aboutsummaryrefslogtreecommitdiff
path: root/gcc/config/nvptx/nvptx.c
blob: 899c8566df23ee60e68cdfc29e781c6c6115ba6f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
/* Target code for NVPTX.
   Copyright (C) 2014-2015 Free Software Foundation, Inc.
   Contributed by Bernd Schmidt <bernds@codesourcery.com>

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published
   by the Free Software Foundation; either version 3, or (at your
   option) any later version.

   GCC is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
   License for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.  */

#include "config.h"
#include <sstream>
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "cfghooks.h"
#include "df.h"
#include "tm_p.h"
#include "expmed.h"
#include "optabs.h"
#include "regs.h"
#include "emit-rtl.h"
#include "recog.h"
#include "diagnostic.h"
#include "alias.h"
#include "insn-flags.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "dojump.h"
#include "explow.h"
#include "calls.h"
#include "varasm.h"
#include "stmt.h"
#include "expr.h"
#include "tm-preds.h"
#include "tm-constrs.h"
#include "langhooks.h"
#include "dbxout.h"
#include "cfgrtl.h"
#include "gimple.h"
#include "stor-layout.h"
#include "builtins.h"
#include "omp-low.h"
#include "gomp-constants.h"
#include "dumpfile.h"
#include "internal-fn.h"
#include "gimple-iterator.h"
#include "stringpool.h"
#include "tree-ssa-operands.h"
#include "tree-ssanames.h"
#include "gimplify.h"
#include "tree-phinodes.h"
#include "cfgloop.h"
#include "fold-const.h"

/* This file should be included last.  */
#include "target-def.h"

#define SHUFFLE_UP 0
#define SHUFFLE_DOWN 1
#define SHUFFLE_BFLY 2
#define SHUFFLE_IDX 3

/* Record the function decls we've written, and the libfuncs and function
   decls corresponding to them.  */
static std::stringstream func_decls;

struct declared_libfunc_hasher : ggc_cache_ptr_hash<rtx_def>
{
  static hashval_t hash (rtx x) { return htab_hash_pointer (x); }
  static bool equal (rtx a, rtx b) { return a == b; }
};

static GTY((cache))
  hash_table<declared_libfunc_hasher> *declared_libfuncs_htab;

struct tree_hasher : ggc_cache_ptr_hash<tree_node>
{
  static hashval_t hash (tree t) { return htab_hash_pointer (t); }
  static bool equal (tree a, tree b) { return a == b; }
};

static GTY((cache)) hash_table<tree_hasher> *declared_fndecls_htab;
static GTY((cache)) hash_table<tree_hasher> *needed_fndecls_htab;

/* Buffer needed to broadcast across workers.  This is used for both
   worker-neutering and worker broadcasting.  It is shared by all
   functions emitted.  The buffer is placed in shared memory.  It'd be
   nice if PTX supported common blocks, because then this could be
   shared across TUs (taking the largest size).  */
static unsigned worker_bcast_size;
static unsigned worker_bcast_align;
#define worker_bcast_name "__worker_bcast"
static GTY(()) rtx worker_bcast_sym;

/* Buffer needed for worker reductions.  This has to be distinct from
   the worker broadcast array, as both may be live concurrently.  */
static unsigned worker_red_size;
static unsigned worker_red_align;
#define worker_red_name "__worker_red"
static GTY(()) rtx worker_red_sym;

/* Global lock variable, needed for 128bit worker & gang reductions.  */
static GTY(()) tree global_lock_var;

/* Allocate a new, cleared machine_function structure.  */

static struct machine_function *
nvptx_init_machine_status (void)
{
  struct machine_function *p = ggc_cleared_alloc<machine_function> ();
  p->ret_reg_mode = VOIDmode;
  return p;
}

/* Implement TARGET_OPTION_OVERRIDE.  */

static void
nvptx_option_override (void)
{
  init_machine_status = nvptx_init_machine_status;
  /* Gives us a predictable order, which we need especially for variables.  */
  flag_toplevel_reorder = 1;
  /* Assumes that it will see only hard registers.  */
  flag_var_tracking = 0;
  write_symbols = NO_DEBUG;
  debug_info_level = DINFO_LEVEL_NONE;

  if (nvptx_optimize < 0)
    nvptx_optimize = optimize > 0;

  declared_fndecls_htab = hash_table<tree_hasher>::create_ggc (17);
  needed_fndecls_htab = hash_table<tree_hasher>::create_ggc (17);
  declared_libfuncs_htab
    = hash_table<declared_libfunc_hasher>::create_ggc (17);

  worker_bcast_sym = gen_rtx_SYMBOL_REF (Pmode, worker_bcast_name);
  worker_bcast_align = GET_MODE_ALIGNMENT (SImode) / BITS_PER_UNIT;

  worker_red_sym = gen_rtx_SYMBOL_REF (Pmode, worker_red_name);
  worker_red_align = GET_MODE_ALIGNMENT (SImode) / BITS_PER_UNIT;
}

/* Return the mode to be used when declaring a ptx object for OBJ.
   For objects with subparts such as complex modes this is the mode
   of the subpart.  */

machine_mode
nvptx_underlying_object_mode (rtx obj)
{
  if (GET_CODE (obj) == SUBREG)
    obj = SUBREG_REG (obj);
  machine_mode mode = GET_MODE (obj);
  if (mode == TImode)
    return DImode;
  if (COMPLEX_MODE_P (mode))
    return GET_MODE_INNER (mode);
  return mode;
}

/* Return a ptx type for MODE.  If PROMOTE, then use .u32 for QImode to
   deal with ptx ideosyncracies.  */

const char *
nvptx_ptx_type_from_mode (machine_mode mode, bool promote)
{
  switch (mode)
    {
    case BLKmode:
      return ".b8";
    case BImode:
      return ".pred";
    case QImode:
      if (promote)
	return ".u32";
      else
	return ".u8";
    case HImode:
      return ".u16";
    case SImode:
      return ".u32";
    case DImode:
      return ".u64";

    case SFmode:
      return ".f32";
    case DFmode:
      return ".f64";

    default:
      gcc_unreachable ();
    }
}

/* Determine the address space to use for SYMBOL_REF SYM.  */

static addr_space_t
nvptx_addr_space_from_sym (rtx sym)
{
  tree decl = SYMBOL_REF_DECL (sym);
  if (decl == NULL_TREE || TREE_CODE (decl) == FUNCTION_DECL)
    return ADDR_SPACE_GENERIC;

  bool is_const = (CONSTANT_CLASS_P (decl)
		   || TREE_CODE (decl) == CONST_DECL
		   || TREE_READONLY (decl));
  if (is_const)
    return ADDR_SPACE_CONST;

  return ADDR_SPACE_GLOBAL;
}

/* Check NAME for special function names and redirect them by returning a
   replacement.  This applies to malloc, free and realloc, for which we
   want to use libgcc wrappers, and call, which triggers a bug in ptxas.  */

static const char *
nvptx_name_replacement (const char *name)
{
  if (strcmp (name, "call") == 0)
    return "__nvptx_call";
  if (strcmp (name, "malloc") == 0)
    return "__nvptx_malloc";
  if (strcmp (name, "free") == 0)
    return "__nvptx_free";
  if (strcmp (name, "realloc") == 0)
    return "__nvptx_realloc";
  return name;
}

/* If MODE should be treated as two registers of an inner mode, return
   that inner mode.  Otherwise return VOIDmode.  */

static machine_mode
maybe_split_mode (machine_mode mode)
{
  if (COMPLEX_MODE_P (mode))
    return GET_MODE_INNER (mode);

  if (mode == TImode)
    return DImode;

  return VOIDmode;
}

/* Emit forking instructions for MASK.  */

static void
nvptx_emit_forking (unsigned mask, bool is_call)
{
  mask &= (GOMP_DIM_MASK (GOMP_DIM_WORKER)
	   | GOMP_DIM_MASK (GOMP_DIM_VECTOR));
  if (mask)
    {
      rtx op = GEN_INT (mask | (is_call << GOMP_DIM_MAX));
      
      /* Emit fork at all levels.  This helps form SESE regions, as
	 it creates a block with a single successor before entering a
	 partitooned region.  That is a good candidate for the end of
	 an SESE region.  */
      if (!is_call)
	emit_insn (gen_nvptx_fork (op));
      emit_insn (gen_nvptx_forked (op));
    }
}

/* Emit joining instructions for MASK.  */

static void
nvptx_emit_joining (unsigned mask, bool is_call)
{
  mask &= (GOMP_DIM_MASK (GOMP_DIM_WORKER)
	   | GOMP_DIM_MASK (GOMP_DIM_VECTOR));
  if (mask)
    {
      rtx op = GEN_INT (mask | (is_call << GOMP_DIM_MAX));

      /* Emit joining for all non-call pars to ensure there's a single
	 predecessor for the block the join insn ends up in.  This is
	 needed for skipping entire loops.  */
      if (!is_call)
	emit_insn (gen_nvptx_joining (op));
      emit_insn (gen_nvptx_join (op));
    }
}

#define PASS_IN_REG_P(MODE, TYPE)				\
  ((GET_MODE_CLASS (MODE) == MODE_INT				\
    || GET_MODE_CLASS (MODE) == MODE_FLOAT			\
    || ((GET_MODE_CLASS (MODE) == MODE_COMPLEX_INT		\
	 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)	\
	&& !AGGREGATE_TYPE_P (TYPE)))				\
   && (MODE) != TImode)

#define RETURN_IN_REG_P(MODE)			\
  ((GET_MODE_CLASS (MODE) == MODE_INT		\
    || GET_MODE_CLASS (MODE) == MODE_FLOAT)	\
   && GET_MODE_SIZE (MODE) <= 8)

/* Perform a mode promotion for a function argument with MODE.  Return
   the promoted mode.  */

static machine_mode
arg_promotion (machine_mode mode)
{
  if (mode == QImode || mode == HImode)
    return SImode;
  return mode;
}

/* Write the declaration of a function arg of TYPE to S.  I is the index
   of the argument, MODE its mode.  NO_ARG_TYPES is true if this is for
   a decl with zero TYPE_ARG_TYPES, i.e. an old-style C decl.  */

static int
write_one_arg (std::stringstream &s, const char *sep, int i,
	       tree type, machine_mode mode, bool no_arg_types)
{
  if (!PASS_IN_REG_P (mode, type))
    mode = Pmode;

  machine_mode split = maybe_split_mode (mode);
  if (split != VOIDmode)
    {
      i = write_one_arg (s, sep, i, TREE_TYPE (type), split, false);
      sep = ", ";
      mode = split;
    }

  if (no_arg_types && !AGGREGATE_TYPE_P (type))
    {
      if (mode == SFmode)
	mode = DFmode;
      mode = arg_promotion (mode);
    }

  s << sep;
  s << ".param" << nvptx_ptx_type_from_mode (mode, false) << " %in_ar"
    << i << (mode == QImode || mode == HImode ? "[1]" : "");
  if (mode == BLKmode)
    s << "[" << int_size_in_bytes (type) << "]";
  return i + 1;
}

/* Look for attributes in ATTRS that would indicate we must write a function
   as a .entry kernel rather than a .func.  Return true if one is found.  */

static bool
write_as_kernel (tree attrs)
{
  return (lookup_attribute ("kernel", attrs) != NULL_TREE
	  || lookup_attribute ("omp target entrypoint", attrs) != NULL_TREE);
}

/* Write a .func or .kernel declaration or definition along with
   a helper comment for use by ld.  S is the stream to write to, DECL
   the decl for the function with name NAME.   For definitions, emit
   a declaration too.  */

static const char *
write_fn_proto (std::stringstream &s, bool is_defn,
		const char *name, const_tree decl)
{
  if (is_defn)
    /* Emit a declaration. The PTX assembler gets upset without it.   */
    name = write_fn_proto (s, false, name, decl);
  else
    {
      /* Avoid repeating the name replacement.  */
      name = nvptx_name_replacement (name);
      if (name[0] == '*')
	name++;
    }

  /* Emit the linker marker.  */
  s << "\n// BEGIN";
  if (TREE_PUBLIC (decl))
    s << " GLOBAL";
  s << " FUNCTION " << (is_defn ? "DEF" : "DECL") << ": " << name << "\n";

  /* PTX declaration.  */
  if (DECL_EXTERNAL (decl))
    s << ".extern ";
  else if (TREE_PUBLIC (decl))
    s << (DECL_WEAK (decl) ? ".weak " : ".visible ");
  s << (write_as_kernel (DECL_ATTRIBUTES (decl)) ? ".entry " : ".func ");

  tree fntype = TREE_TYPE (decl);
  tree result_type = TREE_TYPE (fntype);

  /* Declare the result.  */
  bool return_in_mem = false;
  if (TYPE_MODE (result_type) != VOIDmode)
    {
      machine_mode mode = TYPE_MODE (result_type);
      if (!RETURN_IN_REG_P (mode))
	return_in_mem = true;
      else
	{
	  mode = arg_promotion (mode);
	  s << "(.param" << nvptx_ptx_type_from_mode (mode, false)
	    << " %out_retval) ";
	}
    }

  s << name;

  const char *sep = " (";
  int i = 0;

  /* Emit argument list.  */
  if (return_in_mem)
    {
      s << sep << ".param.u" << GET_MODE_BITSIZE (Pmode) << " %in_ar0";
      sep  = ", ";
      i++;
    }

  /* We get:
     NULL in TYPE_ARG_TYPES, for old-style functions
     NULL in DECL_ARGUMENTS, for builtin functions without another
       declaration.
     So we have to pick the best one we have.  */
  tree args = TYPE_ARG_TYPES (fntype);
  bool null_type_args = !args;
  if (null_type_args)
    args = DECL_ARGUMENTS (decl);

  for (; args; args = TREE_CHAIN (args))
    {
      tree type = null_type_args ? TREE_TYPE (args) : TREE_VALUE (args);
      machine_mode mode = TYPE_MODE (type);

      if (mode == VOIDmode)
	break;
      i = write_one_arg (s, sep, i, type, mode, null_type_args);
      sep = ", ";
    }

  if (stdarg_p (fntype))
    {
      s << sep << ".param.u" << GET_MODE_BITSIZE (Pmode) << " %in_argp";
      i++;
      sep = ", ";
    }

  if (DECL_STATIC_CHAIN (decl))
    {
      s << sep << ".reg.u" << GET_MODE_BITSIZE (Pmode)
	<< reg_names [STATIC_CHAIN_REGNUM];
      i++;
      sep = ", ";
    }

  if (!i && strcmp (name, "main") == 0)
    {
      s << sep
	<< ".param.u32 %argc, .param.u" << GET_MODE_BITSIZE (Pmode)
	<< " %argv";
      i++;
      sep = ", ";
    }

  if (i)
    s << ")";

  s << (is_defn ? "\n" : ";\n");

  return name;
}

/* Construct a function declaration from a call insn.  This can be
   necessary for two reasons - either we have an indirect call which
   requires a .callprototype declaration, or we have a libcall
   generated by emit_library_call for which no decl exists.  */

static void
write_fn_proto_from_insn (std::stringstream &s, const char *name,
			  rtx result, rtx pat)
{
  if (!name)
    {
      s << "\t.callprototype ";
      name = "_";
    }
  else
    {
      name = nvptx_name_replacement (name);
      s << "\n// BEGIN GLOBAL FUNCTION DECL: " << name << "\n";
      s << "\t.extern .func ";
    }

  if (result != NULL_RTX)
    s << "(.param"
      << nvptx_ptx_type_from_mode (arg_promotion (GET_MODE (result)), false)
      << " %rval) ";

  s << name;

  const char *sep = " (";
  int arg_end = XVECLEN (pat, 0);
  for (int i = 1; i < arg_end; i++)
    {
      /* We don't have to deal with mode splitting here, as that was
	 already done when generating the call sequence.  */
      machine_mode mode = GET_MODE (XEXP (XVECEXP (pat, 0, i), 0));

      s << sep
	<< ".param"
	<< nvptx_ptx_type_from_mode (mode, false)
	<< " %arg"
	<< i;
      if (mode == QImode || mode == HImode)
	s << "[1]";
      sep = ", ";
    }
  if (arg_end != 1)
    s << ")";
  s << ";\n";
}

/* DECL is an external FUNCTION_DECL, make sure its in the fndecl hash
   table and and write a ptx prototype.  These are emitted at end of
   compilation.  */

static void
nvptx_record_fndecl (tree decl)
{
  tree *slot = declared_fndecls_htab->find_slot (decl, INSERT);
  if (*slot == NULL)
    {
      *slot = decl;
      const char *name = get_fnname_from_decl (decl);
      write_fn_proto (func_decls, false, name, decl);
    }
}

/* Record a libcall or unprototyped external function. CALLEE is the
   SYMBOL_REF.  Insert into the libfunc hash table and emit a ptx
   declaration for it.  */

static void
nvptx_record_libfunc (rtx callee, rtx retval, rtx pat)
{
  rtx *slot = declared_libfuncs_htab->find_slot (callee, INSERT);
  if (*slot == NULL)
    {
      *slot = callee;

      const char *name = XSTR (callee, 0);
      write_fn_proto_from_insn (func_decls, name, retval, pat);
    }
}

/* DECL is an external FUNCTION_DECL, that we're referencing.  If it
   is prototyped, record it now.  Otherwise record it as needed at end
   of compilation, when we might have more information about it.  */

void
nvptx_record_needed_fndecl (tree decl)
{
  if (TYPE_ARG_TYPES (TREE_TYPE (decl)) == NULL_TREE)
    {
      tree *slot = needed_fndecls_htab->find_slot (decl, INSERT);
      if (*slot == NULL)
	*slot = decl;
    }
  else
    nvptx_record_fndecl (decl);
}

/* SYM is a SYMBOL_REF.  If it refers to an external function, record
   it as needed.  */

static void
nvptx_maybe_record_fnsym (rtx sym)
{
  tree decl = SYMBOL_REF_DECL (sym);
  
  if (decl && TREE_CODE (decl) == FUNCTION_DECL && DECL_EXTERNAL (decl))
    nvptx_record_needed_fndecl (decl);
}

/* Emit code to initialize the REGNO predicate register to indicate
   whether we are not lane zero on the NAME axis.  */

static void
nvptx_init_axis_predicate (FILE *file, int regno, const char *name)
{
  fprintf (file, "\t{\n");
  fprintf (file, "\t\t.reg.u32\t%%%s;\n", name);
  fprintf (file, "\t\tmov.u32\t%%%s, %%tid.%s;\n", name, name);
  fprintf (file, "\t\tsetp.ne.u32\t%%r%d, %%%s, 0;\n", regno, name);
  fprintf (file, "\t}\n");
}

/* Implement ASM_DECLARE_FUNCTION_NAME.  Writes the start of a ptx
   function, including local var decls and copies from the arguments to
   local regs.  */

void
nvptx_declare_function_name (FILE *file, const char *name, const_tree decl)
{
  tree fntype = TREE_TYPE (decl);
  tree result_type = TREE_TYPE (fntype);
  int argno  = 0;

  std::stringstream s;
  write_fn_proto (s, true, name, decl);
  fprintf (file, "%s", s.str().c_str());
  fprintf (file, "{\n");

  bool return_in_mem = (TYPE_MODE (result_type) != VOIDmode
			&& !RETURN_IN_REG_P (TYPE_MODE (result_type)));
  if (return_in_mem)
    {
      fprintf (file, "\t.reg.u%d %%ar%d;\n", GET_MODE_BITSIZE (Pmode), argno);
      fprintf (file, "\tld.param.u%d %%ar%d, [%%in_ar%d];\n",
	       GET_MODE_BITSIZE (Pmode), argno, argno);
      argno++;
    }

  /* Declare and initialize incoming arguments.  */
  tree args = DECL_ARGUMENTS (decl);
  bool prototyped = false;
  if (TYPE_ARG_TYPES (fntype))
    {
      args = TYPE_ARG_TYPES (fntype);
      prototyped = true;
    }

  for (; args != NULL_TREE; args = TREE_CHAIN (args))
    {
      tree type = prototyped ? TREE_VALUE (args) : TREE_TYPE (args);
      machine_mode mode = TYPE_MODE (type);
      int count = 1;

      if (mode == VOIDmode)
	break;

      if (!PASS_IN_REG_P (mode, type))
	mode = Pmode;

      machine_mode split = maybe_split_mode (mode);
      if (split != VOIDmode)
	{
	  count = 2;
	  mode = split;
	}
      else if (!prototyped && !AGGREGATE_TYPE_P (type) && mode == SFmode)
	mode = DFmode;

      mode = arg_promotion (mode);
      while (count--)
	{
	  fprintf (file, "\t.reg%s %%ar%d;\n",
		   nvptx_ptx_type_from_mode (mode, false), argno);
	  fprintf (file, "\tld.param%s %%ar%d, [%%in_ar%d];\n",
		   nvptx_ptx_type_from_mode (mode, false), argno, argno);
	  argno++;
	}
    }

  /* C++11 ABI causes us to return a reference to the passed in
     pointer for return_in_mem.  */
  if (cfun->machine->ret_reg_mode != VOIDmode)
    {
      machine_mode mode = arg_promotion
	((machine_mode)cfun->machine->ret_reg_mode);
      fprintf (file, "\t.reg%s %%retval;\n",
	       nvptx_ptx_type_from_mode (mode, false));
    }

  if (stdarg_p (fntype))
    {
      fprintf (file, "\t.reg.u%d %%argp;\n", GET_MODE_BITSIZE (Pmode));
      fprintf (file, "\tld.param.u%d %%argp, [%%in_argp];\n",
	       GET_MODE_BITSIZE (Pmode));
    }

  fprintf (file, "\t.reg.u%d %s;\n", GET_MODE_BITSIZE (Pmode),
	   reg_names[OUTGOING_STATIC_CHAIN_REGNUM]);

  /* Declare the pseudos we have as ptx registers.  */
  int maxregs = max_reg_num ();
  for (int i = LAST_VIRTUAL_REGISTER + 1; i < maxregs; i++)
    {
      if (regno_reg_rtx[i] != const0_rtx)
	{
	  machine_mode mode = PSEUDO_REGNO_MODE (i);
	  machine_mode split = maybe_split_mode (mode);
	  if (split != VOIDmode)
	    {
	      fprintf (file, "\t.reg%s %%r%d$%d;\n",
		       nvptx_ptx_type_from_mode (split, true), i, 0);
	      fprintf (file, "\t.reg%s %%r%d$%d;\n",
		       nvptx_ptx_type_from_mode (split, true), i, 1);
	    }
	  else
	    fprintf (file, "\t.reg%s %%r%d;\n",
		     nvptx_ptx_type_from_mode (mode, true), i);
	}
    }

  /* The only reason we might be using outgoing args is if we call a stdargs
     function.  Allocate the space for this.  If we called varargs functions
     without passing any variadic arguments, we'll see a reference to outargs
     even with a zero outgoing_args_size.  */
  HOST_WIDE_INT sz = crtl->outgoing_args_size;
  if (sz == 0)
    sz = 1;
  if (cfun->machine->has_call_with_varargs)
    {
      fprintf (file, "\t.reg.u%d %%outargs;\n"
	       "\t.local.align 8 .b8 %%outargs_ar["
	       HOST_WIDE_INT_PRINT_DEC"];\n",
	       BITS_PER_WORD, sz);
      fprintf (file, "\tcvta.local.u%d %%outargs, %%outargs_ar;\n",
	       BITS_PER_WORD);
    }

  if (cfun->machine->punning_buffer_size > 0)
    {
      fprintf (file, "\t.reg.u%d %%punbuffer;\n"
	       "\t.local.align 8 .b8 %%punbuffer_ar[%d];\n",
	       BITS_PER_WORD, cfun->machine->punning_buffer_size);
      fprintf (file, "\tcvta.local.u%d %%punbuffer, %%punbuffer_ar;\n",
	       BITS_PER_WORD);
    }

  /* Declare a local variable for the frame.  */
  sz = get_frame_size ();
  if (sz > 0 || cfun->machine->has_call_with_sc)
    {
      int alignment = crtl->stack_alignment_needed / BITS_PER_UNIT;

      fprintf (file, "\t.reg.u%d %%frame;\n"
	       "\t.local.align %d .b8 %%farray[" HOST_WIDE_INT_PRINT_DEC"];\n",
	       BITS_PER_WORD, alignment, sz == 0 ? 1 : sz);
      fprintf (file, "\tcvta.local.u%d %%frame, %%farray;\n",
	       BITS_PER_WORD);
    }

  /* Emit axis predicates. */
  if (cfun->machine->axis_predicate[0])
    nvptx_init_axis_predicate (file,
			       REGNO (cfun->machine->axis_predicate[0]), "y");
  if (cfun->machine->axis_predicate[1])
    nvptx_init_axis_predicate (file,
			       REGNO (cfun->machine->axis_predicate[1]), "x");
}

/* Output a return instruction.  Also copy the return value to its outgoing
   location.  */

const char *
nvptx_output_return (void)
{
  machine_mode mode = (machine_mode)cfun->machine->ret_reg_mode;

  if (mode != VOIDmode)
    {
      mode = arg_promotion (mode);
      fprintf (asm_out_file, "\tst.param%s\t[%%out_retval], %%retval;\n",
	       nvptx_ptx_type_from_mode (mode, false));
    }

  return "ret;";
}

/* Terminate a function by writing a closing brace to FILE.  */

void
nvptx_function_end (FILE *file)
{
  fprintf (file, "}\n");
}

/* Decide whether we can make a sibling call to a function.  For ptx, we
   can't.  */

static bool
nvptx_function_ok_for_sibcall (tree, tree)
{
  return false;
}

/* Return Dynamic ReAlignment Pointer RTX.  For PTX there isn't any.  */

static rtx
nvptx_get_drap_rtx (void)
{
  return NULL_RTX;
}

/* Implement the TARGET_CALL_ARGS hook.  Record information about one
   argument to the next call.  */

static void
nvptx_call_args (rtx arg, tree funtype)
{
  if (cfun->machine->start_call == NULL_RTX)
    {
      cfun->machine->call_args = NULL;
      cfun->machine->funtype = funtype;
      cfun->machine->start_call = const0_rtx;
    }
  if (arg == pc_rtx)
    return;

  rtx_expr_list *args_so_far = cfun->machine->call_args;
  if (REG_P (arg))
    cfun->machine->call_args = alloc_EXPR_LIST (VOIDmode, arg, args_so_far);
}

/* Implement the corresponding END_CALL_ARGS hook.  Clear and free the
   information we recorded.  */

static void
nvptx_end_call_args (void)
{
  cfun->machine->start_call = NULL_RTX;
  free_EXPR_LIST_list (&cfun->machine->call_args);
}

/* Emit the sequence for a call to ADDRESS, setting RETVAL.  Keep
   track of whether calls involving static chains or varargs were seen
   in the current function.
   For libcalls, maintain a hash table of decls we have seen, and
   record a function decl for later when encountering a new one.  */

void
nvptx_expand_call (rtx retval, rtx address)
{
  int nargs = 0;
  rtx callee = XEXP (address, 0);
  rtx pat, t;
  rtvec vec;
  rtx varargs = NULL_RTX;
  unsigned parallel = 0;

  for (t = cfun->machine->call_args; t; t = XEXP (t, 1))
    nargs++;

  if (!call_insn_operand (callee, Pmode))
    {
      callee = force_reg (Pmode, callee);
      address = change_address (address, QImode, callee);
    }

  if (GET_CODE (callee) == SYMBOL_REF)
    {
      tree decl = SYMBOL_REF_DECL (callee);
      if (decl != NULL_TREE)
	{
	  if (DECL_STATIC_CHAIN (decl))
	    cfun->machine->has_call_with_sc = true;

	  tree attr = get_oacc_fn_attrib (decl);
	  if (attr)
	    {
	      tree dims = TREE_VALUE (attr);

	      parallel = GOMP_DIM_MASK (GOMP_DIM_MAX) - 1;
	      for (int ix = 0; ix != GOMP_DIM_MAX; ix++)
		{
		  if (TREE_PURPOSE (dims)
		      && !integer_zerop (TREE_PURPOSE (dims)))
		    break;
		  /* Not on this axis.  */
		  parallel ^= GOMP_DIM_MASK (ix);
		  dims = TREE_CHAIN (dims);
		}
	    }
	}
    }

  if (cfun->machine->funtype
      /* It's possible to construct testcases where we call a variable.
	 See compile/20020129-1.c.  stdarg_p will crash so avoid calling it
	 in such a case.  */
      && (TREE_CODE (cfun->machine->funtype) == FUNCTION_TYPE
	  || TREE_CODE (cfun->machine->funtype) == METHOD_TYPE)
      && stdarg_p (cfun->machine->funtype))
    {
      varargs = gen_reg_rtx (Pmode);
      emit_move_insn (varargs, stack_pointer_rtx);
      cfun->machine->has_call_with_varargs = true;
    }
  vec = rtvec_alloc (nargs + 1 + (varargs ? 1 : 0));
  pat = gen_rtx_PARALLEL (VOIDmode, vec);

  int vec_pos = 0;
  
  rtx tmp_retval = retval;
  t = gen_rtx_CALL (VOIDmode, address, const0_rtx);
  if (retval != NULL_RTX)
    {
      if (!nvptx_register_operand (retval, GET_MODE (retval)))
	tmp_retval = gen_reg_rtx (GET_MODE (retval));
      t = gen_rtx_SET (tmp_retval, t);
    }
  XVECEXP (pat, 0, vec_pos++) = t;

  /* Construct the call insn, including a USE for each argument pseudo
     register.  These will be used when printing the insn.  */
  for (rtx arg = cfun->machine->call_args; arg; arg = XEXP (arg, 1))
    {
      rtx this_arg = XEXP (arg, 0);
      XVECEXP (pat, 0, vec_pos++) = gen_rtx_USE (VOIDmode, this_arg);
    }

  if (varargs)
    XVECEXP (pat, 0, vec_pos++) = gen_rtx_USE (VOIDmode, varargs);

  gcc_assert (vec_pos = XVECLEN (pat, 0));

  nvptx_emit_forking (parallel, true);
  emit_call_insn (pat);
  nvptx_emit_joining (parallel, true);

  if (tmp_retval != retval)
    emit_move_insn (retval, tmp_retval);
}

/* Implement TARGET_FUNCTION_ARG.  */

static rtx
nvptx_function_arg (cumulative_args_t, machine_mode mode,
		    const_tree, bool named)
{
  if (mode == VOIDmode)
    return NULL_RTX;

  if (named)
    return gen_reg_rtx (mode);
  return NULL_RTX;
}

/* Implement TARGET_FUNCTION_INCOMING_ARG.  */

static rtx
nvptx_function_incoming_arg (cumulative_args_t cum_v, machine_mode mode,
			     const_tree, bool named)
{
  CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
  if (mode == VOIDmode)
    return NULL_RTX;

  if (!named)
    return NULL_RTX;

  /* No need to deal with split modes here, the only case that can
     happen is complex modes and those are dealt with by
     TARGET_SPLIT_COMPLEX_ARG.  */
  return gen_rtx_UNSPEC (mode,
			 gen_rtvec (1, GEN_INT (cum->count)),
			 UNSPEC_ARG_REG);
}

/* Implement TARGET_FUNCTION_ARG_ADVANCE.  */

static void
nvptx_function_arg_advance (cumulative_args_t cum_v, machine_mode mode,
			    const_tree type ATTRIBUTE_UNUSED,
			    bool named ATTRIBUTE_UNUSED)
{
  CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
  if (mode == TImode)
    cum->count += 2;
  else
    cum->count++;
}

/* Handle the TARGET_STRICT_ARGUMENT_NAMING target hook.

   For nvptx, we know how to handle functions declared as stdarg: by
   passing an extra pointer to the unnamed arguments.  However, the
   Fortran frontend can produce a different situation, where a
   function pointer is declared with no arguments, but the actual
   function and calls to it take more arguments.  In that case, we
   want to ensure the call matches the definition of the function.  */

static bool
nvptx_strict_argument_naming (cumulative_args_t cum_v)
{
  CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
  return cum->fntype == NULL_TREE || stdarg_p (cum->fntype);
}

/* Implement TARGET_FUNCTION_ARG_BOUNDARY.  */

static unsigned int
nvptx_function_arg_boundary (machine_mode mode, const_tree type)
{
  unsigned int boundary = type ? TYPE_ALIGN (type) : GET_MODE_BITSIZE (mode);

  if (boundary > BITS_PER_WORD)
    return 2 * BITS_PER_WORD;

  if (mode == BLKmode)
    {
      HOST_WIDE_INT size = int_size_in_bytes (type);
      if (size > 4)
        return 2 * BITS_PER_WORD;
      if (boundary < BITS_PER_WORD)
        {
          if (size >= 3)
            return BITS_PER_WORD;
          if (size >= 2)
            return 2 * BITS_PER_UNIT;
        }
    }
  return boundary;
}

/* TARGET_FUNCTION_VALUE implementation.  Returns an RTX representing the place
   where function FUNC returns or receives a value of data type TYPE.  */

static rtx
nvptx_function_value (const_tree type, const_tree func ATTRIBUTE_UNUSED,
		      bool outgoing)
{
  int unsignedp = TYPE_UNSIGNED (type);
  machine_mode orig_mode = TYPE_MODE (type);
  machine_mode mode = promote_function_mode (type, orig_mode,
					     &unsignedp, NULL_TREE, 1);
  if (outgoing)
    return gen_rtx_REG (mode, NVPTX_RETURN_REGNUM);
  if (cfun->machine->start_call == NULL_RTX)
    /* Pretend to return in a hard reg for early uses before pseudos can be
       generated.  */
    return gen_rtx_REG (mode, NVPTX_RETURN_REGNUM);
  return gen_reg_rtx (mode);
}

/* Implement TARGET_LIBCALL_VALUE.  */

static rtx
nvptx_libcall_value (machine_mode mode, const_rtx)
{
  if (cfun->machine->start_call == NULL_RTX)
    /* Pretend to return in a hard reg for early uses before pseudos can be
       generated.  */
    return gen_rtx_REG (mode, NVPTX_RETURN_REGNUM);
  return gen_reg_rtx (mode);
}

/* Implement TARGET_FUNCTION_VALUE_REGNO_P.  */

static bool
nvptx_function_value_regno_p (const unsigned int regno)
{
  return regno == NVPTX_RETURN_REGNUM;
}

/* Types with a mode other than those supported by the machine are passed by
   reference in memory.  */

static bool
nvptx_pass_by_reference (cumulative_args_t, machine_mode mode,
			 const_tree type, bool)
{
  return !PASS_IN_REG_P (mode, type);
}

/* Implement TARGET_RETURN_IN_MEMORY.  */

static bool
nvptx_return_in_memory (const_tree type, const_tree)
{
  machine_mode mode = TYPE_MODE (type);
  if (!RETURN_IN_REG_P (mode))
    return true;
  return false;
}

/* Implement TARGET_PROMOTE_FUNCTION_MODE.  */

static machine_mode
nvptx_promote_function_mode (const_tree type, machine_mode mode,
			     int *punsignedp,
			     const_tree funtype, int for_return)
{
  if (type == NULL_TREE)
    return mode;
  if (for_return)
    return promote_mode (type, mode, punsignedp);
  /* For K&R-style functions, try to match the language promotion rules to
     minimize type mismatches at assembly time.  */
  if (TYPE_ARG_TYPES (funtype) == NULL_TREE
      && type != NULL_TREE
      && !AGGREGATE_TYPE_P (type))
    {
      if (mode == SFmode)
	mode = DFmode;
      mode = arg_promotion (mode);
    }

  return mode;
}

/* Implement TARGET_STATIC_CHAIN.  */

static rtx
nvptx_static_chain (const_tree fndecl, bool incoming_p)
{
  if (!DECL_STATIC_CHAIN (fndecl))
    return NULL;

  if (incoming_p)
    return gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
  else
    return gen_rtx_REG (Pmode, OUTGOING_STATIC_CHAIN_REGNUM);
}

/* Emit a comparison COMPARE, and return the new test to be used in the
   jump.  */

rtx
nvptx_expand_compare (rtx compare)
{
  rtx pred = gen_reg_rtx (BImode);
  rtx cmp = gen_rtx_fmt_ee (GET_CODE (compare), BImode,
			    XEXP (compare, 0), XEXP (compare, 1));
  emit_insn (gen_rtx_SET (pred, cmp));
  return gen_rtx_NE (BImode, pred, const0_rtx);
}

/* Expand the oacc fork & join primitive into ptx-required unspecs.  */

void
nvptx_expand_oacc_fork (unsigned mode)
{
  nvptx_emit_forking (GOMP_DIM_MASK (mode), false);
}

void
nvptx_expand_oacc_join (unsigned mode)
{
  nvptx_emit_joining (GOMP_DIM_MASK (mode), false);
}

/* Generate instruction(s) to unpack a 64 bit object into 2 32 bit
   objects.  */

static rtx
nvptx_gen_unpack (rtx dst0, rtx dst1, rtx src)
{
  rtx res;
  
  switch (GET_MODE (src))
    {
    case DImode:
      res = gen_unpackdisi2 (dst0, dst1, src);
      break;
    case DFmode:
      res = gen_unpackdfsi2 (dst0, dst1, src);
      break;
    default: gcc_unreachable ();
    }
  return res;
}

/* Generate instruction(s) to pack 2 32 bit objects into a 64 bit
   object.  */

static rtx
nvptx_gen_pack (rtx dst, rtx src0, rtx src1)
{
  rtx res;
  
  switch (GET_MODE (dst))
    {
    case DImode:
      res = gen_packsidi2 (dst, src0, src1);
      break;
    case DFmode:
      res = gen_packsidf2 (dst, src0, src1);
      break;
    default: gcc_unreachable ();
    }
  return res;
}

/* Generate an instruction or sequence to broadcast register REG
   across the vectors of a single warp.  */

static rtx
nvptx_gen_shuffle (rtx dst, rtx src, rtx idx, unsigned kind)
{
  rtx res;

  switch (GET_MODE (dst))
    {
    case SImode:
      res = gen_nvptx_shufflesi (dst, src, idx, GEN_INT (kind));
      break;
    case SFmode:
      res = gen_nvptx_shufflesf (dst, src, idx, GEN_INT (kind));
      break;
    case DImode:
    case DFmode:
      {
	rtx tmp0 = gen_reg_rtx (SImode);
	rtx tmp1 = gen_reg_rtx (SImode);

	start_sequence ();
	emit_insn (nvptx_gen_unpack (tmp0, tmp1, src));
	emit_insn (nvptx_gen_shuffle (tmp0, tmp0, idx, kind));
	emit_insn (nvptx_gen_shuffle (tmp1, tmp1, idx, kind));
	emit_insn (nvptx_gen_pack (dst, tmp0, tmp1));
	res = get_insns ();
	end_sequence ();
      }
      break;
    case BImode:
      {
	rtx tmp = gen_reg_rtx (SImode);
	
	start_sequence ();
	emit_insn (gen_sel_truesi (tmp, src, GEN_INT (1), const0_rtx));
	emit_insn (nvptx_gen_shuffle (tmp, tmp, idx, kind));
	emit_insn (gen_rtx_SET (dst, gen_rtx_NE (BImode, tmp, const0_rtx)));
	res = get_insns ();
	end_sequence ();
      }
      break;
      
    default:
      gcc_unreachable ();
    }
  return res;
}

/* Generate an instruction or sequence to broadcast register REG
   across the vectors of a single warp.  */

static rtx
nvptx_gen_vcast (rtx reg)
{
  return nvptx_gen_shuffle (reg, reg, const0_rtx, SHUFFLE_IDX);
}

/* Structure used when generating a worker-level spill or fill.  */

struct wcast_data_t
{
  rtx base;  /* Register holding base addr of buffer.  */
  rtx ptr;  /* Iteration var,  if needed.  */
  unsigned offset; /* Offset into worker buffer.  */
};

/* Direction of the spill/fill and looping setup/teardown indicator.  */

enum propagate_mask
  {
    PM_read = 1 << 0,
    PM_write = 1 << 1,
    PM_loop_begin = 1 << 2,
    PM_loop_end = 1 << 3,

    PM_read_write = PM_read | PM_write
  };

/* Generate instruction(s) to spill or fill register REG to/from the
   worker broadcast array.  PM indicates what is to be done, REP
   how many loop iterations will be executed (0 for not a loop).  */
   
static rtx
nvptx_gen_wcast (rtx reg, propagate_mask pm, unsigned rep, wcast_data_t *data)
{
  rtx  res;
  machine_mode mode = GET_MODE (reg);

  switch (mode)
    {
    case BImode:
      {
	rtx tmp = gen_reg_rtx (SImode);
	
	start_sequence ();
	if (pm & PM_read)
	  emit_insn (gen_sel_truesi (tmp, reg, GEN_INT (1), const0_rtx));
	emit_insn (nvptx_gen_wcast (tmp, pm, rep, data));
	if (pm & PM_write)
	  emit_insn (gen_rtx_SET (reg, gen_rtx_NE (BImode, tmp, const0_rtx)));
	res = get_insns ();
	end_sequence ();
      }
      break;

    default:
      {
	rtx addr = data->ptr;

	if (!addr)
	  {
	    unsigned align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;

	    if (align > worker_bcast_align)
	      worker_bcast_align = align;
	    data->offset = (data->offset + align - 1) & ~(align - 1);
	    addr = data->base;
	    if (data->offset)
	      addr = gen_rtx_PLUS (Pmode, addr, GEN_INT (data->offset));
	  }
	
	addr = gen_rtx_MEM (mode, addr);
	addr = gen_rtx_UNSPEC (mode, gen_rtvec (1, addr), UNSPEC_SHARED_DATA);
	if (pm == PM_read)
	  res = gen_rtx_SET (addr, reg);
	else if (pm == PM_write)
	  res = gen_rtx_SET (reg, addr);
	else
	  gcc_unreachable ();

	if (data->ptr)
	  {
	    /* We're using a ptr, increment it.  */
	    start_sequence ();
	    
	    emit_insn (res);
	    emit_insn (gen_adddi3 (data->ptr, data->ptr,
				   GEN_INT (GET_MODE_SIZE (GET_MODE (reg)))));
	    res = get_insns ();
	    end_sequence ();
	  }
	else
	  rep = 1;
	data->offset += rep * GET_MODE_SIZE (GET_MODE (reg));
      }
      break;
    }
  return res;
}

/* When loading an operand ORIG_OP, verify whether an address space
   conversion to generic is required, and if so, perform it.  Check
   for SYMBOL_REFs and record them if needed.  Return either the
   original operand, or the converted one.  */

rtx
nvptx_maybe_convert_symbolic_operand (rtx op)
{
  if (GET_MODE (op) != Pmode)
    return op;

  rtx sym = op;
  if (GET_CODE (sym) == CONST)
    sym = XEXP (sym, 0);
  if (GET_CODE (sym) == PLUS)
    sym = XEXP (sym, 0);

  if (GET_CODE (sym) != SYMBOL_REF)
    return op;

  nvptx_maybe_record_fnsym (sym);
  
  addr_space_t as = nvptx_addr_space_from_sym (sym);
  if (as == ADDR_SPACE_GENERIC)
    return op;

  enum unspec code;
  code = (as == ADDR_SPACE_GLOBAL ? UNSPEC_FROM_GLOBAL
	  : as == ADDR_SPACE_LOCAL ? UNSPEC_FROM_LOCAL
	  : as == ADDR_SPACE_SHARED ? UNSPEC_FROM_SHARED
	  : as == ADDR_SPACE_CONST ? UNSPEC_FROM_CONST
	  : UNSPEC_FROM_PARAM);

  rtx dest = gen_reg_rtx (Pmode);
  emit_insn (gen_rtx_SET (dest,
			  gen_rtx_UNSPEC (Pmode, gen_rtvec (1, op), code)));
  return dest;
}

/* Returns true if X is a valid address for use in a memory reference.  */

static bool
nvptx_legitimate_address_p (machine_mode, rtx x, bool)
{
  enum rtx_code code = GET_CODE (x);

  switch (code)
    {
    case REG:
      return true;

    case PLUS:
      if (REG_P (XEXP (x, 0)) && CONST_INT_P (XEXP (x, 1)))
	return true;
      return false;

    case CONST:
    case SYMBOL_REF:
    case LABEL_REF:
      return true;

    default:
      return false;
    }
}

/* Implement HARD_REGNO_MODE_OK.  We barely use hard regs, but we want
   to ensure that the return register's mode isn't changed.  */

bool
nvptx_hard_regno_mode_ok (int regno, machine_mode mode)
{
  if (regno != NVPTX_RETURN_REGNUM
      || cfun == NULL || cfun->machine->ret_reg_mode == VOIDmode)
    return true;
  return mode == cfun->machine->ret_reg_mode;
}

/* Convert an address space AS to the corresponding ptx string.  */

const char *
nvptx_section_from_addr_space (addr_space_t as)
{
  switch (as)
    {
    case ADDR_SPACE_CONST:
      return ".const";

    case ADDR_SPACE_GLOBAL:
      return ".global";

    case ADDR_SPACE_SHARED:
      return ".shared";

    case ADDR_SPACE_GENERIC:
      return "";

    default:
      gcc_unreachable ();
    }
}

/* Determine whether DECL goes into .const or .global.  */

const char *
nvptx_section_for_decl (const_tree decl)
{
  bool is_const = (CONSTANT_CLASS_P (decl)
		   || TREE_CODE (decl) == CONST_DECL
		   || TREE_READONLY (decl));
  if (is_const)
    return ".const";

  return ".global";
}


/* Machinery to output constant initializers.  When beginning an initializer,
   we decide on a chunk size (which is visible in ptx in the type used), and
   then all initializer data is buffered until a chunk is filled and ready to
   be written out.  */

/* Used when assembling integers to ensure data is emitted in
   pieces whose size matches the declaration we printed.  */
static unsigned int decl_chunk_size;
static machine_mode decl_chunk_mode;
/* Used in the same situation, to keep track of the byte offset
   into the initializer.  */
static unsigned HOST_WIDE_INT decl_offset;
/* The initializer part we are currently processing.  */
static HOST_WIDE_INT init_part;
/* The total size of the object.  */
static unsigned HOST_WIDE_INT object_size;
/* True if we found a skip extending to the end of the object.  Used to
   assert that no data follows.  */
static bool object_finished;

/* Write the necessary separator string to begin a new initializer value.  */

static void
begin_decl_field (void)
{
  /* We never see decl_offset at zero by the time we get here.  */
  if (decl_offset == decl_chunk_size)
    fprintf (asm_out_file, " = { ");
  else
    fprintf (asm_out_file, ", ");
}

/* Output the currently stored chunk as an initializer value.  */

static void
output_decl_chunk (void)
{
  begin_decl_field ();
  output_address (VOIDmode, gen_int_mode (init_part, decl_chunk_mode));
  init_part = 0;
}

/* Add value VAL sized SIZE to the data we're emitting, and keep writing
   out chunks as they fill up.  */

static void
nvptx_assemble_value (HOST_WIDE_INT val, unsigned int size)
{
  unsigned HOST_WIDE_INT chunk_offset = decl_offset % decl_chunk_size;
  gcc_assert (!object_finished);
  while (size > 0)
    {
      int this_part = size;
      if (chunk_offset + this_part > decl_chunk_size)
	this_part = decl_chunk_size - chunk_offset;
      HOST_WIDE_INT val_part;
      HOST_WIDE_INT mask = 2;
      mask <<= this_part * BITS_PER_UNIT - 1;
      val_part = val & (mask - 1);
      init_part |= val_part << (BITS_PER_UNIT * chunk_offset);
      val >>= BITS_PER_UNIT * this_part;
      size -= this_part;
      decl_offset += this_part;
      if (decl_offset % decl_chunk_size == 0)
	output_decl_chunk ();

      chunk_offset = 0;
    }
}

/* Target hook for assembling integer object X of size SIZE.  */

static bool
nvptx_assemble_integer (rtx x, unsigned int size, int ARG_UNUSED (aligned_p))
{
  HOST_WIDE_INT val = 0;

  switch (GET_CODE (x))
    {
    default:
      gcc_unreachable ();

    case CONST_INT:
      val = INTVAL (x);
      nvptx_assemble_value (val, size);
      break;

    case CONST:
      x = XEXP (x, 0);
      gcc_assert (GET_CODE (x) == PLUS);
      val = INTVAL (XEXP (x, 1));
      x = XEXP (x, 0);
      gcc_assert (GET_CODE (x) == SYMBOL_REF);
      /* FALLTHROUGH */

    case SYMBOL_REF:
      gcc_assert (size = decl_chunk_size);
      if (decl_offset % decl_chunk_size != 0)
	sorry ("cannot emit unaligned pointers in ptx assembly");
      decl_offset += size;
      begin_decl_field ();

      nvptx_maybe_record_fnsym (x);
      fprintf (asm_out_file, "generic(");
      output_address (VOIDmode, x);
      fprintf (asm_out_file, ")");

      if (val)
	fprintf (asm_out_file, " + " HOST_WIDE_INT_PRINT_DEC, val);
      break;
    }

  return true;
}

/* Output SIZE zero bytes.  We ignore the FILE argument since the
   functions we're calling to perform the output just use
   asm_out_file.  */

void
nvptx_output_skip (FILE *, unsigned HOST_WIDE_INT size)
{
  if (decl_offset + size >= object_size)
    {
      if (decl_offset % decl_chunk_size != 0)
	nvptx_assemble_value (0, decl_chunk_size);
      object_finished = true;
      return;
    }

  while (size > decl_chunk_size)
    {
      nvptx_assemble_value (0, decl_chunk_size);
      size -= decl_chunk_size;
    }
  while (size-- > 0)
    nvptx_assemble_value (0, 1);
}

/* Output a string STR with length SIZE.  As in nvptx_output_skip we
   ignore the FILE arg.  */

void
nvptx_output_ascii (FILE *, const char *str, unsigned HOST_WIDE_INT size)
{
  for (unsigned HOST_WIDE_INT i = 0; i < size; i++)
    nvptx_assemble_value (str[i], 1);
}

/* Called when the initializer for a decl has been completely output through
   combinations of the three functions above.  */

static void
nvptx_assemble_decl_end (void)
{
  if (decl_offset != 0)
    {
      if (!object_finished && decl_offset % decl_chunk_size != 0)
	nvptx_assemble_value (0, decl_chunk_size);

      fprintf (asm_out_file, " }");
    }
  fprintf (asm_out_file, ";\n");
}

/* Start a declaration of a variable of TYPE with NAME to
   FILE.  IS_PUBLIC says whether this will be externally visible.
   Here we just write the linker hint and decide on the chunk size
   to use.  */

static void
init_output_initializer (FILE *file, const char *name, const_tree type,
			 bool is_public)
{
  fprintf (file, "\n// BEGIN%s VAR DEF: ", is_public ? " GLOBAL" : "");
  assemble_name_raw (file, name);
  fputc ('\n', file);

  if (TREE_CODE (type) == ARRAY_TYPE)
    type = TREE_TYPE (type);
  int sz = int_size_in_bytes (type);
  if ((TREE_CODE (type) != INTEGER_TYPE
       && TREE_CODE (type) != ENUMERAL_TYPE
       && TREE_CODE (type) != REAL_TYPE)
      || sz < 0
      || sz > HOST_BITS_PER_WIDE_INT)
    type = ptr_type_node;
  decl_chunk_size = int_size_in_bytes (type);
  decl_chunk_mode = int_mode_for_mode (TYPE_MODE (type));
  decl_offset = 0;
  init_part = 0;
  object_finished = false;
}

/* Implement TARGET_ASM_DECLARE_CONSTANT_NAME.  Begin the process of
   writing a constant variable EXP with NAME and SIZE and its
   initializer to FILE.  */

static void
nvptx_asm_declare_constant_name (FILE *file, const char *name,
				 const_tree exp, HOST_WIDE_INT size)
{
  tree type = TREE_TYPE (exp);
  init_output_initializer (file, name, type, false);
  fprintf (file, "\t.const .align %d .u%d ",
	   TYPE_ALIGN (TREE_TYPE (exp)) / BITS_PER_UNIT,
	   decl_chunk_size * BITS_PER_UNIT);
  assemble_name (file, name);
  fprintf (file, "[" HOST_WIDE_INT_PRINT_DEC "]",
	   (size + decl_chunk_size - 1) / decl_chunk_size);
  object_size = size;
}

/* Implement the ASM_DECLARE_OBJECT_NAME macro.  Used to start writing
   a variable DECL with NAME to FILE.  */

void
nvptx_declare_object_name (FILE *file, const char *name, const_tree decl)
{
  if (decl && DECL_SIZE (decl))
    {
      tree type = TREE_TYPE (decl);
      unsigned HOST_WIDE_INT size;

      init_output_initializer (file, name, type, TREE_PUBLIC (decl));
      size = tree_to_uhwi (DECL_SIZE_UNIT (decl));
      const char *section = nvptx_section_for_decl (decl);
      fprintf (file, "\t%s%s .align %d .u%d ",
	       !TREE_PUBLIC (decl) ? ""
	       : DECL_WEAK (decl) ? ".weak" : ".visible",
	       section, DECL_ALIGN (decl) / BITS_PER_UNIT,
	       decl_chunk_size * BITS_PER_UNIT);
      assemble_name (file, name);
      if (size > 0)
	fprintf (file, "[" HOST_WIDE_INT_PRINT_DEC "]",
		 (size + decl_chunk_size - 1) / decl_chunk_size);
      else
	object_finished = true;
      object_size = size;
    }
}

/* Implement TARGET_ASM_GLOBALIZE_LABEL by doing nothing.  */

static void
nvptx_globalize_label (FILE *, const char *)
{
}

/* Implement TARGET_ASM_ASSEMBLE_UNDEFINED_DECL.  Write an extern
   declaration only for variable DECL with NAME to FILE.  */
static void
nvptx_assemble_undefined_decl (FILE *file, const char *name, const_tree decl)
{
  if (TREE_CODE (decl) != VAR_DECL)
    return;
  const char *section = nvptx_section_for_decl (decl);
  fprintf (file, "\n// BEGIN%s VAR DECL: ",
	   TREE_PUBLIC (decl) ? " GLOBAL" : "");
  assemble_name_raw (file, name);
  fputs ("\n", file);
  HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
  fprintf (file, ".extern %s .b8 ", section);
  assemble_name_raw (file, name);
  if (size > 0)
    fprintf (file, "[" HOST_WIDE_INT_PRINT_DEC"]", size);
  fprintf (file, ";\n\n");
}

/* Output INSN, which is a call to CALLEE with result RESULT.  For ptx, this
   involves writing .param declarations and in/out copies into them.  For
   indirect calls, also write the .callprototype.  */

const char *
nvptx_output_call_insn (rtx_insn *insn, rtx result, rtx callee)
{
  char buf[16];
  static int labelno;
  bool needs_tgt = register_operand (callee, Pmode);
  rtx pat = PATTERN (insn);
  int arg_end = XVECLEN (pat, 0);
  tree decl = NULL_TREE;

  fprintf (asm_out_file, "\t{\n");
  if (result != NULL)
    fprintf (asm_out_file, "\t\t.param%s %%retval_in;\n",
	     nvptx_ptx_type_from_mode (arg_promotion (GET_MODE (result)),
				       false));

  /* Ensure we have a ptx declaration in the output if necessary.  */
  if (GET_CODE (callee) == SYMBOL_REF)
    {
      decl = SYMBOL_REF_DECL (callee);
      if (!decl
	  || (DECL_EXTERNAL (decl) && !TYPE_ARG_TYPES (TREE_TYPE (decl))))
	nvptx_record_libfunc (callee, result, pat);
      else if (DECL_EXTERNAL (decl))
	nvptx_record_fndecl (decl);
    }

  if (needs_tgt)
    {
      ASM_GENERATE_INTERNAL_LABEL (buf, "LCT", labelno);
      labelno++;
      ASM_OUTPUT_LABEL (asm_out_file, buf);
      std::stringstream s;
      write_fn_proto_from_insn (s, NULL, result, pat);
      fputs (s.str().c_str(), asm_out_file);
    }

  for (int argno = 1; argno < arg_end; argno++)
    {
      rtx t = XEXP (XVECEXP (pat, 0, argno), 0);
      machine_mode mode = GET_MODE (t);

      /* Mode splitting has already been done.  */
      fprintf (asm_out_file, "\t\t.param%s %%out_arg%d%s;\n",
	       nvptx_ptx_type_from_mode (mode, false), argno,
	       mode == QImode || mode == HImode ? "[1]" : "");
      fprintf (asm_out_file, "\t\tst.param%s [%%out_arg%d], %%r%d;\n",
	       nvptx_ptx_type_from_mode (mode, false), argno,
	       REGNO (t));
    }

  fprintf (asm_out_file, "\t\tcall ");
  if (result != NULL_RTX)
    fprintf (asm_out_file, "(%%retval_in), ");

  if (decl)
    {
      const char *name = get_fnname_from_decl (decl);
      name = nvptx_name_replacement (name);
      assemble_name (asm_out_file, name);
    }
  else
    output_address (VOIDmode, callee);

  const char *open = "(";
  for (int argno = 1; argno < arg_end; argno++)
    {
      fprintf (asm_out_file, ", %s%%out_arg%d", open, argno);
      open = "";
    }
  if (decl && DECL_STATIC_CHAIN (decl))
    {
      fprintf (asm_out_file, ", %s%s", open,
	       reg_names [OUTGOING_STATIC_CHAIN_REGNUM]);
      open = "";
    }
  if (!open[0])
    fprintf (asm_out_file, ")");

  if (needs_tgt)
    {
      fprintf (asm_out_file, ", ");
      assemble_name (asm_out_file, buf);
    }
  fprintf (asm_out_file, ";\n");

  return result != NULL_RTX ? "\tld.param%t0\t%0, [%%retval_in];\n\t}" : "}";
}

/* Implement TARGET_PRINT_OPERAND_PUNCT_VALID_P.  */

static bool
nvptx_print_operand_punct_valid_p (unsigned char c)
{
  return c == '.' || c== '#';
}

static void nvptx_print_operand (FILE *, rtx, int);

/* Subroutine of nvptx_print_operand; used to print a memory reference X to FILE.  */

static void
nvptx_print_address_operand (FILE *file, rtx x, machine_mode)
{
  rtx off;
  if (GET_CODE (x) == CONST)
    x = XEXP (x, 0);
  switch (GET_CODE (x))
    {
    case PLUS:
      off = XEXP (x, 1);
      output_address (VOIDmode, XEXP (x, 0));
      fprintf (file, "+");
      output_address (VOIDmode, off);
      break;

    case SYMBOL_REF:
    case LABEL_REF:
      output_addr_const (file, x);
      break;

    default:
      gcc_assert (GET_CODE (x) != MEM);
      nvptx_print_operand (file, x, 0);
      break;
    }
}

/* Write assembly language output for the address ADDR to FILE.  */

static void
nvptx_print_operand_address (FILE *file, machine_mode mode, rtx addr)
{
  nvptx_print_address_operand (file, addr, mode);
}

/* Print an operand, X, to FILE, with an optional modifier in CODE.

   Meaning of CODE:
   . -- print the predicate for the instruction or an emptry string for an
        unconditional one.
   # -- print a rounding mode for the instruction

   A -- print an address space identifier for a MEM
   c -- print an opcode suffix for a comparison operator, including a type code
   f -- print a full reg even for something that must always be split
   S -- print a shuffle kind specified by CONST_INT
   t -- print a type opcode suffix, promoting QImode to 32 bits
   T -- print a type size in bits
   u -- print a type opcode suffix without promotions.  */

static void
nvptx_print_operand (FILE *file, rtx x, int code)
{
  rtx orig_x = x;
  machine_mode op_mode;

  if (code == '.')
    {
      x = current_insn_predicate;
      if (x)
	{
	  unsigned int regno = REGNO (XEXP (x, 0));
	  fputs ("[", file);
	  if (GET_CODE (x) == EQ)
	    fputs ("!", file);
	  fputs (reg_names [regno], file);
	  fputs ("]", file);
	}
      return;
    }
  else if (code == '#')
    {
      fputs (".rn", file);
      return;
    }

  enum rtx_code x_code = GET_CODE (x);

  switch (code)
    {
    case 'A':
      {
	addr_space_t as = ADDR_SPACE_GENERIC;
	rtx sym = XEXP (x, 0);

	if (GET_CODE (sym) == CONST)
	  sym = XEXP (sym, 0);
	if (GET_CODE (sym) == PLUS)
	  sym = XEXP (sym, 0);

	if (GET_CODE (sym) == SYMBOL_REF)
	  as = nvptx_addr_space_from_sym (sym);

	fputs (nvptx_section_from_addr_space (as), file);
      }
      break;

    case 't':
      op_mode = nvptx_underlying_object_mode (x);
      fprintf (file, "%s", nvptx_ptx_type_from_mode (op_mode, true));
      break;

    case 'u':
      op_mode = nvptx_underlying_object_mode (x);
      fprintf (file, "%s", nvptx_ptx_type_from_mode (op_mode, false));
      break;

    case 'S':
      {
	unsigned kind = UINTVAL (x);
	static const char *const kinds[] = 
	  {"up", "down", "bfly", "idx"};
	fprintf (file, ".%s", kinds[kind]);
      }
      break;

    case 'T':
      fprintf (file, "%d", GET_MODE_BITSIZE (GET_MODE (x)));
      break;

    case 'j':
      fprintf (file, "@");
      goto common;

    case 'J':
      fprintf (file, "@!");
      goto common;

    case 'c':
      op_mode = GET_MODE (XEXP (x, 0));
      switch (x_code)
	{
	case EQ:
	  fputs (".eq", file);
	  break;
	case NE:
	  if (FLOAT_MODE_P (op_mode))
	    fputs (".neu", file);
	  else
	    fputs (".ne", file);
	  break;
	case LE:
	  fputs (".le", file);
	  break;
	case GE:
	  fputs (".ge", file);
	  break;
	case LT:
	  fputs (".lt", file);
	  break;
	case GT:
	  fputs (".gt", file);
	  break;
	case LEU:
	  fputs (".ls", file);
	  break;
	case GEU:
	  fputs (".hs", file);
	  break;
	case LTU:
	  fputs (".lo", file);
	  break;
	case GTU:
	  fputs (".hi", file);
	  break;
	case LTGT:
	  fputs (".ne", file);
	  break;
	case UNEQ:
	  fputs (".equ", file);
	  break;
	case UNLE:
	  fputs (".leu", file);
	  break;
	case UNGE:
	  fputs (".geu", file);
	  break;
	case UNLT:
	  fputs (".ltu", file);
	  break;
	case UNGT:
	  fputs (".gtu", file);
	  break;
	case UNORDERED:
	  fputs (".nan", file);
	  break;
	case ORDERED:
	  fputs (".num", file);
	  break;
	default:
	  gcc_unreachable ();
	}
      if (FLOAT_MODE_P (op_mode)
	  || x_code == EQ || x_code == NE
	  || x_code == GEU || x_code == GTU
	  || x_code == LEU || x_code == LTU)
	fputs (nvptx_ptx_type_from_mode (op_mode, true), file);
      else
	fprintf (file, ".s%d", GET_MODE_BITSIZE (op_mode));
      break;
    default:
    common:
      switch (x_code)
	{
	case SUBREG:
	  x = SUBREG_REG (x);
	  /* fall through */

	case REG:
	  if (HARD_REGISTER_P (x))
	    fprintf (file, "%s", reg_names[REGNO (x)]);
	  else
	    fprintf (file, "%%r%d", REGNO (x));
	  if (code != 'f' && maybe_split_mode (GET_MODE (x)) != VOIDmode)
	    {
	      gcc_assert (GET_CODE (orig_x) == SUBREG
			  && maybe_split_mode (GET_MODE (orig_x)) == VOIDmode);
	      fprintf (file, "$%d", SUBREG_BYTE (orig_x) / UNITS_PER_WORD);
	    }
	  break;

	case MEM:
	  fputc ('[', file);
	  nvptx_print_address_operand (file, XEXP (x, 0), GET_MODE (x));
	  fputc (']', file);
	  break;

	case CONST_INT:
	  output_addr_const (file, x);
	  break;

	case CONST:
	case SYMBOL_REF:
	case LABEL_REF:
	  /* We could use output_addr_const, but that can print things like
	     "x-8", which breaks ptxas.  Need to ensure it is output as
	     "x+-8".  */
	  nvptx_print_address_operand (file, x, VOIDmode);
	  break;

	case CONST_DOUBLE:
	  long vals[2];
	  real_to_target (vals, CONST_DOUBLE_REAL_VALUE (x), GET_MODE (x));
	  vals[0] &= 0xffffffff;
	  vals[1] &= 0xffffffff;
	  if (GET_MODE (x) == SFmode)
	    fprintf (file, "0f%08lx", vals[0]);
	  else
	    fprintf (file, "0d%08lx%08lx", vals[1], vals[0]);
	  break;

	default:
	  output_addr_const (file, x);
	}
    }
}

/* Record replacement regs used to deal with subreg operands.  */
struct reg_replace
{
  rtx replacement[MAX_RECOG_OPERANDS];
  machine_mode mode;
  int n_allocated;
  int n_in_use;
};

/* Allocate or reuse a replacement in R and return the rtx.  */

static rtx
get_replacement (struct reg_replace *r)
{
  if (r->n_allocated == r->n_in_use)
    r->replacement[r->n_allocated++] = gen_reg_rtx (r->mode);
  return r->replacement[r->n_in_use++];
}

/* Clean up subreg operands.  In ptx assembly, everything is typed, and
   the presence of subregs would break the rules for most instructions.
   Replace them with a suitable new register of the right size, plus
   conversion copyin/copyout instructions.  */

static void
nvptx_reorg_subreg (void)
{
  struct reg_replace qiregs, hiregs, siregs, diregs;
  rtx_insn *insn, *next;

  qiregs.n_allocated = 0;
  hiregs.n_allocated = 0;
  siregs.n_allocated = 0;
  diregs.n_allocated = 0;
  qiregs.mode = QImode;
  hiregs.mode = HImode;
  siregs.mode = SImode;
  diregs.mode = DImode;

  for (insn = get_insns (); insn; insn = next)
    {
      next = NEXT_INSN (insn);
      if (!NONDEBUG_INSN_P (insn)
	  || asm_noperands (PATTERN (insn)) >= 0
	  || GET_CODE (PATTERN (insn)) == USE
	  || GET_CODE (PATTERN (insn)) == CLOBBER)
	continue;

      qiregs.n_in_use = 0;
      hiregs.n_in_use = 0;
      siregs.n_in_use = 0;
      diregs.n_in_use = 0;
      extract_insn (insn);
      enum attr_subregs_ok s_ok = get_attr_subregs_ok (insn);

      for (int i = 0; i < recog_data.n_operands; i++)
	{
	  rtx op = recog_data.operand[i];
	  if (GET_CODE (op) != SUBREG)
	    continue;

	  rtx inner = SUBREG_REG (op);

	  machine_mode outer_mode = GET_MODE (op);
	  machine_mode inner_mode = GET_MODE (inner);
	  gcc_assert (s_ok);
	  if (s_ok
	      && (GET_MODE_PRECISION (inner_mode)
		  >= GET_MODE_PRECISION (outer_mode)))
	    continue;
	  gcc_assert (SCALAR_INT_MODE_P (outer_mode));
	  struct reg_replace *r = (outer_mode == QImode ? &qiregs
				   : outer_mode == HImode ? &hiregs
				   : outer_mode == SImode ? &siregs
				   : &diregs);
	  rtx new_reg = get_replacement (r);

	  if (recog_data.operand_type[i] != OP_OUT)
	    {
	      enum rtx_code code;
	      if (GET_MODE_PRECISION (inner_mode)
		  < GET_MODE_PRECISION (outer_mode))
		code = ZERO_EXTEND;
	      else
		code = TRUNCATE;

	      rtx pat = gen_rtx_SET (new_reg,
				     gen_rtx_fmt_e (code, outer_mode, inner));
	      emit_insn_before (pat, insn);
	    }

	  if (recog_data.operand_type[i] != OP_IN)
	    {
	      enum rtx_code code;
	      if (GET_MODE_PRECISION (inner_mode)
		  < GET_MODE_PRECISION (outer_mode))
		code = TRUNCATE;
	      else
		code = ZERO_EXTEND;

	      rtx pat = gen_rtx_SET (inner,
				     gen_rtx_fmt_e (code, inner_mode, new_reg));
	      emit_insn_after (pat, insn);
	    }
	  validate_change (insn, recog_data.operand_loc[i], new_reg, false);
	}
    }
}

/* Loop structure of the function.  The entire function is described as
   a NULL loop.  */

struct parallel
{
  /* Parent parallel.  */
  parallel *parent;
  
  /* Next sibling parallel.  */
  parallel *next;

  /* First child parallel.  */
  parallel *inner;

  /* Partitioning mask of the parallel.  */
  unsigned mask;

  /* Partitioning used within inner parallels. */
  unsigned inner_mask;

  /* Location of parallel forked and join.  The forked is the first
     block in the parallel and the join is the first block after of
     the partition.  */
  basic_block forked_block;
  basic_block join_block;

  rtx_insn *forked_insn;
  rtx_insn *join_insn;

  rtx_insn *fork_insn;
  rtx_insn *joining_insn;

  /* Basic blocks in this parallel, but not in child parallels.  The
     FORKED and JOINING blocks are in the partition.  The FORK and JOIN
     blocks are not.  */
  auto_vec<basic_block> blocks;

public:
  parallel (parallel *parent, unsigned mode);
  ~parallel ();
};

/* Constructor links the new parallel into it's parent's chain of
   children.  */

parallel::parallel (parallel *parent_, unsigned mask_)
  :parent (parent_), next (0), inner (0), mask (mask_), inner_mask (0)
{
  forked_block = join_block = 0;
  forked_insn = join_insn = 0;
  fork_insn = joining_insn = 0;
  
  if (parent)
    {
      next = parent->inner;
      parent->inner = this;
    }
}

parallel::~parallel ()
{
  delete inner;
  delete next;
}

/* Map of basic blocks to insns */
typedef hash_map<basic_block, rtx_insn *> bb_insn_map_t;

/* A tuple of an insn of interest and the BB in which it resides.  */
typedef std::pair<rtx_insn *, basic_block> insn_bb_t;
typedef auto_vec<insn_bb_t> insn_bb_vec_t;

/* Split basic blocks such that each forked and join unspecs are at
   the start of their basic blocks.  Thus afterwards each block will
   have a single partitioning mode.  We also do the same for return
   insns, as they are executed by every thread.  Return the
   partitioning mode of the function as a whole.  Populate MAP with
   head and tail blocks.  We also clear the BB visited flag, which is
   used when finding partitions.  */

static void
nvptx_split_blocks (bb_insn_map_t *map)
{
  insn_bb_vec_t worklist;
  basic_block block;
  rtx_insn *insn;

  /* Locate all the reorg instructions of interest.  */
  FOR_ALL_BB_FN (block, cfun)
    {
      bool seen_insn = false;

      /* Clear visited flag, for use by parallel locator  */
      block->flags &= ~BB_VISITED;

      FOR_BB_INSNS (block, insn)
	{
	  if (!INSN_P (insn))
	    continue;
	  switch (recog_memoized (insn))
	    {
	    default:
	      seen_insn = true;
	      continue;
	    case CODE_FOR_nvptx_forked:
	    case CODE_FOR_nvptx_join:
	      break;

	    case CODE_FOR_return:
	      /* We also need to split just before return insns, as
		 that insn needs executing by all threads, but the
		 block it is in probably does not.  */
	      break;
	    }

	  if (seen_insn)
	    /* We've found an instruction that  must be at the start of
	       a block, but isn't.  Add it to the worklist.  */
	    worklist.safe_push (insn_bb_t (insn, block));
	  else
	    /* It was already the first instruction.  Just add it to
	       the map.  */
	    map->get_or_insert (block) = insn;
	  seen_insn = true;
	}
    }

  /* Split blocks on the worklist.  */
  unsigned ix;
  insn_bb_t *elt;
  basic_block remap = 0;
  for (ix = 0; worklist.iterate (ix, &elt); ix++)
    {
      if (remap != elt->second)
	{
	  block = elt->second;
	  remap = block;
	}
      
      /* Split block before insn. The insn is in the new block  */
      edge e = split_block (block, PREV_INSN (elt->first));

      block = e->dest;
      map->get_or_insert (block) = elt->first;
    }
}

/* BLOCK is a basic block containing a head or tail instruction.
   Locate the associated prehead or pretail instruction, which must be
   in the single predecessor block.  */

static rtx_insn *
nvptx_discover_pre (basic_block block, int expected)
{
  gcc_assert (block->preds->length () == 1);
  basic_block pre_block = (*block->preds)[0]->src;
  rtx_insn *pre_insn;

  for (pre_insn = BB_END (pre_block); !INSN_P (pre_insn);
       pre_insn = PREV_INSN (pre_insn))
    gcc_assert (pre_insn != BB_HEAD (pre_block));

  gcc_assert (recog_memoized (pre_insn) == expected);
  return pre_insn;
}

/* Dump this parallel and all its inner parallels.  */

static void
nvptx_dump_pars (parallel *par, unsigned depth)
{
  fprintf (dump_file, "%u: mask %d head=%d, tail=%d\n",
	   depth, par->mask,
	   par->forked_block ? par->forked_block->index : -1,
	   par->join_block ? par->join_block->index : -1);

  fprintf (dump_file, "    blocks:");

  basic_block block;
  for (unsigned ix = 0; par->blocks.iterate (ix, &block); ix++)
    fprintf (dump_file, " %d", block->index);
  fprintf (dump_file, "\n");
  if (par->inner)
    nvptx_dump_pars (par->inner, depth + 1);

  if (par->next)
    nvptx_dump_pars (par->next, depth);
}

/* If BLOCK contains a fork/join marker, process it to create or
   terminate a loop structure.  Add this block to the current loop,
   and then walk successor blocks.   */

static parallel *
nvptx_find_par (bb_insn_map_t *map, parallel *par, basic_block block)
{
  if (block->flags & BB_VISITED)
    return par;
  block->flags |= BB_VISITED;

  if (rtx_insn **endp = map->get (block))
    {
      rtx_insn *end = *endp;

      /* This is a block head or tail, or return instruction.  */
      switch (recog_memoized (end))
	{
	case CODE_FOR_return:
	  /* Return instructions are in their own block, and we
	     don't need to do anything more.  */
	  return par;

	case CODE_FOR_nvptx_forked:
	  /* Loop head, create a new inner loop and add it into
	     our parent's child list.  */
	  {
	    unsigned mask = UINTVAL (XVECEXP (PATTERN (end), 0, 0));

	    gcc_assert (mask);
	    par = new parallel (par, mask);
	    par->forked_block = block;
	    par->forked_insn = end;
	    if (!(mask & GOMP_DIM_MASK (GOMP_DIM_MAX))
		&& (mask & GOMP_DIM_MASK (GOMP_DIM_WORKER)))
	      par->fork_insn
		= nvptx_discover_pre (block, CODE_FOR_nvptx_fork);
	  }
	  break;

	case CODE_FOR_nvptx_join:
	  /* A loop tail.  Finish the current loop and return to
	     parent.  */
	  {
	    unsigned mask = UINTVAL (XVECEXP (PATTERN (end), 0, 0));

	    gcc_assert (par->mask == mask);
	    par->join_block = block;
	    par->join_insn = end;
	    if (!(mask & GOMP_DIM_MASK (GOMP_DIM_MAX))
		&& (mask & GOMP_DIM_MASK (GOMP_DIM_WORKER)))
	      par->joining_insn
		= nvptx_discover_pre (block, CODE_FOR_nvptx_joining);
	    par = par->parent;
	  }
	  break;

	default:
	  gcc_unreachable ();
	}
    }

  if (par)
    /* Add this block onto the current loop's list of blocks.  */
    par->blocks.safe_push (block);
  else
    /* This must be the entry block.  Create a NULL parallel.  */
    par = new parallel (0, 0);

  /* Walk successor blocks.  */
  edge e;
  edge_iterator ei;

  FOR_EACH_EDGE (e, ei, block->succs)
    nvptx_find_par (map, par, e->dest);

  return par;
}

/* DFS walk the CFG looking for fork & join markers.  Construct
   loop structures as we go.  MAP is a mapping of basic blocks
   to head & tail markers, discovered when splitting blocks.  This
   speeds up the discovery.  We rely on the BB visited flag having
   been cleared when splitting blocks.  */

static parallel *
nvptx_discover_pars (bb_insn_map_t *map)
{
  basic_block block;

  /* Mark exit blocks as visited.  */
  block = EXIT_BLOCK_PTR_FOR_FN (cfun);
  block->flags |= BB_VISITED;

  /* And entry block as not.  */
  block = ENTRY_BLOCK_PTR_FOR_FN (cfun);
  block->flags &= ~BB_VISITED;

  parallel *par = nvptx_find_par (map, 0, block);

  if (dump_file)
    {
      fprintf (dump_file, "\nLoops\n");
      nvptx_dump_pars (par, 0);
      fprintf (dump_file, "\n");
    }
  
  return par;
}

/* Analyse a group of BBs within a partitioned region and create N
   Single-Entry-Single-Exit regions.  Some of those regions will be
   trivial ones consisting of a single BB.  The blocks of a
   partitioned region might form a set of disjoint graphs -- because
   the region encloses a differently partitoned sub region.

   We use the linear time algorithm described in 'Finding Regions Fast:
   Single Entry Single Exit and control Regions in Linear Time'
   Johnson, Pearson & Pingali.  That algorithm deals with complete
   CFGs, where a back edge is inserted from END to START, and thus the
   problem becomes one of finding equivalent loops.

   In this case we have a partial CFG.  We complete it by redirecting
   any incoming edge to the graph to be from an arbitrary external BB,
   and similarly redirecting any outgoing edge to be to  that BB.
   Thus we end up with a closed graph.

   The algorithm works by building a spanning tree of an undirected
   graph and keeping track of back edges from nodes further from the
   root in the tree to nodes nearer to the root in the tree.  In the
   description below, the root is up and the tree grows downwards.

   We avoid having to deal with degenerate back-edges to the same
   block, by splitting each BB into 3 -- one for input edges, one for
   the node itself and one for the output edges.  Such back edges are
   referred to as 'Brackets'.  Cycle equivalent nodes will have the
   same set of brackets.
   
   Determining bracket equivalency is done by maintaining a list of
   brackets in such a manner that the list length and final bracket
   uniquely identify the set.

   We use coloring to mark all BBs with cycle equivalency with the
   same color.  This is the output of the 'Finding Regions Fast'
   algorithm.  Notice it doesn't actually find the set of nodes within
   a particular region, just unorderd sets of nodes that are the
   entries and exits of SESE regions.
   
   After determining cycle equivalency, we need to find the minimal
   set of SESE regions.  Do this with a DFS coloring walk of the
   complete graph.  We're either 'looking' or 'coloring'.  When
   looking, and we're in the subgraph, we start coloring the color of
   the current node, and remember that node as the start of the
   current color's SESE region.  Every time we go to a new node, we
   decrement the count of nodes with thet color.  If it reaches zero,
   we remember that node as the end of the current color's SESE region
   and return to 'looking'.  Otherwise we color the node the current
   color.

   This way we end up with coloring the inside of non-trivial SESE
   regions with the color of that region.  */

/* A pair of BBs.  We use this to represent SESE regions.  */
typedef std::pair<basic_block, basic_block> bb_pair_t;
typedef auto_vec<bb_pair_t> bb_pair_vec_t;

/* A node in the undirected CFG.  The discriminator SECOND indicates just
   above or just below the BB idicated by FIRST.  */
typedef std::pair<basic_block, int> pseudo_node_t;

/* A bracket indicates an edge towards the root of the spanning tree of the
   undirected graph.  Each bracket has a color, determined
   from the currrent set of brackets.  */
struct bracket
{
  pseudo_node_t back; /* Back target */

  /* Current color and size of set.  */
  unsigned color;
  unsigned size;

  bracket (pseudo_node_t back_)
  : back (back_), color (~0u), size (~0u)
  {
  }

  unsigned get_color (auto_vec<unsigned> &color_counts, unsigned length)
  {
    if (length != size)
      {
	size = length;
	color = color_counts.length ();
	color_counts.quick_push (0);
      }
    color_counts[color]++;
    return color;
  }
};

typedef auto_vec<bracket> bracket_vec_t;

/* Basic block info for finding SESE regions.    */

struct bb_sese
{
  int node;  /* Node number in spanning tree.  */
  int parent; /* Parent node number.  */

  /* The algorithm splits each node A into Ai, A', Ao. The incoming
     edges arrive at pseudo-node Ai and the outgoing edges leave at
     pseudo-node Ao.  We have to remember which way we arrived at a
     particular node when generating the spanning tree.  dir > 0 means
     we arrived at Ai, dir < 0 means we arrived at Ao.  */
  int dir;

  /* Lowest numbered pseudo-node reached via a backedge from thsis
     node, or any descendant.  */
  pseudo_node_t high;

  int color;  /* Cycle-equivalence color  */

  /* Stack of brackets for this node.  */
  bracket_vec_t brackets;

  bb_sese (unsigned node_, unsigned p, int dir_)
  :node (node_), parent (p), dir (dir_)
  {
  }
  ~bb_sese ();

  /* Push a bracket ending at BACK.  */
  void push (const pseudo_node_t &back)
  {
    if (dump_file)
      fprintf (dump_file, "Pushing backedge %d:%+d\n",
	       back.first ? back.first->index : 0, back.second);
    brackets.safe_push (bracket (back));
  }
  
  void append (bb_sese *child);
  void remove (const pseudo_node_t &);

  /* Set node's color.  */
  void set_color (auto_vec<unsigned> &color_counts)
  {
    color = brackets.last ().get_color (color_counts, brackets.length ());
  }
};

bb_sese::~bb_sese ()
{
}

/* Destructively append CHILD's brackets.  */

void
bb_sese::append (bb_sese *child)
{
  if (int len = child->brackets.length ())
    {
      int ix;

      if (dump_file)
	{
	  for (ix = 0; ix < len; ix++)
	    {
	      const pseudo_node_t &pseudo = child->brackets[ix].back;
	      fprintf (dump_file, "Appending (%d)'s backedge %d:%+d\n",
		       child->node, pseudo.first ? pseudo.first->index : 0,
		       pseudo.second);
	    }
	}
      if (!brackets.length ())
	std::swap (brackets, child->brackets);
      else
	{
	  brackets.reserve (len);
	  for (ix = 0; ix < len; ix++)
	    brackets.quick_push (child->brackets[ix]);
	}
    }
}

/* Remove brackets that terminate at PSEUDO.  */

void
bb_sese::remove (const pseudo_node_t &pseudo)
{
  unsigned removed = 0;
  int len = brackets.length ();

  for (int ix = 0; ix < len; ix++)
    {
      if (brackets[ix].back == pseudo)
	{
	  if (dump_file)
	    fprintf (dump_file, "Removing backedge %d:%+d\n",
		     pseudo.first ? pseudo.first->index : 0, pseudo.second);
	  removed++;
	}
      else if (removed)
	brackets[ix-removed] = brackets[ix];
    }
  while (removed--)
    brackets.pop ();
}

/* Accessors for BB's aux pointer.  */
#define BB_SET_SESE(B, S) ((B)->aux = (S))
#define BB_GET_SESE(B) ((bb_sese *)(B)->aux)

/* DFS walk creating SESE data structures.  Only cover nodes with
   BB_VISITED set.  Append discovered blocks to LIST.  We number in
   increments of 3 so that the above and below pseudo nodes can be
   implicitly numbered too.  */

static int
nvptx_sese_number (int n, int p, int dir, basic_block b,
		   auto_vec<basic_block> *list)
{
  if (BB_GET_SESE (b))
    return n;

  if (dump_file)
    fprintf (dump_file, "Block %d(%d), parent (%d), orientation %+d\n",
	     b->index, n, p, dir);
  
  BB_SET_SESE (b, new bb_sese (n, p, dir));
  p = n;
      
  n += 3;
  list->quick_push (b);

  /* First walk the nodes on the 'other side' of this node, then walk
     the nodes on the same side.  */
  for (unsigned ix = 2; ix; ix--)
    {
      vec<edge, va_gc> *edges = dir > 0 ? b->succs : b->preds;
      size_t offset = (dir > 0 ? offsetof (edge_def, dest)
		       : offsetof (edge_def, src));
      edge e;
      edge_iterator (ei);

      FOR_EACH_EDGE (e, ei, edges)
	{
	  basic_block target = *(basic_block *)((char *)e + offset);
	  
	  if (target->flags & BB_VISITED)
	    n = nvptx_sese_number (n, p, dir, target, list);
	}
      dir = -dir;
    }
  return n;
}

/* Process pseudo node above (DIR < 0) or below (DIR > 0) ME.
   EDGES are the outgoing edges and OFFSET is the offset to the src
   or dst block on the edges.   */

static void
nvptx_sese_pseudo (basic_block me, bb_sese *sese, int depth, int dir,
		   vec<edge, va_gc> *edges, size_t offset)
{
  edge e;
  edge_iterator (ei);
  int hi_back = depth;
  pseudo_node_t node_back (0, depth);
  int hi_child = depth;
  pseudo_node_t node_child (0, depth);
  basic_block child = NULL;
  unsigned num_children = 0;
  int usd = -dir * sese->dir;

  if (dump_file)
    fprintf (dump_file, "\nProcessing %d(%d) %+d\n",
	     me->index, sese->node, dir);

  if (dir < 0)
    {
      /* This is the above pseudo-child.  It has the BB itself as an
	 additional child node.  */
      node_child = sese->high;
      hi_child = node_child.second;
      if (node_child.first)
	hi_child += BB_GET_SESE (node_child.first)->node;
      num_children++;
    }

  /* Examine each edge.
     - if it is a child (a) append its bracket list and (b) record
          whether it is the child with the highest reaching bracket.
     - if it is an edge to ancestor, record whether it's the highest
          reaching backlink.  */
  FOR_EACH_EDGE (e, ei, edges)
    {
      basic_block target = *(basic_block *)((char *)e + offset);

      if (bb_sese *t_sese = BB_GET_SESE (target))
	{
	  if (t_sese->parent == sese->node && !(t_sese->dir + usd))
	    {
	      /* Child node.  Append its bracket list. */
	      num_children++;
	      sese->append (t_sese);

	      /* Compare it's hi value.  */
	      int t_hi = t_sese->high.second;

	      if (basic_block child_hi_block = t_sese->high.first)
		t_hi += BB_GET_SESE (child_hi_block)->node;

	      if (hi_child > t_hi)
		{
		  hi_child = t_hi;
		  node_child = t_sese->high;
		  child = target;
		}
	    }
	  else if (t_sese->node < sese->node + dir
		   && !(dir < 0 && sese->parent == t_sese->node))
	    {
	      /* Non-parental ancestor node -- a backlink.  */
	      int d = usd * t_sese->dir;
	      int back = t_sese->node + d;
	
	      if (hi_back > back)
		{
		  hi_back = back;
		  node_back = pseudo_node_t (target, d);
		}
	    }
	}
      else
	{ /* Fallen off graph, backlink to entry node.  */
	  hi_back = 0;
	  node_back = pseudo_node_t (0, 0);
	}
    }

  /* Remove any brackets that terminate at this pseudo node.  */
  sese->remove (pseudo_node_t (me, dir));

  /* Now push any backlinks from this pseudo node.  */
  FOR_EACH_EDGE (e, ei, edges)
    {
      basic_block target = *(basic_block *)((char *)e + offset);
      if (bb_sese *t_sese = BB_GET_SESE (target))
	{
	  if (t_sese->node < sese->node + dir
	      && !(dir < 0 && sese->parent == t_sese->node))
	    /* Non-parental ancestor node - backedge from me.  */
	    sese->push (pseudo_node_t (target, usd * t_sese->dir));
	}
      else
	{
	  /* back edge to entry node */
	  sese->push (pseudo_node_t (0, 0));
	}
    }
  
 /* If this node leads directly or indirectly to a no-return region of
     the graph, then fake a backedge to entry node.  */
  if (!sese->brackets.length () || !edges || !edges->length ())
    {
      hi_back = 0;
      node_back = pseudo_node_t (0, 0);
      sese->push (node_back);
    }

  /* Record the highest reaching backedge from us or a descendant.  */
  sese->high = hi_back < hi_child ? node_back : node_child;

  if (num_children > 1)
    {
      /* There is more than one child -- this is a Y shaped piece of
	 spanning tree.  We have to insert a fake backedge from this
	 node to the highest ancestor reached by not-the-highest
	 reaching child.  Note that there may be multiple children
	 with backedges to the same highest node.  That's ok and we
	 insert the edge to that highest node.  */
      hi_child = depth;
      if (dir < 0 && child)
	{
	  node_child = sese->high;
	  hi_child = node_child.second;
	  if (node_child.first)
	    hi_child += BB_GET_SESE (node_child.first)->node;
	}

      FOR_EACH_EDGE (e, ei, edges)
	{
	  basic_block target = *(basic_block *)((char *)e + offset);

	  if (target == child)
	    /* Ignore the highest child. */
	    continue;

	  bb_sese *t_sese = BB_GET_SESE (target);
	  if (!t_sese)
	    continue;
	  if (t_sese->parent != sese->node)
	    /* Not a child. */
	    continue;

	  /* Compare its hi value.  */
	  int t_hi = t_sese->high.second;

	  if (basic_block child_hi_block = t_sese->high.first)
	    t_hi += BB_GET_SESE (child_hi_block)->node;

	  if (hi_child > t_hi)
	    {
	      hi_child = t_hi;
	      node_child = t_sese->high;
	    }
	}
      
      sese->push (node_child);
    }
}


/* DFS walk of BB graph.  Color node BLOCK according to COLORING then
   proceed to successors.  Set SESE entry and exit nodes of
   REGIONS.  */

static void
nvptx_sese_color (auto_vec<unsigned> &color_counts, bb_pair_vec_t &regions,
		  basic_block block, int coloring)
{
  bb_sese *sese = BB_GET_SESE (block);

  if (block->flags & BB_VISITED)
    {
      /* If we've already encountered this block, either we must not
	 be coloring, or it must have been colored the current color.  */
      gcc_assert (coloring < 0 || (sese && coloring == sese->color));
      return;
    }
  
  block->flags |= BB_VISITED;

  if (sese)
    {
      if (coloring < 0)
	{
	  /* Start coloring a region.  */
	  regions[sese->color].first = block;
	  coloring = sese->color;
	}

      if (!--color_counts[sese->color] && sese->color == coloring)
	{
	  /* Found final block of SESE region.  */
	  regions[sese->color].second = block;
	  coloring = -1;
	}
      else
	/* Color the node, so we can assert on revisiting the node
	   that the graph is indeed SESE.  */
	sese->color = coloring;
    }
  else
    /* Fallen off the subgraph, we cannot be coloring.  */
    gcc_assert (coloring < 0);

  /* Walk each successor block.  */
  if (block->succs && block->succs->length ())
    {
      edge e;
      edge_iterator ei;
      
      FOR_EACH_EDGE (e, ei, block->succs)
	nvptx_sese_color (color_counts, regions, e->dest, coloring);
    }
  else
    gcc_assert (coloring < 0);
}

/* Find minimal set of SESE regions covering BLOCKS.  REGIONS might
   end up with NULL entries in it.  */

static void
nvptx_find_sese (auto_vec<basic_block> &blocks, bb_pair_vec_t &regions)
{
  basic_block block;
  int ix;

  /* First clear each BB of the whole function.  */ 
  FOR_EACH_BB_FN (block, cfun)
    {
      block->flags &= ~BB_VISITED;
      BB_SET_SESE (block, 0);
    }
  block = EXIT_BLOCK_PTR_FOR_FN (cfun);
  block->flags &= ~BB_VISITED;
  BB_SET_SESE (block, 0);
  block = ENTRY_BLOCK_PTR_FOR_FN (cfun);
  block->flags &= ~BB_VISITED;
  BB_SET_SESE (block, 0);

  /* Mark blocks in the function that are in this graph.  */
  for (ix = 0; blocks.iterate (ix, &block); ix++)
    block->flags |= BB_VISITED;

  /* Counts of nodes assigned to each color.  There cannot be more
     colors than blocks (and hopefully there will be fewer).  */
  auto_vec<unsigned> color_counts;
  color_counts.reserve (blocks.length ());

  /* Worklist of nodes in the spanning tree.  Again, there cannot be
     more nodes in the tree than blocks (there will be fewer if the
     CFG of blocks is disjoint).  */
  auto_vec<basic_block> spanlist;
  spanlist.reserve (blocks.length ());

  /* Make sure every block has its cycle class determined.  */
  for (ix = 0; blocks.iterate (ix, &block); ix++)
    {
      if (BB_GET_SESE (block))
	/* We already met this block in an earlier graph solve.  */
	continue;

      if (dump_file)
	fprintf (dump_file, "Searching graph starting at %d\n", block->index);
      
      /* Number the nodes reachable from block initial DFS order.  */
      int depth = nvptx_sese_number (2, 0, +1, block, &spanlist);

      /* Now walk in reverse DFS order to find cycle equivalents.  */
      while (spanlist.length ())
	{
	  block = spanlist.pop ();
	  bb_sese *sese = BB_GET_SESE (block);

	  /* Do the pseudo node below.  */
	  nvptx_sese_pseudo (block, sese, depth, +1,
			     sese->dir > 0 ? block->succs : block->preds,
			     (sese->dir > 0 ? offsetof (edge_def, dest)
			      : offsetof (edge_def, src)));
	  sese->set_color (color_counts);
	  /* Do the pseudo node above.  */
	  nvptx_sese_pseudo (block, sese, depth, -1,
			     sese->dir < 0 ? block->succs : block->preds,
			     (sese->dir < 0 ? offsetof (edge_def, dest)
			      : offsetof (edge_def, src)));
	}
      if (dump_file)
	fprintf (dump_file, "\n");
    }

  if (dump_file)
    {
      unsigned count;
      const char *comma = "";
      
      fprintf (dump_file, "Found %d cycle equivalents\n",
	       color_counts.length ());
      for (ix = 0; color_counts.iterate (ix, &count); ix++)
	{
	  fprintf (dump_file, "%s%d[%d]={", comma, ix, count);

	  comma = "";
	  for (unsigned jx = 0; blocks.iterate (jx, &block); jx++)
	    if (BB_GET_SESE (block)->color == ix)
	      {
		block->flags |= BB_VISITED;
		fprintf (dump_file, "%s%d", comma, block->index);
		comma=",";
	      }
	  fprintf (dump_file, "}");
	  comma = ", ";
	}
      fprintf (dump_file, "\n");
   }
  
  /* Now we've colored every block in the subgraph.  We now need to
     determine the minimal set of SESE regions that cover that
     subgraph.  Do this with a DFS walk of the complete function.
     During the walk we're either 'looking' or 'coloring'.  When we
     reach the last node of a particular color, we stop coloring and
     return to looking.  */

  /* There cannot be more SESE regions than colors.  */
  regions.reserve (color_counts.length ());
  for (ix = color_counts.length (); ix--;)
    regions.quick_push (bb_pair_t (0, 0));

  for (ix = 0; blocks.iterate (ix, &block); ix++)
    block->flags &= ~BB_VISITED;

  nvptx_sese_color (color_counts, regions, ENTRY_BLOCK_PTR_FOR_FN (cfun), -1);

  if (dump_file)
    {
      const char *comma = "";
      int len = regions.length ();
      
      fprintf (dump_file, "SESE regions:");
      for (ix = 0; ix != len; ix++)
	{
	  basic_block from = regions[ix].first;
	  basic_block to = regions[ix].second;

	  if (from)
	    {
	      fprintf (dump_file, "%s %d{%d", comma, ix, from->index);
	      if (to != from)
		fprintf (dump_file, "->%d", to->index);

	      int color = BB_GET_SESE (from)->color;

	      /* Print the blocks within the region (excluding ends).  */
	      FOR_EACH_BB_FN (block, cfun)
		{
		  bb_sese *sese = BB_GET_SESE (block);

		  if (sese && sese->color == color
		      && block != from && block != to)
		    fprintf (dump_file, ".%d", block->index);
		}
	      fprintf (dump_file, "}");
	    }
	  comma = ",";
	}
      fprintf (dump_file, "\n\n");
    }
  
  for (ix = 0; blocks.iterate (ix, &block); ix++)
    delete BB_GET_SESE (block);
}

#undef BB_SET_SESE
#undef BB_GET_SESE

/* Propagate live state at the start of a partitioned region.  BLOCK
   provides the live register information, and might not contain
   INSN. Propagation is inserted just after INSN. RW indicates whether
   we are reading and/or writing state.  This
   separation is needed for worker-level proppagation where we
   essentially do a spill & fill.  FN is the underlying worker
   function to generate the propagation instructions for single
   register.  DATA is user data.

   We propagate the live register set and the entire frame.  We could
   do better by (a) propagating just the live set that is used within
   the partitioned regions and (b) only propagating stack entries that
   are used.  The latter might be quite hard to determine.  */

typedef rtx (*propagator_fn) (rtx, propagate_mask, unsigned, void *);

static void
nvptx_propagate (basic_block block, rtx_insn *insn, propagate_mask rw,
		 propagator_fn fn, void *data)
{
  bitmap live = DF_LIVE_IN (block);
  bitmap_iterator iterator;
  unsigned ix;

  /* Copy the frame array.  */
  HOST_WIDE_INT fs = get_frame_size ();
  if (fs)
    {
      rtx tmp = gen_reg_rtx (DImode);
      rtx idx = NULL_RTX;
      rtx ptr = gen_reg_rtx (Pmode);
      rtx pred = NULL_RTX;
      rtx_code_label *label = NULL;

      gcc_assert (!(fs & (GET_MODE_SIZE (DImode) - 1)));
      fs /= GET_MODE_SIZE (DImode);
      /* Detect single iteration loop. */
      if (fs == 1)
	fs = 0;

      start_sequence ();
      emit_insn (gen_rtx_SET (ptr, frame_pointer_rtx));
      if (fs)
	{
	  idx = gen_reg_rtx (SImode);
	  pred = gen_reg_rtx (BImode);
	  label = gen_label_rtx ();
	  
	  emit_insn (gen_rtx_SET (idx, GEN_INT (fs)));
	  /* Allow worker function to initialize anything needed.  */
	  rtx init = fn (tmp, PM_loop_begin, fs, data);
	  if (init)
	    emit_insn (init);
	  emit_label (label);
	  LABEL_NUSES (label)++;
	  emit_insn (gen_addsi3 (idx, idx, GEN_INT (-1)));
	}
      if (rw & PM_read)
	emit_insn (gen_rtx_SET (tmp, gen_rtx_MEM (DImode, ptr)));
      emit_insn (fn (tmp, rw, fs, data));
      if (rw & PM_write)
	emit_insn (gen_rtx_SET (gen_rtx_MEM (DImode, ptr), tmp));
      if (fs)
	{
	  emit_insn (gen_rtx_SET (pred, gen_rtx_NE (BImode, idx, const0_rtx)));
	  emit_insn (gen_adddi3 (ptr, ptr, GEN_INT (GET_MODE_SIZE (DImode))));
	  emit_insn (gen_br_true_uni (pred, label));
	  rtx fini = fn (tmp, PM_loop_end, fs, data);
	  if (fini)
	    emit_insn (fini);
	  emit_insn (gen_rtx_CLOBBER (GET_MODE (idx), idx));
	}
      emit_insn (gen_rtx_CLOBBER (GET_MODE (tmp), tmp));
      emit_insn (gen_rtx_CLOBBER (GET_MODE (ptr), ptr));
      rtx cpy = get_insns ();
      end_sequence ();
      insn = emit_insn_after (cpy, insn);
    }

  /* Copy live registers.  */
  EXECUTE_IF_SET_IN_BITMAP (live, 0, ix, iterator)
    {
      rtx reg = regno_reg_rtx[ix];

      if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
	{
	  rtx bcast = fn (reg, rw, 0, data);

	  insn = emit_insn_after (bcast, insn);
	}
    }
}

/* Worker for nvptx_vpropagate.  */

static rtx
vprop_gen (rtx reg, propagate_mask pm,
	   unsigned ARG_UNUSED (count), void *ARG_UNUSED (data))
{
  if (!(pm & PM_read_write))
    return 0;
  
  return nvptx_gen_vcast (reg);
}

/* Propagate state that is live at start of BLOCK across the vectors
   of a single warp.  Propagation is inserted just after INSN.   */

static void
nvptx_vpropagate (basic_block block, rtx_insn *insn)
{
  nvptx_propagate (block, insn, PM_read_write, vprop_gen, 0);
}

/* Worker for nvptx_wpropagate.  */

static rtx
wprop_gen (rtx reg, propagate_mask pm, unsigned rep, void *data_)
{
  wcast_data_t *data = (wcast_data_t *)data_;

  if (pm & PM_loop_begin)
    {
      /* Starting a loop, initialize pointer.    */
      unsigned align = GET_MODE_ALIGNMENT (GET_MODE (reg)) / BITS_PER_UNIT;

      if (align > worker_bcast_align)
	worker_bcast_align = align;
      data->offset = (data->offset + align - 1) & ~(align - 1);

      data->ptr = gen_reg_rtx (Pmode);

      return gen_adddi3 (data->ptr, data->base, GEN_INT (data->offset));
    }
  else if (pm & PM_loop_end)
    {
      rtx clobber = gen_rtx_CLOBBER (GET_MODE (data->ptr), data->ptr);
      data->ptr = NULL_RTX;
      return clobber;
    }
  else
    return nvptx_gen_wcast (reg, pm, rep, data);
}

/* Spill or fill live state that is live at start of BLOCK.  PRE_P
   indicates if this is just before partitioned mode (do spill), or
   just after it starts (do fill). Sequence is inserted just after
   INSN.  */

static void
nvptx_wpropagate (bool pre_p, basic_block block, rtx_insn *insn)
{
  wcast_data_t data;

  data.base = gen_reg_rtx (Pmode);
  data.offset = 0;
  data.ptr = NULL_RTX;

  nvptx_propagate (block, insn, pre_p ? PM_read : PM_write, wprop_gen, &data);
  if (data.offset)
    {
      /* Stuff was emitted, initialize the base pointer now.  */
      rtx init = gen_rtx_SET (data.base, worker_bcast_sym);
      emit_insn_after (init, insn);
      
      if (worker_bcast_size < data.offset)
	worker_bcast_size = data.offset;
    }
}

/* Emit a worker-level synchronization barrier.  We use different
   markers for before and after synchronizations.  */

static rtx
nvptx_wsync (bool after)
{
  return gen_nvptx_barsync (GEN_INT (after));
}

/* Single neutering according to MASK.  FROM is the incoming block and
   TO is the outgoing block.  These may be the same block. Insert at
   start of FROM:
   
     if (tid.<axis>) goto end.

   and insert before ending branch of TO (if there is such an insn):

     end:
     <possibly-broadcast-cond>
     <branch>

   We currently only use differnt FROM and TO when skipping an entire
   loop.  We could do more if we detected superblocks.  */

static void
nvptx_single (unsigned mask, basic_block from, basic_block to)
{
  rtx_insn *head = BB_HEAD (from);
  rtx_insn *tail = BB_END (to);
  unsigned skip_mask = mask;

  /* Find first insn of from block */
  while (head != BB_END (from) && !INSN_P (head))
    head = NEXT_INSN (head);

  /* Find last insn of to block */
  rtx_insn *limit = from == to ? head : BB_HEAD (to);
  while (tail != limit && !INSN_P (tail) && !LABEL_P (tail))
    tail = PREV_INSN (tail);

  /* Detect if tail is a branch.  */
  rtx tail_branch = NULL_RTX;
  rtx cond_branch = NULL_RTX;
  if (tail && INSN_P (tail))
    {
      tail_branch = PATTERN (tail);
      if (GET_CODE (tail_branch) != SET || SET_DEST (tail_branch) != pc_rtx)
	tail_branch = NULL_RTX;
      else
	{
	  cond_branch = SET_SRC (tail_branch);
	  if (GET_CODE (cond_branch) != IF_THEN_ELSE)
	    cond_branch = NULL_RTX;
	}
    }

  if (tail == head)
    {
      /* If this is empty, do nothing.  */
      if (!head || !INSN_P (head))
	return;

      /* If this is a dummy insn, do nothing.  */
      switch (recog_memoized (head))
	{
	default:
	  break;
	case CODE_FOR_nvptx_fork:
	case CODE_FOR_nvptx_forked:
	case CODE_FOR_nvptx_joining:
	case CODE_FOR_nvptx_join:
	  return;
	}

      if (cond_branch)
	{
	  /* If we're only doing vector single, there's no need to
	     emit skip code because we'll not insert anything.  */
	  if (!(mask & GOMP_DIM_MASK (GOMP_DIM_VECTOR)))
	    skip_mask = 0;
	}
      else if (tail_branch)
	/* Block with only unconditional branch.  Nothing to do.  */
	return;
    }

  /* Insert the vector test inside the worker test.  */
  unsigned mode;
  rtx_insn *before = tail;
  for (mode = GOMP_DIM_WORKER; mode <= GOMP_DIM_VECTOR; mode++)
    if (GOMP_DIM_MASK (mode) & skip_mask)
      {
	rtx_code_label *label = gen_label_rtx ();
	rtx pred = cfun->machine->axis_predicate[mode - GOMP_DIM_WORKER];

	if (!pred)
	  {
	    pred = gen_reg_rtx (BImode);
	    cfun->machine->axis_predicate[mode - GOMP_DIM_WORKER] = pred;
	  }
	
	rtx br;
	if (mode == GOMP_DIM_VECTOR)
	  br = gen_br_true (pred, label);
	else
	  br = gen_br_true_uni (pred, label);
	emit_insn_before (br, head);

	LABEL_NUSES (label)++;
	if (tail_branch)
	  before = emit_label_before (label, before);
	else
	  emit_label_after (label, tail);
      }

  /* Now deal with propagating the branch condition.  */
  if (cond_branch)
    {
      rtx pvar = XEXP (XEXP (cond_branch, 0), 0);

      if (GOMP_DIM_MASK (GOMP_DIM_VECTOR) == mask)
	{
	  /* Vector mode only, do a shuffle.  */
	  emit_insn_before (nvptx_gen_vcast (pvar), tail);
	}
      else
	{
	  /* Includes worker mode, do spill & fill.  By construction
	     we should never have worker mode only. */
	  wcast_data_t data;

	  data.base = worker_bcast_sym;
	  data.ptr = 0;

	  if (worker_bcast_size < GET_MODE_SIZE (SImode))
	    worker_bcast_size = GET_MODE_SIZE (SImode);

	  data.offset = 0;
	  emit_insn_before (nvptx_gen_wcast (pvar, PM_read, 0, &data),
			    before);
	  /* Barrier so other workers can see the write.  */
	  emit_insn_before (nvptx_wsync (false), tail);
	  data.offset = 0;
	  emit_insn_before (nvptx_gen_wcast (pvar, PM_write, 0, &data), tail);
	  /* This barrier is needed to avoid worker zero clobbering
	     the broadcast buffer before all the other workers have
	     had a chance to read this instance of it.  */
	  emit_insn_before (nvptx_wsync (true), tail);
	}

      extract_insn (tail);
      rtx unsp = gen_rtx_UNSPEC (BImode, gen_rtvec (1, pvar),
				 UNSPEC_BR_UNIFIED);
      validate_change (tail, recog_data.operand_loc[0], unsp, false);
    }
}

/* PAR is a parallel that is being skipped in its entirety according to
   MASK.  Treat this as skipping a superblock starting at forked
   and ending at joining.  */

static void
nvptx_skip_par (unsigned mask, parallel *par)
{
  basic_block tail = par->join_block;
  gcc_assert (tail->preds->length () == 1);

  basic_block pre_tail = (*tail->preds)[0]->src;
  gcc_assert (pre_tail->succs->length () == 1);

  nvptx_single (mask, par->forked_block, pre_tail);
}

/* If PAR has a single inner parallel and PAR itself only contains
   empty entry and exit blocks, swallow the inner PAR.  */

static void
nvptx_optimize_inner (parallel *par)
{
  parallel *inner = par->inner;

  /* We mustn't be the outer dummy par.  */
  if (!par->mask)
    return;

  /* We must have a single inner par.  */
  if (!inner || inner->next)
    return;

  /* We must only contain 2 blocks ourselves -- the head and tail of
     the inner par.  */
  if (par->blocks.length () != 2)
    return;

  /* We must be disjoint partitioning.  As we only have vector and
     worker partitioning, this is sufficient to guarantee the pars
     have adjacent partitioning.  */
  if ((par->mask & inner->mask) & (GOMP_DIM_MASK (GOMP_DIM_MAX) - 1))
    /* This indicates malformed code generation.  */
    return;

  /* The outer forked insn should be immediately followed by the inner
     fork insn.  */
  rtx_insn *forked = par->forked_insn;
  rtx_insn *fork = BB_END (par->forked_block);

  if (NEXT_INSN (forked) != fork)
    return;
  gcc_checking_assert (recog_memoized (fork) == CODE_FOR_nvptx_fork);

  /* The outer joining insn must immediately follow the inner join
     insn.  */
  rtx_insn *joining = par->joining_insn;
  rtx_insn *join = inner->join_insn;
  if (NEXT_INSN (join) != joining)
    return;

  /* Preconditions met.  Swallow the inner par.  */
  if (dump_file)
    fprintf (dump_file, "Merging loop %x [%d,%d] into %x [%d,%d]\n",
	     inner->mask, inner->forked_block->index,
	     inner->join_block->index,
	     par->mask, par->forked_block->index, par->join_block->index);

  par->mask |= inner->mask & (GOMP_DIM_MASK (GOMP_DIM_MAX) - 1);

  par->blocks.reserve (inner->blocks.length ());
  while (inner->blocks.length ())
    par->blocks.quick_push (inner->blocks.pop ());

  par->inner = inner->inner;
  inner->inner = NULL;

  delete inner;
}

/* Process the parallel PAR and all its contained
   parallels.  We do everything but the neutering.  Return mask of
   partitioned modes used within this parallel.  */

static unsigned
nvptx_process_pars (parallel *par)
{
  if (nvptx_optimize)
    nvptx_optimize_inner (par);
  
  unsigned inner_mask = par->mask;

  /* Do the inner parallels first.  */
  if (par->inner)
    {
      par->inner_mask = nvptx_process_pars (par->inner);
      inner_mask |= par->inner_mask;
    }

  if (par->mask & GOMP_DIM_MASK (GOMP_DIM_MAX))
    /* No propagation needed for a call.  */;
  else if (par->mask & GOMP_DIM_MASK (GOMP_DIM_WORKER))
    {
      nvptx_wpropagate (false, par->forked_block, par->forked_insn);
      nvptx_wpropagate (true, par->forked_block, par->fork_insn);
      /* Insert begin and end synchronizations.  */
      emit_insn_after (nvptx_wsync (false), par->forked_insn);
      emit_insn_before (nvptx_wsync (true), par->joining_insn);
    }
  else if (par->mask & GOMP_DIM_MASK (GOMP_DIM_VECTOR))
    nvptx_vpropagate (par->forked_block, par->forked_insn);

  /* Now do siblings.  */
  if (par->next)
    inner_mask |= nvptx_process_pars (par->next);
  return inner_mask;
}

/* Neuter the parallel described by PAR.  We recurse in depth-first
   order.  MODES are the partitioning of the execution and OUTER is
   the partitioning of the parallels we are contained in.  */

static void
nvptx_neuter_pars (parallel *par, unsigned modes, unsigned outer)
{
  unsigned me = (par->mask
		 & (GOMP_DIM_MASK (GOMP_DIM_WORKER)
		    | GOMP_DIM_MASK (GOMP_DIM_VECTOR)));
  unsigned  skip_mask = 0, neuter_mask = 0;
  
  if (par->inner)
    nvptx_neuter_pars (par->inner, modes, outer | me);

  for (unsigned mode = GOMP_DIM_WORKER; mode <= GOMP_DIM_VECTOR; mode++)
    {
      if ((outer | me) & GOMP_DIM_MASK (mode))
	{} /* Mode is partitioned: no neutering.  */
      else if (!(modes & GOMP_DIM_MASK (mode)))
	{} /* Mode is not used: nothing to do.  */
      else if (par->inner_mask & GOMP_DIM_MASK (mode)
	       || !par->forked_insn)
	/* Partitioned in inner parallels, or we're not a partitioned
	   at all: neuter individual blocks.  */
	neuter_mask |= GOMP_DIM_MASK (mode);
      else if (!par->parent || !par->parent->forked_insn
	       || par->parent->inner_mask & GOMP_DIM_MASK (mode))
	/* Parent isn't a parallel or contains this paralleling: skip
	   parallel at this level.  */
	skip_mask |= GOMP_DIM_MASK (mode);
      else
	{} /* Parent will skip this parallel itself.  */
    }

  if (neuter_mask)
    {
      int ix, len;

      if (nvptx_optimize)
	{
	  /* Neuter whole SESE regions.  */
	  bb_pair_vec_t regions;

	  nvptx_find_sese (par->blocks, regions);
	  len = regions.length ();
	  for (ix = 0; ix != len; ix++)
	    {
	      basic_block from = regions[ix].first;
	      basic_block to = regions[ix].second;

	      if (from)
		nvptx_single (neuter_mask, from, to);
	      else
		gcc_assert (!to);
	    }
	}
      else
	{
	  /* Neuter each BB individually.  */
	  len = par->blocks.length ();
	  for (ix = 0; ix != len; ix++)
	    {
	      basic_block block = par->blocks[ix];

	      nvptx_single (neuter_mask, block, block);
	    }
	}
    }

  if (skip_mask)
      nvptx_skip_par (skip_mask, par);
  
  if (par->next)
    nvptx_neuter_pars (par->next, modes, outer);
}

/* PTX-specific reorganization
   - Split blocks at fork and join instructions
   - Compute live registers
   - Mark now-unused registers, so function begin doesn't declare
   unused registers.
   - Insert state propagation when entering partitioned mode
   - Insert neutering instructions when in single mode
   - Replace subregs with suitable sequences.
*/

static void
nvptx_reorg (void)
{
  /* We are freeing block_for_insn in the toplev to keep compatibility
     with old MDEP_REORGS that are not CFG based.  Recompute it now.  */
  compute_bb_for_insn ();

  thread_prologue_and_epilogue_insns ();

  /* Split blocks and record interesting unspecs.  */
  bb_insn_map_t bb_insn_map;

  nvptx_split_blocks (&bb_insn_map);

  /* Compute live regs */
  df_clear_flags (DF_LR_RUN_DCE);
  df_set_flags (DF_NO_INSN_RESCAN | DF_NO_HARD_REGS);
  df_live_add_problem ();
  df_live_set_all_dirty ();
  df_analyze ();
  regstat_init_n_sets_and_refs ();

  if (dump_file)
    df_dump (dump_file);
  
  /* Mark unused regs as unused.  */
  int max_regs = max_reg_num ();
  for (int i = LAST_VIRTUAL_REGISTER + 1; i < max_regs; i++)
    if (REG_N_SETS (i) == 0 && REG_N_REFS (i) == 0)
      regno_reg_rtx[i] = const0_rtx;

  /* Determine launch dimensions of the function.  If it is not an
     offloaded function  (i.e. this is a regular compiler), the
     function has no neutering.  */
  tree attr = get_oacc_fn_attrib (current_function_decl);
  if (attr)
    {
      /* If we determined this mask before RTL expansion, we could
	 elide emission of some levels of forks and joins.  */
      unsigned mask = 0;
      tree dims = TREE_VALUE (attr);
      unsigned ix;

      for (ix = 0; ix != GOMP_DIM_MAX; ix++, dims = TREE_CHAIN (dims))
	{
	  int size = TREE_INT_CST_LOW (TREE_VALUE (dims));
	  tree allowed = TREE_PURPOSE (dims);

	  if (size != 1 && !(allowed && integer_zerop (allowed)))
	    mask |= GOMP_DIM_MASK (ix);
	}
      /* If there is worker neutering, there must be vector
	 neutering.  Otherwise the hardware will fail.  */
      gcc_assert (!(mask & GOMP_DIM_MASK (GOMP_DIM_WORKER))
		  || (mask & GOMP_DIM_MASK (GOMP_DIM_VECTOR)));

      /* Discover & process partitioned regions.  */
      parallel *pars = nvptx_discover_pars (&bb_insn_map);
      nvptx_process_pars (pars);
      nvptx_neuter_pars (pars, mask, 0);
      delete pars;
    }

  /* Replace subregs.  */
  nvptx_reorg_subreg ();

  regstat_free_n_sets_and_refs ();

  df_finish_pass (true);
}

/* Handle a "kernel" attribute; arguments as in
   struct attribute_spec.handler.  */

static tree
nvptx_handle_kernel_attribute (tree *node, tree name, tree ARG_UNUSED (args),
			       int ARG_UNUSED (flags), bool *no_add_attrs)
{
  tree decl = *node;

  if (TREE_CODE (decl) != FUNCTION_DECL)
    {
      error ("%qE attribute only applies to functions", name);
      *no_add_attrs = true;
    }

  else if (TREE_TYPE (TREE_TYPE (decl)) != void_type_node)
    {
      error ("%qE attribute requires a void return type", name);
      *no_add_attrs = true;
    }

  return NULL_TREE;
}

/* Table of valid machine attributes.  */
static const struct attribute_spec nvptx_attribute_table[] =
{
  /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
       affects_type_identity } */
  { "kernel", 0, 0, true, false,  false, nvptx_handle_kernel_attribute, false },
  { NULL, 0, 0, false, false, false, NULL, false }
};

/* Limit vector alignments to BIGGEST_ALIGNMENT.  */

static HOST_WIDE_INT
nvptx_vector_alignment (const_tree type)
{
  HOST_WIDE_INT align = tree_to_shwi (TYPE_SIZE (type));

  return MIN (align, BIGGEST_ALIGNMENT);
}

/* Indicate that INSN cannot be duplicated.   */

static bool
nvptx_cannot_copy_insn_p (rtx_insn *insn)
{
  switch (recog_memoized (insn))
    {
    case CODE_FOR_nvptx_shufflesi:
    case CODE_FOR_nvptx_shufflesf:
    case CODE_FOR_nvptx_barsync:
    case CODE_FOR_nvptx_fork:
    case CODE_FOR_nvptx_forked:
    case CODE_FOR_nvptx_joining:
    case CODE_FOR_nvptx_join:
      return true;
    default:
      return false;
    }
}

/* Section anchors do not work.  Initialization for flag_section_anchor
   probes the existence of the anchoring target hooks and prevents
   anchoring if they don't exist.  However, we may be being used with
   a host-side compiler that does support anchoring, and hence see
   the anchor flag set (as it's not recalculated).  So provide an
   implementation denying anchoring.  */

static bool
nvptx_use_anchors_for_symbol_p (const_rtx ARG_UNUSED (a))
{
  return false;
}

/* Record a symbol for mkoffload to enter into the mapping table.  */

static void
nvptx_record_offload_symbol (tree decl)
{
  switch (TREE_CODE (decl))
    {
    case VAR_DECL:
      fprintf (asm_out_file, "//:VAR_MAP \"%s\"\n",
	       IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
      break;

    case FUNCTION_DECL:
      {
	tree attr = get_oacc_fn_attrib (decl);
	tree dims = TREE_VALUE (attr);
	unsigned ix;

	fprintf (asm_out_file, "//:FUNC_MAP \"%s\"",
		 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));

	for (ix = 0; ix != GOMP_DIM_MAX; ix++, dims = TREE_CHAIN (dims))
	  {
	    int size = TREE_INT_CST_LOW (TREE_VALUE (dims));

	    gcc_assert (!TREE_PURPOSE (dims));
	    fprintf (asm_out_file, ", %#x", size);
	  }

	fprintf (asm_out_file, "\n");
      }
      break;

    default:
      gcc_unreachable ();
    }
}

/* Implement TARGET_ASM_FILE_START.  Write the kinds of things ptxas expects
   at the start of a file.  */

static void
nvptx_file_start (void)
{
  fputs ("// BEGIN PREAMBLE\n", asm_out_file);
  fputs ("\t.version\t3.1\n", asm_out_file);
  fputs ("\t.target\tsm_30\n", asm_out_file);
  fprintf (asm_out_file, "\t.address_size %d\n", GET_MODE_BITSIZE (Pmode));
  fputs ("// END PREAMBLE\n", asm_out_file);
}

/* Write out the function declarations we've collected and declare storage
   for the broadcast buffer.  */

static void
nvptx_file_end (void)
{
  hash_table<tree_hasher>::iterator iter;
  tree decl;
  FOR_EACH_HASH_TABLE_ELEMENT (*needed_fndecls_htab, decl, tree, iter)
    nvptx_record_fndecl (decl);
  fputs (func_decls.str().c_str(), asm_out_file);

  if (worker_bcast_size)
    {
      /* Define the broadcast buffer.  */

      worker_bcast_size = (worker_bcast_size + worker_bcast_align - 1)
	& ~(worker_bcast_align - 1);
      
      fprintf (asm_out_file, "\n// BEGIN VAR DEF: %s\n", worker_bcast_name);
      fprintf (asm_out_file, ".shared .align %d .u8 %s[%d];\n",
	       worker_bcast_align,
	       worker_bcast_name, worker_bcast_size);
    }

  if (worker_red_size)
    {
      /* Define the reduction buffer.  */

      worker_red_size = ((worker_red_size + worker_red_align - 1)
			 & ~(worker_red_align - 1));
      
      fprintf (asm_out_file, "\n// BEGIN VAR DEF: %s\n", worker_red_name);
      fprintf (asm_out_file, ".shared .align %d .u8 %s[%d];\n",
	       worker_red_align,
	       worker_red_name, worker_red_size);
    }
}

/* Expander for the shuffle builtins.  */

static rtx
nvptx_expand_shuffle (tree exp, rtx target, machine_mode mode, int ignore)
{
  if (ignore)
    return target;
  
  rtx src = expand_expr (CALL_EXPR_ARG (exp, 0),
			 NULL_RTX, mode, EXPAND_NORMAL);
  if (!REG_P (src))
    src = copy_to_mode_reg (mode, src);

  rtx idx = expand_expr (CALL_EXPR_ARG (exp, 1),
			 NULL_RTX, SImode, EXPAND_NORMAL);
  rtx op = expand_expr (CALL_EXPR_ARG  (exp, 2),
			NULL_RTX, SImode, EXPAND_NORMAL);
  
  if (!REG_P (idx) && GET_CODE (idx) != CONST_INT)
    idx = copy_to_mode_reg (SImode, idx);

  rtx pat = nvptx_gen_shuffle (target, src, idx, INTVAL (op));
  if (pat)
    emit_insn (pat);

  return target;
}

/* Worker reduction address expander.  */

static rtx
nvptx_expand_worker_addr (tree exp, rtx target,
			  machine_mode ARG_UNUSED (mode), int ignore)
{
  if (ignore)
    return target;

  unsigned align = TREE_INT_CST_LOW (CALL_EXPR_ARG (exp, 2));
  if (align > worker_red_align)
    worker_red_align = align;

  unsigned offset = TREE_INT_CST_LOW (CALL_EXPR_ARG (exp, 0));
  unsigned size = TREE_INT_CST_LOW (CALL_EXPR_ARG (exp, 1));
  if (size + offset > worker_red_size)
    worker_red_size = size + offset;

  emit_insn (gen_rtx_SET (target, worker_red_sym));

  if (offset)
    emit_insn (gen_rtx_SET (target,
			    gen_rtx_PLUS (Pmode, target, GEN_INT (offset))));

  emit_insn (gen_rtx_SET (target,
			  gen_rtx_UNSPEC (Pmode, gen_rtvec (1, target),
					  UNSPEC_FROM_SHARED)));

  return target;
}

/* Expand the CMP_SWAP PTX builtins.  We have our own versions that do
   not require taking the address of any object, other than the memory
   cell being operated on.  */

static rtx
nvptx_expand_cmp_swap (tree exp, rtx target,
		       machine_mode ARG_UNUSED (m), int ARG_UNUSED (ignore))
{
  machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
  
  if (!target)
    target = gen_reg_rtx (mode);

  rtx mem = expand_expr (CALL_EXPR_ARG (exp, 0),
			 NULL_RTX, Pmode, EXPAND_NORMAL);
  rtx cmp = expand_expr (CALL_EXPR_ARG (exp, 1),
			 NULL_RTX, mode, EXPAND_NORMAL);
  rtx src = expand_expr (CALL_EXPR_ARG (exp, 2),
			 NULL_RTX, mode, EXPAND_NORMAL);
  rtx pat;

  mem = gen_rtx_MEM (mode, mem);
  if (!REG_P (cmp))
    cmp = copy_to_mode_reg (mode, cmp);
  if (!REG_P (src))
    src = copy_to_mode_reg (mode, src);
  
  if (mode == SImode)
    pat = gen_atomic_compare_and_swapsi_1 (target, mem, cmp, src, const0_rtx);
  else
    pat = gen_atomic_compare_and_swapdi_1 (target, mem, cmp, src, const0_rtx);

  emit_insn (pat);

  return target;
}


/* Codes for all the NVPTX builtins.  */
enum nvptx_builtins
{
  NVPTX_BUILTIN_SHUFFLE,
  NVPTX_BUILTIN_SHUFFLELL,
  NVPTX_BUILTIN_WORKER_ADDR,
  NVPTX_BUILTIN_CMP_SWAP,
  NVPTX_BUILTIN_CMP_SWAPLL,
  NVPTX_BUILTIN_MAX
};

static GTY(()) tree nvptx_builtin_decls[NVPTX_BUILTIN_MAX];

/* Return the NVPTX builtin for CODE.  */

static tree
nvptx_builtin_decl (unsigned code, bool ARG_UNUSED (initialize_p))
{
  if (code >= NVPTX_BUILTIN_MAX)
    return error_mark_node;

  return nvptx_builtin_decls[code];
}

/* Set up all builtin functions for this target.  */

static void
nvptx_init_builtins (void)
{
#define DEF(ID, NAME, T)						\
  (nvptx_builtin_decls[NVPTX_BUILTIN_ ## ID]				\
   = add_builtin_function ("__builtin_nvptx_" NAME,			\
			   build_function_type_list T,			\
			   NVPTX_BUILTIN_ ## ID, BUILT_IN_MD, NULL, NULL))
#define ST sizetype
#define UINT unsigned_type_node
#define LLUINT long_long_unsigned_type_node
#define PTRVOID ptr_type_node

  DEF (SHUFFLE, "shuffle", (UINT, UINT, UINT, UINT, NULL_TREE));
  DEF (SHUFFLELL, "shufflell", (LLUINT, LLUINT, UINT, UINT, NULL_TREE));
  DEF (WORKER_ADDR, "worker_addr",
       (PTRVOID, ST, UINT, UINT, NULL_TREE));
  DEF (CMP_SWAP, "cmp_swap", (UINT, PTRVOID, UINT, UINT, NULL_TREE));
  DEF (CMP_SWAPLL, "cmp_swapll", (LLUINT, PTRVOID, LLUINT, LLUINT, NULL_TREE));

#undef DEF
#undef ST
#undef UINT
#undef LLUINT
#undef PTRVOID
}

/* Expand an expression EXP that calls a built-in function,
   with result going to TARGET if that's convenient
   (and in mode MODE if that's convenient).
   SUBTARGET may be used as the target for computing one of EXP's operands.
   IGNORE is nonzero if the value is to be ignored.  */

static rtx
nvptx_expand_builtin (tree exp, rtx target, rtx ARG_UNUSED (subtarget),
		      machine_mode mode, int ignore)
{
  tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
  switch (DECL_FUNCTION_CODE (fndecl))
    {
    case NVPTX_BUILTIN_SHUFFLE:
    case NVPTX_BUILTIN_SHUFFLELL:
      return nvptx_expand_shuffle (exp, target, mode, ignore);

    case NVPTX_BUILTIN_WORKER_ADDR:
      return nvptx_expand_worker_addr (exp, target, mode, ignore);

    case NVPTX_BUILTIN_CMP_SWAP:
    case NVPTX_BUILTIN_CMP_SWAPLL:
      return nvptx_expand_cmp_swap (exp, target, mode, ignore);

    default: gcc_unreachable ();
    }
}

/* Define dimension sizes for known hardware.  */
#define PTX_VECTOR_LENGTH 32
#define PTX_WORKER_LENGTH 32

/* Validate compute dimensions of an OpenACC offload or routine, fill
   in non-unity defaults.  FN_LEVEL indicates the level at which a
   routine might spawn a loop.  It is negative for non-routines.  */

static bool
nvptx_goacc_validate_dims (tree decl, int dims[], int fn_level)
{
  bool changed = false;

  /* The vector size must be 32, unless this is a SEQ routine.  */
  if (fn_level <= GOMP_DIM_VECTOR
      && dims[GOMP_DIM_VECTOR] != PTX_VECTOR_LENGTH)
    {
      if (dims[GOMP_DIM_VECTOR] >= 0 && fn_level < 0)
	warning_at (DECL_SOURCE_LOCATION (decl), 0,
		    dims[GOMP_DIM_VECTOR]
		    ? "using vector_length (%d), ignoring %d"
		    : "using vector_length (%d), ignoring runtime setting",
		    PTX_VECTOR_LENGTH, dims[GOMP_DIM_VECTOR]);
      dims[GOMP_DIM_VECTOR] = PTX_VECTOR_LENGTH;
      changed = true;
    }

  /* Check the num workers is not too large.  */
  if (dims[GOMP_DIM_WORKER] > PTX_WORKER_LENGTH)
    {
      warning_at (DECL_SOURCE_LOCATION (decl), 0,
		  "using num_workers (%d), ignoring %d",
		  PTX_WORKER_LENGTH, dims[GOMP_DIM_WORKER]);
      dims[GOMP_DIM_WORKER] = PTX_WORKER_LENGTH;
      changed = true;
    }

  return changed;
}

/* Return maximum dimension size, or zero for unbounded.  */

static int
nvptx_dim_limit (int axis)
{
  switch (axis)
    {
    case GOMP_DIM_WORKER:
      return PTX_WORKER_LENGTH;

    case GOMP_DIM_VECTOR:
      return PTX_VECTOR_LENGTH;

    default:
      break;
    }
  return 0;
}

/* Determine whether fork & joins are needed.  */

static bool
nvptx_goacc_fork_join (gcall *call, const int dims[],
		       bool ARG_UNUSED (is_fork))
{
  tree arg = gimple_call_arg (call, 2);
  unsigned axis = TREE_INT_CST_LOW (arg);

  /* We only care about worker and vector partitioning.  */
  if (axis < GOMP_DIM_WORKER)
    return false;

  /* If the size is 1, there's no partitioning.  */
  if (dims[axis] == 1)
    return false;

  return true;
}

/* Generate a PTX builtin function call that returns the address in
   the worker reduction buffer at OFFSET.  TYPE is the type of the
   data at that location.  */

static tree
nvptx_get_worker_red_addr (tree type, tree offset)
{
  machine_mode mode = TYPE_MODE (type);
  tree fndecl = nvptx_builtin_decl (NVPTX_BUILTIN_WORKER_ADDR, true);
  tree size = build_int_cst (unsigned_type_node, GET_MODE_SIZE (mode));
  tree align = build_int_cst (unsigned_type_node,
			      GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT);
  tree call = build_call_expr (fndecl, 3, offset, size, align);

  return fold_convert (build_pointer_type (type), call);
}

/* Emit a SHFL.DOWN using index SHFL of VAR into DEST_VAR.  This function
   will cast the variable if necessary.  */

static void
nvptx_generate_vector_shuffle (location_t loc,
			       tree dest_var, tree var, unsigned shift,
			       gimple_seq *seq)
{
  unsigned fn = NVPTX_BUILTIN_SHUFFLE;
  tree_code code = NOP_EXPR;
  tree arg_type = unsigned_type_node;
  tree var_type = TREE_TYPE (var);
  tree dest_type = var_type;

  if (TREE_CODE (var_type) == COMPLEX_TYPE)
    var_type = TREE_TYPE (var_type);

  if (TREE_CODE (var_type) == REAL_TYPE)
    code = VIEW_CONVERT_EXPR;

  if (TYPE_SIZE (var_type)
      == TYPE_SIZE (long_long_unsigned_type_node))
    {
      fn = NVPTX_BUILTIN_SHUFFLELL;
      arg_type = long_long_unsigned_type_node;
    }
  
  tree call = nvptx_builtin_decl (fn, true);
  tree bits = build_int_cst (unsigned_type_node, shift);
  tree kind = build_int_cst (unsigned_type_node, SHUFFLE_DOWN);
  tree expr;

  if (var_type != dest_type)
    {
      /* Do real and imaginary parts separately.  */
      tree real = fold_build1 (REALPART_EXPR, var_type, var);
      real = fold_build1 (code, arg_type, real);
      real = build_call_expr_loc (loc, call, 3, real, bits, kind);
      real = fold_build1 (code, var_type, real);

      tree imag = fold_build1 (IMAGPART_EXPR, var_type, var);
      imag = fold_build1 (code, arg_type, imag);
      imag = build_call_expr_loc (loc, call, 3, imag, bits, kind);
      imag = fold_build1 (code, var_type, imag);

      expr = fold_build2 (COMPLEX_EXPR, dest_type, real, imag);
    }
  else
    {
      expr = fold_build1 (code, arg_type, var);
      expr = build_call_expr_loc (loc, call, 3, expr, bits, kind);
      expr = fold_build1 (code, dest_type, expr);
    }

  gimplify_assign (dest_var, expr, seq);
}

/* Lazily generate the global lock var decl and return its address.  */

static tree
nvptx_global_lock_addr ()
{
  tree v = global_lock_var;
  
  if (!v)
    {
      tree name = get_identifier ("__reduction_lock");
      tree type = build_qualified_type (unsigned_type_node,
					TYPE_QUAL_VOLATILE);
      v = build_decl (BUILTINS_LOCATION, VAR_DECL, name, type);
      global_lock_var = v;
      DECL_ARTIFICIAL (v) = 1;
      DECL_EXTERNAL (v) = 1;
      TREE_STATIC (v) = 1;
      TREE_PUBLIC (v) = 1;
      TREE_USED (v) = 1;
      mark_addressable (v);
      mark_decl_referenced (v);
    }

  return build_fold_addr_expr (v);
}

/* Insert code to locklessly update *PTR with *PTR OP VAR just before
   GSI.  We use a lockless scheme for nearly all case, which looks
   like:
     actual = initval(OP);
     do {
       guess = actual;
       write = guess OP myval;
       actual = cmp&swap (ptr, guess, write)
     } while (actual bit-different-to guess);
   return write;

   This relies on a cmp&swap instruction, which is available for 32-
   and 64-bit types.  Larger types must use a locking scheme.  */

static tree
nvptx_lockless_update (location_t loc, gimple_stmt_iterator *gsi,
		       tree ptr, tree var, tree_code op)
{
  unsigned fn = NVPTX_BUILTIN_CMP_SWAP;
  tree_code code = NOP_EXPR;
  tree arg_type = unsigned_type_node;
  tree var_type = TREE_TYPE (var);

  if (TREE_CODE (var_type) == COMPLEX_TYPE
      || TREE_CODE (var_type) == REAL_TYPE)
    code = VIEW_CONVERT_EXPR;

  if (TYPE_SIZE (var_type) == TYPE_SIZE (long_long_unsigned_type_node))
    {
      arg_type = long_long_unsigned_type_node;
      fn = NVPTX_BUILTIN_CMP_SWAPLL;
    }

  tree swap_fn = nvptx_builtin_decl (fn, true);

  gimple_seq init_seq = NULL;
  tree init_var = make_ssa_name (arg_type);
  tree init_expr = omp_reduction_init_op (loc, op, var_type);
  init_expr = fold_build1 (code, arg_type, init_expr);
  gimplify_assign (init_var, init_expr, &init_seq);
  gimple *init_end = gimple_seq_last (init_seq);

  gsi_insert_seq_before (gsi, init_seq, GSI_SAME_STMT);
  
  /* Split the block just after the init stmts.  */
  basic_block pre_bb = gsi_bb (*gsi);
  edge pre_edge = split_block (pre_bb, init_end);
  basic_block loop_bb = pre_edge->dest;
  pre_bb = pre_edge->src;
  /* Reset the iterator.  */
  *gsi = gsi_for_stmt (gsi_stmt (*gsi));

  tree expect_var = make_ssa_name (arg_type);
  tree actual_var = make_ssa_name (arg_type);
  tree write_var = make_ssa_name (arg_type);
  
  /* Build and insert the reduction calculation.  */
  gimple_seq red_seq = NULL;
  tree write_expr = fold_build1 (code, var_type, expect_var);
  write_expr = fold_build2 (op, var_type, write_expr, var);
  write_expr = fold_build1 (code, arg_type, write_expr);
  gimplify_assign (write_var, write_expr, &red_seq);

  gsi_insert_seq_before (gsi, red_seq, GSI_SAME_STMT);

  /* Build & insert the cmp&swap sequence.  */
  gimple_seq latch_seq = NULL;
  tree swap_expr = build_call_expr_loc (loc, swap_fn, 3,
					ptr, expect_var, write_var);
  gimplify_assign (actual_var, swap_expr, &latch_seq);

  gcond *cond = gimple_build_cond (EQ_EXPR, actual_var, expect_var,
				   NULL_TREE, NULL_TREE);
  gimple_seq_add_stmt (&latch_seq, cond);

  gimple *latch_end = gimple_seq_last (latch_seq);
  gsi_insert_seq_before (gsi, latch_seq, GSI_SAME_STMT);

  /* Split the block just after the latch stmts.  */
  edge post_edge = split_block (loop_bb, latch_end);
  basic_block post_bb = post_edge->dest;
  loop_bb = post_edge->src;
  *gsi = gsi_for_stmt (gsi_stmt (*gsi));

  post_edge->flags ^= EDGE_TRUE_VALUE | EDGE_FALLTHRU;
  edge loop_edge = make_edge (loop_bb, loop_bb, EDGE_FALSE_VALUE);
  set_immediate_dominator (CDI_DOMINATORS, loop_bb, pre_bb);
  set_immediate_dominator (CDI_DOMINATORS, post_bb, loop_bb);

  gphi *phi = create_phi_node (expect_var, loop_bb);
  add_phi_arg (phi, init_var, pre_edge, loc);
  add_phi_arg (phi, actual_var, loop_edge, loc);

  loop *loop = alloc_loop ();
  loop->header = loop_bb;
  loop->latch = loop_bb;
  add_loop (loop, loop_bb->loop_father);

  return fold_build1 (code, var_type, write_var);
}

/* Insert code to lockfully update *PTR with *PTR OP VAR just before
   GSI.  This is necessary for types larger than 64 bits, where there
   is no cmp&swap instruction to implement a lockless scheme.  We use
   a lock variable in global memory.

   while (cmp&swap (&lock_var, 0, 1))
     continue;
   T accum = *ptr;
   accum = accum OP var;
   *ptr = accum;
   cmp&swap (&lock_var, 1, 0);
   return accum;

   A lock in global memory is necessary to force execution engine
   descheduling and avoid resource starvation that can occur if the
   lock is in .shared memory.  */

static tree
nvptx_lockfull_update (location_t loc, gimple_stmt_iterator *gsi,
		       tree ptr, tree var, tree_code op)
{
  tree var_type = TREE_TYPE (var);
  tree swap_fn = nvptx_builtin_decl (NVPTX_BUILTIN_CMP_SWAP, true);
  tree uns_unlocked = build_int_cst (unsigned_type_node, 0);
  tree uns_locked = build_int_cst (unsigned_type_node, 1);

  /* Split the block just before the gsi.  Insert a gimple nop to make
     this easier.  */
  gimple *nop = gimple_build_nop ();
  gsi_insert_before (gsi, nop, GSI_SAME_STMT);
  basic_block entry_bb = gsi_bb (*gsi);
  edge entry_edge = split_block (entry_bb, nop);
  basic_block lock_bb = entry_edge->dest;
  /* Reset the iterator.  */
  *gsi = gsi_for_stmt (gsi_stmt (*gsi));

  /* Build and insert the locking sequence.  */
  gimple_seq lock_seq = NULL;
  tree lock_var = make_ssa_name (unsigned_type_node);
  tree lock_expr = nvptx_global_lock_addr ();
  lock_expr = build_call_expr_loc (loc, swap_fn, 3, lock_expr,
				   uns_unlocked, uns_locked);
  gimplify_assign (lock_var, lock_expr, &lock_seq);
  gcond *cond = gimple_build_cond (EQ_EXPR, lock_var, uns_unlocked,
				   NULL_TREE, NULL_TREE);
  gimple_seq_add_stmt (&lock_seq, cond);
  gimple *lock_end = gimple_seq_last (lock_seq);
  gsi_insert_seq_before (gsi, lock_seq, GSI_SAME_STMT);

  /* Split the block just after the lock sequence.  */
  edge locked_edge = split_block (lock_bb, lock_end);
  basic_block update_bb = locked_edge->dest;
  lock_bb = locked_edge->src;
  *gsi = gsi_for_stmt (gsi_stmt (*gsi));
  
  /* Create the lock loop ... */
  locked_edge->flags ^= EDGE_TRUE_VALUE | EDGE_FALLTHRU;
  make_edge (lock_bb, lock_bb, EDGE_FALSE_VALUE);
  set_immediate_dominator (CDI_DOMINATORS, lock_bb, entry_bb);
  set_immediate_dominator (CDI_DOMINATORS, update_bb, lock_bb);

  /* ... and the loop structure.  */
  loop *lock_loop = alloc_loop ();
  lock_loop->header = lock_bb;
  lock_loop->latch = lock_bb;
  lock_loop->nb_iterations_estimate = 1;
  lock_loop->any_estimate = true;
  add_loop (lock_loop, entry_bb->loop_father);

  /* Build and insert the reduction calculation.  */
  gimple_seq red_seq = NULL;
  tree acc_in = make_ssa_name (var_type);
  tree ref_in = build_simple_mem_ref (ptr);
  TREE_THIS_VOLATILE (ref_in) = 1;
  gimplify_assign (acc_in, ref_in, &red_seq);
  
  tree acc_out = make_ssa_name (var_type);
  tree update_expr = fold_build2 (op, var_type, ref_in, var);
  gimplify_assign (acc_out, update_expr, &red_seq);
  
  tree ref_out = build_simple_mem_ref (ptr);
  TREE_THIS_VOLATILE (ref_out) = 1;
  gimplify_assign (ref_out, acc_out, &red_seq);

  gsi_insert_seq_before (gsi, red_seq, GSI_SAME_STMT);

  /* Build & insert the unlock sequence.  */
  gimple_seq unlock_seq = NULL;
  tree unlock_expr = nvptx_global_lock_addr ();
  unlock_expr = build_call_expr_loc (loc, swap_fn, 3, unlock_expr,
				     uns_locked, uns_unlocked);
  gimplify_and_add (unlock_expr, &unlock_seq);
  gsi_insert_seq_before (gsi, unlock_seq, GSI_SAME_STMT);

  return acc_out;
}

/* Emit a sequence to update a reduction accumlator at *PTR with the
   value held in VAR using operator OP.  Return the updated value.

   TODO: optimize for atomic ops and indepedent complex ops.  */

static tree
nvptx_reduction_update (location_t loc, gimple_stmt_iterator *gsi,
			tree ptr, tree var, tree_code op)
{
  tree type = TREE_TYPE (var);
  tree size = TYPE_SIZE (type);

  if (size == TYPE_SIZE (unsigned_type_node)
      || size == TYPE_SIZE (long_long_unsigned_type_node))
    return nvptx_lockless_update (loc, gsi, ptr, var, op);
  else
    return nvptx_lockfull_update (loc, gsi, ptr, var, op);
}

/* NVPTX implementation of GOACC_REDUCTION_SETUP.  */

static void
nvptx_goacc_reduction_setup (gcall *call)
{
  gimple_stmt_iterator gsi = gsi_for_stmt (call);
  tree lhs = gimple_call_lhs (call);
  tree var = gimple_call_arg (call, 2);
  int level = TREE_INT_CST_LOW (gimple_call_arg (call, 3));
  gimple_seq seq = NULL;

  push_gimplify_context (true);

  if (level != GOMP_DIM_GANG)
    {
      /* Copy the receiver object.  */
      tree ref_to_res = gimple_call_arg (call, 1);

      if (!integer_zerop (ref_to_res))
	var = build_simple_mem_ref (ref_to_res);
    }
  
  if (level == GOMP_DIM_WORKER)
    {
      /* Store incoming value to worker reduction buffer.  */
      tree offset = gimple_call_arg (call, 5);
      tree call = nvptx_get_worker_red_addr (TREE_TYPE (var), offset);
      tree ptr = make_ssa_name (TREE_TYPE (call));

      gimplify_assign (ptr, call, &seq);
      tree ref = build_simple_mem_ref (ptr);
      TREE_THIS_VOLATILE (ref) = 1;
      gimplify_assign (ref, var, &seq);
    }

  if (lhs)
    gimplify_assign (lhs, var, &seq);

  pop_gimplify_context (NULL);
  gsi_replace_with_seq (&gsi, seq, true);
}

/* NVPTX implementation of GOACC_REDUCTION_INIT. */

static void
nvptx_goacc_reduction_init (gcall *call)
{
  gimple_stmt_iterator gsi = gsi_for_stmt (call);
  tree lhs = gimple_call_lhs (call);
  tree var = gimple_call_arg (call, 2);
  int level = TREE_INT_CST_LOW (gimple_call_arg (call, 3));
  enum tree_code rcode
    = (enum tree_code)TREE_INT_CST_LOW (gimple_call_arg (call, 4));
  tree init = omp_reduction_init_op (gimple_location (call), rcode,
				     TREE_TYPE (var));
  gimple_seq seq = NULL;
  
  push_gimplify_context (true);

  if (level == GOMP_DIM_VECTOR)
    {
      /* Initialize vector-non-zeroes to INIT_VAL (OP).  */
      tree tid = make_ssa_name (integer_type_node);
      tree dim_vector = gimple_call_arg (call, 3);
      gimple *tid_call = gimple_build_call_internal (IFN_GOACC_DIM_POS, 1,
						     dim_vector);
      gimple *cond_stmt = gimple_build_cond (NE_EXPR, tid, integer_zero_node,
					     NULL_TREE, NULL_TREE);

      gimple_call_set_lhs (tid_call, tid);
      gimple_seq_add_stmt (&seq, tid_call);
      gimple_seq_add_stmt (&seq, cond_stmt);

      /* Split the block just after the call.  */
      edge init_edge = split_block (gsi_bb (gsi), call);
      basic_block init_bb = init_edge->dest;
      basic_block call_bb = init_edge->src;

      /* Fixup flags from call_bb to init_bb.  */
      init_edge->flags ^= EDGE_FALLTHRU | EDGE_TRUE_VALUE;
      
      /* Set the initialization stmts.  */
      gimple_seq init_seq = NULL;
      tree init_var = make_ssa_name (TREE_TYPE (var));
      gimplify_assign (init_var, init, &init_seq);
      gsi = gsi_start_bb (init_bb);
      gsi_insert_seq_before (&gsi, init_seq, GSI_SAME_STMT);

      /* Split block just after the init stmt.  */
      gsi_prev (&gsi);
      edge inited_edge = split_block (gsi_bb (gsi), gsi_stmt (gsi));
      basic_block dst_bb = inited_edge->dest;
      
      /* Create false edge from call_bb to dst_bb.  */
      edge nop_edge = make_edge (call_bb, dst_bb, EDGE_FALSE_VALUE);

      /* Create phi node in dst block.  */
      gphi *phi = create_phi_node (lhs, dst_bb);
      add_phi_arg (phi, init_var, inited_edge, gimple_location (call));
      add_phi_arg (phi, var, nop_edge, gimple_location (call));

      /* Reset dominator of dst bb.  */
      set_immediate_dominator (CDI_DOMINATORS, dst_bb, call_bb);

      /* Reset the gsi.  */
      gsi = gsi_for_stmt (call);
    }
  else
    {
      if (level == GOMP_DIM_GANG)
	{
	  /* If there's no receiver object, propagate the incoming VAR.  */
	  tree ref_to_res = gimple_call_arg (call, 1);
	  if (integer_zerop (ref_to_res))
	    init = var;
	}

      gimplify_assign (lhs, init, &seq);
    }

  pop_gimplify_context (NULL);
  gsi_replace_with_seq (&gsi, seq, true);
}

/* NVPTX implementation of GOACC_REDUCTION_FINI.  */

static void
nvptx_goacc_reduction_fini (gcall *call)
{
  gimple_stmt_iterator gsi = gsi_for_stmt (call);
  tree lhs = gimple_call_lhs (call);
  tree ref_to_res = gimple_call_arg (call, 1);
  tree var = gimple_call_arg (call, 2);
  int level = TREE_INT_CST_LOW (gimple_call_arg (call, 3));
  enum tree_code op
    = (enum tree_code)TREE_INT_CST_LOW (gimple_call_arg (call, 4));
  gimple_seq seq = NULL;
  tree r = NULL_TREE;;

  push_gimplify_context (true);

  if (level == GOMP_DIM_VECTOR)
    {
      /* Emit binary shuffle tree.  TODO. Emit this as an actual loop,
	 but that requires a method of emitting a unified jump at the
	 gimple level.  */
      for (int shfl = PTX_VECTOR_LENGTH / 2; shfl > 0; shfl = shfl >> 1)
	{
	  tree other_var = make_ssa_name (TREE_TYPE (var));
	  nvptx_generate_vector_shuffle (gimple_location (call),
					 other_var, var, shfl, &seq);

	  r = make_ssa_name (TREE_TYPE (var));
	  gimplify_assign (r, fold_build2 (op, TREE_TYPE (var),
					   var, other_var), &seq);
	  var = r;
	}
    }
  else
    {
      tree accum = NULL_TREE;

      if (level == GOMP_DIM_WORKER)
	{
	  /* Get reduction buffer address.  */
	  tree offset = gimple_call_arg (call, 5);
	  tree call = nvptx_get_worker_red_addr (TREE_TYPE (var), offset);
	  tree ptr = make_ssa_name (TREE_TYPE (call));

	  gimplify_assign (ptr, call, &seq);
	  accum = ptr;
	}
      else if (integer_zerop (ref_to_res))
	r = var;
      else
	accum = ref_to_res;

      if (accum)
	{
	  /* UPDATE the accumulator.  */
	  gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);
	  seq = NULL;
	  r = nvptx_reduction_update (gimple_location (call), &gsi,
				      accum, var, op);
	}
    }

  if (lhs)
    gimplify_assign (lhs, r, &seq);
  pop_gimplify_context (NULL);

  gsi_replace_with_seq (&gsi, seq, true);
}

/* NVPTX implementation of GOACC_REDUCTION_TEARDOWN.  */

static void
nvptx_goacc_reduction_teardown (gcall *call)
{
  gimple_stmt_iterator gsi = gsi_for_stmt (call);
  tree lhs = gimple_call_lhs (call);
  tree var = gimple_call_arg (call, 2);
  int level = TREE_INT_CST_LOW (gimple_call_arg (call, 3));
  gimple_seq seq = NULL;
  
  push_gimplify_context (true);
  if (level == GOMP_DIM_WORKER)
    {
      /* Read the worker reduction buffer.  */
      tree offset = gimple_call_arg (call, 5);
      tree call = nvptx_get_worker_red_addr(TREE_TYPE (var), offset);
      tree ptr = make_ssa_name (TREE_TYPE (call));

      gimplify_assign (ptr, call, &seq);
      var = build_simple_mem_ref (ptr);
      TREE_THIS_VOLATILE (var) = 1;
    }

  if (level != GOMP_DIM_GANG)
    {
      /* Write to the receiver object.  */
      tree ref_to_res = gimple_call_arg (call, 1);

      if (!integer_zerop (ref_to_res))
	gimplify_assign (build_simple_mem_ref (ref_to_res), var, &seq);
    }

  if (lhs)
    gimplify_assign (lhs, var, &seq);
  
  pop_gimplify_context (NULL);

  gsi_replace_with_seq (&gsi, seq, true);
}

/* NVPTX reduction expander.  */

void
nvptx_goacc_reduction (gcall *call)
{
  unsigned code = (unsigned)TREE_INT_CST_LOW (gimple_call_arg (call, 0));

  switch (code)
    {
    case IFN_GOACC_REDUCTION_SETUP:
      nvptx_goacc_reduction_setup (call);
      break;

    case IFN_GOACC_REDUCTION_INIT:
      nvptx_goacc_reduction_init (call);
      break;

    case IFN_GOACC_REDUCTION_FINI:
      nvptx_goacc_reduction_fini (call);
      break;

    case IFN_GOACC_REDUCTION_TEARDOWN:
      nvptx_goacc_reduction_teardown (call);
      break;

    default:
      gcc_unreachable ();
    }
}

#undef TARGET_OPTION_OVERRIDE
#define TARGET_OPTION_OVERRIDE nvptx_option_override

#undef TARGET_ATTRIBUTE_TABLE
#define TARGET_ATTRIBUTE_TABLE nvptx_attribute_table

#undef TARGET_LEGITIMATE_ADDRESS_P
#define TARGET_LEGITIMATE_ADDRESS_P nvptx_legitimate_address_p

#undef  TARGET_PROMOTE_FUNCTION_MODE
#define TARGET_PROMOTE_FUNCTION_MODE nvptx_promote_function_mode

#undef TARGET_FUNCTION_ARG
#define TARGET_FUNCTION_ARG nvptx_function_arg
#undef TARGET_FUNCTION_INCOMING_ARG
#define TARGET_FUNCTION_INCOMING_ARG nvptx_function_incoming_arg
#undef TARGET_FUNCTION_ARG_ADVANCE
#define TARGET_FUNCTION_ARG_ADVANCE nvptx_function_arg_advance
#undef TARGET_FUNCTION_ARG_BOUNDARY
#define TARGET_FUNCTION_ARG_BOUNDARY nvptx_function_arg_boundary
#undef TARGET_FUNCTION_ARG_ROUND_BOUNDARY
#define TARGET_FUNCTION_ARG_ROUND_BOUNDARY nvptx_function_arg_boundary
#undef TARGET_PASS_BY_REFERENCE
#define TARGET_PASS_BY_REFERENCE nvptx_pass_by_reference
#undef TARGET_FUNCTION_VALUE_REGNO_P
#define TARGET_FUNCTION_VALUE_REGNO_P nvptx_function_value_regno_p
#undef TARGET_FUNCTION_VALUE
#define TARGET_FUNCTION_VALUE nvptx_function_value
#undef TARGET_LIBCALL_VALUE
#define TARGET_LIBCALL_VALUE nvptx_libcall_value
#undef TARGET_FUNCTION_OK_FOR_SIBCALL
#define TARGET_FUNCTION_OK_FOR_SIBCALL nvptx_function_ok_for_sibcall
#undef TARGET_GET_DRAP_RTX
#define TARGET_GET_DRAP_RTX nvptx_get_drap_rtx
#undef TARGET_SPLIT_COMPLEX_ARG
#define TARGET_SPLIT_COMPLEX_ARG hook_bool_const_tree_true
#undef TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY nvptx_return_in_memory
#undef TARGET_OMIT_STRUCT_RETURN_REG
#define TARGET_OMIT_STRUCT_RETURN_REG true
#undef TARGET_STRICT_ARGUMENT_NAMING
#define TARGET_STRICT_ARGUMENT_NAMING nvptx_strict_argument_naming
#undef TARGET_STATIC_CHAIN
#define TARGET_STATIC_CHAIN nvptx_static_chain

#undef TARGET_CALL_ARGS
#define TARGET_CALL_ARGS nvptx_call_args
#undef TARGET_END_CALL_ARGS
#define TARGET_END_CALL_ARGS nvptx_end_call_args

#undef TARGET_ASM_FILE_START
#define TARGET_ASM_FILE_START nvptx_file_start
#undef TARGET_ASM_FILE_END
#define TARGET_ASM_FILE_END nvptx_file_end
#undef TARGET_ASM_GLOBALIZE_LABEL
#define TARGET_ASM_GLOBALIZE_LABEL nvptx_globalize_label
#undef TARGET_ASM_ASSEMBLE_UNDEFINED_DECL
#define TARGET_ASM_ASSEMBLE_UNDEFINED_DECL nvptx_assemble_undefined_decl
#undef  TARGET_PRINT_OPERAND
#define TARGET_PRINT_OPERAND nvptx_print_operand
#undef  TARGET_PRINT_OPERAND_ADDRESS
#define TARGET_PRINT_OPERAND_ADDRESS nvptx_print_operand_address
#undef  TARGET_PRINT_OPERAND_PUNCT_VALID_P
#define TARGET_PRINT_OPERAND_PUNCT_VALID_P nvptx_print_operand_punct_valid_p
#undef TARGET_ASM_INTEGER
#define TARGET_ASM_INTEGER nvptx_assemble_integer
#undef TARGET_ASM_DECL_END
#define TARGET_ASM_DECL_END nvptx_assemble_decl_end
#undef TARGET_ASM_DECLARE_CONSTANT_NAME
#define TARGET_ASM_DECLARE_CONSTANT_NAME nvptx_asm_declare_constant_name
#undef TARGET_USE_BLOCKS_FOR_CONSTANT_P
#define TARGET_USE_BLOCKS_FOR_CONSTANT_P hook_bool_mode_const_rtx_true
#undef TARGET_ASM_NEED_VAR_DECL_BEFORE_USE
#define TARGET_ASM_NEED_VAR_DECL_BEFORE_USE true

#undef TARGET_MACHINE_DEPENDENT_REORG
#define TARGET_MACHINE_DEPENDENT_REORG nvptx_reorg
#undef TARGET_NO_REGISTER_ALLOCATION
#define TARGET_NO_REGISTER_ALLOCATION true

#undef TARGET_RECORD_OFFLOAD_SYMBOL
#define TARGET_RECORD_OFFLOAD_SYMBOL nvptx_record_offload_symbol

#undef TARGET_VECTOR_ALIGNMENT
#define TARGET_VECTOR_ALIGNMENT nvptx_vector_alignment

#undef TARGET_CANNOT_COPY_INSN_P
#define TARGET_CANNOT_COPY_INSN_P nvptx_cannot_copy_insn_p

#undef TARGET_USE_ANCHORS_FOR_SYMBOL_P
#define TARGET_USE_ANCHORS_FOR_SYMBOL_P nvptx_use_anchors_for_symbol_p

#undef TARGET_INIT_BUILTINS
#define TARGET_INIT_BUILTINS nvptx_init_builtins
#undef TARGET_EXPAND_BUILTIN
#define TARGET_EXPAND_BUILTIN nvptx_expand_builtin
#undef  TARGET_BUILTIN_DECL
#define TARGET_BUILTIN_DECL nvptx_builtin_decl

#undef TARGET_GOACC_VALIDATE_DIMS
#define TARGET_GOACC_VALIDATE_DIMS nvptx_goacc_validate_dims

#undef TARGET_GOACC_DIM_LIMIT
#define TARGET_GOACC_DIM_LIMIT nvptx_dim_limit

#undef TARGET_GOACC_FORK_JOIN
#define TARGET_GOACC_FORK_JOIN nvptx_goacc_fork_join

#undef TARGET_GOACC_REDUCTION
#define TARGET_GOACC_REDUCTION nvptx_goacc_reduction

struct gcc_target targetm = TARGET_INITIALIZER;

#include "gt-nvptx.h"