), valist, f_ovfl,
		    NULL_TREE);

      if (GET_MODE_CLASS (TYPE_MODE (type)) == MODE_FLOAT
	  && GET_MODE_SIZE (TYPE_MODE (type)) <= UNITS_PER_FPVALUE)
	{
	  top = build (COMPONENT_REF, TREE_TYPE (f_ftop), valist, f_ftop,
		       NULL_TREE);
	  off = build (COMPONENT_REF, TREE_TYPE (f_foff), valist, f_foff,
		       NULL_TREE);

	  /* When floating-point registers are saved to the stack,
	     each one will take up UNITS_PER_HWFPVALUE bytes, regardless
	     of the float's precision.  */
	  rsize = UNITS_PER_HWFPVALUE;

	  /* Overflow arguments are padded to UNITS_PER_WORD bytes
	     (= PARM_BOUNDARY bits).  This can be different from RSIZE
	     in two cases:

	     (1) On 32-bit targets when TYPE is a structure such as:

	     struct s { float f; };

	     Such structures are passed in paired FPRs, so RSIZE
	     will be 8 bytes.  However, the structure only takes
	     up 4 bytes of memory, so OSIZE will only be 4.

	     (2) In combinations such as -mgp64 -msingle-float
	     -fshort-double.  Doubles passed in registers
	     will then take up 4 (UNITS_PER_HWFPVALUE) bytes,
	     but those passed on the stack take up
	     UNITS_PER_WORD bytes.  */
	  osize = MAX (GET_MODE_SIZE (TYPE_MODE (type)), UNITS_PER_WORD);
	}
      else
	{
	  top = build (COMPONENT_REF, TREE_TYPE (f_gtop), valist, f_gtop,
		       NULL_TREE);
	  off = build (COMPONENT_REF, TREE_TYPE (f_goff), valist, f_goff,
		       NULL_TREE);
	  if (rsize > UNITS_PER_WORD)
	    {
	      /* [1] Emit code for: off &= -rsize.	*/
	      t = build (BIT_AND_EXPR, TREE_TYPE (off), off,
			 build_int_cst (NULL_TREE, -rsize));
	      t = build (MODIFY_EXPR, TREE_TYPE (off), off, t);
	      gimplify_and_add (t, pre_p);
	    }
	  osize = rsize;
	}

      /* [2] Emit code to branch if off == 0.  */
      t = build (NE_EXPR, boolean_type_node, off,
		 build_int_cst (TREE_TYPE (off), 0));
      addr = build (COND_EXPR, ptr_type_node, t, NULL, NULL);

      /* [5] Emit code for: off -= rsize.  We do this as a form of
	 post-increment not available to C.  Also widen for the
	 coming pointer arithmetic.  */
      t = fold_convert (TREE_TYPE (off), build_int_cst (NULL_TREE, rsize));
      t = build (POSTDECREMENT_EXPR, TREE_TYPE (off), off, t);
      t = fold_convert (sizetype, t);
      t = fold_convert (TREE_TYPE (top), t);

      /* [4] Emit code for: addr_rtx = top - off.  On big endian machines,
	 the argument has RSIZE - SIZE bytes of leading padding.  */
      t = build (MINUS_EXPR, TREE_TYPE (top), top, t);
      if (BYTES_BIG_ENDIAN && rsize > size)
	{
	  u = fold_convert (TREE_TYPE (t), build_int_cst (NULL_TREE,
							  rsize - size));
	  t = build (PLUS_EXPR, TREE_TYPE (t), t, u);
	}
      COND_EXPR_THEN (addr) = t;

      if (osize > UNITS_PER_WORD)
	{
	  /* [9] Emit: ovfl += ((intptr_t) ovfl + osize - 1) & -osize.  */
	  u = fold_convert (TREE_TYPE (ovfl),
			    build_int_cst (NULL_TREE, osize - 1));
	  t = build (PLUS_EXPR, TREE_TYPE (ovfl), ovfl, u);
	  u = fold_convert (TREE_TYPE (ovfl),
			    build_int_cst (NULL_TREE, -osize));
	  t = build (BIT_AND_EXPR, TREE_TYPE (ovfl), t, u);
	  align = build (MODIFY_EXPR, TREE_TYPE (ovfl), ovfl, t);
	}
      else
	align = NULL;

      /* [10, 11].	Emit code to store ovfl in addr_rtx, then
	 post-increment ovfl by osize.  On big-endian machines,
	 the argument has OSIZE - SIZE bytes of leading padding.  */
      u = fold_convert (TREE_TYPE (ovfl),
			build_int_cst (NULL_TREE, osize));
      t = build (POSTINCREMENT_EXPR, TREE_TYPE (ovfl), ovfl, u);
      if (BYTES_BIG_ENDIAN && osize > size)
	{
	  u = fold_convert (TREE_TYPE (t),
			    build_int_cst (NULL_TREE, osize - size));
	  t = build (PLUS_EXPR, TREE_TYPE (t), t, u);
	}

      /* String [9] and [10,11] together.  */
      if (align)
	t = build (COMPOUND_EXPR, TREE_TYPE (t), align, t);
      COND_EXPR_ELSE (addr) = t;

      addr = fold_convert (build_pointer_type (type), addr);
      addr = build_va_arg_indirect_ref (addr);
    }

  if (indirect)
    addr = build_va_arg_indirect_ref (addr);

  return addr;
}

/* Return true if it is possible to use left/right accesses for a
   bitfield of WIDTH bits starting BITPOS bits into *OP.  When
   returning true, update *OP, *LEFT and *RIGHT as follows:

   *OP is a BLKmode reference to the whole field.

   *LEFT is a QImode reference to the first byte if big endian or
   the last byte if little endian.  This address can be used in the
   left-side instructions (lwl, swl, ldl, sdl).

   *RIGHT is a QImode reference to the opposite end of the field and
   can be used in the patterning right-side instruction.  */

static bool
mips_get_unaligned_mem (rtx *op, unsigned int width, int bitpos,
			rtx *left, rtx *right)
{
  rtx first, last;

  /* Check that the operand really is a MEM.  Not all the extv and
     extzv predicates are checked.  */
  if (!MEM_P (*op))
    return false;

  /* Check that the size is valid.  */
  if (width != 32 && (!TARGET_64BIT || width != 64))
    return false;

  /* We can only access byte-aligned values.  Since we are always passed
     a reference to the first byte of the field, it is not necessary to
     do anything with BITPOS after this check.  */
  if (bitpos % BITS_PER_UNIT != 0)
    return false;

  /* Reject aligned bitfields: we want to use a normal load or store
     instead of a left/right pair.  */
  if (MEM_ALIGN (*op) >= width)
    return false;

  /* Adjust *OP to refer to the whole field.  This also has the effect
     of legitimizing *OP's address for BLKmode, possibly simplifying it.  */
  *op = adjust_address (*op, BLKmode, 0);
  set_mem_size (*op, GEN_INT (width / BITS_PER_UNIT));

  /* Get references to both ends of the field.  We deliberately don't
     use the original QImode *OP for FIRST since the new BLKmode one
     might have a simpler address.  */
  first = adjust_address (*op, QImode, 0);
  last = adjust_address (*op, QImode, width / BITS_PER_UNIT - 1);

  /* Allocate to LEFT and RIGHT according to endianness.  LEFT should
     be the upper word and RIGHT the lower word.  */
  if (TARGET_BIG_ENDIAN)
    *left = first, *right = last;
  else
    *left = last, *right = first;

  return true;
}


/* Try to emit the equivalent of (set DEST (zero_extract SRC WIDTH BITPOS)).
   Return true on success.  We only handle cases where zero_extract is
   equivalent to sign_extract.  */

bool
mips_expand_unaligned_load (rtx dest, rtx src, unsigned int width, int bitpos)
{
  rtx left, right, temp;

  /* If TARGET_64BIT, the destination of a 32-bit load will be a
     paradoxical word_mode subreg.  This is the only case in which
     we allow the destination to be larger than the source.  */
  if (GET_CODE (dest) == SUBREG
      && GET_MODE (dest) == DImode
      && SUBREG_BYTE (dest) == 0
      && GET_MODE (SUBREG_REG (dest)) == SImode)
    dest = SUBREG_REG (dest);

  /* After the above adjustment, the destination must be the same
     width as the source.  */
  if (GET_MODE_BITSIZE (GET_MODE (dest)) != width)
    return false;

  if (!mips_get_unaligned_mem (&src, width, bitpos, &left, &right))
    return false;

  temp = gen_reg_rtx (GET_MODE (dest));
  if (GET_MODE (dest) == DImode)
    {
      emit_insn (gen_mov_ldl (temp, src, left));
      emit_insn (gen_mov_ldr (dest, copy_rtx (src), right, temp));
    }
  else
    {
      emit_insn (gen_mov_lwl (temp, src, left));
      emit_insn (gen_mov_lwr (dest, copy_rtx (src), right, temp));
    }
  return true;
}


/* Try to expand (set (zero_extract DEST WIDTH BITPOS) SRC).  Return
   true on success.  */

bool
mips_expand_unaligned_store (rtx dest, rtx src, unsigned int width, int bitpos)
{
  rtx left, right;
  enum machine_mode mode;

  if (!mips_get_unaligned_mem (&dest, width, bitpos, &left, &right))
    return false;

  mode = mode_for_size (width, MODE_INT, 0);
  src = gen_lowpart (mode, src);

  if (mode == DImode)
    {
      emit_insn (gen_mov_sdl (dest, src, left));
      emit_insn (gen_mov_sdr (copy_rtx (dest), copy_rtx (src), right));
    }
  else
    {
      emit_insn (gen_mov_swl (dest, src, left));
      emit_insn (gen_mov_swr (copy_rtx (dest), copy_rtx (src), right));
    }
  return true;
}

/* Return true if X is a MEM with the same size as MODE.  */

bool
mips_mem_fits_mode_p (enum machine_mode mode, rtx x)
{
  rtx size;

  if (!MEM_P (x))
    return false;

  size = MEM_SIZE (x);
  return size && INTVAL (size) == GET_MODE_SIZE (mode);
}

/* Return true if (zero_extract OP SIZE POSITION) can be used as the
   source of an "ext" instruction or the destination of an "ins"
   instruction.  OP must be a register operand and the following
   conditions must hold:

     0 <= POSITION < GET_MODE_BITSIZE (GET_MODE (op))
     0 < SIZE <= GET_MODE_BITSIZE (GET_MODE (op))
     0 < POSITION + SIZE <= GET_MODE_BITSIZE (GET_MODE (op))

   Also reject lengths equal to a word as they are better handled
   by the move patterns.  */

bool
mips_use_ins_ext_p (rtx op, rtx size, rtx position)
{
  HOST_WIDE_INT len, pos;

  if (!ISA_HAS_EXT_INS
      || !register_operand (op, VOIDmode)
      || GET_MODE_BITSIZE (GET_MODE (op)) > BITS_PER_WORD)
    return false;

  len = INTVAL (size);
  pos = INTVAL (position);
  
  if (len <= 0 || len >= GET_MODE_BITSIZE (GET_MODE (op)) 
      || pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (op)))
    return false;

  return true;
}

/* Set up globals to generate code for the ISA or processor
   described by INFO.  */

static void
mips_set_architecture (const struct mips_cpu_info *info)
{
  if (info != 0)
    {
      mips_arch_info = info;
      mips_arch = info->cpu;
      mips_isa = info->isa;
    }
}


/* Likewise for tuning.  */

static void
mips_set_tune (const struct mips_cpu_info *info)
{
  if (info != 0)
    {
      mips_tune_info = info;
      mips_tune = info->cpu;
    }
}

/* Implement TARGET_HANDLE_OPTION.  */

static bool
mips_handle_option (size_t code, const char *arg, int value ATTRIBUTE_UNUSED)
{
  switch (code)
    {
    case OPT_mabi_:
      if (strcmp (arg, "32") == 0)
	mips_abi = ABI_32;
      else if (strcmp (arg, "o64") == 0)
	mips_abi = ABI_O64;
      else if (strcmp (arg, "n32") == 0)
	mips_abi = ABI_N32;
      else if (strcmp (arg, "64") == 0)
	mips_abi = ABI_64;
      else if (strcmp (arg, "eabi") == 0)
	mips_abi = ABI_EABI;
      else
	return false;
      return true;

    case OPT_march_:
    case OPT_mtune_:
      return mips_parse_cpu (arg) != 0;

    case OPT_mips:
      mips_isa_info = mips_parse_cpu (ACONCAT (("mips", arg, NULL)));
      return mips_isa_info != 0;

    case OPT_mno_flush_func:
      mips_cache_flush_func = NULL;
      return true;

    default:
      return true;
    }
}

/* Set up the threshold for data to go into the small data area, instead
   of the normal data area, and detect any conflicts in the switches.  */

void
override_options (void)
{
  int i, start, regno;
  enum machine_mode mode;

  mips_section_threshold = g_switch_set ? g_switch_value : MIPS_DEFAULT_GVALUE;

  /* The following code determines the architecture and register size.
     Similar code was added to GAS 2.14 (see tc-mips.c:md_after_parse_args()).
     The GAS and GCC code should be kept in sync as much as possible.  */

  if (mips_arch_string != 0)
    mips_set_architecture (mips_parse_cpu (mips_arch_string));

  if (mips_isa_info != 0)
    {
      if (mips_arch_info == 0)
	mips_set_architecture (mips_isa_info);
      else if (mips_arch_info->isa != mips_isa_info->isa)
	error ("-%s conflicts with the other architecture options, "
	       "which specify a %s processor",
	       mips_isa_info->name,
	       mips_cpu_info_from_isa (mips_arch_info->isa)->name);
    }

  if (mips_arch_info == 0)
    {
#ifdef MIPS_CPU_STRING_DEFAULT
      mips_set_architecture (mips_parse_cpu (MIPS_CPU_STRING_DEFAULT));
#else
      mips_set_architecture (mips_cpu_info_from_isa (MIPS_ISA_DEFAULT));
#endif
    }

  if (ABI_NEEDS_64BIT_REGS && !ISA_HAS_64BIT_REGS)
    error ("-march=%s is not compatible with the selected ABI",
	   mips_arch_info->name);

  /* Optimize for mips_arch, unless -mtune selects a different processor.  */
  if (mips_tune_string != 0)
    mips_set_tune (mips_parse_cpu (mips_tune_string));

  if (mips_tune_info == 0)
    mips_set_tune (mips_arch_info);

  /* Set cost structure for the processor.  */
  mips_cost = &mips_rtx_cost_data[mips_tune];

  if ((target_flags_explicit & MASK_64BIT) != 0)
    {
      /* The user specified the size of the integer registers.  Make sure
	 it agrees with the ABI and ISA.  */
      if (TARGET_64BIT && !ISA_HAS_64BIT_REGS)
	error ("-mgp64 used with a 32-bit processor");
      else if (!TARGET_64BIT && ABI_NEEDS_64BIT_REGS)
	error ("-mgp32 used with a 64-bit ABI");
      else if (TARGET_64BIT && ABI_NEEDS_32BIT_REGS)
	error ("-mgp64 used with a 32-bit ABI");
    }
  else
    {
      /* Infer the integer register size from the ABI and processor.
	 Restrict ourselves to 32-bit registers if that's all the
	 processor has, or if the ABI cannot handle 64-bit registers.  */
      if (ABI_NEEDS_32BIT_REGS || !ISA_HAS_64BIT_REGS)
	target_flags &= ~MASK_64BIT;
      else
	target_flags |= MASK_64BIT;
    }

  if ((target_flags_explicit & MASK_FLOAT64) != 0)
    {
      /* Really, -mfp32 and -mfp64 are ornamental options.  There's
	 only one right answer here.  */
      if (TARGET_64BIT && TARGET_DOUBLE_FLOAT && !TARGET_FLOAT64)
	error ("unsupported combination: %s", "-mgp64 -mfp32 -mdouble-float");
      else if (!TARGET_64BIT && TARGET_FLOAT64)
	error ("unsupported combination: %s", "-mgp32 -mfp64");
      else if (TARGET_SINGLE_FLOAT && TARGET_FLOAT64)
	error ("unsupported combination: %s", "-mfp64 -msingle-float");
    }
  else
    {
      /* -msingle-float selects 32-bit float registers.  Otherwise the
	 float registers should be the same size as the integer ones.  */
      if (TARGET_64BIT && TARGET_DOUBLE_FLOAT)
	target_flags |= MASK_FLOAT64;
      else
	target_flags &= ~MASK_FLOAT64;
    }

  /* End of code shared with GAS.  */

  if ((target_flags_explicit & MASK_LONG64) == 0)
    {
      if ((mips_abi == ABI_EABI && TARGET_64BIT) || mips_abi == ABI_64)
	target_flags |= MASK_LONG64;
      else
	target_flags &= ~MASK_LONG64;
    }

  if (MIPS_MARCH_CONTROLS_SOFT_FLOAT
      && (target_flags_explicit & MASK_SOFT_FLOAT) == 0)
    {
      /* For some configurations, it is useful to have -march control
	 the default setting of MASK_SOFT_FLOAT.  */
      switch ((int) mips_arch)
	{
	case PROCESSOR_R4100:
	case PROCESSOR_R4111:
	case PROCESSOR_R4120:
	case PROCESSOR_R4130:
	  target_flags |= MASK_SOFT_FLOAT;
	  break;

	default:
	  target_flags &= ~MASK_SOFT_FLOAT;
	  break;
	}
    }

  if (!TARGET_OLDABI)
    flag_pcc_struct_return = 0;

  if ((target_flags_explicit & MASK_BRANCHLIKELY) == 0)
    {
      /* If neither -mbranch-likely nor -mno-branch-likely was given
	 on the command line, set MASK_BRANCHLIKELY based on the target
	 architecture.

	 By default, we enable use of Branch Likely instructions on
	 all architectures which support them with the following
	 exceptions: when creating MIPS32 or MIPS64 code, and when
	 tuning for architectures where their use tends to hurt
	 performance.

	 The MIPS32 and MIPS64 architecture specifications say "Software
	 is strongly encouraged to avoid use of Branch Likely
	 instructions, as they will be removed from a future revision
	 of the [MIPS32 and MIPS64] architecture."  Therefore, we do not
	 issue those instructions unless instructed to do so by
	 -mbranch-likely.  */
      if (ISA_HAS_BRANCHLIKELY
	  && !(ISA_MIPS32 || ISA_MIPS32R2 || ISA_MIPS64)
	  && !(TUNE_MIPS5500 || TUNE_SB1))
	target_flags |= MASK_BRANCHLIKELY;
      else
	target_flags &= ~MASK_BRANCHLIKELY;
    }
  if (TARGET_BRANCHLIKELY && !ISA_HAS_BRANCHLIKELY)
    warning (0, "generation of Branch Likely instructions enabled, but not supported by architecture");

  /* The effect of -mabicalls isn't defined for the EABI.  */
  if (mips_abi == ABI_EABI && TARGET_ABICALLS)
    {
      error ("unsupported combination: %s", "-mabicalls -mabi=eabi");
      target_flags &= ~MASK_ABICALLS;
    }

  /* -fpic (-KPIC) is the default when TARGET_ABICALLS is defined.  We need
     to set flag_pic so that the LEGITIMATE_PIC_OPERAND_P macro will work.  */
  /* ??? -non_shared turns off pic code generation, but this is not
     implemented.  */
  if (TARGET_ABICALLS)
    {
      flag_pic = 1;
      if (mips_section_threshold > 0)
	warning (0, "-G is incompatible with PIC code which is the default");
    }

  /* mips_split_addresses is a half-way house between explicit
     relocations and the traditional assembler macros.  It can
     split absolute 32-bit symbolic constants into a high/lo_sum
     pair but uses macros for other sorts of access.

     Like explicit relocation support for REL targets, it relies
     on GNU extensions in the assembler and the linker.

     Although this code should work for -O0, it has traditionally
     been treated as an optimization.  */
  if (!TARGET_MIPS16 && TARGET_SPLIT_ADDRESSES
      && optimize && !flag_pic
      && !ABI_HAS_64BIT_SYMBOLS)
    mips_split_addresses = 1;
  else
    mips_split_addresses = 0;

  /* -mvr4130-align is a "speed over size" optimization: it usually produces
     faster code, but at the expense of more nops.  Enable it at -O3 and
     above.  */
  if (optimize > 2 && (target_flags_explicit & MASK_VR4130_ALIGN) == 0)
    target_flags |= MASK_VR4130_ALIGN;

  /* When compiling for the mips16, we cannot use floating point.  We
     record the original hard float value in mips16_hard_float.  */
  if (TARGET_MIPS16)
    {
      if (TARGET_SOFT_FLOAT)
	mips16_hard_float = 0;
      else
	mips16_hard_float = 1;
      target_flags |= MASK_SOFT_FLOAT;

      /* Don't run the scheduler before reload, since it tends to
         increase register pressure.  */
      flag_schedule_insns = 0;

      /* Don't do hot/cold partitioning.  The constant layout code expects
	 the whole function to be in a single section.  */
      flag_reorder_blocks_and_partition = 0;

      /* Silently disable -mexplicit-relocs since it doesn't apply
	 to mips16 code.  Even so, it would overly pedantic to warn
	 about "-mips16 -mexplicit-relocs", especially given that
	 we use a %gprel() operator.  */
      target_flags &= ~MASK_EXPLICIT_RELOCS;
    }

  /* When using explicit relocs, we call dbr_schedule from within
     mips_reorg.  */
  if (TARGET_EXPLICIT_RELOCS)
    {
      mips_flag_delayed_branch = flag_delayed_branch;
      flag_delayed_branch = 0;
    }

#ifdef MIPS_TFMODE_FORMAT
  REAL_MODE_FORMAT (TFmode) = &MIPS_TFMODE_FORMAT;
#endif

  /* Make sure that the user didn't turn off paired single support when
     MIPS-3D support is requested.  */
  if (TARGET_MIPS3D && (target_flags_explicit & MASK_PAIRED_SINGLE_FLOAT)
      && !TARGET_PAIRED_SINGLE_FLOAT)
    error ("-mips3d requires -mpaired-single");

  /* If TARGET_MIPS3D, enable MASK_PAIRED_SINGLE_FLOAT.  */
  if (TARGET_MIPS3D)
    target_flags |= MASK_PAIRED_SINGLE_FLOAT;

  /* Make sure that when TARGET_PAIRED_SINGLE_FLOAT is true, TARGET_FLOAT64
     and TARGET_HARD_FLOAT are both true.  */
  if (TARGET_PAIRED_SINGLE_FLOAT && !(TARGET_FLOAT64 && TARGET_HARD_FLOAT))
    error ("-mips3d/-mpaired-single must be used with -mfp64 -mhard-float");

  /* Make sure that the ISA supports TARGET_PAIRED_SINGLE_FLOAT when it is
     enabled.  */
  if (TARGET_PAIRED_SINGLE_FLOAT && !ISA_MIPS64)
    error ("-mips3d/-mpaired-single must be used with -mips64");

  if (TARGET_MIPS16 && TARGET_DSP)
    error ("-mips16 and -mdsp cannot be used together");

  mips_print_operand_punct['?'] = 1;
  mips_print_operand_punct['#'] = 1;
  mips_print_operand_punct['/'] = 1;
  mips_print_operand_punct['&'] = 1;
  mips_print_operand_punct['!'] = 1;
  mips_print_operand_punct['*'] = 1;
  mips_print_operand_punct['@'] = 1;
  mips_print_operand_punct['.'] = 1;
  mips_print_operand_punct['('] = 1;
  mips_print_operand_punct[')'] = 1;
  mips_print_operand_punct['['] = 1;
  mips_print_operand_punct[']'] = 1;
  mips_print_operand_punct['<'] = 1;
  mips_print_operand_punct['>'] = 1;
  mips_print_operand_punct['{'] = 1;
  mips_print_operand_punct['}'] = 1;
  mips_print_operand_punct['^'] = 1;
  mips_print_operand_punct['$'] = 1;
  mips_print_operand_punct['+'] = 1;
  mips_print_operand_punct['~'] = 1;

  mips_char_to_class['d'] = TARGET_MIPS16 ? M16_REGS : GR_REGS;
  mips_char_to_class['t'] = T_REG;
  mips_char_to_class['f'] = (TARGET_HARD_FLOAT ? FP_REGS : NO_REGS);
  mips_char_to_class['h'] = HI_REG;
  mips_char_to_class['l'] = LO_REG;
  mips_char_to_class['x'] = MD_REGS;
  mips_char_to_class['b'] = ALL_REGS;
  mips_char_to_class['c'] = (TARGET_ABICALLS ? PIC_FN_ADDR_REG :
			     TARGET_MIPS16 ? M16_NA_REGS :
			     GR_REGS);
  mips_char_to_class['e'] = LEA_REGS;
  mips_char_to_class['j'] = PIC_FN_ADDR_REG;
  mips_char_to_class['v'] = V1_REG;
  mips_char_to_class['y'] = GR_REGS;
  mips_char_to_class['z'] = ST_REGS;
  mips_char_to_class['B'] = COP0_REGS;
  mips_char_to_class['C'] = COP2_REGS;
  mips_char_to_class['D'] = COP3_REGS;
  mips_char_to_class['A'] = DSP_ACC_REGS;
  mips_char_to_class['a'] = ACC_REGS;

  /* Set up array to map GCC register number to debug register number.
     Ignore the special purpose register numbers.  */

  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    mips_dbx_regno[i] = -1;

  start = GP_DBX_FIRST - GP_REG_FIRST;
  for (i = GP_REG_FIRST; i <= GP_REG_LAST; i++)
    mips_dbx_regno[i] = i + start;

  start = FP_DBX_FIRST - FP_REG_FIRST;
  for (i = FP_REG_FIRST; i <= FP_REG_LAST; i++)
    mips_dbx_regno[i] = i + start;

  mips_dbx_regno[HI_REGNUM] = MD_DBX_FIRST + 0;
  mips_dbx_regno[LO_REGNUM] = MD_DBX_FIRST + 1;

  /* Set up array giving whether a given register can hold a given mode.  */

  for (mode = VOIDmode;
       mode != MAX_MACHINE_MODE;
       mode = (enum machine_mode) ((int)mode + 1))
    {
      register int size		     = GET_MODE_SIZE (mode);
      register enum mode_class class = GET_MODE_CLASS (mode);

      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
	{
	  register int temp;

	  if (mode == CCV2mode)
	    temp = (ISA_HAS_8CC
		    && ST_REG_P (regno)
		    && (regno - ST_REG_FIRST) % 2 == 0);

	  else if (mode == CCV4mode)
	    temp = (ISA_HAS_8CC
		    && ST_REG_P (regno)
		    && (regno - ST_REG_FIRST) % 4 == 0);

	  else if (mode == CCmode)
	    {
	      if (! ISA_HAS_8CC)
		temp = (regno == FPSW_REGNUM);
	      else
		temp = (ST_REG_P (regno) || GP_REG_P (regno)
			|| FP_REG_P (regno));
	    }

	  else if (GP_REG_P (regno))
	    temp = ((regno & 1) == 0 || size <= UNITS_PER_WORD);

	  else if (FP_REG_P (regno))
	    temp = ((regno % FP_INC) == 0)
		    && (((class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT
			  || class == MODE_VECTOR_FLOAT)
			 && size <= UNITS_PER_FPVALUE)
			/* Allow integer modes that fit into a single
			   register.  We need to put integers into FPRs
			   when using instructions like cvt and trunc.
			   We can't allow sizes smaller than a word,
			   the FPU has no appropriate load/store
			   instructions for those.  */
			|| (class == MODE_INT
			    && size >= MIN_UNITS_PER_WORD
			    && size <= UNITS_PER_FPREG)
			/* Allow TFmode for CCmode reloads.  */
			|| (ISA_HAS_8CC && mode == TFmode));

          else if (ACC_REG_P (regno))
	    temp = (INTEGRAL_MODE_P (mode)
		    && (size <= UNITS_PER_WORD
			|| (ACC_HI_REG_P (regno)
			    && size == 2 * UNITS_PER_WORD)));

	  else if (ALL_COP_REG_P (regno))
	    temp = (class == MODE_INT && size <= UNITS_PER_WORD);
	  else
	    temp = 0;

	  mips_hard_regno_mode_ok[(int)mode][regno] = temp;
	}
    }

  /* Save GPR registers in word_mode sized hunks.  word_mode hasn't been
     initialized yet, so we can't use that here.  */
  gpr_mode = TARGET_64BIT ? DImode : SImode;

  /* Provide default values for align_* for 64-bit targets.  */
  if (TARGET_64BIT && !TARGET_MIPS16)
    {
      if (align_loops == 0)
	align_loops = 8;
      if (align_jumps == 0)
	align_jumps = 8;
      if (align_functions == 0)
	align_functions = 8;
    }

  /* Function to allocate machine-dependent function status.  */
  init_machine_status = &mips_init_machine_status;

  if (ABI_HAS_64BIT_SYMBOLS)
    {
      if (TARGET_EXPLICIT_RELOCS)
	{
	  mips_split_p[SYMBOL_64_HIGH] = true;
	  mips_hi_relocs[SYMBOL_64_HIGH] = "%highest(";
	  mips_lo_relocs[SYMBOL_64_HIGH] = "%higher(";

	  mips_split_p[SYMBOL_64_MID] = true;
	  mips_hi_relocs[SYMBOL_64_MID] = "%higher(";
	  mips_lo_relocs[SYMBOL_64_MID] = "%hi(";

	  mips_split_p[SYMBOL_64_LOW] = true;
	  mips_hi_relocs[SYMBOL_64_LOW] = "%hi(";
	  mips_lo_relocs[SYMBOL_64_LOW] = "%lo(";

	  mips_split_p[SYMBOL_GENERAL] = true;
	  mips_lo_relocs[SYMBOL_GENERAL] = "%lo(";
	}
    }
  else
    {
      if (TARGET_EXPLICIT_RELOCS || mips_split_addresses)
	{
	  mips_split_p[SYMBOL_GENERAL] = true;
	  mips_hi_relocs[SYMBOL_GENERAL] = "%hi(";
	  mips_lo_relocs[SYMBOL_GENERAL] = "%lo(";
	}
    }

  if (TARGET_MIPS16)
    {
      /* The high part is provided by a pseudo copy of $gp.  */
      mips_split_p[SYMBOL_SMALL_DATA] = true;
      mips_lo_relocs[SYMBOL_SMALL_DATA] = "%gprel(";
    }

  if (TARGET_EXPLICIT_RELOCS)
    {
      /* Small data constants are kept whole until after reload,
	 then lowered by mips_rewrite_small_data.  */
      mips_lo_relocs[SYMBOL_SMALL_DATA] = "%gp_rel(";

      mips_split_p[SYMBOL_GOT_LOCAL] = true;
      if (TARGET_NEWABI)
	{
	  mips_lo_relocs[SYMBOL_GOTOFF_PAGE] = "%got_page(";
	  mips_lo_relocs[SYMBOL_GOT_LOCAL] = "%got_ofst(";
	}
      else
	{
	  mips_lo_relocs[SYMBOL_GOTOFF_PAGE] = "%got(";
	  mips_lo_relocs[SYMBOL_GOT_LOCAL] = "%lo(";
	}

      if (TARGET_XGOT)
	{
	  /* The HIGH and LO_SUM are matched by special .md patterns.  */
	  mips_split_p[SYMBOL_GOT_GLOBAL] = true;

	  mips_split_p[SYMBOL_GOTOFF_GLOBAL] = true;
	  mips_hi_relocs[SYMBOL_GOTOFF_GLOBAL] = "%got_hi(";
	  mips_lo_relocs[SYMBOL_GOTOFF_GLOBAL] = "%got_lo(";

	  mips_split_p[SYMBOL_GOTOFF_CALL] = true;
	  mips_hi_relocs[SYMBOL_GOTOFF_CALL] = "%call_hi(";
	  mips_lo_relocs[SYMBOL_GOTOFF_CALL] = "%call_lo(";
	}
      else
	{
	  if (TARGET_NEWABI)
	    mips_lo_relocs[SYMBOL_GOTOFF_GLOBAL] = "%got_disp(";
	  else
	    mips_lo_relocs[SYMBOL_GOTOFF_GLOBAL] = "%got(";
	  mips_lo_relocs[SYMBOL_GOTOFF_CALL] = "%call16(";
	}
    }

  if (TARGET_NEWABI)
    {
      mips_split_p[SYMBOL_GOTOFF_LOADGP] = true;
      mips_hi_relocs[SYMBOL_GOTOFF_LOADGP] = "%hi(%neg(%gp_rel(";
      mips_lo_relocs[SYMBOL_GOTOFF_LOADGP] = "%lo(%neg(%gp_rel(";
    }

  /* Thread-local relocation operators.  */
  mips_lo_relocs[SYMBOL_TLSGD] = "%tlsgd(";
  mips_lo_relocs[SYMBOL_TLSLDM] = "%tlsldm(";
  mips_split_p[SYMBOL_DTPREL] = 1;
  mips_hi_relocs[SYMBOL_DTPREL] = "%dtprel_hi(";
  mips_lo_relocs[SYMBOL_DTPREL] = "%dtprel_lo(";
  mips_lo_relocs[SYMBOL_GOTTPREL] = "%gottprel(";
  mips_split_p[SYMBOL_TPREL] = 1;
  mips_hi_relocs[SYMBOL_TPREL] = "%tprel_hi(";
  mips_lo_relocs[SYMBOL_TPREL] = "%tprel_lo(";

  /* We don't have a thread pointer access instruction on MIPS16, or
     appropriate TLS relocations.  */
  if (TARGET_MIPS16)
    targetm.have_tls = false;

  /* Default to working around R4000 errata only if the processor
     was selected explicitly.  */
  if ((target_flags_explicit & MASK_FIX_R4000) == 0
      && mips_matching_cpu_name_p (mips_arch_info->name, "r4000"))
    target_flags |= MASK_FIX_R4000;

  /* Default to working around R4400 errata only if the processor
     was selected explicitly.  */
  if ((target_flags_explicit & MASK_FIX_R4400) == 0
      && mips_matching_cpu_name_p (mips_arch_info->name, "r4400"))
    target_flags |= MASK_FIX_R4400;
}

/* Implement CONDITIONAL_REGISTER_USAGE.  */

void
mips_conditional_register_usage (void)
{
  if (!TARGET_DSP)
    {
      int regno;

      for (regno = DSP_ACC_REG_FIRST; regno <= DSP_ACC_REG_LAST; regno++)
	fixed_regs[regno] = call_used_regs[regno] = 1;
    }
  if (!TARGET_HARD_FLOAT)
    {
      int regno;

      for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++)
	fixed_regs[regno] = call_used_regs[regno] = 1;
      for (regno = ST_REG_FIRST; regno <= ST_REG_LAST; regno++)
	fixed_regs[regno] = call_used_regs[regno] = 1;
    }
  else if (! ISA_HAS_8CC)
    {
      int regno;

      /* We only have a single condition code register.  We
	 implement this by hiding all the condition code registers,
	 and generating RTL that refers directly to ST_REG_FIRST.  */
      for (regno = ST_REG_FIRST; regno <= ST_REG_LAST; regno++)
	fixed_regs[regno] = call_used_regs[regno] = 1;
    }
  /* In mips16 mode, we permit the $t temporary registers to be used
     for reload.  We prohibit the unused $s registers, since they
     are caller saved, and saving them via a mips16 register would
     probably waste more time than just reloading the value.  */
  if (TARGET_MIPS16)
    {
      fixed_regs[18] = call_used_regs[18] = 1;
      fixed_regs[19] = call_used_regs[19] = 1;
      fixed_regs[20] = call_used_regs[20] = 1;
      fixed_regs[21] = call_used_regs[21] = 1;
      fixed_regs[22] = call_used_regs[22] = 1;
      fixed_regs[23] = call_used_regs[23] = 1;
      fixed_regs[26] = call_used_regs[26] = 1;
      fixed_regs[27] = call_used_regs[27] = 1;
      fixed_regs[30] = call_used_regs[30] = 1;
    }
  /* fp20-23 are now caller saved.  */
  if (mips_abi == ABI_64)
    {
      int regno;
      for (regno = FP_REG_FIRST + 20; regno < FP_REG_FIRST + 24; regno++)
	call_really_used_regs[regno] = call_used_regs[regno] = 1;
    }
  /* Odd registers from fp21 to fp31 are now caller saved.  */
  if (mips_abi == ABI_N32)
    {
      int regno;
      for (regno = FP_REG_FIRST + 21; regno <= FP_REG_FIRST + 31; regno+=2)
	call_really_used_regs[regno] = call_used_regs[regno] = 1;
    }
}

/* Allocate a chunk of memory for per-function machine-dependent data.  */
static struct machine_function *
mips_init_machine_status (void)
{
  return ((struct machine_function *)
	  ggc_alloc_cleared (sizeof (struct machine_function)));
}

/* On the mips16, we want to allocate $24 (T_REG) before other
   registers for instructions for which it is possible.  This helps
   avoid shuffling registers around in order to set up for an xor,
   encouraging the compiler to use a cmp instead.  */

void
mips_order_regs_for_local_alloc (void)
{
  register int i;

  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    reg_alloc_order[i] = i;

  if (TARGET_MIPS16)
    {
      /* It really doesn't matter where we put register 0, since it is
         a fixed register anyhow.  */
      reg_alloc_order[0] = 24;
      reg_alloc_order[24] = 0;
    }
}


/* The MIPS debug format wants all automatic variables and arguments
   to be in terms of the virtual frame pointer (stack pointer before
   any adjustment in the function), while the MIPS 3.0 linker wants
   the frame pointer to be the stack pointer after the initial
   adjustment.  So, we do the adjustment here.  The arg pointer (which
   is eliminated) points to the virtual frame pointer, while the frame
   pointer (which may be eliminated) points to the stack pointer after
   the initial adjustments.  */

HOST_WIDE_INT
mips_debugger_offset (rtx addr, HOST_WIDE_INT offset)
{
  rtx offset2 = const0_rtx;
  rtx reg = eliminate_constant_term (addr, &offset2);

  if (offset == 0)
    offset = INTVAL (offset2);

  if (reg == stack_pointer_rtx || reg == frame_pointer_rtx
      || reg == hard_frame_pointer_rtx)
    {
      HOST_WIDE_INT frame_size = (!cfun->machine->frame.initialized)
				  ? compute_frame_size (get_frame_size ())
				  : cfun->machine->frame.total_size;

      /* MIPS16 frame is smaller */
      if (frame_pointer_needed && TARGET_MIPS16)
	frame_size -= cfun->machine->frame.args_size;

      offset = offset - frame_size;
    }

  /* sdbout_parms does not want this to crash for unrecognized cases.  */
#if 0
  else if (reg != arg_pointer_rtx)
    fatal_insn ("mips_debugger_offset called with non stack/frame/arg pointer",
		addr);
#endif

  return offset;
}

/* Implement the PRINT_OPERAND macro.  The MIPS-specific operand codes are:

   'X'  OP is CONST_INT, prints 32 bits in hexadecimal format = "0x%08x",
   'x'  OP is CONST_INT, prints 16 bits in hexadecimal format = "0x%04x",
   'h'  OP is HIGH, prints %hi(X),
   'd'  output integer constant in decimal,
   'z'	if the operand is 0, use $0 instead of normal operand.
   'D'  print second part of double-word register or memory operand.
   'L'  print low-order register of double-word register operand.
   'M'  print high-order register of double-word register operand.
   'C'  print part of opcode for a branch condition.
   'F'  print part of opcode for a floating-point branch condition.
   'N'  print part of opcode for a branch condition, inverted.
   'W'  print part of opcode for a floating-point branch condition, inverted.
   'T'  print 'f' for (eq:CC ...), 't' for (ne:CC ...),
	      'z' for (eq:?I ...), 'n' for (ne:?I ...).
   't'  like 'T', but with the EQ/NE cases reversed
   'Y'  for a CONST_INT X, print mips_fp_conditions[X]
   'Z'  print the operand and a comma for ISA_HAS_8CC, otherwise print nothing
   'R'  print the reloc associated with LO_SUM
   'q'  print DSP accumulator registers

   The punctuation characters are:

   '('	Turn on .set noreorder
   ')'	Turn on .set reorder
   '['	Turn on .set noat
   ']'	Turn on .set at
   '<'	Turn on .set nomacro
   '>'	Turn on .set macro
   '{'	Turn on .set volatile (not GAS)
   '}'	Turn on .set novolatile (not GAS)
   '&'	Turn on .set noreorder if filling delay slots
   '*'	Turn on both .set noreorder and .set nomacro if filling delay slots
   '!'	Turn on .set nomacro if filling delay slots
   '#'	Print nop if in a .set noreorder section.
   '/'	Like '#', but does nothing within a delayed branch sequence
   '?'	Print 'l' if we are to use a branch likely instead of normal branch.
   '@'	Print the name of the assembler temporary register (at or $1).
   '.'	Print the name of the register with a hard-wired zero (zero or $0).
   '^'	Print the name of the pic call-through register (t9 or $25).
   '$'	Print the name of the stack pointer register (sp or $29).
   '+'	Print the name of the gp register (usually gp or $28).
   '~'	Output a branch alignment to LABEL_ALIGN(NULL).  */

void
print_operand (FILE *file, rtx op, int letter)
{
  register enum rtx_code code;

  if (PRINT_OPERAND_PUNCT_VALID_P (letter))
    {
      switch (letter)
	{
	case '?':
	  if (mips_branch_likely)
	    putc ('l', file);
	  break;

	case '@':
	  fputs (reg_names [GP_REG_FIRST + 1], file);
	  break;

	case '^':
	  fputs (reg_names [PIC_FUNCTION_ADDR_REGNUM], file);
	  break;

	case '.':
	  fputs (reg_names [GP_REG_FIRST + 0], file);
	  break;

	case '$':
	  fputs (reg_names[STACK_POINTER_REGNUM], file);
	  break;

	case '+':
	  fputs (reg_names[PIC_OFFSET_TABLE_REGNUM], file);
	  break;

	case '&':
	  if (final_sequence != 0 && set_noreorder++ == 0)
	    fputs (".set\tnoreorder\n\t", file);
	  break;

	case '*':
	  if (final_sequence != 0)
	    {
	      if (set_noreorder++ == 0)
		fputs (".set\tnoreorder\n\t", file);

	      if (set_nomacro++ == 0)
		fputs (".set\tnomacro\n\t", file);
	    }
	  break;

	case '!':
	  if (final_sequence != 0 && set_nomacro++ == 0)
	    fputs ("\n\t.set\tnomacro", file);
	  break;

	case '#':
	  if (set_noreorder != 0)
	    fputs ("\n\tnop", file);
	  break;

	case '/':
	  /* Print an extra newline so that the delayed insn is separated
	     from the following ones.  This looks neater and is consistent
	     with non-nop delayed sequences.  */
	  if (set_noreorder != 0 && final_sequence == 0)
	    fputs ("\n\tnop\n", file);
	  break;

	case '(':
	  if (set_noreorder++ == 0)
	    fputs (".set\tnoreorder\n\t", file);
	  break;

	case ')':
	  if (set_noreorder == 0)
	    error ("internal error: %%) found without a %%( in assembler pattern");

	  else if (--set_noreorder == 0)
	    fputs ("\n\t.set\treorder", file);

	  break;

	case '[':
	  if (set_noat++ == 0)
	    fputs (".set\tnoat\n\t", file);
	  break;

	case ']':
	  if (set_noat == 0)
	    error ("internal error: %%] found without a %%[ in assembler pattern");
	  else if (--set_noat == 0)
	    fputs ("\n\t.set\tat", file);

	  break;

	case '<':
	  if (set_nomacro++ == 0)
	    fputs (".set\tnomacro\n\t", file);
	  break;

	case '>':
	  if (set_nomacro == 0)
	    error ("internal error: %%> found without a %%< in assembler pattern");
	  else if (--set_nomacro == 0)
	    fputs ("\n\t.set\tmacro", file);

	  break;

	case '{':
	  if (set_volatile++ == 0)
	    fputs ("#.set\tvolatile\n\t", file);
	  break;

	case '}':
	  if (set_volatile == 0)
	    error ("internal error: %%} found without a %%{ in assembler pattern");
	  else if (--set_volatile == 0)
	    fputs ("\n\t#.set\tnovolatile", file);

	  break;

	case '~':
	  {
	    if (align_labels_log > 0)
	      ASM_OUTPUT_ALIGN (file, align_labels_log);
	  }
	  break;

	default:
	  error ("PRINT_OPERAND: unknown punctuation '%c'", letter);
	  break;
	}

      return;
    }

  if (! op)
    {
      error ("PRINT_OPERAND null pointer");
      return;
    }

  code = GET_CODE (op);

  if (letter == 'C')
    switch (code)
      {
      case EQ:	fputs ("eq",  file); break;
      case NE:	fputs ("ne",  file); break;
      case GT:	fputs ("gt",  file); break;
      case GE:	fputs ("ge",  file); break;
      case LT:	fputs ("lt",  file); break;
      case LE:	fputs ("le",  file); break;
      case GTU: fputs ("gtu", file); break;
      case GEU: fputs ("geu", file); break;
      case LTU: fputs ("ltu", file); break;
      case LEU: fputs ("leu", file); break;
      default:
	fatal_insn ("PRINT_OPERAND, invalid insn for %%C", op);
      }

  else if (letter == 'N')
    switch (code)
      {
      case EQ:	fputs ("ne",  file); break;
      case NE:	fputs ("eq",  file); break;
      case GT:	fputs ("le",  file); break;
      case GE:	fputs ("lt",  file); break;
      case LT:	fputs ("ge",  file); break;
      case LE:	fputs ("gt",  file); break;
      case GTU: fputs ("leu", file); break;
      case GEU: fputs ("ltu", file); break;
      case LTU: fputs ("geu", file); break;
      case LEU: fputs ("gtu", file); break;
      default:
	fatal_insn ("PRINT_OPERAND, invalid insn for %%N", op);
      }

  else if (letter == 'F')
    switch (code)
      {
      case EQ: fputs ("c1f", file); break;
      case NE: fputs ("c1t", file); break;
      default:
	fatal_insn ("PRINT_OPERAND, invalid insn for %%F", op);
      }

  else if (letter == 'W')
    switch (code)
      {
      case EQ: fputs ("c1t", file); break;
      case NE: fputs ("c1f", file); break;
      default:
	fatal_insn ("PRINT_OPERAND, invalid insn for %%W", op);
      }

  else if (letter == 'h')
    {
      if (GET_CODE (op) == HIGH)
	op = XEXP (op, 0);

      print_operand_reloc (file, op, mips_hi_relocs);
    }

  else if (letter == 'R')
    print_operand_reloc (file, op, mips_lo_relocs);

  else if (letter == 'Y')
    {
      if (GET_CODE (op) == CONST_INT
	  && ((unsigned HOST_WIDE_INT) INTVAL (op)
	      < ARRAY_SIZE (mips_fp_conditions)))
	fputs (mips_fp_conditions[INTVAL (op)], file);
      else
	output_operand_lossage ("invalid %%Y value");
    }

  else if (letter == 'Z')
    {
      if (ISA_HAS_8CC)
	{
	  print_operand (file, op, 0);
	  fputc (',', file);
	}
    }

  else if (letter == 'q')
    {
      int regnum;

      if (code != REG)
	fatal_insn ("PRINT_OPERAND, invalid insn for %%q", op);

      regnum = REGNO (op);
      if (MD_REG_P (regnum))
	fprintf (file, "$ac0");
      else if (DSP_ACC_REG_P (regnum))
	fprintf (file, "$ac%c", reg_names[regnum][3]);
      else
	fatal_insn ("PRINT_OPERAND, invalid insn for %%q", op);
    }

  else if (code == REG || code == SUBREG)
    {
      register int regnum;

      if (code == REG)
	regnum = REGNO (op);
      else
	regnum = true_regnum (op);

      if ((letter == 'M' && ! WORDS_BIG_ENDIAN)
	  || (letter == 'L' && WORDS_BIG_ENDIAN)
	  || letter == 'D')
	regnum++;

      fprintf (file, "%s", reg_names[regnum]);
    }

  else if (code == MEM)
    {
      if (letter == 'D')
	output_address (plus_constant (XEXP (op, 0), 4));
      else
	output_address (XEXP (op, 0));
    }

  else if (letter == 'x' && GET_CODE (op) == CONST_INT)
    fprintf (file, HOST_WIDE_INT_PRINT_HEX, 0xffff & INTVAL(op));

  else if (letter == 'X' && GET_CODE(op) == CONST_INT)
    fprintf (file, HOST_WIDE_INT_PRINT_HEX, INTVAL (op));

  else if (letter == 'd' && GET_CODE(op) == CONST_INT)
    fprintf (file, HOST_WIDE_INT_PRINT_DEC, (INTVAL(op)));

  else if (letter == 'z' && op == CONST0_RTX (GET_MODE (op)))
    fputs (reg_names[GP_REG_FIRST], file);

  else if (letter == 'd' || letter == 'x' || letter == 'X')
    output_operand_lossage ("invalid use of %%d, %%x, or %%X");

  else if (letter == 'T' || letter == 't')
    {
      int truth = (code == NE) == (letter == 'T');
      fputc ("zfnt"[truth * 2 + (GET_MODE (op) == CCmode)], file);
    }

  else if (CONST_GP_P (op))
    fputs (reg_names[GLOBAL_POINTER_REGNUM], file);

  else
    output_addr_const (file, op);
}


/* Print symbolic operand OP, which is part of a HIGH or LO_SUM.
   RELOCS is the array of relocations to use.  */

static void
print_operand_reloc (FILE *file, rtx op, const char **relocs)
{
  enum mips_symbol_type symbol_type;
  const char *p;
  rtx base;
  HOST_WIDE_INT offset;

  symbol_type = mips_classify_symbolic_expression (op);
  if (relocs[symbol_type] == 0)
    fatal_insn ("PRINT_OPERAND, invalid operand for relocation", op);

  /* If OP uses an UNSPEC address, we want to print the inner symbol.  */
  mips_split_const (op, &base, &offset);
  if (UNSPEC_ADDRESS_P (base))
    op = plus_constant (UNSPEC_ADDRESS (base), offset);

  fputs (relocs[symbol_type], file);
  output_addr_const (file, op);
  for (p = relocs[symbol_type]; *p != 0; p++)
    if (*p == '(')
      fputc (')', file);
}

/* Output address operand X to FILE.  */

void
print_operand_address (FILE *file, rtx x)
{
  struct mips_address_info addr;

  if (mips_classify_address (&addr, x, word_mode, true))
    switch (addr.type)
      {
      case ADDRESS_REG:
	print_operand (file, addr.offset, 0);
	fprintf (file, "(%s)", reg_names[REGNO (addr.reg)]);
	return;

      case ADDRESS_LO_SUM:
	print_operand (file, addr.offset, 'R');
	fprintf (file, "(%s)", reg_names[REGNO (addr.reg)]);
	return;

      case ADDRESS_CONST_INT:
	output_addr_const (file, x);
	fprintf (file, "(%s)", reg_names[0]);
	return;

      case ADDRESS_SYMBOLIC:
	output_addr_const (file, x);
	return;
      }
  gcc_unreachable ();
}

/* When using assembler macros, keep track of all of small-data externs
   so that mips_file_end can emit the appropriate declarations for them.

   In most cases it would be safe (though pointless) to emit .externs
   for other symbols too.  One exception is when an object is within
   the -G limit but declared by the user to be in a section other
   than .sbss or .sdata.  */

int
mips_output_external (FILE *file ATTRIBUTE_UNUSED, tree decl, const char *name)
{
  register struct extern_list *p;

  if (!TARGET_EXPLICIT_RELOCS && mips_in_small_data_p (decl))
    {
      p = (struct extern_list *) ggc_alloc (sizeof (struct extern_list));
      p->next = extern_head;
      p->name = name;
      p->size = int_size_in_bytes (TREE_TYPE (decl));
      extern_head = p;
    }

  if (TARGET_IRIX && mips_abi == ABI_32 && TREE_CODE (decl) == FUNCTION_DECL)
    {
      p = (struct extern_list *) ggc_alloc (sizeof (struct extern_list));
      p->next = extern_head;
      p->name = name;
      p->size = -1;
      extern_head = p;
    }

  return 0;
}

#if TARGET_IRIX
static void
irix_output_external_libcall (rtx fun)
{
  register struct extern_list *p;

  if (mips_abi == ABI_32)
    {
      p = (struct extern_list *) ggc_alloc (sizeof (struct extern_list));
      p->next = extern_head;
      p->name = XSTR (fun, 0);
      p->size = -1;
      extern_head = p;
    }
}
#endif

/* Emit a new filename to a stream.  If we are smuggling stabs, try to
   put out a MIPS ECOFF file and a stab.  */

void
mips_output_filename (FILE *stream, const char *name)
{

  /* If we are emitting DWARF-2, let dwarf2out handle the ".file"
     directives.  */
  if (write_symbols == DWARF2_DEBUG)
    return;
  else if (mips_output_filename_first_time)
    {
      mips_output_filename_first_time = 0;
      num_source_filenames += 1;
      current_function_file = name;
      fprintf (stream, "\t.file\t%d ", num_source_filenames);
      output_quoted_string (stream, name);
      putc ('\n', stream);
    }

  /* If we are emitting stabs, let dbxout.c handle this (except for
     the mips_output_filename_first_time case).  */
  else if (write_symbols == DBX_DEBUG)
    return;

  else if (name != current_function_file
	   && strcmp (name, current_function_file) != 0)
    {
      num_source_filenames += 1;
      current_function_file = name;
      fprintf (stream, "\t.file\t%d ", num_source_filenames);
      output_quoted_string (stream, name);
      putc ('\n', stream);
    }
}

/* Output an ASCII string, in a space-saving way.  PREFIX is the string
   that should be written before the opening quote, such as "\t.ascii\t"
   for real string data or "\t# " for a comment.  */

void
mips_output_ascii (FILE *stream, const char *string_param, size_t len,
		   const char *prefix)
{
  size_t i;
  int cur_pos = 17;
  register const unsigned char *string =
    (const unsigned char *)string_param;

  fprintf (stream, "%s\"", prefix);
  for (i = 0; i < len; i++)
    {
      register int c = string[i];

      if (ISPRINT (c))
	{
	  if (c == '\\' || c == '\"')
	    {
	      putc ('\\', stream);
	      cur_pos++;
	    }
	  putc (c, stream);
	  cur_pos++;
	}
      else
	{
	  fprintf (stream, "\\%03o", c);
	  cur_pos += 4;
	}

      if (cur_pos > 72 && i+1 < len)
	{
	  cur_pos = 17;
	  fprintf (stream, "\"\n%s\"", prefix);
	}
    }
  fprintf (stream, "\"\n");
}

/* Implement TARGET_ASM_FILE_START.  */

static void
mips_file_start (void)
{
  default_file_start ();

  if (!TARGET_IRIX)
    {
      /* Generate a special section to describe the ABI switches used to
	 produce the resultant binary.  This used to be done by the assembler
	 setting bits in the ELF header's flags field, but we have run out of
	 bits.  GDB needs this information in order to be able to correctly
	 debug these binaries.  See the function mips_gdbarch_init() in
	 gdb/mips-tdep.c.  This is unnecessary for the IRIX 5/6 ABIs and
	 causes unnecessary IRIX 6 ld warnings.  */
      const char * abi_string = NULL;

      switch (mips_abi)
	{
	case ABI_32:   abi_string = "abi32"; break;
	case ABI_N32:  abi_string = "abiN32"; break;
	case ABI_64:   abi_string = "abi64"; break;
	case ABI_O64:  abi_string = "abiO64"; break;
	case ABI_EABI: abi_string = TARGET_64BIT ? "eabi64" : "eabi32"; break;
	default:
	  gcc_unreachable ();
	}
      /* Note - we use fprintf directly rather than called named_section()
	 because in this way we can avoid creating an allocated section.  We
	 do not want this section to take up any space in the running
	 executable.  */
      fprintf (asm_out_file, "\t.section .mdebug.%s\n", abi_string);

      /* There is no ELF header flag to distinguish long32 forms of the
	 EABI from long64 forms.  Emit a special section to help tools
	 such as GDB.  */
      if (mips_abi == ABI_EABI)
	fprintf (asm_out_file, "\t.section .gcc_compiled_long%d\n",
		 TARGET_LONG64 ? 64 : 32);

      /* Restore the default section.  */
      fprintf (asm_out_file, "\t.previous\n");
    }

  /* Generate the pseudo ops that System V.4 wants.  */
  if (TARGET_ABICALLS)
    /* ??? but do not want this (or want pic0) if -non-shared? */
    fprintf (asm_out_file, "\t.abicalls\n");

  if (TARGET_MIPS16)
    fprintf (asm_out_file, "\t.set\tmips16\n");

  if (flag_verbose_asm)
    fprintf (asm_out_file, "\n%s -G value = %d, Arch = %s, ISA = %d\n",
	     ASM_COMMENT_START,
	     mips_section_threshold, mips_arch_info->name, mips_isa);
}

#ifdef BSS_SECTION_ASM_OP
/* Implement ASM_OUTPUT_ALIGNED_BSS.  This differs from the default only
   in the use of sbss.  */

void
mips_output_aligned_bss (FILE *stream, tree decl, const char *name,
			 unsigned HOST_WIDE_INT size, int align)
{
  extern tree last_assemble_variable_decl;

  if (mips_in_small_data_p (decl))
    named_section (0, ".sbss", 0);
  else
    bss_section ();
  ASM_OUTPUT_ALIGN (stream, floor_log2 (align / BITS_PER_UNIT));
  last_assemble_variable_decl = decl;
  ASM_DECLARE_OBJECT_NAME (stream, name, decl);
  ASM_OUTPUT_SKIP (stream, size != 0 ? size : 1);
}
#endif

/* Implement TARGET_ASM_FILE_END.  When using assembler macros, emit
   .externs for any small-data variables that turned out to be external.  */

static void
mips_file_end (void)
{
  tree name_tree;
  struct extern_list *p;

  if (extern_head)
    {
      fputs ("\n", asm_out_file);

      for (p = extern_head; p != 0; p = p->next)
	{
	  name_tree = get_identifier (p->name);

	  /* Positively ensure only one .extern for any given symbol.  */
	  if (!TREE_ASM_WRITTEN (name_tree)
	      && TREE_SYMBOL_REFERENCED (name_tree))
	    {
	      TREE_ASM_WRITTEN (name_tree) = 1;
	      /* In IRIX 5 or IRIX 6 for the O32 ABI, we must output a
		 `.global name .text' directive for every used but
		 undefined function.  If we don't, the linker may perform
		 an optimization (skipping over the insns that set $gp)
		 when it is unsafe.  */
	      if (TARGET_IRIX && mips_abi == ABI_32 && p->size == -1)
		{
		  fputs ("\t.globl ", asm_out_file);
		  assemble_name (asm_out_file, p->name);
		  fputs (" .text\n", asm_out_file);
		}
	      else
		{
		  fputs ("\t.extern\t", asm_out_file);
		  assemble_name (asm_out_file, p->name);
		  fprintf (asm_out_file, ", %d\n", p->size);
		}
	    }
	}
    }
}

/* Implement ASM_OUTPUT_ALIGNED_DECL_COMMON.  This is usually the same as the
   elfos.h version, but we also need to handle -muninit-const-in-rodata.  */

void
mips_output_aligned_decl_common (FILE *stream, tree decl, const char *name,
				 unsigned HOST_WIDE_INT size,
				 unsigned int align)
{
  /* If the target wants uninitialized const declarations in
     .rdata then don't put them in .comm.  */
  if (TARGET_EMBEDDED_DATA && TARGET_UNINIT_CONST_IN_RODATA
      && TREE_CODE (decl) == VAR_DECL && TREE_READONLY (decl)
      && (DECL_INITIAL (decl) == 0 || DECL_INITIAL (decl) == error_mark_node))
    {
      if (TREE_PUBLIC (decl) && DECL_NAME (decl))
	targetm.asm_out.globalize_label (stream, name);

      readonly_data_section ();
      ASM_OUTPUT_ALIGN (stream, floor_log2 (align / BITS_PER_UNIT));
      mips_declare_object (stream, name, "",
			   ":\n\t.space\t" HOST_WIDE_INT_PRINT_UNSIGNED "\n",
			   size);
    }
  else
    mips_declare_common_object (stream, name, "\n\t.comm\t",
				size, align, true);
}

/* Declare a common object of SIZE bytes using asm directive INIT_STRING.
   NAME is the name of the object and ALIGN is the required alignment
   in bytes.  TAKES_ALIGNMENT_P is true if the directive takes a third
   alignment argument.  */

void
mips_declare_common_object (FILE *stream, const char *name,
			    const char *init_string,
			    unsigned HOST_WIDE_INT size,
			    unsigned int align, bool takes_alignment_p)
{
  if (!takes_alignment_p)
    {
      size += (align / BITS_PER_UNIT) - 1;
      size -= size % (align / BITS_PER_UNIT);
      mips_declare_object (stream, name, init_string,
			   "," HOST_WIDE_INT_PRINT_UNSIGNED "\n", size);
    }
  else
    mips_declare_object (stream, name, init_string,
			 "," HOST_WIDE_INT_PRINT_UNSIGNED ",%u\n",
			 size, align / BITS_PER_UNIT);
}

/* Emit either a label, .comm, or .lcomm directive.  When using assembler
   macros, mark the symbol as written so that mips_file_end won't emit an
   .extern for it.  STREAM is the output file, NAME is the name of the
   symbol, INIT_STRING is the string that should be written before the
   symbol and FINAL_STRING is the string that should be written after it.
   FINAL_STRING is a printf() format that consumes the remaining arguments.  */

void
mips_declare_object (FILE *stream, const char *name, const char *init_string,
		     const char *final_string, ...)
{
  va_list ap;

  fputs (init_string, stream);
  assemble_name (stream, name);
  va_start (ap, final_string);
  vfprintf (stream, final_string, ap);
  va_end (ap);

  if (!TARGET_EXPLICIT_RELOCS)
    {
      tree name_tree = get_identifier (name);
      TREE_ASM_WRITTEN (name_tree) = 1;
    }
}

#ifdef ASM_OUTPUT_SIZE_DIRECTIVE
extern int size_directive_output;

/* Implement ASM_DECLARE_OBJECT_NAME.  This is like most of the standard ELF
   definitions except that it uses mips_declare_object() to emit the label.  */

void
mips_declare_object_name (FILE *stream, const char *name,
			  tree decl ATTRIBUTE_UNUSED)
{
#ifdef ASM_OUTPUT_TYPE_DIRECTIVE
  ASM_OUTPUT_TYPE_DIRECTIVE (stream, name, "object");
#endif

  size_directive_output = 0;
  if (!flag_inhibit_size_directive && DECL_SIZE (decl))
    {
      HOST_WIDE_INT size;

      size_directive_output = 1;
      size = int_size_in_bytes (TREE_TYPE (decl));
      ASM_OUTPUT_SIZE_DIRECTIVE (stream, name, size);
    }

  mips_declare_object (stream, name, "", ":\n");
}

/* Implement ASM_FINISH_DECLARE_OBJECT.  This is generic ELF stuff.  */

void
mips_finish_declare_object (FILE *stream, tree decl, int top_level, int at_end)
{
  const char *name;

  name = XSTR (XEXP (DECL_RTL (decl), 0), 0);
  if (!flag_inhibit_size_directive
      && DECL_SIZE (decl) != 0
      && !at_end && top_level
      && DECL_INITIAL (decl) == error_mark_node
      && !size_directive_output)
    {
      HOST_WIDE_INT size;

      size_directive_output = 1;
      size = int_size_in_bytes (TREE_TYPE (decl));
      ASM_OUTPUT_SIZE_DIRECTIVE (stream, name, size);
    }
}
#endif

/* Return true if X is a small data address that can be rewritten
   as a LO_SUM.  */

static bool
mips_rewrite_small_data_p (rtx x)
{
  enum mips_symbol_type symbol_type;

  return (TARGET_EXPLICIT_RELOCS
	  && mips_symbolic_constant_p (x, &symbol_type)
	  && symbol_type == SYMBOL_SMALL_DATA);
}


/* A for_each_rtx callback for mips_small_data_pattern_p.  */

static int
mips_small_data_pattern_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
{
  if (GET_CODE (*loc) == LO_SUM)
    return -1;

  return mips_rewrite_small_data_p (*loc);
}

/* Return true if OP refers to small data symbols directly, not through
   a LO_SUM.  */

bool
mips_small_data_pattern_p (rtx op)
{
  return for_each_rtx (&op, mips_small_data_pattern_1, 0);
}

/* A for_each_rtx callback, used by mips_rewrite_small_data.  */

static int
mips_rewrite_small_data_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
{
  if (mips_rewrite_small_data_p (*loc))
    *loc = gen_rtx_LO_SUM (Pmode, pic_offset_table_rtx, *loc);

  if (GET_CODE (*loc) == LO_SUM)
    return -1;

  return 0;
}

/* If possible, rewrite OP so that it refers to small data using
   explicit relocations.  */

rtx
mips_rewrite_small_data (rtx op)
{
  op = copy_insn (op);
  for_each_rtx (&op, mips_rewrite_small_data_1, 0);
  return op;
}

/* Return true if the current function has an insn that implicitly
   refers to $gp.  */

static bool
mips_function_has_gp_insn (void)
{
  /* Don't bother rechecking if we found one last time.  */
  if (!cfun->machine->has_gp_insn_p)
    {
      rtx insn;

      push_topmost_sequence ();
      for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
	if (INSN_P (insn)
	    && GET_CODE (PATTERN (insn)) != USE
	    && GET_CODE (PATTERN (insn)) != CLOBBER
	    && (get_attr_got (insn) != GOT_UNSET
		|| small_data_pattern (PATTERN (insn), VOIDmode)))
	  break;
      pop_topmost_sequence ();

      cfun->machine->has_gp_insn_p = (insn != 0);
    }
  return cfun->machine->has_gp_insn_p;
}


/* Return the register that should be used as the global pointer
   within this function.  Return 0 if the function doesn't need
   a global pointer.  */

static unsigned int
mips_global_pointer (void)
{
  unsigned int regno;

  /* $gp is always available in non-abicalls code.  */
  if (!TARGET_ABICALLS)
    return GLOBAL_POINTER_REGNUM;

  /* We must always provide $gp when it is used implicitly.  */
  if (!TARGET_EXPLICIT_RELOCS)
    return GLOBAL_POINTER_REGNUM;

  /* FUNCTION_PROFILER includes a jal macro, so we need to give it
     a valid gp.  */
  if (current_function_profile)
    return GLOBAL_POINTER_REGNUM;

  /* If the function has a nonlocal goto, $gp must hold the correct
     global pointer for the target function.  */
  if (current_function_has_nonlocal_goto)
    return GLOBAL_POINTER_REGNUM;

  /* If the gp is never referenced, there's no need to initialize it.
     Note that reload can sometimes introduce constant pool references
     into a function that otherwise didn't need them.  For example,
     suppose we have an instruction like:

	  (set (reg:DF R1) (float:DF (reg:SI R2)))

     If R2 turns out to be constant such as 1, the instruction may have a
     REG_EQUAL note saying that R1 == 1.0.  Reload then has the option of
     using this constant if R2 doesn't get allocated to a register.

     In cases like these, reload will have added the constant to the pool
     but no instruction will yet refer to it.  */
  if (!regs_ever_live[GLOBAL_POINTER_REGNUM]
      && !current_function_uses_const_pool
      && !mips_function_has_gp_insn ())
    return 0;

  /* We need a global pointer, but perhaps we can use a call-clobbered
     register instead of $gp.  */
  if (TARGET_NEWABI && current_function_is_leaf)
    for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
      if (!regs_ever_live[regno]
	  && call_used_regs[regno]
	  && !fixed_regs[regno]
	  && regno != PIC_FUNCTION_ADDR_REGNUM)
	return regno;

  return GLOBAL_POINTER_REGNUM;
}


/* Return true if the current function must save REGNO.  */

static bool
mips_save_reg_p (unsigned int regno)
{
  /* We only need to save $gp for NewABI PIC.  */
  if (regno == GLOBAL_POINTER_REGNUM)
    return (TARGET_ABICALLS && TARGET_NEWABI
	    && cfun->machine->global_pointer == regno);

  /* Check call-saved registers.  */
  if (regs_ever_live[regno] && !call_used_regs[regno])
    return true;

  /* We need to save the old frame pointer before setting up a new one.  */
  if (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed)
    return true;

  /* We need to save the incoming return address if it is ever clobbered
     within the function.  */
  if (regno == GP_REG_FIRST + 31 && regs_ever_live[regno])
    return true;

  if (TARGET_MIPS16)
    {
      tree return_type;

      return_type = DECL_RESULT (current_function_decl);

      /* $18 is a special case in mips16 code.  It may be used to call
	 a function which returns a floating point value, but it is
	 marked in call_used_regs.  */
      if (regno == GP_REG_FIRST + 18 && regs_ever_live[regno])
	return true;

      /* $31 is also a special case.  It will be used to copy a return
	 value into the floating point registers if the return value is
	 floating point.  */
      if (regno == GP_REG_FIRST + 31
	  && mips16_hard_float
	  && !aggregate_value_p (return_type, current_function_decl)
	  && GET_MODE_CLASS (DECL_MODE (return_type)) == MODE_FLOAT
	  && GET_MODE_SIZE (DECL_MODE (return_type)) <= UNITS_PER_FPVALUE)
	return true;
    }

  return false;
}


/* Return the bytes needed to compute the frame pointer from the current
   stack pointer.  SIZE is the size (in bytes) of the local variables.

   MIPS stack frames look like:

             Before call		        After call
        +-----------------------+	+-----------------------+
   high |			|       |      			|
   mem. |		        |	|			|
        |  caller's temps.    	|       |  caller's temps.    	|
	|       		|       |       	        |
        +-----------------------+	+-----------------------+
 	|       		|	|		        |
        |  arguments on stack.  |	|  arguments on stack.  |
	|       		|	|			|
        +-----------------------+	+-----------------------+
 	|  4 words to save     	|	|  4 words to save	|
	|  arguments passed	|	|  arguments passed	|
	|  in registers, even	|	|  in registers, even	|
    SP->|  if not passed.       |  VFP->|  if not passed.	|
	+-----------------------+       +-----------------------+
					|		        |
                                        |  fp register save     |
					|			|
					+-----------------------+
					|		        |
                                        |  gp register save     |
                                        |       		|
					+-----------------------+
					|			|
					|  local variables	|
					|			|
					+-----------------------+
					|			|
                                        |  alloca allocations   |
        				|			|
					+-----------------------+
					|			|
					|  GP save for V.4 abi	|
					|			|
					+-----------------------+
					|			|
                                        |  arguments on stack   |
        				|		        |
					+-----------------------+
                                        |  4 words to save      |
					|  arguments passed     |
                                        |  in registers, even   |
   low                              SP->|  if not passed.       |
   memory        			+-----------------------+

*/

HOST_WIDE_INT
compute_frame_size (HOST_WIDE_INT size)
{
  unsigned int regno;
  HOST_WIDE_INT total_size;	/* # bytes that the entire frame takes up */
  HOST_WIDE_INT var_size;	/* # bytes that variables take up */
  HOST_WIDE_INT args_size;	/* # bytes that outgoing arguments take up */
  HOST_WIDE_INT cprestore_size; /* # bytes that the cprestore slot takes up */
  HOST_WIDE_INT gp_reg_rounded;	/* # bytes needed to store gp after rounding */
  HOST_WIDE_INT gp_reg_size;	/* # bytes needed to store gp regs */
  HOST_WIDE_INT fp_reg_size;	/* # bytes needed to store fp regs */
  unsigned int mask;		/* mask of saved gp registers */
  unsigned int fmask;		/* mask of saved fp registers */

  cfun->machine->global_pointer = mips_global_pointer ();

  gp_reg_size = 0;
  fp_reg_size = 0;
  mask = 0;
  fmask	= 0;
  var_size = MIPS_STACK_ALIGN (size);
  args_size = current_function_outgoing_args_size;
  cprestore_size = MIPS_STACK_ALIGN (STARTING_FRAME_OFFSET) - args_size;

  /* The space set aside by STARTING_FRAME_OFFSET isn't needed in leaf
     functions.  If the function has local variables, we're committed
     to allocating it anyway.  Otherwise reclaim it here.  */
  if (var_size == 0 && current_function_is_leaf)
    cprestore_size = args_size = 0;

  /* The MIPS 3.0 linker does not like functions that dynamically
     allocate the stack and have 0 for STACK_DYNAMIC_OFFSET, since it
     looks like we are trying to create a second frame pointer to the
     function, so allocate some stack space to make it happy.  */

  if (args_size == 0 && current_function_calls_alloca)
    args_size = 4 * UNITS_PER_WORD;

  total_size = var_size + args_size + cprestore_size;

  /* Calculate space needed for gp registers.  */
  for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
    if (mips_save_reg_p (regno))
      {
	gp_reg_size += GET_MODE_SIZE (gpr_mode);
	mask |= 1 << (regno - GP_REG_FIRST);
      }

  /* We need to restore these for the handler.  */
  if (current_function_calls_eh_return)
    {
      unsigned int i;
      for (i = 0; ; ++i)
	{
	  regno = EH_RETURN_DATA_REGNO (i);
	  if (regno == INVALID_REGNUM)
	    break;
	  gp_reg_size += GET_MODE_SIZE (gpr_mode);
	  mask |= 1 << (regno - GP_REG_FIRST);
	}
    }

  /* This loop must iterate over the same space as its companion in
     save_restore_insns.  */
  for (regno = (FP_REG_LAST - FP_INC + 1);
       regno >= FP_REG_FIRST;
       regno -= FP_INC)
    {
      if (mips_save_reg_p (regno))
	{
	  fp_reg_size += FP_INC * UNITS_PER_FPREG;
	  fmask |= ((1 << FP_INC) - 1) << (regno - FP_REG_FIRST);
	}
    }

  gp_reg_rounded = MIPS_STACK_ALIGN (gp_reg_size);
  total_size += gp_reg_rounded + MIPS_STACK_ALIGN (fp_reg_size);

  /* Add in the space required for saving incoming register arguments.  */
  total_size += current_function_pretend_args_size;
  total_size += MIPS_STACK_ALIGN (cfun->machine->varargs_size);

  /* Save other computed information.  */
  cfun->machine->frame.total_size = total_size;
  cfun->machine->frame.var_size = var_size;
  cfun->machine->frame.args_size = args_size;
  cfun->machine->frame.cprestore_size = cprestore_size;
  cfun->machine->frame.gp_reg_size = gp_reg_size;
  cfun->machine->frame.fp_reg_size = fp_reg_size;
  cfun->machine->frame.mask = mask;
  cfun->machine->frame.fmask = fmask;
  cfun->machine->frame.initialized = reload_completed;
  cfun->machine->frame.num_gp = gp_reg_size / UNITS_PER_WORD;
  cfun->machine->frame.num_fp = fp_reg_size / (FP_INC * UNITS_PER_FPREG);

  if (mask)
    {
      HOST_WIDE_INT offset;

      offset = (args_size + cprestore_size + var_size
		+ gp_reg_size - GET_MODE_SIZE (gpr_mode));
      cfun->machine->frame.gp_sp_offset = offset;
      cfun->machine->frame.gp_save_offset = offset - total_size;
    }
  else
    {
      cfun->machine->frame.gp_sp_offset = 0;
      cfun->machine->frame.gp_save_offset = 0;
    }

  if (fmask)
    {
      HOST_WIDE_INT offset;

      offset = (args_size + cprestore_size + var_size
		+ gp_reg_rounded + fp_reg_size
		- FP_INC * UNITS_PER_FPREG);
      cfun->machine->frame.fp_sp_offset = offset;
      cfun->machine->frame.fp_save_offset = offset - total_size;
    }
  else
    {
      cfun->machine->frame.fp_sp_offset = 0;
      cfun->machine->frame.fp_save_offset = 0;
    }

  /* Ok, we're done.  */
  return total_size;
}

/* Implement INITIAL_ELIMINATION_OFFSET.  FROM is either the frame
   pointer or argument pointer.  TO is either the stack pointer or
   hard frame pointer.  */

HOST_WIDE_INT
mips_initial_elimination_offset (int from, int to)
{
  HOST_WIDE_INT offset;

  compute_frame_size (get_frame_size ());

  /* Set OFFSET to the offset from the stack pointer.  */
  switch (from)
    {
    case FRAME_POINTER_REGNUM:
      offset = 0;
      break;

    case ARG_POINTER_REGNUM:
      offset = (cfun->machine->frame.total_size
		- current_function_pretend_args_size);
      break;

    default:
      gcc_unreachable ();
    }

  if (TARGET_MIPS16 && to == HARD_FRAME_POINTER_REGNUM)
    offset -= cfun->machine->frame.args_size;

  return offset;
}

/* Implement RETURN_ADDR_RTX.  Note, we do not support moving
   back to a previous frame.  */
rtx
mips_return_addr (int count, rtx frame ATTRIBUTE_UNUSED)
{
  if (count != 0)
    return const0_rtx;

  return get_hard_reg_initial_val (Pmode, GP_REG_FIRST + 31);
}

/* Use FN to save or restore register REGNO.  MODE is the register's
   mode and OFFSET is the offset of its save slot from the current
   stack pointer.  */

static void
mips_save_restore_reg (enum machine_mode mode, int regno,
		       HOST_WIDE_INT offset, mips_save_restore_fn fn)
{
  rtx mem;

  mem = gen_rtx_MEM (mode, plus_constant (stack_pointer_rtx, offset));

  fn (gen_rtx_REG (mode, regno), mem);
}


/* Call FN for each register that is saved by the current function.
   SP_OFFSET is the offset of the current stack pointer from the start
   of the frame.  */

static void
mips_for_each_saved_reg (HOST_WIDE_INT sp_offset, mips_save_restore_fn fn)
{
#define BITSET_P(VALUE, BIT) (((VALUE) & (1L << (BIT))) != 0)

  enum machine_mode fpr_mode;
  HOST_WIDE_INT offset;
  int regno;

  /* Save registers starting from high to low.  The debuggers prefer at least
     the return register be stored at func+4, and also it allows us not to
     need a nop in the epilog if at least one register is reloaded in
     addition to return address.  */
  offset = cfun->machine->frame.gp_sp_offset - sp_offset;
  for (regno = GP_REG_LAST; regno >= GP_REG_FIRST; regno--)
    if (BITSET_P (cfun->machine->frame.mask, regno - GP_REG_FIRST))
      {
	mips_save_restore_reg (gpr_mode, regno, offset, fn);
	offset -= GET_MODE_SIZE (gpr_mode);
      }

  /* This loop must iterate over the same space as its companion in
     compute_frame_size.  */
  offset = cfun->machine->frame.fp_sp_offset - sp_offset;
  fpr_mode = (TARGET_SINGLE_FLOAT ? SFmode : DFmode);
  for (regno = (FP_REG_LAST - FP_INC + 1);
       regno >= FP_REG_FIRST;
       regno -= FP_INC)
    if (BITSET_P (cfun->machine->frame.fmask, regno - FP_REG_FIRST))
      {
	mips_save_restore_reg (fpr_mode, regno, offset, fn);
	offset -= GET_MODE_SIZE (fpr_mode);
      }
#undef BITSET_P
}

/* If we're generating n32 or n64 abicalls, and the current function
   does not use $28 as its global pointer, emit a cplocal directive.
   Use pic_offset_table_rtx as the argument to the directive.  */

static void
mips_output_cplocal (void)
{
  if (!TARGET_EXPLICIT_RELOCS
      && cfun->machine->global_pointer > 0
      && cfun->machine->global_pointer != GLOBAL_POINTER_REGNUM)
    output_asm_insn (".cplocal %+", 0);
}

/* If we're generating n32 or n64 abicalls, emit instructions
   to set up the global pointer.  */

static void
mips_emit_loadgp (void)
{
  if (TARGET_ABICALLS && TARGET_NEWABI && cfun->machine->global_pointer > 0)
    {
      rtx addr, offset, incoming_address;

      addr = XEXP (DECL_RTL (current_function_decl), 0);
      offset = mips_unspec_address (addr, SYMBOL_GOTOFF_LOADGP);
      incoming_address = gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM);
      emit_insn (gen_loadgp (offset, incoming_address));
      if (!TARGET_EXPLICIT_RELOCS)
	emit_insn (gen_loadgp_blockage ());
    }
}

/* Set up the stack and frame (if desired) for the function.  */

static void
mips_output_function_prologue (FILE *file, HOST_WIDE_INT size ATTRIBUTE_UNUSED)
{
  const char *fnname;
  HOST_WIDE_INT tsize = cfun->machine->frame.total_size;

#ifdef SDB_DEBUGGING_INFO
  if (debug_info_level != DINFO_LEVEL_TERSE && write_symbols == SDB_DEBUG)
    SDB_OUTPUT_SOURCE_LINE (file, DECL_SOURCE_LINE (current_function_decl));
#endif

  /* In mips16 mode, we may need to generate a 32 bit to handle
     floating point arguments.  The linker will arrange for any 32 bit
     functions to call this stub, which will then jump to the 16 bit
     function proper.  */
  if (TARGET_MIPS16 && !TARGET_SOFT_FLOAT
      && current_function_args_info.fp_code != 0)
    build_mips16_function_stub (file);

  if (!FUNCTION_NAME_ALREADY_DECLARED)
    {
      /* Get the function name the same way that toplev.c does before calling
	 assemble_start_function.  This is needed so that the name used here
	 exactly matches the name used in ASM_DECLARE_FUNCTION_NAME.  */
      fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);

      if (!flag_inhibit_size_directive)
	{
	  fputs ("\t.ent\t", file);
	  assemble_name (file, fnname);
	  fputs ("\n", file);
	}

      assemble_name (file, fnname);
      fputs (":\n", file);
    }

  /* Stop mips_file_end from treating this function as external.  */
  if (TARGET_IRIX && mips_abi == ABI_32)
    TREE_ASM_WRITTEN (DECL_NAME (cfun->decl)) = 1;

  if (!flag_inhibit_size_directive)
    {
      /* .frame FRAMEREG, FRAMESIZE, RETREG */
      fprintf (file,
	       "\t.frame\t%s," HOST_WIDE_INT_PRINT_DEC ",%s\t\t"
	       "# vars= " HOST_WIDE_INT_PRINT_DEC ", regs= %d/%d"
	       ", args= " HOST_WIDE_INT_PRINT_DEC
	       ", gp= " HOST_WIDE_INT_PRINT_DEC "\n",
	       (reg_names[(frame_pointer_needed)
			  ? HARD_FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM]),
	       ((frame_pointer_needed && TARGET_MIPS16)
		? tsize - cfun->machine->frame.args_size
		: tsize),
	       reg_names[GP_REG_FIRST + 31],
	       cfun->machine->frame.var_size,
	       cfun->machine->frame.num_gp,
	       cfun->machine->frame.num_fp,
	       cfun->machine->frame.args_size,
	       cfun->machine->frame.cprestore_size);

      /* .mask MASK, GPOFFSET; .fmask FPOFFSET */
      fprintf (file, "\t.mask\t0x%08x," HOST_WIDE_INT_PRINT_DEC "\n",
	       cfun->machine->frame.mask,
	       cfun->machine->frame.gp_save_offset);
      fprintf (file, "\t.fmask\t0x%08x," HOST_WIDE_INT_PRINT_DEC "\n",
	       cfun->machine->frame.fmask,
	       cfun->machine->frame.fp_save_offset);

      /* Require:
	 OLD_SP == *FRAMEREG + FRAMESIZE => can find old_sp from nominated FP reg.
	 HIGHEST_GP_SAVED == *FRAMEREG + FRAMESIZE + GPOFFSET => can find saved regs.  */
    }

  if (TARGET_ABICALLS && !TARGET_NEWABI && cfun->machine->global_pointer > 0)
    {
      /* Handle the initialization of $gp for SVR4 PIC.  */
      if (!cfun->machine->all_noreorder_p)
	output_asm_insn ("%(.cpload\t%^%)", 0);
      else
	output_asm_insn ("%(.cpload\t%^\n\t%<", 0);
    }
  else if (cfun->machine->all_noreorder_p)
    output_asm_insn ("%(%<", 0);

  /* Tell the assembler which register we're using as the global
     pointer.  This is needed for thunks, since they can use either
     explicit relocs or assembler macros.  */
  mips_output_cplocal ();
}

/* Make the last instruction frame related and note that it performs
   the operation described by FRAME_PATTERN.  */

static void
mips_set_frame_expr (rtx frame_pattern)
{
  rtx insn;

  insn = get_last_insn ();
  RTX_FRAME_RELATED_P (insn) = 1;
  REG_NOTES (insn) = alloc_EXPR_LIST (REG_FRAME_RELATED_EXPR,
				      frame_pattern,
				      REG_NOTES (insn));
}


/* Return a frame-related rtx that stores REG at MEM.
   REG must be a single register.  */

static rtx
mips_frame_set (rtx mem, rtx reg)
{
  rtx set;

  /* If we're saving the return address register and the dwarf return
     address column differs from the hard register number, adjust the
     note reg to refer to the former.  */
  if (REGNO (reg) == GP_REG_FIRST + 31
      && DWARF_FRAME_RETURN_COLUMN != GP_REG_FIRST + 31)
    reg = gen_rtx_REG (GET_MODE (reg), DWARF_FRAME_RETURN_COLUMN);

  set = gen_rtx_SET (VOIDmode, mem, reg);
  RTX_FRAME_RELATED_P (set) = 1;

  return set;
}


/* Save register REG to MEM.  Make the instruction frame-related.  */

static void
mips_save_reg (rtx reg, rtx mem)
{
  if (GET_MODE (reg) == DFmode && !TARGET_FLOAT64)
    {
      rtx x1, x2;

      if (mips_split_64bit_move_p (mem, reg))
	mips_split_64bit_move (mem, reg);
      else
	emit_move_insn (mem, reg);

      x1 = mips_frame_set (mips_subword (mem, 0), mips_subword (reg, 0));
      x2 = mips_frame_set (mips_subword (mem, 1), mips_subword (reg, 1));
      mips_set_frame_expr (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, x1, x2)));
    }
  else
    {
      if (TARGET_MIPS16
	  && REGNO (reg) != GP_REG_FIRST + 31
	  && !M16_REG_P (REGNO (reg)))
	{
	  /* Save a non-mips16 register by moving it through a temporary.
	     We don't need to do this for $31 since there's a special
	     instruction for it.  */
	  emit_move_insn (MIPS_PROLOGUE_TEMP (GET_MODE (reg)), reg);
	  emit_move_insn (mem, MIPS_PROLOGUE_TEMP (GET_MODE (reg)));
	}
      else
	emit_move_insn (mem, reg);

      mips_set_frame_expr (mips_frame_set (mem, reg));
    }
}


/* Expand the prologue into a bunch of separate insns.  */

void
mips_expand_prologue (void)
{
  HOST_WIDE_INT size;

  if (cfun->machine->global_pointer > 0)
    REGNO (pic_offset_table_rtx) = cfun->machine->global_pointer;

  size = compute_frame_size (get_frame_size ());

  /* Save the registers.  Allocate up to MIPS_MAX_FIRST_STACK_STEP
     bytes beforehand; this is enough to cover the register save area
     without going out of range.  */
  if ((cfun->machine->frame.mask | cfun->machine->frame.fmask) != 0)
    {
      HOST_WIDE_INT step1;

      step1 = MIN (size, MIPS_MAX_FIRST_STACK_STEP);
      RTX_FRAME_RELATED_P (emit_insn (gen_add3_insn (stack_pointer_rtx,
						     stack_pointer_rtx,
						     GEN_INT (-step1)))) = 1;
      size -= step1;
      mips_for_each_saved_reg (size, mips_save_reg);
    }

  /* Allocate the rest of the frame.  */
  if (size > 0)
    {
      if (SMALL_OPERAND (-size))
	RTX_FRAME_RELATED_P (emit_insn (gen_add3_insn (stack_pointer_rtx,
						       stack_pointer_rtx,
						       GEN_INT (-size)))) = 1;
      else
	{
	  emit_move_insn (MIPS_PROLOGUE_TEMP (Pmode), GEN_INT (size));
	  if (TARGET_MIPS16)
	    {
	      /* There are no instructions to add or subtract registers
		 from the stack pointer, so use the frame pointer as a
		 temporary.  We should always be using a frame pointer
		 in this case anyway.  */
	      gcc_assert (frame_pointer_needed);
	      emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx);
	      emit_insn (gen_sub3_insn (hard_frame_pointer_rtx,
					hard_frame_pointer_rtx,
					MIPS_PROLOGUE_TEMP (Pmode)));
	      emit_move_insn (stack_pointer_rtx, hard_frame_pointer_rtx);
	    }
	  else
	    emit_insn (gen_sub3_insn (stack_pointer_rtx,
				      stack_pointer_rtx,
				      MIPS_PROLOGUE_TEMP (Pmode)));

	  /* Describe the combined effect of the previous instructions.  */
	  mips_set_frame_expr
	    (gen_rtx_SET (VOIDmode, stack_pointer_rtx,
			  plus_constant (stack_pointer_rtx, -size)));
	}
    }

  /* Set up the frame pointer, if we're using one.  In mips16 code,
     we point the frame pointer ahead of the outgoing argument area.
     This should allow more variables & incoming arguments to be
     accessed with unextended instructions.  */
  if (frame_pointer_needed)
    {
      if (TARGET_MIPS16 && cfun->machine->frame.args_size != 0)
	{
	  rtx offset = GEN_INT (cfun->machine->frame.args_size);
	  if (SMALL_OPERAND (cfun->machine->frame.args_size))
	    RTX_FRAME_RELATED_P 
	      (emit_insn (gen_add3_insn (hard_frame_pointer_rtx,
					 stack_pointer_rtx,
					 offset))) = 1;
	  else
	    {
	      emit_move_insn (MIPS_PROLOGUE_TEMP (Pmode), offset);
	      emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx);
	      emit_insn (gen_add3_insn (hard_frame_pointer_rtx,
					hard_frame_pointer_rtx,
					MIPS_PROLOGUE_TEMP (Pmode)));
	      mips_set_frame_expr
		(gen_rtx_SET (VOIDmode, hard_frame_pointer_rtx,
			      plus_constant (stack_pointer_rtx, 
					     cfun->machine->frame.args_size)));
	    }
	}
      else
	RTX_FRAME_RELATED_P (emit_move_insn (hard_frame_pointer_rtx,
					     stack_pointer_rtx)) = 1;
    }

  /* If generating o32/o64 abicalls, save $gp on the stack.  */
  if (TARGET_ABICALLS && !TARGET_NEWABI && !current_function_is_leaf)
    emit_insn (gen_cprestore (GEN_INT (current_function_outgoing_args_size)));

  mips_emit_loadgp ();

  /* If we are profiling, make sure no instructions are scheduled before
     the call to mcount.  */

  if (current_function_profile)
    emit_insn (gen_blockage ());
}

/* Do any necessary cleanup after a function to restore stack, frame,
   and regs.  */

#define RA_MASK BITMASK_HIGH	/* 1 << 31 */

static void
mips_output_function_epilogue (FILE *file ATTRIBUTE_UNUSED,
			       HOST_WIDE_INT size ATTRIBUTE_UNUSED)
{
  /* Reinstate the normal $gp.  */
  REGNO (pic_offset_table_rtx) = GLOBAL_POINTER_REGNUM;
  mips_output_cplocal ();

  if (cfun->machine->all_noreorder_p)
    {
      /* Avoid using %>%) since it adds excess whitespace.  */
      output_asm_insn (".set\tmacro", 0);
      output_asm_insn (".set\treorder", 0);
      set_noreorder = set_nomacro = 0;
    }

  if (!FUNCTION_NAME_ALREADY_DECLARED && !flag_inhibit_size_directive)
    {
      const char *fnname;

      /* Get the function name the same way that toplev.c does before calling
	 assemble_start_function.  This is needed so that the name used here
	 exactly matches the name used in ASM_DECLARE_FUNCTION_NAME.  */
      fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
      fputs ("\t.end\t", file);
      assemble_name (file, fnname);
      fputs ("\n", file);
    }
}

/* Emit instructions to restore register REG from slot MEM.  */

static void
mips_restore_reg (rtx reg, rtx mem)
{
  /* There's no mips16 instruction to load $31 directly.  Load into
     $7 instead and adjust the return insn appropriately.  */
  if (TARGET_MIPS16 && REGNO (reg) == GP_REG_FIRST + 31)
    reg = gen_rtx_REG (GET_MODE (reg), 7);

  if (TARGET_MIPS16 && !M16_REG_P (REGNO (reg)))
    {
      /* Can't restore directly; move through a temporary.  */
      emit_move_insn (MIPS_EPILOGUE_TEMP (GET_MODE (reg)), mem);
      emit_move_insn (reg, MIPS_EPILOGUE_TEMP (GET_MODE (reg)));
    }
  else
    emit_move_insn (reg, mem);
}


/* Expand the epilogue into a bunch of separate insns.  SIBCALL_P is true
   if this epilogue precedes a sibling call, false if it is for a normal
   "epilogue" pattern.  */

void
mips_expand_epilogue (int sibcall_p)
{
  HOST_WIDE_INT step1, step2;
  rtx base, target;

  if (!sibcall_p && mips_can_use_return_insn ())
    {
      emit_jump_insn (gen_return ());
      return;
    }

  /* Split the frame into two.  STEP1 is the amount of stack we should
     deallocate before restoring the registers.  STEP2 is the amount we
     should deallocate afterwards.

     Start off by assuming that no registers need to be restored.  */
  step1 = cfun->machine->frame.total_size;
  step2 = 0;

  /* Work out which register holds the frame address.  Account for the
     frame pointer offset used by mips16 code.  */
  if (!frame_pointer_needed)
    base = stack_pointer_rtx;
  else
    {
      base = hard_frame_pointer_rtx;
      if (TARGET_MIPS16)
	step1 -= cfun->machine->frame.args_size;
    }

  /* If we need to restore registers, deallocate as much stack as
     possible in the second step without going out of range.  */
  if ((cfun->machine->frame.mask | cfun->machine->frame.fmask) != 0)
    {
      step2 = MIN (step1, MIPS_MAX_FIRST_STACK_STEP);
      step1 -= step2;
    }

  /* Set TARGET to BASE + STEP1.  */
  target = base;
  if (step1 > 0)
    {
      rtx adjust;

      /* Get an rtx for STEP1 that we can add to BASE.  */
      adjust = GEN_INT (step1);
      if (!SMALL_OPERAND (step1))
	{
	  emit_move_insn (MIPS_EPILOGUE_TEMP (Pmode), adjust);
	  adjust = MIPS_EPILOGUE_TEMP (Pmode);
	}

      /* Normal mode code can copy the result straight into $sp.  */
      if (!TARGET_MIPS16)
	target = stack_pointer_rtx;

      emit_insn (gen_add3_insn (target, base, adjust));
    }

  /* Copy TARGET into the stack pointer.  */
  if (target != stack_pointer_rtx)
    emit_move_insn (stack_pointer_rtx, target);

  /* If we're using addressing macros for n32/n64 abicalls, $gp is
     implicitly used by all SYMBOL_REFs.  We must emit a blockage
     insn before restoring it.  */
  if (TARGET_ABICALLS && TARGET_NEWABI && !TARGET_EXPLICIT_RELOCS)
    emit_insn (gen_blockage ());

  /* Restore the registers.  */
  mips_for_each_saved_reg (cfun->machine->frame.total_size - step2,
			   mips_restore_reg);

  /* Deallocate the final bit of the frame.  */
  if (step2 > 0)
    emit_insn (gen_add3_insn (stack_pointer_rtx,
			      stack_pointer_rtx,
			      GEN_INT (step2)));

  /* Add in the __builtin_eh_return stack adjustment.  We need to
     use a temporary in mips16 code.  */
  if (current_function_calls_eh_return)
    {
      if (TARGET_MIPS16)
	{
	  emit_move_insn (MIPS_EPILOGUE_TEMP (Pmode), stack_pointer_rtx);
	  emit_insn (gen_add3_insn (MIPS_EPILOGUE_TEMP (Pmode),
				    MIPS_EPILOGUE_TEMP (Pmode),
				    EH_RETURN_STACKADJ_RTX));
	  emit_move_insn (stack_pointer_rtx, MIPS_EPILOGUE_TEMP (Pmode));
	}
      else
	emit_insn (gen_add3_insn (stack_pointer_rtx,
				  stack_pointer_rtx,
				  EH_RETURN_STACKADJ_RTX));
    }

  if (!sibcall_p)
    {
      /* The mips16 loads the return address into $7, not $31.  */
      if (TARGET_MIPS16 && (cfun->machine->frame.mask & RA_MASK) != 0)
	emit_jump_insn (gen_return_internal (gen_rtx_REG (Pmode,
							  GP_REG_FIRST + 7)));
      else
	emit_jump_insn (gen_return_internal (gen_rtx_REG (Pmode,
							  GP_REG_FIRST + 31)));
    }
}

/* Return nonzero if this function is known to have a null epilogue.
   This allows the optimizer to omit jumps to jumps if no stack
   was created.  */

int
mips_can_use_return_insn (void)
{
  tree return_type;

  if (! reload_completed)
    return 0;

  if (regs_ever_live[31] || current_function_profile)
    return 0;

  return_type = DECL_RESULT (current_function_decl);

  /* In mips16 mode, a function which returns a floating point value
     needs to arrange to copy the return value into the floating point
     registers.  */
  if (TARGET_MIPS16
      && mips16_hard_float
      && ! aggregate_value_p (return_type, current_function_decl)
      && GET_MODE_CLASS (DECL_MODE (return_type)) == MODE_FLOAT
      && GET_MODE_SIZE (DECL_MODE (return_type)) <= UNITS_PER_FPVALUE)
    return 0;

  if (cfun->machine->frame.initialized)
    return cfun->machine->frame.total_size == 0;

  return compute_frame_size (get_frame_size ()) == 0;
}

/* Implement TARGET_ASM_OUTPUT_MI_THUNK.  Generate rtl rather than asm text
   in order to avoid duplicating too much logic from elsewhere.  */

static void
mips_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED,
		      HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
		      tree function)
{
  rtx this, temp1, temp2, insn, fnaddr;

  /* Pretend to be a post-reload pass while generating rtl.  */
  no_new_pseudos = 1;
  reload_completed = 1;
  reset_block_changes ();

  /* Pick a global pointer for -mabicalls.  Use $15 rather than $28
     for TARGET_NEWABI since the latter is a call-saved register.  */
  if (TARGET_ABICALLS)
    cfun->machine->global_pointer
      = REGNO (pic_offset_table_rtx)
      = TARGET_NEWABI ? 15 : GLOBAL_POINTER_REGNUM;

  /* Set up the global pointer for n32 or n64 abicalls.  */
  mips_emit_loadgp ();

  /* We need two temporary registers in some cases.  */
  temp1 = gen_rtx_REG (Pmode, 2);
  temp2 = gen_rtx_REG (Pmode, 3);

  /* Find out which register contains the "this" pointer.  */
  if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
    this = gen_rtx_REG (Pmode, GP_ARG_FIRST + 1);
  else
    this = gen_rtx_REG (Pmode, GP_ARG_FIRST);

  /* Add DELTA to THIS.  */
  if (delta != 0)
    {
      rtx offset = GEN_INT (delta);
      if (!SMALL_OPERAND (delta))
	{
	  emit_move_insn (temp1, offset);
	  offset = temp1;
	}
      emit_insn (gen_add3_insn (this, this, offset));
    }

  /* If needed, add *(*THIS + VCALL_OFFSET) to THIS.  */
  if (vcall_offset != 0)
    {
      rtx addr;

      /* Set TEMP1 to *THIS.  */
      emit_move_insn (temp1, gen_rtx_MEM (Pmode, this));

      /* Set ADDR to a legitimate address for *THIS + VCALL_OFFSET.  */
      addr = mips_add_offset (temp2, temp1, vcall_offset);

      /* Load the offset and add it to THIS.  */
      emit_move_insn (temp1, gen_rtx_MEM (Pmode, addr));
      emit_insn (gen_add3_insn (this, this, temp1));
    }

  /* Jump to the target function.  Use a sibcall if direct jumps are
     allowed, otherwise load the address into a register first.  */
  fnaddr = XEXP (DECL_RTL (function), 0);
  if (TARGET_MIPS16 || TARGET_ABICALLS || TARGET_LONG_CALLS)
    {
      /* This is messy.  gas treats "la $25,foo" as part of a call
	 sequence and may allow a global "foo" to be lazily bound.
	 The general move patterns therefore reject this combination.

	 In this context, lazy binding would actually be OK for o32 and o64,
	 but it's still wrong for n32 and n64; see mips_load_call_address.
	 We must therefore load the address via a temporary register if
	 mips_dangerous_for_la25_p.

	 If we jump to the temporary register rather than $25, the assembler
	 can use the move insn to fill the jump's delay slot.  */
      if (TARGET_ABICALLS && !mips_dangerous_for_la25_p (fnaddr))
	temp1 = gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM);
      mips_load_call_address (temp1, fnaddr, true);

      if (TARGET_ABICALLS && REGNO (temp1) != PIC_FUNCTION_ADDR_REGNUM)
	emit_move_insn (gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM), temp1);
      emit_jump_insn (gen_indirect_jump (temp1));
    }
  else
    {
      insn = emit_call_insn (gen_sibcall_internal (fnaddr, const0_rtx));
      SIBLING_CALL_P (insn) = 1;
    }

  /* Run just enough of rest_of_compilation.  This sequence was
     "borrowed" from alpha.c.  */
  insn = get_insns ();
  insn_locators_initialize ();
  split_all_insns_noflow ();
  if (TARGET_MIPS16)
    mips16_lay_out_constants ();
  shorten_branches (insn);
  final_start_function (insn, file, 1);
  final (insn, file, 1);
  final_end_function ();

  /* Clean up the vars set above.  Note that final_end_function resets
     the global pointer for us.  */
  reload_completed = 0;
  no_new_pseudos = 0;
}

/* Returns nonzero if X contains a SYMBOL_REF.  */

static int
symbolic_expression_p (rtx x)
{
  if (GET_CODE (x) == SYMBOL_REF)
    return 1;

  if (GET_CODE (x) == CONST)
    return symbolic_expression_p (XEXP (x, 0));

  if (UNARY_P (x))
    return symbolic_expression_p (XEXP (x, 0));

  if (ARITHMETIC_P (x))
    return (symbolic_expression_p (XEXP (x, 0))
	    || symbolic_expression_p (XEXP (x, 1)));

  return 0;
}

/* Choose the section to use for the constant rtx expression X that has
   mode MODE.  */

static void
mips_select_rtx_section (enum machine_mode mode, rtx x,
			 unsigned HOST_WIDE_INT align)
{
  if (TARGET_MIPS16)
    {
      /* In mips16 mode, the constant table always goes in the same section
         as the function, so that constants can be loaded using PC relative
         addressing.  */
      function_section (current_function_decl);
    }
  else if (TARGET_EMBEDDED_DATA)
    {
      /* For embedded applications, always put constants in read-only data,
	 in order to reduce RAM usage.  */
      mergeable_constant_section (mode, align, 0);
    }
  else
    {
      /* For hosted applications, always put constants in small data if
	 possible, as this gives the best performance.  */
      /* ??? Consider using mergeable small data sections.  */

      if (GET_MODE_SIZE (mode) <= (unsigned) mips_section_threshold
	  && mips_section_threshold > 0)
	named_section (0, ".sdata", 0);
      else if (flag_pic && symbolic_expression_p (x))
	named_section (0, ".data.rel.ro", 3);
      else
	mergeable_constant_section (mode, align, 0);
    }
}

/* Implement TARGET_ASM_FUNCTION_RODATA_SECTION.

   The complication here is that, with the combination TARGET_ABICALLS
   && !TARGET_GPWORD, jump tables will use absolute addresses, and should
   therefore not be included in the read-only part of a DSO.  Handle such
   cases by selecting a normal data section instead of a read-only one.
   The logic apes that in default_function_rodata_section.  */

static void
mips_function_rodata_section (tree decl)
{
  if (!TARGET_ABICALLS || TARGET_GPWORD)
    default_function_rodata_section (decl);
  else if (decl && DECL_SECTION_NAME (decl))
    {
      const char *name = TREE_STRING_POINTER (DECL_SECTION_NAME (decl));
      if (DECL_ONE_ONLY (decl) && strncmp (name, ".gnu.linkonce.t.", 16) == 0)
	{
	  char *rname = ASTRDUP (name);
	  rname[14] = 'd';
	  named_section_real (rname, SECTION_LINKONCE | SECTION_WRITE, decl);
	}
      else if (flag_function_sections && flag_data_sections
	       && strncmp (name, ".text.", 6) == 0)
	{
	  char *rname = ASTRDUP (name);
	  memcpy (rname + 1, "data", 4);
	  named_section_flags (rname, SECTION_WRITE);
	}
      else
	data_section ();
    }
  else
    data_section ();
}

/* Implement TARGET_IN_SMALL_DATA_P.  Return true if it would be safe to
   access DECL using %gp_rel(...)($gp).  */

static bool
mips_in_small_data_p (tree decl)
{
  HOST_WIDE_INT size;

  if (TREE_CODE (decl) == STRING_CST || TREE_CODE (decl) == FUNCTION_DECL)
    return false;

  /* We don't yet generate small-data references for -mabicalls.  See related
     -G handling in override_options.  */
  if (TARGET_ABICALLS)
    return false;

  if (TREE_CODE (decl) == VAR_DECL && DECL_SECTION_NAME (decl) != 0)
    {
      const char *name;

      /* Reject anything that isn't in a known small-data section.  */
      name = TREE_STRING_POINTER (DECL_SECTION_NAME (decl));
      if (strcmp (name, ".sdata") != 0 && strcmp (name, ".sbss") != 0)
	return false;

      /* If a symbol is defined externally, the assembler will use the
	 usual -G rules when deciding how to implement macros.  */
      if (TARGET_EXPLICIT_RELOCS || !DECL_EXTERNAL (decl))
	return true;
    }
  else if (TARGET_EMBEDDED_DATA)
    {
      /* Don't put constants into the small data section: we want them
	 to be in ROM rather than RAM.  */
      if (TREE_CODE (decl) != VAR_DECL)
	return false;

      if (TREE_READONLY (decl)
	  && !TREE_SIDE_EFFECTS (decl)
	  && (!DECL_INITIAL (decl) || TREE_CONSTANT (DECL_INITIAL (decl))))
	return false;
    }

  size = int_size_in_bytes (TREE_TYPE (decl));
  return (size > 0 && size <= mips_section_threshold);
}

/* See whether VALTYPE is a record whose fields should be returned in
   floating-point registers.  If so, return the number of fields and
   list them in FIELDS (which should have two elements).  Return 0
   otherwise.

   For n32 & n64, a structure with one or two fields is returned in
   floating-point registers as long as every field has a floating-point
   type.  */

static int
mips_fpr_return_fields (tree valtype, tree *fields)
{
  tree field;
  int i;

  if (!TARGET_NEWABI)
    return 0;

  if (TREE_CODE (valtype) != RECORD_TYPE)
    return 0;

  i = 0;
  for (field = TYPE_FIELDS (valtype); field != 0; field = TREE_CHAIN (field))
    {
      if (TREE_CODE (field) != FIELD_DECL)
	continue;

      if (TREE_CODE (TREE_TYPE (field)) != REAL_TYPE)
	return 0;

      if (i == 2)
	return 0;

      fields[i++] = field;
    }
  return i;
}


/* Implement TARGET_RETURN_IN_MSB.  For n32 & n64, we should return
   a value in the most significant part of $2/$3 if:

      - the target is big-endian;

      - the value has a structure or union type (we generalize this to
	cover aggregates from other languages too); and

      - the structure is not returned in floating-point registers.  */

static bool
mips_return_in_msb (tree valtype)
{
  tree fields[2];

  return (TARGET_NEWABI
	  && TARGET_BIG_ENDIAN
	  && AGGREGATE_TYPE_P (valtype)
	  && mips_fpr_return_fields (valtype, fields) == 0);
}


/* Return a composite value in a pair of floating-point registers.
   MODE1 and OFFSET1 are the mode and byte offset for the first value,
   likewise MODE2 and OFFSET2 for the second.  MODE is the mode of the
   complete value.

   For n32 & n64, $f0 always holds the first value and $f2 the second.
   Otherwise the values are packed together as closely as possible.  */

static rtx
mips_return_fpr_pair (enum machine_mode mode,
		      enum machine_mode mode1, HOST_WIDE_INT offset1,
		      enum machine_mode mode2, HOST_WIDE_INT offset2)
{
  int inc;

  inc = (TARGET_NEWABI ? 2 : FP_INC);
  return gen_rtx_PARALLEL
    (mode,
     gen_rtvec (2,
		gen_rtx_EXPR_LIST (VOIDmode,
				   gen_rtx_REG (mode1, FP_RETURN),
				   GEN_INT (offset1)),
		gen_rtx_EXPR_LIST (VOIDmode,
				   gen_rtx_REG (mode2, FP_RETURN + inc),
				   GEN_INT (offset2))));

}


/* Implement FUNCTION_VALUE and LIBCALL_VALUE.  For normal calls,
   VALTYPE is the return type and MODE is VOIDmode.  For libcalls,
   VALTYPE is null and MODE is the mode of the return value.  */

rtx
mips_function_value (tree valtype, tree func ATTRIBUTE_UNUSED,
		     enum machine_mode mode)
{
  if (valtype)
    {
      tree fields[2];
      int unsignedp;

      mode = TYPE_MODE (valtype);
      unsignedp = TYPE_UNSIGNED (valtype);

      /* Since we define TARGET_PROMOTE_FUNCTION_RETURN that returns
	 true, we must promote the mode just as PROMOTE_MODE does.  */
      mode = promote_mode (valtype, mode, &unsignedp, 1);

      /* Handle structures whose fields are returned in $f0/$f2.  */
      switch (mips_fpr_return_fields (valtype, fields))
	{
	case 1:
	  return gen_rtx_REG (mode, FP_RETURN);

	case 2:
	  return mips_return_fpr_pair (mode,
				       TYPE_MODE (TREE_TYPE (fields[0])),
				       int_byte_position (fields[0]),
				       TYPE_MODE (TREE_TYPE (fields[1])),
				       int_byte_position (fields[1]));
	}

      /* If a value is passed in the most significant part of a register, see
	 whether we have to round the mode up to a whole number of words.  */
      if (mips_return_in_msb (valtype))
	{
	  HOST_WIDE_INT size = int_size_in_bytes (valtype);
	  if (size % UNITS_PER_WORD != 0)
	    {
	      size += UNITS_PER_WORD - size % UNITS_PER_WORD;
	      mode = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
	    }
	}

      /* For EABI, the class of return register depends entirely on MODE.
	 For example, "struct { some_type x; }" and "union { some_type x; }"
	 are returned in the same way as a bare "some_type" would be.
	 Other ABIs only use FPRs for scalar, complex or vector types.  */
      if (mips_abi != ABI_EABI && !FLOAT_TYPE_P (valtype))
	return gen_rtx_REG (mode, GP_RETURN);
    }

  if ((GET_MODE_CLASS (mode) == MODE_FLOAT
       || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
      && GET_MODE_SIZE (mode) <= UNITS_PER_HWFPVALUE)
    return gen_rtx_REG (mode, FP_RETURN);

  /* Handle long doubles for n32 & n64.  */
  if (mode == TFmode)
    return mips_return_fpr_pair (mode,
				 DImode, 0,
				 DImode, GET_MODE_SIZE (mode) / 2);

  if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
      && GET_MODE_SIZE (mode) <= UNITS_PER_HWFPVALUE * 2)
    return mips_return_fpr_pair (mode,
				 GET_MODE_INNER (mode), 0,
				 GET_MODE_INNER (mode),
				 GET_MODE_SIZE (mode) / 2);

  return gen_rtx_REG (mode, GP_RETURN);
}

/* Return nonzero when an argument must be passed by reference.  */

static bool
mips_pass_by_reference (CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED,
			enum machine_mode mode, tree type,
			bool named ATTRIBUTE_UNUSED)
{
  if (mips_abi == ABI_EABI)
    {
      int size;

      /* ??? How should SCmode be handled?  */
      if (type == NULL_TREE || mode == DImode || mode == DFmode)
	return 0;

      size = int_size_in_bytes (type);
      return size == -1 || size > UNITS_PER_WORD;
    }
  else
    {
      /* If we have a variable-sized parameter, we have no choice.  */
      return targetm.calls.must_pass_in_stack (mode, type);
    }
}

static bool
mips_callee_copies (CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED,
		    enum machine_mode mode ATTRIBUTE_UNUSED,
		    tree type ATTRIBUTE_UNUSED, bool named)
{
  return mips_abi == ABI_EABI && named;
}

/* Return true if registers of class CLASS cannot change from mode FROM
   to mode TO.  */

bool
mips_cannot_change_mode_class (enum machine_mode from,
			       enum machine_mode to, enum reg_class class)
{
  if (MIN (GET_MODE_SIZE (from), GET_MODE_SIZE (to)) <= UNITS_PER_WORD
      && MAX (GET_MODE_SIZE (from), GET_MODE_SIZE (to)) > UNITS_PER_WORD)
    {
      if (TARGET_BIG_ENDIAN)
	{
	  /* When a multi-word value is stored in paired floating-point
	     registers, the first register always holds the low word.
	     We therefore can't allow FPRs to change between single-word
	     and multi-word modes.  */
	  if (FP_INC > 1 && reg_classes_intersect_p (FP_REGS, class))
	    return true;
	}
      else
	{
	  /* LO_REGNO == HI_REGNO + 1, so if a multi-word value is stored
	     in LO and HI, the high word always comes first.  We therefore
	     can't allow values stored in HI to change between single-word
	     and multi-word modes.
	     This rule applies to both the original HI/LO pair and the new
	     DSP accumulators.  */
	  if (reg_classes_intersect_p (ACC_REGS, class))
	    return true;
	}
    }
  /* Loading a 32-bit value into a 64-bit floating-point register
     will not sign-extend the value, despite what LOAD_EXTEND_OP says.
     We can't allow 64-bit float registers to change from SImode to
     to a wider mode.  */
  if (TARGET_FLOAT64
      && from == SImode
      && GET_MODE_SIZE (to) >= UNITS_PER_WORD
      && reg_classes_intersect_p (FP_REGS, class))
    return true;
  return false;
}

/* Return true if X should not be moved directly into register $25.
   We need this because many versions of GAS will treat "la $25,foo" as
   part of a call sequence and so allow a global "foo" to be lazily bound.  */

bool
mips_dangerous_for_la25_p (rtx x)
{
  HOST_WIDE_INT offset;

  if (TARGET_EXPLICIT_RELOCS)
    return false;

  mips_split_const (x, &x, &offset);
  return global_got_operand (x, VOIDmode);
}

/* Implement PREFERRED_RELOAD_CLASS.  */

enum reg_class
mips_preferred_reload_class (rtx x, enum reg_class class)
{
  if (mips_dangerous_for_la25_p (x) && reg_class_subset_p (LEA_REGS, class))
    return LEA_REGS;

  if (TARGET_HARD_FLOAT
      && FLOAT_MODE_P (GET_MODE (x))
      && reg_class_subset_p (FP_REGS, class))
    return FP_REGS;

  if (reg_class_subset_p (GR_REGS, class))
    class = GR_REGS;

  if (TARGET_MIPS16 && reg_class_subset_p (M16_REGS, class))
    class = M16_REGS;

  return class;
}

/* This function returns the register class required for a secondary
   register when copying between one of the registers in CLASS, and X,
   using MODE.  If IN_P is nonzero, the copy is going from X to the
   register, otherwise the register is the source.  A return value of
   NO_REGS means that no secondary register is required.  */

enum reg_class
mips_secondary_reload_class (enum reg_class class,
			     enum machine_mode mode, rtx x, int in_p)
{
  enum reg_class gr_regs = TARGET_MIPS16 ? M16_REGS : GR_REGS;
  int regno = -1;
  int gp_reg_p;

  if (REG_P (x)|| GET_CODE (x) == SUBREG)
    regno = true_regnum (x);

  gp_reg_p = TARGET_MIPS16 ? M16_REG_P (regno) : GP_REG_P (regno);

  if (mips_dangerous_for_la25_p (x))
    {
      gr_regs = LEA_REGS;
      if (TEST_HARD_REG_BIT (reg_class_contents[(int) class], 25))
	return gr_regs;
    }

  /* Copying from HI or LO to anywhere other than a general register
     requires a general register.
     This rule applies to both the original HI/LO pair and the new
     DSP accumulators.  */
  if (reg_class_subset_p (class, ACC_REGS))
    {
      if (TARGET_MIPS16 && in_p)
	{
	  /* We can't really copy to HI or LO at all in mips16 mode.  */
	  return M16_REGS;
	}
      return gp_reg_p ? NO_REGS : gr_regs;
    }
  if (ACC_REG_P (regno))
    {
      if (TARGET_MIPS16 && ! in_p)
	{
	  /* We can't really copy to HI or LO at all in mips16 mode.  */
	  return M16_REGS;
	}
      return class == gr_regs ? NO_REGS : gr_regs;
    }

  /* We can only copy a value to a condition code register from a
     floating point register, and even then we require a scratch
     floating point register.  We can only copy a value out of a
     condition code register into a general register.  */
  if (class == ST_REGS)
    {
      if (in_p)
	return FP_REGS;
      return gp_reg_p ? NO_REGS : gr_regs;
    }
  if (ST_REG_P (regno))
    {
      if (! in_p)
	return FP_REGS;
      return class == gr_regs ? NO_REGS : gr_regs;
    }

  if (class == FP_REGS)
    {
      if (MEM_P (x))
	{
	  /* In this case we can use lwc1, swc1, ldc1 or sdc1.  */
	  return NO_REGS;
	}
      else if (CONSTANT_P (x) && GET_MODE_CLASS (mode) == MODE_FLOAT)
	{
	  /* We can use the l.s and l.d macros to load floating-point
	     constants.  ??? For l.s, we could probably get better
	     code by returning GR_REGS here.  */
	  return NO_REGS;
	}
      else if (gp_reg_p || x == CONST0_RTX (mode))
	{
	  /* In this case we can use mtc1, mfc1, dmtc1 or dmfc1.  */
	  return NO_REGS;
	}
      else if (FP_REG_P (regno))
	{
	  /* In this case we can use mov.s or mov.d.  */
	  return NO_REGS;
	}
      else
	{
	  /* Otherwise, we need to reload through an integer register.  */
	  return gr_regs;
	}
    }

  /* In mips16 mode, going between memory and anything but M16_REGS
     requires an M16_REG.  */
  if (TARGET_MIPS16)
    {
      if (class != M16_REGS && class != M16_NA_REGS)
	{
	  if (gp_reg_p)
	    return NO_REGS;
	  return M16_REGS;
	}
      if (! gp_reg_p)
	{
	  if (class == M16_REGS || class == M16_NA_REGS)
	    return NO_REGS;
	  return M16_REGS;
	}
    }

  return NO_REGS;
}

/* Implement CLASS_MAX_NREGS.

   Usually all registers are word-sized.  The only supported exception
   is -mgp64 -msingle-float, which has 64-bit words but 32-bit float
   registers.  A word-based calculation is correct even in that case,
   since -msingle-float disallows multi-FPR values.

   The FP status registers are an exception to this rule.  They are always
   4 bytes wide as they only hold condition code modes, and CCmode is always
   considered to be 4 bytes wide.  */

int
mips_class_max_nregs (enum reg_class class ATTRIBUTE_UNUSED,
		      enum machine_mode mode)
{
  if (class == ST_REGS)
    return (GET_MODE_SIZE (mode) + 3) / 4;
  else
    return (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
}

static bool
mips_valid_pointer_mode (enum machine_mode mode)
{
  return (mode == SImode || (TARGET_64BIT && mode == DImode));
}

/* Target hook for vector_mode_supported_p.  */

static bool
mips_vector_mode_supported_p (enum machine_mode mode)
{
  switch (mode)
    {
    case V2SFmode:
      return TARGET_PAIRED_SINGLE_FLOAT;

    case V2HImode:
    case V4QImode:
      return TARGET_DSP;

    default:
      return false;
    }
}

/* If we can access small data directly (using gp-relative relocation
   operators) return the small data pointer, otherwise return null.

   For each mips16 function which refers to GP relative symbols, we
   use a pseudo register, initialized at the start of the function, to
   hold the $gp value.  */

static rtx
mips16_gp_pseudo_reg (void)
{
  if (cfun->machine->mips16_gp_pseudo_rtx == NULL_RTX)
    {
      rtx unspec;
      rtx insn, scan;

      cfun->machine->mips16_gp_pseudo_rtx = gen_reg_rtx (Pmode);

      /* We want to initialize this to a value which gcc will believe
         is constant.  */
      start_sequence ();
      unspec = gen_rtx_UNSPEC (VOIDmode, gen_rtvec (1, const0_rtx), UNSPEC_GP);
      emit_move_insn (cfun->machine->mips16_gp_pseudo_rtx,
		      gen_rtx_CONST (Pmode, unspec));
      insn = get_insns ();
      end_sequence ();

      push_topmost_sequence ();
      /* We need to emit the initialization after the FUNCTION_BEG
         note, so that it will be integrated.  */
      for (scan = get_insns (); scan != NULL_RTX; scan = NEXT_INSN (scan))
	if (NOTE_P (scan)
	    && NOTE_LINE_NUMBER (scan) == NOTE_INSN_FUNCTION_BEG)
	  break;
      if (scan == NULL_RTX)
	scan = get_insns ();
      insn = emit_insn_after (insn, scan);
      pop_topmost_sequence ();
    }

  return cfun->machine->mips16_gp_pseudo_rtx;
}

/* Write out code to move floating point arguments in or out of
   general registers.  Output the instructions to FILE.  FP_CODE is
   the code describing which arguments are present (see the comment at
   the definition of CUMULATIVE_ARGS in mips.h).  FROM_FP_P is nonzero if
   we are copying from the floating point registers.  */

static void
mips16_fp_args (FILE *file, int fp_code, int from_fp_p)
{
  const char *s;
  int gparg, fparg;
  unsigned int f;

  /* This code only works for the original 32 bit ABI and the O64 ABI.  */
  gcc_assert (TARGET_OLDABI);

  if (from_fp_p)
    s = "mfc1";
  else
    s = "mtc1";
  gparg = GP_ARG_FIRST;
  fparg = FP_ARG_FIRST;
  for (f = (unsigned int) fp_code; f != 0; f >>= 2)
    {
      if ((f & 3) == 1)
	{
	  if ((fparg & 1) != 0)
	    ++fparg;
	  fprintf (file, "\t%s\t%s,%s\n", s,
		   reg_names[gparg], reg_names[fparg]);
	}
      else if ((f & 3) == 2)
	{
	  if (TARGET_64BIT)
	    fprintf (file, "\td%s\t%s,%s\n", s,
		     reg_names[gparg], reg_names[fparg]);
	  else
	    {
	      if ((fparg & 1) != 0)
		++fparg;
	      if (TARGET_BIG_ENDIAN)
		fprintf (file, "\t%s\t%s,%s\n\t%s\t%s,%s\n", s,
			 reg_names[gparg], reg_names[fparg + 1], s,
			 reg_names[gparg + 1], reg_names[fparg]);
	      else
		fprintf (file, "\t%s\t%s,%s\n\t%s\t%s,%s\n", s,
			 reg_names[gparg], reg_names[fparg], s,
			 reg_names[gparg + 1], reg_names[fparg + 1]);
	      ++gparg;
	      ++fparg;
	    }
	}
      else
	gcc_unreachable ();

      ++gparg;
      ++fparg;
    }
}

/* Build a mips16 function stub.  This is used for functions which
   take arguments in the floating point registers.  It is 32 bit code
   that moves the floating point args into the general registers, and
   then jumps to the 16 bit code.  */

static void
build_mips16_function_stub (FILE *file)
{
  const char *fnname;
  char *secname, *stubname;
  tree stubid, stubdecl;
  int need_comma;
  unsigned int f;

  fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
  secname = (char *) alloca (strlen (fnname) + 20);
  sprintf (secname, ".mips16.fn.%s", fnname);
  stubname = (char *) alloca (strlen (fnname) + 20);
  sprintf (stubname, "__fn_stub_%s", fnname);
  stubid = get_identifier (stubname);
  stubdecl = build_decl (FUNCTION_DECL, stubid,
			 build_function_type (void_type_node, NULL_TREE));
  DECL_SECTION_NAME (stubdecl) = build_string (strlen (secname), secname);

  fprintf (file, "\t# Stub function for %s (", current_function_name ());
  need_comma = 0;
  for (f = (unsigned int) current_function_args_info.fp_code; f != 0; f >>= 2)
    {
      fprintf (file, "%s%s",
	       need_comma ? ", " : "",
	       (f & 3) == 1 ? "float" : "double");
      need_comma = 1;
    }
  fprintf (file, ")\n");

  fprintf (file, "\t.set\tnomips16\n");
  function_section (stubdecl);
  ASM_OUTPUT_ALIGN (file, floor_log2 (FUNCTION_BOUNDARY / BITS_PER_UNIT));

  /* ??? If FUNCTION_NAME_ALREADY_DECLARED is defined, then we are
     within a .ent, and we cannot emit another .ent.  */
  if (!FUNCTION_NAME_ALREADY_DECLARED)
    {
      fputs ("\t.ent\t", file);
      assemble_name (file, stubname);
      fputs ("\n", file);
    }

  assemble_name (file, stubname);
  fputs (":\n", file);

  /* We don't want the assembler to insert any nops here.  */
  fprintf (file, "\t.set\tnoreorder\n");

  mips16_fp_args (file, current_function_args_info.fp_code, 1);

  fprintf (asm_out_file, "\t.set\tnoat\n");
  fprintf (asm_out_file, "\tla\t%s,", reg_names[GP_REG_FIRST + 1]);
  assemble_name (file, fnname);
  fprintf (file, "\n");
  fprintf (asm_out_file, "\tjr\t%s\n", reg_names[GP_REG_FIRST + 1]);
  fprintf (asm_out_file, "\t.set\tat\n");

  /* Unfortunately, we can't fill the jump delay slot.  We can't fill
     with one of the mfc1 instructions, because the result is not
     available for one instruction, so if the very first instruction
     in the function refers to the register, it will see the wrong
     value.  */
  fprintf (file, "\tnop\n");

  fprintf (file, "\t.set\treorder\n");

  if (!FUNCTION_NAME_ALREADY_DECLARED)
    {
      fputs ("\t.end\t", file);
      assemble_name (file, stubname);
      fputs ("\n", file);
    }

  fprintf (file, "\t.set\tmips16\n");

  function_section (current_function_decl);
}

/* We keep a list of functions for which we have already built stubs
   in build_mips16_call_stub.  */

struct mips16_stub
{
  struct mips16_stub *next;
  char *name;
  int fpret;
};

static struct mips16_stub *mips16_stubs;

/* Build a call stub for a mips16 call.  A stub is needed if we are
   passing any floating point values which should go into the floating
   point registers.  If we are, and the call turns out to be to a 32
   bit function, the stub will be used to move the values into the
   floating point registers before calling the 32 bit function.  The
   linker will magically adjust the function call to either the 16 bit
   function or the 32 bit stub, depending upon where the function call
   is actually defined.

   Similarly, we need a stub if the return value might come back in a
   floating point register.

   RETVAL is the location of the return value, or null if this is
   a call rather than a call_value.  FN is the address of the
   function and ARG_SIZE is the size of the arguments.  FP_CODE
   is the code built by function_arg.  This function returns a nonzero
   value if it builds the call instruction itself.  */

int
build_mips16_call_stub (rtx retval, rtx fn, rtx arg_size, int fp_code)
{
  int fpret;
  const char *fnname;
  char *secname, *stubname;
  struct mips16_stub *l;
  tree stubid, stubdecl;
  int need_comma;
  unsigned int f;

  /* We don't need to do anything if we aren't in mips16 mode, or if
     we were invoked with the -msoft-float option.  */
  if (! TARGET_MIPS16 || ! mips16_hard_float)
    return 0;

  /* Figure out whether the value might come back in a floating point
     register.  */
  fpret = (retval != 0
	   && GET_MODE_CLASS (GET_MODE (retval)) == MODE_FLOAT
	   && GET_MODE_SIZE (GET_MODE (retval)) <= UNITS_PER_FPVALUE);

  /* We don't need to do anything if there were no floating point
     arguments and the value will not be returned in a floating point
     register.  */
  if (fp_code == 0 && ! fpret)
    return 0;

  /* We don't need to do anything if this is a call to a special
     mips16 support function.  */
  if (GET_CODE (fn) == SYMBOL_REF
      && strncmp (XSTR (fn, 0), "__mips16_", 9) == 0)
    return 0;

  /* This code will only work for o32 and o64 abis.  The other ABI's
     require more sophisticated support.  */
  gcc_assert (TARGET_OLDABI);

  /* We can only handle SFmode and DFmode floating point return
     values.  */
  if (fpret)
    gcc_assert (GET_MODE (retval) == SFmode || GET_MODE (retval) == DFmode);

  /* If we're calling via a function pointer, then we must always call
     via a stub.  There are magic stubs provided in libgcc.a for each
     of the required cases.  Each of them expects the function address
     to arrive in register $2.  */

  if (GET_CODE (fn) != SYMBOL_REF)
    {
      char buf[30];
      tree id;
      rtx stub_fn, insn;

      /* ??? If this code is modified to support other ABI's, we need
         to handle PARALLEL return values here.  */

      sprintf (buf, "__mips16_call_stub_%s%d",
	       (fpret
		? (GET_MODE (retval) == SFmode ? "sf_" : "df_")
		: ""),
	       fp_code);
      id = get_identifier (buf);
      stub_fn = gen_rtx_SYMBOL_REF (Pmode, IDENTIFIER_POINTER (id));

      emit_move_insn (gen_rtx_REG (Pmode, 2), fn);

      if (retval == NULL_RTX)
	insn = gen_call_internal (stub_fn, arg_size);
      else
	insn = gen_call_value_internal (retval, stub_fn, arg_size);
      insn = emit_call_insn (insn);

      /* Put the register usage information on the CALL.  */
      CALL_INSN_FUNCTION_USAGE (insn) =
	gen_rtx_EXPR_LIST (VOIDmode,
			   gen_rtx_USE (VOIDmode, gen_rtx_REG (Pmode, 2)),
			   CALL_INSN_FUNCTION_USAGE (insn));

      /* If we are handling a floating point return value, we need to
         save $18 in the function prologue.  Putting a note on the
         call will mean that regs_ever_live[$18] will be true if the
         call is not eliminated, and we can check that in the prologue
         code.  */
      if (fpret)
	CALL_INSN_FUNCTION_USAGE (insn) =
	  gen_rtx_EXPR_LIST (VOIDmode,
			     gen_rtx_USE (VOIDmode,
					  gen_rtx_REG (word_mode, 18)),
			     CALL_INSN_FUNCTION_USAGE (insn));

      /* Return 1 to tell the caller that we've generated the call
         insn.  */
      return 1;
    }

  /* We know the function we are going to call.  If we have already
     built a stub, we don't need to do anything further.  */

  fnname = XSTR (fn, 0);
  for (l = mips16_stubs; l != NULL; l = l->next)
    if (strcmp (l->name, fnname) == 0)
      break;

  if (l == NULL)
    {
      /* Build a special purpose stub.  When the linker sees a
	 function call in mips16 code, it will check where the target
	 is defined.  If the target is a 32 bit call, the linker will
	 search for the section defined here.  It can tell which
	 symbol this section is associated with by looking at the
	 relocation information (the name is unreliable, since this
	 might be a static function).  If such a section is found, the
	 linker will redirect the call to the start of the magic
	 section.

	 If the function does not return a floating point value, the
	 special stub section is named
	     .mips16.call.FNNAME

	 If the function does return a floating point value, the stub
	 section is named
	     .mips16.call.fp.FNNAME
	 */

      secname = (char *) alloca (strlen (fnname) + 40);
      sprintf (secname, ".mips16.call.%s%s",
	       fpret ? "fp." : "",
	       fnname);
      stubname = (char *) alloca (strlen (fnname) + 20);
      sprintf (stubname, "__call_stub_%s%s",
	       fpret ? "fp_" : "",
	       fnname);
      stubid = get_identifier (stubname);
      stubdecl = build_decl (FUNCTION_DECL, stubid,
			     build_function_type (void_type_node, NULL_TREE));
      DECL_SECTION_NAME (stubdecl) = build_string (strlen (secname), secname);

      fprintf (asm_out_file, "\t# Stub function to call %s%s (",
	       (fpret
		? (GET_MODE (retval) == SFmode ? "float " : "double ")
		: ""),
	       fnname);
      need_comma = 0;
      for (f = (unsigned int) fp_code; f != 0; f >>= 2)
	{
	  fprintf (asm_out_file, "%s%s",
		   need_comma ? ", " : "",
		   (f & 3) == 1 ? "float" : "double");
	  need_comma = 1;
	}
      fprintf (asm_out_file, ")\n");

      fprintf (asm_out_file, "\t.set\tnomips16\n");
      assemble_start_function (stubdecl, stubname);

      if (!FUNCTION_NAME_ALREADY_DECLARED)
	{
	  fputs ("\t.ent\t", asm_out_file);
	  assemble_name (asm_out_file, stubname);
	  fputs ("\n", asm_out_file);

	  assemble_name (asm_out_file, stubname);
	  fputs (":\n", asm_out_file);
	}

      /* We build the stub code by hand.  That's the only way we can
	 do it, since we can't generate 32 bit code during a 16 bit
	 compilation.  */

      /* We don't want the assembler to insert any nops here.  */
      fprintf (asm_out_file, "\t.set\tnoreorder\n");

      mips16_fp_args (asm_out_file, fp_code, 0);

      if (! fpret)
	{
	  fprintf (asm_out_file, "\t.set\tnoat\n");
	  fprintf (asm_out_file, "\tla\t%s,%s\n", reg_names[GP_REG_FIRST + 1],
		   fnname);
	  fprintf (asm_out_file, "\tjr\t%s\n", reg_names[GP_REG_FIRST + 1]);
	  fprintf (asm_out_file, "\t.set\tat\n");
	  /* Unfortunately, we can't fill the jump delay slot.  We
	     can't fill with one of the mtc1 instructions, because the
	     result is not available for one instruction, so if the
	     very first instruction in the function refers to the
	     register, it will see the wrong value.  */
	  fprintf (asm_out_file, "\tnop\n");
	}
      else
	{
	  fprintf (asm_out_file, "\tmove\t%s,%s\n",
		   reg_names[GP_REG_FIRST + 18], reg_names[GP_REG_FIRST + 31]);
	  fprintf (asm_out_file, "\tjal\t%s\n", fnname);
	  /* As above, we can't fill the delay slot.  */
	  fprintf (asm_out_file, "\tnop\n");
	  if (GET_MODE (retval) == SFmode)
	    fprintf (asm_out_file, "\tmfc1\t%s,%s\n",
		     reg_names[GP_REG_FIRST + 2], reg_names[FP_REG_FIRST + 0]);
	  else
	    {
	      if (TARGET_BIG_ENDIAN)
		{
		  fprintf (asm_out_file, "\tmfc1\t%s,%s\n",
			   reg_names[GP_REG_FIRST + 2],
			   reg_names[FP_REG_FIRST + 1]);
		  fprintf (asm_out_file, "\tmfc1\t%s,%s\n",
			   reg_names[GP_REG_FIRST + 3],
			   reg_names[FP_REG_FIRST + 0]);
		}
	      else
		{
		  fprintf (asm_out_file, "\tmfc1\t%s,%s\n",
			   reg_names[GP_REG_FIRST + 2],
			   reg_names[FP_REG_FIRST + 0]);
		  fprintf (asm_out_file, "\tmfc1\t%s,%s\n",
			   reg_names[GP_REG_FIRST + 3],
			   reg_names[FP_REG_FIRST + 1]);
		}
	    }
	  fprintf (asm_out_file, "\tj\t%s\n", reg_names[GP_REG_FIRST + 18]);
	  /* As above, we can't fill the delay slot.  */
	  fprintf (asm_out_file, "\tnop\n");
	}

      fprintf (asm_out_file, "\t.set\treorder\n");

#ifdef ASM_DECLARE_FUNCTION_SIZE
      ASM_DECLARE_FUNCTION_SIZE (asm_out_file, stubname, stubdecl);
#endif

      if (!FUNCTION_NAME_ALREADY_DECLARED)
	{
	  fputs ("\t.end\t", asm_out_file);
	  assemble_name (asm_out_file, stubname);
	  fputs ("\n", asm_out_file);
	}

      fprintf (asm_out_file, "\t.set\tmips16\n");

      /* Record this stub.  */
      l = (struct mips16_stub *) xmalloc (sizeof *l);
      l->name = xstrdup (fnname);
      l->fpret = fpret;
      l->next = mips16_stubs;
      mips16_stubs = l;
    }

  /* If we expect a floating point return value, but we've built a
     stub which does not expect one, then we're in trouble.  We can't
     use the existing stub, because it won't handle the floating point
     value.  We can't build a new stub, because the linker won't know
     which stub to use for the various calls in this object file.
     Fortunately, this case is illegal, since it means that a function
     was declared in two different ways in a single compilation.  */
  if (fpret && ! l->fpret)
    error ("cannot handle inconsistent calls to %qs", fnname);

  /* If we are calling a stub which handles a floating point return
     value, we need to arrange to save $18 in the prologue.  We do
     this by marking the function call as using the register.  The
     prologue will later see that it is used, and emit code to save
     it.  */

  if (l->fpret)
    {
      rtx insn;

      if (retval == NULL_RTX)
	insn = gen_call_internal (fn, arg_size);
      else
	insn = gen_call_value_internal (retval, fn, arg_size);
      insn = emit_call_insn (insn);

      CALL_INSN_FUNCTION_USAGE (insn) =
	gen_rtx_EXPR_LIST (VOIDmode,
			   gen_rtx_USE (VOIDmode, gen_rtx_REG (word_mode, 18)),
			   CALL_INSN_FUNCTION_USAGE (insn));

      /* Return 1 to tell the caller that we've generated the call
         insn.  */
      return 1;
    }

  /* Return 0 to let the caller generate the call insn.  */
  return 0;
}

/* An entry in the mips16 constant pool.  VALUE is the pool constant,
   MODE is its mode, and LABEL is the CODE_LABEL associated with it.  */

struct mips16_constant {
  struct mips16_constant *next;
  rtx value;
  rtx label;
  enum machine_mode mode;
};

/* Information about an incomplete mips16 constant pool.  FIRST is the
   first constant, HIGHEST_ADDRESS is the highest address that the first
   byte of the pool can have, and INSN_ADDRESS is the current instruction
   address.  */

struct mips16_constant_pool {
  struct mips16_constant *first;
  int highest_address;
  int insn_address;
};

/* Add constant VALUE to POOL and return its label.  MODE is the
   value's mode (used for CONST_INTs, etc.).  */

static rtx
add_constant (struct mips16_constant_pool *pool,
	      rtx value, enum machine_mode mode)
{
  struct mips16_constant **p, *c;
  bool first_of_size_p;

  /* See whether the constant is already in the pool.  If so, return the
     existing label, otherwise leave P pointing to the place where the
     constant should be added.

     Keep the pool sorted in increasing order of mode size so that we can
     reduce the number of alignments needed.  */
  first_of_size_p = true;
  for (p = &pool->first; *p != 0; p = &(*p)->next)
    {
      if (mode == (*p)->mode && rtx_equal_p (value, (*p)->value))
	return (*p)->label;
      if (GET_MODE_SIZE (mode) < GET_MODE_SIZE ((*p)->mode))
	break;
      if (GET_MODE_SIZE (mode) == GET_MODE_SIZE ((*p)->mode))
	first_of_size_p = false;
    }

  /* In the worst case, the constant needed by the earliest instruction
     will end up at the end of the pool.  The entire pool must then be
     accessible from that instruction.

     When adding the first constant, set the pool's highest address to
     the address of the first out-of-range byte.  Adjust this address
     downwards each time a new constant is added.  */
  if (pool->first == 0)
    /* For pc-relative lw, addiu and daddiu instructions, the base PC value
       is the address of the instruction with the lowest two bits clear.
       The base PC value for ld has the lowest three bits clear.  Assume
       the worst case here.  */
    pool->highest_address = pool->insn_address - (UNITS_PER_WORD - 2) + 0x8000;
  pool->highest_address -= GET_MODE_SIZE (mode);
  if (first_of_size_p)
    /* Take into account the worst possible padding due to alignment.  */
    pool->highest_address -= GET_MODE_SIZE (mode) - 1;

  /* Create a new entry.  */
  c = (struct mips16_constant *) xmalloc (sizeof *c);
  c->value = value;
  c->mode = mode;
  c->label = gen_label_rtx ();
  c->next = *p;
  *p = c;

  return c->label;
}

/* Output constant VALUE after instruction INSN and return the last
   instruction emitted.  MODE is the mode of the constant.  */

static rtx
dump_constants_1 (enum machine_mode mode, rtx value, rtx insn)
{
  switch (GET_MODE_CLASS (mode))
    {
    case MODE_INT:
      {
	rtx size = GEN_INT (GET_MODE_SIZE (mode));
	return emit_insn_after (gen_consttable_int (value, size), insn);
      }

    case MODE_FLOAT:
      return emit_insn_after (gen_consttable_float (value), insn);

    case MODE_VECTOR_FLOAT:
    case MODE_VECTOR_INT:
      {
	int i;
	for (i = 0; i < CONST_VECTOR_NUNITS (value); i++)
	  insn = dump_constants_1 (GET_MODE_INNER (mode),
				   CONST_VECTOR_ELT (value, i), insn);
	return insn;
      }

    default:
      gcc_unreachable ();
    }
}


/* Dump out the constants in CONSTANTS after INSN.  */

static void
dump_constants (struct mips16_constant *constants, rtx insn)
{
  struct mips16_constant *c, *next;
  int align;

  align = 0;
  for (c = constants; c != NULL; c = next)
    {
      /* If necessary, increase the alignment of PC.  */
      if (align < GET_MODE_SIZE (c->mode))
	{
	  int align_log = floor_log2 (GET_MODE_SIZE (c->mode));
	  insn = emit_insn_after (gen_align (GEN_INT (align_log)), insn);
	}
      align = GET_MODE_SIZE (c->mode);

      insn = emit_label_after (c->label, insn);
      insn = dump_constants_1 (c->mode, c->value, insn);

      next = c->next;
      free (c);
    }

  emit_barrier_after (insn);
}

/* Return the length of instruction INSN.  */

static int
mips16_insn_length (rtx insn)
{
  if (JUMP_P (insn))
    {
      rtx body = PATTERN (insn);
      if (GET_CODE (body) == ADDR_VEC)
	return GET_MODE_SIZE (GET_MODE (body)) * XVECLEN (body, 0);
      if (GET_CODE (body) == ADDR_DIFF_VEC)
	return GET_MODE_SIZE (GET_MODE (body)) * XVECLEN (body, 1);
    }
  return get_attr_length (insn);
}

/* Rewrite *X so that constant pool references refer to the constant's
   label instead.  DATA points to the constant pool structure.  */

static int
mips16_rewrite_pool_refs (rtx *x, void *data)
{
  struct mips16_constant_pool *pool = data;
  if (GET_CODE (*x) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (*x))
    *x = gen_rtx_LABEL_REF (Pmode, add_constant (pool,
						 get_pool_constant (*x),
						 get_pool_mode (*x)));
  return 0;
}

/* Build MIPS16 constant pools.  */

static void
mips16_lay_out_constants (void)
{
  struct mips16_constant_pool pool;
  rtx insn, barrier;

  barrier = 0;
  memset (&pool, 0, sizeof (pool));
  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
    {
      /* Rewrite constant pool references in INSN.  */
      if (INSN_P (insn))
	for_each_rtx (&PATTERN (insn), mips16_rewrite_pool_refs, &pool);

      pool.insn_address += mips16_insn_length (insn);

      if (pool.first != NULL)
	{
	  /* If there are no natural barriers between the first user of
	     the pool and the highest acceptable address, we'll need to
	     create a new instruction to jump around the constant pool.
	     In the worst case, this instruction will be 4 bytes long.

	     If it's too late to do this transformation after INSN,
	     do it immediately before INSN.  */
	  if (barrier == 0 && pool.insn_address + 4 > pool.highest_address)
	    {
	      rtx label, jump;

	      label = gen_label_rtx ();

	      jump = emit_jump_insn_before (gen_jump (label), insn);
	      JUMP_LABEL (jump) = label;
	      LABEL_NUSES (label) = 1;
	      barrier = emit_barrier_after (jump);

	      emit_label_after (label, barrier);
	      pool.insn_address += 4;
	    }

	  /* See whether the constant pool is now out of range of the first
	     user.  If so, output the constants after the previous barrier.
	     Note that any instructions between BARRIER and INSN (inclusive)
	     will use negative offsets to refer to the pool.  */
	  if (pool.insn_address > pool.highest_address)
	    {
	      dump_constants (pool.first, barrier);
	      pool.first = NULL;
	      barrier = 0;
	    }
	  else if (BARRIER_P (insn))
	    barrier = insn;
	}
    }
  dump_constants (pool.first, get_last_insn ());
}

/* A temporary variable used by for_each_rtx callbacks, etc.  */
static rtx mips_sim_insn;

/* A structure representing the state of the processor pipeline.
   Used by the mips_sim_* family of functions.  */
struct mips_sim {
  /* The maximum number of instructions that can be issued in a cycle.
     (Caches mips_issue_rate.)  */
  unsigned int issue_rate;

  /* The current simulation time.  */
  unsigned int time;

  /* How many more instructions can be issued in the current cycle.  */
  unsigned int insns_left;

  /* LAST_SET[X].INSN is the last instruction to set register X.
     LAST_SET[X].TIME is the time at which that instruction was issued.
     INSN is null if no instruction has yet set register X.  */
  struct {
    rtx insn;
    unsigned int time;
  } last_set[FIRST_PSEUDO_REGISTER];

  /* The pipeline's current DFA state.  */
  state_t dfa_state;
};

/* Reset STATE to the initial simulation state.  */

static void
mips_sim_reset (struct mips_sim *state)
{
  state->time = 0;
  state->insns_left = state->issue_rate;
  memset (&state->last_set, 0, sizeof (state->last_set));
  state_reset (state->dfa_state);
}

/* Initialize STATE before its first use.  DFA_STATE points to an
   allocated but uninitialized DFA state.  */

static void
mips_sim_init (struct mips_sim *state, state_t dfa_state)
{
  state->issue_rate = mips_issue_rate ();
  state->dfa_state = dfa_state;
  mips_sim_reset (state);
}

/* Advance STATE by one clock cycle.  */

static void
mips_sim_next_cycle (struct mips_sim *state)
{
  state->time++;
  state->insns_left = state->issue_rate;
  state_transition (state->dfa_state, 0);
}

/* Advance simulation state STATE until instruction INSN can read
   register REG.  */

static void
mips_sim_wait_reg (struct mips_sim *state, rtx insn, rtx reg)
{
  unsigned int i;

  for (i = 0; i < HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)); i++)
    if (state->last_set[REGNO (reg) + i].insn != 0)
      {
	unsigned int t;

	t = state->last_set[REGNO (reg) + i].time;
	t += insn_latency (state->last_set[REGNO (reg) + i].insn, insn);
	while (state->time < t)
	  mips_sim_next_cycle (state);
    }
}

/* A for_each_rtx callback.  If *X is a register, advance simulation state
   DATA until mips_sim_insn can read the register's value.  */

static int
mips_sim_wait_regs_2 (rtx *x, void *data)
{
  if (REG_P (*x))
    mips_sim_wait_reg (data, mips_sim_insn, *x);
  return 0;
}

/* Call mips_sim_wait_regs_2 (R, DATA) for each register R mentioned in *X.  */

static void
mips_sim_wait_regs_1 (rtx *x, void *data)
{
  for_each_rtx (x, mips_sim_wait_regs_2, data);
}

/* Advance simulation state STATE until all of INSN's register
   dependencies are satisfied.  */

static void
mips_sim_wait_regs (struct mips_sim *state, rtx insn)
{
  mips_sim_insn = insn;
  note_uses (&PATTERN (insn), mips_sim_wait_regs_1, state);
}

/* Advance simulation state STATE until the units required by
   instruction INSN are available.  */

static void
mips_sim_wait_units (struct mips_sim *state, rtx insn)
{
  state_t tmp_state;

  tmp_state = alloca (state_size ());
  while (state->insns_left == 0
	 || (memcpy (tmp_state, state->dfa_state, state_size ()),
	     state_transition (tmp_state, insn) >= 0))
    mips_sim_next_cycle (state);
}

/* Advance simulation state STATE until INSN is ready to issue.  */

static void
mips_sim_wait_insn (struct mips_sim *state, rtx insn)
{
  mips_sim_wait_regs (state, insn);
  mips_sim_wait_units (state, insn);
}

/* mips_sim_insn has just set X.  Update the LAST_SET array
   in simulation state DATA.  */

static void
mips_sim_record_set (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
{
  struct mips_sim *state;
  unsigned int i;

  state = data;
  if (REG_P (x))
    for (i = 0; i < HARD_REGNO_NREGS (REGNO (x), GET_MODE (x)); i++)
      {
	state->last_set[REGNO (x) + i].insn = mips_sim_insn;
	state->last_set[REGNO (x) + i].time = state->time;
      }
}

/* Issue instruction INSN in scheduler state STATE.  Assume that INSN
   can issue immediately (i.e., that mips_sim_wait_insn has already
   been called).  */

static void
mips_sim_issue_insn (struct mips_sim *state, rtx insn)
{
  state_transition (state->dfa_state, insn);
  state->insns_left--;

  mips_sim_insn = insn;
  note_stores (PATTERN (insn), mips_sim_record_set, state);
}

/* Simulate issuing a NOP in state STATE.  */

static void
mips_sim_issue_nop (struct mips_sim *state)
{
  if (state->insns_left == 0)
    mips_sim_next_cycle (state);
  state->insns_left--;
}

/* Update simulation state STATE so that it's ready to accept the instruction
   after INSN.  INSN should be part of the main rtl chain, not a member of a
   SEQUENCE.  */

static void
mips_sim_finish_insn (struct mips_sim *state, rtx insn)
{
  /* If INSN is a jump with an implicit delay slot, simulate a nop.  */
  if (JUMP_P (insn))
    mips_sim_issue_nop (state);

  switch (GET_CODE (SEQ_BEGIN (insn)))
    {
    case CODE_LABEL:
    case CALL_INSN:
      /* We can't predict the processor state after a call or label.  */
      mips_sim_reset (state);
      break;

    case JUMP_INSN:
      /* The delay slots of branch likely instructions are only executed
	 when the branch is taken.  Therefore, if the caller has simulated
	 the delay slot instruction, STATE does not really reflect the state
	 of the pipeline for the instruction after the delay slot.  Also,
	 branch likely instructions tend to incur a penalty when not taken,
	 so there will probably be an extra delay between the branch and
	 the instruction after the delay slot.  */
      if (INSN_ANNULLED_BRANCH_P (SEQ_BEGIN (insn)))
	mips_sim_reset (state);
      break;

    default:
      break;
    }
}

/* The VR4130 pipeline issues aligned pairs of instructions together,
   but it stalls the second instruction if it depends on the first.
   In order to cut down the amount of logic required, this dependence
   check is not based on a full instruction decode.  Instead, any non-SPECIAL
   instruction is assumed to modify the register specified by bits 20-16
   (which is usually the "rt" field).

   In beq, beql, bne and bnel instructions, the rt field is actually an
   input, so we can end up with a false dependence between the branch
   and its delay slot.  If this situation occurs in instruction INSN,
   try to avoid it by swapping rs and rt.  */

static void
vr4130_avoid_branch_rt_conflict (rtx insn)
{
  rtx first, second;

  first = SEQ_BEGIN (insn);
  second = SEQ_END (insn);
  if (JUMP_P (first)
      && NONJUMP_INSN_P (second)
      && GET_CODE (PATTERN (first)) == SET
      && GET_CODE (SET_DEST (PATTERN (first))) == PC
      && GET_CODE (SET_SRC (PATTERN (first))) == IF_THEN_ELSE)
    {
      /* Check for the right kind of condition.  */
      rtx cond = XEXP (SET_SRC (PATTERN (first)), 0);
      if ((GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
	  && REG_P (XEXP (cond, 0))
	  && REG_P (XEXP (cond, 1))
	  && reg_referenced_p (XEXP (cond, 1), PATTERN (second))
	  && !reg_referenced_p (XEXP (cond, 0), PATTERN (second)))
	{
	  /* SECOND mentions the rt register but not the rs register.  */
	  rtx tmp = XEXP (cond, 0);
	  XEXP (cond, 0) = XEXP (cond, 1);
	  XEXP (cond, 1) = tmp;
	}
    }
}

/* Implement -mvr4130-align.  Go through each basic block and simulate the
   processor pipeline.  If we find that a pair of instructions could execute
   in parallel, and the first of those instruction is not 8-byte aligned,
   insert a nop to make it aligned.  */

static void
vr4130_align_insns (void)
{
  struct mips_sim state;
  rtx insn, subinsn, last, last2, next;
  bool aligned_p;

  dfa_start ();

  /* LAST is the last instruction before INSN to have a nonzero length.
     LAST2 is the last such instruction before LAST.  */
  last = 0;
  last2 = 0;

  /* ALIGNED_P is true if INSN is known to be at an aligned address.  */
  aligned_p = true;

  mips_sim_init (&state, alloca (state_size ()));
  for (insn = get_insns (); insn != 0; insn = next)
    {
      unsigned int length;

      next = NEXT_INSN (insn);

      /* See the comment above vr4130_avoid_branch_rt_conflict for details.
	 This isn't really related to the alignment pass, but we do it on
	 the fly to avoid a separate instruction walk.  */
      vr4130_avoid_branch_rt_conflict (insn);

      if (USEFUL_INSN_P (insn))
	FOR_EACH_SUBINSN (subinsn, insn)
	  {
	    mips_sim_wait_insn (&state, subinsn);

	    /* If we want this instruction to issue in parallel with the
	       previous one, make sure that the previous instruction is
	       aligned.  There are several reasons why this isn't worthwhile
	       when the second instruction is a call:

	          - Calls are less likely to be performance critical,
		  - There's a good chance that the delay slot can execute
		    in parallel with the call.
	          - The return address would then be unaligned.

	       In general, if we're going to insert a nop between instructions
	       X and Y, it's better to insert it immediately after X.  That
	       way, if the nop makes Y aligned, it will also align any labels
	       between X and Y.  */
	    if (state.insns_left != state.issue_rate
		&& !CALL_P (subinsn))
	      {
		if (subinsn == SEQ_BEGIN (insn) && aligned_p)
		  {
		    /* SUBINSN is the first instruction in INSN and INSN is
		       aligned.  We want to align the previous instruction
		       instead, so insert a nop between LAST2 and LAST.

		       Note that LAST could be either a single instruction
		       or a branch with a delay slot.  In the latter case,
		       LAST, like INSN, is already aligned, but the delay
		       slot must have some extra delay that stops it from
		       issuing at the same time as the branch.  We therefore
		       insert a nop before the branch in order to align its
		       delay slot.  */
		    emit_insn_after (gen_nop (), last2);
		    aligned_p = false;
		  }
		else if (subinsn != SEQ_BEGIN (insn) && !aligned_p)
		  {
		    /* SUBINSN is the delay slot of INSN, but INSN is
		       currently unaligned.  Insert a nop between
		       LAST and INSN to align it.  */
		    emit_insn_after (gen_nop (), last);
		    aligned_p = true;
		  }
	      }
	    mips_sim_issue_insn (&state, subinsn);
	  }
      mips_sim_finish_insn (&state, insn);

      /* Update LAST, LAST2 and ALIGNED_P for the next instruction.  */
      length = get_attr_length (insn);
      if (length > 0)
	{
	  /* If the instruction is an asm statement or multi-instruction
	     mips.md patern, the length is only an estimate.  Insert an
	     8 byte alignment after it so that the following instructions
	     can be handled correctly.  */
	  if (NONJUMP_INSN_P (SEQ_BEGIN (insn))
	      && (recog_memoized (insn) < 0 || length >= 8))
	    {
	      next = emit_insn_after (gen_align (GEN_INT (3)), insn);
	      next = NEXT_INSN (next);
	      mips_sim_next_cycle (&state);
	      aligned_p = true;
	    }
	  else if (length & 4)
	    aligned_p = !aligned_p;
	  last2 = last;
	  last = insn;
	}

      /* See whether INSN is an aligned label.  */
      if (LABEL_P (insn) && label_to_alignment (insn) >= 3)
	aligned_p = true;
    }
  dfa_finish ();
}

/* Subroutine of mips_reorg.  If there is a hazard between INSN
   and a previous instruction, avoid it by inserting nops after
   instruction AFTER.

   *DELAYED_REG and *HILO_DELAY describe the hazards that apply at
   this point.  If *DELAYED_REG is non-null, INSN must wait a cycle
   before using the value of that register.  *HILO_DELAY counts the
   number of instructions since the last hilo hazard (that is,
   the number of instructions since the last mflo or mfhi).

   After inserting nops for INSN, update *DELAYED_REG and *HILO_DELAY
   for the next instruction.

   LO_REG is an rtx for the LO register, used in dependence checking.  */

static void
mips_avoid_hazard (rtx after, rtx insn, int *hilo_delay,
		   rtx *delayed_reg, rtx lo_reg)
{
  rtx pattern, set;
  int nops, ninsns;

  if (!INSN_P (insn))
    return;

  pattern = PATTERN (insn);

  /* Do not put the whole function in .set noreorder if it contains
     an asm statement.  We don't know whether there will be hazards
     between the asm statement and the gcc-generated code.  */
  if (GET_CODE (pattern) == ASM_INPUT || asm_noperands (pattern) >= 0)
    cfun->machine->all_noreorder_p = false;

  /* Ignore zero-length instructions (barriers and the like).  */
  ninsns = get_attr_length (insn) / 4;
  if (ninsns == 0)
    return;

  /* Work out how many nops are needed.  Note that we only care about
     registers that are explicitly mentioned in the instruction's pattern.
     It doesn't matter that calls use the argument registers or that they
     clobber hi and lo.  */
  if (*hilo_delay < 2 && reg_set_p (lo_reg, pattern))
    nops = 2 - *hilo_delay;
  else if (*delayed_reg != 0 && reg_referenced_p (*delayed_reg, pattern))
    nops = 1;
  else
    nops = 0;

  /* Insert the nops between this instruction and the previous one.
     Each new nop takes us further from the last hilo hazard.  */
  *hilo_delay += nops;
  while (nops-- > 0)
    emit_insn_after (gen_hazard_nop (), after);

  /* Set up the state for the next instruction.  */
  *hilo_delay += ninsns;
  *delayed_reg = 0;
  if (INSN_CODE (insn) >= 0)
    switch (get_attr_hazard (insn))
      {
      case HAZARD_NONE:
	break;

      case HAZARD_HILO:
	*hilo_delay = 0;
	break;

      case HAZARD_DELAY:
	set = single_set (insn);
	gcc_assert (set != 0);
	*delayed_reg = SET_DEST (set);
	break;
      }
}


/* Go through the instruction stream and insert nops where necessary.
   See if the whole function can then be put into .set noreorder &
   .set nomacro.  */

static void
mips_avoid_hazards (void)
{
  rtx insn, last_insn, lo_reg, delayed_reg;
  int hilo_delay, i;

  /* Force all instructions to be split into their final form.  */
  split_all_insns_noflow ();

  /* Recalculate instruction lengths without taking nops into account.  */
  cfun->machine->ignore_hazard_length_p = true;
  shorten_branches (get_insns ());

  cfun->machine->all_noreorder_p = true;

  /* Profiled functions can't be all noreorder because the profiler
     support uses assembler macros.  */
  if (current_function_profile)
    cfun->machine->all_noreorder_p = false;

  /* Code compiled with -mfix-vr4120 can't be all noreorder because
     we rely on the assembler to work around some errata.  */
  if (TARGET_FIX_VR4120)
    cfun->machine->all_noreorder_p = false;

  /* The same is true for -mfix-vr4130 if we might generate mflo or
     mfhi instructions.  Note that we avoid using mflo and mfhi if
     the VR4130 macc and dmacc instructions are available instead;
     see the *mfhilo_{si,di}_macc patterns.  */
  if (TARGET_FIX_VR4130 && !ISA_HAS_MACCHI)
    cfun->machine->all_noreorder_p = false;

  last_insn = 0;
  hilo_delay = 2;
  delayed_reg = 0;
  lo_reg = gen_rtx_REG (SImode, LO_REGNUM);

  for (insn = get_insns (); insn != 0; insn = NEXT_INSN (insn))
    if (INSN_P (insn))
      {
	if (GET_CODE (PATTERN (insn)) == SEQUENCE)
	  for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
	    mips_avoid_hazard (last_insn, XVECEXP (PATTERN (insn), 0, i),
			       &hilo_delay, &delayed_reg, lo_reg);
	else
	  mips_avoid_hazard (last_insn, insn, &hilo_delay,
			     &delayed_reg, lo_reg);

	last_insn = insn;
      }
}


/* Implement TARGET_MACHINE_DEPENDENT_REORG.  */

static void
mips_reorg (void)
{
  if (TARGET_MIPS16)
    mips16_lay_out_constants ();
  else if (TARGET_EXPLICIT_RELOCS)
    {
      if (mips_flag_delayed_branch)
	dbr_schedule (get_insns (), dump_file);
      mips_avoid_hazards ();
      if (TUNE_MIPS4130 && TARGET_VR4130_ALIGN)
	vr4130_align_insns ();
    }
}

/* This function does three things:

   - Register the special divsi3 and modsi3 functions if -mfix-vr4120.
   - Register the mips16 hardware floating point stubs.
   - Register the gofast functions if selected using --enable-gofast.  */

#include "config/gofast.h"

static void
mips_init_libfuncs (void)
{
  if (TARGET_FIX_VR4120)
    {
      set_optab_libfunc (sdiv_optab, SImode, "__vr4120_divsi3");
      set_optab_libfunc (smod_optab, SImode, "__vr4120_modsi3");
    }

  if (TARGET_MIPS16 && mips16_hard_float)
    {
      set_optab_libfunc (add_optab, SFmode, "__mips16_addsf3");
      set_optab_libfunc (sub_optab, SFmode, "__mips16_subsf3");
      set_optab_libfunc (smul_optab, SFmode, "__mips16_mulsf3");
      set_optab_libfunc (sdiv_optab, SFmode, "__mips16_divsf3");

      set_optab_libfunc (eq_optab, SFmode, "__mips16_eqsf2");
      set_optab_libfunc (ne_optab, SFmode, "__mips16_nesf2");
      set_optab_libfunc (gt_optab, SFmode, "__mips16_gtsf2");
      set_optab_libfunc (ge_optab, SFmode, "__mips16_gesf2");
      set_optab_libfunc (lt_optab, SFmode, "__mips16_ltsf2");
      set_optab_libfunc (le_optab, SFmode, "__mips16_lesf2");

      set_conv_libfunc (sfix_optab, SImode, SFmode, "__mips16_fix_truncsfsi");
      set_conv_libfunc (sfloat_optab, SFmode, SImode, "__mips16_floatsisf");

      if (TARGET_DOUBLE_FLOAT)
	{
	  set_optab_libfunc (add_optab, DFmode, "__mips16_adddf3");
	  set_optab_libfunc (sub_optab, DFmode, "__mips16_subdf3");
	  set_optab_libfunc (smul_optab, DFmode, "__mips16_muldf3");
	  set_optab_libfunc (sdiv_optab, DFmode, "__mips16_divdf3");

	  set_optab_libfunc (eq_optab, DFmode, "__mips16_eqdf2");
	  set_optab_libfunc (ne_optab, DFmode, "__mips16_nedf2");
	  set_optab_libfunc (gt_optab, DFmode, "__mips16_gtdf2");
	  set_optab_libfunc (ge_optab, DFmode, "__mips16_gedf2");
	  set_optab_libfunc (lt_optab, DFmode, "__mips16_ltdf2");
	  set_optab_libfunc (le_optab, DFmode, "__mips16_ledf2");

	  set_conv_libfunc (sext_optab, DFmode, SFmode, "__mips16_extendsfdf2");
	  set_conv_libfunc (trunc_optab, SFmode, DFmode, "__mips16_truncdfsf2");

	  set_conv_libfunc (sfix_optab, SImode, DFmode, "__mips16_fix_truncdfsi");
	  set_conv_libfunc (sfloat_optab, DFmode, SImode, "__mips16_floatsidf");
	}
    }
  else
    gofast_maybe_init_libfuncs ();
}

/* Return a number assessing the cost of moving a register in class
   FROM to class TO.  The classes are expressed using the enumeration
   values such as `GENERAL_REGS'.  A value of 2 is the default; other
   values are interpreted relative to that.

   It is not required that the cost always equal 2 when FROM is the
   same as TO; on some machines it is expensive to move between
   registers if they are not general registers.

   If reload sees an insn consisting of a single `set' between two
   hard registers, and if `REGISTER_MOVE_COST' applied to their
   classes returns a value of 2, reload does not check to ensure that
   the constraints of the insn are met.  Setting a cost of other than
   2 will allow reload to verify that the constraints are met.  You
   should do this if the `movM' pattern's constraints do not allow
   such copying.

   ??? We make the cost of moving from HI/LO into general
   registers the same as for one of moving general registers to
   HI/LO for TARGET_MIPS16 in order to prevent allocating a
   pseudo to HI/LO.  This might hurt optimizations though, it
   isn't clear if it is wise.  And it might not work in all cases.  We
   could solve the DImode LO reg problem by using a multiply, just
   like reload_{in,out}si.  We could solve the SImode/HImode HI reg
   problem by using divide instructions.  divu puts the remainder in
   the HI reg, so doing a divide by -1 will move the value in the HI
   reg for all values except -1.  We could handle that case by using a
   signed divide, e.g.  -1 / 2 (or maybe 1 / -2?).  We'd have to emit
   a compare/branch to test the input value to see which instruction
   we need to use.  This gets pretty messy, but it is feasible.  */

int
mips_register_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED,
			 enum reg_class to, enum reg_class from)
{
  if (from == M16_REGS && GR_REG_CLASS_P (to))
    return 2;
  else if (from == M16_NA_REGS && GR_REG_CLASS_P (to))
    return 2;
  else if (GR_REG_CLASS_P (from))
    {
      if (to == M16_REGS)
	return 2;
      else if (to == M16_NA_REGS)
	return 2;
      else if (GR_REG_CLASS_P (to))
	{
	  if (TARGET_MIPS16)
	    return 4;
	  else
	    return 2;
	}
      else if (to == FP_REGS)
	return 4;
      else if (reg_class_subset_p (to, ACC_REGS))
	{
	  if (TARGET_MIPS16)
	    return 12;
	  else
	    return 6;
	}
      else if (COP_REG_CLASS_P (to))
	{
	  return 5;
	}
    }
  else if (from == FP_REGS)
    {
      if (GR_REG_CLASS_P (to))
	return 4;
      else if (to == FP_REGS)
	return 2;
      else if (to == ST_REGS)
	return 8;
    }
  else if (reg_class_subset_p (from, ACC_REGS))
    {
      if (GR_REG_CLASS_P (to))
	{
	  if (TARGET_MIPS16)
	    return 12;
	  else
	    return 6;
	}
    }
  else if (from == ST_REGS && GR_REG_CLASS_P (to))
    return 4;
  else if (COP_REG_CLASS_P (from))
    {
      return 5;
    }

  /* Fall through.
     ??? What cases are these? Shouldn't we return 2 here?  */

  return 12;
}

/* Return the length of INSN.  LENGTH is the initial length computed by
   attributes in the machine-description file.  */

int
mips_adjust_insn_length (rtx insn, int length)
{
  /* A unconditional jump has an unfilled delay slot if it is not part
     of a sequence.  A conditional jump normally has a delay slot, but
     does not on MIPS16.  */
  if (CALL_P (insn) || (TARGET_MIPS16 ? simplejump_p (insn) : JUMP_P (insn)))
    length += 4;

  /* See how many nops might be needed to avoid hardware hazards.  */
  if (!cfun->machine->ignore_hazard_length_p && INSN_CODE (insn) >= 0)
    switch (get_attr_hazard (insn))
      {
      case HAZARD_NONE:
	break;

      case HAZARD_DELAY:
	length += 4;
	break;

      case HAZARD_HILO:
	length += 8;
	break;
      }

  /* All MIPS16 instructions are a measly two bytes.  */
  if (TARGET_MIPS16)
    length /= 2;

  return length;
}


/* Return an asm sequence to start a noat block and load the address
   of a label into $1.  */

const char *
mips_output_load_label (void)
{
  if (TARGET_EXPLICIT_RELOCS)
    switch (mips_abi)
      {
      case ABI_N32:
	return "%[lw\t%@,%%got_page(%0)(%+)\n\taddiu\t%@,%@,%%got_ofst(%0)";

      case ABI_64:
	return "%[ld\t%@,%%got_page(%0)(%+)\n\tdaddiu\t%@,%@,%%got_ofst(%0)";

      default:
	if (ISA_HAS_LOAD_DELAY)
	  return "%[lw\t%@,%%got(%0)(%+)%#\n\taddiu\t%@,%@,%%lo(%0)";
	return "%[lw\t%@,%%got(%0)(%+)\n\taddiu\t%@,%@,%%lo(%0)";
      }
  else
    {
      if (Pmode == DImode)
	return "%[dla\t%@,%0";
      else
	return "%[la\t%@,%0";
    }
}


/* Output assembly instructions to peform a conditional branch.

   INSN is the branch instruction.  OPERANDS[0] is the condition.
   OPERANDS[1] is the target of the branch.  OPERANDS[2] is the target
   of the first operand to the condition.  If TWO_OPERANDS_P is
   nonzero the comparison takes two operands; OPERANDS[3] will be the
   second operand.

   If INVERTED_P is nonzero we are to branch if the condition does
   not hold.  If FLOAT_P is nonzero this is a floating-point comparison.

   LENGTH is the length (in bytes) of the sequence we are to generate.
   That tells us whether to generate a simple conditional branch, or a
   reversed conditional branch around a `jr' instruction.  */
const char *
mips_output_conditional_branch (rtx insn, rtx *operands, int two_operands_p,
				int float_p, int inverted_p, int length)
{
  static char buffer[200];
  /* The kind of comparison we are doing.  */
  enum rtx_code code = GET_CODE (operands[0]);
  /* Nonzero if the opcode for the comparison needs a `z' indicating
     that it is a comparison against zero.  */
  int need_z_p;
  /* A string to use in the assembly output to represent the first
     operand.  */
  const char *op1 = "%z2";
  /* A string to use in the assembly output to represent the second
     operand.  Use the hard-wired zero register if there's no second
     operand.  */
  const char *op2 = (two_operands_p ? ",%z3" : ",%.");
  /* The operand-printing string for the comparison.  */
  const char *const comp = (float_p ? "%F0" : "%C0");
  /* The operand-printing string for the inverted comparison.  */
  const char *const inverted_comp = (float_p ? "%W0" : "%N0");

  /* The MIPS processors (for levels of the ISA at least two), have
     "likely" variants of each branch instruction.  These instructions
     annul the instruction in the delay slot if the branch is not
     taken.  */
  mips_branch_likely = (final_sequence && INSN_ANNULLED_BRANCH_P (insn));

  if (!two_operands_p)
    {
      /* To compute whether than A > B, for example, we normally
	 subtract B from A and then look at the sign bit.  But, if we
	 are doing an unsigned comparison, and B is zero, we don't
	 have to do the subtraction.  Instead, we can just check to
	 see if A is nonzero.  Thus, we change the CODE here to
	 reflect the simpler comparison operation.  */
      switch (code)
	{
	case GTU:
	  code = NE;
	  break;

	case LEU:
	  code = EQ;
	  break;

	case GEU:
	  /* A condition which will always be true.  */
	  code = EQ;
	  op1 = "%.";
	  break;

	case LTU:
	  /* A condition which will always be false.  */
	  code = NE;
	  op1 = "%.";
	  break;

	default:
	  /* Not a special case.  */
	  break;
	}
    }

  /* Relative comparisons are always done against zero.  But
     equality comparisons are done between two operands, and therefore
     do not require a `z' in the assembly language output.  */
  need_z_p = (!float_p && code != EQ && code != NE);
  /* For comparisons against zero, the zero is not provided
     explicitly.  */
  if (need_z_p)
    op2 = "";

  /* Begin by terminating the buffer.  That way we can always use
     strcat to add to it.  */
  buffer[0] = '\0';

  switch (length)
    {
    case 4:
    case 8:
      /* Just a simple conditional branch.  */
      if (float_p)
	sprintf (buffer, "%%*b%s%%?\t%%Z2%%1%%/",
		 inverted_p ? inverted_comp : comp);
      else
	sprintf (buffer, "%%*b%s%s%%?\t%s%s,%%1%%/",
		 inverted_p ? inverted_comp : comp,
		 need_z_p ? "z" : "",
		 op1,
		 op2);
      return buffer;

    case 12:
    case 16:
    case 24:
    case 28:
      {
	/* Generate a reversed conditional branch around ` j'
	   instruction:

		.set noreorder
		.set nomacro
		bc    l
		delay_slot or #nop
		j     target
		#nop
	     l:
		.set macro
		.set reorder

	   If the original branch was a likely branch, the delay slot
	   must be executed only if the branch is taken, so generate:

		.set noreorder
		.set nomacro
		bc    l
		#nop
		j     target
		delay slot or #nop
	     l:
		.set macro
		.set reorder

	   When generating PIC, instead of:

	        j     target

	   we emit:

	        .set noat
	        la    $at, target
		jr    $at
		.set at
	*/

        rtx orig_target;
	rtx target = gen_label_rtx ();

        orig_target = operands[1];
        operands[1] = target;
	/* Generate the reversed comparison.  This takes four
	   bytes.  */
	if (float_p)
	  sprintf (buffer, "%%*b%s\t%%Z2%%1",
		   inverted_p ? comp : inverted_comp);
	else
	  sprintf (buffer, "%%*b%s%s\t%s%s,%%1",
		   inverted_p ? comp : inverted_comp,
		   need_z_p ? "z" : "",
		   op1,
		   op2);
        output_asm_insn (buffer, operands);

        if (length != 16 && length != 28 && ! mips_branch_likely)
          {
            /* Output delay slot instruction.  */
            rtx insn = final_sequence;
            final_scan_insn (XVECEXP (insn, 0, 1), asm_out_file,
                             optimize, 1, NULL);
            INSN_DELETED_P (XVECEXP (insn, 0, 1)) = 1;
          }
	else
	  output_asm_insn ("%#", 0);

	if (length <= 16)
	  output_asm_insn ("j\t%0", &orig_target);
	else
	  {
	    output_asm_insn (mips_output_load_label (), &orig_target);
	    output_asm_insn ("jr\t%@%]", 0);
	  }

        if (length != 16 && length != 28 && mips_branch_likely)
          {
            /* Output delay slot instruction.  */
            rtx insn = final_sequence;
            final_scan_insn (XVECEXP (insn, 0, 1), asm_out_file,
                             optimize, 1, NULL);
            INSN_DELETED_P (XVECEXP (insn, 0, 1)) = 1;
          }
	else
	  output_asm_insn ("%#", 0);

        (*targetm.asm_out.internal_label) (asm_out_file, "L",
                                   CODE_LABEL_NUMBER (target));

        return "";
      }

    default:
      gcc_unreachable ();
    }

  /* NOTREACHED */
  return 0;
}

/* Used to output div or ddiv instruction DIVISION, which has the operands
   given by OPERANDS.  Add in a divide-by-zero check if needed.

   When working around R4000 and R4400 errata, we need to make sure that
   the division is not immediately followed by a shift[1][2].  We also
   need to stop the division from being put into a branch delay slot[3].
   The easiest way to avoid both problems is to add a nop after the
   division.  When a divide-by-zero check is needed, this nop can be
   used to fill the branch delay slot.

   [1] If a double-word or a variable shift executes immediately
       after starting an integer division, the shift may give an
       incorrect result.  See quotations of errata #16 and #28 from
       "MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3.0"
       in mips.md for details.

   [2] A similar bug to [1] exists for all revisions of the
       R4000 and the R4400 when run in an MC configuration.
       From "MIPS R4000MC Errata, Processor Revision 2.2 and 3.0":

       "19. In this following sequence:

		    ddiv		(or ddivu or div or divu)
		    dsll32		(or dsrl32, dsra32)

	    if an MPT stall occurs, while the divide is slipping the cpu
	    pipeline, then the following double shift would end up with an
	    incorrect result.

	    Workaround: The compiler needs to avoid generating any
	    sequence with divide followed by extended double shift."

       This erratum is also present in "MIPS R4400MC Errata, Processor
       Revision 1.0" and "MIPS R4400MC Errata, Processor Revision 2.0
       & 3.0" as errata #10 and #4, respectively.

   [3] From "MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3.0"
       (also valid for MIPS R4000MC processors):

       "52. R4000SC: This bug does not apply for the R4000PC.

	    There are two flavors of this bug:

	    1) If the instruction just after divide takes an RF exception
	       (tlb-refill, tlb-invalid) and gets an instruction cache
	       miss (both primary and secondary) and the line which is
	       currently in secondary cache at this index had the first
	       data word, where the bits 5..2 are set, then R4000 would
	       get a wrong result for the div.

	    ##1
		    nop
		    div	r8, r9
		    -------------------		# end-of page. -tlb-refill
		    nop
	    ##2
		    nop
		    div	r8, r9
		    -------------------		# end-of page. -tlb-invalid
		    nop

	    2) If the divide is in the taken branch delay slot, where the
	       target takes RF exception and gets an I-cache miss for the
	       exception vector or where I-cache miss occurs for the
	       target address, under the above mentioned scenarios, the
	       div would get wrong results.

	    ##1
		    j	r2		# to next page mapped or unmapped
		    div	r8,r9		# this bug would be there as long
					# as there is an ICache miss and
		    nop			# the "data pattern" is present

	    ##2
		    beq	r0, r0, NextPage	# to Next page
		    div	r8,r9
		    nop

	    This bug is present for div, divu, ddiv, and ddivu
	    instructions.

	    Workaround: For item 1), OS could make sure that the next page
	    after the divide instruction is also mapped.  For item 2), the
	    compiler could make sure that the divide instruction is not in
	    the branch delay slot."

       These processors have PRId values of 0x00004220 and 0x00004300 for
       the R4000 and 0x00004400, 0x00004500 and 0x00004600 for the R4400.  */

const char *
mips_output_division (const char *division, rtx *operands)
{
  const char *s;

  s = division;
  if (TARGET_FIX_R4000 || TARGET_FIX_R4400)
    {
      output_asm_insn (s, operands);
      s = "nop";
    }
  if (TARGET_CHECK_ZERO_DIV)
    {
      if (TARGET_MIPS16)
	{
	  output_asm_insn (s, operands);
	  s = "bnez\t%2,1f\n\tbreak\t7\n1:";
	}
      else if (GENERATE_DIVIDE_TRAPS)
        {
	  output_asm_insn (s, operands);
	  s = "teq\t%2,%.,7";
        }
      else
	{
	  output_asm_insn ("%(bne\t%2,%.,1f", operands);
	  output_asm_insn (s, operands);
	  s = "break\t7%)\n1:";
	}
    }
  return s;
}

/* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
   with a final "000" replaced by "k".  Ignore case.

   Note: this function is shared between GCC and GAS.  */

static bool
mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
{
  while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
    given++, canonical++;

  return ((*given == 0 && *canonical == 0)
	  || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
}


/* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
   CPU name.  We've traditionally allowed a lot of variation here.

   Note: this function is shared between GCC and GAS.  */

static bool
mips_matching_cpu_name_p (const char *canonical, const char *given)
{
  /* First see if the name matches exactly, or with a final "000"
     turned into "k".  */
  if (mips_strict_matching_cpu_name_p (canonical, given))
    return true;

  /* If not, try comparing based on numerical designation alone.
     See if GIVEN is an unadorned number, or 'r' followed by a number.  */
  if (TOLOWER (*given) == 'r')
    given++;
  if (!ISDIGIT (*given))
    return false;

  /* Skip over some well-known prefixes in the canonical name,
     hoping to find a number there too.  */
  if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
    canonical += 2;
  else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
    canonical += 2;
  else if (TOLOWER (canonical[0]) == 'r')
    canonical += 1;

  return mips_strict_matching_cpu_name_p (canonical, given);
}


/* Return the mips_cpu_info entry for the processor or ISA given
   by CPU_STRING.  Return null if the string isn't recognized.

   A similar function exists in GAS.  */

static const struct mips_cpu_info *
mips_parse_cpu (const char *cpu_string)
{
  const struct mips_cpu_info *p;
  const char *s;

  /* In the past, we allowed upper-case CPU names, but it doesn't
     work well with the multilib machinery.  */
  for (s = cpu_string; *s != 0; s++)
    if (ISUPPER (*s))
      {
	warning (0, "the cpu name must be lower case");
	break;
      }

  /* 'from-abi' selects the most compatible architecture for the given
     ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs.  For the
     EABIs, we have to decide whether we're using the 32-bit or 64-bit
     version.  Look first at the -mgp options, if given, otherwise base
     the choice on MASK_64BIT in TARGET_DEFAULT.  */
  if (strcasecmp (cpu_string, "from-abi") == 0)
    return mips_cpu_info_from_isa (ABI_NEEDS_32BIT_REGS ? 1
				   : ABI_NEEDS_64BIT_REGS ? 3
				   : (TARGET_64BIT ? 3 : 1));

  /* 'default' has traditionally been a no-op.  Probably not very useful.  */
  if (strcasecmp (cpu_string, "default") == 0)
    return 0;

  for (p = mips_cpu_info_table; p->name != 0; p++)
    if (mips_matching_cpu_name_p (p->name, cpu_string))
      return p;

  return 0;
}


/* Return the processor associated with the given ISA level, or null
   if the ISA isn't valid.  */

static const struct mips_cpu_info *
mips_cpu_info_from_isa (int isa)
{
  const struct mips_cpu_info *p;

  for (p = mips_cpu_info_table; p->name != 0; p++)
    if (p->isa == isa)
      return p;

  return 0;
}

/* Implement HARD_REGNO_NREGS.  The size of FP registers is controlled
   by UNITS_PER_FPREG.  The size of FP status registers is always 4, because
   they only hold condition code modes, and CCmode is always considered to
   be 4 bytes wide.  All other registers are word sized.  */

unsigned int
mips_hard_regno_nregs (int regno, enum machine_mode mode)
{
  if (ST_REG_P (regno))
    return ((GET_MODE_SIZE (mode) + 3) / 4);
  else if (! FP_REG_P (regno))
    return ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD);
  else
    return ((GET_MODE_SIZE (mode) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG);
}

/* Implement TARGET_RETURN_IN_MEMORY.  Under the old (i.e., 32 and O64 ABIs)
   all BLKmode objects are returned in memory.  Under the new (N32 and
   64-bit MIPS ABIs) small structures are returned in a register.
   Objects with varying size must still be returned in memory, of
   course.  */

static bool
mips_return_in_memory (tree type, tree fndecl ATTRIBUTE_UNUSED)
{
  if (TARGET_OLDABI)
    return (TYPE_MODE (type) == BLKmode);
  else
    return ((int_size_in_bytes (type) > (2 * UNITS_PER_WORD))
	    || (int_size_in_bytes (type) == -1));
}

static bool
mips_strict_argument_naming (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED)
{
  return !TARGET_OLDABI;
}

/* Return true if INSN is a multiply-add or multiply-subtract
   instruction and PREV assigns to the accumulator operand.  */

bool
mips_linked_madd_p (rtx prev, rtx insn)
{
  rtx x;

  x = single_set (insn);
  if (x == 0)
    return false;

  x = SET_SRC (x);

  if (GET_CODE (x) == PLUS
      && GET_CODE (XEXP (x, 0)) == MULT
      && reg_set_p (XEXP (x, 1), prev))
    return true;

  if (GET_CODE (x) == MINUS
      && GET_CODE (XEXP (x, 1)) == MULT
      && reg_set_p (XEXP (x, 0), prev))
    return true;

  return false;
}

/* Used by TUNE_MACC_CHAINS to record the last scheduled instruction
   that may clobber hi or lo.  */

static rtx mips_macc_chains_last_hilo;

/* A TUNE_MACC_CHAINS helper function.  Record that instruction INSN has
   been scheduled, updating mips_macc_chains_last_hilo appropriately.  */

static void
mips_macc_chains_record (rtx insn)
{
  if (get_attr_may_clobber_hilo (insn))
    mips_macc_chains_last_hilo = insn;
}

/* A TUNE_MACC_CHAINS helper function.  Search ready queue READY, which
   has NREADY elements, looking for a multiply-add or multiply-subtract
   instruction that is cumulative with mips_macc_chains_last_hilo.
   If there is one, promote it ahead of anything else that might
   clobber hi or lo.  */

static void
mips_macc_chains_reorder (rtx *ready, int nready)
{
  int i, j;

  if (mips_macc_chains_last_hilo != 0)
    for (i = nready - 1; i >= 0; i--)
      if (mips_linked_madd_p (mips_macc_chains_last_hilo, ready[i]))
	{
	  for (j = nready - 1; j > i; j--)
	    if (recog_memoized (ready[j]) >= 0
		&& get_attr_may_clobber_hilo (ready[j]))
	      {
		mips_promote_ready (ready, i, j);
		break;
	      }
	  break;
	}
}

/* The last instruction to be scheduled.  */

static rtx vr4130_last_insn;

/* A note_stores callback used by vr4130_true_reg_dependence_p.  DATA
   points to an rtx that is initially an instruction.  Nullify the rtx
   if the instruction uses the value of register X.  */

static void
vr4130_true_reg_dependence_p_1 (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
{
  rtx *insn_ptr = data;
  if (REG_P (x)
      && *insn_ptr != 0
      && reg_referenced_p (x, PATTERN (*insn_ptr)))
    *insn_ptr = 0;
}

/* Return true if there is true register dependence between vr4130_last_insn
   and INSN.  */

static bool
vr4130_true_reg_dependence_p (rtx insn)
{
  note_stores (PATTERN (vr4130_last_insn),
	       vr4130_true_reg_dependence_p_1, &insn);
  return insn == 0;
}

/* A TUNE_MIPS4130 helper function.  Given that INSN1 is at the head of
   the ready queue and that INSN2 is the instruction after it, return
   true if it is worth promoting INSN2 ahead of INSN1.  Look for cases
   in which INSN1 and INSN2 can probably issue in parallel, but for
   which (INSN2, INSN1) should be less sensitive to instruction
   alignment than (INSN1, INSN2).  See 4130.md for more details.  */

static bool
vr4130_swap_insns_p (rtx insn1, rtx insn2)
{
  rtx dep;

  /* Check for the following case:

     1) there is some other instruction X with an anti dependence on INSN1;
     2) X has a higher priority than INSN2; and
     3) X is an arithmetic instruction (and thus has no unit restrictions).

     If INSN1 is the last instruction blocking X, it would better to
     choose (INSN1, X) over (INSN2, INSN1).  */
  for (dep = INSN_DEPEND (insn1); dep != 0; dep = XEXP (dep, 1))
    if (REG_NOTE_KIND (dep) == REG_DEP_ANTI
	&& INSN_PRIORITY (XEXP (dep, 0)) > INSN_PRIORITY (insn2)
	&& recog_memoized (XEXP (dep, 0)) >= 0
	&& get_attr_vr4130_class (XEXP (dep, 0)) == VR4130_CLASS_ALU)
      return false;

  if (vr4130_last_insn != 0
      && recog_memoized (insn1) >= 0
      && recog_memoized (insn2) >= 0)
    {
      /* See whether INSN1 and INSN2 use different execution units,
	 or if they are both ALU-type instructions.  If so, they can
	 probably execute in parallel.  */
      enum attr_vr4130_class class1 = get_attr_vr4130_class (insn1);
      enum attr_vr4130_class class2 = get_attr_vr4130_class (insn2);
      if (class1 != class2 || class1 == VR4130_CLASS_ALU)
	{
	  /* If only one of the instructions has a dependence on
	     vr4130_last_insn, prefer to schedule the other one first.  */
	  bool dep1 = vr4130_true_reg_dependence_p (insn1);
	  bool dep2 = vr4130_true_reg_dependence_p (insn2);
	  if (dep1 != dep2)
	    return dep1;

	  /* Prefer to schedule INSN2 ahead of INSN1 if vr4130_last_insn
	     is not an ALU-type instruction and if INSN1 uses the same
	     execution unit.  (Note that if this condition holds, we already
	     know that INSN2 uses a different execution unit.)  */
	  if (class1 != VR4130_CLASS_ALU
	      && recog_memoized (vr4130_last_insn) >= 0
	      && class1 == get_attr_vr4130_class (vr4130_last_insn))
	    return true;
	}
    }
  return false;
}

/* A TUNE_MIPS4130 helper function.  (READY, NREADY) describes a ready
   queue with at least two instructions.  Swap the first two if
   vr4130_swap_insns_p says that it could be worthwhile.  */

static void
vr4130_reorder (rtx *ready, int nready)
{
  if (vr4130_swap_insns_p (ready[nready - 1], ready[nready - 2]))
    mips_promote_ready (ready, nready - 2, nready - 1);
}

/* Remove the instruction at index LOWER from ready queue READY and
   reinsert it in front of the instruction at index HIGHER.  LOWER must
   be <= HIGHER.  */

static void
mips_promote_ready (rtx *ready, int lower, int higher)
{
  rtx new_head;
  int i;

  new_head = ready[lower];
  for (i = lower; i < higher; i++)
    ready[i] = ready[i + 1];
  ready[i] = new_head;
}

/* Implement TARGET_SCHED_REORDER.  */

static int
mips_sched_reorder (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
		    rtx *ready, int *nreadyp, int cycle)
{
  if (!reload_completed && TUNE_MACC_CHAINS)
    {
      if (cycle == 0)
	mips_macc_chains_last_hilo = 0;
      if (*nreadyp > 0)
	mips_macc_chains_reorder (ready, *nreadyp);
    }
  if (reload_completed && TUNE_MIPS4130 && !TARGET_VR4130_ALIGN)
    {
      if (cycle == 0)
	vr4130_last_insn = 0;
      if (*nreadyp > 1)
	vr4130_reorder (ready, *nreadyp);
    }
  return mips_issue_rate ();
}

/* Implement TARGET_SCHED_VARIABLE_ISSUE.  */

static int
mips_variable_issue (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
		     rtx insn, int more)
{
  switch (GET_CODE (PATTERN (insn)))
    {
    case USE:
    case CLOBBER:
      /* Don't count USEs and CLOBBERs against the issue rate.  */
      break;

    default:
      more--;
      if (!reload_completed && TUNE_MACC_CHAINS)
	mips_macc_chains_record (insn);
      vr4130_last_insn = insn;
      break;
    }
  return more;
}

/* Implement TARGET_SCHED_ADJUST_COST.  We assume that anti and output
   dependencies have no cost.  */

static int
mips_adjust_cost (rtx insn ATTRIBUTE_UNUSED, rtx link,
		  rtx dep ATTRIBUTE_UNUSED, int cost)
{
  if (REG_NOTE_KIND (link) != 0)
    return 0;
  return cost;
}

/* Return the number of instructions that can be issued per cycle.  */

static int
mips_issue_rate (void)
{
  switch (mips_tune)
    {
    case PROCESSOR_R4130:
    case PROCESSOR_R5400:
    case PROCESSOR_R5500:
    case PROCESSOR_R7000:
    case PROCESSOR_R9000:
      return 2;

    case PROCESSOR_SB1:
      /* This is actually 4, but we get better performance if we claim 3.
	 This is partly because of unwanted speculative code motion with the
	 larger number, and partly because in most common cases we can't
	 reach the theoretical max of 4.  */
      return 3;

    default:
      return 1;
    }
}

/* Implements TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD.  This should
   be as wide as the scheduling freedom in the DFA.  */

static int
mips_multipass_dfa_lookahead (void)
{
  /* Can schedule up to 4 of the 6 function units in any one cycle.  */
  if (mips_tune == PROCESSOR_SB1)
    return 4;

  return 0;
}

/* Given that we have an rtx of the form (prefetch ... WRITE LOCALITY),
   return the first operand of the associated "pref" or "prefx" insn.  */

rtx
mips_prefetch_cookie (rtx write, rtx locality)
{
  /* store_streamed / load_streamed.  */
  if (INTVAL (locality) <= 0)
    return GEN_INT (INTVAL (write) + 4);

  /* store / load.  */
  if (INTVAL (locality) <= 2)
    return write;

  /* store_retained / load_retained.  */
  return GEN_INT (INTVAL (write) + 6);
}

/* MIPS builtin function support. */

struct builtin_description
{
  /* The code of the main .md file instruction.  See mips_builtin_type
     for more information.  */
  enum insn_code icode;

  /* The floating-point comparison code to use with ICODE, if any.  */
  enum mips_fp_condition cond;

  /* The name of the builtin function.  */
  const char *name;

  /* Specifies how the function should be expanded.  */
  enum mips_builtin_type builtin_type;

  /* The function's prototype.  */
  enum mips_function_type function_type;

  /* The target flags required for this function.  */
  int target_flags;
};

/* Define a MIPS_BUILTIN_DIRECT function for instruction CODE_FOR_mips_<INSN>.
   FUNCTION_TYPE and TARGET_FLAGS are builtin_description fields.  */
#define DIRECT_BUILTIN(INSN, FUNCTION_TYPE, TARGET_FLAGS)		\
  { CODE_FOR_mips_ ## INSN, 0, "__builtin_mips_" #INSN,			\
    MIPS_BUILTIN_DIRECT, FUNCTION_TYPE, TARGET_FLAGS }

/* Define __builtin_mips_<INSN>_<COND>_{s,d}, both of which require
   TARGET_FLAGS.  */
#define CMP_SCALAR_BUILTINS(INSN, COND, TARGET_FLAGS)			\
  { CODE_FOR_mips_ ## INSN ## _cond_s, MIPS_FP_COND_ ## COND,		\
    "__builtin_mips_" #INSN "_" #COND "_s",				\
    MIPS_BUILTIN_CMP_SINGLE, MIPS_INT_FTYPE_SF_SF, TARGET_FLAGS },	\
  { CODE_FOR_mips_ ## INSN ## _cond_d, MIPS_FP_COND_ ## COND,		\
    "__builtin_mips_" #INSN "_" #COND "_d",				\
    MIPS_BUILTIN_CMP_SINGLE, MIPS_INT_FTYPE_DF_DF, TARGET_FLAGS }

/* Define __builtin_mips_{any,all,upper,lower}_<INSN>_<COND>_ps.
   The lower and upper forms require TARGET_FLAGS while the any and all
   forms require MASK_MIPS3D.  */
#define CMP_PS_BUILTINS(INSN, COND, TARGET_FLAGS)			\
  { CODE_FOR_mips_ ## INSN ## _cond_ps, MIPS_FP_COND_ ## COND,		\
    "__builtin_mips_any_" #INSN "_" #COND "_ps",			\
    MIPS_BUILTIN_CMP_ANY, MIPS_INT_FTYPE_V2SF_V2SF, MASK_MIPS3D },	\
  { CODE_FOR_mips_ ## INSN ## _cond_ps, MIPS_FP_COND_ ## COND,		\
    "__builtin_mips_all_" #INSN "_" #COND "_ps",			\
    MIPS_BUILTIN_CMP_ALL, MIPS_INT_FTYPE_V2SF_V2SF, MASK_MIPS3D },	\
  { CODE_FOR_mips_ ## INSN ## _cond_ps, MIPS_FP_COND_ ## COND,		\
    "__builtin_mips_lower_" #INSN "_" #COND "_ps",			\
    MIPS_BUILTIN_CMP_LOWER, MIPS_INT_FTYPE_V2SF_V2SF, TARGET_FLAGS },	\
  { CODE_FOR_mips_ ## INSN ## _cond_ps, MIPS_FP_COND_ ## COND,		\
    "__builtin_mips_upper_" #INSN "_" #COND "_ps",			\
    MIPS_BUILTIN_CMP_UPPER, MIPS_INT_FTYPE_V2SF_V2SF, TARGET_FLAGS }

/* Define __builtin_mips_{any,all}_<INSN>_<COND>_4s.  The functions
   require MASK_MIPS3D.  */
#define CMP_4S_BUILTINS(INSN, COND)					\
  { CODE_FOR_mips_ ## INSN ## _cond_4s, MIPS_FP_COND_ ## COND,		\
    "__builtin_mips_any_" #INSN "_" #COND "_4s",			\
    MIPS_BUILTIN_CMP_ANY, MIPS_INT_FTYPE_V2SF_V2SF_V2SF_V2SF,		\
    MASK_MIPS3D },							\
  { CODE_FOR_mips_ ## INSN ## _cond_4s, MIPS_FP_COND_ ## COND,		\
    "__builtin_mips_all_" #INSN "_" #COND "_4s",			\
    MIPS_BUILTIN_CMP_ALL, MIPS_INT_FTYPE_V2SF_V2SF_V2SF_V2SF,		\
    MASK_MIPS3D }

/* Define __builtin_mips_mov{t,f}_<INSN>_<COND>_ps.  The comparison
   instruction requires TARGET_FLAGS.  */
#define MOVTF_BUILTINS(INSN, COND, TARGET_FLAGS)			\
  { CODE_FOR_mips_ ## INSN ## _cond_ps, MIPS_FP_COND_ ## COND,		\
    "__builtin_mips_movt_" #INSN "_" #COND "_ps",			\
    MIPS_BUILTIN_MOVT, MIPS_V2SF_FTYPE_V2SF_V2SF_V2SF_V2SF,		\
    TARGET_FLAGS },							\
  { CODE_FOR_mips_ ## INSN ## _cond_ps, MIPS_FP_COND_ ## COND,		\
    "__builtin_mips_movf_" #INSN "_" #COND "_ps",			\
    MIPS_BUILTIN_MOVF, MIPS_V2SF_FTYPE_V2SF_V2SF_V2SF_V2SF,		\
    TARGET_FLAGS }

/* Define all the builtins related to c.cond.fmt condition COND.  */
#define CMP_BUILTINS(COND)						\
  MOVTF_BUILTINS (c, COND, MASK_PAIRED_SINGLE_FLOAT),			\
  MOVTF_BUILTINS (cabs, COND, MASK_MIPS3D),				\
  CMP_SCALAR_BUILTINS (cabs, COND, MASK_MIPS3D),			\
  CMP_PS_BUILTINS (c, COND, MASK_PAIRED_SINGLE_FLOAT),			\
  CMP_PS_BUILTINS (cabs, COND, MASK_MIPS3D),				\
  CMP_4S_BUILTINS (c, COND),						\
  CMP_4S_BUILTINS (cabs, COND)

/* __builtin_mips_abs_ps() maps to the standard absM2 pattern.  */
#define CODE_FOR_mips_abs_ps CODE_FOR_absv2sf2

static const struct builtin_description mips_bdesc[] =
{
  DIRECT_BUILTIN (pll_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_PAIRED_SINGLE_FLOAT),
  DIRECT_BUILTIN (pul_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_PAIRED_SINGLE_FLOAT),
  DIRECT_BUILTIN (plu_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_PAIRED_SINGLE_FLOAT),
  DIRECT_BUILTIN (puu_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_PAIRED_SINGLE_FLOAT),
  DIRECT_BUILTIN (cvt_ps_s, MIPS_V2SF_FTYPE_SF_SF, MASK_PAIRED_SINGLE_FLOAT),
  DIRECT_BUILTIN (cvt_s_pl, MIPS_SF_FTYPE_V2SF, MASK_PAIRED_SINGLE_FLOAT),
  DIRECT_BUILTIN (cvt_s_pu, MIPS_SF_FTYPE_V2SF, MASK_PAIRED_SINGLE_FLOAT),
  DIRECT_BUILTIN (abs_ps, MIPS_V2SF_FTYPE_V2SF, MASK_PAIRED_SINGLE_FLOAT),

  DIRECT_BUILTIN (alnv_ps, MIPS_V2SF_FTYPE_V2SF_V2SF_INT,
		  MASK_PAIRED_SINGLE_FLOAT),
  DIRECT_BUILTIN (addr_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_MIPS3D),
  DIRECT_BUILTIN (mulr_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_MIPS3D),
  DIRECT_BUILTIN (cvt_pw_ps, MIPS_V2SF_FTYPE_V2SF, MASK_MIPS3D),
  DIRECT_BUILTIN (cvt_ps_pw, MIPS_V2SF_FTYPE_V2SF, MASK_MIPS3D),

  DIRECT_BUILTIN (recip1_s, MIPS_SF_FTYPE_SF, MASK_MIPS3D),
  DIRECT_BUILTIN (recip1_d, MIPS_DF_FTYPE_DF, MASK_MIPS3D),
  DIRECT_BUILTIN (recip1_ps, MIPS_V2SF_FTYPE_V2SF, MASK_MIPS3D),
  DIRECT_BUILTIN (recip2_s, MIPS_SF_FTYPE_SF_SF, MASK_MIPS3D),
  DIRECT_BUILTIN (recip2_d, MIPS_DF_FTYPE_DF_DF, MASK_MIPS3D),
  DIRECT_BUILTIN (recip2_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_MIPS3D),

  DIRECT_BUILTIN (rsqrt1_s, MIPS_SF_FTYPE_SF, MASK_MIPS3D),
  DIRECT_BUILTIN (rsqrt1_d, MIPS_DF_FTYPE_DF, MASK_MIPS3D),
  DIRECT_BUILTIN (rsqrt1_ps, MIPS_V2SF_FTYPE_V2SF, MASK_MIPS3D),
  DIRECT_BUILTIN (rsqrt2_s, MIPS_SF_FTYPE_SF_SF, MASK_MIPS3D),
  DIRECT_BUILTIN (rsqrt2_d, MIPS_DF_FTYPE_DF_DF, MASK_MIPS3D),
  DIRECT_BUILTIN (rsqrt2_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_MIPS3D),

  MIPS_FP_CONDITIONS (CMP_BUILTINS)
};

/* Builtin functions for the SB-1 processor.  */

#define CODE_FOR_mips_sqrt_ps CODE_FOR_sqrtv2sf2

static const struct builtin_description sb1_bdesc[] =
{
  DIRECT_BUILTIN (sqrt_ps, MIPS_V2SF_FTYPE_V2SF, MASK_PAIRED_SINGLE_FLOAT)
};

/* Builtin functions for DSP ASE.  */

#define CODE_FOR_mips_addq_ph CODE_FOR_addv2hi3
#define CODE_FOR_mips_addu_qb CODE_FOR_addv4qi3
#define CODE_FOR_mips_subq_ph CODE_FOR_subv2hi3
#define CODE_FOR_mips_subu_qb CODE_FOR_subv4qi3

/* Define a MIPS_BUILTIN_DIRECT_NO_TARGET function for instruction
   CODE_FOR_mips_<INSN>.  FUNCTION_TYPE and TARGET_FLAGS are
   builtin_description fields.  */
#define DIRECT_NO_TARGET_BUILTIN(INSN, FUNCTION_TYPE, TARGET_FLAGS)	\
  { CODE_FOR_mips_ ## INSN, 0, "__builtin_mips_" #INSN,			\
    MIPS_BUILTIN_DIRECT_NO_TARGET, FUNCTION_TYPE, TARGET_FLAGS }

/* Define __builtin_mips_bposge<VALUE>.  <VALUE> is 32 for the MIPS32 DSP
   branch instruction.  TARGET_FLAGS is a builtin_description field.  */
#define BPOSGE_BUILTIN(VALUE, TARGET_FLAGS)				\
  { CODE_FOR_mips_bposge, 0, "__builtin_mips_bposge" #VALUE,		\
    MIPS_BUILTIN_BPOSGE ## VALUE, MIPS_SI_FTYPE_VOID, TARGET_FLAGS }

static const struct builtin_description dsp_bdesc[] =
{
  DIRECT_BUILTIN (addq_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (addq_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (addq_s_w, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
  DIRECT_BUILTIN (addu_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, MASK_DSP),
  DIRECT_BUILTIN (addu_s_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, MASK_DSP),
  DIRECT_BUILTIN (subq_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (subq_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (subq_s_w, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
  DIRECT_BUILTIN (subu_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, MASK_DSP),
  DIRECT_BUILTIN (subu_s_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, MASK_DSP),
  DIRECT_BUILTIN (addsc, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
  DIRECT_BUILTIN (addwc, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
  DIRECT_BUILTIN (modsub, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
  DIRECT_BUILTIN (raddu_w_qb, MIPS_SI_FTYPE_V4QI, MASK_DSP),
  DIRECT_BUILTIN (absq_s_ph, MIPS_V2HI_FTYPE_V2HI, MASK_DSP),
  DIRECT_BUILTIN (absq_s_w, MIPS_SI_FTYPE_SI, MASK_DSP),
  DIRECT_BUILTIN (precrq_qb_ph, MIPS_V4QI_FTYPE_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (precrq_ph_w, MIPS_V2HI_FTYPE_SI_SI, MASK_DSP),
  DIRECT_BUILTIN (precrq_rs_ph_w, MIPS_V2HI_FTYPE_SI_SI, MASK_DSP),
  DIRECT_BUILTIN (precrqu_s_qb_ph, MIPS_V4QI_FTYPE_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (preceq_w_phl, MIPS_SI_FTYPE_V2HI, MASK_DSP),
  DIRECT_BUILTIN (preceq_w_phr, MIPS_SI_FTYPE_V2HI, MASK_DSP),
  DIRECT_BUILTIN (precequ_ph_qbl, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
  DIRECT_BUILTIN (precequ_ph_qbr, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
  DIRECT_BUILTIN (precequ_ph_qbla, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
  DIRECT_BUILTIN (precequ_ph_qbra, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
  DIRECT_BUILTIN (preceu_ph_qbl, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
  DIRECT_BUILTIN (preceu_ph_qbr, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
  DIRECT_BUILTIN (preceu_ph_qbla, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
  DIRECT_BUILTIN (preceu_ph_qbra, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
  DIRECT_BUILTIN (shll_qb, MIPS_V4QI_FTYPE_V4QI_SI, MASK_DSP),
  DIRECT_BUILTIN (shll_ph, MIPS_V2HI_FTYPE_V2HI_SI, MASK_DSP),
  DIRECT_BUILTIN (shll_s_ph, MIPS_V2HI_FTYPE_V2HI_SI, MASK_DSP),
  DIRECT_BUILTIN (shll_s_w, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
  DIRECT_BUILTIN (shrl_qb, MIPS_V4QI_FTYPE_V4QI_SI, MASK_DSP),
  DIRECT_BUILTIN (shra_ph, MIPS_V2HI_FTYPE_V2HI_SI, MASK_DSP),
  DIRECT_BUILTIN (shra_r_ph, MIPS_V2HI_FTYPE_V2HI_SI, MASK_DSP),
  DIRECT_BUILTIN (shra_r_w, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
  DIRECT_BUILTIN (muleu_s_ph_qbl, MIPS_V2HI_FTYPE_V4QI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (muleu_s_ph_qbr, MIPS_V2HI_FTYPE_V4QI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (mulq_rs_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (muleq_s_w_phl, MIPS_SI_FTYPE_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (muleq_s_w_phr, MIPS_SI_FTYPE_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (dpau_h_qbl, MIPS_DI_FTYPE_DI_V4QI_V4QI, MASK_DSP),
  DIRECT_BUILTIN (dpau_h_qbr, MIPS_DI_FTYPE_DI_V4QI_V4QI, MASK_DSP),
  DIRECT_BUILTIN (dpsu_h_qbl, MIPS_DI_FTYPE_DI_V4QI_V4QI, MASK_DSP),
  DIRECT_BUILTIN (dpsu_h_qbr, MIPS_DI_FTYPE_DI_V4QI_V4QI, MASK_DSP),
  DIRECT_BUILTIN (dpaq_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (dpsq_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (mulsaq_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (dpaq_sa_l_w, MIPS_DI_FTYPE_DI_SI_SI, MASK_DSP),
  DIRECT_BUILTIN (dpsq_sa_l_w, MIPS_DI_FTYPE_DI_SI_SI, MASK_DSP),
  DIRECT_BUILTIN (maq_s_w_phl, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (maq_s_w_phr, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (maq_sa_w_phl, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (maq_sa_w_phr, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (bitrev, MIPS_SI_FTYPE_SI, MASK_DSP),
  DIRECT_BUILTIN (insv, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
  DIRECT_BUILTIN (repl_qb, MIPS_V4QI_FTYPE_SI, MASK_DSP),
  DIRECT_BUILTIN (repl_ph, MIPS_V2HI_FTYPE_SI, MASK_DSP),
  DIRECT_NO_TARGET_BUILTIN (cmpu_eq_qb, MIPS_VOID_FTYPE_V4QI_V4QI, MASK_DSP),
  DIRECT_NO_TARGET_BUILTIN (cmpu_lt_qb, MIPS_VOID_FTYPE_V4QI_V4QI, MASK_DSP),
  DIRECT_NO_TARGET_BUILTIN (cmpu_le_qb, MIPS_VOID_FTYPE_V4QI_V4QI, MASK_DSP),
  DIRECT_BUILTIN (cmpgu_eq_qb, MIPS_SI_FTYPE_V4QI_V4QI, MASK_DSP),
  DIRECT_BUILTIN (cmpgu_lt_qb, MIPS_SI_FTYPE_V4QI_V4QI, MASK_DSP),
  DIRECT_BUILTIN (cmpgu_le_qb, MIPS_SI_FTYPE_V4QI_V4QI, MASK_DSP),
  DIRECT_NO_TARGET_BUILTIN (cmp_eq_ph, MIPS_VOID_FTYPE_V2HI_V2HI, MASK_DSP),
  DIRECT_NO_TARGET_BUILTIN (cmp_lt_ph, MIPS_VOID_FTYPE_V2HI_V2HI, MASK_DSP),
  DIRECT_NO_TARGET_BUILTIN (cmp_le_ph, MIPS_VOID_FTYPE_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (pick_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, MASK_DSP),
  DIRECT_BUILTIN (pick_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (packrl_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSP),
  DIRECT_BUILTIN (extr_w, MIPS_SI_FTYPE_DI_SI, MASK_DSP),
  DIRECT_BUILTIN (extr_r_w, MIPS_SI_FTYPE_DI_SI, MASK_DSP),
  DIRECT_BUILTIN (extr_rs_w, MIPS_SI_FTYPE_DI_SI, MASK_DSP),
  DIRECT_BUILTIN (extr_s_h, MIPS_SI_FTYPE_DI_SI, MASK_DSP),
  DIRECT_BUILTIN (extp, MIPS_SI_FTYPE_DI_SI, MASK_DSP),
  DIRECT_BUILTIN (extpdp, MIPS_SI_FTYPE_DI_SI, MASK_DSP),
  DIRECT_BUILTIN (shilo, MIPS_DI_FTYPE_DI_SI, MASK_DSP),
  DIRECT_BUILTIN (mthlip, MIPS_DI_FTYPE_DI_SI, MASK_DSP),
  DIRECT_NO_TARGET_BUILTIN (wrdsp, MIPS_VOID_FTYPE_SI_SI, MASK_DSP),
  DIRECT_BUILTIN (rddsp, MIPS_SI_FTYPE_SI, MASK_DSP),
  DIRECT_BUILTIN (lbux, MIPS_SI_FTYPE_PTR_SI, MASK_DSP),
  DIRECT_BUILTIN (lhx, MIPS_SI_FTYPE_PTR_SI, MASK_DSP),
  DIRECT_BUILTIN (lwx, MIPS_SI_FTYPE_PTR_SI, MASK_DSP),
  BPOSGE_BUILTIN (32, MASK_DSP)
};

/* This helps provide a mapping from builtin function codes to bdesc
   arrays.  */

struct bdesc_map
{
  /* The builtin function table that this entry describes.  */
  const struct builtin_description *bdesc;

  /* The number of entries in the builtin function table.  */
  unsigned int size;

  /* The target processor that supports these builtin functions.
     PROCESSOR_MAX means we enable them for all processors.  */
  enum processor_type proc;
};

static const struct bdesc_map bdesc_arrays[] =
{
  { mips_bdesc, ARRAY_SIZE (mips_bdesc), PROCESSOR_MAX },
  { sb1_bdesc, ARRAY_SIZE (sb1_bdesc), PROCESSOR_SB1 },
  { dsp_bdesc, ARRAY_SIZE (dsp_bdesc), PROCESSOR_MAX }
};

/* Take the head of argument list *ARGLIST and convert it into a form
   suitable for input operand OP of instruction ICODE.  Return the value
   and point *ARGLIST at the next element of the list.  */

static rtx
mips_prepare_builtin_arg (enum insn_code icode,
			  unsigned int op, tree *arglist)
{
  rtx value;
  enum machine_mode mode;

  value = expand_expr (TREE_VALUE (*arglist), NULL_RTX, VOIDmode, 0);
  mode = insn_data[icode].operand[op].mode;
  if (!insn_data[icode].operand[op].predicate (value, mode))
    {
      value = copy_to_mode_reg (mode, value);
      /* Check the predicate again.  */
      if (!insn_data[icode].operand[op].predicate (value, mode))
	{
	  error ("invalid argument to builtin function");
	  return const0_rtx;
	}
    }

  *arglist = TREE_CHAIN (*arglist);
  return value;
}

/* Return an rtx suitable for output operand OP of instruction ICODE.
   If TARGET is non-null, try to use it where possible.  */

static rtx
mips_prepare_builtin_target (enum insn_code icode, unsigned int op, rtx target)
{
  enum machine_mode mode;

  mode = insn_data[icode].operand[op].mode;
  if (target == 0 || !insn_data[icode].operand[op].predicate (target, mode))
    target = gen_reg_rtx (mode);

  return target;
}

/* Expand builtin functions.  This is called from TARGET_EXPAND_BUILTIN.  */

rtx
mips_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED,
		     enum machine_mode mode ATTRIBUTE_UNUSED,
		     int ignore ATTRIBUTE_UNUSED)
{
  enum insn_code icode;
  enum mips_builtin_type type;
  tree fndecl, arglist;
  unsigned int fcode;
  const struct builtin_description *bdesc;
  const struct bdesc_map *m;

  fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
  arglist = TREE_OPERAND (exp, 1);
  fcode = DECL_FUNCTION_CODE (fndecl);

  bdesc = NULL;
  for (m = bdesc_arrays; m < &bdesc_arrays[ARRAY_SIZE (bdesc_arrays)]; m++)
    {
      if (fcode < m->size)
	{
	  bdesc = m->bdesc;
	  icode = bdesc[fcode].icode;
	  type = bdesc[fcode].builtin_type;
	  break;
	}
      fcode -= m->size;
    }
  if (bdesc == NULL)
    return 0;

  switch (type)
    {
    case MIPS_BUILTIN_DIRECT:
      return mips_expand_builtin_direct (icode, target, arglist, true);

    case MIPS_BUILTIN_DIRECT_NO_TARGET:
      return mips_expand_builtin_direct (icode, target, arglist, false);

    case MIPS_BUILTIN_MOVT:
    case MIPS_BUILTIN_MOVF:
      return mips_expand_builtin_movtf (type, icode, bdesc[fcode].cond,
					target, arglist);

    case MIPS_BUILTIN_CMP_ANY:
    case MIPS_BUILTIN_CMP_ALL:
    case MIPS_BUILTIN_CMP_UPPER:
    case MIPS_BUILTIN_CMP_LOWER:
    case MIPS_BUILTIN_CMP_SINGLE:
      return mips_expand_builtin_compare (type, icode, bdesc[fcode].cond,
					  target, arglist);

    case MIPS_BUILTIN_BPOSGE32:
      return mips_expand_builtin_bposge (type, target);

    default:
      return 0;
    }
}

/* Init builtin functions.  This is called from TARGET_INIT_BUILTIN.  */

void
mips_init_builtins (void)
{
  const struct builtin_description *d;
  const struct bdesc_map *m;
  tree types[(int) MIPS_MAX_FTYPE_MAX];
  tree V2SF_type_node;
  tree V2HI_type_node;
  tree V4QI_type_node;
  unsigned int offset;

  /* We have only builtins for -mpaired-single, -mips3d and -mdsp.  */
  if (!TARGET_PAIRED_SINGLE_FLOAT && !TARGET_DSP)
    return;

  if (TARGET_PAIRED_SINGLE_FLOAT)
    {
      V2SF_type_node = build_vector_type_for_mode (float_type_node, V2SFmode);

      types[MIPS_V2SF_FTYPE_V2SF]
	= build_function_type_list (V2SF_type_node, V2SF_type_node, NULL_TREE);

      types[MIPS_V2SF_FTYPE_V2SF_V2SF]
	= build_function_type_list (V2SF_type_node,
				    V2SF_type_node, V2SF_type_node, NULL_TREE);

      types[MIPS_V2SF_FTYPE_V2SF_V2SF_INT]
	= build_function_type_list (V2SF_type_node,
				    V2SF_type_node, V2SF_type_node,
				    integer_type_node, NULL_TREE);

      types[MIPS_V2SF_FTYPE_V2SF_V2SF_V2SF_V2SF]
	= build_function_type_list (V2SF_type_node,
				    V2SF_type_node, V2SF_type_node,
				    V2SF_type_node, V2SF_type_node, NULL_TREE);

      types[MIPS_V2SF_FTYPE_SF_SF]
	= build_function_type_list (V2SF_type_node,
				    float_type_node, float_type_node, NULL_TREE);

      types[MIPS_INT_FTYPE_V2SF_V2SF]
	= build_function_type_list (integer_type_node,
				    V2SF_type_node, V2SF_type_node, NULL_TREE);

      types[MIPS_INT_FTYPE_V2SF_V2SF_V2SF_V2SF]
	= build_function_type_list (integer_type_node,
				    V2SF_type_node, V2SF_type_node,
				    V2SF_type_node, V2SF_type_node, NULL_TREE);

      types[MIPS_INT_FTYPE_SF_SF]
	= build_function_type_list (integer_type_node,
				    float_type_node, float_type_node, NULL_TREE);

      types[MIPS_INT_FTYPE_DF_DF]
	= build_function_type_list (integer_type_node,
				    double_type_node, double_type_node, NULL_TREE);

      types[MIPS_SF_FTYPE_V2SF]
	= build_function_type_list (float_type_node, V2SF_type_node, NULL_TREE);

      types[MIPS_SF_FTYPE_SF]
	= build_function_type_list (float_type_node,
				    float_type_node, NULL_TREE);

      types[MIPS_SF_FTYPE_SF_SF]
	= build_function_type_list (float_type_node,
				    float_type_node, float_type_node, NULL_TREE);

      types[MIPS_DF_FTYPE_DF]
	= build_function_type_list (double_type_node,
				    double_type_node, NULL_TREE);

      types[MIPS_DF_FTYPE_DF_DF]
	= build_function_type_list (double_type_node,
				    double_type_node, double_type_node, NULL_TREE);
    }

  if (TARGET_DSP)
    {
      V2HI_type_node = build_vector_type_for_mode (intHI_type_node, V2HImode);
      V4QI_type_node = build_vector_type_for_mode (intQI_type_node, V4QImode);

      types[MIPS_V2HI_FTYPE_V2HI_V2HI]
	= build_function_type_list (V2HI_type_node,
				    V2HI_type_node, V2HI_type_node,
				    NULL_TREE);

      types[MIPS_SI_FTYPE_SI_SI]
	= build_function_type_list (intSI_type_node,
				    intSI_type_node, intSI_type_node,
				    NULL_TREE);

      types[MIPS_V4QI_FTYPE_V4QI_V4QI]
	= build_function_type_list (V4QI_type_node,
				    V4QI_type_node, V4QI_type_node,
				    NULL_TREE);

      types[MIPS_SI_FTYPE_V4QI]
	= build_function_type_list (intSI_type_node,
				    V4QI_type_node,
				    NULL_TREE);

      types[MIPS_V2HI_FTYPE_V2HI]
	= build_function_type_list (V2HI_type_node,
				    V2HI_type_node,
				    NULL_TREE);

      types[MIPS_SI_FTYPE_SI]
	= build_function_type_list (intSI_type_node,
				    intSI_type_node,
				    NULL_TREE);

      types[MIPS_V4QI_FTYPE_V2HI_V2HI]
	= build_function_type_list (V4QI_type_node,
				    V2HI_type_node, V2HI_type_node,
				    NULL_TREE);

      types[MIPS_V2HI_FTYPE_SI_SI]
	= build_function_type_list (V2HI_type_node,
				    intSI_type_node, intSI_type_node,
				    NULL_TREE);

      types[MIPS_SI_FTYPE_V2HI]
	= build_function_type_list (intSI_type_node,
				    V2HI_type_node,
				    NULL_TREE);

      types[MIPS_V2HI_FTYPE_V4QI]
	= build_function_type_list (V2HI_type_node,
				    V4QI_type_node,
				    NULL_TREE);

      types[MIPS_V4QI_FTYPE_V4QI_SI]
	= build_function_type_list (V4QI_type_node,
				    V4QI_type_node, intSI_type_node,
				    NULL_TREE);

      types[MIPS_V2HI_FTYPE_V2HI_SI]
	= build_function_type_list (V2HI_type_node,
				    V2HI_type_node, intSI_type_node,
				    NULL_TREE);

      types[MIPS_V2HI_FTYPE_V4QI_V2HI]
	= build_function_type_list (V2HI_type_node,
				    V4QI_type_node, V2HI_type_node,
				    NULL_TREE);

      types[MIPS_SI_FTYPE_V2HI_V2HI]
	= build_function_type_list (intSI_type_node,
				    V2HI_type_node, V2HI_type_node,
				    NULL_TREE);

      types[MIPS_DI_FTYPE_DI_V4QI_V4QI]
	= build_function_type_list (intDI_type_node,
				    intDI_type_node, V4QI_type_node, V4QI_type_node,
				    NULL_TREE);

      types[MIPS_DI_FTYPE_DI_V2HI_V2HI]
	= build_function_type_list (intDI_type_node,
				    intDI_type_node, V2HI_type_node, V2HI_type_node,
				    NULL_TREE);

      types[MIPS_DI_FTYPE_DI_SI_SI]
	= build_function_type_list (intDI_type_node,
				    intDI_type_node, intSI_type_node, intSI_type_node,
				    NULL_TREE);

      types[MIPS_V4QI_FTYPE_SI]
	= build_function_type_list (V4QI_type_node,
				    intSI_type_node,
				    NULL_TREE);

      types[MIPS_V2HI_FTYPE_SI]
	= build_function_type_list (V2HI_type_node,
				    intSI_type_node,
				    NULL_TREE);

      types[MIPS_VOID_FTYPE_V4QI_V4QI]
	= build_function_type_list (void_type_node,
				    V4QI_type_node, V4QI_type_node,
				    NULL_TREE);

      types[MIPS_SI_FTYPE_V4QI_V4QI]
	= build_function_type_list (intSI_type_node,
				    V4QI_type_node, V4QI_type_node,
				    NULL_TREE);

      types[MIPS_VOID_FTYPE_V2HI_V2HI]
	= build_function_type_list (void_type_node,
				    V2HI_type_node, V2HI_type_node,
				    NULL_TREE);

      types[MIPS_SI_FTYPE_DI_SI]
	= build_function_type_list (intSI_type_node,
				    intDI_type_node, intSI_type_node,
				    NULL_TREE);

      types[MIPS_DI_FTYPE_DI_SI]
	= build_function_type_list (intDI_type_node,
				    intDI_type_node, intSI_type_node,
				    NULL_TREE);

      types[MIPS_VOID_FTYPE_SI_SI]
	= build_function_type_list (void_type_node,
				    intSI_type_node, intSI_type_node,
				    NULL_TREE);

      types[MIPS_SI_FTYPE_PTR_SI]
	= build_function_type_list (intSI_type_node,
				    ptr_type_node, intSI_type_node,
				    NULL_TREE);

      types[MIPS_SI_FTYPE_VOID]
	= build_function_type (intSI_type_node, void_list_node);
    }

  /* Iterate through all of the bdesc arrays, initializing all of the
     builtin functions.  */

  offset = 0;
  for (m = bdesc_arrays; m < &bdesc_arrays[ARRAY_SIZE (bdesc_arrays)]; m++)
    {
      if (m->proc == PROCESSOR_MAX || (m->proc == mips_arch))
	for (d = m->bdesc; d < &m->bdesc[m->size]; d++)
	  if ((d->target_flags & target_flags) == d->target_flags)
	    lang_hooks.builtin_function (d->name, types[d->function_type],
					 d - m->bdesc + offset,
					 BUILT_IN_MD, NULL, NULL);
      offset += m->size;
    }
}

/* Expand a MIPS_BUILTIN_DIRECT function.  ICODE is the code of the
   .md pattern and ARGLIST is the list of function arguments.  TARGET,
   if nonnull, suggests a good place to put the result.
   HAS_TARGET indicates the function must return something.  */

static rtx
mips_expand_builtin_direct (enum insn_code icode, rtx target, tree arglist,
			    bool has_target)
{
  rtx ops[MAX_RECOG_OPERANDS];
  int i = 0;

  if (has_target)
    {
      /* We save target to ops[0].  */
      ops[0] = mips_prepare_builtin_target (icode, 0, target);
      i = 1;
    }

  /* We need to test if arglist is not zero.  Some instructions have extra
     clobber registers.  */
  for (; i < insn_data[icode].n_operands && arglist != 0; i++)
    ops[i] = mips_prepare_builtin_arg (icode, i, &arglist);

  switch (i)
    {
    case 2:
      emit_insn (GEN_FCN (icode) (ops[0], ops[1]));
      break;

    case 3:
      emit_insn (GEN_FCN (icode) (ops[0], ops[1], ops[2]));
      break;

    case 4:
      emit_insn (GEN_FCN (icode) (ops[0], ops[1], ops[2], ops[3]));
      break;

    default:
      gcc_unreachable ();
    }
  return target;
}

/* Expand a __builtin_mips_movt_*_ps() or __builtin_mips_movf_*_ps()
   function (TYPE says which).  ARGLIST is the list of arguments to the
   function, ICODE is the instruction that should be used to compare
   the first two arguments, and COND is the condition it should test.
   TARGET, if nonnull, suggests a good place to put the result.  */

static rtx
mips_expand_builtin_movtf (enum mips_builtin_type type,
			   enum insn_code icode, enum mips_fp_condition cond,
			   rtx target, tree arglist)
{
  rtx cmp_result, op0, op1;

  cmp_result = mips_prepare_builtin_target (icode, 0, 0);
  op0 = mips_prepare_builtin_arg (icode, 1, &arglist);
  op1 = mips_prepare_builtin_arg (icode, 2, &arglist);
  emit_insn (GEN_FCN (icode) (cmp_result, op0, op1, GEN_INT (cond)));

  icode = CODE_FOR_mips_cond_move_tf_ps;
  target = mips_prepare_builtin_target (icode, 0, target);
  if (type == MIPS_BUILTIN_MOVT)
    {
      op1 = mips_prepare_builtin_arg (icode, 2, &arglist);
      op0 = mips_prepare_builtin_arg (icode, 1, &arglist);
    }
  else
    {
      op0 = mips_prepare_builtin_arg (icode, 1, &arglist);
      op1 = mips_prepare_builtin_arg (icode, 2, &arglist);
    }
  emit_insn (gen_mips_cond_move_tf_ps (target, op0, op1, cmp_result));
  return target;
}

/* Expand a comparison builtin of type BUILTIN_TYPE.  ICODE is the code
   of the comparison instruction and COND is the condition it should test.
   ARGLIST is the list of function arguments and TARGET, if nonnull,
   suggests a good place to put the boolean result.  */

static rtx
mips_expand_builtin_compare (enum mips_builtin_type builtin_type,
			     enum insn_code icode, enum mips_fp_condition cond,
			     rtx target, tree arglist)
{
  rtx label1, label2, if_then_else;
  rtx pat, cmp_result, ops[MAX_RECOG_OPERANDS];
  rtx target_if_equal, target_if_unequal;
  int cmp_value, i;

  if (target == 0 || GET_MODE (target) != SImode)
    target = gen_reg_rtx (SImode);

  /* Prepare the operands to the comparison.  */
  cmp_result = mips_prepare_builtin_target (icode, 0, 0);
  for (i = 1; i < insn_data[icode].n_operands - 1; i++)
    ops[i] = mips_prepare_builtin_arg (icode, i, &arglist);

  switch (insn_data[icode].n_operands)
    {
    case 4:
      pat = GEN_FCN (icode) (cmp_result, ops[1], ops[2], GEN_INT (cond));
      break;

    case 6:
      pat = GEN_FCN (icode) (cmp_result, ops[1], ops[2],
			     ops[3], ops[4], GEN_INT (cond));
      break;

    default:
      gcc_unreachable ();
    }

  /* If the comparison sets more than one register, we define the result
     to be 0 if all registers are false and -1 if all registers are true.
     The value of the complete result is indeterminate otherwise.  It is
     possible to test individual registers using SUBREGs.

     Set up CMP_RESULT, CMP_VALUE, TARGET_IF_EQUAL and TARGET_IF_UNEQUAL so
     that the result should be TARGET_IF_EQUAL if (EQ CMP_RESULT CMP_VALUE)
     and TARGET_IF_UNEQUAL otherwise.  */
  if (builtin_type == MIPS_BUILTIN_CMP_ALL)
    {
      cmp_value = -1;
      target_if_equal = const1_rtx;
      target_if_unequal = const0_rtx;
    }
  else
    {
      cmp_value = 0;
      target_if_equal = const0_rtx;
      target_if_unequal = const1_rtx;
      if (builtin_type == MIPS_BUILTIN_CMP_UPPER)
	cmp_result = simplify_gen_subreg (CCmode, cmp_result, CCV2mode, 4);
      else if (builtin_type == MIPS_BUILTIN_CMP_LOWER)
	cmp_result = simplify_gen_subreg (CCmode, cmp_result, CCV2mode, 0);
    }

  /* First assume that CMP_RESULT == CMP_VALUE.  */
  emit_move_insn (target, target_if_equal);

  /* Branch to LABEL1 if CMP_RESULT != CMP_VALUE.  */
  emit_insn (pat);
  label1 = gen_label_rtx ();
  label2 = gen_label_rtx ();
  if_then_else
    = gen_rtx_IF_THEN_ELSE (VOIDmode,
			    gen_rtx_fmt_ee (NE, GET_MODE (cmp_result),
					    cmp_result, GEN_INT (cmp_value)),
			    gen_rtx_LABEL_REF (VOIDmode, label1), pc_rtx);
  emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, if_then_else));
  emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
			       gen_rtx_LABEL_REF (VOIDmode, label2)));
  emit_barrier ();
  emit_label (label1);

  /* Fix TARGET for CMP_RESULT != CMP_VALUE.  */
  emit_move_insn (target, target_if_unequal);
  emit_label (label2);

  return target;
}

/* Expand a bposge builtin of type BUILTIN_TYPE.  TARGET, if nonnull,
   suggests a good place to put the boolean result.

   The sequence we want is

	li	target, 0
	bposge*	label1
	j	label2
   label1:
	li 	target, 1
   label2:  */

static rtx
mips_expand_builtin_bposge (enum mips_builtin_type builtin_type, rtx target)
{
  rtx label1, label2, if_then_else;
  rtx cmp_result;
  int cmp_value;

  if (target == 0 || GET_MODE (target) != SImode)
    target = gen_reg_rtx (SImode);

  cmp_result = gen_rtx_REG (CCDSPmode, CCDSP_PO_REGNUM);

  if (builtin_type == MIPS_BUILTIN_BPOSGE32)
    cmp_value = 32;
  else
    gcc_assert (0);

  /* Move 0 to target */
  emit_move_insn (target, const0_rtx);

  /* Generate two labels */
  label1 = gen_label_rtx ();
  label2 = gen_label_rtx ();

  /* Generate if_then_else */
  if_then_else
    = gen_rtx_IF_THEN_ELSE (VOIDmode,
			    gen_rtx_fmt_ee (GE, CCDSPmode,
					    cmp_result, GEN_INT (cmp_value)),
			    gen_rtx_LABEL_REF (VOIDmode, label1), pc_rtx);

  emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, if_then_else));
  emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
                               gen_rtx_LABEL_REF (VOIDmode, label2)));
  emit_barrier ();
  emit_label (label1);
  emit_move_insn (target, const1_rtx);
  emit_label (label2);

  return target;
}

/* Set SYMBOL_REF_FLAGS for the SYMBOL_REF inside RTL, which belongs to DECL.
   FIRST is true if this is the first time handling this decl.  */

static void
mips_encode_section_info (tree decl, rtx rtl, int first)
{
  default_encode_section_info (decl, rtl, first);

  if (TREE_CODE (decl) == FUNCTION_DECL
      && lookup_attribute ("long_call", TYPE_ATTRIBUTES (TREE_TYPE (decl))))
    {
      rtx symbol = XEXP (rtl, 0);
      SYMBOL_REF_FLAGS (symbol) |= SYMBOL_FLAG_LONG_CALL;
    }
}

#include "gt-mips.h"