aboutsummaryrefslogtreecommitdiff
path: root/gcc/dwarf2out.c
blob: 4b36b1e400c08b568d610b2db2302ffd11ef9616 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
/* Output Dwarf2 format symbol table information from the GNU C compiler.
   Copyright (C) 1992, 93, 95, 96, 97, 1998 Free Software Foundation, Inc.
   Contributed by Gary Funck (gary@intrepid.com).
   Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
   Extensively modified by Jason Merrill (jason@cygnus.com).

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.  */

/* The first part of this file deals with the DWARF 2 frame unwind
   information, which is also used by the GCC efficient exception handling
   mechanism.  The second part, controlled only by an #ifdef
   DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
   information.  */

#include "config.h"
#include "system.h"
#include "defaults.h"
#include "tree.h"
#include "flags.h"
#include "rtl.h"
#include "hard-reg-set.h"
#include "regs.h"
#include "insn-config.h"
#include "reload.h"
#include "output.h"
#include "expr.h"
#include "except.h"
#include "dwarf2.h"
#include "dyn-string.h"

/* We cannot use <assert.h> in GCC source, since that would include
   GCC's assert.h, which may not be compatible with the host compiler.  */
#undef assert
#ifdef NDEBUG
# define assert(e)
#else
# define assert(e) do { if (! (e)) abort (); } while (0)
#endif

/* Decide whether we want to emit frame unwind information for the current
   translation unit.  */

int
dwarf2out_do_frame ()
{
  return (write_symbols == DWARF2_DEBUG
#ifdef DWARF2_FRAME_INFO
          || DWARF2_FRAME_INFO
#endif
#ifdef DWARF2_UNWIND_INFO
	  || (flag_exceptions && ! exceptions_via_longjmp)
#endif
	  );
}

#if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)

#ifndef __GNUC__
#define inline
#endif

/* How to start an assembler comment.  */
#ifndef ASM_COMMENT_START
#define ASM_COMMENT_START ";#"
#endif

typedef struct dw_cfi_struct *dw_cfi_ref;
typedef struct dw_fde_struct *dw_fde_ref;
typedef union  dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;

/* Call frames are described using a sequence of Call Frame
   Information instructions.  The register number, offset
   and address fields are provided as possible operands;
   their use is selected by the opcode field.  */

typedef union dw_cfi_oprnd_struct
{
  unsigned long dw_cfi_reg_num;
  long int dw_cfi_offset;
  char *dw_cfi_addr;
}
dw_cfi_oprnd;

typedef struct dw_cfi_struct
{
  dw_cfi_ref dw_cfi_next;
  enum dwarf_call_frame_info dw_cfi_opc;
  dw_cfi_oprnd dw_cfi_oprnd1;
  dw_cfi_oprnd dw_cfi_oprnd2;
}
dw_cfi_node;

/* All call frame descriptions (FDE's) in the GCC generated DWARF
   refer to a single Common Information Entry (CIE), defined at
   the beginning of the .debug_frame section.  This used of a single
   CIE obviates the need to keep track of multiple CIE's
   in the DWARF generation routines below.  */

typedef struct dw_fde_struct
{
  char *dw_fde_begin;
  char *dw_fde_current_label;
  char *dw_fde_end;
  dw_cfi_ref dw_fde_cfi;
}
dw_fde_node;

/* Maximum size (in bytes) of an artificially generated label.   */
#define MAX_ARTIFICIAL_LABEL_BYTES	30

/* Make sure we know the sizes of the various types dwarf can describe. These
   are only defaults.  If the sizes are different for your target, you should
   override these values by defining the appropriate symbols in your tm.h
   file.  */

#ifndef CHAR_TYPE_SIZE
#define CHAR_TYPE_SIZE BITS_PER_UNIT
#endif
#ifndef PTR_SIZE
#define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
#endif

/* The size in bytes of a DWARF field indicating an offset or length
   relative to a debug info section, specified to be 4 bytes in the DWARF-2
   specification.  The SGI/MIPS ABI defines it to be the same as PTR_SIZE.  */

#ifndef DWARF_OFFSET_SIZE
#define DWARF_OFFSET_SIZE 4
#endif

#define DWARF_VERSION 2

/* Round SIZE up to the nearest BOUNDARY.  */
#define DWARF_ROUND(SIZE,BOUNDARY) \
  (((SIZE) + (BOUNDARY) - 1) & ~((BOUNDARY) - 1))

/* Offsets recorded in opcodes are a multiple of this alignment factor.  */
#ifdef STACK_GROWS_DOWNWARD
#define DWARF_CIE_DATA_ALIGNMENT (-UNITS_PER_WORD)
#else
#define DWARF_CIE_DATA_ALIGNMENT UNITS_PER_WORD
#endif

/* A pointer to the base of a table that contains frame description
   information for each routine.  */
static dw_fde_ref fde_table;

/* Number of elements currently allocated for fde_table.  */
static unsigned fde_table_allocated;

/* Number of elements in fde_table currently in use.  */
static unsigned fde_table_in_use;

/* Size (in elements) of increments by which we may expand the
   fde_table.  */
#define FDE_TABLE_INCREMENT 256

/* A list of call frame insns for the CIE.  */
static dw_cfi_ref cie_cfi_head;

/* The number of the current function definition for which debugging
   information is being generated.  These numbers range from 1 up to the
   maximum number of function definitions contained within the current
   compilation unit.  These numbers are used to create unique label id's
   unique to each function definition.  */
static unsigned current_funcdef_number = 0;

/* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
   attribute that accelerates the lookup of the FDE associated
   with the subprogram.  This variable holds the table index of the FDE 
   associated with the current function (body) definition.  */
static unsigned current_funcdef_fde;

/* Forward declarations for functions defined in this file.  */

static char *stripattributes		PROTO((char *));
static char *dwarf_cfi_name		PROTO((unsigned));
static dw_cfi_ref new_cfi		PROTO((void));
static void add_cfi			PROTO((dw_cfi_ref *, dw_cfi_ref));
static unsigned long size_of_uleb128	PROTO((unsigned long));
static unsigned long size_of_sleb128	PROTO((long));
static void output_uleb128		PROTO((unsigned long));
static void output_sleb128		PROTO((long));
static void add_fde_cfi			PROTO((char *, dw_cfi_ref));
static void lookup_cfa_1		PROTO((dw_cfi_ref, unsigned long *,
					       long *));
static void lookup_cfa			PROTO((unsigned long *, long *));
static void reg_save			PROTO((char *, unsigned, unsigned,
					       long));
static void initial_return_save		PROTO((rtx));
static void output_cfi			PROTO((dw_cfi_ref, dw_fde_ref));
static void output_call_frame_info	PROTO((int));
static unsigned reg_number		PROTO((rtx));

/* Definitions of defaults for assembler-dependent names of various
   pseudo-ops and section names.
   Theses may be overridden in the tm.h file (if necessary) for a particular
   assembler.  */

#ifdef OBJECT_FORMAT_ELF
#ifndef UNALIGNED_SHORT_ASM_OP
#define UNALIGNED_SHORT_ASM_OP	".2byte"
#endif
#ifndef UNALIGNED_INT_ASM_OP
#define UNALIGNED_INT_ASM_OP	".4byte"
#endif
#ifndef UNALIGNED_DOUBLE_INT_ASM_OP
#define UNALIGNED_DOUBLE_INT_ASM_OP	".8byte"
#endif
#endif /* OBJECT_FORMAT_ELF */

#ifndef ASM_BYTE_OP
#define ASM_BYTE_OP		".byte"
#endif

/* Data and reference forms for relocatable data.  */
#define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
#define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)

/* Pseudo-op for defining a new section.  */
#ifndef SECTION_ASM_OP
#define SECTION_ASM_OP	".section"
#endif

/* The default format used by the ASM_OUTPUT_SECTION macro (see below) to
   print the SECTION_ASM_OP and the section name.  The default here works for
   almost all svr4 assemblers, except for the sparc, where the section name
   must be enclosed in double quotes.  (See sparcv4.h).  */
#ifndef SECTION_FORMAT
#ifdef PUSHSECTION_FORMAT
#define SECTION_FORMAT PUSHSECTION_FORMAT
#else
#define SECTION_FORMAT		"\t%s\t%s\n"
#endif
#endif

#ifndef FRAME_SECTION
#define FRAME_SECTION		".debug_frame"
#endif

#ifndef FUNC_BEGIN_LABEL
#define FUNC_BEGIN_LABEL	"LFB"
#endif
#ifndef FUNC_END_LABEL
#define FUNC_END_LABEL		"LFE"
#endif
#define CIE_AFTER_SIZE_LABEL	"LSCIE"
#define CIE_END_LABEL		"LECIE"
#define CIE_LENGTH_LABEL	"LLCIE"
#define FDE_AFTER_SIZE_LABEL	"LSFDE"
#define FDE_END_LABEL		"LEFDE"
#define FDE_LENGTH_LABEL	"LLFDE"

/* Definitions of defaults for various types of primitive assembly language
   output operations.  These may be overridden from within the tm.h file,
   but typically, that is unnecessary.  */

#ifndef ASM_OUTPUT_SECTION
#define ASM_OUTPUT_SECTION(FILE, SECTION) \
  fprintf ((FILE), SECTION_FORMAT, SECTION_ASM_OP, SECTION)
#endif

#ifndef ASM_OUTPUT_DWARF_DATA1
#define ASM_OUTPUT_DWARF_DATA1(FILE,VALUE) \
  fprintf ((FILE), "\t%s\t0x%x", ASM_BYTE_OP, VALUE)
#endif

#ifdef UNALIGNED_INT_ASM_OP

#ifndef UNALIGNED_OFFSET_ASM_OP
#define UNALIGNED_OFFSET_ASM_OP \
  (DWARF_OFFSET_SIZE == 8 ? UNALIGNED_DOUBLE_INT_ASM_OP : UNALIGNED_INT_ASM_OP)
#endif

#ifndef UNALIGNED_WORD_ASM_OP
#define UNALIGNED_WORD_ASM_OP \
  (PTR_SIZE == 8 ? UNALIGNED_DOUBLE_INT_ASM_OP : UNALIGNED_INT_ASM_OP)
#endif

#ifndef ASM_OUTPUT_DWARF_DELTA2
#define ASM_OUTPUT_DWARF_DELTA2(FILE,LABEL1,LABEL2)			\
 do {	fprintf ((FILE), "\t%s\t", UNALIGNED_SHORT_ASM_OP);		\
	assemble_name (FILE, LABEL1);					\
	fprintf (FILE, "-");						\
	assemble_name (FILE, LABEL2);					\
  } while (0)
#endif

#ifndef ASM_OUTPUT_DWARF_DELTA4
#define ASM_OUTPUT_DWARF_DELTA4(FILE,LABEL1,LABEL2)			\
 do {	fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP);		\
	assemble_name (FILE, LABEL1);					\
	fprintf (FILE, "-");						\
	assemble_name (FILE, LABEL2);					\
  } while (0)
#endif

#ifndef ASM_OUTPUT_DWARF_DELTA
#define ASM_OUTPUT_DWARF_DELTA(FILE,LABEL1,LABEL2)			\
 do {	fprintf ((FILE), "\t%s\t", UNALIGNED_OFFSET_ASM_OP);		\
	assemble_name (FILE, LABEL1);					\
	fprintf (FILE, "-");						\
	assemble_name (FILE, LABEL2);					\
  } while (0)
#endif

#ifndef ASM_OUTPUT_DWARF_ADDR_DELTA
#define ASM_OUTPUT_DWARF_ADDR_DELTA(FILE,LABEL1,LABEL2)			\
 do {	fprintf ((FILE), "\t%s\t", UNALIGNED_WORD_ASM_OP);		\
	assemble_name (FILE, LABEL1);					\
	fprintf (FILE, "-");						\
	assemble_name (FILE, LABEL2);					\
  } while (0)
#endif

#ifndef ASM_OUTPUT_DWARF_ADDR
#define ASM_OUTPUT_DWARF_ADDR(FILE,LABEL)				\
 do {	fprintf ((FILE), "\t%s\t", UNALIGNED_WORD_ASM_OP);		\
	assemble_name (FILE, LABEL);					\
  } while (0)
#endif

#ifndef ASM_OUTPUT_DWARF_ADDR_CONST
#define ASM_OUTPUT_DWARF_ADDR_CONST(FILE,ADDR)				\
  fprintf ((FILE), "\t%s\t%s", UNALIGNED_WORD_ASM_OP, (ADDR))
#endif

#ifndef ASM_OUTPUT_DWARF_OFFSET
#define ASM_OUTPUT_DWARF_OFFSET(FILE,LABEL)				\
 do {	fprintf ((FILE), "\t%s\t", UNALIGNED_OFFSET_ASM_OP);		\
	assemble_name (FILE, LABEL);					\
  } while (0)
#endif

#ifndef ASM_OUTPUT_DWARF_DATA2
#define ASM_OUTPUT_DWARF_DATA2(FILE,VALUE) \
  fprintf ((FILE), "\t%s\t0x%x", UNALIGNED_SHORT_ASM_OP, (unsigned) VALUE)
#endif

#ifndef ASM_OUTPUT_DWARF_DATA4
#define ASM_OUTPUT_DWARF_DATA4(FILE,VALUE) \
  fprintf ((FILE), "\t%s\t0x%x", UNALIGNED_INT_ASM_OP, (unsigned) VALUE)
#endif

#ifndef ASM_OUTPUT_DWARF_DATA
#define ASM_OUTPUT_DWARF_DATA(FILE,VALUE) \
  fprintf ((FILE), "\t%s\t0x%lx", UNALIGNED_OFFSET_ASM_OP, \
	   (unsigned long) VALUE)
#endif

#ifndef ASM_OUTPUT_DWARF_ADDR_DATA
#define ASM_OUTPUT_DWARF_ADDR_DATA(FILE,VALUE) \
  fprintf ((FILE), "\t%s\t0x%lx", UNALIGNED_WORD_ASM_OP, \
	   (unsigned long) VALUE)
#endif

#ifndef ASM_OUTPUT_DWARF_DATA8
#define ASM_OUTPUT_DWARF_DATA8(FILE,HIGH_VALUE,LOW_VALUE)		\
  do {									\
    if (WORDS_BIG_ENDIAN)						\
      {									\
	fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, HIGH_VALUE); \
	fprintf ((FILE), "\t%s\t0x%x", UNALIGNED_INT_ASM_OP, LOW_VALUE);\
      }									\
    else								\
      {									\
	fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, LOW_VALUE);\
	fprintf ((FILE), "\t%s\t0x%x", UNALIGNED_INT_ASM_OP, HIGH_VALUE); \
      }									\
  } while (0)
#endif

#ifndef ASM_OUTPUT_DWARF_VALUE4
#define ASM_OUTPUT_DWARF_VALUE4(FILE,LABEL) \
  do {	fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP);		\
	assemble_name (FILE, LABEL);					\
  } while (0)
#endif

#else /* UNALIGNED_INT_ASM_OP */

/* We don't have unaligned support, let's hope the normal output works for
   .debug_frame.  */

#define ASM_OUTPUT_DWARF_ADDR(FILE,LABEL) \
  assemble_integer (gen_rtx_SYMBOL_REF (Pmode, LABEL), PTR_SIZE, 1)

#define ASM_OUTPUT_DWARF_OFFSET(FILE,LABEL) \
  assemble_integer (gen_rtx_SYMBOL_REF (SImode, LABEL), 4, 1)

#define ASM_OUTPUT_DWARF_DELTA2(FILE,LABEL1,LABEL2)			\
  assemble_integer (gen_rtx_MINUS (HImode,			      	\
				   gen_rtx_SYMBOL_REF (Pmode, LABEL1),  \
				   gen_rtx_SYMBOL_REF (Pmode, LABEL2)),	\
		    2, 1)
  
#define ASM_OUTPUT_DWARF_DELTA4(FILE,LABEL1,LABEL2)			\
  assemble_integer (gen_rtx_MINUS (SImode,			      	\
				   gen_rtx_SYMBOL_REF (Pmode, LABEL1),  \
				   gen_rtx_SYMBOL_REF (Pmode, LABEL2)),	\
		    4, 1)

#define ASM_OUTPUT_DWARF_ADDR_DELTA(FILE,LABEL1,LABEL2)			\
  assemble_integer (gen_rtx_MINUS (Pmode,				\
				   gen_rtx_SYMBOL_REF (Pmode, LABEL1),	\
				   gen_rtx_SYMBOL_REF (Pmode, LABEL2)),	\
		    PTR_SIZE, 1)

#define ASM_OUTPUT_DWARF_DELTA(FILE,LABEL1,LABEL2) \
  ASM_OUTPUT_DWARF_DELTA4 (FILE,LABEL1,LABEL2)

#define ASM_OUTPUT_DWARF_DATA4(FILE,VALUE) \
  assemble_integer (GEN_INT (VALUE), 4, 1)

#define ASM_OUTPUT_DWARF_VALUE4(FILE,LABEL) \
  assemble_integer (gen_rtx_SYMBOL_REF (Pmode, LABEL), 4, 1)

#endif /* UNALIGNED_INT_ASM_OP */

#ifdef SET_ASM_OP
#ifndef ASM_OUTPUT_DEFINE_LABEL_DIFFERENCE_SYMBOL
#define ASM_OUTPUT_DEFINE_LABEL_DIFFERENCE_SYMBOL(FILE, SY, HI, LO)	\
  do {	fprintf ((FILE), "\t%s\t", SET_ASM_OP);				\
	assemble_name (FILE, SY);					\
	fprintf ((FILE), ",");						\
	assemble_name (FILE, HI);					\
	fprintf ((FILE), "-");						\
	assemble_name (FILE, LO);					\
	fprintf ((FILE), "\n");						\
  } while (0)
#endif
#endif /* SET_ASM_OP */

/* This is similar to the default ASM_OUTPUT_ASCII, except that no trailing
   newline is produced.  When flag_debug_asm is asserted, we add commentary
   at the end of the line, so we must avoid output of a newline here.  */
#ifndef ASM_OUTPUT_DWARF_STRING
#define ASM_OUTPUT_DWARF_STRING(FILE,P) \
  do {									      \
    register int slen = strlen(P);                                            \
    register char *p = (P);  	                                              \
    register int i;					                      \
    fprintf (FILE, "\t.ascii \"");				              \
    for (i = 0; i < slen; i++)					              \
      {								              \
	  register int c = p[i];					      \
	  if (c == '\"' || c == '\\')					      \
	    putc ('\\', FILE);					              \
	  if (c >= ' ' && c < 0177)					      \
	    putc (c, FILE);					              \
	  else								      \
	    {								      \
	      fprintf (FILE, "\\%o", c);			              \
	    }							 	      \
      }								              \
    fprintf (FILE, "\\0\"");					              \
  }									      \
  while (0)
#endif

/* The DWARF 2 CFA column which tracks the return address.  Normally this
   is the column for PC, or the first column after all of the hard
   registers.  */
#ifndef DWARF_FRAME_RETURN_COLUMN
#ifdef PC_REGNUM
#define DWARF_FRAME_RETURN_COLUMN 	DWARF_FRAME_REGNUM (PC_REGNUM)
#else
#define DWARF_FRAME_RETURN_COLUMN 	FIRST_PSEUDO_REGISTER
#endif
#endif

/* The mapping from gcc register number to DWARF 2 CFA column number.  By
   default, we just provide columns for all registers.  */
#ifndef DWARF_FRAME_REGNUM
#define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
#endif

/* Hook used by __throw.  */

rtx
expand_builtin_dwarf_fp_regnum ()
{
  return GEN_INT (DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM));
}

/* The offset from the incoming value of %sp to the top of the stack frame
   for the current function.  */
#ifndef INCOMING_FRAME_SP_OFFSET
#define INCOMING_FRAME_SP_OFFSET 0
#endif

/* Return a pointer to a copy of the section string name S with all
   attributes stripped off.  */

static inline char *
stripattributes (s)
     char *s;
{
  char *stripped = xstrdup (s);
  char *p = stripped;

  while (*p && *p != ',')
    p++;

  *p = '\0';
  return stripped;
}

/* Return the register number described by a given RTL node.  */

static unsigned
reg_number (rtl)
     register rtx rtl;
{
  register unsigned regno = REGNO (rtl);

  if (regno >= FIRST_PSEUDO_REGISTER)
    {
      warning ("internal regno botch: regno = %d\n", regno);
      regno = 0;
    }

  regno = DBX_REGISTER_NUMBER (regno);
  return regno;
}

struct reg_size_range
{
  int beg;
  int end;
  int size;
};

/* Given a register number in REG_TREE, return an rtx for its size in bytes.
   We do this in kind of a roundabout way, by building up a list of
   register size ranges and seeing where our register falls in one of those
   ranges.  We need to do it this way because REG_TREE is not a constant,
   and the target macros were not designed to make this task easy.  */

rtx
expand_builtin_dwarf_reg_size (reg_tree, target)
     tree reg_tree;
     rtx target;
{
  enum machine_mode mode;
  int size;
  struct reg_size_range ranges[5];
  tree t, t2;

  int i = 0;
  int n_ranges = 0;
  int last_size = -1;

  for (; i < FIRST_PSEUDO_REGISTER; ++i)
    {
      /* The return address is out of order on the MIPS, and we don't use
	 copy_reg for it anyway, so we don't care here how large it is.  */
      if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
	continue;

      mode = reg_raw_mode[i];

      /* CCmode is arbitrarily given a size of 4 bytes.  It is more useful
	 to use the same size as word_mode, since that reduces the number
	 of ranges we need.  It should not matter, since the result should
	 never be used for a condition code register anyways.  */
      if (GET_MODE_CLASS (mode) == MODE_CC)
	mode = word_mode;

      size = GET_MODE_SIZE (mode);

      /* If this register is not valid in the specified mode and
	 we have a previous size, use that for the size of this
	 register to avoid making junk tiny ranges.  */
      if (! HARD_REGNO_MODE_OK (i, mode) && last_size != -1)
	size = last_size;

      if (size != last_size)
	{
	  ranges[n_ranges].beg = i;
	  ranges[n_ranges].size = last_size = size;
	  ++n_ranges;
	  assert (n_ranges <= 5);
	}
      ranges[n_ranges-1].end = i;
    }

  /* The usual case: fp regs surrounded by general regs.  */
  if (n_ranges == 3 && ranges[0].size == ranges[2].size)
    {
      assert ((DWARF_FRAME_REGNUM (ranges[1].end)
	       - DWARF_FRAME_REGNUM (ranges[1].beg))
	      == ranges[1].end - ranges[1].beg);
      t  = fold (build (GE_EXPR, integer_type_node, reg_tree,
			build_int_2 (DWARF_FRAME_REGNUM (ranges[1].beg), 0)));
      t2 = fold (build (LE_EXPR, integer_type_node, reg_tree,
			build_int_2 (DWARF_FRAME_REGNUM (ranges[1].end), 0)));
      t = fold (build (TRUTH_ANDIF_EXPR, integer_type_node, t, t2));
      t = fold (build (COND_EXPR, integer_type_node, t,
		       build_int_2 (ranges[1].size, 0),
		       build_int_2 (ranges[0].size, 0)));
    }
  else
    {
      --n_ranges;
      t = build_int_2 (ranges[n_ranges].size, 0);
      size = DWARF_FRAME_REGNUM (ranges[n_ranges].beg);
      for (; n_ranges--; )
	{
	  assert ((DWARF_FRAME_REGNUM (ranges[n_ranges].end)
		   - DWARF_FRAME_REGNUM (ranges[n_ranges].beg))
		  == ranges[n_ranges].end - ranges[n_ranges].beg);
	  assert (DWARF_FRAME_REGNUM (ranges[n_ranges].beg) < size);
	  size = DWARF_FRAME_REGNUM (ranges[n_ranges].beg);
	  t2 = fold (build (LE_EXPR, integer_type_node, reg_tree,
			    build_int_2 (DWARF_FRAME_REGNUM
					 (ranges[n_ranges].end), 0)));
	  t = fold (build (COND_EXPR, integer_type_node, t2,
			   build_int_2 (ranges[n_ranges].size, 0), t));
	}
    }
  return expand_expr (t, target, Pmode, 0);
}

/* Convert a DWARF call frame info. operation to its string name */

static char *
dwarf_cfi_name (cfi_opc)
     register unsigned cfi_opc;
{
  switch (cfi_opc)
    {
    case DW_CFA_advance_loc:
      return "DW_CFA_advance_loc";
    case DW_CFA_offset:
      return "DW_CFA_offset";
    case DW_CFA_restore:
      return "DW_CFA_restore";
    case DW_CFA_nop:
      return "DW_CFA_nop";
    case DW_CFA_set_loc:
      return "DW_CFA_set_loc";
    case DW_CFA_advance_loc1:
      return "DW_CFA_advance_loc1";
    case DW_CFA_advance_loc2:
      return "DW_CFA_advance_loc2";
    case DW_CFA_advance_loc4:
      return "DW_CFA_advance_loc4";
    case DW_CFA_offset_extended:
      return "DW_CFA_offset_extended";
    case DW_CFA_restore_extended:
      return "DW_CFA_restore_extended";
    case DW_CFA_undefined:
      return "DW_CFA_undefined";
    case DW_CFA_same_value:
      return "DW_CFA_same_value";
    case DW_CFA_register:
      return "DW_CFA_register";
    case DW_CFA_remember_state:
      return "DW_CFA_remember_state";
    case DW_CFA_restore_state:
      return "DW_CFA_restore_state";
    case DW_CFA_def_cfa:
      return "DW_CFA_def_cfa";
    case DW_CFA_def_cfa_register:
      return "DW_CFA_def_cfa_register";
    case DW_CFA_def_cfa_offset:
      return "DW_CFA_def_cfa_offset";

    /* SGI/MIPS specific */
    case DW_CFA_MIPS_advance_loc8:
      return "DW_CFA_MIPS_advance_loc8";

    /* GNU extensions */
    case DW_CFA_GNU_window_save:
      return "DW_CFA_GNU_window_save";
    case DW_CFA_GNU_args_size:
      return "DW_CFA_GNU_args_size";

    default:
      return "DW_CFA_<unknown>";
    }
}

/* Return a pointer to a newly allocated Call Frame Instruction.  */

static inline dw_cfi_ref
new_cfi ()
{
  register dw_cfi_ref cfi = (dw_cfi_ref) xmalloc (sizeof (dw_cfi_node));

  cfi->dw_cfi_next = NULL;
  cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
  cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;

  return cfi;
}

/* Add a Call Frame Instruction to list of instructions.  */

static inline void
add_cfi (list_head, cfi)
     register dw_cfi_ref *list_head;
     register dw_cfi_ref cfi;
{
  register dw_cfi_ref *p;

  /* Find the end of the chain.  */
  for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
    ;

  *p = cfi;
}

/* Generate a new label for the CFI info to refer to.  */

char *
dwarf2out_cfi_label ()
{
  static char label[20];
  static unsigned long label_num = 0;
  
  ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", label_num++);
  ASM_OUTPUT_LABEL (asm_out_file, label);

  return label;
}

/* Add CFI to the current fde at the PC value indicated by LABEL if specified,
   or to the CIE if LABEL is NULL.  */

static void
add_fde_cfi (label, cfi)
     register char *label;
     register dw_cfi_ref cfi;
{
  if (label)
    {
      register dw_fde_ref fde = &fde_table[fde_table_in_use - 1];

      if (*label == 0)
	label = dwarf2out_cfi_label ();

      if (fde->dw_fde_current_label == NULL
	  || strcmp (label, fde->dw_fde_current_label) != 0)
	{
	  register dw_cfi_ref xcfi;

	  fde->dw_fde_current_label = label = xstrdup (label);

	  /* Set the location counter to the new label.  */
	  xcfi = new_cfi ();
	  xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
	  xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
	  add_cfi (&fde->dw_fde_cfi, xcfi);
	}

      add_cfi (&fde->dw_fde_cfi, cfi);
    }

  else
    add_cfi (&cie_cfi_head, cfi);
}

/* Subroutine of lookup_cfa.  */

static inline void
lookup_cfa_1 (cfi, regp, offsetp)
     register dw_cfi_ref cfi;
     register unsigned long *regp;
     register long *offsetp;
{
  switch (cfi->dw_cfi_opc)
    {
    case DW_CFA_def_cfa_offset:
      *offsetp = cfi->dw_cfi_oprnd1.dw_cfi_offset;
      break;
    case DW_CFA_def_cfa_register:
      *regp = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
      break;
    case DW_CFA_def_cfa:
      *regp = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
      *offsetp = cfi->dw_cfi_oprnd2.dw_cfi_offset;
      break;
    default:
      break;
    }
}

/* Find the previous value for the CFA.  */

static void
lookup_cfa (regp, offsetp)
     register unsigned long *regp;
     register long *offsetp;
{
  register dw_cfi_ref cfi;

  *regp = (unsigned long) -1;
  *offsetp = 0;

  for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
    lookup_cfa_1 (cfi, regp, offsetp);

  if (fde_table_in_use)
    {
      register dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
      for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
	lookup_cfa_1 (cfi, regp, offsetp);
    }
}

/* The current rule for calculating the DWARF2 canonical frame address.  */
static unsigned long cfa_reg;
static long cfa_offset;

/* The register used for saving registers to the stack, and its offset
   from the CFA.  */
static unsigned cfa_store_reg;
static long cfa_store_offset;

/* The running total of the size of arguments pushed onto the stack.  */
static long args_size;

/* Entry point to update the canonical frame address (CFA).
   LABEL is passed to add_fde_cfi.  The value of CFA is now to be
   calculated from REG+OFFSET.  */

void
dwarf2out_def_cfa (label, reg, offset)
     register char *label;
     register unsigned reg;
     register long offset;
{
  register dw_cfi_ref cfi;
  unsigned long old_reg;
  long old_offset;

  cfa_reg = reg;
  cfa_offset = offset;
  if (cfa_store_reg == reg)
    cfa_store_offset = offset;

  reg = DWARF_FRAME_REGNUM (reg);
  lookup_cfa (&old_reg, &old_offset);

  if (reg == old_reg && offset == old_offset)
    return;

  cfi = new_cfi ();

  if (reg == old_reg)
    {
      cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
      cfi->dw_cfi_oprnd1.dw_cfi_offset = offset;
    }

#ifndef MIPS_DEBUGGING_INFO  /* SGI dbx thinks this means no offset.  */
  else if (offset == old_offset && old_reg != (unsigned long) -1)
    {
      cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
      cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
    }
#endif

  else
    {
      cfi->dw_cfi_opc = DW_CFA_def_cfa;
      cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
      cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
    }

  add_fde_cfi (label, cfi);
}

/* Add the CFI for saving a register.  REG is the CFA column number.
   LABEL is passed to add_fde_cfi.
   If SREG is -1, the register is saved at OFFSET from the CFA;
   otherwise it is saved in SREG.  */

static void
reg_save (label, reg, sreg, offset)
     register char * label;
     register unsigned reg;
     register unsigned sreg;
     register long offset;
{
  register dw_cfi_ref cfi = new_cfi ();

  cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;

  if (sreg == -1)
    {
      if (reg & ~0x3f)
	/* The register number won't fit in 6 bits, so we have to use
	   the long form.  */
	cfi->dw_cfi_opc = DW_CFA_offset_extended;
      else
	cfi->dw_cfi_opc = DW_CFA_offset;

      offset /= DWARF_CIE_DATA_ALIGNMENT;
      assert (offset >= 0);
      cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
    }
  else
    {
      cfi->dw_cfi_opc = DW_CFA_register;
      cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
    }

  add_fde_cfi (label, cfi);
}

/* Add the CFI for saving a register window.  LABEL is passed to reg_save.
   This CFI tells the unwinder that it needs to restore the window registers
   from the previous frame's window save area.
   
   ??? Perhaps we should note in the CIE where windows are saved (instead of
   assuming 0(cfa)) and what registers are in the window.  */

void
dwarf2out_window_save (label)
     register char * label;
{
  register dw_cfi_ref cfi = new_cfi ();
  cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
  add_fde_cfi (label, cfi);
}

/* Add a CFI to update the running total of the size of arguments
   pushed onto the stack.  */

void
dwarf2out_args_size (label, size)
     char *label;
     long size;
{
  register dw_cfi_ref cfi = new_cfi ();
  cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
  cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
  add_fde_cfi (label, cfi);
}

/* Entry point for saving a register to the stack.  REG is the GCC register
   number.  LABEL and OFFSET are passed to reg_save.  */

void
dwarf2out_reg_save (label, reg, offset)
     register char * label;
     register unsigned reg;
     register long offset;
{
  reg_save (label, DWARF_FRAME_REGNUM (reg), -1, offset);
}

/* Entry point for saving the return address in the stack.
   LABEL and OFFSET are passed to reg_save.  */

void
dwarf2out_return_save (label, offset)
     register char * label;
     register long offset;
{
  reg_save (label, DWARF_FRAME_RETURN_COLUMN, -1, offset);
}

/* Entry point for saving the return address in a register.
   LABEL and SREG are passed to reg_save.  */

void
dwarf2out_return_reg (label, sreg)
     register char * label;
     register unsigned sreg;
{
  reg_save (label, DWARF_FRAME_RETURN_COLUMN, sreg, 0);
}

/* Record the initial position of the return address.  RTL is
   INCOMING_RETURN_ADDR_RTX.  */

static void
initial_return_save (rtl)
     register rtx rtl;
{
  unsigned reg = -1;
  long offset = 0;

  switch (GET_CODE (rtl))
    {
    case REG:
      /* RA is in a register.  */
      reg = reg_number (rtl);
      break;
    case MEM:
      /* RA is on the stack.  */
      rtl = XEXP (rtl, 0);
      switch (GET_CODE (rtl))
	{
	case REG:
	  assert (REGNO (rtl) == STACK_POINTER_REGNUM);
	  offset = 0;
	  break;
	case PLUS:
	  assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
	  offset = INTVAL (XEXP (rtl, 1));
	  break;
	case MINUS:
	  assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
	  offset = -INTVAL (XEXP (rtl, 1));
	  break;
	default:
	  abort ();
	}
      break;
    case PLUS:
      /* The return address is at some offset from any value we can
	 actually load.  For instance, on the SPARC it is in %i7+8. Just
	 ignore the offset for now; it doesn't matter for unwinding frames.  */
      assert (GET_CODE (XEXP (rtl, 1)) == CONST_INT);
      initial_return_save (XEXP (rtl, 0));
      return;
    default:
      abort ();
    }

  reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa_offset);
}

/* Check INSN to see if it looks like a push or a stack adjustment, and
   make a note of it if it does.  EH uses this information to find out how
   much extra space it needs to pop off the stack.  */

static void
dwarf2out_stack_adjust (insn)
     rtx insn;
{
  long offset;
  char *label;

  if (GET_CODE (insn) == BARRIER)
    {
      /* When we see a BARRIER, we know to reset args_size to 0.  Usually
	 the compiler will have already emitted a stack adjustment, but
	 doesn't bother for calls to noreturn functions.  */
#ifdef STACK_GROWS_DOWNWARD
      offset = -args_size;
#else
      offset = args_size;
#endif
    }
  else if (GET_CODE (PATTERN (insn)) == SET)
    {
      rtx src, dest;
      enum rtx_code code;

      insn = PATTERN (insn);
      src = SET_SRC (insn);
      dest = SET_DEST (insn);

      if (dest == stack_pointer_rtx)
	{
	  /* (set (reg sp) (plus (reg sp) (const_int))) */
	  code = GET_CODE (src);
	  if (! (code == PLUS || code == MINUS)
	      || XEXP (src, 0) != stack_pointer_rtx
	      || GET_CODE (XEXP (src, 1)) != CONST_INT)
	    return;

	  offset = INTVAL (XEXP (src, 1));
	}
      else if (GET_CODE (dest) == MEM)
	{
	  /* (set (mem (pre_dec (reg sp))) (foo)) */
	  src = XEXP (dest, 0);
	  code = GET_CODE (src);

	  if (! (code == PRE_DEC || code == PRE_INC)
	      || XEXP (src, 0) != stack_pointer_rtx)
	    return;

	  offset = GET_MODE_SIZE (GET_MODE (dest));
	}
      else
	return;

      if (code == PLUS || code == PRE_INC)
	offset = -offset;
    }
  else
    return;

  if (offset == 0)
    return;

  if (cfa_reg == STACK_POINTER_REGNUM)
    cfa_offset += offset;

#ifndef STACK_GROWS_DOWNWARD
  offset = -offset;
#endif
  args_size += offset;
  if (args_size < 0)
    args_size = 0;

  label = dwarf2out_cfi_label ();
  dwarf2out_def_cfa (label, cfa_reg, cfa_offset);
  dwarf2out_args_size (label, args_size);
}

/* Record call frame debugging information for INSN, which either
   sets SP or FP (adjusting how we calculate the frame address) or saves a
   register to the stack.  If INSN is NULL_RTX, initialize our state.  */

void
dwarf2out_frame_debug (insn)
     rtx insn;
{
  char *label;
  rtx src, dest;
  long offset;

  /* A temporary register used in adjusting SP or setting up the store_reg.  */
  static unsigned cfa_temp_reg;
  static long cfa_temp_value;

  if (insn == NULL_RTX)
    {
      /* Set up state for generating call frame debug info.  */
      lookup_cfa (&cfa_reg, &cfa_offset);
      assert (cfa_reg == DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
      cfa_reg = STACK_POINTER_REGNUM;
      cfa_store_reg = cfa_reg;
      cfa_store_offset = cfa_offset;
      cfa_temp_reg = -1;
      cfa_temp_value = 0;
      return;
    }

  if (! RTX_FRAME_RELATED_P (insn))
    {
      dwarf2out_stack_adjust (insn);
      return;
    }

  label = dwarf2out_cfi_label ();
    
  insn = PATTERN (insn);
  /* Assume that in a PARALLEL prologue insn, only the first elt is
     significant.  Currently this is true.  */
  if (GET_CODE (insn) == PARALLEL)
    insn = XVECEXP (insn, 0, 0);
  assert (GET_CODE (insn) == SET);

  src = SET_SRC (insn);
  dest = SET_DEST (insn);

  switch (GET_CODE (dest))
    {
    case REG:
      /* Update the CFA rule wrt SP or FP.  Make sure src is
	 relative to the current CFA register.  */
      switch (GET_CODE (src))
	{
	  /* Setting FP from SP.  */
	case REG:
	  assert (cfa_reg == REGNO (src));
	  assert (REGNO (dest) == STACK_POINTER_REGNUM
		  || (frame_pointer_needed
		      && REGNO (dest) == HARD_FRAME_POINTER_REGNUM));
	  cfa_reg = REGNO (dest);
	  break;

	case PLUS:
	case MINUS:
	  if (dest == stack_pointer_rtx)
	    {
	      /* Adjusting SP.  */
	      switch (GET_CODE (XEXP (src, 1)))
		{
		case CONST_INT:
		  offset = INTVAL (XEXP (src, 1));
		  break;
		case REG:
		  assert (REGNO (XEXP (src, 1)) == cfa_temp_reg);
		  offset = cfa_temp_value;
		  break;
		default:
		  abort ();
		}

	      if (XEXP (src, 0) == hard_frame_pointer_rtx)
		{
		  /* Restoring SP from FP in the epilogue.  */
		  assert (cfa_reg == HARD_FRAME_POINTER_REGNUM);
		  cfa_reg = STACK_POINTER_REGNUM;
		}
	      else
		assert (XEXP (src, 0) == stack_pointer_rtx);

	      if (GET_CODE (src) == PLUS)
		offset = -offset;
	      if (cfa_reg == STACK_POINTER_REGNUM)
		cfa_offset += offset;
	      if (cfa_store_reg == STACK_POINTER_REGNUM)
		cfa_store_offset += offset;
	    }
	  else
	    {
	      /* Initializing the store base register.  */
	      assert (GET_CODE (src) == PLUS);
	      assert (XEXP (src, 1) == stack_pointer_rtx);
	      assert (GET_CODE (XEXP (src, 0)) == REG
		      && REGNO (XEXP (src, 0)) == cfa_temp_reg);
	      assert (cfa_reg == STACK_POINTER_REGNUM);
	      cfa_store_reg = REGNO (dest);
	      cfa_store_offset = cfa_offset - cfa_temp_value;
	    }
	  break;

	case CONST_INT:
	  cfa_temp_reg = REGNO (dest);
	  cfa_temp_value = INTVAL (src);
	  break;

	case IOR:
	  assert (GET_CODE (XEXP (src, 0)) == REG
		  && REGNO (XEXP (src, 0)) == cfa_temp_reg);
	  assert (REGNO (dest) == cfa_temp_reg);
	  assert (GET_CODE (XEXP (src, 1)) == CONST_INT);
	  cfa_temp_value |= INTVAL (XEXP (src, 1));
	  break;

	default:
	  abort ();
	}
      dwarf2out_def_cfa (label, cfa_reg, cfa_offset);
      break;

    case MEM:
      /* Saving a register to the stack.  Make sure dest is relative to the
         CFA register.  */
      assert (GET_CODE (src) == REG);
      switch (GET_CODE (XEXP (dest, 0)))
	{
	  /* With a push.  */
	case PRE_INC:
	case PRE_DEC:
	  offset = GET_MODE_SIZE (GET_MODE (dest));
	  if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
	    offset = -offset;

	  assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM);
	  assert (cfa_store_reg == STACK_POINTER_REGNUM);
	  cfa_store_offset += offset;
	  if (cfa_reg == STACK_POINTER_REGNUM)
	    cfa_offset = cfa_store_offset;

	  offset = -cfa_store_offset;
	  break;

	  /* With an offset.  */
	case PLUS:
	case MINUS:
	  offset = INTVAL (XEXP (XEXP (dest, 0), 1));
	  if (GET_CODE (src) == MINUS)
	    offset = -offset;

	  assert (cfa_store_reg == REGNO (XEXP (XEXP (dest, 0), 0)));
	  offset -= cfa_store_offset;
	  break;

	default:
	  abort ();
	}
      dwarf2out_def_cfa (label, cfa_reg, cfa_offset);
      dwarf2out_reg_save (label, REGNO (src), offset);
      break;

    default:
      abort ();
    }
}

/* Return the size of an unsigned LEB128 quantity.  */

static inline unsigned long
size_of_uleb128 (value)
     register unsigned long value;
{
  register unsigned long size = 0;
  register unsigned byte;

  do
    {
      byte = (value & 0x7f);
      value >>= 7;
      size += 1;
    }
  while (value != 0);

  return size;
}

/* Return the size of a signed LEB128 quantity.  */

static inline unsigned long
size_of_sleb128 (value)
     register long value;
{
  register unsigned long size = 0;
  register unsigned byte;

  do
    {
      byte = (value & 0x7f);
      value >>= 7;
      size += 1;
    }
  while (!(((value == 0) && ((byte & 0x40) == 0))
	   || ((value == -1) && ((byte & 0x40) != 0))));

  return size;
}

/* Output an unsigned LEB128 quantity.  */

static void
output_uleb128 (value)
     register unsigned long value;
{
  unsigned long save_value = value;

  fprintf (asm_out_file, "\t%s\t", ASM_BYTE_OP);
  do
    {
      register unsigned byte = (value & 0x7f);
      value >>= 7;
      if (value != 0)
	/* More bytes to follow.  */
	byte |= 0x80;

      fprintf (asm_out_file, "0x%x", byte);
      if (value != 0)
	fprintf (asm_out_file, ",");
    }
  while (value != 0);

  if (flag_debug_asm)
    fprintf (asm_out_file, "\t%s ULEB128 0x%x", ASM_COMMENT_START, save_value);
}

/* Output an signed LEB128 quantity.  */

static void
output_sleb128 (value)
     register long value;
{
  register int more;
  register unsigned byte;
  long save_value = value;

  fprintf (asm_out_file, "\t%s\t", ASM_BYTE_OP);
  do
    {
      byte = (value & 0x7f);
      /* arithmetic shift */
      value >>= 7;
      more = !((((value == 0) && ((byte & 0x40) == 0))
		|| ((value == -1) && ((byte & 0x40) != 0))));
      if (more)
	byte |= 0x80;

      fprintf (asm_out_file, "0x%x", byte);
      if (more)
	fprintf (asm_out_file, ",");
    }

  while (more);
  if (flag_debug_asm)
    fprintf (asm_out_file, "\t%s SLEB128 %d", ASM_COMMENT_START, save_value);
}

/* Output a Call Frame Information opcode and its operand(s).  */

static void
output_cfi (cfi, fde)
     register dw_cfi_ref cfi;
     register dw_fde_ref fde;
{
  if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
    {
      ASM_OUTPUT_DWARF_DATA1 (asm_out_file,
			      cfi->dw_cfi_opc
			      | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f));
      if (flag_debug_asm)
	fprintf (asm_out_file, "\t%s DW_CFA_advance_loc 0x%x",
		 ASM_COMMENT_START, cfi->dw_cfi_oprnd1.dw_cfi_offset);
      fputc ('\n', asm_out_file);
    }

  else if (cfi->dw_cfi_opc == DW_CFA_offset)
    {
      ASM_OUTPUT_DWARF_DATA1 (asm_out_file,
			      cfi->dw_cfi_opc
			      | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f));
      if (flag_debug_asm)
	fprintf (asm_out_file, "\t%s DW_CFA_offset, column 0x%x",
		 ASM_COMMENT_START, cfi->dw_cfi_oprnd1.dw_cfi_reg_num);

      fputc ('\n', asm_out_file);
      output_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset);
      fputc ('\n', asm_out_file);
    }
  else if (cfi->dw_cfi_opc == DW_CFA_restore)
    {
      ASM_OUTPUT_DWARF_DATA1 (asm_out_file,
			      cfi->dw_cfi_opc
			      | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f));
      if (flag_debug_asm)
	fprintf (asm_out_file, "\t%s DW_CFA_restore, column 0x%x",
		 ASM_COMMENT_START, cfi->dw_cfi_oprnd1.dw_cfi_reg_num);

      fputc ('\n', asm_out_file);
    }
  else
    {
      ASM_OUTPUT_DWARF_DATA1 (asm_out_file, cfi->dw_cfi_opc);
      if (flag_debug_asm)
	fprintf (asm_out_file, "\t%s %s", ASM_COMMENT_START,
		 dwarf_cfi_name (cfi->dw_cfi_opc));

      fputc ('\n', asm_out_file);
      switch (cfi->dw_cfi_opc)
	{
	case DW_CFA_set_loc:
          ASM_OUTPUT_DWARF_ADDR (asm_out_file, cfi->dw_cfi_oprnd1.dw_cfi_addr);
          fputc ('\n', asm_out_file);
	  break;
	case DW_CFA_advance_loc1:
	  /* TODO: not currently implemented.  */
	  abort ();
	  break;
	case DW_CFA_advance_loc2:
          ASM_OUTPUT_DWARF_DELTA2 (asm_out_file,
				   cfi->dw_cfi_oprnd1.dw_cfi_addr,
				   fde->dw_fde_current_label);
          fputc ('\n', asm_out_file);
	  fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
	  break;
	case DW_CFA_advance_loc4:
          ASM_OUTPUT_DWARF_DELTA4 (asm_out_file,
				   cfi->dw_cfi_oprnd1.dw_cfi_addr,
				   fde->dw_fde_current_label);
          fputc ('\n', asm_out_file);
	  fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
	  break;
#ifdef MIPS_DEBUGGING_INFO
	case DW_CFA_MIPS_advance_loc8:
	  /* TODO: not currently implemented.  */
	  abort ();
	  break;
#endif
	case DW_CFA_offset_extended:
	case DW_CFA_def_cfa:
	  output_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
          fputc ('\n', asm_out_file);
	  output_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset);
          fputc ('\n', asm_out_file);
	  break;
	case DW_CFA_restore_extended:
	case DW_CFA_undefined:
	  output_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
          fputc ('\n', asm_out_file);
	  break;
	case DW_CFA_same_value:
	case DW_CFA_def_cfa_register:
	  output_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
          fputc ('\n', asm_out_file);
	  break;
	case DW_CFA_register:
	  output_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
          fputc ('\n', asm_out_file);
	  output_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_reg_num);
          fputc ('\n', asm_out_file);
	  break;
	case DW_CFA_def_cfa_offset:
	  output_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset);
          fputc ('\n', asm_out_file);
	  break;
	case DW_CFA_GNU_window_save:
	  break;
	case DW_CFA_GNU_args_size:
	  output_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset);
          fputc ('\n', asm_out_file);
	  break;
	default:
	  break;
	}
     }
}

#if !defined (EH_FRAME_SECTION)
#if defined (EH_FRAME_SECTION_ASM_OP)
#define EH_FRAME_SECTION() eh_frame_section();
#else
#if defined (ASM_OUTPUT_SECTION_NAME)
#define EH_FRAME_SECTION()				\
  do {							\
      named_section (NULL_TREE, ".eh_frame", 0);	\
  } while (0)
#endif
#endif
#endif

/* Output the call frame information used to used to record information
   that relates to calculating the frame pointer, and records the
   location of saved registers.  */

static void
output_call_frame_info (for_eh)
     int for_eh;
{
  register unsigned long i, j;
  register dw_fde_ref fde;
  register unsigned long fde_size;
  register dw_cfi_ref cfi;
  unsigned long fde_pad;
  char l1[20], l2[20];
#ifdef ASM_OUTPUT_DEFINE_LABEL_DIFFERENCE_SYMBOL
  char ld[20];
#endif

  /* Do we want to include a pointer to the exception table?  */
  int eh_ptr = for_eh && exception_table_p ();

  fputc ('\n', asm_out_file);

  /* We're going to be generating comments, so turn on app.  */
  if (flag_debug_asm)
    app_enable ();

  if (for_eh)
    {
#ifdef EH_FRAME_SECTION
      EH_FRAME_SECTION ();
#else
      tree label = get_file_function_name ('F');

      data_section ();
      ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
      ASM_GLOBALIZE_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
      ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
#endif
      assemble_label ("__FRAME_BEGIN__");
    }
  else
    ASM_OUTPUT_SECTION (asm_out_file, FRAME_SECTION);

  /* Output the CIE. */
  ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
  ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
#ifdef ASM_OUTPUT_DEFINE_LABEL_DIFFERENCE_SYMBOL
  ASM_GENERATE_INTERNAL_LABEL (ld, CIE_LENGTH_LABEL, for_eh);
  if (for_eh)
    ASM_OUTPUT_DWARF_VALUE4 (asm_out_file, ld);
  else
    ASM_OUTPUT_DWARF_OFFSET (asm_out_file, ld);
#else
  if (for_eh)
    ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, l2, l1);
  else
    ASM_OUTPUT_DWARF_DELTA (asm_out_file, l2, l1);
#endif
  if (flag_debug_asm)
    fprintf (asm_out_file, "\t%s Length of Common Information Entry",
	     ASM_COMMENT_START);

  fputc ('\n', asm_out_file);
  ASM_OUTPUT_LABEL (asm_out_file, l1);

  if (for_eh)
    /* Now that the CIE pointer is PC-relative for EH,
       use 0 to identify the CIE.  */
    ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
  else
    ASM_OUTPUT_DWARF_DATA4 (asm_out_file, DW_CIE_ID);

  if (flag_debug_asm)
    fprintf (asm_out_file, "\t%s CIE Identifier Tag", ASM_COMMENT_START);

  fputc ('\n', asm_out_file);
  if (! for_eh && DWARF_OFFSET_SIZE == 8)
    {
      ASM_OUTPUT_DWARF_DATA4 (asm_out_file, DW_CIE_ID);
      fputc ('\n', asm_out_file);
    }

  ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DW_CIE_VERSION);
  if (flag_debug_asm)
    fprintf (asm_out_file, "\t%s CIE Version", ASM_COMMENT_START);

  fputc ('\n', asm_out_file);
  if (eh_ptr)
    {
      /* The CIE contains a pointer to the exception region info for the
         frame.  Make the augmentation string three bytes (including the
         trailing null) so the pointer is 4-byte aligned.  The Solaris ld
         can't handle unaligned relocs.  */
      if (flag_debug_asm)
	{
	  ASM_OUTPUT_DWARF_STRING (asm_out_file, "eh");
	  fprintf (asm_out_file, "\t%s CIE Augmentation", ASM_COMMENT_START);
	}
      else
	{
	  ASM_OUTPUT_ASCII (asm_out_file, "eh", 3);
	}
      fputc ('\n', asm_out_file);

      ASM_OUTPUT_DWARF_ADDR (asm_out_file, "__EXCEPTION_TABLE__");
      if (flag_debug_asm)
	fprintf (asm_out_file, "\t%s pointer to exception region info",
		 ASM_COMMENT_START);
    }
  else
    {
      ASM_OUTPUT_DWARF_DATA1 (asm_out_file, 0);
      if (flag_debug_asm)
	fprintf (asm_out_file, "\t%s CIE Augmentation (none)",
		 ASM_COMMENT_START);
    }

  fputc ('\n', asm_out_file);
  output_uleb128 (1);
  if (flag_debug_asm)
    fprintf (asm_out_file, " (CIE Code Alignment Factor)");

  fputc ('\n', asm_out_file);
  output_sleb128 (DWARF_CIE_DATA_ALIGNMENT);
  if (flag_debug_asm)
    fprintf (asm_out_file, " (CIE Data Alignment Factor)");

  fputc ('\n', asm_out_file);
  ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DWARF_FRAME_RETURN_COLUMN);
  if (flag_debug_asm)
    fprintf (asm_out_file, "\t%s CIE RA Column", ASM_COMMENT_START);

  fputc ('\n', asm_out_file);

  for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
    output_cfi (cfi, NULL);

  /* Pad the CIE out to an address sized boundary.  */
  ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
  ASM_OUTPUT_LABEL (asm_out_file, l2);
#ifdef ASM_OUTPUT_DEFINE_LABEL_DIFFERENCE_SYMBOL
  ASM_OUTPUT_DEFINE_LABEL_DIFFERENCE_SYMBOL (asm_out_file, ld, l2, l1);
#endif

  /* Loop through all of the FDE's.  */
  for (i = 0; i < fde_table_in_use; ++i)
    {
      fde = &fde_table[i];

      ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i*2);
      ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i*2);
#ifdef ASM_OUTPUT_DEFINE_LABEL_DIFFERENCE_SYMBOL
      ASM_GENERATE_INTERNAL_LABEL (ld, FDE_LENGTH_LABEL, for_eh + i*2);
      if (for_eh)
	ASM_OUTPUT_DWARF_VALUE4 (asm_out_file, ld);
      else
	ASM_OUTPUT_DWARF_OFFSET (asm_out_file, ld);
#else
      if (for_eh)
	ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, l2, l1);
      else
	ASM_OUTPUT_DWARF_DELTA (asm_out_file, l2, l1);
#endif
      if (flag_debug_asm)
	fprintf (asm_out_file, "\t%s FDE Length", ASM_COMMENT_START);
      fputc ('\n', asm_out_file);
      ASM_OUTPUT_LABEL (asm_out_file, l1);

      if (for_eh)
	ASM_OUTPUT_DWARF_DELTA (asm_out_file, l1, "__FRAME_BEGIN__");
      else
	ASM_OUTPUT_DWARF_OFFSET (asm_out_file, stripattributes (FRAME_SECTION));
      if (flag_debug_asm)
	fprintf (asm_out_file, "\t%s FDE CIE offset", ASM_COMMENT_START);

      fputc ('\n', asm_out_file);
      ASM_OUTPUT_DWARF_ADDR (asm_out_file, fde->dw_fde_begin);
      if (flag_debug_asm)
	fprintf (asm_out_file, "\t%s FDE initial location", ASM_COMMENT_START);

      fputc ('\n', asm_out_file);
      ASM_OUTPUT_DWARF_ADDR_DELTA (asm_out_file,
				   fde->dw_fde_end, fde->dw_fde_begin);
      if (flag_debug_asm)
	fprintf (asm_out_file, "\t%s FDE address range", ASM_COMMENT_START);

      fputc ('\n', asm_out_file);

      /* Loop through the Call Frame Instructions associated with
	 this FDE.  */
      fde->dw_fde_current_label = fde->dw_fde_begin;
      for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
	output_cfi (cfi, fde);

      /* Pad the FDE out to an address sized boundary.  */
      ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
      ASM_OUTPUT_LABEL (asm_out_file, l2);
#ifdef ASM_OUTPUT_DEFINE_LABEL_DIFFERENCE_SYMBOL
      ASM_OUTPUT_DEFINE_LABEL_DIFFERENCE_SYMBOL (asm_out_file, ld, l2, l1);
#endif
    }
#ifndef EH_FRAME_SECTION
  if (for_eh)
    {
      /* Emit terminating zero for table.  */
      ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
      fputc ('\n', asm_out_file);
    }
#endif
#ifdef MIPS_DEBUGGING_INFO
  /* Work around Irix 6 assembler bug whereby labels at the end of a section
     get a value of 0.  Putting .align 0 after the label fixes it.  */
  ASM_OUTPUT_ALIGN (asm_out_file, 0);
#endif

  /* Turn off app to make assembly quicker.  */
  if (flag_debug_asm)
    app_disable ();
}

/* Output a marker (i.e. a label) for the beginning of a function, before
   the prologue.  */

void
dwarf2out_begin_prologue ()
{
  char label[MAX_ARTIFICIAL_LABEL_BYTES];
  register dw_fde_ref fde;

  ++current_funcdef_number;

  function_section (current_function_decl);
  ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
			       current_funcdef_number);
  ASM_OUTPUT_LABEL (asm_out_file, label);

  /* Expand the fde table if necessary.  */
  if (fde_table_in_use == fde_table_allocated)
    {
      fde_table_allocated += FDE_TABLE_INCREMENT;
      fde_table
	= (dw_fde_ref) xrealloc (fde_table,
				 fde_table_allocated * sizeof (dw_fde_node));
    }

  /* Record the FDE associated with this function.  */
  current_funcdef_fde = fde_table_in_use;

  /* Add the new FDE at the end of the fde_table.  */
  fde = &fde_table[fde_table_in_use++];
  fde->dw_fde_begin = xstrdup (label);
  fde->dw_fde_current_label = NULL;
  fde->dw_fde_end = NULL;
  fde->dw_fde_cfi = NULL;

  args_size = 0;
}

/* Output a marker (i.e. a label) for the absolute end of the generated code
   for a function definition.  This gets called *after* the epilogue code has
   been generated.  */

void
dwarf2out_end_epilogue ()
{
  dw_fde_ref fde;
  char label[MAX_ARTIFICIAL_LABEL_BYTES];

  /* Output a label to mark the endpoint of the code generated for this
     function.        */
  ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL, current_funcdef_number);
  ASM_OUTPUT_LABEL (asm_out_file, label);
  fde = &fde_table[fde_table_in_use - 1];
  fde->dw_fde_end = xstrdup (label);
}

void
dwarf2out_frame_init ()
{
  /* Allocate the initial hunk of the fde_table.  */
  fde_table
    = (dw_fde_ref) xmalloc (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
  bzero ((char *) fde_table, FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
  fde_table_allocated = FDE_TABLE_INCREMENT;
  fde_table_in_use = 0;

  /* Generate the CFA instructions common to all FDE's.  Do it now for the
     sake of lookup_cfa.  */

#ifdef DWARF2_UNWIND_INFO
  /* On entry, the Canonical Frame Address is at SP.  */
  dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
  initial_return_save (INCOMING_RETURN_ADDR_RTX);
#endif
}

void
dwarf2out_frame_finish ()
{
  /* Output call frame information.  */
#ifdef MIPS_DEBUGGING_INFO
  if (write_symbols == DWARF2_DEBUG)
    output_call_frame_info (0);
  if (flag_exceptions && ! exceptions_via_longjmp)
    output_call_frame_info (1);
#else
  if (write_symbols == DWARF2_DEBUG
      || (flag_exceptions && ! exceptions_via_longjmp))
    output_call_frame_info (1);  
#endif
}  

#endif /* .debug_frame support */

/* And now, the support for symbolic debugging information.  */
#ifdef DWARF2_DEBUGGING_INFO

extern char *getpwd ();

/* NOTE: In the comments in this file, many references are made to
   "Debugging Information Entries".  This term is abbreviated as `DIE'
   throughout the remainder of this file.  */

/* An internal representation of the DWARF output is built, and then
   walked to generate the DWARF debugging info.  The walk of the internal
   representation is done after the entire program has been compiled.
   The types below are used to describe the internal representation.  */

/* Each DIE may have a series of attribute/value pairs.  Values
   can take on several forms.  The forms that are used in this
   implementation are listed below.  */

typedef enum
{
  dw_val_class_addr,
  dw_val_class_loc,
  dw_val_class_const,
  dw_val_class_unsigned_const,
  dw_val_class_long_long,
  dw_val_class_float,
  dw_val_class_flag,
  dw_val_class_die_ref,
  dw_val_class_fde_ref,
  dw_val_class_lbl_id,
  dw_val_class_section_offset,
  dw_val_class_str
}
dw_val_class;

/* Various DIE's use offsets relative to the beginning of the
   .debug_info section to refer to each other.  */

typedef long int dw_offset;

/* Define typedefs here to avoid circular dependencies.  */

typedef struct die_struct *dw_die_ref;
typedef struct dw_attr_struct *dw_attr_ref;
typedef struct dw_val_struct *dw_val_ref;
typedef struct dw_line_info_struct *dw_line_info_ref;
typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
typedef struct pubname_struct *pubname_ref;
typedef dw_die_ref *arange_ref;

/* Describe a double word constant value.  */

typedef struct dw_long_long_struct
{
  unsigned long hi;
  unsigned long low;
}
dw_long_long_const;

/* Describe a floating point constant value.  */

typedef struct dw_fp_struct
{
  long *array;
  unsigned length;
}
dw_float_const;

/* Each entry in the line_info_table maintains the file and
   line number associated with the label generated for that
   entry.  The label gives the PC value associated with
   the line number entry.  */

typedef struct dw_line_info_struct
{
  unsigned long dw_file_num;
  unsigned long dw_line_num;
}
dw_line_info_entry;

/* Line information for functions in separate sections; each one gets its
   own sequence.  */
typedef struct dw_separate_line_info_struct
{
  unsigned long dw_file_num;
  unsigned long dw_line_num;
  unsigned long function;
}
dw_separate_line_info_entry;

/* The dw_val_node describes an attribute's value, as it is
   represented internally.  */

typedef struct dw_val_struct
{
  dw_val_class val_class;
  union
    {
      char *val_addr;
      dw_loc_descr_ref val_loc;
      long int val_int;
      long unsigned val_unsigned;
      dw_long_long_const val_long_long;
      dw_float_const val_float;
      dw_die_ref val_die_ref;
      unsigned val_fde_index;
      char *val_str;
      char *val_lbl_id;
      char *val_section;
      unsigned char val_flag;
    }
  v;
}
dw_val_node;

/* Locations in memory are described using a sequence of stack machine
   operations.  */

typedef struct dw_loc_descr_struct
{
  dw_loc_descr_ref dw_loc_next;
  enum dwarf_location_atom dw_loc_opc;
  dw_val_node dw_loc_oprnd1;
  dw_val_node dw_loc_oprnd2;
}
dw_loc_descr_node;

/* Each DIE attribute has a field specifying the attribute kind,
   a link to the next attribute in the chain, and an attribute value.
   Attributes are typically linked below the DIE they modify.  */

typedef struct dw_attr_struct
{
  enum dwarf_attribute dw_attr;
  dw_attr_ref dw_attr_next;
  dw_val_node dw_attr_val;
}
dw_attr_node;

/* The Debugging Information Entry (DIE) structure */

typedef struct die_struct
{
  enum dwarf_tag die_tag;
  dw_attr_ref die_attr;
  dw_attr_ref die_attr_last;
  dw_die_ref die_parent;
  dw_die_ref die_child;
  dw_die_ref die_child_last;
  dw_die_ref die_sib;
  dw_offset die_offset;
  unsigned long die_abbrev;
}
die_node;

/* The pubname structure */

typedef struct pubname_struct
{
  dw_die_ref die;
  char * name;
}
pubname_entry;

/* The limbo die list structure.  */
typedef struct limbo_die_struct
{
  dw_die_ref die;
  struct limbo_die_struct *next;
}
limbo_die_node;

/* How to start an assembler comment.  */
#ifndef ASM_COMMENT_START
#define ASM_COMMENT_START ";#"
#endif

/* Define a macro which returns non-zero for a TYPE_DECL which was
   implicitly generated for a tagged type.

   Note that unlike the gcc front end (which generates a NULL named
   TYPE_DECL node for each complete tagged type, each array type, and
   each function type node created) the g++ front end generates a
   _named_ TYPE_DECL node for each tagged type node created.
   These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
   generate a DW_TAG_typedef DIE for them.  */

#define TYPE_DECL_IS_STUB(decl)				\
  (DECL_NAME (decl) == NULL_TREE			\
   || (DECL_ARTIFICIAL (decl)				\
       && is_tagged_type (TREE_TYPE (decl))		\
       && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl)))	\
	   /* This is necessary for stub decls that	\
	      appear in nested inline functions.  */	\
	   || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE	\
	       && (decl_ultimate_origin (decl)		\
		   == TYPE_STUB_DECL (TREE_TYPE (decl)))))))

/* Information concerning the compilation unit's programming
   language, and compiler version.  */

extern int flag_traditional;
extern char *version_string;
extern char *language_string;

/* Fixed size portion of the DWARF compilation unit header.  */
#define DWARF_COMPILE_UNIT_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 3)

/* Fixed size portion of debugging line information prolog.  */
#define DWARF_LINE_PROLOG_HEADER_SIZE 5

/* Fixed size portion of public names info.  */
#define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)

/* Fixed size portion of the address range info.  */
#define DWARF_ARANGES_HEADER_SIZE \
  (DWARF_ROUND (2 * DWARF_OFFSET_SIZE + 4, PTR_SIZE * 2) - DWARF_OFFSET_SIZE)

/* Define the architecture-dependent minimum instruction length (in bytes).
   In this implementation of DWARF, this field is used for information
   purposes only.  Since GCC generates assembly language, we have
   no a priori knowledge of how many instruction bytes are generated
   for each source line, and therefore can use only the  DW_LNE_set_address
   and DW_LNS_fixed_advance_pc line information commands.  */

#ifndef DWARF_LINE_MIN_INSTR_LENGTH
#define DWARF_LINE_MIN_INSTR_LENGTH 4
#endif

/* Minimum line offset in a special line info. opcode.
   This value was chosen to give a reasonable range of values.  */
#define DWARF_LINE_BASE  -10

/* First special line opcde - leave room for the standard opcodes.  */
#define DWARF_LINE_OPCODE_BASE  10

/* Range of line offsets in a special line info. opcode.  */
#define DWARF_LINE_RANGE  (254-DWARF_LINE_OPCODE_BASE+1)

/* Flag that indicates the initial value of the is_stmt_start flag.
   In the present implementation, we do not mark any lines as
   the beginning of a source statement, because that information
   is not made available by the GCC front-end.  */
#define	DWARF_LINE_DEFAULT_IS_STMT_START 1

/* This location is used by calc_die_sizes() to keep track
   the offset of each DIE within the .debug_info section.  */
static unsigned long next_die_offset;

/* Record the root of the DIE's built for the current compilation unit.  */
static dw_die_ref comp_unit_die;

/* A list of DIEs with a NULL parent waiting to be relocated.  */
static limbo_die_node *limbo_die_list = 0;

/* Pointer to an array of filenames referenced by this compilation unit.  */
static char **file_table;

/* Total number of entries in the table (i.e. array) pointed to by
   `file_table'.  This is the *total* and includes both used and unused
   slots.  */
static unsigned file_table_allocated;

/* Number of entries in the file_table which are actually in use.  */
static unsigned file_table_in_use;

/* Size (in elements) of increments by which we may expand the filename
   table.  */
#define FILE_TABLE_INCREMENT 64

/* Local pointer to the name of the main input file.  Initialized in
   dwarf2out_init.  */
static char *primary_filename;

/* For Dwarf output, we must assign lexical-blocks id numbers in the order in
   which their beginnings are encountered. We output Dwarf debugging info
   that refers to the beginnings and ends of the ranges of code for each
   lexical block.  The labels themselves are generated in final.c, which
   assigns numbers to the blocks in the same way.  */
static unsigned next_block_number = 2;

/* A pointer to the base of a table of references to DIE's that describe
   declarations.  The table is indexed by DECL_UID() which is a unique
   number identifying each decl.  */
static dw_die_ref *decl_die_table;

/* Number of elements currently allocated for the decl_die_table.  */
static unsigned decl_die_table_allocated;

/* Number of elements in decl_die_table currently in use.  */
static unsigned decl_die_table_in_use;

/* Size (in elements) of increments by which we may expand the
   decl_die_table.  */
#define DECL_DIE_TABLE_INCREMENT 256

/* A pointer to the base of a table of references to declaration
   scopes.  This table is a display which tracks the nesting
   of declaration scopes at the current scope and containing
   scopes.  This table is used to find the proper place to
   define type declaration DIE's.  */
static tree *decl_scope_table;

/* Number of elements currently allocated for the decl_scope_table.  */
static unsigned decl_scope_table_allocated;

/* Current level of nesting of declaration scopes.  */
static unsigned decl_scope_depth;

/* Size (in elements) of increments by which we may expand the
   decl_scope_table.  */
#define DECL_SCOPE_TABLE_INCREMENT 64

/* A pointer to the base of a list of references to DIE's that
   are uniquely identified by their tag, presence/absence of
   children DIE's, and list of attribute/value pairs.  */
static dw_die_ref *abbrev_die_table;

/* Number of elements currently allocated for abbrev_die_table.  */
static unsigned abbrev_die_table_allocated;

/* Number of elements in type_die_table currently in use.  */
static unsigned abbrev_die_table_in_use;

/* Size (in elements) of increments by which we may expand the
   abbrev_die_table.  */
#define ABBREV_DIE_TABLE_INCREMENT 256

/* A pointer to the base of a table that contains line information
   for each source code line in .text in the compilation unit.  */
static dw_line_info_ref line_info_table;

/* Number of elements currently allocated for line_info_table.  */
static unsigned line_info_table_allocated;

/* Number of elements in separate_line_info_table currently in use.  */
static unsigned separate_line_info_table_in_use;

/* A pointer to the base of a table that contains line information
   for each source code line outside of .text in the compilation unit.  */
static dw_separate_line_info_ref separate_line_info_table;

/* Number of elements currently allocated for separate_line_info_table.  */
static unsigned separate_line_info_table_allocated;

/* Number of elements in line_info_table currently in use.  */
static unsigned line_info_table_in_use;

/* Size (in elements) of increments by which we may expand the
   line_info_table.  */
#define LINE_INFO_TABLE_INCREMENT 1024

/* A pointer to the base of a table that contains a list of publicly
   accessible names.  */
static pubname_ref pubname_table;

/* Number of elements currently allocated for pubname_table.  */
static unsigned pubname_table_allocated;

/* Number of elements in pubname_table currently in use.  */
static unsigned pubname_table_in_use;

/* Size (in elements) of increments by which we may expand the
   pubname_table.  */
#define PUBNAME_TABLE_INCREMENT 64

/* A pointer to the base of a table that contains a list of publicly
   accessible names.  */
static arange_ref arange_table;

/* Number of elements currently allocated for arange_table.  */
static unsigned arange_table_allocated;

/* Number of elements in arange_table currently in use.  */
static unsigned arange_table_in_use;

/* Size (in elements) of increments by which we may expand the
   arange_table.  */
#define ARANGE_TABLE_INCREMENT 64

/* A pointer to the base of a list of pending types which we haven't
   generated DIEs for yet, but which we will have to come back to
   later on.  */

static tree *pending_types_list;

/* Number of elements currently allocated for the pending_types_list.  */
static unsigned pending_types_allocated;

/* Number of elements of pending_types_list currently in use.  */
static unsigned pending_types;

/* Size (in elements) of increments by which we may expand the pending
   types list.  Actually, a single hunk of space of this size should
   be enough for most typical programs.	 */
#define PENDING_TYPES_INCREMENT 64

/* Record whether the function being analyzed contains inlined functions.  */
static int current_function_has_inlines;
static int comp_unit_has_inlines;

/* A pointer to the ..._DECL node which we have most recently been working
   on.  We keep this around just in case something about it looks screwy and
   we want to tell the user what the source coordinates for the actual
   declaration are.  */
static tree dwarf_last_decl;

/* Forward declarations for functions defined in this file.  */

static void addr_const_to_string	PROTO((dyn_string_t, rtx));
static char *addr_to_string		PROTO((rtx));
static int is_pseudo_reg		PROTO((rtx));
static tree type_main_variant		PROTO((tree));
static int is_tagged_type		PROTO((tree));
static char *dwarf_tag_name		PROTO((unsigned));
static char *dwarf_attr_name		PROTO((unsigned));
static char *dwarf_form_name		PROTO((unsigned));
static char *dwarf_stack_op_name	PROTO((unsigned));
static char *dwarf_type_encoding_name	PROTO((unsigned));
static tree decl_ultimate_origin	PROTO((tree));
static tree block_ultimate_origin	PROTO((tree));
static tree decl_class_context		PROTO((tree));
static void add_dwarf_attr		PROTO((dw_die_ref, dw_attr_ref));
static void add_AT_flag			PROTO((dw_die_ref,
					       enum dwarf_attribute,
					       unsigned));
static void add_AT_int			PROTO((dw_die_ref,
					       enum dwarf_attribute, long));
static void add_AT_unsigned		PROTO((dw_die_ref,
					       enum dwarf_attribute,
					       unsigned long));
static void add_AT_long_long		PROTO((dw_die_ref,
					       enum dwarf_attribute,
					       unsigned long, unsigned long));
static void add_AT_float		PROTO((dw_die_ref,
					       enum dwarf_attribute,
					       unsigned, long *));
static void add_AT_string		PROTO((dw_die_ref,
					       enum dwarf_attribute, char *));
static void add_AT_die_ref		PROTO((dw_die_ref,
					       enum dwarf_attribute,
					       dw_die_ref));
static void add_AT_fde_ref		PROTO((dw_die_ref,
					       enum dwarf_attribute,
					       unsigned));
static void add_AT_loc			PROTO((dw_die_ref,
					       enum dwarf_attribute,
					       dw_loc_descr_ref));
static void add_AT_addr			PROTO((dw_die_ref,
					       enum dwarf_attribute, char *));
static void add_AT_lbl_id		PROTO((dw_die_ref,
					       enum dwarf_attribute, char *));
static void add_AT_section_offset	PROTO((dw_die_ref,
					       enum dwarf_attribute, char *));
static int is_extern_subr_die		PROTO((dw_die_ref));
static dw_attr_ref get_AT		PROTO((dw_die_ref,
					       enum dwarf_attribute));
static char *get_AT_low_pc		PROTO((dw_die_ref));
static char *get_AT_hi_pc		PROTO((dw_die_ref));
static char *get_AT_string		PROTO((dw_die_ref,
					       enum dwarf_attribute));
static int get_AT_flag			PROTO((dw_die_ref,
					       enum dwarf_attribute));
static unsigned get_AT_unsigned		PROTO((dw_die_ref,
					       enum dwarf_attribute));
static int is_c_family			PROTO((void));
static int is_fortran			PROTO((void));
static void remove_AT			PROTO((dw_die_ref,
					       enum dwarf_attribute));
static void remove_children		PROTO((dw_die_ref));
static void add_child_die		PROTO((dw_die_ref, dw_die_ref));
static dw_die_ref new_die		PROTO((enum dwarf_tag, dw_die_ref));
static dw_die_ref lookup_type_die	PROTO((tree));
static void equate_type_number_to_die	PROTO((tree, dw_die_ref));
static dw_die_ref lookup_decl_die	PROTO((tree));
static void equate_decl_number_to_die	PROTO((tree, dw_die_ref));
static dw_loc_descr_ref new_loc_descr	PROTO((enum dwarf_location_atom,
					       unsigned long, unsigned long));
static void add_loc_descr		PROTO((dw_loc_descr_ref *,
					       dw_loc_descr_ref));
static void print_spaces		PROTO((FILE *));
static void print_die			PROTO((dw_die_ref, FILE *));
static void print_dwarf_line_table	PROTO((FILE *));
static void add_sibling_attributes	PROTO((dw_die_ref));
static void build_abbrev_table		PROTO((dw_die_ref));
static unsigned long size_of_string	PROTO((char *));
static unsigned long size_of_loc_descr	PROTO((dw_loc_descr_ref));
static unsigned long size_of_locs	PROTO((dw_loc_descr_ref));
static int constant_size		PROTO((long unsigned));
static unsigned long size_of_die	PROTO((dw_die_ref));
static void calc_die_sizes		PROTO((dw_die_ref));
static unsigned long size_of_prolog	PROTO((void));
static unsigned long size_of_line_info	PROTO((void));
static unsigned long size_of_pubnames	PROTO((void));
static unsigned long size_of_aranges	PROTO((void));
static enum dwarf_form value_format	PROTO((dw_val_ref));
static void output_value_format		PROTO((dw_val_ref));
static void output_abbrev_section	PROTO((void));
static void output_loc_operands		PROTO((dw_loc_descr_ref));
static unsigned long sibling_offset	PROTO((dw_die_ref));
static void output_die			PROTO((dw_die_ref));
static void output_compilation_unit_header PROTO((void));
static char *dwarf2_name		PROTO((tree, int));
static void add_pubname			PROTO((tree, dw_die_ref));
static void output_pubnames		PROTO((void));
static void add_arrange			PROTO((tree, dw_die_ref));
static void output_arranges		PROTO((void));
static void output_line_info		PROTO((void));
static int is_body_block		PROTO((tree));
static dw_die_ref base_type_die		PROTO((tree));
static tree root_type			PROTO((tree));
static int is_base_type			PROTO((tree));
static dw_die_ref modified_type_die	PROTO((tree, int, int, dw_die_ref));
static int type_is_enum			PROTO((tree));
static dw_loc_descr_ref reg_loc_descriptor PROTO((rtx));
static dw_loc_descr_ref based_loc_descr	PROTO((unsigned, long));
static int is_based_loc			PROTO((rtx));
static dw_loc_descr_ref mem_loc_descriptor PROTO((rtx));
static dw_loc_descr_ref concat_loc_descriptor PROTO((rtx, rtx));
static dw_loc_descr_ref loc_descriptor	PROTO((rtx));
static unsigned ceiling			PROTO((unsigned, unsigned));
static tree field_type			PROTO((tree));
static unsigned simple_type_align_in_bits PROTO((tree));
static unsigned simple_type_size_in_bits PROTO((tree));
static unsigned field_byte_offset		PROTO((tree));
static void add_AT_location_description	PROTO((dw_die_ref,
					       enum dwarf_attribute, rtx));
static void add_data_member_location_attribute PROTO((dw_die_ref, tree));
static void add_const_value_attribute	PROTO((dw_die_ref, rtx));
static void add_location_or_const_value_attribute PROTO((dw_die_ref, tree));
static void add_name_attribute		PROTO((dw_die_ref, char *));
static void add_bound_info		PROTO((dw_die_ref,
					       enum dwarf_attribute, tree));
static void add_subscript_info		PROTO((dw_die_ref, tree));
static void add_byte_size_attribute	PROTO((dw_die_ref, tree));
static void add_bit_offset_attribute	PROTO((dw_die_ref, tree));
static void add_bit_size_attribute	PROTO((dw_die_ref, tree));
static void add_prototyped_attribute	PROTO((dw_die_ref, tree));
static void add_abstract_origin_attribute PROTO((dw_die_ref, tree));
static void add_pure_or_virtual_attribute PROTO((dw_die_ref, tree));
static void add_src_coords_attributes	PROTO((dw_die_ref, tree));
static void ad_name_and_src_coords_attributes PROTO((dw_die_ref, tree));
static void push_decl_scope		PROTO((tree));
static dw_die_ref scope_die_for		PROTO((tree, dw_die_ref));
static void pop_decl_scope		PROTO((void));
static void add_type_attribute		PROTO((dw_die_ref, tree, int, int,
					       dw_die_ref));
static char *type_tag			PROTO((tree));
static tree member_declared_type	PROTO((tree));
static char *decl_start_label		PROTO((tree));
static void gen_arrqay_type_die		PROTO((tree, dw_die_ref));
static void gen_set_type_die		PROTO((tree, dw_die_ref));
static void gen_entry_point_die		PROTO((tree, dw_die_ref));
static void pend_type			PROTO((tree));
static void output_pending_types_for_scope PROTO((dw_die_ref));
static void gen_inlined_enumeration_type_die PROTO((tree, dw_die_ref));
static void gen_inlined_structure_type_die PROTO((tree, dw_die_ref));
static void gen_inlined_union_type_die	PROTO((tree, dw_die_ref));
static void gen_enumeration_type_die	PROTO((tree, dw_die_ref));
static dw_die_ref gen_formal_parameter_die PROTO((tree, dw_die_ref));
static void gen_unspecified_parameters_die PROTO((tree, dw_die_ref));
static void gen_formal_types_die	PROTO((tree, dw_die_ref));
static void gen_subprogram_die		PROTO((tree, dw_die_ref));
static void gen_variable_die		PROTO((tree, dw_die_ref));
static void gen_label_die		PROTO((tree, dw_die_ref));
static void gen_lexical_block_die	PROTO((tree, dw_die_ref, int));
static void gen_inlined_subprogram_die	PROTO((tree, dw_die_ref, int));
static void gen_field_die		PROTO((tree, dw_die_ref));
static void gen_ptr_to_mbr_type_die	PROTO((tree, dw_die_ref));
static void gen_compile_unit_die	PROTO((char *));
static void gen_string_type_die		PROTO((tree, dw_die_ref));
static void gen_inheritance_die		PROTO((tree, dw_die_ref));
static void gen_member_die		PROTO((tree, dw_die_ref));
static void gen_struct_or_union_type_die PROTO((tree, dw_die_ref));
static void gen_subroutine_type_die	PROTO((tree, dw_die_ref));
static void gen_typedef_die		PROTO((tree, dw_die_ref));
static void gen_type_die		PROTO((tree, dw_die_ref));
static void gen_tagged_type_instantiation_die PROTO((tree, dw_die_ref));
static void gen_block_die		PROTO((tree, dw_die_ref, int));
static void decls_for_scope		PROTO((tree, dw_die_ref, int));
static int is_redundant_typedef		PROTO((tree));
static void gen_decl_die		PROTO((tree, dw_die_ref));
static unsigned lookup_filename		PROTO((char *));

/* Section names used to hold DWARF debugging information.  */
#ifndef DEBUG_INFO_SECTION
#define DEBUG_INFO_SECTION	".debug_info"
#endif
#ifndef ABBREV_SECTION
#define ABBREV_SECTION		".debug_abbrev"
#endif
#ifndef ARANGES_SECTION
#define ARANGES_SECTION		".debug_aranges"
#endif
#ifndef DW_MACINFO_SECTION
#define DW_MACINFO_SECTION	".debug_macinfo"
#endif
#ifndef DEBUG_LINE_SECTION
#define DEBUG_LINE_SECTION	".debug_line"
#endif
#ifndef LOC_SECTION
#define LOC_SECTION		".debug_loc"
#endif
#ifndef PUBNAMES_SECTION
#define PUBNAMES_SECTION	".debug_pubnames"
#endif
#ifndef STR_SECTION
#define STR_SECTION		".debug_str"
#endif

/* Standard ELF section names for compiled code and data.  */
#ifndef TEXT_SECTION
#define TEXT_SECTION		".text"
#endif
#ifndef DATA_SECTION
#define DATA_SECTION		".data"
#endif
#ifndef BSS_SECTION
#define BSS_SECTION		".bss"
#endif


/* Definitions of defaults for formats and names of various special
   (artificial) labels which may be generated within this file (when the -g
   options is used and DWARF_DEBUGGING_INFO is in effect.
   If necessary, these may be overridden from within the tm.h file, but
   typically, overriding these defaults is unnecessary.  */

static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];

#ifndef TEXT_END_LABEL
#define TEXT_END_LABEL		"Letext"
#endif
#ifndef DATA_END_LABEL
#define DATA_END_LABEL		"Ledata"
#endif
#ifndef BSS_END_LABEL
#define BSS_END_LABEL           "Lebss"
#endif
#ifndef INSN_LABEL_FMT
#define INSN_LABEL_FMT		"LI%u_"
#endif
#ifndef BLOCK_BEGIN_LABEL
#define BLOCK_BEGIN_LABEL	"LBB"
#endif
#ifndef BLOCK_END_LABEL
#define BLOCK_END_LABEL		"LBE"
#endif
#ifndef BODY_BEGIN_LABEL
#define BODY_BEGIN_LABEL	"Lbb"
#endif
#ifndef BODY_END_LABEL
#define BODY_END_LABEL		"Lbe"
#endif
#ifndef LINE_CODE_LABEL
#define LINE_CODE_LABEL		"LM"
#endif
#ifndef SEPARATE_LINE_CODE_LABEL
#define SEPARATE_LINE_CODE_LABEL	"LSM"
#endif

/* Convert a reference to the assembler name of a C-level name.  This
   macro has the same effect as ASM_OUTPUT_LABELREF, but copies to
   a string rather than writing to a file.  */
#ifndef ASM_NAME_TO_STRING
#define ASM_NAME_TO_STRING(STR, NAME) \
  do {									      \
      if ((NAME)[0] == '*')						      \
	dyn_string_append (STR, NAME + 1);				      \
      else								      \
	dyn_string_append (STR, NAME);                                        \
  }                                                                           \
  while (0)
#endif

/* Convert an integer constant expression into assembler syntax.  Addition
   and subtraction are the only arithmetic that may appear in these
   expressions.   This is an adaptation of output_addr_const in final.c.
   Here, the target of the conversion is a string buffer.  We can't use
   output_addr_const directly, because it writes to a file.  */

static void
addr_const_to_string (str, x)
     dyn_string_t str;
     rtx x;
{
  char buf1[256];

restart:
  switch (GET_CODE (x))
    {
    case PC:
      if (flag_pic)
	dyn_string_append (str, ",");
      else
	abort ();
      break;

    case SYMBOL_REF:
      ASM_NAME_TO_STRING (str, XSTR (x, 0));
      break;

    case LABEL_REF:
      ASM_GENERATE_INTERNAL_LABEL (buf1, "L", CODE_LABEL_NUMBER (XEXP (x, 0)));
      ASM_NAME_TO_STRING (str, buf1);
      break;

    case CODE_LABEL:
      ASM_GENERATE_INTERNAL_LABEL (buf1, "L", CODE_LABEL_NUMBER (x));
      ASM_NAME_TO_STRING (str, buf1);
      break;

    case CONST_INT:
      sprintf (buf1, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
      dyn_string_append (str, buf1);
      break;

    case CONST:
      /* This used to output parentheses around the expression, but that does 
         not work on the 386 (either ATT or BSD assembler).  */
      addr_const_to_string (str, XEXP (x, 0));
      break;

    case CONST_DOUBLE:
      if (GET_MODE (x) == VOIDmode)
	{
	  /* We can use %d if the number is one word and positive.  */
	  if (CONST_DOUBLE_HIGH (x))
	    sprintf (buf1, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
		     CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
	  else if (CONST_DOUBLE_LOW (x) < 0)
	    sprintf (buf1, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
	  else
	    sprintf (buf1, HOST_WIDE_INT_PRINT_DEC,
		     CONST_DOUBLE_LOW (x));
	  dyn_string_append (str, buf1);
	}
      else
	/* We can't handle floating point constants; PRINT_OPERAND must
	   handle them.  */
	output_operand_lossage ("floating constant misused");
      break;

    case PLUS:
      /* Some assemblers need integer constants to appear last (eg masm).  */
      if (GET_CODE (XEXP (x, 0)) == CONST_INT)
	{
	  addr_const_to_string (str, XEXP (x, 1));
	  if (INTVAL (XEXP (x, 0)) >= 0)
	    dyn_string_append (str, "+");

	  addr_const_to_string (str, XEXP (x, 0));
	}
      else
	{
	  addr_const_to_string (str, XEXP (x, 0));
	  if (INTVAL (XEXP (x, 1)) >= 0)
	    dyn_string_append (str, "+");

	  addr_const_to_string (str, XEXP (x, 1));
	}
      break;

    case MINUS:
      /* Avoid outputting things like x-x or x+5-x, since some assemblers
         can't handle that.  */
      x = simplify_subtraction (x);
      if (GET_CODE (x) != MINUS)
	goto restart;

      addr_const_to_string (str, XEXP (x, 0));
      dyn_string_append (str, "-");
      if (GET_CODE (XEXP (x, 1)) == CONST_INT
	  && INTVAL (XEXP (x, 1)) < 0)
	{
	  dyn_string_append (str, ASM_OPEN_PAREN);
	  addr_const_to_string (str, XEXP (x, 1));
	  dyn_string_append (str, ASM_CLOSE_PAREN);
	}
      else
	addr_const_to_string (str, XEXP (x, 1));
      break;

    case ZERO_EXTEND:
    case SIGN_EXTEND:
      addr_const_to_string (str, XEXP (x, 0));
      break;

    default:
      output_operand_lossage ("invalid expression as operand");
    }
}

/* Convert an address constant to a string, and return a pointer to
   a copy of the result, located on the heap.  */

static char *
addr_to_string (x)
     rtx x;
{
  dyn_string_t ds = dyn_string_new (256);
  char *s;

  addr_const_to_string (ds, x);
  
  /* Return the dynamically allocated string, but free the
     dyn_string_t itself.  */
  s = ds->s;
  free (ds);
  return s;
}

/* Test if rtl node points to a pseudo register.  */

static inline int
is_pseudo_reg (rtl)
     register rtx rtl;
{
  return (((GET_CODE (rtl) == REG) && (REGNO (rtl) >= FIRST_PSEUDO_REGISTER))
	  || ((GET_CODE (rtl) == SUBREG)
	      && (REGNO (XEXP (rtl, 0)) >= FIRST_PSEUDO_REGISTER)));
}

/* Return a reference to a type, with its const and volatile qualifiers
   removed.  */

static inline tree
type_main_variant (type)
     register tree type;
{
  type = TYPE_MAIN_VARIANT (type);

  /* There really should be only one main variant among any group of variants 
     of a given type (and all of the MAIN_VARIANT values for all members of
     the group should point to that one type) but sometimes the C front-end
     messes this up for array types, so we work around that bug here.  */

  if (TREE_CODE (type) == ARRAY_TYPE)
    while (type != TYPE_MAIN_VARIANT (type))
      type = TYPE_MAIN_VARIANT (type);

  return type;
}

/* Return non-zero if the given type node represents a tagged type.  */

static inline int
is_tagged_type (type)
     register tree type;
{
  register enum tree_code code = TREE_CODE (type);

  return (code == RECORD_TYPE || code == UNION_TYPE
	  || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
}

/* Convert a DIE tag into its string name.  */

static char *
dwarf_tag_name (tag)
     register unsigned tag;
{
  switch (tag)
    {
    case DW_TAG_padding:
      return "DW_TAG_padding";
    case DW_TAG_array_type:
      return "DW_TAG_array_type";
    case DW_TAG_class_type:
      return "DW_TAG_class_type";
    case DW_TAG_entry_point:
      return "DW_TAG_entry_point";
    case DW_TAG_enumeration_type:
      return "DW_TAG_enumeration_type";
    case DW_TAG_formal_parameter:
      return "DW_TAG_formal_parameter";
    case DW_TAG_imported_declaration:
      return "DW_TAG_imported_declaration";
    case DW_TAG_label:
      return "DW_TAG_label";
    case DW_TAG_lexical_block:
      return "DW_TAG_lexical_block";
    case DW_TAG_member:
      return "DW_TAG_member";
    case DW_TAG_pointer_type:
      return "DW_TAG_pointer_type";
    case DW_TAG_reference_type:
      return "DW_TAG_reference_type";
    case DW_TAG_compile_unit:
      return "DW_TAG_compile_unit";
    case DW_TAG_string_type:
      return "DW_TAG_string_type";
    case DW_TAG_structure_type:
      return "DW_TAG_structure_type";
    case DW_TAG_subroutine_type:
      return "DW_TAG_subroutine_type";
    case DW_TAG_typedef:
      return "DW_TAG_typedef";
    case DW_TAG_union_type:
      return "DW_TAG_union_type";
    case DW_TAG_unspecified_parameters:
      return "DW_TAG_unspecified_parameters";
    case DW_TAG_variant:
      return "DW_TAG_variant";
    case DW_TAG_common_block:
      return "DW_TAG_common_block";
    case DW_TAG_common_inclusion:
      return "DW_TAG_common_inclusion";
    case DW_TAG_inheritance:
      return "DW_TAG_inheritance";
    case DW_TAG_inlined_subroutine:
      return "DW_TAG_inlined_subroutine";
    case DW_TAG_module:
      return "DW_TAG_module";
    case DW_TAG_ptr_to_member_type:
      return "DW_TAG_ptr_to_member_type";
    case DW_TAG_set_type:
      return "DW_TAG_set_type";
    case DW_TAG_subrange_type:
      return "DW_TAG_subrange_type";
    case DW_TAG_with_stmt:
      return "DW_TAG_with_stmt";
    case DW_TAG_access_declaration:
      return "DW_TAG_access_declaration";
    case DW_TAG_base_type:
      return "DW_TAG_base_type";
    case DW_TAG_catch_block:
      return "DW_TAG_catch_block";
    case DW_TAG_const_type:
      return "DW_TAG_const_type";
    case DW_TAG_constant:
      return "DW_TAG_constant";
    case DW_TAG_enumerator:
      return "DW_TAG_enumerator";
    case DW_TAG_file_type:
      return "DW_TAG_file_type";
    case DW_TAG_friend:
      return "DW_TAG_friend";
    case DW_TAG_namelist:
      return "DW_TAG_namelist";
    case DW_TAG_namelist_item:
      return "DW_TAG_namelist_item";
    case DW_TAG_packed_type:
      return "DW_TAG_packed_type";
    case DW_TAG_subprogram:
      return "DW_TAG_subprogram";
    case DW_TAG_template_type_param:
      return "DW_TAG_template_type_param";
    case DW_TAG_template_value_param:
      return "DW_TAG_template_value_param";
    case DW_TAG_thrown_type:
      return "DW_TAG_thrown_type";
    case DW_TAG_try_block:
      return "DW_TAG_try_block";
    case DW_TAG_variant_part:
      return "DW_TAG_variant_part";
    case DW_TAG_variable:
      return "DW_TAG_variable";
    case DW_TAG_volatile_type:
      return "DW_TAG_volatile_type";
    case DW_TAG_MIPS_loop:
      return "DW_TAG_MIPS_loop";
    case DW_TAG_format_label:
      return "DW_TAG_format_label";
    case DW_TAG_function_template:
      return "DW_TAG_function_template";
    case DW_TAG_class_template:
      return "DW_TAG_class_template";
    default:
      return "DW_TAG_<unknown>";
    }
}

/* Convert a DWARF attribute code into its string name.  */

static char *
dwarf_attr_name (attr)
     register unsigned attr;
{
  switch (attr)
    {
    case DW_AT_sibling:
      return "DW_AT_sibling";
    case DW_AT_location:
      return "DW_AT_location";
    case DW_AT_name:
      return "DW_AT_name";
    case DW_AT_ordering:
      return "DW_AT_ordering";
    case DW_AT_subscr_data:
      return "DW_AT_subscr_data";
    case DW_AT_byte_size:
      return "DW_AT_byte_size";
    case DW_AT_bit_offset:
      return "DW_AT_bit_offset";
    case DW_AT_bit_size:
      return "DW_AT_bit_size";
    case DW_AT_element_list:
      return "DW_AT_element_list";
    case DW_AT_stmt_list:
      return "DW_AT_stmt_list";
    case DW_AT_low_pc:
      return "DW_AT_low_pc";
    case DW_AT_high_pc:
      return "DW_AT_high_pc";
    case DW_AT_language:
      return "DW_AT_language";
    case DW_AT_member:
      return "DW_AT_member";
    case DW_AT_discr:
      return "DW_AT_discr";
    case DW_AT_discr_value:
      return "DW_AT_discr_value";
    case DW_AT_visibility:
      return "DW_AT_visibility";
    case DW_AT_import:
      return "DW_AT_import";
    case DW_AT_string_length:
      return "DW_AT_string_length";
    case DW_AT_common_reference:
      return "DW_AT_common_reference";
    case DW_AT_comp_dir:
      return "DW_AT_comp_dir";
    case DW_AT_const_value:
      return "DW_AT_const_value";
    case DW_AT_containing_type:
      return "DW_AT_containing_type";
    case DW_AT_default_value:
      return "DW_AT_default_value";
    case DW_AT_inline:
      return "DW_AT_inline";
    case DW_AT_is_optional:
      return "DW_AT_is_optional";
    case DW_AT_lower_bound:
      return "DW_AT_lower_bound";
    case DW_AT_producer:
      return "DW_AT_producer";
    case DW_AT_prototyped:
      return "DW_AT_prototyped";
    case DW_AT_return_addr:
      return "DW_AT_return_addr";
    case DW_AT_start_scope:
      return "DW_AT_start_scope";
    case DW_AT_stride_size:
      return "DW_AT_stride_size";
    case DW_AT_upper_bound:
      return "DW_AT_upper_bound";
    case DW_AT_abstract_origin:
      return "DW_AT_abstract_origin";
    case DW_AT_accessibility:
      return "DW_AT_accessibility";
    case DW_AT_address_class:
      return "DW_AT_address_class";
    case DW_AT_artificial:
      return "DW_AT_artificial";
    case DW_AT_base_types:
      return "DW_AT_base_types";
    case DW_AT_calling_convention:
      return "DW_AT_calling_convention";
    case DW_AT_count:
      return "DW_AT_count";
    case DW_AT_data_member_location:
      return "DW_AT_data_member_location";
    case DW_AT_decl_column:
      return "DW_AT_decl_column";
    case DW_AT_decl_file:
      return "DW_AT_decl_file";
    case DW_AT_decl_line:
      return "DW_AT_decl_line";
    case DW_AT_declaration:
      return "DW_AT_declaration";
    case DW_AT_discr_list:
      return "DW_AT_discr_list";
    case DW_AT_encoding:
      return "DW_AT_encoding";
    case DW_AT_external:
      return "DW_AT_external";
    case DW_AT_frame_base:
      return "DW_AT_frame_base";
    case DW_AT_friend:
      return "DW_AT_friend";
    case DW_AT_identifier_case:
      return "DW_AT_identifier_case";
    case DW_AT_macro_info:
      return "DW_AT_macro_info";
    case DW_AT_namelist_items:
      return "DW_AT_namelist_items";
    case DW_AT_priority:
      return "DW_AT_priority";
    case DW_AT_segment:
      return "DW_AT_segment";
    case DW_AT_specification:
      return "DW_AT_specification";
    case DW_AT_static_link:
      return "DW_AT_static_link";
    case DW_AT_type:
      return "DW_AT_type";
    case DW_AT_use_location:
      return "DW_AT_use_location";
    case DW_AT_variable_parameter:
      return "DW_AT_variable_parameter";
    case DW_AT_virtuality:
      return "DW_AT_virtuality";
    case DW_AT_vtable_elem_location:
      return "DW_AT_vtable_elem_location";

    case DW_AT_MIPS_fde:
      return "DW_AT_MIPS_fde";
    case DW_AT_MIPS_loop_begin:
      return "DW_AT_MIPS_loop_begin";
    case DW_AT_MIPS_tail_loop_begin:
      return "DW_AT_MIPS_tail_loop_begin";
    case DW_AT_MIPS_epilog_begin:
      return "DW_AT_MIPS_epilog_begin";
    case DW_AT_MIPS_loop_unroll_factor:
      return "DW_AT_MIPS_loop_unroll_factor";
    case DW_AT_MIPS_software_pipeline_depth:
      return "DW_AT_MIPS_software_pipeline_depth";
    case DW_AT_MIPS_linkage_name:
      return "DW_AT_MIPS_linkage_name";
    case DW_AT_MIPS_stride:
      return "DW_AT_MIPS_stride";
    case DW_AT_MIPS_abstract_name:
      return "DW_AT_MIPS_abstract_name";
    case DW_AT_MIPS_clone_origin:
      return "DW_AT_MIPS_clone_origin";
    case DW_AT_MIPS_has_inlines:
      return "DW_AT_MIPS_has_inlines";

    case DW_AT_sf_names:
      return "DW_AT_sf_names";
    case DW_AT_src_info:
      return "DW_AT_src_info";
    case DW_AT_mac_info:
      return "DW_AT_mac_info";
    case DW_AT_src_coords:
      return "DW_AT_src_coords";
    case DW_AT_body_begin:
      return "DW_AT_body_begin";
    case DW_AT_body_end:
      return "DW_AT_body_end";
    default:
      return "DW_AT_<unknown>";
    }
}

/* Convert a DWARF value form code into its string name.  */

static char *
dwarf_form_name (form)
     register unsigned form;
{
  switch (form)
    {
    case DW_FORM_addr:
      return "DW_FORM_addr";
    case DW_FORM_block2:
      return "DW_FORM_block2";
    case DW_FORM_block4:
      return "DW_FORM_block4";
    case DW_FORM_data2:
      return "DW_FORM_data2";
    case DW_FORM_data4:
      return "DW_FORM_data4";
    case DW_FORM_data8:
      return "DW_FORM_data8";
    case DW_FORM_string:
      return "DW_FORM_string";
    case DW_FORM_block:
      return "DW_FORM_block";
    case DW_FORM_block1:
      return "DW_FORM_block1";
    case DW_FORM_data1:
      return "DW_FORM_data1";
    case DW_FORM_flag:
      return "DW_FORM_flag";
    case DW_FORM_sdata:
      return "DW_FORM_sdata";
    case DW_FORM_strp:
      return "DW_FORM_strp";
    case DW_FORM_udata:
      return "DW_FORM_udata";
    case DW_FORM_ref_addr:
      return "DW_FORM_ref_addr";
    case DW_FORM_ref1:
      return "DW_FORM_ref1";
    case DW_FORM_ref2:
      return "DW_FORM_ref2";
    case DW_FORM_ref4:
      return "DW_FORM_ref4";
    case DW_FORM_ref8:
      return "DW_FORM_ref8";
    case DW_FORM_ref_udata:
      return "DW_FORM_ref_udata";
    case DW_FORM_indirect:
      return "DW_FORM_indirect";
    default:
      return "DW_FORM_<unknown>";
    }
}

/* Convert a DWARF stack opcode into its string name.  */

static char *
dwarf_stack_op_name (op)
     register unsigned op;
{
  switch (op)
    {
    case DW_OP_addr:
      return "DW_OP_addr";
    case DW_OP_deref:
      return "DW_OP_deref";
    case DW_OP_const1u:
      return "DW_OP_const1u";
    case DW_OP_const1s:
      return "DW_OP_const1s";
    case DW_OP_const2u:
      return "DW_OP_const2u";
    case DW_OP_const2s:
      return "DW_OP_const2s";
    case DW_OP_const4u:
      return "DW_OP_const4u";
    case DW_OP_const4s:
      return "DW_OP_const4s";
    case DW_OP_const8u:
      return "DW_OP_const8u";
    case DW_OP_const8s:
      return "DW_OP_const8s";
    case DW_OP_constu:
      return "DW_OP_constu";
    case DW_OP_consts:
      return "DW_OP_consts";
    case DW_OP_dup:
      return "DW_OP_dup";
    case DW_OP_drop:
      return "DW_OP_drop";
    case DW_OP_over:
      return "DW_OP_over";
    case DW_OP_pick:
      return "DW_OP_pick";
    case DW_OP_swap:
      return "DW_OP_swap";
    case DW_OP_rot:
      return "DW_OP_rot";
    case DW_OP_xderef:
      return "DW_OP_xderef";
    case DW_OP_abs:
      return "DW_OP_abs";
    case DW_OP_and:
      return "DW_OP_and";
    case DW_OP_div:
      return "DW_OP_div";
    case DW_OP_minus:
      return "DW_OP_minus";
    case DW_OP_mod:
      return "DW_OP_mod";
    case DW_OP_mul:
      return "DW_OP_mul";
    case DW_OP_neg:
      return "DW_OP_neg";
    case DW_OP_not:
      return "DW_OP_not";
    case DW_OP_or:
      return "DW_OP_or";
    case DW_OP_plus:
      return "DW_OP_plus";
    case DW_OP_plus_uconst:
      return "DW_OP_plus_uconst";
    case DW_OP_shl:
      return "DW_OP_shl";
    case DW_OP_shr:
      return "DW_OP_shr";
    case DW_OP_shra:
      return "DW_OP_shra";
    case DW_OP_xor:
      return "DW_OP_xor";
    case DW_OP_bra:
      return "DW_OP_bra";
    case DW_OP_eq:
      return "DW_OP_eq";
    case DW_OP_ge:
      return "DW_OP_ge";
    case DW_OP_gt:
      return "DW_OP_gt";
    case DW_OP_le:
      return "DW_OP_le";
    case DW_OP_lt:
      return "DW_OP_lt";
    case DW_OP_ne:
      return "DW_OP_ne";
    case DW_OP_skip:
      return "DW_OP_skip";
    case DW_OP_lit0:
      return "DW_OP_lit0";
    case DW_OP_lit1:
      return "DW_OP_lit1";
    case DW_OP_lit2:
      return "DW_OP_lit2";
    case DW_OP_lit3:
      return "DW_OP_lit3";
    case DW_OP_lit4:
      return "DW_OP_lit4";
    case DW_OP_lit5:
      return "DW_OP_lit5";
    case DW_OP_lit6:
      return "DW_OP_lit6";
    case DW_OP_lit7:
      return "DW_OP_lit7";
    case DW_OP_lit8:
      return "DW_OP_lit8";
    case DW_OP_lit9:
      return "DW_OP_lit9";
    case DW_OP_lit10:
      return "DW_OP_lit10";
    case DW_OP_lit11:
      return "DW_OP_lit11";
    case DW_OP_lit12:
      return "DW_OP_lit12";
    case DW_OP_lit13:
      return "DW_OP_lit13";
    case DW_OP_lit14:
      return "DW_OP_lit14";
    case DW_OP_lit15:
      return "DW_OP_lit15";
    case DW_OP_lit16:
      return "DW_OP_lit16";
    case DW_OP_lit17:
      return "DW_OP_lit17";
    case DW_OP_lit18:
      return "DW_OP_lit18";
    case DW_OP_lit19:
      return "DW_OP_lit19";
    case DW_OP_lit20:
      return "DW_OP_lit20";
    case DW_OP_lit21:
      return "DW_OP_lit21";
    case DW_OP_lit22:
      return "DW_OP_lit22";
    case DW_OP_lit23:
      return "DW_OP_lit23";
    case DW_OP_lit24:
      return "DW_OP_lit24";
    case DW_OP_lit25:
      return "DW_OP_lit25";
    case DW_OP_lit26:
      return "DW_OP_lit26";
    case DW_OP_lit27:
      return "DW_OP_lit27";
    case DW_OP_lit28:
      return "DW_OP_lit28";
    case DW_OP_lit29:
      return "DW_OP_lit29";
    case DW_OP_lit30:
      return "DW_OP_lit30";
    case DW_OP_lit31:
      return "DW_OP_lit31";
    case DW_OP_reg0:
      return "DW_OP_reg0";
    case DW_OP_reg1:
      return "DW_OP_reg1";
    case DW_OP_reg2:
      return "DW_OP_reg2";
    case DW_OP_reg3:
      return "DW_OP_reg3";
    case DW_OP_reg4:
      return "DW_OP_reg4";
    case DW_OP_reg5:
      return "DW_OP_reg5";
    case DW_OP_reg6:
      return "DW_OP_reg6";
    case DW_OP_reg7:
      return "DW_OP_reg7";
    case DW_OP_reg8:
      return "DW_OP_reg8";
    case DW_OP_reg9:
      return "DW_OP_reg9";
    case DW_OP_reg10:
      return "DW_OP_reg10";
    case DW_OP_reg11:
      return "DW_OP_reg11";
    case DW_OP_reg12:
      return "DW_OP_reg12";
    case DW_OP_reg13:
      return "DW_OP_reg13";
    case DW_OP_reg14:
      return "DW_OP_reg14";
    case DW_OP_reg15:
      return "DW_OP_reg15";
    case DW_OP_reg16:
      return "DW_OP_reg16";
    case DW_OP_reg17:
      return "DW_OP_reg17";
    case DW_OP_reg18:
      return "DW_OP_reg18";
    case DW_OP_reg19:
      return "DW_OP_reg19";
    case DW_OP_reg20:
      return "DW_OP_reg20";
    case DW_OP_reg21:
      return "DW_OP_reg21";
    case DW_OP_reg22:
      return "DW_OP_reg22";
    case DW_OP_reg23:
      return "DW_OP_reg23";
    case DW_OP_reg24:
      return "DW_OP_reg24";
    case DW_OP_reg25:
      return "DW_OP_reg25";
    case DW_OP_reg26:
      return "DW_OP_reg26";
    case DW_OP_reg27:
      return "DW_OP_reg27";
    case DW_OP_reg28:
      return "DW_OP_reg28";
    case DW_OP_reg29:
      return "DW_OP_reg29";
    case DW_OP_reg30:
      return "DW_OP_reg30";
    case DW_OP_reg31:
      return "DW_OP_reg31";
    case DW_OP_breg0:
      return "DW_OP_breg0";
    case DW_OP_breg1:
      return "DW_OP_breg1";
    case DW_OP_breg2:
      return "DW_OP_breg2";
    case DW_OP_breg3:
      return "DW_OP_breg3";
    case DW_OP_breg4:
      return "DW_OP_breg4";
    case DW_OP_breg5:
      return "DW_OP_breg5";
    case DW_OP_breg6:
      return "DW_OP_breg6";
    case DW_OP_breg7:
      return "DW_OP_breg7";
    case DW_OP_breg8:
      return "DW_OP_breg8";
    case DW_OP_breg9:
      return "DW_OP_breg9";
    case DW_OP_breg10:
      return "DW_OP_breg10";
    case DW_OP_breg11:
      return "DW_OP_breg11";
    case DW_OP_breg12:
      return "DW_OP_breg12";
    case DW_OP_breg13:
      return "DW_OP_breg13";
    case DW_OP_breg14:
      return "DW_OP_breg14";
    case DW_OP_breg15:
      return "DW_OP_breg15";
    case DW_OP_breg16:
      return "DW_OP_breg16";
    case DW_OP_breg17:
      return "DW_OP_breg17";
    case DW_OP_breg18:
      return "DW_OP_breg18";
    case DW_OP_breg19:
      return "DW_OP_breg19";
    case DW_OP_breg20:
      return "DW_OP_breg20";
    case DW_OP_breg21:
      return "DW_OP_breg21";
    case DW_OP_breg22:
      return "DW_OP_breg22";
    case DW_OP_breg23:
      return "DW_OP_breg23";
    case DW_OP_breg24:
      return "DW_OP_breg24";
    case DW_OP_breg25:
      return "DW_OP_breg25";
    case DW_OP_breg26:
      return "DW_OP_breg26";
    case DW_OP_breg27:
      return "DW_OP_breg27";
    case DW_OP_breg28:
      return "DW_OP_breg28";
    case DW_OP_breg29:
      return "DW_OP_breg29";
    case DW_OP_breg30:
      return "DW_OP_breg30";
    case DW_OP_breg31:
      return "DW_OP_breg31";
    case DW_OP_regx:
      return "DW_OP_regx";
    case DW_OP_fbreg:
      return "DW_OP_fbreg";
    case DW_OP_bregx:
      return "DW_OP_bregx";
    case DW_OP_piece:
      return "DW_OP_piece";
    case DW_OP_deref_size:
      return "DW_OP_deref_size";
    case DW_OP_xderef_size:
      return "DW_OP_xderef_size";
    case DW_OP_nop:
      return "DW_OP_nop";
    default:
      return "OP_<unknown>";
    }
}

/* Convert a DWARF type code into its string name.  */

static char *
dwarf_type_encoding_name (enc)
     register unsigned enc;
{
  switch (enc)
    {
    case DW_ATE_address:
      return "DW_ATE_address";
    case DW_ATE_boolean:
      return "DW_ATE_boolean";
    case DW_ATE_complex_float:
      return "DW_ATE_complex_float";
    case DW_ATE_float:
      return "DW_ATE_float";
    case DW_ATE_signed:
      return "DW_ATE_signed";
    case DW_ATE_signed_char:
      return "DW_ATE_signed_char";
    case DW_ATE_unsigned:
      return "DW_ATE_unsigned";
    case DW_ATE_unsigned_char:
      return "DW_ATE_unsigned_char";
    default:
      return "DW_ATE_<unknown>";
    }
}

/* Determine the "ultimate origin" of a decl.  The decl may be an inlined
   instance of an inlined instance of a decl which is local to an inline
   function, so we have to trace all of the way back through the origin chain
   to find out what sort of node actually served as the original seed for the
   given block.  */

static tree
decl_ultimate_origin (decl)
     register tree decl;
{
  register tree immediate_origin = DECL_ABSTRACT_ORIGIN (decl);

  if (immediate_origin == NULL_TREE)
    return NULL_TREE;
  else
    {
      register tree ret_val;
      register tree lookahead = immediate_origin;

      do
	{
	  ret_val = lookahead;
	  lookahead = DECL_ABSTRACT_ORIGIN (ret_val);
	}
      while (lookahead != NULL && lookahead != ret_val);

      return ret_val;
    }
}

/* Determine the "ultimate origin" of a block.  The block may be an inlined
   instance of an inlined instance of a block which is local to an inline
   function, so we have to trace all of the way back through the origin chain
   to find out what sort of node actually served as the original seed for the
   given block.  */

static tree
block_ultimate_origin (block)
     register tree block;
{
  register tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);

  if (immediate_origin == NULL_TREE)
    return NULL_TREE;
  else
    {
      register tree ret_val;
      register tree lookahead = immediate_origin;

      do
	{
	  ret_val = lookahead;
	  lookahead = (TREE_CODE (ret_val) == BLOCK)
	    ? BLOCK_ABSTRACT_ORIGIN (ret_val)
	    : NULL;
	}
      while (lookahead != NULL && lookahead != ret_val);

      return ret_val;
    }
}

/* Get the class to which DECL belongs, if any.  In g++, the DECL_CONTEXT
   of a virtual function may refer to a base class, so we check the 'this'
   parameter.  */

static tree
decl_class_context (decl)
     tree decl;
{
  tree context = NULL_TREE;

  if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
    context = DECL_CONTEXT (decl);
  else
    context = TYPE_MAIN_VARIANT
      (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));

  if (context && TREE_CODE_CLASS (TREE_CODE (context)) != 't')
    context = NULL_TREE;

  return context;
}

/* Add an attribute/value pair to a DIE */

static inline void
add_dwarf_attr (die, attr)
     register dw_die_ref die;
     register dw_attr_ref attr;
{
  if (die != NULL && attr != NULL)
    {
      if (die->die_attr == NULL)
	{
	  die->die_attr = attr;
	  die->die_attr_last = attr;
	}
      else
	{
	  die->die_attr_last->dw_attr_next = attr;
	  die->die_attr_last = attr;
	}
    }
}

/* Add a flag value attribute to a DIE.  */

static inline void
add_AT_flag (die, attr_kind, flag)
     register dw_die_ref die;
     register enum dwarf_attribute attr_kind;
     register unsigned flag;
{
  register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));

  attr->dw_attr_next = NULL;
  attr->dw_attr = attr_kind;
  attr->dw_attr_val.val_class = dw_val_class_flag;
  attr->dw_attr_val.v.val_flag = flag;
  add_dwarf_attr (die, attr);
}

/* Add a signed integer attribute value to a DIE.  */

static inline void
add_AT_int (die, attr_kind, int_val)
     register dw_die_ref die;
     register enum dwarf_attribute attr_kind;
     register long int int_val;
{
  register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));

  attr->dw_attr_next = NULL;
  attr->dw_attr = attr_kind;
  attr->dw_attr_val.val_class = dw_val_class_const;
  attr->dw_attr_val.v.val_int = int_val;
  add_dwarf_attr (die, attr);
}

/* Add an unsigned integer attribute value to a DIE.  */

static inline void
add_AT_unsigned (die, attr_kind, unsigned_val)
     register dw_die_ref die;
     register enum dwarf_attribute attr_kind;
     register unsigned long unsigned_val;
{
  register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));

  attr->dw_attr_next = NULL;
  attr->dw_attr = attr_kind;
  attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
  attr->dw_attr_val.v.val_unsigned = unsigned_val;
  add_dwarf_attr (die, attr);
}

/* Add an unsigned double integer attribute value to a DIE.  */

static inline void
add_AT_long_long (die, attr_kind, val_hi, val_low)
     register dw_die_ref die;
     register enum dwarf_attribute attr_kind;
     register unsigned long val_hi;
     register unsigned long val_low;
{
  register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));

  attr->dw_attr_next = NULL;
  attr->dw_attr = attr_kind;
  attr->dw_attr_val.val_class = dw_val_class_long_long;
  attr->dw_attr_val.v.val_long_long.hi = val_hi;
  attr->dw_attr_val.v.val_long_long.low = val_low;
  add_dwarf_attr (die, attr);
}

/* Add a floating point attribute value to a DIE and return it.  */

static inline void
add_AT_float (die, attr_kind, length, array)
     register dw_die_ref die;
     register enum dwarf_attribute attr_kind;
     register unsigned length;
     register long *array;
{
  register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));

  attr->dw_attr_next = NULL;
  attr->dw_attr = attr_kind;
  attr->dw_attr_val.val_class = dw_val_class_float;
  attr->dw_attr_val.v.val_float.length = length;
  attr->dw_attr_val.v.val_float.array = array;
  add_dwarf_attr (die, attr);
}

/* Add a string attribute value to a DIE.  */

static inline void
add_AT_string (die, attr_kind, str)
     register dw_die_ref die;
     register enum dwarf_attribute attr_kind;
     register char *str;
{
  register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));

  attr->dw_attr_next = NULL;
  attr->dw_attr = attr_kind;
  attr->dw_attr_val.val_class = dw_val_class_str;
  attr->dw_attr_val.v.val_str = xstrdup (str);
  add_dwarf_attr (die, attr);
}

/* Add a DIE reference attribute value to a DIE.  */

static inline void
add_AT_die_ref (die, attr_kind, targ_die)
     register dw_die_ref die;
     register enum dwarf_attribute attr_kind;
     register dw_die_ref targ_die;
{
  register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));

  attr->dw_attr_next = NULL;
  attr->dw_attr = attr_kind;
  attr->dw_attr_val.val_class = dw_val_class_die_ref;
  attr->dw_attr_val.v.val_die_ref = targ_die;
  add_dwarf_attr (die, attr);
}

/* Add an FDE reference attribute value to a DIE.  */

static inline void
add_AT_fde_ref (die, attr_kind, targ_fde)
     register dw_die_ref die;
     register enum dwarf_attribute attr_kind;
     register unsigned targ_fde;
{
  register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));

  attr->dw_attr_next = NULL;
  attr->dw_attr = attr_kind;
  attr->dw_attr_val.val_class = dw_val_class_fde_ref;
  attr->dw_attr_val.v.val_fde_index = targ_fde;
  add_dwarf_attr (die, attr);
}

/* Add a location description attribute value to a DIE.  */

static inline void
add_AT_loc (die, attr_kind, loc)
     register dw_die_ref die;
     register enum dwarf_attribute attr_kind;
     register dw_loc_descr_ref loc;
{
  register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));

  attr->dw_attr_next = NULL;
  attr->dw_attr = attr_kind;
  attr->dw_attr_val.val_class = dw_val_class_loc;
  attr->dw_attr_val.v.val_loc = loc;
  add_dwarf_attr (die, attr);
}

/* Add an address constant attribute value to a DIE.  */

static inline void
add_AT_addr (die, attr_kind, addr)
     register dw_die_ref die;
     register enum dwarf_attribute attr_kind;
     char *addr;
{
  register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));

  attr->dw_attr_next = NULL;
  attr->dw_attr = attr_kind;
  attr->dw_attr_val.val_class = dw_val_class_addr;
  attr->dw_attr_val.v.val_addr = addr;
  add_dwarf_attr (die, attr);
}

/* Add a label identifier attribute value to a DIE.  */

static inline void
add_AT_lbl_id (die, attr_kind, lbl_id)
     register dw_die_ref die;
     register enum dwarf_attribute attr_kind;
     register char *lbl_id;
{
  register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));

  attr->dw_attr_next = NULL;
  attr->dw_attr = attr_kind;
  attr->dw_attr_val.val_class = dw_val_class_lbl_id;
  attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
  add_dwarf_attr (die, attr);
}

/* Add a section offset attribute value to a DIE.  */

static inline void
add_AT_section_offset (die, attr_kind, section)
     register dw_die_ref die;
     register enum dwarf_attribute attr_kind;
     register char *section;
{
  register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));

  attr->dw_attr_next = NULL;
  attr->dw_attr = attr_kind;
  attr->dw_attr_val.val_class = dw_val_class_section_offset;
  attr->dw_attr_val.v.val_section = section;
  add_dwarf_attr (die, attr);
  
}

/* Test if die refers to an external subroutine.  */

static inline int
is_extern_subr_die (die)
     register dw_die_ref die;
{
  register dw_attr_ref a;
  register int is_subr = FALSE;
  register int is_extern = FALSE;

  if (die != NULL && die->die_tag == DW_TAG_subprogram)
    {
      is_subr = TRUE;
      for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
	{
	  if (a->dw_attr == DW_AT_external
	      && a->dw_attr_val.val_class == dw_val_class_flag
	      && a->dw_attr_val.v.val_flag != 0)
	    {
	      is_extern = TRUE;
	      break;
	    }
	}
    }

  return is_subr && is_extern;
}

/* Get the attribute of type attr_kind.  */

static inline dw_attr_ref
get_AT (die, attr_kind)
     register dw_die_ref die;
     register enum dwarf_attribute attr_kind;
{
  register dw_attr_ref a;
  register dw_die_ref spec = NULL;
  
  if (die != NULL)
    {
      for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
	{
	  if (a->dw_attr == attr_kind)
	    return a;

	  if (a->dw_attr == DW_AT_specification
	      || a->dw_attr == DW_AT_abstract_origin)
	    spec = a->dw_attr_val.v.val_die_ref;
	}

      if (spec)
	return get_AT (spec, attr_kind);
    }

  return NULL;
}

/* Return the "low pc" attribute value, typically associated with
   a subprogram DIE.  Return null if the "low pc" attribute is
   either not prsent, or if it cannot be represented as an
   assembler label identifier.  */

static inline char *
get_AT_low_pc (die)
     register dw_die_ref die;
{
  register dw_attr_ref a = get_AT (die, DW_AT_low_pc);

  if (a && a->dw_attr_val.val_class == dw_val_class_lbl_id)
    return a->dw_attr_val.v.val_lbl_id;

  return NULL;
}

/* Return the "high pc" attribute value, typically associated with
   a subprogram DIE.  Return null if the "high pc" attribute is
   either not prsent, or if it cannot be represented as an
   assembler label identifier.  */

static inline char *
get_AT_hi_pc (die)
     register dw_die_ref die;
{
  register dw_attr_ref a = get_AT (die, DW_AT_high_pc);

  if (a && a->dw_attr_val.val_class == dw_val_class_lbl_id)
    return a->dw_attr_val.v.val_lbl_id;

  return NULL;
}

/* Return the value of the string attribute designated by ATTR_KIND, or
   NULL if it is not present.  */

static inline char *
get_AT_string (die, attr_kind)
     register dw_die_ref die;
     register enum dwarf_attribute attr_kind;
{
  register dw_attr_ref a = get_AT (die, attr_kind);

  if (a && a->dw_attr_val.val_class == dw_val_class_str)
    return a->dw_attr_val.v.val_str;

  return NULL;
}

/* Return the value of the flag attribute designated by ATTR_KIND, or -1
   if it is not present.  */

static inline int
get_AT_flag (die, attr_kind)
     register dw_die_ref die;
     register enum dwarf_attribute attr_kind;
{
  register dw_attr_ref a = get_AT (die, attr_kind);

  if (a && a->dw_attr_val.val_class == dw_val_class_flag)
    return a->dw_attr_val.v.val_flag;

  return -1;
}

/* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
   if it is not present.  */

static inline unsigned
get_AT_unsigned (die, attr_kind)
     register dw_die_ref die;
     register enum dwarf_attribute attr_kind;
{
  register dw_attr_ref a = get_AT (die, attr_kind);

  if (a && a->dw_attr_val.val_class == dw_val_class_unsigned_const)
    return a->dw_attr_val.v.val_unsigned;

  return 0;
}

static inline int
is_c_family ()
{
  register unsigned lang = get_AT_unsigned (comp_unit_die, DW_AT_language);

  return (lang == DW_LANG_C || lang == DW_LANG_C89
	  || lang == DW_LANG_C_plus_plus);
} 

static inline int
is_fortran ()
{
  register unsigned lang = get_AT_unsigned (comp_unit_die, DW_AT_language);

  return (lang == DW_LANG_Fortran77 || lang == DW_LANG_Fortran90);
} 

/* Remove the specified attribute if present.  */

static inline void
remove_AT (die, attr_kind)
     register dw_die_ref die;
     register enum dwarf_attribute attr_kind;
{
  register dw_attr_ref a;
  register dw_attr_ref removed = NULL;;

  if (die != NULL)
    {
      if (die->die_attr->dw_attr == attr_kind)
	{
	  removed = die->die_attr;
	  if (die->die_attr_last == die->die_attr)
	    die->die_attr_last = NULL;

	  die->die_attr = die->die_attr->dw_attr_next;
	}

      else
	for (a = die->die_attr; a->dw_attr_next != NULL;
	     a = a->dw_attr_next)
	  if (a->dw_attr_next->dw_attr == attr_kind)
	    {
	      removed = a->dw_attr_next;
	      if (die->die_attr_last == a->dw_attr_next)
		die->die_attr_last = a;

	      a->dw_attr_next = a->dw_attr_next->dw_attr_next;
	      break;
	    }

      if (removed != 0)
	free (removed);
    }
}

/* Discard the children of this DIE.  */

static inline void
remove_children (die)
     register dw_die_ref die;
{
  register dw_die_ref child_die = die->die_child;

  die->die_child = NULL;
  die->die_child_last = NULL;

  while (child_die != NULL)
    {
      register dw_die_ref tmp_die = child_die;
      register dw_attr_ref a;

      child_die = child_die->die_sib;
      
      for (a = tmp_die->die_attr; a != NULL; )
	{
	  register dw_attr_ref tmp_a = a;

	  a = a->dw_attr_next;
	  free (tmp_a);
	}

      free (tmp_die);
    }
}

/* Add a child DIE below its parent.  */

static inline void
add_child_die (die, child_die)
     register dw_die_ref die;
     register dw_die_ref child_die;
{
  if (die != NULL && child_die != NULL)
    {
      assert (die != child_die);
      child_die->die_parent = die;
      child_die->die_sib = NULL;

      if (die->die_child == NULL)
	{
	  die->die_child = child_die;
	  die->die_child_last = child_die;
	}
      else
	{
	  die->die_child_last->die_sib = child_die;
	  die->die_child_last = child_die;
	}
    }
}

/* Return a pointer to a newly created DIE node.  */

static inline dw_die_ref
new_die (tag_value, parent_die)
     register enum dwarf_tag tag_value;
     register dw_die_ref parent_die;
{
  register dw_die_ref die = (dw_die_ref) xmalloc (sizeof (die_node));

  die->die_tag = tag_value;
  die->die_abbrev = 0;
  die->die_offset = 0;
  die->die_child = NULL;
  die->die_parent = NULL;
  die->die_sib = NULL;
  die->die_child_last = NULL;
  die->die_attr = NULL;
  die->die_attr_last = NULL;

  if (parent_die != NULL)
    add_child_die (parent_die, die);
  else
    {
      limbo_die_node *limbo_node;

      limbo_node = (limbo_die_node *) xmalloc (sizeof (limbo_die_node));
      limbo_node->die = die;
      limbo_node->next = limbo_die_list;
      limbo_die_list = limbo_node;
    }

  return die;
}

/* Return the DIE associated with the given type specifier.  */

static inline dw_die_ref
lookup_type_die (type)
     register tree type;
{
  return (dw_die_ref) TYPE_SYMTAB_POINTER (type);
}

/* Equate a DIE to a given type specifier.  */

static void
equate_type_number_to_die (type, type_die)
     register tree type;
     register dw_die_ref type_die;
{
  TYPE_SYMTAB_POINTER (type) = (char *) type_die;
}

/* Return the DIE associated with a given declaration.  */

static inline dw_die_ref
lookup_decl_die (decl)
     register tree decl;
{
  register unsigned decl_id = DECL_UID (decl);

  return (decl_id < decl_die_table_in_use
	  ? decl_die_table[decl_id] : NULL);
}

/* Equate a DIE to a particular declaration.  */

static void
equate_decl_number_to_die (decl, decl_die)
     register tree decl;
     register dw_die_ref decl_die;
{
  register unsigned decl_id = DECL_UID (decl);
  register unsigned i;
  register unsigned num_allocated;

  if (decl_id >= decl_die_table_allocated)
    {
      num_allocated
	= ((decl_id + 1 + DECL_DIE_TABLE_INCREMENT - 1)
	   / DECL_DIE_TABLE_INCREMENT)
	  * DECL_DIE_TABLE_INCREMENT;

      decl_die_table
	= (dw_die_ref *) xrealloc (decl_die_table,
				   sizeof (dw_die_ref) * num_allocated);

      bzero ((char *) &decl_die_table[decl_die_table_allocated],
	     (num_allocated - decl_die_table_allocated) * sizeof (dw_die_ref));
      decl_die_table_allocated = num_allocated;
    }

  if (decl_id >= decl_die_table_in_use)
    decl_die_table_in_use = (decl_id + 1);

  decl_die_table[decl_id] = decl_die;
}

/* Return a pointer to a newly allocated location description.  Location
   descriptions are simple expression terms that can be strung
   together to form more complicated location (address) descriptions.  */

static inline dw_loc_descr_ref
new_loc_descr (op, oprnd1, oprnd2)
     register enum dwarf_location_atom op;
     register unsigned long oprnd1;
     register unsigned long oprnd2;
{
  register dw_loc_descr_ref descr
    = (dw_loc_descr_ref) xmalloc (sizeof (dw_loc_descr_node));

  descr->dw_loc_next = NULL;
  descr->dw_loc_opc = op;
  descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
  descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
  descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
  descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;

  return descr;
}

/* Add a location description term to a location description expression.  */

static inline void
add_loc_descr (list_head, descr)
     register dw_loc_descr_ref *list_head;
     register dw_loc_descr_ref descr;
{
  register dw_loc_descr_ref *d;

  /* Find the end of the chain.  */
  for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
    ;

  *d = descr;
}

/* Keep track of the number of spaces used to indent the
   output of the debugging routines that print the structure of
   the DIE internal representation.  */
static int print_indent;

/* Indent the line the number of spaces given by print_indent.  */

static inline void
print_spaces (outfile)
     FILE *outfile;
{
  fprintf (outfile, "%*s", print_indent, "");
}

/* Print the information associated with a given DIE, and its children.
   This routine is a debugging aid only.  */

static void
print_die (die, outfile)
     dw_die_ref die;
     FILE *outfile;
{
  register dw_attr_ref a;
  register dw_die_ref c;

  print_spaces (outfile);
  fprintf (outfile, "DIE %4u: %s\n",
	   die->die_offset, dwarf_tag_name (die->die_tag));
  print_spaces (outfile);
  fprintf (outfile, "  abbrev id: %u", die->die_abbrev);
  fprintf (outfile, " offset: %u\n", die->die_offset);

  for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
    {
      print_spaces (outfile);
      fprintf (outfile, "  %s: ", dwarf_attr_name (a->dw_attr));

      switch (a->dw_attr_val.val_class)
	{
	case dw_val_class_addr:
	  fprintf (outfile, "address");
	  break;
	case dw_val_class_loc:
	  fprintf (outfile, "location descriptor");
	  break;
	case dw_val_class_const:
	  fprintf (outfile, "%d", a->dw_attr_val.v.val_int);
	  break;
	case dw_val_class_unsigned_const:
	  fprintf (outfile, "%u", a->dw_attr_val.v.val_unsigned);
	  break;
	case dw_val_class_long_long:
	  fprintf (outfile, "constant (%u,%u)",
		  a->dw_attr_val.v.val_long_long.hi,
		  a->dw_attr_val.v.val_long_long.low);
	  break;
	case dw_val_class_float:
	  fprintf (outfile, "floating-point constant");
	  break;
	case dw_val_class_flag:
	  fprintf (outfile, "%u", a->dw_attr_val.v.val_flag);
	  break;
	case dw_val_class_die_ref:
	  if (a->dw_attr_val.v.val_die_ref != NULL)
	    fprintf (outfile, "die -> %u",
		     a->dw_attr_val.v.val_die_ref->die_offset);
	  else
	    fprintf (outfile, "die -> <null>");
	  break;
	case dw_val_class_lbl_id:
	  fprintf (outfile, "label: %s", a->dw_attr_val.v.val_lbl_id);
	  break;
	case dw_val_class_section_offset:
	  fprintf (outfile, "section: %s", a->dw_attr_val.v.val_section);
	  break;
	case dw_val_class_str:
	  if (a->dw_attr_val.v.val_str != NULL)
	    fprintf (outfile, "\"%s\"", a->dw_attr_val.v.val_str);
	  else
	    fprintf (outfile, "<null>");
	  break;
	default:
	  break;
	}

      fprintf (outfile, "\n");
    }

  if (die->die_child != NULL)
    {
      print_indent += 4;
      for (c = die->die_child; c != NULL; c = c->die_sib)
	print_die (c, outfile);

      print_indent -= 4;
    }
}

/* Print the contents of the source code line number correspondence table.
   This routine is a debugging aid only.  */

static void
print_dwarf_line_table (outfile)
     FILE *outfile;
{
  register unsigned i;
  register dw_line_info_ref line_info;

  fprintf (outfile, "\n\nDWARF source line information\n");
  for (i = 1; i < line_info_table_in_use; ++i)
    {
      line_info = &line_info_table[i];
      fprintf (outfile, "%5d: ", i);
      fprintf (outfile, "%-20s", file_table[line_info->dw_file_num]);
      fprintf (outfile, "%6d", line_info->dw_line_num);
      fprintf (outfile, "\n");
    }

  fprintf (outfile, "\n\n");
}

/* Print the information collected for a given DIE.  */

void
debug_dwarf_die (die)
     dw_die_ref die;
{
  print_die (die, stderr);
}

/* Print all DWARF information collected for the compilation unit.
   This routine is a debugging aid only.  */

void
debug_dwarf ()
{
  print_indent = 0;
  print_die (comp_unit_die, stderr);
  print_dwarf_line_table (stderr);
}

/* Traverse the DIE, and add a sibling attribute if it may have the
   effect of speeding up access to siblings.  To save some space,
   avoid generating sibling attributes for DIE's without children.  */

static void
add_sibling_attributes(die)
     register dw_die_ref die;
{
  register dw_die_ref c;
  register dw_attr_ref attr;
  if (die != comp_unit_die && die->die_child != NULL)
    {
      attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node));
      attr->dw_attr_next = NULL;
      attr->dw_attr = DW_AT_sibling;
      attr->dw_attr_val.val_class = dw_val_class_die_ref;
      attr->dw_attr_val.v.val_die_ref = die->die_sib;

      /* Add the sibling link to the front of the attribute list.  */
      attr->dw_attr_next = die->die_attr;
      if (die->die_attr == NULL)
	die->die_attr_last = attr;

      die->die_attr = attr;
    }

  for (c = die->die_child; c != NULL; c = c->die_sib)
    add_sibling_attributes (c);
}

/* The format of each DIE (and its attribute value pairs)
   is encoded in an abbreviation table.  This routine builds the
   abbreviation table and assigns a unique abbreviation id for
   each abbreviation entry.  The children of each die are visited
   recursively.  */

static void
build_abbrev_table (die)
     register dw_die_ref die;
{
  register unsigned long abbrev_id;
  register unsigned long n_alloc;
  register dw_die_ref c;
  register dw_attr_ref d_attr, a_attr;
  for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
    {
      register dw_die_ref abbrev = abbrev_die_table[abbrev_id];

      if (abbrev->die_tag == die->die_tag)
	{
	  if ((abbrev->die_child != NULL) == (die->die_child != NULL))
	    {
	      a_attr = abbrev->die_attr;
	      d_attr = die->die_attr;

	      while (a_attr != NULL && d_attr != NULL)
		{
		  if ((a_attr->dw_attr != d_attr->dw_attr)
		      || (value_format (&a_attr->dw_attr_val)
			  != value_format (&d_attr->dw_attr_val)))
		    break;

		  a_attr = a_attr->dw_attr_next;
		  d_attr = d_attr->dw_attr_next;
		}

	      if (a_attr == NULL && d_attr == NULL)
		break;
	    }
	}
    }

  if (abbrev_id >= abbrev_die_table_in_use)
    {
      if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
	{
	  n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
	  abbrev_die_table 
	    = (dw_die_ref *) xrealloc (abbrev_die_table,
				       sizeof (dw_die_ref) * n_alloc);

	  bzero ((char *) &abbrev_die_table[abbrev_die_table_allocated],
		 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
	  abbrev_die_table_allocated = n_alloc;
	}

      ++abbrev_die_table_in_use;
      abbrev_die_table[abbrev_id] = die;
    }

  die->die_abbrev = abbrev_id;
  for (c = die->die_child; c != NULL; c = c->die_sib)
    build_abbrev_table (c);
}

/* Return the size of a string, including the null byte.  */

static unsigned long
size_of_string (str)
     register char *str;
{
  register unsigned long size = 0;
  register unsigned long slen = strlen (str);
  register unsigned long i;
  register unsigned c;

  for (i = 0; i < slen; ++i)
    {
      c = str[i];
      if (c == '\\')
	++i;

      size += 1;
    }

  /* Null terminator.  */
  size += 1;
  return size;
}

/* Return the size of a location descriptor.  */

static unsigned long
size_of_loc_descr (loc)
     register dw_loc_descr_ref loc;
{
  register unsigned long size = 1;

  switch (loc->dw_loc_opc)
    {
    case DW_OP_addr:
      size += PTR_SIZE;
      break;
    case DW_OP_const1u:
    case DW_OP_const1s:
      size += 1;
      break;
    case DW_OP_const2u:
    case DW_OP_const2s:
      size += 2;
      break;
    case DW_OP_const4u:
    case DW_OP_const4s:
      size += 4;
      break;
    case DW_OP_const8u:
    case DW_OP_const8s:
      size += 8;
      break;
    case DW_OP_constu:
      size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
      break;
    case DW_OP_consts:
      size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
      break;
    case DW_OP_pick:
      size += 1;
      break;
    case DW_OP_plus_uconst:
      size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
      break;
    case DW_OP_skip:
    case DW_OP_bra:
      size += 2;
      break;
    case DW_OP_breg0:
    case DW_OP_breg1:
    case DW_OP_breg2:
    case DW_OP_breg3:
    case DW_OP_breg4:
    case DW_OP_breg5:
    case DW_OP_breg6:
    case DW_OP_breg7:
    case DW_OP_breg8:
    case DW_OP_breg9:
    case DW_OP_breg10:
    case DW_OP_breg11:
    case DW_OP_breg12:
    case DW_OP_breg13:
    case DW_OP_breg14:
    case DW_OP_breg15:
    case DW_OP_breg16:
    case DW_OP_breg17:
    case DW_OP_breg18:
    case DW_OP_breg19:
    case DW_OP_breg20:
    case DW_OP_breg21:
    case DW_OP_breg22:
    case DW_OP_breg23:
    case DW_OP_breg24:
    case DW_OP_breg25:
    case DW_OP_breg26:
    case DW_OP_breg27:
    case DW_OP_breg28:
    case DW_OP_breg29:
    case DW_OP_breg30:
    case DW_OP_breg31:
      size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
      break;
    case DW_OP_regx:
      size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
      break;
    case DW_OP_fbreg:
      size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
      break;
    case DW_OP_bregx:
      size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
      size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
      break;
    case DW_OP_piece:
      size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
      break;
    case DW_OP_deref_size:
    case DW_OP_xderef_size:
      size += 1;
      break;
    default:
      break;
    }

  return size;
}

/* Return the size of a series of location descriptors.  */

static unsigned long
size_of_locs (loc)
     register dw_loc_descr_ref loc;
{
  register unsigned long size = 0;

  for (; loc != NULL; loc = loc->dw_loc_next)
    size += size_of_loc_descr (loc);

  return size;
}

/* Return the power-of-two number of bytes necessary to represent VALUE.  */

static int
constant_size (value)
     long unsigned value;
{
  int log;

  if (value == 0)
    log = 0;
  else
    log = floor_log2 (value);

  log = log / 8;
  log = 1 << (floor_log2 (log) + 1);

  return log;
}

/* Return the size of a DIE, as it is represented in the
   .debug_info section.  */

static unsigned long
size_of_die (die)
     register dw_die_ref die;
{
  register unsigned long size = 0;
  register dw_attr_ref a;

  size += size_of_uleb128 (die->die_abbrev);
  for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
    {
      switch (a->dw_attr_val.val_class)
	{
	case dw_val_class_addr:
	  size += PTR_SIZE;
	  break;
	case dw_val_class_loc:
	  {
	    register unsigned long lsize
	      = size_of_locs (a->dw_attr_val.v.val_loc);

	    /* Block length.  */
	    size += constant_size (lsize);
	    size += lsize;
	  }
	  break;
	case dw_val_class_const:
	  size += 4;
	  break;
	case dw_val_class_unsigned_const:
	  size += constant_size (a->dw_attr_val.v.val_unsigned);
	  break;
	case dw_val_class_long_long:
	  size += 1 + 8; /* block */
	  break;
	case dw_val_class_float:
	  size += 1 + a->dw_attr_val.v.val_float.length * 4; /* block */
	  break;
	case dw_val_class_flag:
	  size += 1;
	  break;
	case dw_val_class_die_ref:
	  size += DWARF_OFFSET_SIZE;
	  break;
	case dw_val_class_fde_ref:
	  size += DWARF_OFFSET_SIZE;
	  break;
	case dw_val_class_lbl_id:
	  size += PTR_SIZE;
	  break;
	case dw_val_class_section_offset:
	  size += DWARF_OFFSET_SIZE;
	  break;
	case dw_val_class_str:
	  size += size_of_string (a->dw_attr_val.v.val_str);
	  break;
	default:
	  abort ();
	}
    }

  return size;
}

/* Size the debugging information associated with a given DIE.
   Visits the DIE's children recursively.  Updates the global
   variable next_die_offset, on each time through.  Uses the
   current value of next_die_offset to update the die_offset
   field in each DIE.  */

static void
calc_die_sizes (die)
     dw_die_ref die;
{
  register dw_die_ref c;
  die->die_offset = next_die_offset;
  next_die_offset += size_of_die (die);

  for (c = die->die_child; c != NULL; c = c->die_sib)
    calc_die_sizes (c);

  if (die->die_child != NULL)
    /* Count the null byte used to terminate sibling lists.  */
    next_die_offset += 1;
}

/* Return the size of the line information prolog generated for the
   compilation unit.  */

static unsigned long
size_of_line_prolog ()
{
  register unsigned long size;
  register unsigned long ft_index;

  size = DWARF_LINE_PROLOG_HEADER_SIZE;

  /* Count the size of the table giving number of args for each
     standard opcode.  */
  size += DWARF_LINE_OPCODE_BASE - 1;

  /* Include directory table is empty (at present).  Count only the
     the null byte used to terminate the table.  */
  size += 1;

  for (ft_index = 1; ft_index < file_table_in_use; ++ft_index)
    {
      /* File name entry.  */
      size += size_of_string (file_table[ft_index]);

      /* Include directory index.  */
      size += size_of_uleb128 (0);

      /* Modification time.  */
      size += size_of_uleb128 (0);

      /* File length in bytes.  */
      size += size_of_uleb128 (0);
    }

  /* Count the file table terminator.  */
  size += 1;
  return size;
}

/* Return the size of the line information generated for this
   compilation unit.  */

static unsigned long
size_of_line_info ()
{
  register unsigned long size;
  register unsigned long lt_index;
  register unsigned long current_line;
  register long line_offset;
  register long line_delta;
  register unsigned long current_file;
  register unsigned long function;
  unsigned long size_of_set_address;

  /* Size of a DW_LNE_set_address instruction.  */
  size_of_set_address = 1 + size_of_uleb128 (1 + PTR_SIZE) + 1 + PTR_SIZE;

  /* Version number.  */
  size = 2;

  /* Prolog length specifier.  */
  size += DWARF_OFFSET_SIZE;

  /* Prolog.  */
  size += size_of_line_prolog ();

  /* Set address register instruction.  */
  size += size_of_set_address;

  current_file = 1;
  current_line = 1;
  for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
    {
      register dw_line_info_ref line_info;

      /* Advance pc instruction.  */
      /* ??? See the DW_LNS_advance_pc comment in output_line_info.  */
      if (0)
	size += 1 + 2;
      else
	size += size_of_set_address;

      line_info = &line_info_table[lt_index];
      if (line_info->dw_file_num != current_file)
	{
	  /* Set file number instruction.  */
	  size += 1;
	  current_file = line_info->dw_file_num;
	  size += size_of_uleb128 (current_file);
	}

      if (line_info->dw_line_num != current_line)
	{
	  line_offset = line_info->dw_line_num - current_line;
	  line_delta = line_offset - DWARF_LINE_BASE;
	  current_line = line_info->dw_line_num;
	  if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
	    /* 1-byte special line number instruction.  */
	    size += 1;
	  else
	    {
	      /* Advance line instruction.  */
	      size += 1;
	      size += size_of_sleb128 (line_offset);
	      /* Generate line entry instruction.  */
	      size += 1;
	    }
	}
    }

  /* Advance pc instruction.  */
  if (0)
    size += 1 + 2;
  else
    size += size_of_set_address;

  /* End of line number info. marker.  */
  size += 1 + size_of_uleb128 (1) + 1;

  function = 0;
  current_file = 1;
  current_line = 1;
  for (lt_index = 0; lt_index < separate_line_info_table_in_use; )
    {
      register dw_separate_line_info_ref line_info
	= &separate_line_info_table[lt_index];
      if (function != line_info->function)
	{
	  function = line_info->function;
	  /* Set address register instruction.  */
	  size += size_of_set_address;
	}
      else
	{
	  /* Advance pc instruction.  */
	  if (0)
	    size += 1 + 2;
	  else
	    size += size_of_set_address;
	}

      if (line_info->dw_file_num != current_file)
	{
	  /* Set file number instruction.  */
	  size += 1;
	  current_file = line_info->dw_file_num;
	  size += size_of_uleb128 (current_file);
	}

      if (line_info->dw_line_num != current_line)
	{
	  line_offset = line_info->dw_line_num - current_line;
	  line_delta = line_offset - DWARF_LINE_BASE;
	  current_line = line_info->dw_line_num;
	  if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
	    /* 1-byte special line number instruction.  */
	    size += 1;
	  else
	    {
	      /* Advance line instruction.  */
	      size += 1;
	      size += size_of_sleb128 (line_offset);

	      /* Generate line entry instruction.  */
	      size += 1;
	    }
	}

      ++lt_index;

      /* If we're done with a function, end its sequence.  */
      if (lt_index == separate_line_info_table_in_use
	  || separate_line_info_table[lt_index].function != function)
	{
	  current_file = 1;
	  current_line = 1;

	  /* Advance pc instruction.  */
	  if (0)
	    size += 1 + 2;
	  else
	    size += size_of_set_address;

	  /* End of line number info. marker.  */
	  size += 1 + size_of_uleb128 (1) + 1;
	}
    }

  return size;
}

/* Return the size of the .debug_pubnames table  generated for the
   compilation unit.  */

static unsigned long
size_of_pubnames ()
{
  register unsigned long size;
  register unsigned i;

  size = DWARF_PUBNAMES_HEADER_SIZE;
  for (i = 0; i < pubname_table_in_use; ++i)
    {
      register pubname_ref p = &pubname_table[i];
      size += DWARF_OFFSET_SIZE + size_of_string (p->name);
    }

  size += DWARF_OFFSET_SIZE;
  return size;
}

/* Return the size of the information in the .debug_aranges section.  */

static unsigned long
size_of_aranges ()
{
  register unsigned long size;

  size = DWARF_ARANGES_HEADER_SIZE;

  /* Count the address/length pair for this compilation unit.  */
  size += 2 * PTR_SIZE;
  size += 2 * PTR_SIZE * arange_table_in_use;

  /* Count the two zero words used to terminated the address range table.  */
  size += 2 * PTR_SIZE;
  return size;
}

/* Select the encoding of an attribute value.  */

static enum dwarf_form
value_format (v)
     dw_val_ref v;
{
  switch (v->val_class)
    {
    case dw_val_class_addr:
      return DW_FORM_addr;
    case dw_val_class_loc:
      switch (constant_size (size_of_locs (v->v.val_loc)))
	{
	case 1:
	  return DW_FORM_block1;
	case 2:
	  return DW_FORM_block2;
	default:
	  abort ();
	}
    case dw_val_class_const:
      return DW_FORM_data4;
    case dw_val_class_unsigned_const:
      switch (constant_size (v->v.val_unsigned))
	{
	case 1:
	  return DW_FORM_data1;
	case 2:
	  return DW_FORM_data2;
	case 4:
	  return DW_FORM_data4;
	case 8:
	  return DW_FORM_data8;
	default:
	  abort ();
	}
    case dw_val_class_long_long:
      return DW_FORM_block1;
    case dw_val_class_float:
      return DW_FORM_block1;
    case dw_val_class_flag:
      return DW_FORM_flag;
    case dw_val_class_die_ref:
      return DW_FORM_ref;
    case dw_val_class_fde_ref:
      return DW_FORM_data;
    case dw_val_class_lbl_id:
      return DW_FORM_addr;
    case dw_val_class_section_offset:
      return DW_FORM_data;
    case dw_val_class_str:
      return DW_FORM_string;
    default:
      abort ();
    }
}

/* Output the encoding of an attribute value.  */

static void
output_value_format (v)
     dw_val_ref v;
{
  enum dwarf_form form = value_format (v);

  output_uleb128 (form);
  if (flag_debug_asm)
    fprintf (asm_out_file, " (%s)", dwarf_form_name (form));

  fputc ('\n', asm_out_file);
}

/* Output the .debug_abbrev section which defines the DIE abbreviation
   table.  */

static void
output_abbrev_section ()
{
  unsigned long abbrev_id;

  dw_attr_ref a_attr;
  for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
    {
      register dw_die_ref abbrev = abbrev_die_table[abbrev_id];

      output_uleb128 (abbrev_id);
      if (flag_debug_asm)
	fprintf (asm_out_file, " (abbrev code)");

      fputc ('\n', asm_out_file);
      output_uleb128 (abbrev->die_tag);
      if (flag_debug_asm)
	fprintf (asm_out_file, " (TAG: %s)",
		 dwarf_tag_name (abbrev->die_tag));

      fputc ('\n', asm_out_file);
      fprintf (asm_out_file, "\t%s\t0x%x", ASM_BYTE_OP,
	       abbrev->die_child != NULL ? DW_children_yes : DW_children_no);

      if (flag_debug_asm)
	fprintf (asm_out_file, "\t%s %s",
		 ASM_COMMENT_START,
		 (abbrev->die_child != NULL
		  ? "DW_children_yes" : "DW_children_no"));

      fputc ('\n', asm_out_file);

      for (a_attr = abbrev->die_attr; a_attr != NULL;
	   a_attr = a_attr->dw_attr_next)
	{
	  output_uleb128 (a_attr->dw_attr);
	  if (flag_debug_asm)
	    fprintf (asm_out_file, " (%s)",
		     dwarf_attr_name (a_attr->dw_attr));

	  fputc ('\n', asm_out_file);
	  output_value_format (&a_attr->dw_attr_val);
	}

      fprintf (asm_out_file, "\t%s\t0,0\n", ASM_BYTE_OP);
    }
}

/* Output location description stack opcode's operands (if any).  */

static void
output_loc_operands (loc)
     register dw_loc_descr_ref loc;
{
  register dw_val_ref val1 = &loc->dw_loc_oprnd1;
  register dw_val_ref val2 = &loc->dw_loc_oprnd2;

  switch (loc->dw_loc_opc)
    {
    case DW_OP_addr:
      ASM_OUTPUT_DWARF_ADDR_CONST (asm_out_file, val1->v.val_addr);
      fputc ('\n', asm_out_file);
      break;
    case DW_OP_const1u:
    case DW_OP_const1s:
      ASM_OUTPUT_DWARF_DATA1 (asm_out_file, val1->v.val_flag);
      fputc ('\n', asm_out_file);
      break;
    case DW_OP_const2u:
    case DW_OP_const2s:
      ASM_OUTPUT_DWARF_DATA2 (asm_out_file, val1->v.val_int);
      fputc ('\n', asm_out_file);
      break;
    case DW_OP_const4u:
    case DW_OP_const4s:
      ASM_OUTPUT_DWARF_DATA4 (asm_out_file, val1->v.val_int);
      fputc ('\n', asm_out_file);
      break;
    case DW_OP_const8u:
    case DW_OP_const8s:
      abort ();
      fputc ('\n', asm_out_file);
      break;
    case DW_OP_constu:
      output_uleb128 (val1->v.val_unsigned);
      fputc ('\n', asm_out_file);
      break;
    case DW_OP_consts:
      output_sleb128 (val1->v.val_int);
      fputc ('\n', asm_out_file);
      break;
    case DW_OP_pick:
      ASM_OUTPUT_DWARF_DATA1 (asm_out_file, val1->v.val_int);
      fputc ('\n', asm_out_file);
      break;
    case DW_OP_plus_uconst:
      output_uleb128 (val1->v.val_unsigned);
      fputc ('\n', asm_out_file);
      break;
    case DW_OP_skip:
    case DW_OP_bra:
      ASM_OUTPUT_DWARF_DATA2 (asm_out_file, val1->v.val_int);
      fputc ('\n', asm_out_file);
      break;
    case DW_OP_breg0:
    case DW_OP_breg1:
    case DW_OP_breg2:
    case DW_OP_breg3:
    case DW_OP_breg4:
    case DW_OP_breg5:
    case DW_OP_breg6:
    case DW_OP_breg7:
    case DW_OP_breg8:
    case DW_OP_breg9:
    case DW_OP_breg10:
    case DW_OP_breg11:
    case DW_OP_breg12:
    case DW_OP_breg13:
    case DW_OP_breg14:
    case DW_OP_breg15:
    case DW_OP_breg16:
    case DW_OP_breg17:
    case DW_OP_breg18:
    case DW_OP_breg19:
    case DW_OP_breg20:
    case DW_OP_breg21:
    case DW_OP_breg22:
    case DW_OP_breg23:
    case DW_OP_breg24:
    case DW_OP_breg25:
    case DW_OP_breg26:
    case DW_OP_breg27:
    case DW_OP_breg28:
    case DW_OP_breg29:
    case DW_OP_breg30:
    case DW_OP_breg31:
      output_sleb128 (val1->v.val_int);
      fputc ('\n', asm_out_file);
      break;
    case DW_OP_regx:
      output_uleb128 (val1->v.val_unsigned);
      fputc ('\n', asm_out_file);
      break;
    case DW_OP_fbreg:
      output_sleb128 (val1->v.val_int);
      fputc ('\n', asm_out_file);
      break;
    case DW_OP_bregx:
      output_uleb128 (val1->v.val_unsigned);
      fputc ('\n', asm_out_file);
      output_sleb128 (val2->v.val_int);
      fputc ('\n', asm_out_file);
      break;
    case DW_OP_piece:
      output_uleb128 (val1->v.val_unsigned);
      fputc ('\n', asm_out_file);
      break;
    case DW_OP_deref_size:
    case DW_OP_xderef_size:
      ASM_OUTPUT_DWARF_DATA1 (asm_out_file, val1->v.val_flag);
      fputc ('\n', asm_out_file);
      break;
    default:
      break;
    }
}

/* Compute the offset of a sibling.  */

static unsigned long
sibling_offset (die)
     dw_die_ref die;
{
  unsigned long offset;

  if (die->die_child_last == NULL)
    offset = die->die_offset + size_of_die (die);
  else
    offset = sibling_offset (die->die_child_last) + 1;

  return offset;
}

/* Output the DIE and its attributes.  Called recursively to generate
   the definitions of each child DIE.  */

static void
output_die (die)
     register dw_die_ref die;
{
  register dw_attr_ref a;
  register dw_die_ref c;
  register unsigned long ref_offset;
  register unsigned long size;
  register dw_loc_descr_ref loc;
  register int i;

  output_uleb128 (die->die_abbrev);
  if (flag_debug_asm)
    fprintf (asm_out_file, " (DIE (0x%x) %s)",
	     die->die_offset, dwarf_tag_name (die->die_tag));

  fputc ('\n', asm_out_file);

  for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
    {
      switch (a->dw_attr_val.val_class)
	{
	case dw_val_class_addr:
	  ASM_OUTPUT_DWARF_ADDR_CONST (asm_out_file,
				       a->dw_attr_val.v.val_addr);
	  break;

	case dw_val_class_loc:
	  size = size_of_locs (a->dw_attr_val.v.val_loc);

	  /* Output the block length for this list of location operations.  */
	  switch (constant_size (size))
	    {
	    case 1:
	      ASM_OUTPUT_DWARF_DATA1 (asm_out_file, size);
	      break;
	    case 2:
	      ASM_OUTPUT_DWARF_DATA2 (asm_out_file, size);
	      break;
	    default:
	      abort ();
	    }

	  if (flag_debug_asm)
	    fprintf (asm_out_file, "\t%s %s",
		     ASM_COMMENT_START, dwarf_attr_name (a->dw_attr));

	  fputc ('\n', asm_out_file);
	  for (loc = a->dw_attr_val.v.val_loc; loc != NULL;
	       loc = loc->dw_loc_next)
	    {
	      /* Output the opcode.  */
	      ASM_OUTPUT_DWARF_DATA1 (asm_out_file, loc->dw_loc_opc);
	      if (flag_debug_asm)
		fprintf (asm_out_file, "\t%s %s", ASM_COMMENT_START,
			 dwarf_stack_op_name (loc->dw_loc_opc));

	      fputc ('\n', asm_out_file);

	      /* Output the operand(s) (if any).  */
	      output_loc_operands (loc);
	    }
	  break;

	case dw_val_class_const:
	  ASM_OUTPUT_DWARF_DATA4 (asm_out_file, a->dw_attr_val.v.val_int);
	  break;

	case dw_val_class_unsigned_const:
	  switch (constant_size (a->dw_attr_val.v.val_unsigned))
	    {
	    case 1:
	      ASM_OUTPUT_DWARF_DATA1 (asm_out_file,
				      a->dw_attr_val.v.val_unsigned);
	      break;
	    case 2:
	      ASM_OUTPUT_DWARF_DATA2 (asm_out_file,
				      a->dw_attr_val.v.val_unsigned);
	      break;
	    case 4:
	      ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
				      a->dw_attr_val.v.val_unsigned);
	      break;
	    case 8:
	      ASM_OUTPUT_DWARF_DATA8 (asm_out_file,
				      a->dw_attr_val.v.val_long_long.hi,
				      a->dw_attr_val.v.val_long_long.low);
	      break;
	    default:
	      abort ();
	    }
	  break;

	case dw_val_class_long_long:
	  ASM_OUTPUT_DWARF_DATA1 (asm_out_file, 8);
	  if (flag_debug_asm)
	    fprintf (asm_out_file, "\t%s %s",
		   ASM_COMMENT_START, dwarf_attr_name (a->dw_attr));

	  fputc ('\n', asm_out_file);
	  ASM_OUTPUT_DWARF_DATA8 (asm_out_file,
				  a->dw_attr_val.v.val_long_long.hi,
				  a->dw_attr_val.v.val_long_long.low);

	  if (flag_debug_asm)
	    fprintf (asm_out_file,
		     "\t%s long long constant", ASM_COMMENT_START);
	  
	  fputc ('\n', asm_out_file);
	  break;

	case dw_val_class_float:
	  ASM_OUTPUT_DWARF_DATA1 (asm_out_file,
				  a->dw_attr_val.v.val_float.length * 4);
	  if (flag_debug_asm)
	    fprintf (asm_out_file, "\t%s %s",
		     ASM_COMMENT_START, dwarf_attr_name (a->dw_attr));

	  fputc ('\n', asm_out_file);
	  for (i = 0; i < a->dw_attr_val.v.val_float.length; ++i)
	    {
	      ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
				      a->dw_attr_val.v.val_float.array[i]);
	      if (flag_debug_asm)
		fprintf (asm_out_file, "\t%s fp constant word %d",
			 ASM_COMMENT_START, i);

	      fputc ('\n', asm_out_file);
	    }
	  break;

	case dw_val_class_flag:
	  ASM_OUTPUT_DWARF_DATA1 (asm_out_file, a->dw_attr_val.v.val_flag);
	  break;

	case dw_val_class_die_ref:
	  if (a->dw_attr_val.v.val_die_ref != NULL)
	    ref_offset = a->dw_attr_val.v.val_die_ref->die_offset;
	  else if (a->dw_attr == DW_AT_sibling)
	    ref_offset = sibling_offset(die);
	  else
	    abort ();

	  ASM_OUTPUT_DWARF_DATA (asm_out_file, ref_offset);
	  break;

	case dw_val_class_fde_ref:
	  {
	    char l1[20];
	    ASM_GENERATE_INTERNAL_LABEL
	      (l1, FDE_AFTER_SIZE_LABEL, a->dw_attr_val.v.val_fde_index * 2);
	    ASM_OUTPUT_DWARF_OFFSET (asm_out_file, l1);
	    fprintf (asm_out_file, " - %d", DWARF_OFFSET_SIZE);
	  }
	  break;

	case dw_val_class_lbl_id:
	  ASM_OUTPUT_DWARF_ADDR (asm_out_file, a->dw_attr_val.v.val_lbl_id);
	  break;

	case dw_val_class_section_offset:
	  ASM_OUTPUT_DWARF_OFFSET (asm_out_file,
				   stripattributes
				   (a->dw_attr_val.v.val_section));
	  break;

	case dw_val_class_str:
	  if (flag_debug_asm)
	    ASM_OUTPUT_DWARF_STRING (asm_out_file, a->dw_attr_val.v.val_str);
	  else
	    ASM_OUTPUT_ASCII (asm_out_file,
			      a->dw_attr_val.v.val_str,
			      strlen (a->dw_attr_val.v.val_str) + 1);
	  break;

	default:
	  abort ();
	}

      if (a->dw_attr_val.val_class != dw_val_class_loc
	  && a->dw_attr_val.val_class != dw_val_class_long_long
	  && a->dw_attr_val.val_class != dw_val_class_float)
	{
	  if (flag_debug_asm)
	    fprintf (asm_out_file, "\t%s %s",
		     ASM_COMMENT_START, dwarf_attr_name (a->dw_attr));

	  fputc ('\n', asm_out_file);
	}
    }

  for (c = die->die_child; c != NULL; c = c->die_sib)
    output_die (c);

  if (die->die_child != NULL)
    {
      /* Add null byte to terminate sibling list. */
      ASM_OUTPUT_DWARF_DATA1 (asm_out_file, 0);
      if (flag_debug_asm)
	fprintf (asm_out_file, "\t%s end of children of DIE 0x%x",
		 ASM_COMMENT_START, die->die_offset);

      fputc ('\n', asm_out_file);
    }
}

/* Output the compilation unit that appears at the beginning of the
   .debug_info section, and precedes the DIE descriptions.  */

static void
output_compilation_unit_header ()
{
  ASM_OUTPUT_DWARF_DATA (asm_out_file, next_die_offset - DWARF_OFFSET_SIZE);
  if (flag_debug_asm)
    fprintf (asm_out_file, "\t%s Length of Compilation Unit Info.",
	     ASM_COMMENT_START);

  fputc ('\n', asm_out_file);
  ASM_OUTPUT_DWARF_DATA2 (asm_out_file, DWARF_VERSION);
  if (flag_debug_asm)
    fprintf (asm_out_file, "\t%s DWARF version number", ASM_COMMENT_START);

  fputc ('\n', asm_out_file);
  ASM_OUTPUT_DWARF_OFFSET (asm_out_file, stripattributes (ABBREV_SECTION));
  if (flag_debug_asm)
    fprintf (asm_out_file, "\t%s Offset Into Abbrev. Section",
	     ASM_COMMENT_START);

  fputc ('\n', asm_out_file);
  ASM_OUTPUT_DWARF_DATA1 (asm_out_file, PTR_SIZE);
  if (flag_debug_asm)
    fprintf (asm_out_file, "\t%s Pointer Size (in bytes)", ASM_COMMENT_START);

  fputc ('\n', asm_out_file);
}

/* The DWARF2 pubname for a nested thingy looks like "A::f".  The output
   of decl_printable_name for C++ looks like "A::f(int)".  Let's drop the
   argument list, and maybe the scope.  */

static char *
dwarf2_name (decl, scope)
     tree decl;
     int scope;
{
  return (*decl_printable_name) (decl, scope ? 1 : 0);
}

/* Add a new entry to .debug_pubnames if appropriate.  */

static void
add_pubname (decl, die)
     tree decl;
     dw_die_ref die;
{
  pubname_ref p;

  if (! TREE_PUBLIC (decl))
    return;

  if (pubname_table_in_use == pubname_table_allocated)
    {
      pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
      pubname_table = (pubname_ref) xrealloc
	(pubname_table, pubname_table_allocated * sizeof (pubname_entry));
    }

  p = &pubname_table[pubname_table_in_use++];
  p->die = die;

  p->name = xstrdup (dwarf2_name (decl, 1));
}

/* Output the public names table used to speed up access to externally
   visible names.  For now, only generate entries for externally
   visible procedures.  */

static void
output_pubnames ()
{
  register unsigned i;
  register unsigned long pubnames_length = size_of_pubnames ();

  ASM_OUTPUT_DWARF_DATA (asm_out_file, pubnames_length);

  if (flag_debug_asm)
    fprintf (asm_out_file, "\t%s Length of Public Names Info.",
	     ASM_COMMENT_START);

  fputc ('\n', asm_out_file);
  ASM_OUTPUT_DWARF_DATA2 (asm_out_file, DWARF_VERSION);

  if (flag_debug_asm)
    fprintf (asm_out_file, "\t%s DWARF Version", ASM_COMMENT_START);

  fputc ('\n', asm_out_file);
  ASM_OUTPUT_DWARF_OFFSET (asm_out_file, stripattributes (DEBUG_INFO_SECTION));
  if (flag_debug_asm)
    fprintf (asm_out_file, "\t%s Offset of Compilation Unit Info.",
	     ASM_COMMENT_START);

  fputc ('\n', asm_out_file);
  ASM_OUTPUT_DWARF_DATA (asm_out_file, next_die_offset);
  if (flag_debug_asm)
    fprintf (asm_out_file, "\t%s Compilation Unit Length", ASM_COMMENT_START);

  fputc ('\n', asm_out_file);
  for (i = 0; i < pubname_table_in_use; ++i)
    {
      register pubname_ref pub = &pubname_table[i];

      ASM_OUTPUT_DWARF_DATA (asm_out_file, pub->die->die_offset);
      if (flag_debug_asm)
	fprintf (asm_out_file, "\t%s DIE offset", ASM_COMMENT_START);

      fputc ('\n', asm_out_file);

      if (flag_debug_asm)
	{
	  ASM_OUTPUT_DWARF_STRING (asm_out_file, pub->name);
	  fprintf (asm_out_file, "%s external name", ASM_COMMENT_START);
	}
      else
	{
	  ASM_OUTPUT_ASCII (asm_out_file, pub->name, strlen (pub->name) + 1);
	}

      fputc ('\n', asm_out_file);
    }

  ASM_OUTPUT_DWARF_DATA (asm_out_file, 0);
  fputc ('\n', asm_out_file);
}

/* Add a new entry to .debug_aranges if appropriate.  */

static void
add_arange (decl, die)
     tree decl;
     dw_die_ref die;
{
  if (! DECL_SECTION_NAME (decl))
    return;

  if (arange_table_in_use == arange_table_allocated)
    {
      arange_table_allocated += ARANGE_TABLE_INCREMENT;
      arange_table
	= (arange_ref) xrealloc (arange_table,
				 arange_table_allocated * sizeof (dw_die_ref));
    }

  arange_table[arange_table_in_use++] = die;
}

/* Output the information that goes into the .debug_aranges table.
   Namely, define the beginning and ending address range of the
   text section generated for this compilation unit.  */

static void
output_aranges ()
{
  register unsigned i;
  register unsigned long aranges_length = size_of_aranges ();

  ASM_OUTPUT_DWARF_DATA (asm_out_file, aranges_length);
  if (flag_debug_asm)
    fprintf (asm_out_file, "\t%s Length of Address Ranges Info.",
	     ASM_COMMENT_START);

  fputc ('\n', asm_out_file);
  ASM_OUTPUT_DWARF_DATA2 (asm_out_file, DWARF_VERSION);
  if (flag_debug_asm)
    fprintf (asm_out_file, "\t%s DWARF Version", ASM_COMMENT_START);

  fputc ('\n', asm_out_file);
  ASM_OUTPUT_DWARF_OFFSET (asm_out_file, stripattributes (DEBUG_INFO_SECTION));
  if (flag_debug_asm)
    fprintf (asm_out_file, "\t%s Offset of Compilation Unit Info.",
	     ASM_COMMENT_START);

  fputc ('\n', asm_out_file);
  ASM_OUTPUT_DWARF_DATA1 (asm_out_file, PTR_SIZE);
  if (flag_debug_asm)
    fprintf (asm_out_file, "\t%s Size of Address", ASM_COMMENT_START);

  fputc ('\n', asm_out_file);
  ASM_OUTPUT_DWARF_DATA1 (asm_out_file, 0);
  if (flag_debug_asm)
    fprintf (asm_out_file, "\t%s Size of Segment Descriptor",
	     ASM_COMMENT_START);

  fputc ('\n', asm_out_file);
  ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 4);
  if (PTR_SIZE == 8)
    fprintf (asm_out_file, ",0,0");

  if (flag_debug_asm)
    fprintf (asm_out_file, "\t%s Pad to %d byte boundary",
	     ASM_COMMENT_START, 2 * PTR_SIZE);

  fputc ('\n', asm_out_file);
  ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_SECTION);
  if (flag_debug_asm)
    fprintf (asm_out_file, "\t%s Address", ASM_COMMENT_START);

  fputc ('\n', asm_out_file);
  ASM_OUTPUT_DWARF_ADDR_DELTA (asm_out_file, text_end_label, TEXT_SECTION);
  if (flag_debug_asm)
    fprintf (asm_out_file, "%s Length", ASM_COMMENT_START);

  fputc ('\n', asm_out_file);
  for (i = 0; i < arange_table_in_use; ++i)
    {
      dw_die_ref a = arange_table[i];

      if (a->die_tag == DW_TAG_subprogram)
	ASM_OUTPUT_DWARF_ADDR (asm_out_file, get_AT_low_pc (a));
      else
	{
	  char *name = get_AT_string (a, DW_AT_MIPS_linkage_name);
	  if (! name)
	    name = get_AT_string (a, DW_AT_name);

	  ASM_OUTPUT_DWARF_ADDR (asm_out_file, name);
	}

      if (flag_debug_asm)
	fprintf (asm_out_file, "\t%s Address", ASM_COMMENT_START);

      fputc ('\n', asm_out_file);
      if (a->die_tag == DW_TAG_subprogram)
	ASM_OUTPUT_DWARF_ADDR_DELTA (asm_out_file, get_AT_hi_pc (a),
				     get_AT_low_pc (a));
      else
	ASM_OUTPUT_DWARF_ADDR_DATA (asm_out_file,
				    get_AT_unsigned (a, DW_AT_byte_size));

      if (flag_debug_asm)
	fprintf (asm_out_file, "%s Length", ASM_COMMENT_START);

      fputc ('\n', asm_out_file);
    }

  /* Output the terminator words.  */
  ASM_OUTPUT_DWARF_ADDR_DATA (asm_out_file, 0);
  fputc ('\n', asm_out_file);
  ASM_OUTPUT_DWARF_ADDR_DATA (asm_out_file, 0);
  fputc ('\n', asm_out_file);
}

/* Output the source line number correspondence information.  This
   information goes into the .debug_line section.

   If the format of this data changes, then the function size_of_line_info
   must also be adjusted the same way.  */

static void
output_line_info ()
{
  char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
  char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
  register unsigned opc;
  register unsigned n_op_args;
  register unsigned long ft_index;
  register unsigned long lt_index;
  register unsigned long current_line;
  register long line_offset;
  register long line_delta;
  register unsigned long current_file;
  register unsigned long function;

  ASM_OUTPUT_DWARF_DATA (asm_out_file, size_of_line_info ());
  if (flag_debug_asm)
    fprintf (asm_out_file, "\t%s Length of Source Line Info.",
	     ASM_COMMENT_START);

  fputc ('\n', asm_out_file);
  ASM_OUTPUT_DWARF_DATA2 (asm_out_file, DWARF_VERSION);
  if (flag_debug_asm)
    fprintf (asm_out_file, "\t%s DWARF Version", ASM_COMMENT_START);

  fputc ('\n', asm_out_file);
  ASM_OUTPUT_DWARF_DATA (asm_out_file, size_of_line_prolog ());
  if (flag_debug_asm)
    fprintf (asm_out_file, "\t%s Prolog Length", ASM_COMMENT_START);

  fputc ('\n', asm_out_file);
  ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DWARF_LINE_MIN_INSTR_LENGTH);
  if (flag_debug_asm)
    fprintf (asm_out_file, "\t%s Minimum Instruction Length",
	     ASM_COMMENT_START);

  fputc ('\n', asm_out_file);
  ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DWARF_LINE_DEFAULT_IS_STMT_START);
  if (flag_debug_asm)
    fprintf (asm_out_file, "\t%s Default is_stmt_start flag",
	     ASM_COMMENT_START);

  fputc ('\n', asm_out_file);
  fprintf (asm_out_file, "\t%s\t%d", ASM_BYTE_OP, DWARF_LINE_BASE);
  if (flag_debug_asm)
    fprintf (asm_out_file, "\t%s Line Base Value (Special Opcodes)",
	     ASM_COMMENT_START);

  fputc ('\n', asm_out_file);
  fprintf (asm_out_file, "\t%s\t%u", ASM_BYTE_OP, DWARF_LINE_RANGE);
  if (flag_debug_asm)
    fprintf (asm_out_file, "\t%s Line Range Value (Special Opcodes)",
	     ASM_COMMENT_START);

  fputc ('\n', asm_out_file);
  fprintf (asm_out_file, "\t%s\t%u", ASM_BYTE_OP, DWARF_LINE_OPCODE_BASE);
  if (flag_debug_asm)
    fprintf (asm_out_file, "\t%s Special Opcode Base", ASM_COMMENT_START);

  fputc ('\n', asm_out_file);
  for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; ++opc)
    {
      switch (opc)
	{
	case DW_LNS_advance_pc:
	case DW_LNS_advance_line:
	case DW_LNS_set_file:
	case DW_LNS_set_column:
	case DW_LNS_fixed_advance_pc:
	  n_op_args = 1;
	  break;
	default:
	  n_op_args = 0;
	  break;
	}
      ASM_OUTPUT_DWARF_DATA1 (asm_out_file, n_op_args);
      if (flag_debug_asm)
	fprintf (asm_out_file, "\t%s opcode: 0x%x has %d args",
		 ASM_COMMENT_START, opc, n_op_args);
      fputc ('\n', asm_out_file);
    }

  if (flag_debug_asm)
    fprintf (asm_out_file, "%s Include Directory Table\n", ASM_COMMENT_START);

  /* Include directory table is empty, at present */
  ASM_OUTPUT_DWARF_DATA1 (asm_out_file, 0);
  fputc ('\n', asm_out_file);
  if (flag_debug_asm)
    fprintf (asm_out_file, "%s File Name Table\n", ASM_COMMENT_START);

  for (ft_index = 1; ft_index < file_table_in_use; ++ft_index)
    {
      if (flag_debug_asm)
	{
	  ASM_OUTPUT_DWARF_STRING (asm_out_file, file_table[ft_index]);
	  fprintf (asm_out_file, "%s File Entry: 0x%x",
		   ASM_COMMENT_START, ft_index);
	}
      else
	{
	  ASM_OUTPUT_ASCII (asm_out_file,
			    file_table[ft_index],
			    strlen (file_table[ft_index]) + 1);
	}

      fputc ('\n', asm_out_file);

      /* Include directory index */
      output_uleb128 (0);
      fputc ('\n', asm_out_file);

      /* Modification time */
      output_uleb128 (0);
      fputc ('\n', asm_out_file);

      /* File length in bytes */
      output_uleb128 (0);
      fputc ('\n', asm_out_file);
    }

  /* Terminate the file name table */
  ASM_OUTPUT_DWARF_DATA1 (asm_out_file, 0);
  fputc ('\n', asm_out_file);

  /* Set the address register to the first location in the text section */
  ASM_OUTPUT_DWARF_DATA1 (asm_out_file, 0);
  if (flag_debug_asm)
    fprintf (asm_out_file, "\t%s DW_LNE_set_address", ASM_COMMENT_START);

  fputc ('\n', asm_out_file);
  output_uleb128 (1 + PTR_SIZE);
  fputc ('\n', asm_out_file);
  ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DW_LNE_set_address);
  fputc ('\n', asm_out_file);
  ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_SECTION);
  fputc ('\n', asm_out_file);

  /* Generate the line number to PC correspondence table, encoded as
     a series of state machine operations.  */
  current_file = 1;
  current_line = 1;
  strcpy (prev_line_label, TEXT_SECTION);
  for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
    {
      register dw_line_info_ref line_info;

      /* Emit debug info for the address of the current line, choosing
	 the encoding that uses the least amount of space.  */
      /* ??? Unfortunately, we have little choice here currently, and must
	 always use the most general form.  Gcc does not know the address
	 delta itself, so we can't use DW_LNS_advance_pc.  There are no known
	 dwarf2 aware assemblers at this time, so we can't use any special
	 pseudo ops that would allow the assembler to optimally encode this for
	 us.  Many ports do have length attributes which will give an upper
	 bound on the address range.  We could perhaps use length attributes
	 to determine when it is safe to use DW_LNS_fixed_advance_pc.  */
      ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
      if (0)
	{
	  /* This can handle deltas up to 0xffff.  This takes 3 bytes.  */
	  ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DW_LNS_fixed_advance_pc);
	  if (flag_debug_asm)
	    fprintf (asm_out_file, "\t%s DW_LNS_fixed_advance_pc",
		     ASM_COMMENT_START);

	  fputc ('\n', asm_out_file);
	  ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, line_label, prev_line_label);
	  fputc ('\n', asm_out_file);
	}
      else
	{
	  /* This can handle any delta.  This takes 4+PTR_SIZE bytes.  */
	  ASM_OUTPUT_DWARF_DATA1 (asm_out_file, 0);
	  if (flag_debug_asm)
	    fprintf (asm_out_file, "\t%s DW_LNE_set_address",
		     ASM_COMMENT_START);
	  fputc ('\n', asm_out_file);
	  output_uleb128 (1 + PTR_SIZE);
	  fputc ('\n', asm_out_file);
	  ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DW_LNE_set_address);
	  fputc ('\n', asm_out_file);
	  ASM_OUTPUT_DWARF_ADDR (asm_out_file, line_label);
	  fputc ('\n', asm_out_file);
	}
      strcpy (prev_line_label, line_label);

      /* Emit debug info for the source file of the current line, if
	 different from the previous line.  */
      line_info = &line_info_table[lt_index];
      if (line_info->dw_file_num != current_file)
	{
	  current_file = line_info->dw_file_num;
	  ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DW_LNS_set_file);
	  if (flag_debug_asm)
	    fprintf (asm_out_file, "\t%s DW_LNS_set_file", ASM_COMMENT_START);

	  fputc ('\n', asm_out_file);
	  output_uleb128 (current_file);
	  if (flag_debug_asm)
	    fprintf (asm_out_file, " (\"%s\")", file_table[current_file]);

	  fputc ('\n', asm_out_file);
	}

      /* Emit debug info for the current line number, choosing the encoding
	 that uses the least amount of space.  */
      line_offset = line_info->dw_line_num - current_line;
      line_delta = line_offset - DWARF_LINE_BASE;
      current_line = line_info->dw_line_num;
      if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
	{
	  /* This can handle deltas from -10 to 234, using the current
	     definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE.  This
	     takes 1 byte.  */
	  ASM_OUTPUT_DWARF_DATA1 (asm_out_file,
				  DWARF_LINE_OPCODE_BASE + line_delta);
	  if (flag_debug_asm)
	      fprintf (asm_out_file,
		       "\t%s line %d", ASM_COMMENT_START, current_line);

	  fputc ('\n', asm_out_file);
	}
      else
	{
	  /* This can handle any delta.  This takes at least 4 bytes, depending
	     on the value being encoded.  */
	  ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DW_LNS_advance_line);
	  if (flag_debug_asm)
	    fprintf (asm_out_file, "\t%s advance to line %d",
		     ASM_COMMENT_START, current_line);

	  fputc ('\n', asm_out_file);
	  output_sleb128 (line_offset);
	  fputc ('\n', asm_out_file);
	  ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DW_LNS_copy);
	  fputc ('\n', asm_out_file);
	}
    }

  /* Emit debug info for the address of the end of the function.  */
  if (0)
    {
      ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DW_LNS_fixed_advance_pc);
      if (flag_debug_asm)
	fprintf (asm_out_file, "\t%s DW_LNS_fixed_advance_pc",
		 ASM_COMMENT_START);

      fputc ('\n', asm_out_file);
      ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, text_end_label, prev_line_label);
      fputc ('\n', asm_out_file);
    }
  else
    {
      ASM_OUTPUT_DWARF_DATA1 (asm_out_file, 0);
      if (flag_debug_asm)
	fprintf (asm_out_file, "\t%s DW_LNE_set_address", ASM_COMMENT_START);
      fputc ('\n', asm_out_file);
      output_uleb128 (1 + PTR_SIZE);
      fputc ('\n', asm_out_file);
      ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DW_LNE_set_address);
      fputc ('\n', asm_out_file);
      ASM_OUTPUT_DWARF_ADDR (asm_out_file, text_end_label);
      fputc ('\n', asm_out_file);
    }

  /* Output the marker for the end of the line number info.  */
  ASM_OUTPUT_DWARF_DATA1 (asm_out_file, 0);
  if (flag_debug_asm)
    fprintf (asm_out_file, "\t%s DW_LNE_end_sequence", ASM_COMMENT_START);

  fputc ('\n', asm_out_file);
  output_uleb128 (1);
  fputc ('\n', asm_out_file);
  ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DW_LNE_end_sequence);
  fputc ('\n', asm_out_file);

  function = 0;
  current_file = 1;
  current_line = 1;
  for (lt_index = 0; lt_index < separate_line_info_table_in_use; )
    {
      register dw_separate_line_info_ref line_info
	= &separate_line_info_table[lt_index];

      /* Emit debug info for the address of the current line.  If this is
	 a new function, or the first line of a function, then we need
	 to handle it differently.  */
      ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
				   lt_index);
      if (function != line_info->function)
	{
	  function = line_info->function;

	  /* Set the address register to the first line in the function */
	  ASM_OUTPUT_DWARF_DATA1 (asm_out_file, 0);
	  if (flag_debug_asm)
	    fprintf (asm_out_file, "\t%s DW_LNE_set_address",
		     ASM_COMMENT_START);

	  fputc ('\n', asm_out_file);
	  output_uleb128 (1 + PTR_SIZE);
	  fputc ('\n', asm_out_file);
	  ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DW_LNE_set_address);
	  fputc ('\n', asm_out_file);
	  ASM_OUTPUT_DWARF_ADDR (asm_out_file, line_label);
	  fputc ('\n', asm_out_file);
	}
      else
	{
	  /* ??? See the DW_LNS_advance_pc comment above.  */
	  if (0)
	    {
	      ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DW_LNS_fixed_advance_pc);
	      if (flag_debug_asm)
		fprintf (asm_out_file, "\t%s DW_LNS_fixed_advance_pc",
			 ASM_COMMENT_START);

	      fputc ('\n', asm_out_file);
	      ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, line_label,
				       prev_line_label);
	      fputc ('\n', asm_out_file);
	    }
	  else
	    {
	      ASM_OUTPUT_DWARF_DATA1 (asm_out_file, 0);
	      if (flag_debug_asm)
		fprintf (asm_out_file, "\t%s DW_LNE_set_address",
			 ASM_COMMENT_START);
	      fputc ('\n', asm_out_file);
	      output_uleb128 (1 + PTR_SIZE);
	      fputc ('\n', asm_out_file);
	      ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DW_LNE_set_address);
	      fputc ('\n', asm_out_file);
	      ASM_OUTPUT_DWARF_ADDR (asm_out_file, line_label);
	      fputc ('\n', asm_out_file);
	    }
	}
      strcpy (prev_line_label, line_label);

      /* Emit debug info for the source file of the current line, if
	 different from the previous line.  */
      if (line_info->dw_file_num != current_file)
	{
	  current_file = line_info->dw_file_num;
	  ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DW_LNS_set_file);
	  if (flag_debug_asm)
	    fprintf (asm_out_file, "\t%s DW_LNS_set_file", ASM_COMMENT_START);

	  fputc ('\n', asm_out_file);
	  output_uleb128 (current_file);
	  if (flag_debug_asm)
	    fprintf (asm_out_file, " (\"%s\")", file_table[current_file]);

	  fputc ('\n', asm_out_file);
	}

      /* Emit debug info for the current line number, choosing the encoding
	 that uses the least amount of space.  */
      if (line_info->dw_line_num != current_line)
	{
	  line_offset = line_info->dw_line_num - current_line;
	  line_delta = line_offset - DWARF_LINE_BASE;
	  current_line = line_info->dw_line_num;
	  if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
	    {
	      ASM_OUTPUT_DWARF_DATA1 (asm_out_file,
				      DWARF_LINE_OPCODE_BASE + line_delta);
	      if (flag_debug_asm)
		fprintf (asm_out_file,
			 "\t%s line %d", ASM_COMMENT_START, current_line);

	      fputc ('\n', asm_out_file);
	    }
	  else
	    {
	      ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DW_LNS_advance_line);
	      if (flag_debug_asm)
		fprintf (asm_out_file, "\t%s advance to line %d",
			 ASM_COMMENT_START, current_line);

	      fputc ('\n', asm_out_file);
	      output_sleb128 (line_offset);
	      fputc ('\n', asm_out_file);
	      ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DW_LNS_copy);
	      fputc ('\n', asm_out_file);
	    }
	}

      ++lt_index;

      /* If we're done with a function, end its sequence.  */
      if (lt_index == separate_line_info_table_in_use
	  || separate_line_info_table[lt_index].function != function)
	{
	  current_file = 1;
	  current_line = 1;

	  /* Emit debug info for the address of the end of the function.  */
	  ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
	  if (0)
	    {
	      ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DW_LNS_fixed_advance_pc);
	      if (flag_debug_asm)
		fprintf (asm_out_file, "\t%s DW_LNS_fixed_advance_pc",
			 ASM_COMMENT_START);

	      fputc ('\n', asm_out_file);
	      ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, line_label,
				       prev_line_label);
	      fputc ('\n', asm_out_file);
	    }
	  else
	    {
	      ASM_OUTPUT_DWARF_DATA1 (asm_out_file, 0);
	      if (flag_debug_asm)
		fprintf (asm_out_file, "\t%s DW_LNE_set_address",
			 ASM_COMMENT_START);
	      fputc ('\n', asm_out_file);
	      output_uleb128 (1 + PTR_SIZE);
	      fputc ('\n', asm_out_file);
	      ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DW_LNE_set_address);
	      fputc ('\n', asm_out_file);
	      ASM_OUTPUT_DWARF_ADDR (asm_out_file, line_label);
	      fputc ('\n', asm_out_file);
	    }

	  /* Output the marker for the end of this sequence.  */
	  ASM_OUTPUT_DWARF_DATA1 (asm_out_file, 0);
	  if (flag_debug_asm)
	    fprintf (asm_out_file, "\t%s DW_LNE_end_sequence",
		     ASM_COMMENT_START);

	  fputc ('\n', asm_out_file);
	  output_uleb128 (1);
	  fputc ('\n', asm_out_file);
	  ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DW_LNE_end_sequence);
	  fputc ('\n', asm_out_file);
	}
    }
}

/* Given a pointer to a BLOCK node return non-zero if (and only if) the node
   in question represents the outermost pair of curly braces (i.e. the "body
   block") of a function or method.

   For any BLOCK node representing a "body block" of a function or method, the
   BLOCK_SUPERCONTEXT of the node will point to another BLOCK node which
   represents the outermost (function) scope for the function or method (i.e.
   the one which includes the formal parameters).  The BLOCK_SUPERCONTEXT of
   *that* node in turn will point to the relevant FUNCTION_DECL node. */

static inline int
is_body_block (stmt)
     register tree stmt;
{
  if (TREE_CODE (stmt) == BLOCK)
    {
      register tree parent = BLOCK_SUPERCONTEXT (stmt);

      if (TREE_CODE (parent) == BLOCK)
	{
	  register tree grandparent = BLOCK_SUPERCONTEXT (parent);

	  if (TREE_CODE (grandparent) == FUNCTION_DECL)
	    return 1;
	}
    }

  return 0;
}

/* Given a pointer to a tree node for some base type, return a pointer to
   a DIE that describes the given type.

   This routine must only be called for GCC type nodes that correspond to
   Dwarf base (fundamental) types.  */

static dw_die_ref
base_type_die (type)
     register tree type;
{
  register dw_die_ref base_type_result;
  register char *type_name;
  register enum dwarf_type encoding;
  register tree name = TYPE_NAME (type);

  if (TREE_CODE (type) == ERROR_MARK
      || TREE_CODE (type) == VOID_TYPE)
    return 0;

  if (TREE_CODE (name) == TYPE_DECL)
    name = DECL_NAME (name);
  type_name = IDENTIFIER_POINTER (name);

  switch (TREE_CODE (type))
    {
    case INTEGER_TYPE:
      /* Carefully distinguish the C character types, without messing
         up if the language is not C. Note that we check only for the names
         that contain spaces; other names might occur by coincidence in other 
         languages.  */
      if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
	     && (type == char_type_node
		 || ! strcmp (type_name, "signed char")
		 || ! strcmp (type_name, "unsigned char"))))
	{
	  if (TREE_UNSIGNED (type))
	    encoding = DW_ATE_unsigned;
	  else
	    encoding = DW_ATE_signed;
	  break;
	}
      /* else fall through */

    case CHAR_TYPE:
      /* GNU Pascal/Ada CHAR type.  Not used in C.  */
      if (TREE_UNSIGNED (type))
	encoding = DW_ATE_unsigned_char;
      else
	encoding = DW_ATE_signed_char;
      break;

    case REAL_TYPE:
      encoding = DW_ATE_float;
      break;

    case COMPLEX_TYPE:
      encoding = DW_ATE_complex_float;
      break;

    case BOOLEAN_TYPE:
      /* GNU FORTRAN/Ada/C++ BOOLEAN type.  */
      encoding = DW_ATE_boolean;
      break;

    default:
      abort (); /* No other TREE_CODEs are Dwarf fundamental types.  */
    }

  base_type_result = new_die (DW_TAG_base_type, comp_unit_die);
  add_AT_string (base_type_result, DW_AT_name, type_name);
  add_AT_unsigned (base_type_result, DW_AT_byte_size,
		   TYPE_PRECISION (type) / BITS_PER_UNIT);
  add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);

  return base_type_result;
}

/* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
   the Dwarf "root" type for the given input type.  The Dwarf "root" type of
   a given type is generally the same as the given type, except that if the
   given type is a pointer or reference type, then the root type of the given
   type is the root type of the "basis" type for the pointer or reference
   type.  (This definition of the "root" type is recursive.) Also, the root
   type of a `const' qualified type or a `volatile' qualified type is the
   root type of the given type without the qualifiers.  */

static tree
root_type (type)
     register tree type;
{
  if (TREE_CODE (type) == ERROR_MARK)
    return error_mark_node;

  switch (TREE_CODE (type))
    {
    case ERROR_MARK:
      return error_mark_node;

    case POINTER_TYPE:
    case REFERENCE_TYPE:
      return type_main_variant (root_type (TREE_TYPE (type)));

    default:
      return type_main_variant (type);
    }
}

/* Given a pointer to an arbitrary ..._TYPE tree node, return non-zero if the
   given input type is a Dwarf "fundamental" type.  Otherwise return null.  */

static inline int
is_base_type (type)
     register tree type;
{
  switch (TREE_CODE (type))
    {
    case ERROR_MARK:
    case VOID_TYPE:
    case INTEGER_TYPE:
    case REAL_TYPE:
    case COMPLEX_TYPE:
    case BOOLEAN_TYPE:
    case CHAR_TYPE:
      return 1;

    case SET_TYPE:
    case ARRAY_TYPE:
    case RECORD_TYPE:
    case UNION_TYPE:
    case QUAL_UNION_TYPE:
    case ENUMERAL_TYPE:
    case FUNCTION_TYPE:
    case METHOD_TYPE:
    case POINTER_TYPE:
    case REFERENCE_TYPE:
    case FILE_TYPE:
    case OFFSET_TYPE:
    case LANG_TYPE:
      return 0;

    default:
      abort ();
    }

  return 0;
}

/* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
   entry that chains various modifiers in front of the given type.  */

static dw_die_ref
modified_type_die (type, is_const_type, is_volatile_type, context_die)
     register tree type;
     register int is_const_type;
     register int is_volatile_type;
     register dw_die_ref context_die;
{
  register enum tree_code code = TREE_CODE (type);
  register dw_die_ref mod_type_die = NULL;
  register dw_die_ref sub_die = NULL;
  register tree item_type = NULL;

  if (code != ERROR_MARK)
    {
      type = build_type_variant (type, is_const_type, is_volatile_type);

      mod_type_die = lookup_type_die (type);
      if (mod_type_die)
	return mod_type_die;

      /* Handle C typedef types. */
      if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
	  && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
	{
	  tree dtype = TREE_TYPE (TYPE_NAME (type));
	  if (type == dtype)
	    {
	      /* For a named type, use the typedef.  */
	      gen_type_die (type, context_die);
	      mod_type_die = lookup_type_die (type);
	    }

	  else if (is_const_type < TYPE_READONLY (dtype)
		   || is_volatile_type < TYPE_VOLATILE (dtype))
	    /* cv-unqualified version of named type.  Just use the unnamed
	       type to which it refers.  */
	    mod_type_die
	      = modified_type_die (DECL_ORIGINAL_TYPE (TYPE_NAME (type)),
				   is_const_type, is_volatile_type,
				   context_die);
	  /* Else cv-qualified version of named type; fall through.  */
	}

      if (mod_type_die)
	/* OK */;
      else if (is_const_type)
	{
	  mod_type_die = new_die (DW_TAG_const_type, comp_unit_die);
	  sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
	}
      else if (is_volatile_type)
	{
	  mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die);
	  sub_die = modified_type_die (type, 0, 0, context_die);
	}
      else if (code == POINTER_TYPE)
	{
	  mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die);
	  add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
#if 0
	  add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
#endif
	  item_type = TREE_TYPE (type);
	}
      else if (code == REFERENCE_TYPE)
	{
	  mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die);
	  add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
#if 0
	  add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
#endif 
	  item_type = TREE_TYPE (type);
	}
      else if (is_base_type (type))
	mod_type_die = base_type_die (type);
      else
	{
	  gen_type_die (type, context_die);

	  /* We have to get the type_main_variant here (and pass that to the
	     `lookup_type_die' routine) because the ..._TYPE node we have
	     might simply be a *copy* of some original type node (where the
	     copy was created to help us keep track of typedef names) and
	     that copy might have a different TYPE_UID from the original
	     ..._TYPE node.  */
	  mod_type_die = lookup_type_die (type_main_variant (type));
	  assert (mod_type_die != NULL);
	}
    }

  equate_type_number_to_die (type, mod_type_die);
  if (item_type)
    /* We must do this after the equate_type_number_to_die call, in case
       this is a recursive type.  This ensures that the modified_type_die
       recursion will terminate even if the type is recursive.  Recursive
       types are possible in Ada.  */
    sub_die = modified_type_die (item_type,
				 TYPE_READONLY (item_type),
				 TYPE_VOLATILE (item_type),
				 context_die);

  if (sub_die != NULL)
    add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);

  return mod_type_die;
}

/* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
   an enumerated type.   */

static inline int
type_is_enum (type)
     register tree type;
{
  return TREE_CODE (type) == ENUMERAL_TYPE;
}

/* Return a location descriptor that designates a machine register.  */

static dw_loc_descr_ref
reg_loc_descriptor (rtl)
     register rtx rtl;
{
  register dw_loc_descr_ref loc_result = NULL;
  register unsigned reg = reg_number (rtl);

  if (reg >= 0 && reg <= 31)
    loc_result = new_loc_descr (DW_OP_reg0 + reg, 0, 0);
  else
    loc_result = new_loc_descr (DW_OP_regx, reg, 0);

  return loc_result;
}

/* Return a location descriptor that designates a base+offset location.  */

static dw_loc_descr_ref
based_loc_descr (reg, offset)
     unsigned reg;
     long int offset;
{
  register dw_loc_descr_ref loc_result;
  /* For the "frame base", we use the frame pointer or stack pointer
     registers, since the RTL for local variables is relative to one of
     them.  */
  register unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed
						  ? HARD_FRAME_POINTER_REGNUM
						  : STACK_POINTER_REGNUM);

  if (reg == fp_reg)
    loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
  else if (reg >= 0 && reg <= 31)
    loc_result = new_loc_descr (DW_OP_breg0 + reg, offset, 0);
  else
    loc_result = new_loc_descr (DW_OP_bregx, reg, offset);

  return loc_result;
}

/* Return true if this RTL expression describes a base+offset calculation.  */

static inline int
is_based_loc (rtl)
     register rtx rtl;
{
    return (GET_CODE (rtl) == PLUS
	    && ((GET_CODE (XEXP (rtl, 0)) == REG
		 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
}

/* The following routine converts the RTL for a variable or parameter
   (resident in memory) into an equivalent Dwarf representation of a
   mechanism for getting the address of that same variable onto the top of a
   hypothetical "address evaluation" stack.

   When creating memory location descriptors, we are effectively transforming
   the RTL for a memory-resident object into its Dwarf postfix expression
   equivalent.  This routine recursively descends an RTL tree, turning
   it into Dwarf postfix code as it goes.  */

static dw_loc_descr_ref
mem_loc_descriptor (rtl)
     register rtx rtl;
{
  dw_loc_descr_ref mem_loc_result = NULL;
  /* Note that for a dynamically sized array, the location we will generate a 
     description of here will be the lowest numbered location which is
     actually within the array.  That's *not* necessarily the same as the
     zeroth element of the array.  */

  switch (GET_CODE (rtl))
    {
    case SUBREG:
      /* The case of a subreg may arise when we have a local (register)
         variable or a formal (register) parameter which doesn't quite fill
         up an entire register.  For now, just assume that it is
         legitimate to make the Dwarf info refer to the whole register which
         contains the given subreg.  */
      rtl = XEXP (rtl, 0);

      /* ... fall through ... */

    case REG:
      /* Whenever a register number forms a part of the description of the
         method for calculating the (dynamic) address of a memory resident
         object, DWARF rules require the register number be referred to as 
         a "base register".  This distinction is not based in any way upon
         what category of register the hardware believes the given register
         belongs to.  This is strictly DWARF terminology we're dealing with
         here. Note that in cases where the location of a memory-resident
         data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
         OP_CONST (0)) the actual DWARF location descriptor that we generate
         may just be OP_BASEREG (basereg).  This may look deceptively like
         the object in question was allocated to a register (rather than in
         memory) so DWARF consumers need to be aware of the subtle
         distinction between OP_REG and OP_BASEREG.  */
      mem_loc_result = based_loc_descr (reg_number (rtl), 0);
      break;

    case MEM:
      mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0));
      add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
      break;

    case CONST:
    case SYMBOL_REF:
      mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
      mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
      mem_loc_result->dw_loc_oprnd1.v.val_addr = addr_to_string (rtl);
      break;

    case PLUS:
      if (is_based_loc (rtl))
	mem_loc_result = based_loc_descr (reg_number (XEXP (rtl, 0)),
					  INTVAL (XEXP (rtl, 1)));
      else
	{
	  add_loc_descr (&mem_loc_result, mem_loc_descriptor (XEXP (rtl, 0)));
	  add_loc_descr (&mem_loc_result, mem_loc_descriptor (XEXP (rtl, 1)));
	  add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_plus, 0, 0));
	}
      break;

    case MULT:
      /* If a pseudo-reg is optimized away, it is possible for it to
	 be replaced with a MEM containing a multiply.  */
      add_loc_descr (&mem_loc_result, mem_loc_descriptor (XEXP (rtl, 0)));
      add_loc_descr (&mem_loc_result, mem_loc_descriptor (XEXP (rtl, 1)));
      add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_mul, 0, 0));
      break;

    case CONST_INT:
      mem_loc_result = new_loc_descr (DW_OP_constu, INTVAL (rtl), 0);
      break;

    default:
      abort ();
    }

  return mem_loc_result;
}

/* Return a descriptor that describes the concatenation of two locations.
   This is typically a complex variable.  */

static dw_loc_descr_ref
concat_loc_descriptor (x0, x1)
     register rtx x0, x1;
{
  dw_loc_descr_ref cc_loc_result = NULL;

  if (!is_pseudo_reg (x0)
      && (GET_CODE (x0) != MEM || !is_pseudo_reg (XEXP (x0, 0))))
    add_loc_descr (&cc_loc_result, loc_descriptor (x0));
  add_loc_descr (&cc_loc_result,
	         new_loc_descr (DW_OP_piece, GET_MODE_SIZE (GET_MODE (x0)), 0));

  if (!is_pseudo_reg (x1)
      && (GET_CODE (x1) != MEM || !is_pseudo_reg (XEXP (x1, 0))))
    add_loc_descr (&cc_loc_result, loc_descriptor (x1));
  add_loc_descr (&cc_loc_result,
		 new_loc_descr (DW_OP_piece, GET_MODE_SIZE (GET_MODE (x1)), 0));

  return cc_loc_result;
}

/* Output a proper Dwarf location descriptor for a variable or parameter
   which is either allocated in a register or in a memory location.  For a
   register, we just generate an OP_REG and the register number.  For a
   memory location we provide a Dwarf postfix expression describing how to
   generate the (dynamic) address of the object onto the address stack.  */

static dw_loc_descr_ref
loc_descriptor (rtl)
     register rtx rtl;
{
  dw_loc_descr_ref loc_result = NULL;
  switch (GET_CODE (rtl))
    {
    case SUBREG:
      /* The case of a subreg may arise when we have a local (register)
         variable or a formal (register) parameter which doesn't quite fill
         up an entire register.  For now, just assume that it is
         legitimate to make the Dwarf info refer to the whole register which
         contains the given subreg.  */
      rtl = XEXP (rtl, 0);

      /* ... fall through ... */

    case REG:
      loc_result = reg_loc_descriptor (rtl);
      break;

    case MEM:
      loc_result = mem_loc_descriptor (XEXP (rtl, 0));
      break;

    case CONCAT:
      loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
      break;

    default:
      abort ();
    }

  return loc_result;
}

/* Given an unsigned value, round it up to the lowest multiple of `boundary'
   which is not less than the value itself.  */

static inline unsigned
ceiling (value, boundary)
     register unsigned value;
     register unsigned boundary;
{
  return (((value + boundary - 1) / boundary) * boundary);
}

/* Given a pointer to what is assumed to be a FIELD_DECL node, return a
   pointer to the declared type for the relevant field variable, or return
   `integer_type_node' if the given node turns out to be an
   ERROR_MARK node.  */

static inline tree
field_type (decl)
     register tree decl;
{
  register tree type;

  if (TREE_CODE (decl) == ERROR_MARK)
    return integer_type_node;

  type = DECL_BIT_FIELD_TYPE (decl);
  if (type == NULL_TREE)
    type = TREE_TYPE (decl);

  return type;
}

/* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
   node, return the alignment in bits for the type, or else return
   BITS_PER_WORD if the node actually turns out to be an
   ERROR_MARK node.  */

static inline unsigned
simple_type_align_in_bits (type)
     register tree type;
{
  return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
}

/* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
   node, return the size in bits for the type if it is a constant, or else
   return the alignment for the type if the type's size is not constant, or
   else return BITS_PER_WORD if the type actually turns out to be an
   ERROR_MARK node.  */

static inline unsigned
simple_type_size_in_bits (type)
     register tree type;
{
  if (TREE_CODE (type) == ERROR_MARK)
    return BITS_PER_WORD;
  else
    {
      register tree type_size_tree = TYPE_SIZE (type);

      if (TREE_CODE (type_size_tree) != INTEGER_CST)
	return TYPE_ALIGN (type);

      return (unsigned) TREE_INT_CST_LOW (type_size_tree);
    }
}

/* Given a pointer to what is assumed to be a FIELD_DECL node, compute and
   return the byte offset of the lowest addressed byte of the "containing
   object" for the given FIELD_DECL, or return 0 if we are unable to
   determine what that offset is, either because the argument turns out to
   be a pointer to an ERROR_MARK node, or because the offset is actually
   variable.  (We can't handle the latter case just yet).  */

static unsigned
field_byte_offset (decl)
     register tree decl;
{
  register unsigned type_align_in_bytes;
  register unsigned type_align_in_bits;
  register unsigned type_size_in_bits;
  register unsigned object_offset_in_align_units;
  register unsigned object_offset_in_bits;
  register unsigned object_offset_in_bytes;
  register tree type;
  register tree bitpos_tree;
  register tree field_size_tree;
  register unsigned bitpos_int;
  register unsigned deepest_bitpos;
  register unsigned field_size_in_bits;

  if (TREE_CODE (decl) == ERROR_MARK)
    return 0;

  if (TREE_CODE (decl) != FIELD_DECL)
    abort ();

  type = field_type (decl);

  bitpos_tree = DECL_FIELD_BITPOS (decl);
  field_size_tree = DECL_SIZE (decl);

  /* We cannot yet cope with fields whose positions or sizes are variable, so 
     for now, when we see such things, we simply return 0.  Someday, we may
     be able to handle such cases, but it will be damn difficult.  */
  if (TREE_CODE (bitpos_tree) != INTEGER_CST)
    return 0;
  bitpos_int = (unsigned) TREE_INT_CST_LOW (bitpos_tree);

  if (TREE_CODE (field_size_tree) != INTEGER_CST)
    return 0;

  field_size_in_bits = (unsigned) TREE_INT_CST_LOW (field_size_tree);
  type_size_in_bits = simple_type_size_in_bits (type);
  type_align_in_bits = simple_type_align_in_bits (type);
  type_align_in_bytes = type_align_in_bits / BITS_PER_UNIT;

  /* Note that the GCC front-end doesn't make any attempt to keep track of
     the starting bit offset (relative to the start of the containing
     structure type) of the hypothetical "containing object" for a bit-
     field.  Thus, when computing the byte offset value for the start of the
     "containing object" of a bit-field, we must deduce this information on 
     our own. This can be rather tricky to do in some cases.  For example,
     handling the following structure type definition when compiling for an
     i386/i486 target (which only aligns long long's to 32-bit boundaries)
     can be very tricky:

	 struct S { int field1; long long field2:31; };

     Fortunately, there is a simple rule-of-thumb which can be
     used in such cases.  When compiling for an i386/i486, GCC will allocate
     8 bytes for the structure shown above.  It decides to do this based upon 
     one simple rule for bit-field allocation.  Quite simply, GCC allocates
     each "containing object" for each bit-field at the first (i.e. lowest
     addressed) legitimate alignment boundary (based upon the required
     minimum alignment for the declared type of the field) which it can
     possibly use, subject to the condition that there is still enough
     available space remaining in the containing object (when allocated at
     the selected point) to fully accommodate all of the bits of the
     bit-field itself.  This simple rule makes it obvious why GCC allocates
     8 bytes for each object of the structure type shown above.  When looking
     for a place to allocate the "containing object" for `field2', the
     compiler simply tries to allocate a 64-bit "containing object" at each
     successive 32-bit boundary (starting at zero) until it finds a place to
     allocate that 64- bit field such that at least 31 contiguous (and
     previously unallocated) bits remain within that selected 64 bit field.
     (As it turns out, for the example above, the compiler finds that it is
     OK to allocate the "containing object" 64-bit field at bit-offset zero
     within the structure type.) Here we attempt to work backwards from the
     limited set of facts we're given, and we try to deduce from those facts, 
     where GCC must have believed that the containing object started (within
     the structure type). The value we deduce is then used (by the callers of 
     this routine) to generate DW_AT_location and DW_AT_bit_offset attributes 
     for fields (both bit-fields and, in the case of DW_AT_location, regular
     fields as well).  */

  /* Figure out the bit-distance from the start of the structure to the
     "deepest" bit of the bit-field.  */
  deepest_bitpos = bitpos_int + field_size_in_bits;

  /* This is the tricky part.  Use some fancy footwork to deduce where the
     lowest addressed bit of the containing object must be.  */
  object_offset_in_bits
    = ceiling (deepest_bitpos, type_align_in_bits) - type_size_in_bits;

  /* Compute the offset of the containing object in "alignment units".  */
  object_offset_in_align_units = object_offset_in_bits / type_align_in_bits;

  /* Compute the offset of the containing object in bytes.  */
  object_offset_in_bytes = object_offset_in_align_units * type_align_in_bytes;

  return object_offset_in_bytes;
}

/* The following routines define various Dwarf attributes and any data
   associated with them.  */

/* Add a location description attribute value to a DIE.

   This emits location attributes suitable for whole variables and
   whole parameters.  Note that the location attributes for struct fields are
   generated by the routine `data_member_location_attribute' below.  */

static void
add_AT_location_description (die, attr_kind, rtl)
     dw_die_ref die;
     enum dwarf_attribute attr_kind;
     register rtx rtl;
{
  /* Handle a special case.  If we are about to output a location descriptor
     for a variable or parameter which has been optimized out of existence,
     don't do that.  A variable which has been optimized out
     of existence will have a DECL_RTL value which denotes a pseudo-reg.
     Currently, in some rare cases, variables can have DECL_RTL values which
     look like (MEM (REG pseudo-reg#)).  These cases are due to bugs
     elsewhere in the compiler.  We treat such cases as if the variable(s) in 
     question had been optimized out of existence.  */

  if (is_pseudo_reg (rtl)
      || (GET_CODE (rtl) == MEM
	  && is_pseudo_reg (XEXP (rtl, 0)))
      || (GET_CODE (rtl) == CONCAT
	  && is_pseudo_reg (XEXP (rtl, 0))
	  && is_pseudo_reg (XEXP (rtl, 1))))
    return;

  add_AT_loc (die, attr_kind, loc_descriptor (rtl));
}

/* Attach the specialized form of location attribute used for data
   members of struct and union types.  In the special case of a
   FIELD_DECL node which represents a bit-field, the "offset" part
   of this special location descriptor must indicate the distance
   in bytes from the lowest-addressed byte of the containing struct
   or union type to the lowest-addressed byte of the "containing
   object" for the bit-field.  (See the `field_byte_offset' function
   above).. For any given bit-field, the "containing object" is a
   hypothetical object (of some integral or enum type) within which
   the given bit-field lives.  The type of this hypothetical
   "containing object" is always the same as the declared type of
   the individual bit-field itself (for GCC anyway... the DWARF
   spec doesn't actually mandate this).  Note that it is the size
   (in bytes) of the hypothetical "containing object" which will
   be given in the DW_AT_byte_size attribute for this bit-field.
   (See the `byte_size_attribute' function below.)  It is also used
   when calculating the value of the DW_AT_bit_offset attribute.
   (See the `bit_offset_attribute' function below).  */

static void
add_data_member_location_attribute (die, decl)
     register dw_die_ref die;
     register tree decl;
{
  register unsigned long offset;
  register dw_loc_descr_ref loc_descr;
  register enum dwarf_location_atom op;

  if (TREE_CODE (decl) == TREE_VEC)
    offset = TREE_INT_CST_LOW (BINFO_OFFSET (decl));
  else
    offset = field_byte_offset (decl);

  /* The DWARF2 standard says that we should assume that the structure address
     is already on the stack, so we can specify a structure field address
     by using DW_OP_plus_uconst.  */

#ifdef MIPS_DEBUGGING_INFO
  /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst operator
     correctly.  It works only if we leave the offset on the stack.  */
  op = DW_OP_constu;
#else
  op = DW_OP_plus_uconst;
#endif

  loc_descr = new_loc_descr (op, offset, 0);
  add_AT_loc (die, DW_AT_data_member_location, loc_descr);
}

/* Attach an DW_AT_const_value attribute for a variable or a parameter which
   does not have a "location" either in memory or in a register.  These
   things can arise in GNU C when a constant is passed as an actual parameter
   to an inlined function.  They can also arise in C++ where declared
   constants do not necessarily get memory "homes".  */

static void
add_const_value_attribute (die, rtl)
     register dw_die_ref die;
     register rtx rtl;
{
  switch (GET_CODE (rtl))
    {
    case CONST_INT:
      /* Note that a CONST_INT rtx could represent either an integer or a
         floating-point constant.  A CONST_INT is used whenever the constant
         will fit into a single word.  In all such cases, the original mode
         of the constant value is wiped out, and the CONST_INT rtx is
         assigned VOIDmode.  */
      add_AT_unsigned (die, DW_AT_const_value, (unsigned) INTVAL (rtl));
      break;

    case CONST_DOUBLE:
      /* Note that a CONST_DOUBLE rtx could represent either an integer or a
         floating-point constant.  A CONST_DOUBLE is used whenever the
         constant requires more than one word in order to be adequately
         represented.  We output CONST_DOUBLEs as blocks.  */
      {
	register enum machine_mode mode = GET_MODE (rtl);

	if (GET_MODE_CLASS (mode) == MODE_FLOAT)
	  {
	    register unsigned length = GET_MODE_SIZE (mode) / sizeof (long);
	    long array[4];
	    REAL_VALUE_TYPE rv;

	    REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
	    switch (mode)
	      {
	      case SFmode:
		REAL_VALUE_TO_TARGET_SINGLE (rv, array[0]);
		break;

	      case DFmode:
		REAL_VALUE_TO_TARGET_DOUBLE (rv, array);
		break;

	      case XFmode:
	      case TFmode:
		REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, array);
		break;

	      default:
		abort ();
	      }

	    add_AT_float (die, DW_AT_const_value, length, array);
	  }
	else
	  add_AT_long_long (die, DW_AT_const_value,
			    CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
      }
      break;

    case CONST_STRING:
      add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
      break;

    case SYMBOL_REF:
    case LABEL_REF:
    case CONST:
      add_AT_addr (die, DW_AT_const_value, addr_to_string (rtl));
      break;

    case PLUS:
      /* In cases where an inlined instance of an inline function is passed
         the address of an `auto' variable (which is local to the caller) we
         can get a situation where the DECL_RTL of the artificial local
         variable (for the inlining) which acts as a stand-in for the
         corresponding formal parameter (of the inline function) will look
         like (plus:SI (reg:SI FRAME_PTR) (const_int ...)).  This is not
         exactly a compile-time constant expression, but it isn't the address 
         of the (artificial) local variable either.  Rather, it represents the 
         *value* which the artificial local variable always has during its
         lifetime.  We currently have no way to represent such quasi-constant 
         values in Dwarf, so for now we just punt and generate nothing.  */
      break;

    default:
      /* No other kinds of rtx should be possible here.  */
      abort ();
    }

}

/* Generate *either* an DW_AT_location attribute or else an DW_AT_const_value
   data attribute for a variable or a parameter.  We generate the
   DW_AT_const_value attribute only in those cases where the given variable
   or parameter does not have a true "location" either in memory or in a
   register.  This can happen (for example) when a constant is passed as an
   actual argument in a call to an inline function.  (It's possible that
   these things can crop up in other ways also.)  Note that one type of
   constant value which can be passed into an inlined function is a constant
   pointer.  This can happen for example if an actual argument in an inlined
   function call evaluates to a compile-time constant address.  */

static void
add_location_or_const_value_attribute (die, decl)
     register dw_die_ref die;
     register tree decl;
{
  register rtx rtl;
  register tree declared_type;
  register tree passed_type;

  if (TREE_CODE (decl) == ERROR_MARK)
    return;

  if (TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != PARM_DECL)
    abort ();

  /* Here we have to decide where we are going to say the parameter "lives"
     (as far as the debugger is concerned).  We only have a couple of
     choices.  GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.

     DECL_RTL normally indicates where the parameter lives during most of the 
     activation of the function.  If optimization is enabled however, this
     could be either NULL or else a pseudo-reg.  Both of those cases indicate 
     that the parameter doesn't really live anywhere (as far as the code
     generation parts of GCC are concerned) during most of the function's
     activation.  That will happen (for example) if the parameter is never
     referenced within the function.

     We could just generate a location descriptor here for all non-NULL
     non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
     a little nicer than that if we also consider DECL_INCOMING_RTL in cases
     where DECL_RTL is NULL or is a pseudo-reg.

     Note however that we can only get away with using DECL_INCOMING_RTL as
     a backup substitute for DECL_RTL in certain limited cases.  In cases
     where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
     we can be sure that the parameter was passed using the same type as it is
     declared to have within the function, and that its DECL_INCOMING_RTL
     points us to a place where a value of that type is passed.

     In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
     we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
     because in these cases DECL_INCOMING_RTL points us to a value of some
     type which is *different* from the type of the parameter itself.  Thus,
     if we tried to use DECL_INCOMING_RTL to generate a location attribute in
     such cases, the debugger would end up (for example) trying to fetch a
     `float' from a place which actually contains the first part of a
     `double'.  That would lead to really incorrect and confusing
     output at debug-time.

     So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
     in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl).  There
     are a couple of exceptions however.  On little-endian machines we can
     get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
     not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
     an integral type that is smaller than TREE_TYPE (decl). These cases arise
     when (on a little-endian machine) a non-prototyped function has a
     parameter declared to be of type `short' or `char'.  In such cases,
     TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
     be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
     passed `int' value.  If the debugger then uses that address to fetch
     a `short' or a `char' (on a little-endian machine) the result will be
     the correct data, so we allow for such exceptional cases below.

     Note that our goal here is to describe the place where the given formal
     parameter lives during most of the function's activation (i.e. between
     the end of the prologue and the start of the epilogue).  We'll do that
     as best as we can. Note however that if the given formal parameter is
     modified sometime during the execution of the function, then a stack
     backtrace (at debug-time) will show the function as having been
     called with the *new* value rather than the value which was
     originally passed in.  This happens rarely enough that it is not
     a major problem, but it *is* a problem, and I'd like to fix it.

     A future version of dwarf2out.c may generate two additional
     attributes for any given DW_TAG_formal_parameter DIE which will
     describe the "passed type" and the "passed location" for the
     given formal parameter in addition to the attributes we now
     generate to indicate the "declared type" and the "active
     location" for each parameter.  This additional set of attributes
     could be used by debuggers for stack backtraces. Separately, note
     that sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be
     NULL also.  This happens (for example) for inlined-instances of
     inline function formal parameters which are never referenced.
     This really shouldn't be happening.  All PARM_DECL nodes should
     get valid non-NULL DECL_INCOMING_RTL values, but integrate.c
     doesn't currently generate these values for inlined instances of
     inline function parameters, so when we see such cases, we are
     just out-of-luck for the time being (until integrate.c
     gets fixed).  */

  /* Use DECL_RTL as the "location" unless we find something better.  */
  rtl = DECL_RTL (decl);

  if (TREE_CODE (decl) == PARM_DECL)
    {
      if (rtl == NULL_RTX || is_pseudo_reg (rtl))
	{
	  declared_type = type_main_variant (TREE_TYPE (decl));
	  passed_type = type_main_variant (DECL_ARG_TYPE (decl));

	  /* This decl represents a formal parameter which was optimized out.
	     Note that DECL_INCOMING_RTL may be NULL in here, but we handle
	     all* cases where (rtl == NULL_RTX) just below.  */
	  if (declared_type == passed_type)
	    rtl = DECL_INCOMING_RTL (decl);
	  else if (! BYTES_BIG_ENDIAN
		   && TREE_CODE (declared_type) == INTEGER_TYPE
		   && TYPE_SIZE (declared_type) <= TYPE_SIZE (passed_type))
		rtl = DECL_INCOMING_RTL (decl);
	}
    }

  if (rtl == NULL_RTX)
    return;

  rtl = eliminate_regs (rtl, 0, NULL_RTX, 0);
#ifdef LEAF_REG_REMAP
  if (leaf_function)
    leaf_renumber_regs_insn (rtl);
#endif

  switch (GET_CODE (rtl))
    {
    case ADDRESSOF:
      /* The address of a variable that was optimized away; don't emit
	 anything.  */
      break;

    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_STRING:
    case SYMBOL_REF:
    case LABEL_REF:
    case CONST:
    case PLUS:
      /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
      add_const_value_attribute (die, rtl);
      break;

    case MEM:
    case REG:
    case SUBREG:
    case CONCAT:
      add_AT_location_description (die, DW_AT_location, rtl);
      break;

    default:
      abort ();
    }
}

/* Generate an DW_AT_name attribute given some string value to be included as
   the value of the attribute.  */

static inline void
add_name_attribute (die, name_string)
     register dw_die_ref die;
     register char *name_string;
{
  if (name_string != NULL && *name_string != 0)
    add_AT_string (die, DW_AT_name, name_string);
}

/* Given a tree node describing an array bound (either lower or upper) output
   a representation for that bound.  */

static void
add_bound_info (subrange_die, bound_attr, bound)
     register dw_die_ref subrange_die;
     register enum dwarf_attribute bound_attr;
     register tree bound;
{
  register unsigned bound_value = 0;

  /* If this is an Ada unconstrained array type, then don't emit any debug
     info because the array bounds are unknown.  They are parameterized when
     the type is instantiated.  */
  if (contains_placeholder_p (bound))
    return;

  switch (TREE_CODE (bound))
    {
    case ERROR_MARK:
      return;

    /* All fixed-bounds are represented by INTEGER_CST nodes.        */
    case INTEGER_CST:
      bound_value = TREE_INT_CST_LOW (bound);
      if (bound_attr == DW_AT_lower_bound
	  && ((is_c_family () && bound_value == 0)
	      || (is_fortran () && bound_value == 1)))
	/* use the default */;
      else
	add_AT_unsigned (subrange_die, bound_attr, bound_value);
      break;

    case CONVERT_EXPR:
    case NOP_EXPR:
    case NON_LVALUE_EXPR:
      add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
      break;
      
    case SAVE_EXPR:
      /* If optimization is turned on, the SAVE_EXPRs that describe how to
         access the upper bound values may be bogus.  If they refer to a
         register, they may only describe how to get at these values at the
         points in the generated code right after they have just been
         computed.  Worse yet, in the typical case, the upper bound values
         will not even *be* computed in the optimized code (though the
         number of elements will), so these SAVE_EXPRs are entirely
         bogus. In order to compensate for this fact, we check here to see
         if optimization is enabled, and if so, we don't add an attribute
         for the (unknown and unknowable) upper bound.  This should not
         cause too much trouble for existing (stupid?)  debuggers because
         they have to deal with empty upper bounds location descriptions
         anyway in order to be able to deal with incomplete array types.
         Of course an intelligent debugger (GDB?)  should be able to
         comprehend that a missing upper bound specification in a array
         type used for a storage class `auto' local array variable
         indicates that the upper bound is both unknown (at compile- time)
         and unknowable (at run-time) due to optimization.

	 We assume that a MEM rtx is safe because gcc wouldn't put the
	 value there unless it was going to be used repeatedly in the
	 function, i.e. for cleanups.  */
      if (! optimize || GET_CODE (SAVE_EXPR_RTL (bound)) == MEM)
	{
	  register dw_die_ref ctx = lookup_decl_die (current_function_decl);
	  register dw_die_ref decl_die = new_die (DW_TAG_variable, ctx);
	  register rtx loc = SAVE_EXPR_RTL (bound);

	  /* If the RTL for the SAVE_EXPR is memory, handle the case where
	     it references an outer function's frame.  */

	  if (GET_CODE (loc) == MEM)
	    {
	      rtx new_addr = fix_lexical_addr (XEXP (loc, 0), bound);

	      if (XEXP (loc, 0) != new_addr)
		loc = gen_rtx_MEM (GET_MODE (loc), new_addr);
	    }

	  add_AT_flag (decl_die, DW_AT_artificial, 1);
	  add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
	  add_AT_location_description (decl_die, DW_AT_location, loc);
	  add_AT_die_ref (subrange_die, bound_attr, decl_die);
	}

      /* Else leave out the attribute.  */
      break;

    case MAX_EXPR:
    case VAR_DECL:
    case COMPONENT_REF:
      /* ??? These types of bounds can be created by the Ada front end,
	 and it isn't clear how to emit debug info for them.  */
      break;

    default:
      abort ();
    }
}

/* Note that the block of subscript information for an array type also
   includes information about the element type of type given array type.  */

static void
add_subscript_info (type_die, type)
     register dw_die_ref type_die;
     register tree type;
{
  register unsigned dimension_number;
  register tree lower, upper;
  register dw_die_ref subrange_die;

  /* The GNU compilers represent multidimensional array types as sequences of 
     one dimensional array types whose element types are themselves array
     types.  Here we squish that down, so that each multidimensional array
     type gets only one array_type DIE in the Dwarf debugging info. The draft 
     Dwarf specification say that we are allowed to do this kind of
     compression in C (because there is no difference between an array or
     arrays and a multidimensional array in C) but for other source languages 
     (e.g. Ada) we probably shouldn't do this.  */

  /* ??? The SGI dwarf reader fails for multidimensional arrays with a
     const enum type.  E.g. const enum machine_mode insn_operand_mode[2][10].
     We work around this by disabling this feature.  See also
     gen_array_type_die.  */
#ifndef MIPS_DEBUGGING_INFO
  for (dimension_number = 0;
       TREE_CODE (type) == ARRAY_TYPE;
       type = TREE_TYPE (type), dimension_number++)
    {
#endif
      register tree domain = TYPE_DOMAIN (type);

      /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
	 and (in GNU C only) variable bounds.  Handle all three forms 
         here.  */
      subrange_die = new_die (DW_TAG_subrange_type, type_die);
      if (domain)
	{
	  /* We have an array type with specified bounds.  */
	  lower = TYPE_MIN_VALUE (domain);
	  upper = TYPE_MAX_VALUE (domain);

	  /* define the index type.  */
	  if (TREE_TYPE (domain))
	    {
	      /* ??? This is probably an Ada unnamed subrange type.  Ignore the
		 TREE_TYPE field.  We can't emit debug info for this
		 because it is an unnamed integral type.  */
	      if (TREE_CODE (domain) == INTEGER_TYPE
		  && TYPE_NAME (domain) == NULL_TREE
		  && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
		  && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
		;	
	      else
		add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
				    type_die);
	    }

	  add_bound_info (subrange_die, DW_AT_lower_bound, lower);
	  add_bound_info (subrange_die, DW_AT_upper_bound, upper);
	}
      else
	/* We have an array type with an unspecified length.  The DWARF-2
	     spec does not say how to handle this; let's just leave out the
	     bounds.  */
	;

#ifndef MIPS_DEBUGGING_INFO
    }
#endif
}

static void
add_byte_size_attribute (die, tree_node)
     dw_die_ref die;
     register tree tree_node;
{
  register unsigned size;

  switch (TREE_CODE (tree_node))
    {
    case ERROR_MARK:
      size = 0;
      break;
    case ENUMERAL_TYPE:
    case RECORD_TYPE:
    case UNION_TYPE:
    case QUAL_UNION_TYPE:
      size = int_size_in_bytes (tree_node);
      break;
    case FIELD_DECL:
      /* For a data member of a struct or union, the DW_AT_byte_size is
         generally given as the number of bytes normally allocated for an
         object of the *declared* type of the member itself.  This is true
         even for bit-fields.  */
      size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
      break;
    default:
      abort ();
    }

  /* Note that `size' might be -1 when we get to this point.  If it is, that
     indicates that the byte size of the entity in question is variable.  We
     have no good way of expressing this fact in Dwarf at the present time,
     so just let the -1 pass on through.  */

  add_AT_unsigned (die, DW_AT_byte_size, size);
}

/* For a FIELD_DECL node which represents a bit-field, output an attribute
   which specifies the distance in bits from the highest order bit of the
   "containing object" for the bit-field to the highest order bit of the
   bit-field itself.

   For any given bit-field, the "containing object" is a hypothetical
   object (of some integral or enum type) within which the given bit-field
   lives.  The type of this hypothetical "containing object" is always the
   same as the declared type of the individual bit-field itself.  The
   determination of the exact location of the "containing object" for a
   bit-field is rather complicated.  It's handled by the
   `field_byte_offset' function (above).

   Note that it is the size (in bytes) of the hypothetical "containing object"
   which will be given in the DW_AT_byte_size attribute for this bit-field.
   (See `byte_size_attribute' above).  */

static inline void
add_bit_offset_attribute (die, decl)
     register dw_die_ref die;
     register tree decl;
{
  register unsigned object_offset_in_bytes = field_byte_offset (decl);
  register tree type = DECL_BIT_FIELD_TYPE (decl);
  register tree bitpos_tree = DECL_FIELD_BITPOS (decl);
  register unsigned bitpos_int;
  register unsigned highest_order_object_bit_offset;
  register unsigned highest_order_field_bit_offset;
  register unsigned bit_offset;

  assert (TREE_CODE (decl) == FIELD_DECL);	/* Must be a field.  */
  assert (type);				/* Must be a bit field.  */

  /* We can't yet handle bit-fields whose offsets are variable, so if we
     encounter such things, just return without generating any attribute
     whatsoever.  */
  if (TREE_CODE (bitpos_tree) != INTEGER_CST)
    return;

  bitpos_int = (unsigned) TREE_INT_CST_LOW (bitpos_tree);

  /* Note that the bit offset is always the distance (in bits) from the
     highest-order bit of the "containing object" to the highest-order bit of 
     the bit-field itself.  Since the "high-order end" of any object or field 
     is different on big-endian and little-endian machines, the computation
     below must take account of these differences.  */
  highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
  highest_order_field_bit_offset = bitpos_int;

  if (! BYTES_BIG_ENDIAN)
    {
      highest_order_field_bit_offset
	+= (unsigned) TREE_INT_CST_LOW (DECL_SIZE (decl));

      highest_order_object_bit_offset += simple_type_size_in_bits (type);
    }

  bit_offset
    = (! BYTES_BIG_ENDIAN
       ? highest_order_object_bit_offset - highest_order_field_bit_offset
       : highest_order_field_bit_offset - highest_order_object_bit_offset);

  add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
}

/* For a FIELD_DECL node which represents a bit field, output an attribute
   which specifies the length in bits of the given field.  */

static inline void
add_bit_size_attribute (die, decl)
     register dw_die_ref die;
     register tree decl;
{
  assert (TREE_CODE (decl) == FIELD_DECL);	/* Must be a field.  */
  assert (DECL_BIT_FIELD_TYPE (decl));		/* Must be a bit field.  */
  add_AT_unsigned (die, DW_AT_bit_size,
		   (unsigned) TREE_INT_CST_LOW (DECL_SIZE (decl)));
}

/* If the compiled language is ANSI C, then add a 'prototyped'
   attribute, if arg types are given for the parameters of a function.  */

static inline void
add_prototyped_attribute (die, func_type)
     register dw_die_ref die;
     register tree func_type;
{
  if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
      && TYPE_ARG_TYPES (func_type) != NULL)
    add_AT_flag (die, DW_AT_prototyped, 1);
}


/* Add an 'abstract_origin' attribute below a given DIE.  The DIE is found
   by looking in either the type declaration or object declaration
   equate table.  */

static inline void
add_abstract_origin_attribute (die, origin)
     register dw_die_ref die;
     register tree origin;
{
  dw_die_ref origin_die = NULL;
  if (TREE_CODE_CLASS (TREE_CODE (origin)) == 'd')
    origin_die = lookup_decl_die (origin);
  else if (TREE_CODE_CLASS (TREE_CODE (origin)) == 't')
    origin_die = lookup_type_die (origin);

  add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
}

/* We do not currently support the pure_virtual attribute.  */

static inline void
add_pure_or_virtual_attribute (die, func_decl)
     register dw_die_ref die;
     register tree func_decl;
{
  if (DECL_VINDEX (func_decl))
    {
      add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
      add_AT_loc (die, DW_AT_vtable_elem_location,
		  new_loc_descr (DW_OP_constu,
				 TREE_INT_CST_LOW (DECL_VINDEX (func_decl)),
				 0));

      /* GNU extension: Record what type this method came from originally.  */
      if (debug_info_level > DINFO_LEVEL_TERSE)
	add_AT_die_ref (die, DW_AT_containing_type,
			lookup_type_die (DECL_CONTEXT (func_decl)));
    }
}

/* Add source coordinate attributes for the given decl.  */

static void
add_src_coords_attributes (die, decl)
     register dw_die_ref die;
     register tree decl;
{
  register unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));

  add_AT_unsigned (die, DW_AT_decl_file, file_index);
  add_AT_unsigned (die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
}

/* Add an DW_AT_name attribute and source coordinate attribute for the
   given decl, but only if it actually has a name.  */

static void
add_name_and_src_coords_attributes (die, decl)
     register dw_die_ref die;
     register tree decl;
{
  register tree decl_name;

  decl_name = DECL_NAME (decl); 
  if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
    {
      add_name_attribute (die, dwarf2_name (decl, 0));
      add_src_coords_attributes (die, decl);
      if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
	  && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl))
	add_AT_string (die, DW_AT_MIPS_linkage_name,
		       IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
    }
}

/* Push a new declaration scope. */

static void
push_decl_scope (scope)
     tree scope;
{
  /* Make room in the decl_scope_table, if necessary.  */
  if (decl_scope_table_allocated == decl_scope_depth)
    {
      decl_scope_table_allocated += DECL_SCOPE_TABLE_INCREMENT;
      decl_scope_table
	= (tree *) xrealloc (decl_scope_table,
			     decl_scope_table_allocated * sizeof (tree));
    }

  decl_scope_table[decl_scope_depth++] = scope;
}

/* Return the DIE for the scope the immediately contains this declaration.  */

static dw_die_ref
scope_die_for (t, context_die)
    register tree t; 
    register dw_die_ref context_die;
{
  register dw_die_ref scope_die = NULL;
  register tree containing_scope;
  register unsigned long i;

  /* Walk back up the declaration tree looking for a place to define
     this type.  */
  if (TREE_CODE_CLASS (TREE_CODE (t)) == 't')
    containing_scope = TYPE_CONTEXT (t);
  else if (TREE_CODE (t) == FUNCTION_DECL && DECL_VINDEX (t))
    containing_scope = decl_class_context (t);
  else
    containing_scope = DECL_CONTEXT (t);

  /* Function-local tags and functions get stuck in limbo until they are
     fixed up by decls_for_scope.  */
  if (context_die == NULL && containing_scope != NULL_TREE
      && (TREE_CODE (t) == FUNCTION_DECL || is_tagged_type (t)))
    return NULL;

  if (containing_scope == NULL_TREE)
    scope_die = comp_unit_die;
  else
    {
      for (i = decl_scope_depth, scope_die = context_die;
	   i > 0 && decl_scope_table[i - 1] != containing_scope;
	   scope_die = scope_die->die_parent, --i)
	;

      if (i == 0)
	{
	  assert (scope_die == comp_unit_die);
	  assert (TREE_CODE_CLASS (TREE_CODE (containing_scope)) == 't');
	  if (debug_info_level > DINFO_LEVEL_TERSE)
	    assert (TREE_ASM_WRITTEN (containing_scope));
	}
    }

  return scope_die;
}

/* Pop a declaration scope.  */
static inline void
pop_decl_scope ()
{
  assert (decl_scope_depth > 0);
  --decl_scope_depth;
}

/* Many forms of DIEs require a "type description" attribute.  This
   routine locates the proper "type descriptor" die for the type given
   by 'type', and adds an DW_AT_type attribute below the given die.  */

static void
add_type_attribute (object_die, type, decl_const, decl_volatile, context_die)
     register dw_die_ref object_die;
     register tree type;
     register int decl_const;
     register int decl_volatile;
     register dw_die_ref context_die;
{
  register enum tree_code code  = TREE_CODE (type);
  register dw_die_ref type_die  = NULL;

  /* ??? If this type is an unnamed subrange type of an integral or
     floating-point type, use the inner type.  This is because we have no
     support for unnamed types in base_type_die.  This can happen if this is
     an Ada subrange type.  Correct solution is emit a subrange type die.  */
  if ((code == INTEGER_TYPE || code == REAL_TYPE)
      && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
    type = TREE_TYPE (type), code = TREE_CODE (type);

  if (code == ERROR_MARK)
    return;

  /* Handle a special case.  For functions whose return type is void, we
     generate *no* type attribute.  (Note that no object may have type
     `void', so this only applies to function return types).  */
  if (code == VOID_TYPE)
    return;

  type_die = modified_type_die (type,
				decl_const || TYPE_READONLY (type),
				decl_volatile || TYPE_VOLATILE (type),
				context_die);
  if (type_die != NULL)
    add_AT_die_ref (object_die, DW_AT_type, type_die);
}

/* Given a tree pointer to a struct, class, union, or enum type node, return
   a pointer to the (string) tag name for the given type, or zero if the type
   was declared without a tag.  */

static char *
type_tag (type)
     register tree type;
{
  register char *name = 0;

  if (TYPE_NAME (type) != 0)
    {
      register tree t = 0;

      /* Find the IDENTIFIER_NODE for the type name.  */
      if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
	t = TYPE_NAME (type);

      /* The g++ front end makes the TYPE_NAME of *each* tagged type point to 
         a TYPE_DECL node, regardless of whether or not a `typedef' was
         involved.  */
      else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
	       && ! DECL_IGNORED_P (TYPE_NAME (type)))
	t = DECL_NAME (TYPE_NAME (type));

      /* Now get the name as a string, or invent one.  */
      if (t != 0)
	name = IDENTIFIER_POINTER (t);
    }

  return (name == 0 || *name == '\0') ? 0 : name;
}

/* Return the type associated with a data member, make a special check
   for bit field types.  */

static inline tree
member_declared_type (member)
     register tree member;
{
  return (DECL_BIT_FIELD_TYPE (member)
	  ? DECL_BIT_FIELD_TYPE (member)
	  : TREE_TYPE (member));
}

/* Get the decl's label, as described by its RTL. This may be different
   from the DECL_NAME name used in the source file.  */

static char *
decl_start_label (decl)
     register tree decl;
{
  rtx x;
  char *fnname;
  x = DECL_RTL (decl);
  if (GET_CODE (x) != MEM)
    abort ();

  x = XEXP (x, 0);
  if (GET_CODE (x) != SYMBOL_REF)
    abort ();

  fnname = XSTR (x, 0);
  return fnname;
}

/* These routines generate the internal representation of the DIE's for
   the compilation unit.  Debugging information is collected by walking
   the declaration trees passed in from dwarf2out_decl().  */

static void
gen_array_type_die (type, context_die)
     register tree type;
     register dw_die_ref context_die;
{
  register dw_die_ref scope_die = scope_die_for (type, context_die);
  register dw_die_ref array_die;
  register tree element_type;

  /* ??? The SGI dwarf reader fails for array of array of enum types unless
     the inner array type comes before the outer array type.  Thus we must
     call gen_type_die before we call new_die.  See below also.  */
#ifdef MIPS_DEBUGGING_INFO
  gen_type_die (TREE_TYPE (type), context_die);
#endif

  array_die = new_die (DW_TAG_array_type, scope_die);

#if 0
  /* We default the array ordering.  SDB will probably do
     the right things even if DW_AT_ordering is not present.  It's not even
     an issue until we start to get into multidimensional arrays anyway.  If
     SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
     then we'll have to put the DW_AT_ordering attribute back in.  (But if
     and when we find out that we need to put these in, we will only do so
     for multidimensional arrays.  */
  add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
#endif

#ifdef MIPS_DEBUGGING_INFO
  /* The SGI compilers handle arrays of unknown bound by setting
     AT_declaration and not emitting any subrange DIEs.  */
  if (! TYPE_DOMAIN (type))
    add_AT_unsigned (array_die, DW_AT_declaration, 1);
  else
#endif
    add_subscript_info (array_die, type);

  equate_type_number_to_die (type, array_die);

  /* Add representation of the type of the elements of this array type.  */
  element_type = TREE_TYPE (type);

  /* ??? The SGI dwarf reader fails for multidimensional arrays with a
     const enum type.  E.g. const enum machine_mode insn_operand_mode[2][10].
     We work around this by disabling this feature.  See also
     add_subscript_info.  */
#ifndef MIPS_DEBUGGING_INFO
  while (TREE_CODE (element_type) == ARRAY_TYPE)
    element_type = TREE_TYPE (element_type);

  gen_type_die (element_type, context_die);
#endif

  add_type_attribute (array_die, element_type, 0, 0, context_die);
}

static void
gen_set_type_die (type, context_die)
     register tree type;
     register dw_die_ref context_die;
{
  register dw_die_ref type_die
    = new_die (DW_TAG_set_type, scope_die_for (type, context_die));

  equate_type_number_to_die (type, type_die);
  add_type_attribute (type_die, TREE_TYPE (type), 0, 0, context_die);
}

static void
gen_entry_point_die (decl, context_die)
     register tree decl;
     register dw_die_ref context_die;
{
  register tree origin = decl_ultimate_origin (decl);
  register dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die);
  if (origin != NULL)
    add_abstract_origin_attribute (decl_die, origin);
  else
    {
      add_name_and_src_coords_attributes (decl_die, decl);
      add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
			  0, 0, context_die);
    }

  if (DECL_ABSTRACT (decl))
    equate_decl_number_to_die (decl, decl_die);
  else
    add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
}

/* Remember a type in the pending_types_list.  */

static void
pend_type (type)
     register tree type;
{
  if (pending_types == pending_types_allocated)
    {
      pending_types_allocated += PENDING_TYPES_INCREMENT;
      pending_types_list
	= (tree *) xrealloc (pending_types_list,
			     sizeof (tree) * pending_types_allocated);
    }

  pending_types_list[pending_types++] = type;
}

/* Output any pending types (from the pending_types list) which we can output
   now (taking into account the scope that we are working on now).

   For each type output, remove the given type from the pending_types_list
   *before* we try to output it.  */

static void
output_pending_types_for_scope (context_die)
     register dw_die_ref context_die;
{
  register tree type;

  while (pending_types)
    {
      --pending_types;
      type = pending_types_list[pending_types];
      gen_type_die (type, context_die);
      assert (TREE_ASM_WRITTEN (type));
    }
}

/* Generate a DIE to represent an inlined instance of an enumeration type.  */

static void
gen_inlined_enumeration_type_die (type, context_die)
     register tree type;
     register dw_die_ref context_die;
{
  register dw_die_ref type_die = new_die (DW_TAG_enumeration_type,
					  scope_die_for (type, context_die));

  assert (TREE_ASM_WRITTEN (type));
  add_abstract_origin_attribute (type_die, type);
}

/* Generate a DIE to represent an inlined instance of a structure type.  */

static void
gen_inlined_structure_type_die (type, context_die)
     register tree type;
     register dw_die_ref context_die;
{
  register dw_die_ref type_die = new_die (DW_TAG_structure_type,
					  scope_die_for (type, context_die));

  assert (TREE_ASM_WRITTEN (type));
  add_abstract_origin_attribute (type_die, type);
}

/* Generate a DIE to represent an inlined instance of a union type.  */

static void
gen_inlined_union_type_die (type, context_die)
     register tree type;
     register dw_die_ref context_die;
{
  register dw_die_ref type_die = new_die (DW_TAG_union_type,
					  scope_die_for (type, context_die));

  assert (TREE_ASM_WRITTEN (type));
  add_abstract_origin_attribute (type_die, type);
}

/* Generate a DIE to represent an enumeration type.  Note that these DIEs
   include all of the information about the enumeration values also. Each
   enumerated type name/value is listed as a child of the enumerated type
   DIE.  */

static void
gen_enumeration_type_die (type, context_die)
     register tree type;
     register dw_die_ref context_die;
{
  register dw_die_ref type_die = lookup_type_die (type);

  if (type_die == NULL)
    {
      type_die = new_die (DW_TAG_enumeration_type,
			  scope_die_for (type, context_die));
      equate_type_number_to_die (type, type_die);
      add_name_attribute (type_die, type_tag (type));
    }
  else if (! TYPE_SIZE (type))
    return;
  else
    remove_AT (type_die, DW_AT_declaration);

  /* Handle a GNU C/C++ extension, i.e. incomplete enum types.  If the
     given enum type is incomplete, do not generate the DW_AT_byte_size
     attribute or the DW_AT_element_list attribute.  */
  if (TYPE_SIZE (type))
    {
      register tree link;

      TREE_ASM_WRITTEN (type) = 1;
      add_byte_size_attribute (type_die, type);
      if (TYPE_STUB_DECL (type) != NULL_TREE)
	add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));

      /* If the first reference to this type was as the return type of an
	 inline function, then it may not have a parent.  Fix this now.  */
      if (type_die->die_parent == NULL)
	add_child_die (scope_die_for (type, context_die), type_die);

      for (link = TYPE_FIELDS (type);
	   link != NULL; link = TREE_CHAIN (link))
	{
	  register dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die);

	  add_name_attribute (enum_die,
			      IDENTIFIER_POINTER (TREE_PURPOSE (link)));
	  add_AT_unsigned (enum_die, DW_AT_const_value,
			   (unsigned) TREE_INT_CST_LOW (TREE_VALUE (link)));
	}
    }
  else
    add_AT_flag (type_die, DW_AT_declaration, 1);
}


/* Generate a DIE to represent either a real live formal parameter decl or to
   represent just the type of some formal parameter position in some function
   type.

   Note that this routine is a bit unusual because its argument may be a
   ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
   represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
   node.  If it's the former then this function is being called to output a
   DIE to represent a formal parameter object (or some inlining thereof).  If
   it's the latter, then this function is only being called to output a
   DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
   argument type of some subprogram type.  */

static dw_die_ref
gen_formal_parameter_die (node, context_die)
     register tree node;
     register dw_die_ref context_die;
{
  register dw_die_ref parm_die
    = new_die (DW_TAG_formal_parameter, context_die);
  register tree origin;

  switch (TREE_CODE_CLASS (TREE_CODE (node)))
    {
    case 'd':
      origin = decl_ultimate_origin (node);
      if (origin != NULL)
	add_abstract_origin_attribute (parm_die, origin);
      else
	{
	  add_name_and_src_coords_attributes (parm_die, node);
	  add_type_attribute (parm_die, TREE_TYPE (node),
			      TREE_READONLY (node),
			      TREE_THIS_VOLATILE (node),
			      context_die);
	  if (DECL_ARTIFICIAL (node))
	    add_AT_flag (parm_die, DW_AT_artificial, 1);
	}

      equate_decl_number_to_die (node, parm_die);
      if (! DECL_ABSTRACT (node))
	add_location_or_const_value_attribute (parm_die, node);

      break;

    case 't':
      /* We were called with some kind of a ..._TYPE node.  */
      add_type_attribute (parm_die, node, 0, 0, context_die);
      break;

    default:
      abort ();
    }

  return parm_die;
}

/* Generate a special type of DIE used as a stand-in for a trailing ellipsis
   at the end of an (ANSI prototyped) formal parameters list.  */

static void
gen_unspecified_parameters_die (decl_or_type, context_die)
     register tree decl_or_type;
     register dw_die_ref context_die;
{
  register dw_die_ref parm_die = new_die (DW_TAG_unspecified_parameters,
					  context_die);
}

/* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
   DW_TAG_unspecified_parameters DIE) to represent the types of the formal
   parameters as specified in some function type specification (except for
   those which appear as part of a function *definition*).

   Note we must be careful here to output all of the parameter DIEs before*
   we output any DIEs needed to represent the types of the formal parameters.
   This keeps svr4 SDB happy because it (incorrectly) thinks that the first
   non-parameter DIE it sees ends the formal parameter list.  */

static void
gen_formal_types_die (function_or_method_type, context_die)
     register tree function_or_method_type;
     register dw_die_ref context_die;
{
  register tree link;
  register tree formal_type = NULL;
  register tree first_parm_type = TYPE_ARG_TYPES (function_or_method_type);

#if 0
  /* In the case where we are generating a formal types list for a C++
     non-static member function type, skip over the first thing on the
     TYPE_ARG_TYPES list because it only represents the type of the hidden
     `this pointer'.  The debugger should be able to figure out (without
     being explicitly told) that this non-static member function type takes a 
     `this pointer' and should be able to figure what the type of that hidden 
     parameter is from the DW_AT_member attribute of the parent
     DW_TAG_subroutine_type DIE.  */
  if (TREE_CODE (function_or_method_type) == METHOD_TYPE)
    first_parm_type = TREE_CHAIN (first_parm_type);
#endif

  /* Make our first pass over the list of formal parameter types and output a 
     DW_TAG_formal_parameter DIE for each one.  */
  for (link = first_parm_type; link; link = TREE_CHAIN (link))
    {
      register dw_die_ref parm_die;
      
      formal_type = TREE_VALUE (link);
      if (formal_type == void_type_node)
	break;

      /* Output a (nameless) DIE to represent the formal parameter itself.  */
      parm_die = gen_formal_parameter_die (formal_type, context_die);
      if (TREE_CODE (function_or_method_type) == METHOD_TYPE
	  && link == first_parm_type)
	add_AT_flag (parm_die, DW_AT_artificial, 1);
    }

  /* If this function type has an ellipsis, add a
     DW_TAG_unspecified_parameters DIE to the end of the parameter list.  */
  if (formal_type != void_type_node)
    gen_unspecified_parameters_die (function_or_method_type, context_die);

  /* Make our second (and final) pass over the list of formal parameter types 
     and output DIEs to represent those types (as necessary).  */
  for (link = TYPE_ARG_TYPES (function_or_method_type);
       link;
       link = TREE_CHAIN (link))
    {
      formal_type = TREE_VALUE (link);
      if (formal_type == void_type_node)
	break;

      gen_type_die (formal_type, context_die);
    }
}

/* Generate a DIE to represent a declared function (either file-scope or
   block-local).  */

static void
gen_subprogram_die (decl, context_die)
     register tree decl;
     register dw_die_ref context_die;
{
  char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
  register tree origin = decl_ultimate_origin (decl);
  register dw_die_ref subr_die;
  register dw_loc_descr_ref fp_loc = NULL;
  register rtx fp_reg;
  register tree fn_arg_types;
  register tree outer_scope;
  register dw_die_ref old_die = lookup_decl_die (decl);
  register int declaration
    = (current_function_decl != decl
       || (context_die
	   && (context_die->die_tag == DW_TAG_structure_type
	       || context_die->die_tag == DW_TAG_union_type)));

  if (origin != NULL)
    {
      subr_die = new_die (DW_TAG_subprogram, context_die);
      add_abstract_origin_attribute (subr_die, origin);
    }
  else if (old_die && DECL_ABSTRACT (decl)
	   && get_AT_unsigned (old_die, DW_AT_inline))
    {
      /* This must be a redefinition of an extern inline function.
	 We can just reuse the old die here.  */
      subr_die = old_die;

      /* Clear out the inlined attribute and parm types.  */
      remove_AT (subr_die, DW_AT_inline);
      remove_children (subr_die);
    }
  else if (old_die)
    {
      register unsigned file_index
	= lookup_filename (DECL_SOURCE_FILE (decl));

      assert (get_AT_flag (old_die, DW_AT_declaration) == 1);

      /* If the definition comes from the same place as the declaration,
	 maybe use the old DIE.  We always want the DIE for this function
	 that has the *_pc attributes to be under comp_unit_die so the
	 debugger can find it.  For inlines, that is the concrete instance,
	 so we can use the old DIE here.  For non-inline methods, we want a
	 specification DIE at toplevel, so we need a new DIE.  For local
	 class methods, this does not apply.  */
      if ((DECL_ABSTRACT (decl) || old_die->die_parent == comp_unit_die
	   || context_die == NULL)
	  && get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
	  && (get_AT_unsigned (old_die, DW_AT_decl_line)
	      == DECL_SOURCE_LINE (decl)))
	{
	  subr_die = old_die;

	  /* Clear out the declaration attribute and the parm types.  */
	  remove_AT (subr_die, DW_AT_declaration);
	  remove_children (subr_die);
	}
      else
	{
	  subr_die = new_die (DW_TAG_subprogram, context_die);
	  add_AT_die_ref (subr_die, DW_AT_specification, old_die);
	  if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
	    add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
	  if (get_AT_unsigned (old_die, DW_AT_decl_line)
	      != DECL_SOURCE_LINE (decl))
	    add_AT_unsigned
	      (subr_die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
	}
    }
  else
    {
      register dw_die_ref scope_die;

      if (DECL_CONTEXT (decl))
	scope_die = scope_die_for (decl, context_die);
      else
	/* Don't put block extern declarations under comp_unit_die.  */
	scope_die = context_die;

      subr_die = new_die (DW_TAG_subprogram, scope_die);
			 
      if (TREE_PUBLIC (decl))
	add_AT_flag (subr_die, DW_AT_external, 1);

      add_name_and_src_coords_attributes (subr_die, decl);
      if (debug_info_level > DINFO_LEVEL_TERSE)
	{
	  register tree type = TREE_TYPE (decl);

	  add_prototyped_attribute (subr_die, type);
	  add_type_attribute (subr_die, TREE_TYPE (type), 0, 0, context_die);
	}

      add_pure_or_virtual_attribute (subr_die, decl);
      if (DECL_ARTIFICIAL (decl))
	add_AT_flag (subr_die, DW_AT_artificial, 1);
      if (TREE_PROTECTED (decl))
	add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
      else if (TREE_PRIVATE (decl))
	add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
    }

  if (declaration)
    {
      add_AT_flag (subr_die, DW_AT_declaration, 1);

      /* The first time we see a member function, it is in the context of
         the class to which it belongs.  We make sure of this by emitting
         the class first.  The next time is the definition, which is
         handled above.  The two may come from the same source text.  */
      if (DECL_CONTEXT (decl))
	equate_decl_number_to_die (decl, subr_die);
    }
  else if (DECL_ABSTRACT (decl))
    {
      /* ??? Checking DECL_DEFER_OUTPUT is correct for static inline functions,
	 but not for extern inline functions.  We can't get this completely
	 correct because information about whether the function was declared
	 inline is not saved anywhere.  */
      if (DECL_DEFER_OUTPUT (decl))
	{
	  if (DECL_INLINE (decl))
	    add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
	  else
	    add_AT_unsigned (subr_die, DW_AT_inline,
			     DW_INL_declared_not_inlined);
	}
      else if (DECL_INLINE (decl))
	add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
      else
	abort ();

      equate_decl_number_to_die (decl, subr_die);
    }
  else if (!DECL_EXTERNAL (decl))
    {
      if (origin == NULL_TREE)
	equate_decl_number_to_die (decl, subr_die);

      ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
				   current_funcdef_number);
      add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
      ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
				   current_funcdef_number);
      add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);

      add_pubname (decl, subr_die);
      add_arange (decl, subr_die);

#ifdef MIPS_DEBUGGING_INFO
      /* Add a reference to the FDE for this routine.  */
      add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
#endif

      /* Define the "frame base" location for this routine.  We use the
         frame pointer or stack pointer registers, since the RTL for local
         variables is relative to one of them.  */
      fp_reg
	= frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
      add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));

#if 0
      /* ??? This fails for nested inline functions, because context_display
	 is not part of the state saved/restored for inline functions.  */
      if (current_function_needs_context)
	add_AT_location_description (subr_die, DW_AT_static_link,
				     lookup_static_chain (decl));
#endif
    }

  /* Now output descriptions of the arguments for this function. This gets
     (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list 
     for a FUNCTION_DECL doesn't indicate cases where there was a trailing
     `...' at the end of the formal parameter list.  In order to find out if
     there was a trailing ellipsis or not, we must instead look at the type
     associated with the FUNCTION_DECL.  This will be a node of type
     FUNCTION_TYPE. If the chain of type nodes hanging off of this
     FUNCTION_TYPE node ends with a void_type_node then there should *not* be 
     an ellipsis at the end.  */
  push_decl_scope (decl);

  /* In the case where we are describing a mere function declaration, all we
     need to do here (and all we *can* do here) is to describe the *types* of 
     its formal parameters.  */
  if (debug_info_level <= DINFO_LEVEL_TERSE)
    ;
  else if (declaration)
    gen_formal_types_die (TREE_TYPE (decl), subr_die);
  else
    {
      /* Generate DIEs to represent all known formal parameters */
      register tree arg_decls = DECL_ARGUMENTS (decl);
      register tree parm;

      /* When generating DIEs, generate the unspecified_parameters DIE
         instead if we come across the arg "__builtin_va_alist" */
      for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
	if (TREE_CODE (parm) == PARM_DECL)
	  {
	    if (DECL_NAME (parm)
		&& !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
			    "__builtin_va_alist"))
	      gen_unspecified_parameters_die (parm, subr_die);
	    else
	      gen_decl_die (parm, subr_die);
	  }

      /* Decide whether we need a unspecified_parameters DIE at the end.
         There are 2 more cases to do this for: 1) the ansi ... declaration - 
         this is detectable when the end of the arg list is not a
         void_type_node 2) an unprototyped function declaration (not a
         definition).  This just means that we have no info about the
         parameters at all.  */
      fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
      if (fn_arg_types != NULL)
	{
	  /* this is the prototyped case, check for ...  */
	  if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
	    gen_unspecified_parameters_die (decl, subr_die);
	}
      else if (DECL_INITIAL (decl) == NULL_TREE)
	gen_unspecified_parameters_die (decl, subr_die);
    }

  /* Output Dwarf info for all of the stuff within the body of the function
     (if it has one - it may be just a declaration).  */
  outer_scope = DECL_INITIAL (decl);

  /* Note that here, `outer_scope' is a pointer to the outermost BLOCK
     node created to represent a function. This outermost BLOCK actually
     represents the outermost binding contour for the function, i.e. the
     contour in which the function's formal parameters and labels get
     declared. Curiously, it appears that the front end doesn't actually
     put the PARM_DECL nodes for the current function onto the BLOCK_VARS
     list for this outer scope.  (They are strung off of the DECL_ARGUMENTS
     list for the function instead.) The BLOCK_VARS list for the
     `outer_scope' does provide us with a list of the LABEL_DECL nodes for
     the function however, and we output DWARF info for those in
     decls_for_scope.  Just within the `outer_scope' there will be a BLOCK
     node representing the function's outermost pair of curly braces, and
     any blocks used for the base and member initializers of a C++
     constructor function.  */
  if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
    {
      current_function_has_inlines = 0;
      decls_for_scope (outer_scope, subr_die, 0);

#if 0 && defined (MIPS_DEBUGGING_INFO)
      if (current_function_has_inlines)
	{
	  add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
	  if (! comp_unit_has_inlines)
	    {
	      add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
	      comp_unit_has_inlines = 1;
	    }
	}
#endif
    }

  pop_decl_scope ();
}

/* Generate a DIE to represent a declared data object.  */

static void
gen_variable_die (decl, context_die)
     register tree decl;
     register dw_die_ref context_die;
{
  register tree origin = decl_ultimate_origin (decl);
  register dw_die_ref var_die = new_die (DW_TAG_variable, context_die);

  dw_die_ref old_die = lookup_decl_die (decl);
  int declaration
    = (DECL_EXTERNAL (decl)
       || current_function_decl != decl_function_context (decl)
       || context_die->die_tag == DW_TAG_structure_type
       || context_die->die_tag == DW_TAG_union_type);

  if (origin != NULL)
    add_abstract_origin_attribute (var_die, origin);
  /* Loop unrolling can create multiple blocks that refer to the same
     static variable, so we must test for the DW_AT_declaration flag.  */
  /* ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
     copy decls and set the DECL_ABSTRACT flag on them instead of
     sharing them.  */
  else if (old_die && TREE_STATIC (decl)
 	   && get_AT_flag (old_die, DW_AT_declaration) == 1)
    {
      /* ??? This is an instantiation of a C++ class level static.  */
      add_AT_die_ref (var_die, DW_AT_specification, old_die);
      if (DECL_NAME (decl))
	{
	  register unsigned file_index
	    = lookup_filename (DECL_SOURCE_FILE (decl));

	  if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
	    add_AT_unsigned (var_die, DW_AT_decl_file, file_index);

	  if (get_AT_unsigned (old_die, DW_AT_decl_line)
	      != DECL_SOURCE_LINE (decl))

	    add_AT_unsigned (var_die, DW_AT_decl_line,
			     DECL_SOURCE_LINE (decl));
	}
    }
  else
    {
      add_name_and_src_coords_attributes (var_die, decl);
      add_type_attribute (var_die, TREE_TYPE (decl),
			  TREE_READONLY (decl),
			  TREE_THIS_VOLATILE (decl), context_die);

      if (TREE_PUBLIC (decl))
	add_AT_flag (var_die, DW_AT_external, 1);

      if (DECL_ARTIFICIAL (decl))
	add_AT_flag (var_die, DW_AT_artificial, 1);

      if (TREE_PROTECTED (decl))
	add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);

      else if (TREE_PRIVATE (decl))
	add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
    }

  if (declaration)
    add_AT_flag (var_die, DW_AT_declaration, 1);
  
  if ((declaration && decl_class_context (decl)) || DECL_ABSTRACT (decl))
    equate_decl_number_to_die (decl, var_die);

  if (! declaration && ! DECL_ABSTRACT (decl))
    {
      equate_decl_number_to_die (decl, var_die);
      add_location_or_const_value_attribute (var_die, decl);
      add_pubname (decl, var_die);
    }
}

/* Generate a DIE to represent a label identifier.  */

static void
gen_label_die (decl, context_die)
     register tree decl;
     register dw_die_ref context_die;
{
  register tree origin = decl_ultimate_origin (decl);
  register dw_die_ref lbl_die = new_die (DW_TAG_label, context_die);
  register rtx insn;
  char label[MAX_ARTIFICIAL_LABEL_BYTES];
  char label2[MAX_ARTIFICIAL_LABEL_BYTES];

  if (origin != NULL)
    add_abstract_origin_attribute (lbl_die, origin);
  else
    add_name_and_src_coords_attributes (lbl_die, decl);

  if (DECL_ABSTRACT (decl))
    equate_decl_number_to_die (decl, lbl_die);
  else
    {
      insn = DECL_RTL (decl);
      if (GET_CODE (insn) == CODE_LABEL)
	{
	  /* When optimization is enabled (via -O) some parts of the compiler 
	     (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which 
	     represent source-level labels which were explicitly declared by
	     the user.  This really shouldn't be happening though, so catch
	     it if it ever does happen.  */
	  if (INSN_DELETED_P (insn))
	    abort ();

	  sprintf (label2, INSN_LABEL_FMT, current_funcdef_number);
	  ASM_GENERATE_INTERNAL_LABEL (label, label2,
				       (unsigned) INSN_UID (insn));
	  add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
	}
    }
}

/* Generate a DIE for a lexical block.  */

static void
gen_lexical_block_die (stmt, context_die, depth)
     register tree stmt;
     register dw_die_ref context_die;
     int depth;
{
  register dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die);
  char label[MAX_ARTIFICIAL_LABEL_BYTES];

  if (! BLOCK_ABSTRACT (stmt))
    {
      ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
				   next_block_number);
      add_AT_lbl_id (stmt_die, DW_AT_low_pc, label);
      ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL, next_block_number);
      add_AT_lbl_id (stmt_die, DW_AT_high_pc, label);
    }

  push_decl_scope (stmt);
  decls_for_scope (stmt, stmt_die, depth);
  pop_decl_scope ();
}

/* Generate a DIE for an inlined subprogram.  */

static void
gen_inlined_subroutine_die (stmt, context_die, depth)
     register tree stmt;
     register dw_die_ref context_die;
     int depth;
{
  if (! BLOCK_ABSTRACT (stmt))
    {
      register dw_die_ref subr_die
	= new_die (DW_TAG_inlined_subroutine, context_die);
      register tree decl = block_ultimate_origin (stmt);
      char label[MAX_ARTIFICIAL_LABEL_BYTES];

      add_abstract_origin_attribute (subr_die, decl);
      ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
				   next_block_number);
      add_AT_lbl_id (subr_die, DW_AT_low_pc, label);
      ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL, next_block_number);
      add_AT_lbl_id (subr_die, DW_AT_high_pc, label);
      push_decl_scope (decl);
      decls_for_scope (stmt, subr_die, depth);
      pop_decl_scope ();
      current_function_has_inlines = 1;
    }
}

/* Generate a DIE for a field in a record, or structure.  */

static void
gen_field_die (decl, context_die)
     register tree decl;
     register dw_die_ref context_die;
{
  register dw_die_ref decl_die = new_die (DW_TAG_member, context_die);

  add_name_and_src_coords_attributes (decl_die, decl);
  add_type_attribute (decl_die, member_declared_type (decl),
		      TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
		      context_die);

  /* If this is a bit field...  */
  if (DECL_BIT_FIELD_TYPE (decl))
    {
      add_byte_size_attribute (decl_die, decl);
      add_bit_size_attribute (decl_die, decl);
      add_bit_offset_attribute (decl_die, decl);
    }

  if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
    add_data_member_location_attribute (decl_die, decl);

  if (DECL_ARTIFICIAL (decl))
    add_AT_flag (decl_die, DW_AT_artificial, 1);

  if (TREE_PROTECTED (decl))
    add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);

  else if (TREE_PRIVATE (decl))
    add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
}

#if 0
/* Don't generate either pointer_type DIEs or reference_type DIEs here.
   Use modified_type_die instead.
   We keep this code here just in case these types of DIEs may be needed to
   represent certain things in other languages (e.g. Pascal) someday.  */
static void
gen_pointer_type_die (type, context_die)
     register tree type;
     register dw_die_ref context_die;
{
  register dw_die_ref ptr_die
    = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die));

  equate_type_number_to_die (type, ptr_die);
  add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
  add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
}

/* Don't generate either pointer_type DIEs or reference_type DIEs here.
   Use modified_type_die instead.
   We keep this code here just in case these types of DIEs may be needed to
   represent certain things in other languages (e.g. Pascal) someday.  */
static void
gen_reference_type_die (type, context_die)
     register tree type;
     register dw_die_ref context_die;
{
  register dw_die_ref ref_die
    = new_die (DW_TAG_reference_type, scope_die_for (type, context_die));

  equate_type_number_to_die (type, ref_die);
  add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
  add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
}
#endif

/* Generate a DIE for a pointer to a member type.  */
static void
gen_ptr_to_mbr_type_die (type, context_die)
     register tree type;
     register dw_die_ref context_die;
{
  register dw_die_ref ptr_die
    = new_die (DW_TAG_ptr_to_member_type, scope_die_for (type, context_die));

  equate_type_number_to_die (type, ptr_die);
  add_AT_die_ref (ptr_die, DW_AT_containing_type,
		  lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
  add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
}

/* Generate the DIE for the compilation unit.  */

static void
gen_compile_unit_die (main_input_filename)
     register char *main_input_filename;
{
  char producer[250];
  char *wd = getpwd ();

  comp_unit_die = new_die (DW_TAG_compile_unit, NULL);
  add_name_attribute (comp_unit_die, main_input_filename);

  if (wd != NULL)
    add_AT_string (comp_unit_die, DW_AT_comp_dir, wd);

  sprintf (producer, "%s %s", language_string, version_string);

#ifdef MIPS_DEBUGGING_INFO
  /* The MIPS/SGI compilers place the 'cc' command line options in the producer
     string.  The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
     not appear in the producer string, the debugger reaches the conclusion
     that the object file is stripped and has no debugging information.
     To get the MIPS/SGI debugger to believe that there is debugging
     information in the object file, we add a -g to the producer string.  */
  if (debug_info_level > DINFO_LEVEL_TERSE)
    strcat (producer, " -g");
#endif

  add_AT_string (comp_unit_die, DW_AT_producer, producer);

  if (strcmp (language_string, "GNU C++") == 0)
    add_AT_unsigned (comp_unit_die, DW_AT_language, DW_LANG_C_plus_plus);

  else if (strcmp (language_string, "GNU Ada") == 0)
    add_AT_unsigned (comp_unit_die, DW_AT_language, DW_LANG_Ada83);

  else if (strcmp (language_string, "GNU F77") == 0)
    add_AT_unsigned (comp_unit_die, DW_AT_language, DW_LANG_Fortran77);

  else if (strcmp (language_string, "GNU Pascal") == 0)
    add_AT_unsigned (comp_unit_die, DW_AT_language, DW_LANG_Pascal83);

  else if (flag_traditional)
    add_AT_unsigned (comp_unit_die, DW_AT_language, DW_LANG_C);

  else
    add_AT_unsigned (comp_unit_die, DW_AT_language, DW_LANG_C89);

#if 0 /* unimplemented */
  if (debug_info_level >= DINFO_LEVEL_VERBOSE)
    add_AT_unsigned (comp_unit_die, DW_AT_macro_info, 0);
#endif
}

/* Generate a DIE for a string type.  */

static void
gen_string_type_die (type, context_die)
     register tree type;
     register dw_die_ref context_die;
{
  register dw_die_ref type_die
    = new_die (DW_TAG_string_type, scope_die_for (type, context_die));

  equate_type_number_to_die (type, type_die);

  /* Fudge the string length attribute for now.  */
  
  /* TODO: add string length info.
   string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
			      bound_representation (upper_bound, 0, 'u'); */
}

/* Generate the DIE for a base class.  */

static void
gen_inheritance_die (binfo, context_die)
     register tree binfo;
     register dw_die_ref context_die;
{
  dw_die_ref die = new_die (DW_TAG_inheritance, context_die);

  add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
  add_data_member_location_attribute (die, binfo);

  if (TREE_VIA_VIRTUAL (binfo))
    add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
  if (TREE_VIA_PUBLIC (binfo))
    add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
  else if (TREE_VIA_PROTECTED (binfo))
    add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
}

/* Generate a DIE for a class member.  */

static void
gen_member_die (type, context_die)
     register tree type;
     register dw_die_ref context_die;
{
  register tree member;

  /* If this is not an incomplete type, output descriptions of each of its
     members. Note that as we output the DIEs necessary to represent the
     members of this record or union type, we will also be trying to output
     DIEs to represent the *types* of those members. However the `type'
     function (above) will specifically avoid generating type DIEs for member 
     types *within* the list of member DIEs for this (containing) type execpt 
     for those types (of members) which are explicitly marked as also being
     members of this (containing) type themselves.  The g++ front- end can
     force any given type to be treated as a member of some other
     (containing) type by setting the TYPE_CONTEXT of the given (member) type 
     to point to the TREE node representing the appropriate (containing)
     type.  */

  /* First output info about the base classes.  */
  if (TYPE_BINFO (type) && TYPE_BINFO_BASETYPES (type))
    {
      register tree bases = TYPE_BINFO_BASETYPES (type);
      register int n_bases = TREE_VEC_LENGTH (bases);
      register int i;

      for (i = 0; i < n_bases; i++)
	gen_inheritance_die (TREE_VEC_ELT (bases, i), context_die);
    }

  /* Now output info about the data members and type members.  */
  for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
    gen_decl_die (member, context_die);

  /* Now output info about the function members (if any).  */
  for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
    gen_decl_die (member, context_die);
}

/* Generate a DIE for a structure or union type.  */

static void
gen_struct_or_union_type_die (type, context_die)
     register tree type;
     register dw_die_ref context_die;
{
  register dw_die_ref type_die = lookup_type_die (type);
  register dw_die_ref scope_die = 0;
  register int nested = 0;

  if (type_die && ! TYPE_SIZE (type))
    return;

  if (TYPE_CONTEXT (type) != NULL_TREE
      && TREE_CODE_CLASS (TREE_CODE (TYPE_CONTEXT (type))) == 't')
    nested = 1;

  scope_die = scope_die_for (type, context_die);

  if (! type_die || (nested && scope_die == comp_unit_die))
    /* First occurrence of type or toplevel definition of nested class.  */
    {
      register dw_die_ref old_die = type_die;

      type_die = new_die (TREE_CODE (type) == RECORD_TYPE
			  ? DW_TAG_structure_type : DW_TAG_union_type,
			  scope_die);
      equate_type_number_to_die (type, type_die);
      add_name_attribute (type_die, type_tag (type));
      if (old_die)
	add_AT_die_ref (type_die, DW_AT_specification, old_die);
    }
  else
    remove_AT (type_die, DW_AT_declaration);

  /* If we're not in the right context to be defining this type, defer to
     avoid tricky recursion.  */
  if (TYPE_SIZE (type) && decl_scope_depth > 0 && scope_die == comp_unit_die)
    {
      add_AT_flag (type_die, DW_AT_declaration, 1);
      pend_type (type);
    }
  /* If this type has been completed, then give it a byte_size attribute and
     then give a list of members.  */
  else if (TYPE_SIZE (type))
    {
      /* Prevent infinite recursion in cases where the type of some member of 
         this type is expressed in terms of this type itself.  */
      TREE_ASM_WRITTEN (type) = 1;
      add_byte_size_attribute (type_die, type);
      if (TYPE_STUB_DECL (type) != NULL_TREE)
	add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));

      /* If the first reference to this type was as the return type of an
	 inline function, then it may not have a parent.  Fix this now.  */
      if (type_die->die_parent == NULL)
	add_child_die (scope_die, type_die);

      push_decl_scope (type);
      gen_member_die (type, type_die);
      pop_decl_scope ();

      /* GNU extension: Record what type our vtable lives in.  */
      if (TYPE_VFIELD (type))
	{
	  tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));

	  gen_type_die (vtype, context_die);
	  add_AT_die_ref (type_die, DW_AT_containing_type,
			  lookup_type_die (vtype));
	}
    }
  else
    add_AT_flag (type_die, DW_AT_declaration, 1);
}

/* Generate a DIE for a subroutine _type_.  */

static void
gen_subroutine_type_die (type, context_die)
     register tree type;
     register dw_die_ref context_die;
{
  register tree return_type = TREE_TYPE (type);
  register dw_die_ref subr_die
    = new_die (DW_TAG_subroutine_type, scope_die_for (type, context_die));

  equate_type_number_to_die (type, subr_die);
  add_prototyped_attribute (subr_die, type);
  add_type_attribute (subr_die, return_type, 0, 0, context_die);
  gen_formal_types_die (type, subr_die);
}

/* Generate a DIE for a type definition */

static void
gen_typedef_die (decl, context_die)
     register tree decl;
     register dw_die_ref context_die;
{
  register dw_die_ref type_die;
  register tree origin;

  if (TREE_ASM_WRITTEN (decl))
    return;
  TREE_ASM_WRITTEN (decl) = 1;

  type_die = new_die (DW_TAG_typedef, scope_die_for (decl, context_die));
  origin = decl_ultimate_origin (decl);
  if (origin != NULL)
    add_abstract_origin_attribute (type_die, origin);
  else
    {
      register tree type;
      add_name_and_src_coords_attributes (type_die, decl);
      if (DECL_ORIGINAL_TYPE (decl))
	{
	  type = DECL_ORIGINAL_TYPE (decl);
	  equate_type_number_to_die (TREE_TYPE (decl), type_die);
	}
      else
	type = TREE_TYPE (decl);
      add_type_attribute (type_die, type, TREE_READONLY (decl),
			  TREE_THIS_VOLATILE (decl), context_die);
    }

  if (DECL_ABSTRACT (decl))
    equate_decl_number_to_die (decl, type_die);
}

/* Generate a type description DIE.  */

static void
gen_type_die (type, context_die)
     register tree type;
     register dw_die_ref context_die;
{
  if (type == NULL_TREE || type == error_mark_node)
    return;

  /* We are going to output a DIE to represent the unqualified version of of
     this type (i.e. without any const or volatile qualifiers) so get the
     main variant (i.e. the unqualified version) of this type now.  */
  type = type_main_variant (type);

  if (TREE_ASM_WRITTEN (type))
    return;

  if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
      && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
    { 
      TREE_ASM_WRITTEN (type) = 1;
      gen_decl_die (TYPE_NAME (type), context_die);
      return;
    }

  switch (TREE_CODE (type))
    {
    case ERROR_MARK:
      break;

    case POINTER_TYPE:
    case REFERENCE_TYPE:
      /* We must set TREE_ASM_WRITTEN in case this is a recursive type.  This
	 ensures that the gen_type_die recursion will terminate even if the
	 type is recursive.  Recursive types are possible in Ada.  */
      /* ??? We could perhaps do this for all types before the switch
	 statement.  */
      TREE_ASM_WRITTEN (type) = 1;

      /* For these types, all that is required is that we output a DIE (or a
         set of DIEs) to represent the "basis" type.  */
      gen_type_die (TREE_TYPE (type), context_die);
      break;

    case OFFSET_TYPE:
      /* This code is used for C++ pointer-to-data-member types. 
	 Output a description of the relevant class type.  */
      gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);

      /* Output a description of the type of the object pointed to.  */
      gen_type_die (TREE_TYPE (type), context_die);

      /* Now output a DIE to represent this pointer-to-data-member type
         itself.  */
      gen_ptr_to_mbr_type_die (type, context_die);
      break;

    case SET_TYPE:
      gen_type_die (TYPE_DOMAIN (type), context_die);
      gen_set_type_die (type, context_die);
      break;

    case FILE_TYPE:
      gen_type_die (TREE_TYPE (type), context_die);
      abort ();			/* No way to represent these in Dwarf yet!  */
      break;

    case FUNCTION_TYPE:
      /* Force out return type (in case it wasn't forced out already).  */
      gen_type_die (TREE_TYPE (type), context_die);
      gen_subroutine_type_die (type, context_die);
      break;

    case METHOD_TYPE:
      /* Force out return type (in case it wasn't forced out already).  */
      gen_type_die (TREE_TYPE (type), context_die);
      gen_subroutine_type_die (type, context_die);
      break;

    case ARRAY_TYPE:
      if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
	{
	  gen_type_die (TREE_TYPE (type), context_die);
	  gen_string_type_die (type, context_die);
	}
      else
	gen_array_type_die (type, context_die);
      break;

    case ENUMERAL_TYPE:
    case RECORD_TYPE:
    case UNION_TYPE:
    case QUAL_UNION_TYPE:
      /* If this is a nested type whose containing class hasn't been
	 written out yet, writing it out will cover this one, too.  */
      if (TYPE_CONTEXT (type)
	  && TREE_CODE_CLASS (TREE_CODE (TYPE_CONTEXT (type))) == 't'
	  && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
	{
	  gen_type_die (TYPE_CONTEXT (type), context_die);

	  if (TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
	    return;

	  /* If that failed, attach ourselves to the stub.  */
	  push_decl_scope (TYPE_CONTEXT (type));
	  context_die = lookup_type_die (TYPE_CONTEXT (type));
	}

      if (TREE_CODE (type) == ENUMERAL_TYPE)
	gen_enumeration_type_die (type, context_die);
      else
	gen_struct_or_union_type_die (type, context_die);

      if (TYPE_CONTEXT (type)
	  && TREE_CODE_CLASS (TREE_CODE (TYPE_CONTEXT (type))) == 't'
	  && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
	pop_decl_scope ();

      /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
	 it up if it is ever completed.  gen_*_type_die will set it for us
	 when appropriate.  */
      return;

    case VOID_TYPE:
    case INTEGER_TYPE:
    case REAL_TYPE:
    case COMPLEX_TYPE:
    case BOOLEAN_TYPE:
    case CHAR_TYPE:
      /* No DIEs needed for fundamental types.  */
      break;

    case LANG_TYPE:
      /* No Dwarf representation currently defined.  */
      break;

    default:
      abort ();
    }

  TREE_ASM_WRITTEN (type) = 1;
}

/* Generate a DIE for a tagged type instantiation.  */

static void
gen_tagged_type_instantiation_die (type, context_die)
     register tree type;
     register dw_die_ref context_die;
{
  if (type == NULL_TREE || type == error_mark_node)
    return;

  /* We are going to output a DIE to represent the unqualified version of of
     this type (i.e. without any const or volatile qualifiers) so make sure
     that we have the main variant (i.e. the unqualified version) of this
     type now.  */
  assert (type == type_main_variant (type));
  assert (TREE_ASM_WRITTEN (type));

  switch (TREE_CODE (type))
    {
    case ERROR_MARK:
      break;

    case ENUMERAL_TYPE:
      gen_inlined_enumeration_type_die (type, context_die);
      break;

    case RECORD_TYPE:
      gen_inlined_structure_type_die (type, context_die);
      break;

    case UNION_TYPE:
    case QUAL_UNION_TYPE:
      gen_inlined_union_type_die (type, context_die);
      break;

    default:
      abort ();
    }
}

/* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
   things which are local to the given block.  */

static void
gen_block_die (stmt, context_die, depth)
     register tree stmt;
     register dw_die_ref context_die;
     int depth;
{
  register int must_output_die = 0;
  register tree origin;
  register tree decl;
  register enum tree_code origin_code;

  /* Ignore blocks never really used to make RTL.  */

  if (stmt == NULL_TREE || !TREE_USED (stmt))
    return;

  /* Determine the "ultimate origin" of this block.  This block may be an
     inlined instance of an inlined instance of inline function, so we have
     to trace all of the way back through the origin chain to find out what
     sort of node actually served as the original seed for the creation of
     the current block.  */
  origin = block_ultimate_origin (stmt);
  origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;

  /* Determine if we need to output any Dwarf DIEs at all to represent this
     block.  */
  if (origin_code == FUNCTION_DECL)
    /* The outer scopes for inlinings *must* always be represented.  We
       generate DW_TAG_inlined_subroutine DIEs for them.  (See below.) */
    must_output_die = 1;
  else
    {
      /* In the case where the current block represents an inlining of the
         "body block" of an inline function, we must *NOT* output any DIE for 
         this block because we have already output a DIE to represent the
         whole inlined function scope and the "body block" of any function
         doesn't really represent a different scope according to ANSI C
         rules.  So we check here to make sure that this block does not
         represent a "body block inlining" before trying to set the
         `must_output_die' flag.  */
      if (! is_body_block (origin ? origin : stmt))
	{
	  /* Determine if this block directly contains any "significant"
	     local declarations which we will need to output DIEs for.  */
	  if (debug_info_level > DINFO_LEVEL_TERSE)
	    /* We are not in terse mode so *any* local declaration counts
	       as being a "significant" one.  */
	    must_output_die = (BLOCK_VARS (stmt) != NULL);
	  else
	    /* We are in terse mode, so only local (nested) function
	       definitions count as "significant" local declarations.  */
	    for (decl = BLOCK_VARS (stmt);
		 decl != NULL; decl = TREE_CHAIN (decl))
	      if (TREE_CODE (decl) == FUNCTION_DECL
		  && DECL_INITIAL (decl))
		{
		  must_output_die = 1;
		  break;
		}
	}
    }

  /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
     DIE for any block which contains no significant local declarations at
     all.  Rather, in such cases we just call `decls_for_scope' so that any
     needed Dwarf info for any sub-blocks will get properly generated. Note
     that in terse mode, our definition of what constitutes a "significant"
     local declaration gets restricted to include only inlined function
     instances and local (nested) function definitions.  */
  if (must_output_die)
    {
      if (origin_code == FUNCTION_DECL)
	gen_inlined_subroutine_die (stmt, context_die, depth);
      else
	gen_lexical_block_die (stmt, context_die, depth);
    }
  else
    decls_for_scope (stmt, context_die, depth);
}

/* Generate all of the decls declared within a given scope and (recursively)
   all of its sub-blocks.  */

static void
decls_for_scope (stmt, context_die, depth)
     register tree stmt;
     register dw_die_ref context_die;
     int depth;
{
  register tree decl;
  register tree subblocks;

  /* Ignore blocks never really used to make RTL.  */
  if (stmt == NULL_TREE || ! TREE_USED (stmt))
    return;

  if (!BLOCK_ABSTRACT (stmt) && depth > 0)
    next_block_number++;

  /* Output the DIEs to represent all of the data objects and typedefs
     declared directly within this block but not within any nested
     sub-blocks.  Also, nested function and tag DIEs have been
     generated with a parent of NULL; fix that up now.  */
  for (decl = BLOCK_VARS (stmt);
       decl != NULL; decl = TREE_CHAIN (decl))
    {
      register dw_die_ref die;

      if (TREE_CODE (decl) == FUNCTION_DECL)
	die = lookup_decl_die (decl);
      else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
	die = lookup_type_die (TREE_TYPE (decl));
      else
	die = NULL;

      if (die != NULL && die->die_parent == NULL)
	add_child_die (context_die, die);
      else
	gen_decl_die (decl, context_die);
    }

  /* Output the DIEs to represent all sub-blocks (and the items declared
     therein) of this block.  */
  for (subblocks = BLOCK_SUBBLOCKS (stmt);
       subblocks != NULL;
       subblocks = BLOCK_CHAIN (subblocks))
    gen_block_die (subblocks, context_die, depth + 1);
}

/* Is this a typedef we can avoid emitting?  */

static inline int
is_redundant_typedef (decl)
     register tree decl;
{
  if (TYPE_DECL_IS_STUB (decl))
    return 1;

  if (DECL_ARTIFICIAL (decl)
      && DECL_CONTEXT (decl)
      && is_tagged_type (DECL_CONTEXT (decl))
      && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
      && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
    /* Also ignore the artificial member typedef for the class name.  */
    return 1;

  return 0;
}

/* Generate Dwarf debug information for a decl described by DECL.  */

static void
gen_decl_die (decl, context_die)
     register tree decl;
     register dw_die_ref context_die;
{
  register tree origin;

  /* Make a note of the decl node we are going to be working on.  We may need 
     to give the user the source coordinates of where it appeared in case we
     notice (later on) that something about it looks screwy.  */
  dwarf_last_decl = decl;

  if (TREE_CODE (decl) == ERROR_MARK)
    return;

  /* If this ..._DECL node is marked to be ignored, then ignore it. But don't 
     ignore a function definition, since that would screw up our count of
     blocks, and that it turn will completely screw up the the labels we will 
     reference in subsequent DW_AT_low_pc and DW_AT_high_pc attributes (for
     subsequent blocks).  */
  if (DECL_IGNORED_P (decl) && TREE_CODE (decl) != FUNCTION_DECL)
    return;

  switch (TREE_CODE (decl))
    {
    case CONST_DECL:
      /* The individual enumerators of an enum type get output when we output 
         the Dwarf representation of the relevant enum type itself.  */
      break;

    case FUNCTION_DECL:
      /* Don't output any DIEs to represent mere function declarations,
	 unless they are class members or explicit block externs.  */
      if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
	  && (current_function_decl == NULL_TREE || ! DECL_ARTIFICIAL (decl)))
	break;

      if (debug_info_level > DINFO_LEVEL_TERSE)
	{
	  /* Before we describe the FUNCTION_DECL itself, make sure that we
	     have described its return type.  */
	  gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);

	  /* And its containing type.  */
	  origin = decl_class_context (decl);
	  if (origin != NULL_TREE)
	    gen_type_die (origin, context_die);

	  /* And its virtual context.  */
	  if (DECL_VINDEX (decl) != NULL_TREE)
	    gen_type_die (DECL_CONTEXT (decl), context_die);
	}

      /* Now output a DIE to represent the function itself.  */
      gen_subprogram_die (decl, context_die);
      break;

    case TYPE_DECL:
      /* If we are in terse mode, don't generate any DIEs to represent any
         actual typedefs.  */
      if (debug_info_level <= DINFO_LEVEL_TERSE)
	break;

      /* In the special case of a TYPE_DECL node representing the 
         declaration of some type tag, if the given TYPE_DECL is marked as
         having been instantiated from some other (original) TYPE_DECL node
         (e.g. one which was generated within the original definition of an
         inline function) we have to generate a special (abbreviated)
         DW_TAG_structure_type, DW_TAG_union_type, or DW_TAG_enumeration_type 
         DIE here.  */
      if (TYPE_DECL_IS_STUB (decl) && DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE)
	{
	  gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
	  break;
	}

      if (is_redundant_typedef (decl))
	gen_type_die (TREE_TYPE (decl), context_die);
      else
	/* Output a DIE to represent the typedef itself.  */
	gen_typedef_die (decl, context_die);
      break;

    case LABEL_DECL:
      if (debug_info_level >= DINFO_LEVEL_NORMAL)
	gen_label_die (decl, context_die);
      break;

    case VAR_DECL:
      /* If we are in terse mode, don't generate any DIEs to represent any
         variable declarations or definitions.  */
      if (debug_info_level <= DINFO_LEVEL_TERSE)
	break;

      /* Output any DIEs that are needed to specify the type of this data
         object.  */
      gen_type_die (TREE_TYPE (decl), context_die);

      /* And its containing type.  */
      origin = decl_class_context (decl);
      if (origin != NULL_TREE)
	gen_type_die (origin, context_die);

      /* Now output the DIE to represent the data object itself.  This gets
         complicated because of the possibility that the VAR_DECL really
         represents an inlined instance of a formal parameter for an inline
         function.  */
      origin = decl_ultimate_origin (decl);
      if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
	gen_formal_parameter_die (decl, context_die);
      else
	gen_variable_die (decl, context_die);
      break;

    case FIELD_DECL:
      /* Ignore the nameless fields that are used to skip bits, but
	 handle C++ anonymous unions.  */
      if (DECL_NAME (decl) != NULL_TREE
	  || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE)
	{
	  gen_type_die (member_declared_type (decl), context_die);
	  gen_field_die (decl, context_die);
	}
      break;

    case PARM_DECL:
      gen_type_die (TREE_TYPE (decl), context_die);
      gen_formal_parameter_die (decl, context_die);
      break;

    default:
      abort ();
    }
}

/* Write the debugging output for DECL.  */

void
dwarf2out_decl (decl)
     register tree decl;
{
  register dw_die_ref context_die = comp_unit_die;

  if (TREE_CODE (decl) == ERROR_MARK)
    return;

  /* If this ..._DECL node is marked to be ignored, then ignore it.  We gotta 
     hope that the node in question doesn't represent a function definition.
     If it does, then totally ignoring it is bound to screw up our count of
     blocks, and that it turn will completely screw up the the labels we will 
     reference in subsequent DW_AT_low_pc and DW_AT_high_pc attributes (for
     subsequent blocks).  (It's too bad that BLOCK nodes don't carry their
     own sequence numbers with them!) */
  if (DECL_IGNORED_P (decl))
    {
      if (TREE_CODE (decl) == FUNCTION_DECL
	  && DECL_INITIAL (decl) != NULL)
	abort ();

      return;
    }

  switch (TREE_CODE (decl))
    {
    case FUNCTION_DECL:
      /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of a 
         builtin function.  Explicit programmer-supplied declarations of
         these same functions should NOT be ignored however.  */
      if (DECL_EXTERNAL (decl) && DECL_FUNCTION_CODE (decl))
	return;

      /* What we would really like to do here is to filter out all mere
         file-scope declarations of file-scope functions which are never
         referenced later within this translation unit (and keep all of ones
         that *are* referenced later on) but we aren't clairvoyant, so we have 
         no idea which functions will be referenced in the future (i.e. later 
         on within the current translation unit). So here we just ignore all
         file-scope function declarations which are not also definitions.  If 
         and when the debugger needs to know something about these functions,
         it wil have to hunt around and find the DWARF information associated 
         with the definition of the function. Note that we can't just check
         `DECL_EXTERNAL' to find out which FUNCTION_DECL nodes represent
         definitions and which ones represent mere declarations.  We have to
         check `DECL_INITIAL' instead. That's because the C front-end
         supports some weird semantics for "extern inline" function
         definitions.  These can get inlined within the current translation
         unit (an thus, we need to generate DWARF info for their abstract
         instances so that the DWARF info for the concrete inlined instances
         can have something to refer to) but the compiler never generates any 
         out-of-lines instances of such things (despite the fact that they
         *are* definitions).  The important point is that the C front-end
         marks these "extern inline" functions as DECL_EXTERNAL, but we need
         to generate DWARF for them anyway. Note that the C++ front-end also
         plays some similar games for inline function definitions appearing
         within include files which also contain 
	 `#pragma interface' pragmas.  */
      if (DECL_INITIAL (decl) == NULL_TREE)
	return;

      /* If we're a nested function, initially use a parent of NULL; if we're
	 a plain function, this will be fixed up in decls_for_scope.  If
	 we're a method, it will be ignored, since we already have a DIE.  */
      if (decl_function_context (decl))
	context_die = NULL;

      break;

    case VAR_DECL:
      /* Ignore this VAR_DECL if it refers to a file-scope extern data object 
         declaration and if the declaration was never even referenced from
         within this entire compilation unit.  We suppress these DIEs in
         order to save space in the .debug section (by eliminating entries
         which are probably useless).  Note that we must not suppress
         block-local extern declarations (whether used or not) because that
         would screw-up the debugger's name lookup mechanism and cause it to
         miss things which really ought to be in scope at a given point.  */
      if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
	return;

      /* If we are in terse mode, don't generate any DIEs to represent any
         variable declarations or definitions.  */
      if (debug_info_level <= DINFO_LEVEL_TERSE)
	return;
      break;

    case TYPE_DECL:
      /* Don't bother trying to generate any DIEs to represent any of the
         normal built-in types for the language we are compiling.  */
      if (DECL_SOURCE_LINE (decl) == 0)
	{
	  /* OK, we need to generate one for `bool' so GDB knows what type
             comparisons have.  */
	  if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
	       == DW_LANG_C_plus_plus)
	      && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE)
	    modified_type_die (TREE_TYPE (decl), 0, 0, NULL);

	  return;
	}

      /* If we are in terse mode, don't generate any DIEs for types.  */
      if (debug_info_level <= DINFO_LEVEL_TERSE)
	return;

      /* If we're a function-scope tag, initially use a parent of NULL;
	 this will be fixed up in decls_for_scope.  */
      if (decl_function_context (decl))
	context_die = NULL;

      break;

    default:
      return;
    }

  gen_decl_die (decl, context_die);
  output_pending_types_for_scope (comp_unit_die);
}

/* Output a marker (i.e. a label) for the beginning of the generated code for
   a lexical block.  */

void
dwarf2out_begin_block (blocknum)
     register unsigned blocknum;
{
  function_section (current_function_decl);
  ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
}

/* Output a marker (i.e. a label) for the end of the generated code for a
   lexical block.  */

void
dwarf2out_end_block (blocknum)
     register unsigned blocknum;
{
  function_section (current_function_decl);
  ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
}

/* Output a marker (i.e. a label) at a point in the assembly code which
   corresponds to a given source level label.  */

void
dwarf2out_label (insn)
     register rtx insn;
{
  char label[MAX_ARTIFICIAL_LABEL_BYTES];

  if (debug_info_level >= DINFO_LEVEL_NORMAL)
    {
      function_section (current_function_decl);
      sprintf (label, INSN_LABEL_FMT, current_funcdef_number);
      ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, label,
				 (unsigned) INSN_UID (insn));
    }
}

/* Lookup a filename (in the list of filenames that we know about here in
   dwarf2out.c) and return its "index".  The index of each (known) filename is
   just a unique number which is associated with only that one filename.
   We need such numbers for the sake of generating labels
   (in the .debug_sfnames section) and references to those
   files  numbers (in the .debug_srcinfo and.debug_macinfo sections).
   If the filename given as an argument is not found in our current list,
   add it to the list and assign it the next available unique index number.
   In order to speed up searches, we remember the index of the filename
   was looked up last.  This handles the majority of all searches.  */

static unsigned
lookup_filename (file_name)
     char *file_name;
{
  static unsigned last_file_lookup_index = 0;
  register unsigned i;

  /* Check to see if the file name that was searched on the previous call
     matches this file name. If so, return the index.  */
  if (last_file_lookup_index != 0)
    if (strcmp (file_name, file_table[last_file_lookup_index]) == 0)
      return last_file_lookup_index;

  /* Didn't match the previous lookup, search the table */
  for (i = 1; i < file_table_in_use; ++i)
    if (strcmp (file_name, file_table[i]) == 0)
      {
	last_file_lookup_index = i;
	return i;
      }

  /* Prepare to add a new table entry by making sure there is enough space in 
     the table to do so.  If not, expand the current table.  */
  if (file_table_in_use == file_table_allocated)
    {
      file_table_allocated += FILE_TABLE_INCREMENT;
      file_table
	= (char **) xrealloc (file_table,
			      file_table_allocated * sizeof (char *));
    }

  /* Add the new entry to the end of the filename table.  */
  file_table[file_table_in_use] = xstrdup (file_name);
  last_file_lookup_index = file_table_in_use++;

  return last_file_lookup_index;
}

/* Output a label to mark the beginning of a source code line entry
   and record information relating to this source line, in
   'line_info_table' for later output of the .debug_line section.  */

void
dwarf2out_line (filename, line)
     register char *filename;
     register unsigned line;
{
  if (debug_info_level >= DINFO_LEVEL_NORMAL)
    {
      function_section (current_function_decl);

      if (DECL_SECTION_NAME (current_function_decl))
	{
	  register dw_separate_line_info_ref line_info;
	  ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, SEPARATE_LINE_CODE_LABEL,
				     separate_line_info_table_in_use);
	  fputc ('\n', asm_out_file);

	  /* expand the line info table if necessary */
	  if (separate_line_info_table_in_use
	      == separate_line_info_table_allocated)
	    {
	      separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
	      separate_line_info_table
		= (dw_separate_line_info_ref)
		  xrealloc (separate_line_info_table,
			    separate_line_info_table_allocated
			    * sizeof (dw_separate_line_info_entry));
	    }

	  /* Add the new entry at the end of the line_info_table.  */
	  line_info
	    = &separate_line_info_table[separate_line_info_table_in_use++];
	  line_info->dw_file_num = lookup_filename (filename);
	  line_info->dw_line_num = line;
	  line_info->function = current_funcdef_number;
	}
      else
	{
	  register dw_line_info_ref line_info;

	  ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, LINE_CODE_LABEL,
				     line_info_table_in_use);
	  fputc ('\n', asm_out_file);

	  /* Expand the line info table if necessary.  */
	  if (line_info_table_in_use == line_info_table_allocated)
	    {
	      line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
	      line_info_table
		= (dw_line_info_ref)
		  xrealloc (line_info_table,
			    (line_info_table_allocated
			     * sizeof (dw_line_info_entry)));
	    }

	  /* Add the new entry at the end of the line_info_table.  */
	  line_info = &line_info_table[line_info_table_in_use++];
	  line_info->dw_file_num = lookup_filename (filename);
	  line_info->dw_line_num = line;
	}
    }
}

/* Record the beginning of a new source file, for later output
   of the .debug_macinfo section.  At present, unimplemented.  */

void
dwarf2out_start_source_file (filename)
     register char *filename;
{
}

/* Record the end of a source file, for later output
   of the .debug_macinfo section.  At present, unimplemented.  */

void
dwarf2out_end_source_file ()
{
}

/* Called from check_newline in c-parse.y.  The `buffer' parameter contains
   the tail part of the directive line, i.e. the part which is past the
   initial whitespace, #, whitespace, directive-name, whitespace part.  */

void
dwarf2out_define (lineno, buffer)
     register unsigned lineno;
     register char *buffer;
{
  static int initialized = 0;
  if (!initialized)
    {
      dwarf2out_start_source_file (primary_filename);
      initialized = 1;
    }
}

/* Called from check_newline in c-parse.y.  The `buffer' parameter contains
   the tail part of the directive line, i.e. the part which is past the
   initial whitespace, #, whitespace, directive-name, whitespace part.  */

void
dwarf2out_undef (lineno, buffer)
     register unsigned lineno;
     register char *buffer;
{
}

/* Set up for Dwarf output at the start of compilation.  */

void
dwarf2out_init (asm_out_file, main_input_filename)
     register FILE *asm_out_file;
     register char *main_input_filename;
{
  /* Remember the name of the primary input file.  */
  primary_filename = main_input_filename;

  /* Allocate the initial hunk of the file_table.  */
  file_table = (char **) xmalloc (FILE_TABLE_INCREMENT * sizeof (char *));
  bzero ((char *) file_table, FILE_TABLE_INCREMENT * sizeof (char *));
  file_table_allocated = FILE_TABLE_INCREMENT;

  /* Skip the first entry - file numbers begin at 1.  */
  file_table_in_use = 1;

  /* Allocate the initial hunk of the decl_die_table.  */
  decl_die_table
    = (dw_die_ref *) xmalloc (DECL_DIE_TABLE_INCREMENT * sizeof (dw_die_ref));
  bzero ((char *) decl_die_table,
	 DECL_DIE_TABLE_INCREMENT * sizeof (dw_die_ref));
  decl_die_table_allocated = DECL_DIE_TABLE_INCREMENT;
  decl_die_table_in_use = 0;

  /* Allocate the initial hunk of the decl_scope_table.  */
  decl_scope_table
    = (tree *) xmalloc (DECL_SCOPE_TABLE_INCREMENT * sizeof (tree));
  bzero ((char *) decl_scope_table,
	 DECL_SCOPE_TABLE_INCREMENT * sizeof (tree));
  decl_scope_table_allocated = DECL_SCOPE_TABLE_INCREMENT;
  decl_scope_depth = 0;

  /* Allocate the initial hunk of the abbrev_die_table.  */
  abbrev_die_table
    = (dw_die_ref *) xmalloc (ABBREV_DIE_TABLE_INCREMENT
			      * sizeof (dw_die_ref));
  bzero ((char *) abbrev_die_table,
	 ABBREV_DIE_TABLE_INCREMENT * sizeof (dw_die_ref));
  abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
  /* Zero-th entry is allocated, but unused */
  abbrev_die_table_in_use = 1;

  /* Allocate the initial hunk of the line_info_table.  */
  line_info_table
    = (dw_line_info_ref) xmalloc (LINE_INFO_TABLE_INCREMENT
				  * sizeof (dw_line_info_entry));
  bzero ((char *) line_info_table,
	 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
  line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
  /* Zero-th entry is allocated, but unused */
  line_info_table_in_use = 1;

  /* Generate the initial DIE for the .debug section.  Note that the (string) 
     value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
     will (typically) be a relative pathname and that this pathname should be 
     taken as being relative to the directory from which the compiler was
     invoked when the given (base) source file was compiled.  */
  gen_compile_unit_die (main_input_filename);

  ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
}

/* Output stuff that dwarf requires at the end of every file,
   and generate the DWARF-2 debugging info.  */

void
dwarf2out_finish ()
{
  limbo_die_node *node, *next_node;
  dw_die_ref die;
  dw_attr_ref a;

  /* Traverse the limbo die list, and add parent/child links.  The only
     dies without parents that should be here are concrete instances of
     inline functions, and the comp_unit_die.  We can ignore the comp_unit_die.
     For concrete instances, we can get the parent die from the abstract
     instance.  */
  for (node = limbo_die_list; node; node = next_node)
    {
      next_node = node->next;
      die = node->die;

      if (die->die_parent == NULL)
	{
	  a = get_AT (die, DW_AT_abstract_origin);
	  if (a)
	    add_child_die (a->dw_attr_val.v.val_die_ref->die_parent, die);
	  else if (die == comp_unit_die)
	      ;
	  else
	    abort ();
	}
      free (node);
    }

  /* Traverse the DIE tree and add sibling attributes to those DIE's
     that have children.  */
  add_sibling_attributes (comp_unit_die);

  /* Output a terminator label for the .text section.  */
  fputc ('\n', asm_out_file);
  ASM_OUTPUT_SECTION (asm_out_file, TEXT_SECTION);
  ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, TEXT_END_LABEL, 0);

#if 0
  /* Output a terminator label for the .data section.  */
  fputc ('\n', asm_out_file);
  ASM_OUTPUT_SECTION (asm_out_file, DATA_SECTION);
  ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, DATA_END_LABEL, 0);

  /* Output a terminator label for the .bss section.  */
  fputc ('\n', asm_out_file);
  ASM_OUTPUT_SECTION (asm_out_file, BSS_SECTION);
  ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, BSS_END_LABEL, 0);
#endif

  /* Output the source line correspondence table.  */
  if (line_info_table_in_use > 1 || separate_line_info_table_in_use)
    {
      fputc ('\n', asm_out_file);
      ASM_OUTPUT_SECTION (asm_out_file, DEBUG_LINE_SECTION);
      output_line_info ();

      /* We can only use the low/high_pc attributes if all of the code
	 was in .text.  */
      if (separate_line_info_table_in_use == 0)
	{
	  add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, TEXT_SECTION);
	  add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
	}

      add_AT_section_offset (comp_unit_die, DW_AT_stmt_list, DEBUG_LINE_SECTION);
    }

  /* Output the abbreviation table.  */
  fputc ('\n', asm_out_file);
  ASM_OUTPUT_SECTION (asm_out_file, ABBREV_SECTION);
  build_abbrev_table (comp_unit_die);
  output_abbrev_section ();

  /* Initialize the beginning DIE offset - and calculate sizes/offsets.   */
  next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
  calc_die_sizes (comp_unit_die);

  /* Output debugging information.  */
  fputc ('\n', asm_out_file);
  ASM_OUTPUT_SECTION (asm_out_file, DEBUG_INFO_SECTION);
  output_compilation_unit_header ();
  output_die (comp_unit_die);

  if (pubname_table_in_use)
    {
      /* Output public names table.  */
      fputc ('\n', asm_out_file);
      ASM_OUTPUT_SECTION (asm_out_file, PUBNAMES_SECTION);
      output_pubnames ();
    }

  if (fde_table_in_use)
    {
      /* Output the address range information.  */
      fputc ('\n', asm_out_file);
      ASM_OUTPUT_SECTION (asm_out_file, ARANGES_SECTION);
      output_aranges ();
    }
}
#endif /* DWARF2_DEBUGGING_INFO */