aboutsummaryrefslogtreecommitdiff
path: root/gcc/flow.c
blob: bf875bb27082898eb2a35891006f99e8d187bca6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
/* Data flow analysis for GNU compiler.
   Copyright (C) 1987, 88, 92-97, 1998 Free Software Foundation, Inc.

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */


/* This file contains the data flow analysis pass of the compiler.
   It computes data flow information
   which tells combine_instructions which insns to consider combining
   and controls register allocation.

   Additional data flow information that is too bulky to record
   is generated during the analysis, and is used at that time to
   create autoincrement and autodecrement addressing.

   The first step is dividing the function into basic blocks.
   find_basic_blocks does this.  Then life_analysis determines
   where each register is live and where it is dead.

   ** find_basic_blocks **

   find_basic_blocks divides the current function's rtl
   into basic blocks.  It records the beginnings and ends of the
   basic blocks in the vectors basic_block_head and basic_block_end,
   and the number of blocks in n_basic_blocks.

   find_basic_blocks also finds any unreachable loops
   and deletes them.

   ** life_analysis **

   life_analysis is called immediately after find_basic_blocks.
   It uses the basic block information to determine where each
   hard or pseudo register is live.

   ** live-register info **

   The information about where each register is live is in two parts:
   the REG_NOTES of insns, and the vector basic_block_live_at_start.

   basic_block_live_at_start has an element for each basic block,
   and the element is a bit-vector with a bit for each hard or pseudo
   register.  The bit is 1 if the register is live at the beginning
   of the basic block.

   Two types of elements can be added to an insn's REG_NOTES.  
   A REG_DEAD note is added to an insn's REG_NOTES for any register
   that meets both of two conditions:  The value in the register is not
   needed in subsequent insns and the insn does not replace the value in
   the register (in the case of multi-word hard registers, the value in
   each register must be replaced by the insn to avoid a REG_DEAD note).

   In the vast majority of cases, an object in a REG_DEAD note will be
   used somewhere in the insn.  The (rare) exception to this is if an
   insn uses a multi-word hard register and only some of the registers are
   needed in subsequent insns.  In that case, REG_DEAD notes will be
   provided for those hard registers that are not subsequently needed.
   Partial REG_DEAD notes of this type do not occur when an insn sets
   only some of the hard registers used in such a multi-word operand;
   omitting REG_DEAD notes for objects stored in an insn is optional and
   the desire to do so does not justify the complexity of the partial
   REG_DEAD notes.

   REG_UNUSED notes are added for each register that is set by the insn
   but is unused subsequently (if every register set by the insn is unused
   and the insn does not reference memory or have some other side-effect,
   the insn is deleted instead).  If only part of a multi-word hard
   register is used in a subsequent insn, REG_UNUSED notes are made for
   the parts that will not be used.

   To determine which registers are live after any insn, one can
   start from the beginning of the basic block and scan insns, noting
   which registers are set by each insn and which die there.

   ** Other actions of life_analysis **

   life_analysis sets up the LOG_LINKS fields of insns because the
   information needed to do so is readily available.

   life_analysis deletes insns whose only effect is to store a value
   that is never used.

   life_analysis notices cases where a reference to a register as
   a memory address can be combined with a preceding or following
   incrementation or decrementation of the register.  The separate
   instruction to increment or decrement is deleted and the address
   is changed to a POST_INC or similar rtx.

   Each time an incrementing or decrementing address is created,
   a REG_INC element is added to the insn's REG_NOTES list.

   life_analysis fills in certain vectors containing information about
   register usage: reg_n_refs, reg_n_deaths, reg_n_sets, reg_live_length,
   reg_n_calls_crosses and reg_basic_block.  */

#include "config.h"
#include "system.h"
#include "rtl.h"
#include "function.h"
#include "basic-block.h"
#include "insn-config.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "flags.h"
#include "output.h"
#include "except.h"
#include "toplev.h"

#include "obstack.h"
#define obstack_chunk_alloc xmalloc
#define obstack_chunk_free free

/* The contents of the current function definition are allocated
   in this obstack, and all are freed at the end of the function.
   For top-level functions, this is temporary_obstack.
   Separate obstacks are made for nested functions.  */

extern struct obstack *function_obstack;

/* Get the basic block number of an insn.
   This info should not be expected to remain available
   after the end of life_analysis.  */

/* This is the limit of the allocated space in the following two arrays.  */

static int max_uid_for_flow;

#define BLOCK_NUM(INSN)  uid_block_number[INSN_UID (INSN)]

/* This is where the BLOCK_NUM values are really stored.
   This is set up by find_basic_blocks and used there and in life_analysis,
   and then freed.  */

int *uid_block_number;

/* INSN_VOLATILE (insn) is 1 if the insn refers to anything volatile.  */

#define INSN_VOLATILE(INSN) uid_volatile[INSN_UID (INSN)]
static char *uid_volatile;

/* Number of basic blocks in the current function.  */

int n_basic_blocks;

/* Maximum register number used in this function, plus one.  */

int max_regno;

/* Maximum number of SCRATCH rtx's used in any basic block of this
   function.  */

int max_scratch;

/* Number of SCRATCH rtx's in the current block.  */

static int num_scratch;

/* Indexed by n, giving various register information */

varray_type reg_n_info;

/* Size of the reg_n_info table.  */

unsigned int reg_n_max;

/* Element N is the next insn that uses (hard or pseudo) register number N
   within the current basic block; or zero, if there is no such insn.
   This is valid only during the final backward scan in propagate_block.  */

static rtx *reg_next_use;

/* Size of a regset for the current function,
   in (1) bytes and (2) elements.  */

int regset_bytes;
int regset_size;

/* Element N is first insn in basic block N.
   This info lasts until we finish compiling the function.  */

rtx *basic_block_head;

/* Element N is last insn in basic block N.
   This info lasts until we finish compiling the function.  */

rtx *basic_block_end;

/* Element N indicates whether basic block N can be reached through a
   computed jump.  */

char *basic_block_computed_jump_target;

/* Element N is a regset describing the registers live
   at the start of basic block N.
   This info lasts until we finish compiling the function.  */

regset *basic_block_live_at_start;

/* Regset of regs live when calls to `setjmp'-like functions happen.  */

regset regs_live_at_setjmp;

/* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
   that have to go in the same hard reg.
   The first two regs in the list are a pair, and the next two
   are another pair, etc.  */
rtx regs_may_share;

/* Element N is nonzero if control can drop into basic block N
   from the preceding basic block.  Freed after life_analysis.  */

static char *basic_block_drops_in;

/* Element N is depth within loops of the last insn in basic block number N.
   Freed after life_analysis.  */

static short *basic_block_loop_depth;

/* Element N nonzero if basic block N can actually be reached.
   Vector exists only during find_basic_blocks.  */

static char *block_live_static;

/* Depth within loops of basic block being scanned for lifetime analysis,
   plus one.  This is the weight attached to references to registers.  */

static int loop_depth;

/* During propagate_block, this is non-zero if the value of CC0 is live.  */

static int cc0_live;

/* During propagate_block, this contains the last MEM stored into.  It
   is used to eliminate consecutive stores to the same location.  */

static rtx last_mem_set;

/* Set of registers that may be eliminable.  These are handled specially
   in updating regs_ever_live.  */

static HARD_REG_SET elim_reg_set;

/* Forward declarations */
static void find_basic_blocks_1		PROTO((rtx, rtx, int));
static void mark_label_ref		PROTO((rtx, rtx, int));
static void life_analysis_1		PROTO((rtx, int));
static void propagate_block		PROTO((regset, rtx, rtx, int, 
					       regset, int));
static rtx flow_delete_insn		PROTO((rtx));
static int insn_dead_p			PROTO((rtx, regset, int));
static int libcall_dead_p		PROTO((rtx, regset, rtx, rtx));
static void mark_set_regs		PROTO((regset, regset, rtx,
					       rtx, regset));
static void mark_set_1			PROTO((regset, regset, rtx,
					       rtx, regset));
#ifdef AUTO_INC_DEC
static void find_auto_inc		PROTO((regset, rtx, rtx));
static int try_pre_increment_1		PROTO((rtx));
static int try_pre_increment		PROTO((rtx, rtx, HOST_WIDE_INT));
#endif
static void mark_used_regs		PROTO((regset, regset, rtx, int, rtx));
void dump_flow_info			PROTO((FILE *));
static void add_pred_succ		PROTO ((int, int, int_list_ptr *,
						int_list_ptr *, int *, int *));
static int_list_ptr alloc_int_list_node PROTO ((int_list_block **));
static int_list_ptr add_int_list_node   PROTO ((int_list_block **,
						int_list **, int));
static void init_regset_vector		PROTO ((regset *, int,
						struct obstack *));
static void count_reg_sets_1		PROTO ((rtx));
static void count_reg_sets		PROTO ((rtx));
static void count_reg_references	PROTO ((rtx));

/* Find basic blocks of the current function.
   F is the first insn of the function and NREGS the number of register numbers
   in use.
   LIVE_REACHABLE_P is non-zero if the caller needs all live blocks to
   be reachable.  This turns on a kludge that causes the control flow
   information to be inaccurate and not suitable for passes like GCSE.  */

void
find_basic_blocks (f, nregs, file, live_reachable_p)
     rtx f;
     int nregs;
     FILE *file;
     int live_reachable_p;
{
  register rtx insn;
  register int i;
  rtx nonlocal_label_list = nonlocal_label_rtx_list ();
  int in_libcall_block = 0;
  int extra_uids_for_flow = 0;

  /* Count the basic blocks.  Also find maximum insn uid value used.  */

  {
    register RTX_CODE prev_code = JUMP_INSN;
    register RTX_CODE code;
    int eh_region = 0;

    max_uid_for_flow = 0;

    for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
      {
	/* Track when we are inside in LIBCALL block.  */
	if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
	    && find_reg_note (insn, REG_LIBCALL, NULL_RTX))
	  in_libcall_block = 1;

	code = GET_CODE (insn);
	if (INSN_UID (insn) > max_uid_for_flow)
	  max_uid_for_flow = INSN_UID (insn);
	if (code == CODE_LABEL)
	  i++;
	else if (GET_RTX_CLASS (code) == 'i')
	  {
	    if (prev_code == JUMP_INSN || prev_code == BARRIER)
	      i++;
	    else if (prev_code == CALL_INSN)
	      {
		if (nonlocal_label_list != 0 || eh_region)
		  i++;
		else
		  {
		    /* Else this call does not force a new block to be
		       created.  However, it may still be the end of a basic
		       block if it is followed by a CODE_LABEL or a BARRIER.

		       To disambiguate calls which force new blocks to be
		       created from those which just happen to be at the end
		       of a block we insert nops during find_basic_blocks_1
		       after calls which are the last insn in a block by
		       chance.  We must account for such insns in
		       max_uid_for_flow.  */

		    extra_uids_for_flow++;
		  }
	      }
	  }

	/* We change the code of the CALL_INSN, so that it won't start a
	   new block.  */
	if (code == CALL_INSN && in_libcall_block)
	  code = INSN;

	if (code != NOTE)
	  prev_code = code;
	else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
	  ++eh_region;
	else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)
	  --eh_region;

	if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
	    && find_reg_note (insn, REG_RETVAL, NULL_RTX))
	  in_libcall_block = 0;
      }
  }

  n_basic_blocks = i;

#ifdef AUTO_INC_DEC
  /* Leave space for insns life_analysis makes in some cases for auto-inc.
     These cases are rare, so we don't need too much space.  */
  max_uid_for_flow += max_uid_for_flow / 10;
#endif
  max_uid_for_flow += extra_uids_for_flow;

  /* Allocate some tables that last till end of compiling this function
     and some needed only in find_basic_blocks and life_analysis.  */

  basic_block_head = (rtx *) xmalloc (n_basic_blocks * sizeof (rtx));
  basic_block_end = (rtx *) xmalloc (n_basic_blocks * sizeof (rtx));
  basic_block_drops_in = (char *) xmalloc (n_basic_blocks);
  basic_block_computed_jump_target = (char *) oballoc (n_basic_blocks);
  basic_block_loop_depth = (short *) xmalloc (n_basic_blocks * sizeof (short));
  uid_block_number
    = (int *) xmalloc ((max_uid_for_flow + 1) * sizeof (int));
  uid_volatile = (char *) xcalloc (max_uid_for_flow + 1, 1);

  find_basic_blocks_1 (f, nonlocal_label_list, live_reachable_p);
}

/* Find all basic blocks of the function whose first insn is F.
   Store the correct data in the tables that describe the basic blocks,
   set up the chains of references for each CODE_LABEL, and
   delete any entire basic blocks that cannot be reached.

   NONLOCAL_LABEL_LIST is a list of non-local labels in the function.
   Blocks that are otherwise unreachable may be reachable with a non-local
   goto.
   LIVE_REACHABLE_P is non-zero if the caller needs all live blocks to
   be reachable.  This turns on a kludge that causes the control flow
   information to be inaccurate and not suitable for passes like GCSE.  */

static void
find_basic_blocks_1 (f, nonlocal_label_list, live_reachable_p)
     rtx f, nonlocal_label_list;
     int live_reachable_p;
{
  register rtx insn;
  register int i;
  register char *block_live = (char *) alloca (n_basic_blocks);
  register char *block_marked = (char *) alloca (n_basic_blocks);
  /* An array of CODE_LABELs, indexed by UID for the start of the active
     EH handler for each insn in F.  */
  int *active_eh_region;
  int *nested_eh_region;
  /* List of label_refs to all labels whose addresses are taken
     and used as data.  */
  rtx label_value_list;
  rtx x, note, eh_note;
  enum rtx_code prev_code, code;
  int depth, pass;
  int in_libcall_block = 0;
  int deleted_handler = 0;
  int call_had_abnormal_edge = 0;

  pass = 1;
  active_eh_region = (int *) alloca ((max_uid_for_flow + 1) * sizeof (int));
  nested_eh_region = (int *) alloca ((max_label_num () + 1) * sizeof (int));
 restart:

  label_value_list = 0;
  block_live_static = block_live;
  bzero (block_live, n_basic_blocks);
  bzero (block_marked, n_basic_blocks);
  bzero (basic_block_computed_jump_target, n_basic_blocks);
  bzero ((char *) active_eh_region, (max_uid_for_flow + 1) * sizeof (int));
  bzero ((char *) nested_eh_region, (max_label_num () + 1) * sizeof (int));
  current_function_has_computed_jump = 0;

  /* Initialize with just block 0 reachable and no blocks marked.  */
  if (n_basic_blocks > 0)
    block_live[0] = 1;

  /* Initialize the ref chain of each label to 0.  Record where all the
     blocks start and end and their depth in loops.  For each insn, record
     the block it is in.   Also mark as reachable any blocks headed by labels
     that must not be deleted.  */

  for (eh_note = NULL_RTX, insn = f, i = -1, prev_code = JUMP_INSN, depth = 1;
       insn; insn = NEXT_INSN (insn))
    {

      /* Track when we are inside in LIBCALL block.  */
      if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
	  && find_reg_note (insn, REG_LIBCALL, NULL_RTX))
	in_libcall_block = 1;

      code = GET_CODE (insn);
      if (code == NOTE)
	{
	  if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
	    depth++;
	  else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
	    depth--;
	}

      /* A basic block starts at label, or after something that can jump.  */
      else if (code == CODE_LABEL
	       || (GET_RTX_CLASS (code) == 'i'
		   && (prev_code == JUMP_INSN
		       || (prev_code == CALL_INSN && call_had_abnormal_edge)
		       || prev_code == BARRIER)))
	{
	  basic_block_head[++i] = insn;
	  basic_block_end[i] = insn;
	  basic_block_loop_depth[i] = depth;

	  if (code == CODE_LABEL)
	    {
	      LABEL_REFS (insn) = insn;
	      /* Any label that cannot be deleted
		 is considered to start a reachable block.  */
	      if (LABEL_PRESERVE_P (insn))
		block_live[i] = 1;
	    }

	  /* If the previous insn was a call that did not create an
	     abnormal edge, we want to add a nop so that the CALL_INSN
	     itself is not at basic_block_end.  This allows us to easily
	     distinguish between normal calls and those which create
	     abnormal edges in the flow graph.  */

	  if (i > 0 && !call_had_abnormal_edge
	      && GET_CODE (basic_block_end[i-1]) == CALL_INSN)
	    {
	      rtx nop = gen_rtx_USE (VOIDmode, const0_rtx);
	      nop = emit_insn_after (nop, basic_block_end[i-1]);
	      basic_block_end[i-1] = nop;
	    }
	}

      else if (GET_RTX_CLASS (code) == 'i')
	{
	  basic_block_end[i] = insn;
	  basic_block_loop_depth[i] = depth;
	}

      if (GET_RTX_CLASS (code) == 'i')
	{
	  /* Make a list of all labels referred to other than by jumps.  */
	  for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
	    if (REG_NOTE_KIND (note) == REG_LABEL
		&& XEXP (note, 0) != eh_return_stub_label)
	      label_value_list = gen_rtx_EXPR_LIST (VOIDmode, XEXP (note, 0),
						    label_value_list);
	}

      /* Keep a lifo list of the currently active exception notes.  */
      if (GET_CODE (insn) == NOTE)
	{
	  if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
	    {
              if (eh_note)
                nested_eh_region [NOTE_BLOCK_NUMBER (insn)] = 
                                     NOTE_BLOCK_NUMBER (XEXP (eh_note, 0));
              else
                nested_eh_region [NOTE_BLOCK_NUMBER (insn)] = 0;
	      eh_note = gen_rtx_EXPR_LIST (VOIDmode,
						 insn, eh_note);
	    }
	  else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)
	    eh_note = XEXP (eh_note, 1);
	}
      /* If we encounter a CALL_INSN, note which exception handler it
	 might pass control to.

	 If doing asynchronous exceptions, record the active EH handler
	 for every insn, since most insns can throw.  */
      else if (eh_note
	       && (asynchronous_exceptions
		   || (GET_CODE (insn) == CALL_INSN
		       && ! in_libcall_block)))
	active_eh_region[INSN_UID (insn)] = 
                                        NOTE_BLOCK_NUMBER (XEXP (eh_note, 0));
      BLOCK_NUM (insn) = i;

      /* We change the code of the CALL_INSN, so that it won't start a
	 new block.  */
      if (code == CALL_INSN && in_libcall_block)
	code = INSN;

      /* Record whether this call created an edge.  */
      if (code == CALL_INSN)
	call_had_abnormal_edge = (nonlocal_label_list != 0 || eh_note);

      if (code != NOTE)
	prev_code = code;

      if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
	  && find_reg_note (insn, REG_RETVAL, NULL_RTX))
	in_libcall_block = 0;
    }

  /* During the second pass, `n_basic_blocks' is only an upper bound.
     Only perform the sanity check for the first pass, and on the second
     pass ensure `n_basic_blocks' is set to the correct value.  */
  if (pass == 1 && i + 1 != n_basic_blocks)
    abort ();
  n_basic_blocks = i + 1;

  /* Record which basic blocks control can drop in to.  */

  for (i = 0; i < n_basic_blocks; i++)
    {
      for (insn = PREV_INSN (basic_block_head[i]);
	   insn && GET_CODE (insn) == NOTE; insn = PREV_INSN (insn))
	;

      basic_block_drops_in[i] = insn && GET_CODE (insn) != BARRIER;
    }

  /* Now find which basic blocks can actually be reached
     and put all jump insns' LABEL_REFS onto the ref-chains
     of their target labels.  */

  if (n_basic_blocks > 0)
    {
      int something_marked = 1;
      int deleted;

      /* Pass over all blocks, marking each block that is reachable
	 and has not yet been marked.
	 Keep doing this until, in one pass, no blocks have been marked.
	 Then blocks_live and blocks_marked are identical and correct.
	 In addition, all jumps actually reachable have been marked.  */

      while (something_marked)
	{
	  something_marked = 0;
	  for (i = 0; i < n_basic_blocks; i++)
	    if (block_live[i] && !block_marked[i])
	      {
		block_marked[i] = 1;
		something_marked = 1;
		if (i + 1 < n_basic_blocks && basic_block_drops_in[i + 1])
		  block_live[i + 1] = 1;
		insn = basic_block_end[i];
		if (GET_CODE (insn) == JUMP_INSN)
		  mark_label_ref (PATTERN (insn), insn, 0);

		/* If we have any forced labels, mark them as potentially
		   reachable from this block.  */
		for (x = forced_labels; x; x = XEXP (x, 1))
		  if (! LABEL_REF_NONLOCAL_P (x))
		    mark_label_ref (gen_rtx_LABEL_REF (VOIDmode, XEXP (x, 0)),
				    insn, 0);

		/* Now scan the insns for this block, we may need to make
		   edges for some of them to various non-obvious locations
		   (exception handlers, nonlocal labels, etc).  */
		for (insn = basic_block_head[i];
		     insn != NEXT_INSN (basic_block_end[i]);
		     insn = NEXT_INSN (insn))
		  {
		    if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
		      {
			/* References to labels in non-jumping insns have
			   REG_LABEL notes attached to them.

			   This can happen for computed gotos; we don't care
			   about them here since the values are also on the
			   label_value_list and will be marked live if we find
			   a live computed goto.

			   This can also happen when we take the address of
			   a label to pass as an argument to __throw.  Note
			   throw only uses the value to determine what handler
			   should be called -- ie the label is not used as
			   a jump target, it just marks regions in the code.

			   In theory we should be able to ignore the REG_LABEL
			   notes, but we have to make sure that the label and
			   associated insns aren't marked dead, so we make
			   the block in question live and create an edge from
			   this insn to the label.  This is not strictly
			   correct, but it is close enough for now.  

			   See below for code that handles the eh_stub labels
			   specially.  */
			for (note = REG_NOTES (insn);
			     note;
			     note = XEXP (note, 1))
			  {
			    if (REG_NOTE_KIND (note) == REG_LABEL
				&& XEXP (note, 0) != eh_return_stub_label)
			      {
				x = XEXP (note, 0);
				block_live[BLOCK_NUM (x)] = 1;
				mark_label_ref (gen_rtx_LABEL_REF (VOIDmode, x),
						insn, 0);
			      }
			  }

			/* If this is a computed jump, then mark it as
			   reaching everything on the label_value_list
			   and forced_labels list.  */
			if (computed_jump_p (insn))
			  {
			    current_function_has_computed_jump = 1;
			    for (x = label_value_list; x; x = XEXP (x, 1))
			      {
				int b = BLOCK_NUM (XEXP (x, 0));
				basic_block_computed_jump_target[b] = 1;
				mark_label_ref (gen_rtx_LABEL_REF (VOIDmode,
								   XEXP (x, 0)),
						insn, 0);
			      }

			    for (x = forced_labels; x; x = XEXP (x, 1))
			      {
				int b = BLOCK_NUM (XEXP (x, 0));
				basic_block_computed_jump_target[b] = 1;
				mark_label_ref (gen_rtx_LABEL_REF (VOIDmode,
								   XEXP (x, 0)),
						insn, 0);
			      }
			  }

			/* If this is a CALL_INSN, then mark it as reaching
			   the active EH handler for this CALL_INSN.  If
			   we're handling asynchronous exceptions mark every
			   insn as reaching the active EH handler.

			   Also mark the CALL_INSN as reaching any nonlocal
			   goto sites.  */
			else if (asynchronous_exceptions
				 || (GET_CODE (insn) == CALL_INSN
				     && ! find_reg_note (insn, REG_RETVAL,
							 NULL_RTX)))
			  {
			    if (active_eh_region[INSN_UID (insn)]) 
                              {
                                int region;
                                handler_info *ptr;
                                region = active_eh_region[INSN_UID (insn)];
                                for ( ; region; 
                                             region = nested_eh_region[region]) 
                                  {
                                    ptr = get_first_handler (region);
                                    for ( ; ptr ; ptr = ptr->next)
                                      mark_label_ref (gen_rtx_LABEL_REF 
                                       (VOIDmode, ptr->handler_label), insn, 0);
                                  }
                              }
			    if (!asynchronous_exceptions)
			      {
				for (x = nonlocal_label_list;
				     x;
				     x = XEXP (x, 1))
				  mark_label_ref (gen_rtx_LABEL_REF (VOIDmode,
								     XEXP (x, 0)),
						  insn, 0);
			      }
			    /* ??? This could be made smarter:
			       in some cases it's possible to tell that
			       certain calls will not do a nonlocal goto.

			       For example, if the nested functions that
			       do the nonlocal gotos do not have their
			       addresses taken, then only calls to those
			       functions or to other nested functions that
			       use them could possibly do nonlocal gotos.  */
			  }
		      }
		  }
		/* We know something about the structure of the function
		   __throw in libgcc2.c.  It is the only function that ever
		   contains eh_stub labels.  It modifies its return address
		   so that the last block returns to one of the eh_stub labels
		   within it.  So we have to make additional edges in the
		   flow graph.  */
		if (i + 1 == n_basic_blocks
		    && eh_return_stub_label != 0)
		  {
		    mark_label_ref (gen_rtx_LABEL_REF (VOIDmode,
						       eh_return_stub_label),
				    basic_block_end[i], 0);
		  }
	      }
	}

      /* This should never happen.  If it does that means we've computed an
	 incorrect flow graph, which can lead to aborts/crashes later in the
	 compiler or incorrect code generation.

	 We used to try and continue here, but that's just asking for trouble
	 later during the compile or at runtime.  It's easier to debug the
	 problem here than later!  */
      for (i = 1; i < n_basic_blocks; i++)
	if (block_live[i] && ! basic_block_drops_in[i]
	    && GET_CODE (basic_block_head[i]) == CODE_LABEL
	    && LABEL_REFS (basic_block_head[i]) == basic_block_head[i])
	  abort ();

      /* Now delete the code for any basic blocks that can't be reached.
	 They can occur because jump_optimize does not recognize
	 unreachable loops as unreachable.  */

      deleted = 0;
      for (i = 0; i < n_basic_blocks; i++)
	if (!block_live[i])
	  {
	    deleted++;

	    /* Delete the insns in a (non-live) block.  We physically delete
	       every non-note insn except the start and end (so
	       basic_block_head/end needn't be updated), we turn the latter
	       into NOTE_INSN_DELETED notes.
	       We use to "delete" the insns by turning them into notes, but
	       we may be deleting lots of insns that subsequent passes would
	       otherwise have to process.  Secondly, lots of deleted blocks in
	       a row can really slow down propagate_block since it will
	       otherwise process insn-turned-notes multiple times when it
	       looks for loop begin/end notes.  */
	    if (basic_block_head[i] != basic_block_end[i])
	      {
		/* It would be quicker to delete all of these with a single
		   unchaining, rather than one at a time, but we need to keep
		   the NOTE's.  */
		insn = NEXT_INSN (basic_block_head[i]);
		while (insn != basic_block_end[i])
		  {
		    if (GET_CODE (insn) == BARRIER)
		      abort ();
		    else if (GET_CODE (insn) != NOTE)
		      insn = flow_delete_insn (insn);
		    else
		      insn = NEXT_INSN (insn);
		  }
	      }
	    insn = basic_block_head[i];
	    if (GET_CODE (insn) != NOTE)
	      {
		/* Turn the head into a deleted insn note.  */
		if (GET_CODE (insn) == BARRIER)
		  abort ();

		/* If the head of this block is a CODE_LABEL, then it might
		   be the label for an exception handler which can't be
		   reached.

		   We need to remove the label from the exception_handler_label
		   list and remove the associated NOTE_EH_REGION_BEG and
		   NOTE_EH_REGION_END notes.  */
		if (GET_CODE (insn) == CODE_LABEL)
		  {
		    rtx x, *prev = &exception_handler_labels;

		    for (x = exception_handler_labels; x; x = XEXP (x, 1))
		      {
			if (XEXP (x, 0) == insn)
			  {
			    /* Found a match, splice this label out of the
			       EH label list.  */
			    *prev = XEXP (x, 1);
			    XEXP (x, 1) = NULL_RTX;
			    XEXP (x, 0) = NULL_RTX;

                            /* Remove the handler from all regions */
                            remove_handler (insn);
                            deleted_handler = 1;
			    break;
			  }
			prev = &XEXP (x, 1);
		      }
		  }
		 
		PUT_CODE (insn, NOTE);
		NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
		NOTE_SOURCE_FILE (insn) = 0;
	      }
	    insn = basic_block_end[i];
	    if (GET_CODE (insn) != NOTE)
	      {
		/* Turn the tail into a deleted insn note.  */
		if (GET_CODE (insn) == BARRIER)
		  abort ();
		PUT_CODE (insn, NOTE);
		NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
		NOTE_SOURCE_FILE (insn) = 0;
	      }
	    /* BARRIERs are between basic blocks, not part of one.
	       Delete a BARRIER if the preceding jump is deleted.
	       We cannot alter a BARRIER into a NOTE
	       because it is too short; but we can really delete
	       it because it is not part of a basic block.  */
	    if (NEXT_INSN (insn) != 0
		&& GET_CODE (NEXT_INSN (insn)) == BARRIER)
	      delete_insn (NEXT_INSN (insn));

	    /* Each time we delete some basic blocks,
	       see if there is a jump around them that is
	       being turned into a no-op.  If so, delete it.  */

	    if (block_live[i - 1])
	      {
		register int j;
		for (j = i + 1; j < n_basic_blocks; j++)
		  if (block_live[j])
		    {
		      rtx label;
		      insn = basic_block_end[i - 1];
		      if (GET_CODE (insn) == JUMP_INSN
			  /* An unconditional jump is the only possibility
			     we must check for, since a conditional one
			     would make these blocks live.  */
			  && simplejump_p (insn)
			  && (label = XEXP (SET_SRC (PATTERN (insn)), 0), 1)
			  && INSN_UID (label) != 0
			  && BLOCK_NUM (label) == j)
			{
			  int k;

			  /* The deleted blocks still show up in the cfg,
			     so we must set basic_block_drops_in for blocks
			     I to J inclusive to keep the cfg accurate.  */
			  for (k = i; k <= j; k++)
			    basic_block_drops_in[k] = 1;

			  PUT_CODE (insn, NOTE);
			  NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
			  NOTE_SOURCE_FILE (insn) = 0;
			  if (GET_CODE (NEXT_INSN (insn)) != BARRIER)
			    abort ();
			  delete_insn (NEXT_INSN (insn));
			}
		      break;
		    }
	      }
	  }
      /* If we deleted an exception handler, we may have EH region
         begin/end blocks to remove as well. */
      if (deleted_handler)
        for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
          if (GET_CODE (insn) == NOTE)
            {
              if ((NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG) ||
                  (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)) 
                {
                  int num = CODE_LABEL_NUMBER (insn);
                  /* A NULL handler indicates a region is no longer needed */
                  if (get_first_handler (num) == NULL)
                    {
                      NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
                      NOTE_SOURCE_FILE (insn) = 0;
                    }
                }
            }

      /* There are pathological cases where one function calling hundreds of
	 nested inline functions can generate lots and lots of unreachable
	 blocks that jump can't delete.  Since we don't use sparse matrices
	 a lot of memory will be needed to compile such functions.
	 Implementing sparse matrices is a fair bit of work and it is not
	 clear that they win more than they lose (we don't want to
	 unnecessarily slow down compilation of normal code).  By making
	 another pass for the pathological case, we can greatly speed up
	 their compilation without hurting normal code.  This works because
	 all the insns in the unreachable blocks have either been deleted or
	 turned into notes.
	 Note that we're talking about reducing memory usage by 10's of
	 megabytes and reducing compilation time by several minutes.  */
      /* ??? The choice of when to make another pass is a bit arbitrary,
	 and was derived from empirical data.  */
      if (pass == 1
	  && deleted > 200)
	{
	  pass++;
	  n_basic_blocks -= deleted;
	  /* `n_basic_blocks' may not be correct at this point: two previously
	     separate blocks may now be merged.  That's ok though as we
	     recalculate it during the second pass.  It certainly can't be
	     any larger than the current value.  */
	  goto restart;
	}
    }
}

/* Record INSN's block number as BB.  */

void
set_block_num (insn, bb)
     rtx insn;
     int bb;
{
  if (INSN_UID (insn) >= max_uid_for_flow)
    {
      /* Add one-eighth the size so we don't keep calling xrealloc.  */
      max_uid_for_flow = INSN_UID (insn) + (INSN_UID (insn) + 7) / 8;
      uid_block_number = (int *)
	xrealloc (uid_block_number, (max_uid_for_flow + 1) * sizeof (int));
    }
  BLOCK_NUM (insn) = bb;
}


/* Subroutines of find_basic_blocks.  */

/* Check expression X for label references;
   if one is found, add INSN to the label's chain of references.

   CHECKDUP means check for and avoid creating duplicate references
   from the same insn.  Such duplicates do no serious harm but
   can slow life analysis.  CHECKDUP is set only when duplicates
   are likely.  */

static void
mark_label_ref (x, insn, checkdup)
     rtx x, insn;
     int checkdup;
{
  register RTX_CODE code;
  register int i;
  register char *fmt;

  /* We can be called with NULL when scanning label_value_list.  */
  if (x == 0)
    return;

  code = GET_CODE (x);
  if (code == LABEL_REF)
    {
      register rtx label = XEXP (x, 0);
      register rtx y;
      if (GET_CODE (label) != CODE_LABEL)
	abort ();
      /* If the label was never emitted, this insn is junk,
	 but avoid a crash trying to refer to BLOCK_NUM (label).
	 This can happen as a result of a syntax error
	 and a diagnostic has already been printed.  */
      if (INSN_UID (label) == 0)
	return;
      CONTAINING_INSN (x) = insn;
      /* if CHECKDUP is set, check for duplicate ref from same insn
	 and don't insert.  */
      if (checkdup)
	for (y = LABEL_REFS (label); y != label; y = LABEL_NEXTREF (y))
	  if (CONTAINING_INSN (y) == insn)
	    return;
      LABEL_NEXTREF (x) = LABEL_REFS (label);
      LABEL_REFS (label) = x;
      block_live_static[BLOCK_NUM (label)] = 1;
      return;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	mark_label_ref (XEXP (x, i), insn, 0);
      if (fmt[i] == 'E')
	{
	  register int j;
	  for (j = 0; j < XVECLEN (x, i); j++)
	    mark_label_ref (XVECEXP (x, i, j), insn, 1);
	}
    }
}

/* Delete INSN by patching it out.
   Return the next insn.  */

static rtx
flow_delete_insn (insn)
     rtx insn;
{
  /* ??? For the moment we assume we don't have to watch for NULLs here
     since the start/end of basic blocks aren't deleted like this.  */
  NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
  PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
  return NEXT_INSN (insn);
}

/* Perform data flow analysis.
   F is the first insn of the function and NREGS the number of register numbers
   in use.  */

void
life_analysis (f, nregs, file)
     rtx f;
     int nregs;
     FILE *file;
{
#ifdef ELIMINABLE_REGS
  register size_t i;
  static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
#endif

  /* Record which registers will be eliminated.  We use this in
     mark_used_regs.  */

  CLEAR_HARD_REG_SET (elim_reg_set);

#ifdef ELIMINABLE_REGS
  for (i = 0; i < sizeof eliminables / sizeof eliminables[0]; i++)
    SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
#else
  SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
#endif

  life_analysis_1 (f, nregs);
  if (file)
    dump_flow_info (file);

  free_basic_block_vars (1);
}

/* Free the variables allocated by find_basic_blocks.

   KEEP_HEAD_END_P is non-zero if basic_block_head and basic_block_end
   are not to be freed.  */

void
free_basic_block_vars (keep_head_end_p)
     int keep_head_end_p;
{
  if (basic_block_drops_in)
    {
      free (basic_block_drops_in);
      /* Tell dump_flow_info this isn't available anymore.  */
      basic_block_drops_in = 0;
    }
  if (basic_block_loop_depth)
    {
      free (basic_block_loop_depth);
      basic_block_loop_depth = 0;
    }
  if (uid_block_number)
    {
      free (uid_block_number);
      uid_block_number = 0;
    }
  if (uid_volatile)
    {
      free (uid_volatile);
      uid_volatile = 0;
    }

  if (! keep_head_end_p && basic_block_head)
    {
      free (basic_block_head);
      basic_block_head = 0;
      free (basic_block_end);
      basic_block_end = 0;
    }
}

/* Determine which registers are live at the start of each
   basic block of the function whose first insn is F.
   NREGS is the number of registers used in F.
   We allocate the vector basic_block_live_at_start
   and the regsets that it points to, and fill them with the data.
   regset_size and regset_bytes are also set here.  */

static void
life_analysis_1 (f, nregs)
     rtx f;
     int nregs;
{
  int first_pass;
  int changed;
  /* For each basic block, a bitmask of regs
     live on exit from the block.  */
  regset *basic_block_live_at_end;
  /* For each basic block, a bitmask of regs
     live on entry to a successor-block of this block.
     If this does not match basic_block_live_at_end,
     that must be updated, and the block must be rescanned.  */
  regset *basic_block_new_live_at_end;
  /* For each basic block, a bitmask of regs
     whose liveness at the end of the basic block
     can make a difference in which regs are live on entry to the block.
     These are the regs that are set within the basic block,
     possibly excluding those that are used after they are set.  */
  regset *basic_block_significant;
  register int i;
  rtx insn;

  struct obstack flow_obstack;

  gcc_obstack_init (&flow_obstack);

  max_regno = nregs;

  bzero (regs_ever_live, sizeof regs_ever_live);

  /* Allocate and zero out many data structures
     that will record the data from lifetime analysis.  */

  allocate_for_life_analysis ();

  reg_next_use = (rtx *) alloca (nregs * sizeof (rtx));
  bzero ((char *) reg_next_use, nregs * sizeof (rtx));

  /* Set up several regset-vectors used internally within this function.
     Their meanings are documented above, with their declarations.  */

  basic_block_live_at_end
    = (regset *) alloca (n_basic_blocks * sizeof (regset));

  /* Don't use alloca since that leads to a crash rather than an error message
     if there isn't enough space.
     Don't use oballoc since we may need to allocate other things during
     this function on the temporary obstack.  */
  init_regset_vector (basic_block_live_at_end, n_basic_blocks, &flow_obstack);

  basic_block_new_live_at_end
    = (regset *) alloca (n_basic_blocks * sizeof (regset));
  init_regset_vector (basic_block_new_live_at_end, n_basic_blocks,
		      &flow_obstack);

  basic_block_significant
    = (regset *) alloca (n_basic_blocks * sizeof (regset));
  init_regset_vector (basic_block_significant, n_basic_blocks, &flow_obstack);

  /* Record which insns refer to any volatile memory
     or for any reason can't be deleted just because they are dead stores.
     Also, delete any insns that copy a register to itself.  */

  for (insn = f; insn; insn = NEXT_INSN (insn))
    {
      enum rtx_code code1 = GET_CODE (insn);
      if (code1 == CALL_INSN)
	INSN_VOLATILE (insn) = 1;
      else if (code1 == INSN || code1 == JUMP_INSN)
	{
	  /* Delete (in effect) any obvious no-op moves.  */
	  if (GET_CODE (PATTERN (insn)) == SET
	      && GET_CODE (SET_DEST (PATTERN (insn))) == REG
	      && GET_CODE (SET_SRC (PATTERN (insn))) == REG
	      && (REGNO (SET_DEST (PATTERN (insn)))
		  == REGNO (SET_SRC (PATTERN (insn))))
	      /* Insns carrying these notes are useful later on.  */
	      && ! find_reg_note (insn, REG_EQUAL, NULL_RTX))
	    {
	      PUT_CODE (insn, NOTE);
	      NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
	      NOTE_SOURCE_FILE (insn) = 0;
	    }
	  /* Delete (in effect) any obvious no-op moves.  */
	  else if (GET_CODE (PATTERN (insn)) == SET
	      && GET_CODE (SET_DEST (PATTERN (insn))) == SUBREG
	      && GET_CODE (SUBREG_REG (SET_DEST (PATTERN (insn)))) == REG
	      && GET_CODE (SET_SRC (PATTERN (insn))) == SUBREG
	      && GET_CODE (SUBREG_REG (SET_SRC (PATTERN (insn)))) == REG
	      && (REGNO (SUBREG_REG (SET_DEST (PATTERN (insn))))
		  == REGNO (SUBREG_REG (SET_SRC (PATTERN (insn)))))
	      && SUBREG_WORD (SET_DEST (PATTERN (insn))) ==
			      SUBREG_WORD (SET_SRC (PATTERN (insn)))
	      /* Insns carrying these notes are useful later on.  */
	      && ! find_reg_note (insn, REG_EQUAL, NULL_RTX))
	    {
	      PUT_CODE (insn, NOTE);
	      NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
	      NOTE_SOURCE_FILE (insn) = 0;
	    }
	  else if (GET_CODE (PATTERN (insn)) == PARALLEL)
	    {
	      /* If nothing but SETs of registers to themselves,
		 this insn can also be deleted.  */
	      for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
		{
		  rtx tem = XVECEXP (PATTERN (insn), 0, i);

		  if (GET_CODE (tem) == USE
		      || GET_CODE (tem) == CLOBBER)
		    continue;
		    
		  if (GET_CODE (tem) != SET
		      || GET_CODE (SET_DEST (tem)) != REG
		      || GET_CODE (SET_SRC (tem)) != REG
		      || REGNO (SET_DEST (tem)) != REGNO (SET_SRC (tem)))
		    break;
		}
		
	      if (i == XVECLEN (PATTERN (insn), 0)
		  /* Insns carrying these notes are useful later on.  */
		  && ! find_reg_note (insn, REG_EQUAL, NULL_RTX))
		{
		  PUT_CODE (insn, NOTE);
		  NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
		  NOTE_SOURCE_FILE (insn) = 0;
		}
	      else
		INSN_VOLATILE (insn) = volatile_refs_p (PATTERN (insn));
	    }
	  else if (GET_CODE (PATTERN (insn)) != USE)
	    INSN_VOLATILE (insn) = volatile_refs_p (PATTERN (insn));
	  /* A SET that makes space on the stack cannot be dead.
	     (Such SETs occur only for allocating variable-size data,
	     so they will always have a PLUS or MINUS according to the
	     direction of stack growth.)
	     Even if this function never uses this stack pointer value,
	     signal handlers do!  */
	  else if (code1 == INSN && GET_CODE (PATTERN (insn)) == SET
		   && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
#ifdef STACK_GROWS_DOWNWARD
		   && GET_CODE (SET_SRC (PATTERN (insn))) == MINUS
#else
		   && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
#endif
		   && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx)
	    INSN_VOLATILE (insn) = 1;
	}
    }

  if (n_basic_blocks > 0)
#ifdef EXIT_IGNORE_STACK
    if (! EXIT_IGNORE_STACK
	|| (! FRAME_POINTER_REQUIRED
	    && ! current_function_calls_alloca
	    && flag_omit_frame_pointer))
#endif
      {
	/* If exiting needs the right stack value,
	   consider the stack pointer live at the end of the function.  */
	SET_REGNO_REG_SET (basic_block_live_at_end[n_basic_blocks - 1],
			   STACK_POINTER_REGNUM);
	SET_REGNO_REG_SET (basic_block_new_live_at_end[n_basic_blocks - 1],
			   STACK_POINTER_REGNUM);
      }

  /* Mark the frame pointer is needed at the end of the function.  If
     we end up eliminating it, it will be removed from the live list
     of each basic block by reload.  */

  if (n_basic_blocks > 0)
    {
      SET_REGNO_REG_SET (basic_block_live_at_end[n_basic_blocks - 1],
			 FRAME_POINTER_REGNUM);
      SET_REGNO_REG_SET (basic_block_new_live_at_end[n_basic_blocks - 1],
			 FRAME_POINTER_REGNUM);
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
      /* If they are different, also mark the hard frame pointer as live */
      SET_REGNO_REG_SET (basic_block_live_at_end[n_basic_blocks - 1],
			 HARD_FRAME_POINTER_REGNUM);
      SET_REGNO_REG_SET (basic_block_new_live_at_end[n_basic_blocks - 1],
			 HARD_FRAME_POINTER_REGNUM);
#endif      
      }

  /* Mark all global registers and all registers used by the epilogue
     as being live at the end of the function since they may be
     referenced by our caller.  */

  if (n_basic_blocks > 0)
    for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
      if (global_regs[i]
#ifdef EPILOGUE_USES
	  || EPILOGUE_USES (i)
#endif
	  )
	{
	  SET_REGNO_REG_SET (basic_block_live_at_end[n_basic_blocks - 1], i);
	  SET_REGNO_REG_SET (basic_block_new_live_at_end[n_basic_blocks - 1], i);
	}

  /* Propagate life info through the basic blocks
     around the graph of basic blocks.

     This is a relaxation process: each time a new register
     is live at the end of the basic block, we must scan the block
     to determine which registers are, as a consequence, live at the beginning
     of that block.  These registers must then be marked live at the ends
     of all the blocks that can transfer control to that block.
     The process continues until it reaches a fixed point.  */

  first_pass = 1;
  changed = 1;
  while (changed)
    {
      changed = 0;
      for (i = n_basic_blocks - 1; i >= 0; i--)
	{
	  int consider = first_pass;
	  int must_rescan = first_pass;
	  register int j;

	  if (!first_pass)
	    {
	      /* Set CONSIDER if this block needs thinking about at all
		 (that is, if the regs live now at the end of it
		 are not the same as were live at the end of it when
		 we last thought about it).
		 Set must_rescan if it needs to be thought about
		 instruction by instruction (that is, if any additional
		 reg that is live at the end now but was not live there before
		 is one of the significant regs of this basic block).  */

	      EXECUTE_IF_AND_COMPL_IN_REG_SET
		(basic_block_new_live_at_end[i],
		 basic_block_live_at_end[i], 0, j,
		 {
		   consider = 1;
		   if (REGNO_REG_SET_P (basic_block_significant[i], j))
		     {
		       must_rescan = 1;
		       goto done;
		     }
		 });
	    done:
	      if (! consider)
		continue;
	    }

	  /* The live_at_start of this block may be changing,
	     so another pass will be required after this one.  */
	  changed = 1;

	  if (! must_rescan)
	    {
	      /* No complete rescan needed;
		 just record those variables newly known live at end
		 as live at start as well.  */
	      IOR_AND_COMPL_REG_SET (basic_block_live_at_start[i],
				     basic_block_new_live_at_end[i],
				     basic_block_live_at_end[i]);

	      IOR_AND_COMPL_REG_SET (basic_block_live_at_end[i],
				     basic_block_new_live_at_end[i],
				     basic_block_live_at_end[i]);
	    }
	  else
	    {
	      /* Update the basic_block_live_at_start
		 by propagation backwards through the block.  */
	      COPY_REG_SET (basic_block_live_at_end[i],
			    basic_block_new_live_at_end[i]);
	      COPY_REG_SET (basic_block_live_at_start[i],
			    basic_block_live_at_end[i]);
	      propagate_block (basic_block_live_at_start[i],
			       basic_block_head[i], basic_block_end[i], 0,
			       first_pass ? basic_block_significant[i]
			       : (regset) 0,
			       i);
	    }

	  {
	    register rtx jump, head;

	    /* Update the basic_block_new_live_at_end's of the block
	       that falls through into this one (if any).  */
	    head = basic_block_head[i];
	    if (basic_block_drops_in[i])
	      IOR_REG_SET (basic_block_new_live_at_end[i-1],
			   basic_block_live_at_start[i]);

	    /* Update the basic_block_new_live_at_end's of
	       all the blocks that jump to this one.  */
	    if (GET_CODE (head) == CODE_LABEL)
	      for (jump = LABEL_REFS (head);
		   jump != head;
		   jump = LABEL_NEXTREF (jump))
		{
		  register int from_block = BLOCK_NUM (CONTAINING_INSN (jump));
		  IOR_REG_SET (basic_block_new_live_at_end[from_block],
			       basic_block_live_at_start[i]);
		}
	  }
#ifdef USE_C_ALLOCA
	  alloca (0);
#endif
	}
      first_pass = 0;
    }

  /* The only pseudos that are live at the beginning of the function are
     those that were not set anywhere in the function.  local-alloc doesn't
     know how to handle these correctly, so mark them as not local to any
     one basic block.  */

  if (n_basic_blocks > 0)
    EXECUTE_IF_SET_IN_REG_SET (basic_block_live_at_start[0],
			       FIRST_PSEUDO_REGISTER, i,
			       {
				 REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
			       });

  /* Now the life information is accurate.
     Make one more pass over each basic block
     to delete dead stores, create autoincrement addressing
     and record how many times each register is used, is set, or dies.

     To save time, we operate directly in basic_block_live_at_end[i],
     thus destroying it (in fact, converting it into a copy of
     basic_block_live_at_start[i]).  This is ok now because
     basic_block_live_at_end[i] is no longer used past this point.  */

  max_scratch = 0;

  for (i = 0; i < n_basic_blocks; i++)
    {
      propagate_block (basic_block_live_at_end[i],
		       basic_block_head[i], basic_block_end[i], 1,
		       (regset) 0, i);
#ifdef USE_C_ALLOCA
      alloca (0);
#endif
    }

#if 0
  /* Something live during a setjmp should not be put in a register
     on certain machines which restore regs from stack frames
     rather than from the jmpbuf.
     But we don't need to do this for the user's variables, since
     ANSI says only volatile variables need this.  */
#ifdef LONGJMP_RESTORE_FROM_STACK
  EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
			     FIRST_PSEUDO_REGISTER, i,
			     {
			       if (regno_reg_rtx[i] != 0
				   && ! REG_USERVAR_P (regno_reg_rtx[i]))
				 {
				   REG_LIVE_LENGTH (i) = -1;
				   REG_BASIC_BLOCK (i) = -1;
				 }
			     });
#endif
#endif

  /* We have a problem with any pseudoreg that
     lives across the setjmp.  ANSI says that if a
     user variable does not change in value
     between the setjmp and the longjmp, then the longjmp preserves it.
     This includes longjmp from a place where the pseudo appears dead.
     (In principle, the value still exists if it is in scope.)
     If the pseudo goes in a hard reg, some other value may occupy
     that hard reg where this pseudo is dead, thus clobbering the pseudo.
     Conclusion: such a pseudo must not go in a hard reg.  */
  EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
			     FIRST_PSEUDO_REGISTER, i,
			     {
			       if (regno_reg_rtx[i] != 0)
				 {
				   REG_LIVE_LENGTH (i) = -1;
				   REG_BASIC_BLOCK (i) = -1;
				 }
			     });


  free_regset_vector (basic_block_live_at_end, n_basic_blocks);
  free_regset_vector (basic_block_new_live_at_end, n_basic_blocks);
  free_regset_vector (basic_block_significant, n_basic_blocks);
  basic_block_live_at_end = (regset *)0;
  basic_block_new_live_at_end = (regset *)0;
  basic_block_significant = (regset *)0;

  obstack_free (&flow_obstack, NULL_PTR);
}

/* Subroutines of life analysis.  */

/* Allocate the permanent data structures that represent the results
   of life analysis.  Not static since used also for stupid life analysis.  */

void
allocate_for_life_analysis ()
{
  register int i;

  /* Recalculate the register space, in case it has grown.  Old style
     vector oriented regsets would set regset_{size,bytes} here also.  */
  allocate_reg_info (max_regno, FALSE, FALSE);

  /* Because both reg_scan and flow_analysis want to set up the REG_N_SETS
     information, explicitly reset it here.  The allocation should have
     already happened on the previous reg_scan pass.  Make sure in case
     some more registers were allocated.  */
  for (i = 0; i < max_regno; i++)
    REG_N_SETS (i) = 0;

  basic_block_live_at_start
    = (regset *) oballoc (n_basic_blocks * sizeof (regset));
  init_regset_vector (basic_block_live_at_start, n_basic_blocks,
		      function_obstack);

  regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (function_obstack);
  CLEAR_REG_SET (regs_live_at_setjmp);
}

/* Make each element of VECTOR point at a regset.  The vector has
   NELTS elements, and space is allocated from the ALLOC_OBSTACK
   obstack.  */

static void
init_regset_vector (vector, nelts, alloc_obstack)
     regset *vector;
     int nelts;
     struct obstack *alloc_obstack;
{
  register int i;

  for (i = 0; i < nelts; i++)
    {
      vector[i] = OBSTACK_ALLOC_REG_SET (alloc_obstack);
      CLEAR_REG_SET (vector[i]);
    }
}

/* Release any additional space allocated for each element of VECTOR point
   other than the regset header itself.  The vector has NELTS elements.  */

void
free_regset_vector (vector, nelts)
     regset *vector;
     int nelts;
{
  register int i;

  for (i = 0; i < nelts; i++)
    FREE_REG_SET (vector[i]);
}

/* Compute the registers live at the beginning of a basic block
   from those live at the end.

   When called, OLD contains those live at the end.
   On return, it contains those live at the beginning.
   FIRST and LAST are the first and last insns of the basic block.

   FINAL is nonzero if we are doing the final pass which is not
   for computing the life info (since that has already been done)
   but for acting on it.  On this pass, we delete dead stores,
   set up the logical links and dead-variables lists of instructions,
   and merge instructions for autoincrement and autodecrement addresses.

   SIGNIFICANT is nonzero only the first time for each basic block.
   If it is nonzero, it points to a regset in which we store
   a 1 for each register that is set within the block.

   BNUM is the number of the basic block.  */

static void
propagate_block (old, first, last, final, significant, bnum)
     register regset old;
     rtx first;
     rtx last;
     int final;
     regset significant;
     int bnum;
{
  register rtx insn;
  rtx prev;
  regset live;
  regset dead;

  /* The following variables are used only if FINAL is nonzero.  */
  /* This vector gets one element for each reg that has been live
     at any point in the basic block that has been scanned so far.
     SOMETIMES_MAX says how many elements are in use so far.  */
  register int *regs_sometimes_live;
  int sometimes_max = 0;
  /* This regset has 1 for each reg that we have seen live so far.
     It and REGS_SOMETIMES_LIVE are updated together.  */
  regset maxlive;

  /* The loop depth may change in the middle of a basic block.  Since we
     scan from end to beginning, we start with the depth at the end of the
     current basic block, and adjust as we pass ends and starts of loops.  */
  loop_depth = basic_block_loop_depth[bnum];

  dead = ALLOCA_REG_SET ();
  live = ALLOCA_REG_SET ();

  cc0_live = 0;
  last_mem_set = 0;

  /* Include any notes at the end of the block in the scan.
     This is in case the block ends with a call to setjmp.  */

  while (NEXT_INSN (last) != 0 && GET_CODE (NEXT_INSN (last)) == NOTE)
    {
      /* Look for loop boundaries, we are going forward here.  */
      last = NEXT_INSN (last);
      if (NOTE_LINE_NUMBER (last) == NOTE_INSN_LOOP_BEG)
	loop_depth++;
      else if (NOTE_LINE_NUMBER (last) == NOTE_INSN_LOOP_END)
	loop_depth--;
    }

  if (final)
    {
      register int i;

      num_scratch = 0;
      maxlive = ALLOCA_REG_SET ();
      COPY_REG_SET (maxlive, old);
      regs_sometimes_live = (int *) alloca (max_regno * sizeof (int));

      /* Process the regs live at the end of the block.
	 Enter them in MAXLIVE and REGS_SOMETIMES_LIVE.
	 Also mark them as not local to any one basic block. */
      EXECUTE_IF_SET_IN_REG_SET (old, 0, i,
				 {
				   REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
				   regs_sometimes_live[sometimes_max] = i;
				   sometimes_max++;
				 });
    }

  /* Scan the block an insn at a time from end to beginning.  */

  for (insn = last; ; insn = prev)
    {
      prev = PREV_INSN (insn);

      if (GET_CODE (insn) == NOTE)
	{
	  /* Look for loop boundaries, remembering that we are going
	     backwards.  */
	  if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
	    loop_depth++;
	  else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
	    loop_depth--;

	  /* If we have LOOP_DEPTH == 0, there has been a bookkeeping error. 
	     Abort now rather than setting register status incorrectly.  */
	  if (loop_depth == 0)
	    abort ();

	  /* If this is a call to `setjmp' et al,
	     warn if any non-volatile datum is live.  */

	  if (final && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
	    IOR_REG_SET (regs_live_at_setjmp, old);
	}

      /* Update the life-status of regs for this insn.
	 First DEAD gets which regs are set in this insn
	 then LIVE gets which regs are used in this insn.
	 Then the regs live before the insn
	 are those live after, with DEAD regs turned off,
	 and then LIVE regs turned on.  */

      else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
	{
	  register int i;
	  rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
	  int insn_is_dead
	    = (insn_dead_p (PATTERN (insn), old, 0)
	       /* Don't delete something that refers to volatile storage!  */
	       && ! INSN_VOLATILE (insn));
	  int libcall_is_dead 
	    = (insn_is_dead && note != 0
	       && libcall_dead_p (PATTERN (insn), old, note, insn));

	  /* If an instruction consists of just dead store(s) on final pass,
	     "delete" it by turning it into a NOTE of type NOTE_INSN_DELETED.
	     We could really delete it with delete_insn, but that
	     can cause trouble for first or last insn in a basic block.  */
	  if (final && insn_is_dead)
	    {
	      PUT_CODE (insn, NOTE);
	      NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
	      NOTE_SOURCE_FILE (insn) = 0;

	      /* CC0 is now known to be dead.  Either this insn used it,
		 in which case it doesn't anymore, or clobbered it,
		 so the next insn can't use it.  */
	      cc0_live = 0;

	      /* If this insn is copying the return value from a library call,
		 delete the entire library call.  */
	      if (libcall_is_dead)
		{
		  rtx first = XEXP (note, 0);
		  rtx p = insn;
		  while (INSN_DELETED_P (first))
		    first = NEXT_INSN (first);
		  while (p != first)
		    {
		      p = PREV_INSN (p);
		      PUT_CODE (p, NOTE);
		      NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
		      NOTE_SOURCE_FILE (p) = 0;
		    }
		}
	      goto flushed;
	    }

	  CLEAR_REG_SET (dead);
	  CLEAR_REG_SET (live);

	  /* See if this is an increment or decrement that can be
	     merged into a following memory address.  */
#ifdef AUTO_INC_DEC
	  {
	    register rtx x = single_set (insn);

	    /* Does this instruction increment or decrement a register?  */
	    if (final && x != 0
		&& GET_CODE (SET_DEST (x)) == REG
		&& (GET_CODE (SET_SRC (x)) == PLUS
		    || GET_CODE (SET_SRC (x)) == MINUS)
		&& XEXP (SET_SRC (x), 0) == SET_DEST (x)
		&& GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
		/* Ok, look for a following memory ref we can combine with.
		   If one is found, change the memory ref to a PRE_INC
		   or PRE_DEC, cancel this insn, and return 1.
		   Return 0 if nothing has been done.  */
		&& try_pre_increment_1 (insn))
	      goto flushed;
	  }
#endif /* AUTO_INC_DEC */

	  /* If this is not the final pass, and this insn is copying the
	     value of a library call and it's dead, don't scan the
	     insns that perform the library call, so that the call's
	     arguments are not marked live.  */
	  if (libcall_is_dead)
	    {
	      /* Mark the dest reg as `significant'.  */
	      mark_set_regs (old, dead, PATTERN (insn), NULL_RTX, significant);

	      insn = XEXP (note, 0);
	      prev = PREV_INSN (insn);
	    }
	  else if (GET_CODE (PATTERN (insn)) == SET
		   && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
		   && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
		   && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
		   && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
	    /* We have an insn to pop a constant amount off the stack.
	       (Such insns use PLUS regardless of the direction of the stack,
	       and any insn to adjust the stack by a constant is always a pop.)
	       These insns, if not dead stores, have no effect on life.  */
	    ;
	  else
	    {
	      /* LIVE gets the regs used in INSN;
		 DEAD gets those set by it.  Dead insns don't make anything
		 live.  */

	      mark_set_regs (old, dead, PATTERN (insn),
			     final ? insn : NULL_RTX, significant);

	      /* If an insn doesn't use CC0, it becomes dead since we 
		 assume that every insn clobbers it.  So show it dead here;
		 mark_used_regs will set it live if it is referenced.  */
	      cc0_live = 0;

	      if (! insn_is_dead)
		mark_used_regs (old, live, PATTERN (insn), final, insn);

	      /* Sometimes we may have inserted something before INSN (such as
		 a move) when we make an auto-inc.  So ensure we will scan
		 those insns.  */
#ifdef AUTO_INC_DEC
	      prev = PREV_INSN (insn);
#endif

	      if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
		{
		  register int i;

		  rtx note;

	          for (note = CALL_INSN_FUNCTION_USAGE (insn);
		       note;
		       note = XEXP (note, 1))
		    if (GET_CODE (XEXP (note, 0)) == USE)
		      mark_used_regs (old, live, SET_DEST (XEXP (note, 0)),
				      final, insn);

		  /* Each call clobbers all call-clobbered regs that are not
		     global or fixed.  Note that the function-value reg is a
		     call-clobbered reg, and mark_set_regs has already had
		     a chance to handle it.  */

		  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
		    if (call_used_regs[i] && ! global_regs[i]
			&& ! fixed_regs[i])
		      SET_REGNO_REG_SET (dead, i);

		  /* The stack ptr is used (honorarily) by a CALL insn.  */
		  SET_REGNO_REG_SET (live, STACK_POINTER_REGNUM);

		  /* Calls may also reference any of the global registers,
		     so they are made live.  */
		  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
		    if (global_regs[i])
		      mark_used_regs (old, live,
				      gen_rtx_REG (reg_raw_mode[i], i),
				      final, insn);

		  /* Calls also clobber memory.  */
		  last_mem_set = 0;
		}

	      /* Update OLD for the registers used or set.  */
	      AND_COMPL_REG_SET (old, dead);
	      IOR_REG_SET (old, live);

	      if (GET_CODE (insn) == CALL_INSN && final)
		{
		  /* Any regs live at the time of a call instruction
		     must not go in a register clobbered by calls.
		     Find all regs now live and record this for them.  */

		  register int *p = regs_sometimes_live;

		  for (i = 0; i < sometimes_max; i++, p++)
		    if (REGNO_REG_SET_P (old, *p))
		      REG_N_CALLS_CROSSED (*p)++;
		}
	    }

	  /* On final pass, add any additional sometimes-live regs
	     into MAXLIVE and REGS_SOMETIMES_LIVE.
	     Also update counts of how many insns each reg is live at.  */

	  if (final)
	    {
	      register int regno;
	      register int *p;

	      EXECUTE_IF_AND_COMPL_IN_REG_SET
		(live, maxlive, 0, regno,
		 {
		   regs_sometimes_live[sometimes_max++] = regno;
		   SET_REGNO_REG_SET (maxlive, regno);
		 });

	      p = regs_sometimes_live;
	      for (i = 0; i < sometimes_max; i++)
		{
		  regno = *p++;
		  if (REGNO_REG_SET_P (old, regno))
		    REG_LIVE_LENGTH (regno)++;
		}
	    }
	}
    flushed: ;
      if (insn == first)
	break;
    }

  FREE_REG_SET (dead);
  FREE_REG_SET (live);
  if (final)
    FREE_REG_SET (maxlive);

  if (num_scratch > max_scratch)
    max_scratch = num_scratch;
}

/* Return 1 if X (the body of an insn, or part of it) is just dead stores
   (SET expressions whose destinations are registers dead after the insn).
   NEEDED is the regset that says which regs are alive after the insn.

   Unless CALL_OK is non-zero, an insn is needed if it contains a CALL.  */

static int
insn_dead_p (x, needed, call_ok)
     rtx x;
     regset needed;
     int call_ok;
{
  enum rtx_code code = GET_CODE (x);

  /* If setting something that's a reg or part of one,
     see if that register's altered value will be live.  */

  if (code == SET)
    {
      rtx r = SET_DEST (x);

      /* A SET that is a subroutine call cannot be dead.  */
      if (! call_ok && GET_CODE (SET_SRC (x)) == CALL)
	return 0;

#ifdef HAVE_cc0
      if (GET_CODE (r) == CC0)
	return ! cc0_live;
#endif
      
      if (GET_CODE (r) == MEM && last_mem_set && ! MEM_VOLATILE_P (r)
	  && rtx_equal_p (r, last_mem_set))
	return 1;

      while (GET_CODE (r) == SUBREG || GET_CODE (r) == STRICT_LOW_PART
	     || GET_CODE (r) == ZERO_EXTRACT)
	r = SUBREG_REG (r);

      if (GET_CODE (r) == REG)
	{
	  int regno = REGNO (r);

	  /* Don't delete insns to set global regs.  */
	  if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
	      /* Make sure insns to set frame pointer aren't deleted.  */
	      || regno == FRAME_POINTER_REGNUM
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
	      || regno == HARD_FRAME_POINTER_REGNUM
#endif
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
	      /* Make sure insns to set arg pointer are never deleted
		 (if the arg pointer isn't fixed, there will be a USE for
		 it, so we can treat it normally).  */
	      || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
#endif
	      || REGNO_REG_SET_P (needed, regno))
	    return 0;

	  /* If this is a hard register, verify that subsequent words are
	     not needed.  */
	  if (regno < FIRST_PSEUDO_REGISTER)
	    {
	      int n = HARD_REGNO_NREGS (regno, GET_MODE (r));

	      while (--n > 0)
		if (REGNO_REG_SET_P (needed, regno+n))
		  return 0;
	    }

	  return 1;
	}
    }

  /* If performing several activities,
     insn is dead if each activity is individually dead.
     Also, CLOBBERs and USEs can be ignored; a CLOBBER or USE
     that's inside a PARALLEL doesn't make the insn worth keeping.  */
  else if (code == PARALLEL)
    {
      int i = XVECLEN (x, 0);

      for (i--; i >= 0; i--)
	if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
	    && GET_CODE (XVECEXP (x, 0, i)) != USE
	    && ! insn_dead_p (XVECEXP (x, 0, i), needed, call_ok))
	  return 0;

      return 1;
    }

  /* A CLOBBER of a pseudo-register that is dead serves no purpose.  That
     is not necessarily true for hard registers.  */
  else if (code == CLOBBER && GET_CODE (XEXP (x, 0)) == REG
	   && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
	   && ! REGNO_REG_SET_P (needed, REGNO (XEXP (x, 0))))
    return 1;

  /* We do not check other CLOBBER or USE here.  An insn consisting of just
     a CLOBBER or just a USE should not be deleted.  */
  return 0;
}

/* If X is the pattern of the last insn in a libcall, and assuming X is dead,
   return 1 if the entire library call is dead.
   This is true if X copies a register (hard or pseudo)
   and if the hard return  reg of the call insn is dead.
   (The caller should have tested the destination of X already for death.)

   If this insn doesn't just copy a register, then we don't
   have an ordinary libcall.  In that case, cse could not have
   managed to substitute the source for the dest later on,
   so we can assume the libcall is dead.

   NEEDED is the bit vector of pseudoregs live before this insn.
   NOTE is the REG_RETVAL note of the insn.  INSN is the insn itself.  */

static int
libcall_dead_p (x, needed, note, insn)
     rtx x;
     regset needed;
     rtx note;
     rtx insn;
{
  register RTX_CODE code = GET_CODE (x);

  if (code == SET)
    {
      register rtx r = SET_SRC (x);
      if (GET_CODE (r) == REG)
	{
	  rtx call = XEXP (note, 0);
	  register int i;

	  /* Find the call insn.  */
	  while (call != insn && GET_CODE (call) != CALL_INSN)
	    call = NEXT_INSN (call);

	  /* If there is none, do nothing special,
	     since ordinary death handling can understand these insns.  */
	  if (call == insn)
	    return 0;

	  /* See if the hard reg holding the value is dead.
	     If this is a PARALLEL, find the call within it.  */
	  call = PATTERN (call);
	  if (GET_CODE (call) == PARALLEL)
	    {
	      for (i = XVECLEN (call, 0) - 1; i >= 0; i--)
		if (GET_CODE (XVECEXP (call, 0, i)) == SET
		    && GET_CODE (SET_SRC (XVECEXP (call, 0, i))) == CALL)
		  break;

	      /* This may be a library call that is returning a value
		 via invisible pointer.  Do nothing special, since
		 ordinary death handling can understand these insns.  */
	      if (i < 0)
		return 0;

	      call = XVECEXP (call, 0, i);
	    }

	  return insn_dead_p (call, needed, 1);
	}
    }
  return 1;
}

/* Return 1 if register REGNO was used before it was set, i.e. if it is
   live at function entry.  Don't count global register variables, variables
   in registers that can be used for function arg passing, or variables in
   fixed hard registers.  */

int
regno_uninitialized (regno)
     int regno;
{
  if (n_basic_blocks == 0
      || (regno < FIRST_PSEUDO_REGISTER
	  && (global_regs[regno]
	      || fixed_regs[regno]
	      || FUNCTION_ARG_REGNO_P (regno))))
    return 0;

  return REGNO_REG_SET_P (basic_block_live_at_start[0], regno);
}

/* 1 if register REGNO was alive at a place where `setjmp' was called
   and was set more than once or is an argument.
   Such regs may be clobbered by `longjmp'.  */

int
regno_clobbered_at_setjmp (regno)
     int regno;
{
  if (n_basic_blocks == 0)
    return 0;

  return ((REG_N_SETS (regno) > 1
	   || REGNO_REG_SET_P (basic_block_live_at_start[0], regno))
	  && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
}

/* Process the registers that are set within X.
   Their bits are set to 1 in the regset DEAD,
   because they are dead prior to this insn.

   If INSN is nonzero, it is the insn being processed
   and the fact that it is nonzero implies this is the FINAL pass
   in propagate_block.  In this case, various info about register
   usage is stored, LOG_LINKS fields of insns are set up.  */

static void
mark_set_regs (needed, dead, x, insn, significant)
     regset needed;
     regset dead;
     rtx x;
     rtx insn;
     regset significant;
{
  register RTX_CODE code = GET_CODE (x);

  if (code == SET || code == CLOBBER)
    mark_set_1 (needed, dead, x, insn, significant);
  else if (code == PARALLEL)
    {
      register int i;
      for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
	{
	  code = GET_CODE (XVECEXP (x, 0, i));
	  if (code == SET || code == CLOBBER)
	    mark_set_1 (needed, dead, XVECEXP (x, 0, i), insn, significant);
	}
    }
}

/* Process a single SET rtx, X.  */

static void
mark_set_1 (needed, dead, x, insn, significant)
     regset needed;
     regset dead;
     rtx x;
     rtx insn;
     regset significant;
{
  register int regno;
  register rtx reg = SET_DEST (x);

  /* Some targets place small structures in registers for
     return values of functions.  We have to detect this
     case specially here to get correct flow information.  */
  if (GET_CODE (reg) == PARALLEL
      && GET_MODE (reg) == BLKmode)
    {
      register int i;

      for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
	  mark_set_1 (needed, dead, XVECEXP (reg, 0, i), insn, significant);
      return;
    }

  /* Modifying just one hardware register of a multi-reg value
     or just a byte field of a register
     does not mean the value from before this insn is now dead.
     But it does mean liveness of that register at the end of the block
     is significant.

     Within mark_set_1, however, we treat it as if the register is
     indeed modified.  mark_used_regs will, however, also treat this
     register as being used.  Thus, we treat these insns as setting a
     new value for the register as a function of its old value.  This
     cases LOG_LINKS to be made appropriately and this will help combine.  */

  while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
	 || GET_CODE (reg) == SIGN_EXTRACT
	 || GET_CODE (reg) == STRICT_LOW_PART)
    reg = XEXP (reg, 0);

  /* If we are writing into memory or into a register mentioned in the
     address of the last thing stored into memory, show we don't know
     what the last store was.  If we are writing memory, save the address
     unless it is volatile.  */
  if (GET_CODE (reg) == MEM
      || (GET_CODE (reg) == REG
	  && last_mem_set != 0 && reg_overlap_mentioned_p (reg, last_mem_set)))
    last_mem_set = 0;
    
  if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
      /* There are no REG_INC notes for SP, so we can't assume we'll see 
	 everything that invalidates it.  To be safe, don't eliminate any
	 stores though SP; none of them should be redundant anyway.  */
      && ! reg_mentioned_p (stack_pointer_rtx, reg))
    last_mem_set = reg;

  if (GET_CODE (reg) == REG
      && (regno = REGNO (reg), regno != FRAME_POINTER_REGNUM)
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
      && regno != HARD_FRAME_POINTER_REGNUM
#endif
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
      && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
#endif
      && ! (regno < FIRST_PSEUDO_REGISTER && global_regs[regno]))
    /* && regno != STACK_POINTER_REGNUM) -- let's try without this.  */
    {
      int some_needed = REGNO_REG_SET_P (needed, regno);
      int some_not_needed = ! some_needed;

      /* Mark it as a significant register for this basic block.  */
      if (significant)
	SET_REGNO_REG_SET (significant, regno);

      /* Mark it as dead before this insn.  */
      SET_REGNO_REG_SET (dead, regno);

      /* A hard reg in a wide mode may really be multiple registers.
	 If so, mark all of them just like the first.  */
      if (regno < FIRST_PSEUDO_REGISTER)
	{
	  int n;

	  /* Nothing below is needed for the stack pointer; get out asap.
	     Eg, log links aren't needed, since combine won't use them.  */
	  if (regno == STACK_POINTER_REGNUM)
	    return;

	  n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
	  while (--n > 0)
	    {
	      int regno_n = regno + n;
	      int needed_regno = REGNO_REG_SET_P (needed, regno_n);
	      if (significant)
		SET_REGNO_REG_SET (significant, regno_n);

	      SET_REGNO_REG_SET (dead, regno_n);
	      some_needed |= needed_regno;
	      some_not_needed |= ! needed_regno;
	    }
	}
      /* Additional data to record if this is the final pass.  */
      if (insn)
	{
	  register rtx y = reg_next_use[regno];
	  register int blocknum = BLOCK_NUM (insn);

	  /* If this is a hard reg, record this function uses the reg.  */

	  if (regno < FIRST_PSEUDO_REGISTER)
	    {
	      register int i;
	      int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));

	      for (i = regno; i < endregno; i++)
		{
		  /* The next use is no longer "next", since a store
		     intervenes.  */
		  reg_next_use[i] = 0;

		  regs_ever_live[i] = 1;
		  REG_N_SETS (i)++;
		}
	    }
	  else
	    {
	      /* The next use is no longer "next", since a store
		 intervenes.  */
	      reg_next_use[regno] = 0;

	      /* Keep track of which basic blocks each reg appears in.  */

	      if (REG_BASIC_BLOCK (regno) == REG_BLOCK_UNKNOWN)
		REG_BASIC_BLOCK (regno) = blocknum;
	      else if (REG_BASIC_BLOCK (regno) != blocknum)
		REG_BASIC_BLOCK (regno) = REG_BLOCK_GLOBAL;

	      /* Count (weighted) references, stores, etc.  This counts a
		 register twice if it is modified, but that is correct.  */
	      REG_N_SETS (regno)++;

	      REG_N_REFS (regno) += loop_depth;
		  
	      /* The insns where a reg is live are normally counted
		 elsewhere, but we want the count to include the insn
		 where the reg is set, and the normal counting mechanism
		 would not count it.  */
	      REG_LIVE_LENGTH (regno)++;
	    }

	  if (! some_not_needed)
	    {
	      /* Make a logical link from the next following insn
		 that uses this register, back to this insn.
		 The following insns have already been processed.

		 We don't build a LOG_LINK for hard registers containing
		 in ASM_OPERANDs.  If these registers get replaced,
		 we might wind up changing the semantics of the insn,
		 even if reload can make what appear to be valid assignments
		 later.  */
	      if (y && (BLOCK_NUM (y) == blocknum)
		  && (regno >= FIRST_PSEUDO_REGISTER
		      || asm_noperands (PATTERN (y)) < 0))
		LOG_LINKS (y)
		  = gen_rtx_INSN_LIST (VOIDmode, insn, LOG_LINKS (y));
	    }
	  else if (! some_needed)
	    {
	      /* Note that dead stores have already been deleted when possible
		 If we get here, we have found a dead store that cannot
		 be eliminated (because the same insn does something useful).
		 Indicate this by marking the reg being set as dying here.  */
	      REG_NOTES (insn)
		= gen_rtx_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
	      REG_N_DEATHS (REGNO (reg))++;
	    }
	  else
	    {
	      /* This is a case where we have a multi-word hard register
		 and some, but not all, of the words of the register are
		 needed in subsequent insns.  Write REG_UNUSED notes
		 for those parts that were not needed.  This case should
		 be rare.  */

	      int i;

	      for (i = HARD_REGNO_NREGS (regno, GET_MODE (reg)) - 1;
		   i >= 0; i--)
		if (!REGNO_REG_SET_P (needed, regno + i))
		  REG_NOTES (insn)
		    = gen_rtx_EXPR_LIST (REG_UNUSED,
					 gen_rtx_REG (reg_raw_mode[regno + i],
						      regno + i),
					 REG_NOTES (insn));
	    }
	}
    }
  else if (GET_CODE (reg) == REG)
    reg_next_use[regno] = 0;

  /* If this is the last pass and this is a SCRATCH, show it will be dying
     here and count it.  */
  else if (GET_CODE (reg) == SCRATCH && insn != 0)
    {
      REG_NOTES (insn)
	= gen_rtx_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
      num_scratch++;
    }
}

#ifdef AUTO_INC_DEC

/* X is a MEM found in INSN.  See if we can convert it into an auto-increment
   reference.  */

static void
find_auto_inc (needed, x, insn)
     regset needed;
     rtx x;
     rtx insn;
{
  rtx addr = XEXP (x, 0);
  HOST_WIDE_INT offset = 0;
  rtx set;

  /* Here we detect use of an index register which might be good for
     postincrement, postdecrement, preincrement, or predecrement.  */

  if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
    offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);

  if (GET_CODE (addr) == REG)
    {
      register rtx y;
      register int size = GET_MODE_SIZE (GET_MODE (x));
      rtx use;
      rtx incr;
      int regno = REGNO (addr);

      /* Is the next use an increment that might make auto-increment? */
      if ((incr = reg_next_use[regno]) != 0
	  && (set = single_set (incr)) != 0
	  && GET_CODE (set) == SET
	  && BLOCK_NUM (incr) == BLOCK_NUM (insn)
	  /* Can't add side effects to jumps; if reg is spilled and
	     reloaded, there's no way to store back the altered value.  */
	  && GET_CODE (insn) != JUMP_INSN
	  && (y = SET_SRC (set), GET_CODE (y) == PLUS)
	  && XEXP (y, 0) == addr
	  && GET_CODE (XEXP (y, 1)) == CONST_INT
	  && (0
#ifdef HAVE_POST_INCREMENT
	      || (INTVAL (XEXP (y, 1)) == size && offset == 0)
#endif
#ifdef HAVE_POST_DECREMENT
	      || (INTVAL (XEXP (y, 1)) == - size && offset == 0)
#endif
#ifdef HAVE_PRE_INCREMENT
	      || (INTVAL (XEXP (y, 1)) == size && offset == size)
#endif
#ifdef HAVE_PRE_DECREMENT
	      || (INTVAL (XEXP (y, 1)) == - size && offset == - size)
#endif
	      )
	  /* Make sure this reg appears only once in this insn.  */
	  && (use = find_use_as_address (PATTERN (insn), addr, offset),
	      use != 0 && use != (rtx) 1))
	{
	  rtx q = SET_DEST (set);
	  enum rtx_code inc_code = (INTVAL (XEXP (y, 1)) == size
				    ? (offset ? PRE_INC : POST_INC)
				    : (offset ? PRE_DEC : POST_DEC));

	  if (dead_or_set_p (incr, addr))
	    {
	      /* This is the simple case.  Try to make the auto-inc.  If
		 we can't, we are done.  Otherwise, we will do any
		 needed updates below.  */
	      if (! validate_change (insn, &XEXP (x, 0),
				     gen_rtx_fmt_e (inc_code, Pmode, addr),
				     0))
		return;
	    }
	  else if (GET_CODE (q) == REG
		   /* PREV_INSN used here to check the semi-open interval
		      [insn,incr).  */
		   && ! reg_used_between_p (q,  PREV_INSN (insn), incr)
		   /* We must also check for sets of q as q may be
		      a call clobbered hard register and there may
		      be a call between PREV_INSN (insn) and incr.  */
		   && ! reg_set_between_p (q,  PREV_INSN (insn), incr))
	    {
	      /* We have *p followed sometime later by q = p+size.
		 Both p and q must be live afterward,
		 and q is not used between INSN and its assignment.
		 Change it to q = p, ...*q..., q = q+size.
		 Then fall into the usual case.  */
	      rtx insns, temp;

	      start_sequence ();
	      emit_move_insn (q, addr);
	      insns = get_insns ();
	      end_sequence ();

	      /* If anything in INSNS have UID's that don't fit within the
		 extra space we allocate earlier, we can't make this auto-inc.
		 This should never happen.  */
	      for (temp = insns; temp; temp = NEXT_INSN (temp))
		{
		  if (INSN_UID (temp) > max_uid_for_flow)
		    return;
		  BLOCK_NUM (temp) = BLOCK_NUM (insn);
		}

	      /* If we can't make the auto-inc, or can't make the
		 replacement into Y, exit.  There's no point in making
		 the change below if we can't do the auto-inc and doing
		 so is not correct in the pre-inc case.  */

	      validate_change (insn, &XEXP (x, 0),
			       gen_rtx_fmt_e (inc_code, Pmode, q),
			       1);
	      validate_change (incr, &XEXP (y, 0), q, 1);
	      if (! apply_change_group ())
		return;

	      /* We now know we'll be doing this change, so emit the
		 new insn(s) and do the updates.  */
	      emit_insns_before (insns, insn);

	      if (basic_block_head[BLOCK_NUM (insn)] == insn)
		basic_block_head[BLOCK_NUM (insn)] = insns;

	      /* INCR will become a NOTE and INSN won't contain a
		 use of ADDR.  If a use of ADDR was just placed in
		 the insn before INSN, make that the next use. 
		 Otherwise, invalidate it.  */
	      if (GET_CODE (PREV_INSN (insn)) == INSN
		  && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
		  && SET_SRC (PATTERN (PREV_INSN (insn))) == addr)
		reg_next_use[regno] = PREV_INSN (insn);
	      else
		reg_next_use[regno] = 0;

	      addr = q;
	      regno = REGNO (q);

	      /* REGNO is now used in INCR which is below INSN, but
		 it previously wasn't live here.  If we don't mark
		 it as needed, we'll put a REG_DEAD note for it
		 on this insn, which is incorrect.  */
	      SET_REGNO_REG_SET (needed, regno);

	      /* If there are any calls between INSN and INCR, show
		 that REGNO now crosses them.  */
	      for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
		if (GET_CODE (temp) == CALL_INSN)
		  REG_N_CALLS_CROSSED (regno)++;
	    }
	  else
	    return;

	  /* If we haven't returned, it means we were able to make the
	     auto-inc, so update the status.  First, record that this insn
	     has an implicit side effect.  */

	  REG_NOTES (insn)
	    = gen_rtx_EXPR_LIST (REG_INC, addr, REG_NOTES (insn));

	  /* Modify the old increment-insn to simply copy
	     the already-incremented value of our register.  */
	  if (! validate_change (incr, &SET_SRC (set), addr, 0))
	    abort ();

	  /* If that makes it a no-op (copying the register into itself) delete
	     it so it won't appear to be a "use" and a "set" of this
	     register.  */
	  if (SET_DEST (set) == addr)
	    {
	      PUT_CODE (incr, NOTE);
	      NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
	      NOTE_SOURCE_FILE (incr) = 0;
	    }

	  if (regno >= FIRST_PSEUDO_REGISTER)
	    {
	      /* Count an extra reference to the reg.  When a reg is
		 incremented, spilling it is worse, so we want to make
		 that less likely.  */
	      REG_N_REFS (regno) += loop_depth;

	      /* Count the increment as a setting of the register,
		 even though it isn't a SET in rtl.  */
	      REG_N_SETS (regno)++;
	    }
	}
    }
}
#endif /* AUTO_INC_DEC */

/* Scan expression X and store a 1-bit in LIVE for each reg it uses.
   This is done assuming the registers needed from X
   are those that have 1-bits in NEEDED.

   On the final pass, FINAL is 1.  This means try for autoincrement
   and count the uses and deaths of each pseudo-reg.

   INSN is the containing instruction.  If INSN is dead, this function is not
   called.  */

static void
mark_used_regs (needed, live, x, final, insn)
     regset needed;
     regset live;
     rtx x;
     int final;
     rtx insn;
{
  register RTX_CODE code;
  register int regno;
  int i;

 retry:
  code = GET_CODE (x);
  switch (code)
    {
    case LABEL_REF:
    case SYMBOL_REF:
    case CONST_INT:
    case CONST:
    case CONST_DOUBLE:
    case PC:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
    case ASM_INPUT:
      return;

#ifdef HAVE_cc0
    case CC0:
      cc0_live = 1;
      return;
#endif

    case CLOBBER:
      /* If we are clobbering a MEM, mark any registers inside the address
	 as being used.  */
      if (GET_CODE (XEXP (x, 0)) == MEM)
	mark_used_regs (needed, live, XEXP (XEXP (x, 0), 0), final, insn);
      return;

    case MEM:
      /* Invalidate the data for the last MEM stored, but only if MEM is
	 something that can be stored into.  */
      if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
	  && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
	; /* needn't clear last_mem_set */
      else
	last_mem_set = 0;

#ifdef AUTO_INC_DEC
      if (final)
	find_auto_inc (needed, x, insn);
#endif
      break;

    case SUBREG:
      if (GET_CODE (SUBREG_REG (x)) == REG
	  && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER
	  && (GET_MODE_SIZE (GET_MODE (x))
	      != GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
	REG_CHANGES_SIZE (REGNO (SUBREG_REG (x))) = 1;

      /* While we're here, optimize this case.  */
      x = SUBREG_REG (x);

      /* In case the SUBREG is not of a register, don't optimize */
      if (GET_CODE (x) != REG)
	{
	  mark_used_regs (needed, live, x, final, insn);
	  return;
	}

      /* ... fall through ...  */

    case REG:
      /* See a register other than being set
	 => mark it as needed.  */

      regno = REGNO (x);
      {
	int some_needed = REGNO_REG_SET_P (needed, regno);
	int some_not_needed = ! some_needed;

	SET_REGNO_REG_SET (live, regno);

	/* A hard reg in a wide mode may really be multiple registers.
	   If so, mark all of them just like the first.  */
	if (regno < FIRST_PSEUDO_REGISTER)
	  {
	    int n;

	    /* For stack ptr or fixed arg pointer,
	       nothing below can be necessary, so waste no more time.  */
	    if (regno == STACK_POINTER_REGNUM
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
		|| regno == HARD_FRAME_POINTER_REGNUM
#endif
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
		|| (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
#endif
		|| regno == FRAME_POINTER_REGNUM)
	      {
		/* If this is a register we are going to try to eliminate,
		   don't mark it live here.  If we are successful in
		   eliminating it, it need not be live unless it is used for
		   pseudos, in which case it will have been set live when
		   it was allocated to the pseudos.  If the register will not
		   be eliminated, reload will set it live at that point.  */

		if (! TEST_HARD_REG_BIT (elim_reg_set, regno))
		  regs_ever_live[regno] = 1;
		return;
	      }
	    /* No death notes for global register variables;
	       their values are live after this function exits.  */
	    if (global_regs[regno])
	      {
		if (final)
		  reg_next_use[regno] = insn;
		return;
	      }

	    n = HARD_REGNO_NREGS (regno, GET_MODE (x));
	    while (--n > 0)
	      {
		int regno_n = regno + n;
		int needed_regno = REGNO_REG_SET_P (needed, regno_n);

		SET_REGNO_REG_SET (live, regno_n);
		some_needed |= needed_regno;
		some_not_needed |= ! needed_regno;
	      }
	  }
	if (final)
	  {
	    /* Record where each reg is used, so when the reg
	       is set we know the next insn that uses it.  */

	    reg_next_use[regno] = insn;

	    if (regno < FIRST_PSEUDO_REGISTER)
	      {
		/* If a hard reg is being used,
		   record that this function does use it.  */

		i = HARD_REGNO_NREGS (regno, GET_MODE (x));
		if (i == 0)
		  i = 1;
		do
		  regs_ever_live[regno + --i] = 1;
		while (i > 0);
	      }
	    else
	      {
		/* Keep track of which basic block each reg appears in.  */

		register int blocknum = BLOCK_NUM (insn);

		if (REG_BASIC_BLOCK (regno) == REG_BLOCK_UNKNOWN)
		  REG_BASIC_BLOCK (regno) = blocknum;
		else if (REG_BASIC_BLOCK (regno) != blocknum)
		  REG_BASIC_BLOCK (regno) = REG_BLOCK_GLOBAL;

		/* Count (weighted) number of uses of each reg.  */

		REG_N_REFS (regno) += loop_depth;
	      }

	    /* Record and count the insns in which a reg dies.
	       If it is used in this insn and was dead below the insn
	       then it dies in this insn.  If it was set in this insn,
	       we do not make a REG_DEAD note; likewise if we already
	       made such a note.  */

	    if (some_not_needed
		&& ! dead_or_set_p (insn, x)
#if 0
		&& (regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
#endif
		)
	      {
		/* Check for the case where the register dying partially
		   overlaps the register set by this insn.  */
		if (regno < FIRST_PSEUDO_REGISTER
		    && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
		  {
		    int n = HARD_REGNO_NREGS (regno, GET_MODE (x));
		    while (--n >= 0)
		      some_needed |= dead_or_set_regno_p (insn, regno + n);
		  }

		/* If none of the words in X is needed, make a REG_DEAD
		   note.  Otherwise, we must make partial REG_DEAD notes.  */
		if (! some_needed)
		  {
		    REG_NOTES (insn)
		      = gen_rtx_EXPR_LIST (REG_DEAD, x, REG_NOTES (insn));
		    REG_N_DEATHS (regno)++;
		  }
		else
		  {
		    int i;

		    /* Don't make a REG_DEAD note for a part of a register
		       that is set in the insn.  */

		    for (i = HARD_REGNO_NREGS (regno, GET_MODE (x)) - 1;
			 i >= 0; i--)
		      if (!REGNO_REG_SET_P (needed, regno + i)
			  && ! dead_or_set_regno_p (insn, regno + i))
			REG_NOTES (insn)
			  = gen_rtx_EXPR_LIST (REG_DEAD,
					       gen_rtx_REG (reg_raw_mode[regno + i],
							    regno + i),
					       REG_NOTES (insn));
		  }
	      }
	  }
      }
      return;

    case SET:
      {
	register rtx testreg = SET_DEST (x);
	int mark_dest = 0;

	/* If storing into MEM, don't show it as being used.  But do
	   show the address as being used.  */
	if (GET_CODE (testreg) == MEM)
	  {
#ifdef AUTO_INC_DEC
	    if (final)
	      find_auto_inc (needed, testreg, insn);
#endif
	    mark_used_regs (needed, live, XEXP (testreg, 0), final, insn);
	    mark_used_regs (needed, live, SET_SRC (x), final, insn);
	    return;
	  }
	    
	/* Storing in STRICT_LOW_PART is like storing in a reg
	   in that this SET might be dead, so ignore it in TESTREG.
	   but in some other ways it is like using the reg.

	   Storing in a SUBREG or a bit field is like storing the entire
	   register in that if the register's value is not used
	   then this SET is not needed.  */
	while (GET_CODE (testreg) == STRICT_LOW_PART
	       || GET_CODE (testreg) == ZERO_EXTRACT
	       || GET_CODE (testreg) == SIGN_EXTRACT
	       || GET_CODE (testreg) == SUBREG)
	  {
	    if (GET_CODE (testreg) == SUBREG
		&& GET_CODE (SUBREG_REG (testreg)) == REG
		&& REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER
		&& (GET_MODE_SIZE (GET_MODE (testreg))
		    != GET_MODE_SIZE (GET_MODE (SUBREG_REG (testreg)))))
	      REG_CHANGES_SIZE (REGNO (SUBREG_REG (testreg))) = 1;

	    /* Modifying a single register in an alternate mode
	       does not use any of the old value.  But these other
	       ways of storing in a register do use the old value.  */
	    if (GET_CODE (testreg) == SUBREG
		&& !(REG_SIZE (SUBREG_REG (testreg)) > REG_SIZE (testreg)))
	      ;
	    else
	      mark_dest = 1;

	    testreg = XEXP (testreg, 0);
	  }

	/* If this is a store into a register,
	   recursively scan the value being stored.  */

	if ((GET_CODE (testreg) == PARALLEL
	     && GET_MODE (testreg) == BLKmode)
	    || (GET_CODE (testreg) == REG
		&& (regno = REGNO (testreg), regno != FRAME_POINTER_REGNUM)
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
		&& regno != HARD_FRAME_POINTER_REGNUM
#endif
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
		&& ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
#endif
		))
	  /* We used to exclude global_regs here, but that seems wrong.
	     Storing in them is like storing in mem.  */
	  {
	    mark_used_regs (needed, live, SET_SRC (x), final, insn);
	    if (mark_dest)
	      mark_used_regs (needed, live, SET_DEST (x), final, insn);
	    return;
	  }
      }
      break;

    case RETURN:
      /* If exiting needs the right stack value, consider this insn as
	 using the stack pointer.  In any event, consider it as using
	 all global registers and all registers used by return.  */

#ifdef EXIT_IGNORE_STACK
      if (! EXIT_IGNORE_STACK
	  || (! FRAME_POINTER_REQUIRED
	      && ! current_function_calls_alloca
	      && flag_omit_frame_pointer))
#endif
	SET_REGNO_REG_SET (live, STACK_POINTER_REGNUM);

      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
	if (global_regs[i]
#ifdef EPILOGUE_USES
	    || EPILOGUE_USES (i)
#endif
	    )
	  SET_REGNO_REG_SET (live, i);
      break;

    default:
      break;
    }

  /* Recursively scan the operands of this expression.  */

  {
    register char *fmt = GET_RTX_FORMAT (code);
    register int i;
    
    for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
      {
	if (fmt[i] == 'e')
	  {
	    /* Tail recursive case: save a function call level.  */
	    if (i == 0)
	      {
		x = XEXP (x, 0);
		goto retry;
	      }
	    mark_used_regs (needed, live, XEXP (x, i), final, insn);
	  }
	else if (fmt[i] == 'E')
	  {
	    register int j;
	    for (j = 0; j < XVECLEN (x, i); j++)
	      mark_used_regs (needed, live, XVECEXP (x, i, j), final, insn);
	  }
      }
  }
}

#ifdef AUTO_INC_DEC

static int
try_pre_increment_1 (insn)
     rtx insn;
{
  /* Find the next use of this reg.  If in same basic block,
     make it do pre-increment or pre-decrement if appropriate.  */
  rtx x = single_set (insn);
  HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
		* INTVAL (XEXP (SET_SRC (x), 1)));
  int regno = REGNO (SET_DEST (x));
  rtx y = reg_next_use[regno];
  if (y != 0
      && BLOCK_NUM (y) == BLOCK_NUM (insn)
      /* Don't do this if the reg dies, or gets set in y; a standard addressing
	 mode would be better.  */
      && ! dead_or_set_p (y, SET_DEST (x))
      && try_pre_increment (y, SET_DEST (x), amount))
    {
      /* We have found a suitable auto-increment
	 and already changed insn Y to do it.
	 So flush this increment-instruction.  */
      PUT_CODE (insn, NOTE);
      NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
      NOTE_SOURCE_FILE (insn) = 0;
      /* Count a reference to this reg for the increment
	 insn we are deleting.  When a reg is incremented.
	 spilling it is worse, so we want to make that
	 less likely.  */
      if (regno >= FIRST_PSEUDO_REGISTER)
	{
	  REG_N_REFS (regno) += loop_depth;
	  REG_N_SETS (regno)++;
	}
      return 1;
    }
  return 0;
}

/* Try to change INSN so that it does pre-increment or pre-decrement
   addressing on register REG in order to add AMOUNT to REG.
   AMOUNT is negative for pre-decrement.
   Returns 1 if the change could be made.
   This checks all about the validity of the result of modifying INSN.  */

static int
try_pre_increment (insn, reg, amount)
     rtx insn, reg;
     HOST_WIDE_INT amount;
{
  register rtx use;

  /* Nonzero if we can try to make a pre-increment or pre-decrement.
     For example, addl $4,r1; movl (r1),... can become movl +(r1),...  */
  int pre_ok = 0;
  /* Nonzero if we can try to make a post-increment or post-decrement.
     For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
     It is possible for both PRE_OK and POST_OK to be nonzero if the machine
     supports both pre-inc and post-inc, or both pre-dec and post-dec.  */
  int post_ok = 0;

  /* Nonzero if the opportunity actually requires post-inc or post-dec.  */
  int do_post = 0;

  /* From the sign of increment, see which possibilities are conceivable
     on this target machine.  */
#ifdef HAVE_PRE_INCREMENT
  if (amount > 0)
    pre_ok = 1;
#endif
#ifdef HAVE_POST_INCREMENT
  if (amount > 0)
    post_ok = 1;
#endif

#ifdef HAVE_PRE_DECREMENT
  if (amount < 0)
    pre_ok = 1;
#endif
#ifdef HAVE_POST_DECREMENT
  if (amount < 0)
    post_ok = 1;
#endif

  if (! (pre_ok || post_ok))
    return 0;

  /* It is not safe to add a side effect to a jump insn
     because if the incremented register is spilled and must be reloaded
     there would be no way to store the incremented value back in memory.  */

  if (GET_CODE (insn) == JUMP_INSN)
    return 0;

  use = 0;
  if (pre_ok)
    use = find_use_as_address (PATTERN (insn), reg, 0);
  if (post_ok && (use == 0 || use == (rtx) 1))
    {
      use = find_use_as_address (PATTERN (insn), reg, -amount);
      do_post = 1;
    }

  if (use == 0 || use == (rtx) 1)
    return 0;

  if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
    return 0;

  /* See if this combination of instruction and addressing mode exists.  */
  if (! validate_change (insn, &XEXP (use, 0),
			 gen_rtx_fmt_e (amount > 0
					? (do_post ? POST_INC : PRE_INC)
					: (do_post ? POST_DEC : PRE_DEC),
					Pmode, reg), 0))
    return 0;

  /* Record that this insn now has an implicit side effect on X.  */
  REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
  return 1;
}

#endif /* AUTO_INC_DEC */

/* Find the place in the rtx X where REG is used as a memory address.
   Return the MEM rtx that so uses it.
   If PLUSCONST is nonzero, search instead for a memory address equivalent to
   (plus REG (const_int PLUSCONST)).

   If such an address does not appear, return 0.
   If REG appears more than once, or is used other than in such an address,
   return (rtx)1.  */

rtx
find_use_as_address (x, reg, plusconst)
     register rtx x;
     rtx reg;
     HOST_WIDE_INT plusconst;
{
  enum rtx_code code = GET_CODE (x);
  char *fmt = GET_RTX_FORMAT (code);
  register int i;
  register rtx value = 0;
  register rtx tem;

  if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
    return x;

  if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
      && XEXP (XEXP (x, 0), 0) == reg
      && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
      && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
    return x;

  if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
    {
      /* If REG occurs inside a MEM used in a bit-field reference,
	 that is unacceptable.  */
      if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
	return (rtx) (HOST_WIDE_INT) 1;
    }

  if (x == reg)
    return (rtx) (HOST_WIDE_INT) 1;

  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	{
	  tem = find_use_as_address (XEXP (x, i), reg, plusconst);
	  if (value == 0)
	    value = tem;
	  else if (tem != 0)
	    return (rtx) (HOST_WIDE_INT) 1;
	}
      if (fmt[i] == 'E')
	{
	  register int j;
	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	    {
	      tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
	      if (value == 0)
		value = tem;
	      else if (tem != 0)
		return (rtx) (HOST_WIDE_INT) 1;
	    }
	}
    }

  return value;
}

/* Write information about registers and basic blocks into FILE.
   This is part of making a debugging dump.  */

void
dump_flow_info (file)
     FILE *file;
{
  register int i;
  static char *reg_class_names[] = REG_CLASS_NAMES;

  fprintf (file, "%d registers.\n", max_regno);

  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
    if (REG_N_REFS (i))
      {
	enum reg_class class, altclass;
	fprintf (file, "\nRegister %d used %d times across %d insns",
		 i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
	if (REG_BASIC_BLOCK (i) >= 0)
	  fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
	if (REG_N_SETS (i))
  	  fprintf (file, "; set %d time%s", REG_N_SETS (i),
   		   (REG_N_SETS (i) == 1) ? "" : "s");
	if (REG_USERVAR_P (regno_reg_rtx[i]))
  	  fprintf (file, "; user var");
	if (REG_N_DEATHS (i) != 1)
	  fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
	if (REG_N_CALLS_CROSSED (i) == 1)
	  fprintf (file, "; crosses 1 call");
	else if (REG_N_CALLS_CROSSED (i))
	  fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
	if (PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
	  fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
	class = reg_preferred_class (i);
	altclass = reg_alternate_class (i);
	if (class != GENERAL_REGS || altclass != ALL_REGS)
	  {
	    if (altclass == ALL_REGS || class == ALL_REGS)
	      fprintf (file, "; pref %s", reg_class_names[(int) class]);
	    else if (altclass == NO_REGS)
	      fprintf (file, "; %s or none", reg_class_names[(int) class]);
	    else
	      fprintf (file, "; pref %s, else %s",
		       reg_class_names[(int) class],
		       reg_class_names[(int) altclass]);
	  }
	if (REGNO_POINTER_FLAG (i))
	  fprintf (file, "; pointer");
	fprintf (file, ".\n");
      }
  fprintf (file, "\n%d basic blocks.\n", n_basic_blocks);
  for (i = 0; i < n_basic_blocks; i++)
    {
      register rtx head, jump;
      register int regno;
      fprintf (file, "\nBasic block %d: first insn %d, last %d.\n",
	       i,
	       INSN_UID (basic_block_head[i]),
	       INSN_UID (basic_block_end[i]));
      /* The control flow graph's storage is freed
	 now when flow_analysis returns.
	 Don't try to print it if it is gone.  */
      if (basic_block_drops_in)
	{
	  fprintf (file, "Reached from blocks: ");
	  head = basic_block_head[i];
	  if (GET_CODE (head) == CODE_LABEL)
	    for (jump = LABEL_REFS (head);
		 jump != head;
		 jump = LABEL_NEXTREF (jump))
	      {
		register int from_block = BLOCK_NUM (CONTAINING_INSN (jump));
		fprintf (file, " %d", from_block);
	      }
	  if (basic_block_drops_in[i])
	    fprintf (file, " previous");
	}
      fprintf (file, "\nRegisters live at start:");
      for (regno = 0; regno < max_regno; regno++)
	if (REGNO_REG_SET_P (basic_block_live_at_start[i], regno))
	  fprintf (file, " %d", regno);
      fprintf (file, "\n");
    }
  fprintf (file, "\n");
}


/* Like print_rtl, but also print out live information for the start of each
   basic block.  */

void
print_rtl_with_bb (outf, rtx_first)
     FILE *outf;
     rtx rtx_first;
{
  register rtx tmp_rtx;

  if (rtx_first == 0)
    fprintf (outf, "(nil)\n");

  else
    {
      int i, bb;
      enum bb_state { NOT_IN_BB, IN_ONE_BB, IN_MULTIPLE_BB };
      int max_uid = get_max_uid ();
      int *start = (int *) alloca (max_uid * sizeof (int));
      int *end = (int *) alloca (max_uid * sizeof (int));
      char *in_bb_p = (char *) alloca (max_uid * sizeof (enum bb_state));

      for (i = 0; i < max_uid; i++)
	{
	  start[i] = end[i] = -1;
	  in_bb_p[i] = NOT_IN_BB;
	}

      for (i = n_basic_blocks-1; i >= 0; i--)
	{
	  rtx x;
	  start[INSN_UID (basic_block_head[i])] = i;
	  end[INSN_UID (basic_block_end[i])] = i;
	  for (x = basic_block_head[i]; x != NULL_RTX; x = NEXT_INSN (x))
	    {
	      in_bb_p[ INSN_UID(x)]
		= (in_bb_p[ INSN_UID(x)] == NOT_IN_BB)
		 ? IN_ONE_BB : IN_MULTIPLE_BB;
	      if (x == basic_block_end[i])
		break;
	    }
	}

      for (tmp_rtx = rtx_first; NULL != tmp_rtx; tmp_rtx = NEXT_INSN (tmp_rtx))
	{
	  int did_output;

	  if ((bb = start[INSN_UID (tmp_rtx)]) >= 0)
	    {
	      fprintf (outf, ";; Start of basic block %d, registers live:",
		       bb);

	      EXECUTE_IF_SET_IN_REG_SET (basic_block_live_at_start[bb], 0, i,
					 {
					   fprintf (outf, " %d", i);
					   if (i < FIRST_PSEUDO_REGISTER)
					     fprintf (outf, " [%s]",
						      reg_names[i]);
					 });
	      putc ('\n', outf);
	    }

	  if (in_bb_p[ INSN_UID(tmp_rtx)] == NOT_IN_BB
	      && GET_CODE (tmp_rtx) != NOTE
	      && GET_CODE (tmp_rtx) != BARRIER)
	    fprintf (outf, ";; Insn is not within a basic block\n");
	  else if (in_bb_p[ INSN_UID(tmp_rtx)] == IN_MULTIPLE_BB)
	    fprintf (outf, ";; Insn is in multiple basic blocks\n");

	  did_output = print_rtl_single (outf, tmp_rtx);

	  if ((bb = end[INSN_UID (tmp_rtx)]) >= 0)
	    fprintf (outf, ";; End of basic block %d\n", bb);

	  if (did_output)
	    putc ('\n', outf);
	}
    }
}


/* Integer list support.  */

/* Allocate a node from list *HEAD_PTR.  */

static int_list_ptr
alloc_int_list_node (head_ptr)
     int_list_block **head_ptr;
{
  struct int_list_block *first_blk = *head_ptr;

  if (first_blk == NULL || first_blk->nodes_left <= 0)
    {
      first_blk = (struct int_list_block *) xmalloc (sizeof (struct int_list_block));
      first_blk->nodes_left = INT_LIST_NODES_IN_BLK;
      first_blk->next = *head_ptr;
      *head_ptr = first_blk;
    }

  first_blk->nodes_left--;
  return &first_blk->nodes[first_blk->nodes_left];
}

/* Pointer to head of predecessor/successor block list.  */
static int_list_block *pred_int_list_blocks;

/* Add a new node to integer list LIST with value VAL.
   LIST is a pointer to a list object to allow for different implementations.
   If *LIST is initially NULL, the list is empty.
   The caller must not care whether the element is added to the front or
   to the end of the list (to allow for different implementations).  */

static int_list_ptr
add_int_list_node (blk_list, list, val)
     int_list_block **blk_list;
     int_list **list;
     int val;
{
  int_list_ptr p = alloc_int_list_node (blk_list);

  p->val = val;
  p->next = *list;
  *list = p;
  return p;
}

/* Free the blocks of lists at BLK_LIST.  */

void
free_int_list (blk_list)
     int_list_block **blk_list;
{
  int_list_block *p, *next;

  for (p = *blk_list; p != NULL; p = next)
    {
      next = p->next;
      free (p);
    }

  /* Mark list as empty for the next function we compile.  */
  *blk_list = NULL;
}

/* Predecessor/successor computation.  */

/* Mark PRED_BB a precessor of SUCC_BB,
   and conversely SUCC_BB a successor of PRED_BB.  */

static void
add_pred_succ (pred_bb, succ_bb, s_preds, s_succs, num_preds, num_succs)
     int pred_bb;
     int succ_bb;
     int_list_ptr *s_preds;
     int_list_ptr *s_succs;
     int *num_preds;
     int *num_succs;
{
  if (succ_bb != EXIT_BLOCK)
    {
      add_int_list_node (&pred_int_list_blocks, &s_preds[succ_bb], pred_bb);
      num_preds[succ_bb]++;
    }
  if (pred_bb != ENTRY_BLOCK)
    {
      add_int_list_node (&pred_int_list_blocks, &s_succs[pred_bb], succ_bb);
      num_succs[pred_bb]++;
    }
}

/* Compute the predecessors and successors for each block.  */
void
compute_preds_succs (s_preds, s_succs, num_preds, num_succs)
     int_list_ptr *s_preds;
     int_list_ptr *s_succs;
     int *num_preds;
     int *num_succs;
{
  int bb, clear_local_bb_vars = 0;

  bzero ((char *) s_preds, n_basic_blocks * sizeof (int_list_ptr));
  bzero ((char *) s_succs, n_basic_blocks * sizeof (int_list_ptr));
  bzero ((char *) num_preds, n_basic_blocks * sizeof (int));
  bzero ((char *) num_succs, n_basic_blocks * sizeof (int));

  /* This routine can be called after life analysis; in that case
     basic_block_drops_in and uid_block_number will not be available
     and we must recompute their values.  */
  if (basic_block_drops_in == NULL || uid_block_number == NULL)
    {
      clear_local_bb_vars = 1;
      basic_block_drops_in = (char *) alloca (n_basic_blocks);
      uid_block_number = (int *) alloca ((get_max_uid () + 1) * sizeof (int));

      bzero ((char *) basic_block_drops_in, n_basic_blocks * sizeof (char));
      bzero ((char *) uid_block_number, n_basic_blocks * sizeof (int));

      /* Scan each basic block setting basic_block_drops_in and
	 uid_block_number as needed.  */
      for (bb = 0; bb < n_basic_blocks; bb++)
	{
	  rtx insn, stop_insn;

	  if (bb == 0)
	    stop_insn = NULL_RTX;
	  else
	    stop_insn = basic_block_end[bb-1];

	  /* Look backwards from the start of this block.  Stop if we
	     hit the start of the function or the end of a previous
	     block.  Don't walk backwards through blocks that are just
	     deleted insns!  */
	  for (insn = PREV_INSN (basic_block_head[bb]);
	       insn && insn != stop_insn && GET_CODE (insn) == NOTE;
	       insn = PREV_INSN (insn))
	    ;

	  /* Never set basic_block_drops_in for the first block.  It is
	     implicit.

	     If we stopped on anything other than a BARRIER, then this
	     block drops in.  */
	  if (bb != 0)
	    basic_block_drops_in[bb] = (insn ? GET_CODE (insn) != BARRIER : 1);

	  insn = basic_block_head[bb];
	  while (insn)
	    {
	      BLOCK_NUM (insn) = bb;
	      if (insn == basic_block_end[bb])
		break;
	      insn = NEXT_INSN (insn);
	    }
	}
    }
      
  for (bb = 0; bb < n_basic_blocks; bb++)
    {
      rtx head;
      rtx jump;

      head = BLOCK_HEAD (bb);

      if (GET_CODE (head) == CODE_LABEL)
	for (jump = LABEL_REFS (head);
	     jump != head;
	     jump = LABEL_NEXTREF (jump))
	  {
	    if (! INSN_DELETED_P (CONTAINING_INSN (jump))
		&& (GET_CODE (CONTAINING_INSN (jump)) != NOTE
		    || (NOTE_LINE_NUMBER (CONTAINING_INSN (jump))
			!= NOTE_INSN_DELETED)))
	      add_pred_succ (BLOCK_NUM (CONTAINING_INSN (jump)), bb,
			     s_preds, s_succs, num_preds, num_succs);
	  }

      jump = BLOCK_END (bb);
      /* If this is a RETURN insn or a conditional jump in the last
	 basic block, or a non-jump insn in the last basic block, then
	 this block reaches the exit block.  */
      if ((GET_CODE (jump) == JUMP_INSN && GET_CODE (PATTERN (jump)) == RETURN)
	  || (((GET_CODE (jump) == JUMP_INSN
	        && condjump_p (jump) && !simplejump_p (jump))
	       || GET_CODE (jump) != JUMP_INSN)
 	      && (bb == n_basic_blocks - 1)))
	add_pred_succ (bb, EXIT_BLOCK, s_preds, s_succs, num_preds, num_succs);

      if (basic_block_drops_in[bb])
	add_pred_succ (bb - 1, bb, s_preds, s_succs, num_preds, num_succs);
    }

  add_pred_succ (ENTRY_BLOCK, 0, s_preds, s_succs, num_preds, num_succs);


  /* If we allocated any variables in temporary storage, clear out the
     pointer to the local storage to avoid dangling pointers.  */
  if (clear_local_bb_vars)
    {
      basic_block_drops_in = NULL;
      uid_block_number = NULL;
    
    }
}

void
dump_bb_data (file, preds, succs)
     FILE *file;
     int_list_ptr *preds;
     int_list_ptr *succs;
{
  int bb;
  int_list_ptr p;

  fprintf (file, "BB data\n\n");
  for (bb = 0; bb < n_basic_blocks; bb++)
    {
      fprintf (file, "BB %d, start %d, end %d\n", bb,
	       INSN_UID (BLOCK_HEAD (bb)), INSN_UID (BLOCK_END (bb)));
      fprintf (file, "  preds:");
      for (p = preds[bb]; p != NULL; p = p->next)
	{
	  int pred_bb = INT_LIST_VAL (p);
	  if (pred_bb == ENTRY_BLOCK)
	    fprintf (file, " entry");
	  else
	    fprintf (file, " %d", pred_bb);
	}
      fprintf (file, "\n");
      fprintf (file, "  succs:");
      for (p = succs[bb]; p != NULL; p = p->next)
	{
	  int succ_bb = INT_LIST_VAL (p);
	  if (succ_bb == EXIT_BLOCK)
	    fprintf (file, " exit");
	  else
	    fprintf (file, " %d", succ_bb);
	}
      fprintf (file, "\n");
    }
  fprintf (file, "\n");
}

void
dump_sbitmap (file, bmap)
     FILE *file;
     sbitmap bmap;
{
  int i,j,n;
  int set_size = bmap->size;
  int total_bits = bmap->n_bits;

  fprintf (file, "  ");
  for (i = n = 0; i < set_size && n < total_bits; i++)
    {
      for (j = 0; j < SBITMAP_ELT_BITS && n < total_bits; j++, n++)
	{
	  if (n != 0 && n % 10 == 0)
	    fprintf (file, " ");
	  fprintf (file, "%d", (bmap->elms[i] & (1L << j)) != 0);
	}
    }
  fprintf (file, "\n");
}

void
dump_sbitmap_vector (file, title, subtitle, bmaps, n_maps)
     FILE *file;
     char *title, *subtitle;
     sbitmap *bmaps;
     int n_maps;
{
  int bb;

  fprintf (file, "%s\n", title);
  for (bb = 0; bb < n_maps; bb++)
    {
      fprintf (file, "%s %d\n", subtitle, bb);
      dump_sbitmap (file, bmaps[bb]);
    }
  fprintf (file, "\n");
}

/* Free basic block data storage.  */

void
free_bb_mem ()
{
  free_int_list (&pred_int_list_blocks);
}

/* Bitmap manipulation routines.  */

/* Allocate a simple bitmap of N_ELMS bits.  */

sbitmap
sbitmap_alloc (n_elms)
     int n_elms;
{
  int bytes, size, amt;
  sbitmap bmap;

  size = SBITMAP_SET_SIZE (n_elms);
  bytes = size * sizeof (SBITMAP_ELT_TYPE);
  amt = (sizeof (struct simple_bitmap_def)
	 + bytes - sizeof (SBITMAP_ELT_TYPE));
  bmap = (sbitmap) xmalloc (amt);
  bmap->n_bits = n_elms;
  bmap->size = size;
  bmap->bytes = bytes;
  return bmap;
}

/* Allocate a vector of N_VECS bitmaps of N_ELMS bits.  */

sbitmap *
sbitmap_vector_alloc (n_vecs, n_elms)
     int n_vecs, n_elms;
{
  int i, bytes, offset, elm_bytes, size, amt, vector_bytes;
  sbitmap *bitmap_vector;

  size = SBITMAP_SET_SIZE (n_elms);
  bytes = size * sizeof (SBITMAP_ELT_TYPE);
  elm_bytes = (sizeof (struct simple_bitmap_def)
	       + bytes - sizeof (SBITMAP_ELT_TYPE));
  vector_bytes = n_vecs * sizeof (sbitmap *);

  /* Round up `vector_bytes' to account for the alignment requirements
     of an sbitmap.  One could allocate the vector-table and set of sbitmaps
     separately, but that requires maintaining two pointers or creating
     a cover struct to hold both pointers (so our result is still just
     one pointer).  Neither is a bad idea, but this is simpler for now.  */
  {
    /* Based on DEFAULT_ALIGNMENT computation in obstack.c.  */
    struct { char x; SBITMAP_ELT_TYPE y; } align;
    int alignment = (char *) & align.y - & align.x;
    vector_bytes = (vector_bytes + alignment - 1) & ~ (alignment - 1);
  }

  amt = vector_bytes + (n_vecs * elm_bytes);
  bitmap_vector = (sbitmap *) xmalloc (amt);

  for (i = 0, offset = vector_bytes;
       i < n_vecs;
       i++, offset += elm_bytes)
    {
      sbitmap b = (sbitmap) ((char *) bitmap_vector + offset);
      bitmap_vector[i] = b;
      b->n_bits = n_elms;
      b->size = size;
      b->bytes = bytes;
    }

  return bitmap_vector;
}

/* Copy sbitmap SRC to DST.  */

void
sbitmap_copy (dst, src)
     sbitmap dst, src;
{
  bcopy (src->elms, dst->elms, sizeof (SBITMAP_ELT_TYPE) * dst->size);
}

/* Zero all elements in a bitmap.  */

void
sbitmap_zero (bmap)
     sbitmap bmap;
{
  bzero ((char *) bmap->elms, bmap->bytes);
}

/* Set to ones all elements in a bitmap.  */

void
sbitmap_ones (bmap)
     sbitmap bmap;
{
  memset (bmap->elms, -1, bmap->bytes);
}

/* Zero a vector of N_VECS bitmaps.  */

void
sbitmap_vector_zero (bmap, n_vecs)
     sbitmap *bmap;
     int n_vecs;
{
  int i;

  for (i = 0; i < n_vecs; i++)
    sbitmap_zero (bmap[i]);
}

/* Set to ones a vector of N_VECS bitmaps.  */

void
sbitmap_vector_ones (bmap, n_vecs)
     sbitmap *bmap;
     int n_vecs;
{
  int i;

  for (i = 0; i < n_vecs; i++)
    sbitmap_ones (bmap[i]);
}

/* Set DST to be A union (B - C).
   DST = A | (B & ~C).
   Return non-zero if any change is made.  */

int
sbitmap_union_of_diff (dst, a, b, c)
     sbitmap dst, a, b, c;
{
  int i,changed;
  sbitmap_ptr dstp, ap, bp, cp;

  changed = 0;
  dstp = dst->elms;
  ap = a->elms;
  bp = b->elms;
  cp = c->elms;
  for (i = 0; i < dst->size; i++)
    {
      SBITMAP_ELT_TYPE tmp = *ap | (*bp & ~*cp);
      if (*dstp != tmp)
	changed = 1;
      *dstp = tmp;
      dstp++; ap++; bp++; cp++;
    }
  return changed;
}

/* Set bitmap DST to the bitwise negation of the bitmap SRC.  */

void
sbitmap_not (dst, src)
     sbitmap dst, src;
{
  int i;
  sbitmap_ptr dstp, ap;

  dstp = dst->elms;
  ap = src->elms;
  for (i = 0; i < dst->size; i++)
    {
      SBITMAP_ELT_TYPE tmp = ~(*ap);
      *dstp = tmp;
      dstp++; ap++;
    }
}

/* Set the bits in DST to be the difference between the bits
   in A and the bits in B. i.e. dst = a - b.
   The - operator is implemented as a & (~b).  */

void
sbitmap_difference (dst, a, b)
     sbitmap dst, a, b;
{
  int i;
  sbitmap_ptr dstp, ap, bp;

  dstp = dst->elms;
  ap = a->elms;
  bp = b->elms;
  for (i = 0; i < dst->size; i++)
    *dstp++ = *ap++ & (~*bp++);
}

/* Set DST to be (A and B)).
   Return non-zero if any change is made.  */

int
sbitmap_a_and_b (dst, a, b)
     sbitmap dst, a, b;
{
  int i,changed;
  sbitmap_ptr dstp, ap, bp;

  changed = 0;
  dstp = dst->elms;
  ap = a->elms;
  bp = b->elms;
  for (i = 0; i < dst->size; i++)
    {
      SBITMAP_ELT_TYPE tmp = *ap & *bp;
      if (*dstp != tmp)
	changed = 1;
      *dstp = tmp;
      dstp++; ap++; bp++;
    }
  return changed;
}
/* Set DST to be (A or B)).
   Return non-zero if any change is made.  */

int
sbitmap_a_or_b (dst, a, b)
     sbitmap dst, a, b;
{
  int i,changed;
  sbitmap_ptr dstp, ap, bp;

  changed = 0;
  dstp = dst->elms;
  ap = a->elms;
  bp = b->elms;
  for (i = 0; i < dst->size; i++)
    {
      SBITMAP_ELT_TYPE tmp = *ap | *bp;
      if (*dstp != tmp)
	changed = 1;
      *dstp = tmp;
      dstp++; ap++; bp++;
    }
  return changed;
}

/* Set DST to be (A or (B and C)).
   Return non-zero if any change is made.  */

int
sbitmap_a_or_b_and_c (dst, a, b, c)
     sbitmap dst, a, b, c;
{
  int i,changed;
  sbitmap_ptr dstp, ap, bp, cp;

  changed = 0;
  dstp = dst->elms;
  ap = a->elms;
  bp = b->elms;
  cp = c->elms;
  for (i = 0; i < dst->size; i++)
    {
      SBITMAP_ELT_TYPE tmp = *ap | (*bp & *cp);
      if (*dstp != tmp)
	changed = 1;
      *dstp = tmp;
      dstp++; ap++; bp++; cp++;
    }
  return changed;
}

/* Set DST to be (A ann (B or C)).
   Return non-zero if any change is made.  */

int
sbitmap_a_and_b_or_c (dst, a, b, c)
     sbitmap dst, a, b, c;
{
  int i,changed;
  sbitmap_ptr dstp, ap, bp, cp;

  changed = 0;
  dstp = dst->elms;
  ap = a->elms;
  bp = b->elms;
  cp = c->elms;
  for (i = 0; i < dst->size; i++)
    {
      SBITMAP_ELT_TYPE tmp = *ap & (*bp | *cp);
      if (*dstp != tmp)
	changed = 1;
      *dstp = tmp;
      dstp++; ap++; bp++; cp++;
    }
  return changed;
}

/* Set the bitmap DST to the intersection of SRC of all predecessors or
   successors of block number BB (PRED_SUCC says which).  */

void
sbitmap_intersect_of_predsucc (dst, src, bb, pred_succ)
     sbitmap dst;
     sbitmap *src;
     int bb;
     int_list_ptr *pred_succ;
{
  int_list_ptr ps;
  int ps_bb;
  int set_size = dst->size;

  ps = pred_succ[bb];

  /* It is possible that there are no predecessors(/successors).
     This can happen for example in unreachable code.  */

  if (ps == NULL)
    {
      /* In APL-speak this is the `and' reduction of the empty set and thus
	 the result is the identity for `and'.  */
      sbitmap_ones (dst);
      return;
    }

  /* Set result to first predecessor/successor.  */

  for ( ; ps != NULL; ps = ps->next)
    {
      ps_bb = INT_LIST_VAL (ps);
      if (ps_bb == ENTRY_BLOCK || ps_bb == EXIT_BLOCK)
	continue;
      sbitmap_copy (dst, src[ps_bb]);
      /* Break out since we're only doing first predecessor.  */
      break;
    }
  if (ps == NULL)
    return;

  /* Now do the remaining predecessors/successors.  */

  for (ps = ps->next; ps != NULL; ps = ps->next)
    {
      int i;
      sbitmap_ptr p,r;

      ps_bb = INT_LIST_VAL (ps);
      if (ps_bb == ENTRY_BLOCK || ps_bb == EXIT_BLOCK)
	continue;

      p = src[ps_bb]->elms;
      r = dst->elms;

      for (i = 0; i < set_size; i++)
	*r++ &= *p++;
    }
}

/* Set the bitmap DST to the intersection of SRC of all predecessors
   of block number BB.  */

void
sbitmap_intersect_of_predecessors (dst, src, bb, s_preds)
     sbitmap dst;
     sbitmap *src;
     int bb;
     int_list_ptr *s_preds;
{
  sbitmap_intersect_of_predsucc (dst, src, bb, s_preds);
}

/* Set the bitmap DST to the intersection of SRC of all successors
   of block number BB.  */

void
sbitmap_intersect_of_successors (dst, src, bb, s_succs)
     sbitmap dst;
     sbitmap *src;
     int bb;
     int_list_ptr *s_succs;
{
  sbitmap_intersect_of_predsucc (dst, src, bb, s_succs);
}

/* Set the bitmap DST to the union of SRC of all predecessors/successors of
   block number BB.  */

void
sbitmap_union_of_predsucc (dst, src, bb, pred_succ)
     sbitmap dst;
     sbitmap *src;
     int bb;
     int_list_ptr *pred_succ;
{
  int_list_ptr ps;
  int ps_bb;
  int set_size = dst->size;

  ps = pred_succ[bb];

  /* It is possible that there are no predecessors(/successors).
     This can happen for example in unreachable code.  */

  if (ps == NULL)
    {
      /* In APL-speak this is the `or' reduction of the empty set and thus
	 the result is the identity for `or'.  */
      sbitmap_zero (dst);
      return;
    }

  /* Set result to first predecessor/successor.  */

  for ( ; ps != NULL; ps = ps->next)
    {
      ps_bb = INT_LIST_VAL (ps);
      if (ps_bb == ENTRY_BLOCK || ps_bb == EXIT_BLOCK)
	continue;
      sbitmap_copy (dst, src[ps_bb]);
      /* Break out since we're only doing first predecessor.  */
      break;
    }
  if (ps == NULL)
    return;

  /* Now do the remaining predecessors/successors.  */

  for (ps = ps->next; ps != NULL; ps = ps->next)
    {
      int i;
      sbitmap_ptr p,r;

      ps_bb = INT_LIST_VAL (ps);
      if (ps_bb == ENTRY_BLOCK || ps_bb == EXIT_BLOCK)
	continue;

      p = src[ps_bb]->elms;
      r = dst->elms;

      for (i = 0; i < set_size; i++)
	*r++ |= *p++;
    }
}

/* Set the bitmap DST to the union of SRC of all predecessors of
   block number BB.  */

void
sbitmap_union_of_predecessors (dst, src, bb, s_preds)
     sbitmap dst;
     sbitmap *src;
     int bb;
     int_list_ptr *s_preds;
{
  sbitmap_union_of_predsucc (dst, src, bb, s_preds);
}

/* Set the bitmap DST to the union of SRC of all predecessors of
   block number BB.  */

void
sbitmap_union_of_successors (dst, src, bb, s_succ)
     sbitmap dst;
     sbitmap *src;
     int bb;
     int_list_ptr *s_succ;
{
  sbitmap_union_of_predsucc (dst, src, bb, s_succ);
}

/* Compute dominator relationships.  */
void
compute_dominators (dominators, post_dominators, s_preds, s_succs)
     sbitmap *dominators;
     sbitmap *post_dominators;
     int_list_ptr *s_preds;
     int_list_ptr *s_succs;
{
  int bb, changed, passes;
  sbitmap *temp_bitmap;

  temp_bitmap = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
  sbitmap_vector_ones (dominators, n_basic_blocks);
  sbitmap_vector_ones (post_dominators, n_basic_blocks);
  sbitmap_vector_zero (temp_bitmap, n_basic_blocks);

  sbitmap_zero (dominators[0]);
  SET_BIT (dominators[0], 0);

  sbitmap_zero (post_dominators[n_basic_blocks-1]);
  SET_BIT (post_dominators[n_basic_blocks-1], 0);

  passes = 0;
  changed = 1;
  while (changed)
    {
      changed = 0;
      for (bb = 1; bb < n_basic_blocks; bb++)
	{
	  sbitmap_intersect_of_predecessors (temp_bitmap[bb], dominators,
					     bb, s_preds);
	  SET_BIT (temp_bitmap[bb], bb);
	  changed |= sbitmap_a_and_b (dominators[bb],
				      dominators[bb],
				      temp_bitmap[bb]);
	  sbitmap_intersect_of_successors (temp_bitmap[bb], post_dominators,
					   bb, s_succs);
	  SET_BIT (temp_bitmap[bb], bb);
	  changed |= sbitmap_a_and_b (post_dominators[bb],
				      post_dominators[bb],
				      temp_bitmap[bb]);
	}
      passes++;
    }

  free (temp_bitmap);
}

/* Count for a single SET rtx, X.  */

static void
count_reg_sets_1 (x)
     rtx x;
{
  register int regno;
  register rtx reg = SET_DEST (x);

  /* Find the register that's set/clobbered.  */
  while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
	 || GET_CODE (reg) == SIGN_EXTRACT
	 || GET_CODE (reg) == STRICT_LOW_PART)
    reg = XEXP (reg, 0);

  if (GET_CODE (reg) == PARALLEL
      && GET_MODE (reg) == BLKmode)
    {
      register int i;
      for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
	count_reg_sets_1 (XVECEXP (reg, 0, i));
      return;
    }

  if (GET_CODE (reg) == REG)
    {
      regno = REGNO (reg);
      if (regno >= FIRST_PSEUDO_REGISTER)
	{
	  /* Count (weighted) references, stores, etc.  This counts a
	     register twice if it is modified, but that is correct.  */
	  REG_N_SETS (regno)++;

	  REG_N_REFS (regno) += loop_depth;
	}
    }
}

/* Increment REG_N_SETS for each SET or CLOBBER found in X; also increment
   REG_N_REFS by the current loop depth for each SET or CLOBBER found.  */

static void
count_reg_sets  (x)
     rtx x;
{
  register RTX_CODE code = GET_CODE (x);

  if (code == SET || code == CLOBBER)
    count_reg_sets_1 (x);
  else if (code == PARALLEL)
    {
      register int i;
      for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
	{
	  code = GET_CODE (XVECEXP (x, 0, i));
	  if (code == SET || code == CLOBBER)
	    count_reg_sets_1 (XVECEXP (x, 0, i));
	}
    }
}

/* Increment REG_N_REFS by the current loop depth each register reference
   found in X.  */

static void
count_reg_references (x)
     rtx x;
{
  register RTX_CODE code;

 retry:
  code = GET_CODE (x);
  switch (code)
    {
    case LABEL_REF:
    case SYMBOL_REF:
    case CONST_INT:
    case CONST:
    case CONST_DOUBLE:
    case PC:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
    case ASM_INPUT:
      return;

#ifdef HAVE_cc0
    case CC0:
      return;
#endif

    case CLOBBER:
      /* If we are clobbering a MEM, mark any registers inside the address
	 as being used.  */
      if (GET_CODE (XEXP (x, 0)) == MEM)
	count_reg_references (XEXP (XEXP (x, 0), 0));
      return;

    case SUBREG:
      /* While we're here, optimize this case.  */
      x = SUBREG_REG (x);

      /* In case the SUBREG is not of a register, don't optimize */
      if (GET_CODE (x) != REG)
	{
	  count_reg_references (x);
	  return;
	}

      /* ... fall through ...  */

    case REG:
      if (REGNO (x) >= FIRST_PSEUDO_REGISTER)
	REG_N_REFS (REGNO (x)) += loop_depth;
      return;

    case SET:
      {
	register rtx testreg = SET_DEST (x);
	int mark_dest = 0;

	/* If storing into MEM, don't show it as being used.  But do
	   show the address as being used.  */
	if (GET_CODE (testreg) == MEM)
	  {
	    count_reg_references (XEXP (testreg, 0));
	    count_reg_references (SET_SRC (x));
	    return;
	  }
	    
	/* Storing in STRICT_LOW_PART is like storing in a reg
	   in that this SET might be dead, so ignore it in TESTREG.
	   but in some other ways it is like using the reg.

	   Storing in a SUBREG or a bit field is like storing the entire
	   register in that if the register's value is not used
	   then this SET is not needed.  */
	while (GET_CODE (testreg) == STRICT_LOW_PART
	       || GET_CODE (testreg) == ZERO_EXTRACT
	       || GET_CODE (testreg) == SIGN_EXTRACT
	       || GET_CODE (testreg) == SUBREG)
	  {
	    /* Modifying a single register in an alternate mode
	       does not use any of the old value.  But these other
	       ways of storing in a register do use the old value.  */
	    if (GET_CODE (testreg) == SUBREG
		&& !(REG_SIZE (SUBREG_REG (testreg)) > REG_SIZE (testreg)))
	      ;
	    else
	      mark_dest = 1;

	    testreg = XEXP (testreg, 0);
	  }

	/* If this is a store into a register,
	   recursively scan the value being stored.  */

	if ((GET_CODE (testreg) == PARALLEL
	     && GET_MODE (testreg) == BLKmode)
	    || GET_CODE (testreg) == REG)
	  {
	    count_reg_references (SET_SRC (x));
	    if (mark_dest)
	      count_reg_references (SET_DEST (x));
	    return;
	  }
      }
      break;

    default:
      break;
    }

  /* Recursively scan the operands of this expression.  */

  {
    register char *fmt = GET_RTX_FORMAT (code);
    register int i;
    
    for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
      {
	if (fmt[i] == 'e')
	  {
	    /* Tail recursive case: save a function call level.  */
	    if (i == 0)
	      {
		x = XEXP (x, 0);
		goto retry;
	      }
	    count_reg_references (XEXP (x, i));
	  }
	else if (fmt[i] == 'E')
	  {
	    register int j;
	    for (j = 0; j < XVECLEN (x, i); j++)
	      count_reg_references (XVECEXP (x, i, j));
	  }
      }
  }
}

/* Recompute register set/reference counts immediately prior to register
   allocation.

   This avoids problems with set/reference counts changing to/from values
   which have special meanings to the register allocators.

   Additionally, the reference counts are the primary component used by the
   register allocators to prioritize pseudos for allocation to hard regs.
   More accurate reference counts generally lead to better register allocation.

   It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
   possibly other information which is used by the register allocators.  */

void
recompute_reg_usage (f)
     rtx f;
{
  rtx insn;
  int i, max_reg;

  /* Clear out the old data.  */
  max_reg = max_reg_num ();
  for (i = FIRST_PSEUDO_REGISTER; i < max_reg; i++)
    {
      REG_N_SETS (i) = 0;
      REG_N_REFS (i) = 0;
    }

  /* Scan each insn in the chain and count how many times each register is
     set/used.  */
  loop_depth = 1;
  for (insn = f; insn; insn = NEXT_INSN (insn))
    {
      /* Keep track of loop depth.  */
      if (GET_CODE (insn) == NOTE)
	{
	  /* Look for loop boundaries.  */
	  if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
	    loop_depth--;
	  else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
	    loop_depth++;

	  /* If we have LOOP_DEPTH == 0, there has been a bookkeeping error. 
	     Abort now rather than setting register status incorrectly.  */
	  if (loop_depth == 0)
	    abort ();
	}
      else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
	{
	  rtx links;

	  /* This call will increment REG_N_SETS for each SET or CLOBBER
	     of a register in INSN.  It will also increment REG_N_REFS
	     by the loop depth for each set of a register in INSN.  */
	  count_reg_sets (PATTERN (insn));

	  /* count_reg_sets does not detect autoincrement address modes, so
	     detect them here by looking at the notes attached to INSN.  */
	  for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
	    {
	      if (REG_NOTE_KIND (links) == REG_INC)
		/* Count (weighted) references, stores, etc.  This counts a
		   register twice if it is modified, but that is correct.  */
		REG_N_SETS (REGNO (XEXP (links, 0)))++;
	    }

	  /* This call will increment REG_N_REFS by the current loop depth for
	     each reference to a register in INSN.  */
	  count_reg_references (PATTERN (insn));

	  /* count_reg_references will not include counts for arguments to
	     function calls, so detect them here by examining the
	     CALL_INSN_FUNCTION_USAGE data.  */
	  if (GET_CODE (insn) == CALL_INSN)
	    {
	      rtx note;

	      for (note = CALL_INSN_FUNCTION_USAGE (insn);
		   note;
		   note = XEXP (note, 1))
		if (GET_CODE (XEXP (note, 0)) == USE)
		  count_reg_references (SET_DEST (XEXP (note, 0)));
	    }
	}
    }
}