aboutsummaryrefslogtreecommitdiff
path: root/gcc/testsuite/ada/acats/tests/cxg/cxg2012.a
blob: 6a665d0e077332fa19224bb5269fe92558644180 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
-- CXG2012.A
--
--                             Grant of Unlimited Rights
--
--     Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
--     F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
--     unlimited rights in the software and documentation contained herein.
--     Unlimited rights are defined in DFAR 252.227-7013(a)(19).  By making
--     this public release, the Government intends to confer upon all
--     recipients unlimited rights  equal to those held by the Government.
--     These rights include rights to use, duplicate, release or disclose the
--     released technical data and computer software in whole or in part, in
--     any manner and for any purpose whatsoever, and to have or permit others
--     to do so.
--
--                                    DISCLAIMER
--
--     ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
--     DISCLOSED ARE AS IS.  THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
--     WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
--     SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
--     OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
--     PARTICULAR PURPOSE OF SAID MATERIAL.
--*
--
-- OBJECTIVE:
--      Check that the exponentiation operator returns
--      results that are within the error bound allowed.
--
-- TEST DESCRIPTION:
--      This test consists of a generic package that is
--      instantiated to check both Float and a long float type.
--      The test for each floating point type is divided into
--      several parts:
--         Special value checks where the result is a known constant.
--         Checks that use an identity for determining the result.
--         Exception checks.
--      While this test concentrates on the "**" operator
--      defined in Generic_Elementary_Functions, a check is also
--      performed on the standard "**" operator.
--
-- SPECIAL REQUIREMENTS
--      The Strict Mode for the numerical accuracy must be
--      selected.  The method by which this mode is selected
--      is implementation dependent.
--
-- APPLICABILITY CRITERIA:
--      This test applies only to implementations supporting the
--      Numerics Annex.
--      This test only applies to the Strict Mode for numerical
--      accuracy.
--
--
-- CHANGE HISTORY:
--       7 Mar 96   SAIC    Initial release for 2.1
--       2 Sep 96   SAIC    Improvements as suggested by reviewers
--	 3 Jun 98   EDS     Add parens to ensure that the expression is not
--                          evaluated by multiplying its two large terms
--                          together and overflowing.
--       3 Dec 01   RLB     Added 'Machine to insure that equality tests
--                          are certain to work.
--
--!

--
-- References:
--
-- Software Manual for the Elementary Functions
-- William J. Cody, Jr. and William Waite
-- Prentice-Hall, 1980
--
-- CRC Standard Mathematical Tables
-- 23rd Edition
--
-- Implementation and Testing of Function Software
-- W. J. Cody
-- Problems and Methodologies in Mathematical Software Production
-- editors P. C. Messina and A. Murli
-- Lecture Notes in Computer Science   Volume 142
-- Springer Verlag, 1982
--

with System;
with Report;
with Ada.Numerics.Generic_Elementary_Functions;
procedure CXG2012 is
   Verbose : constant Boolean := False;
   Max_Samples : constant := 1000;

   -- CRC Standard Mathematical Tables;  23rd Edition; pg 738
   Sqrt2 : constant :=
        1.41421_35623_73095_04880_16887_24209_69807_85696_71875_37695;
   Sqrt3 : constant :=
        1.73205_08075_68877_29352_74463_41505_87236_69428_05253_81039;


   generic
      type Real is digits <>;
   package Generic_Check is
      procedure Do_Test;
   end Generic_Check;

   package body Generic_Check is
      package Elementary_Functions is new
           Ada.Numerics.Generic_Elementary_Functions (Real);
      function Sqrt (X : Real) return Real renames
           Elementary_Functions.Sqrt;
      function Exp (X : Real) return Real renames
           Elementary_Functions.Exp;
      function Log (X : Real) return Real renames
           Elementary_Functions.Log;
      function "**" (L, R : Real) return Real renames
           Elementary_Functions."**";

      -- flag used to terminate some tests early
      Accuracy_Error_Reported : Boolean := False;



      procedure Check (Actual, Expected : Real;
                       Test_Name : String;
                       MRE : Real) is
         Max_Error : Real;
         Rel_Error : Real;
         Abs_Error : Real;
      begin
         -- In the case where the expected result is very small or 0
         -- we compute the maximum error as a multiple of Model_Epsilon
         -- instead of Model_Epsilon and Expected.
         Rel_Error := MRE * (abs Expected * Real'Model_Epsilon);
         Abs_Error := MRE * Real'Model_Epsilon;
         if Rel_Error > Abs_Error then
            Max_Error := Rel_Error;
         else
            Max_Error := Abs_Error;
         end if;

         if abs (Actual - Expected) > Max_Error then
            Accuracy_Error_Reported := True;
            Report.Failed (Test_Name &
                           " actual: " & Real'Image (Actual) &
                           " expected: " & Real'Image (Expected) &
                           " difference: " & Real'Image (Actual - Expected) &
                           " max err:" & Real'Image (Max_Error) );
         elsif Verbose then
	    if Actual = Expected then
	       Report.Comment (Test_Name & "  exact result");
	    else
	       Report.Comment (Test_Name & "  passed");
	    end if;
         end if;
      end Check;


      -- the following version of Check computes the allowed error bound
      -- using the operands
      procedure Check (Actual, Expected : Real;
                       Left, Right : Real;
                       Test_Name : String;
                       MRE_Factor : Real := 1.0) is
         MRE : Real;
      begin
         MRE := MRE_Factor * (4.0 + abs (Right * Log(Left)) / 32.0);
         Check (Actual, Expected, Test_Name, MRE);
      end Check;


      procedure Real_To_Integer_Test is
         type Int_Check is
	    record
	       Left : Real;
	       Right : Integer;
	       Expected : Real;
	    end record;
	 type Int_Checks is array (Positive range <>) of Int_Check;

         -- the following tests use only model numbers so the result
         -- is expected to be exact.
	 IC : constant Int_Checks :=
         ( (  2.0,   5,       32.0),
           ( -2.0,   5,      -32.0),
           (  0.5,  -5,       32.0),
           (  2.0,   0,        1.0),
           (  0.0,   0,        1.0) );
      begin
	 for I in IC'Range loop
            declare
	       Y : Real;
            begin
               Y := IC (I).Left ** IC (I).Right;
               Check (Y, IC (I).Expected,
		      "real to integer test" &
		      Real'Image (IC (I).Left) & " ** " &
		      Integer'Image (IC (I).Right),
		      0.0);  -- no error allowed
            exception
               when Constraint_Error =>
                  Report.Failed ("Constraint_Error raised in rtoi test " &
		     Integer'Image (I));
               when others =>
                  Report.Failed ("exception in rtoi test " &
		     Integer'Image (I));
            end;
         end loop;
      end Real_To_Integer_Test;


      procedure Special_Value_Test is
         No_Error : constant := 0.0;
      begin
         Check (0.0 ** 1.0, 0.0, "0**1", No_Error);
         Check (1.0 ** 0.0, 1.0, "1**0", No_Error);

         Check ( 2.0 **  5.0,  32.0,  2.0,  5.0,  "2**5");
         Check ( 0.5**(-5.0),  32.0,  0.5, -5.0,  "0.5**-5");

         Check (Sqrt2 ** 4.0,   4.0,  Sqrt2, 4.0,  "Sqrt2**4");
         Check (Sqrt3 ** 6.0,  27.0,  Sqrt3, 6.0,  "Sqrt3**6");

         Check (2.0 ** 0.5,   Sqrt2,    2.0, 0.5,  "2.0**0.5");

      exception
         when Constraint_Error =>
            Report.Failed ("Constraint_Error raised in Special Value Test");
         when others =>
            Report.Failed ("exception in Special Value Test");
      end Special_Value_Test;


      procedure Small_Range_Test is
      -- Several checks over the range 1/radix .. 1
         A : constant Real := 1.0 / Real (Real'Machine_Radix);
         B : constant Real := 1.0;
         X : Real;
         -- In the cases below where the expected result is
         -- inexact we allow an additional error amount of
         -- 1.0 * Model_Epsilon to account for that error.
         -- This is accomplished by the factor of 1.25 times
         -- the computed error bound (which is > 4.0) thus
         -- increasing the error bound by at least
         -- 1.0 * Model_Epsilon
      begin
         Accuracy_Error_Reported := False;  -- reset
         for I in 0..Max_Samples loop
            X :=  Real'Machine((B - A) * Real (I) / Real (Max_Samples) + A);

            Check (X ** 1.0, X,  -- exact result required
                   "Small range" & Integer'Image (I) & ": " &
                   Real'Image (X) & " ** 1.0",
                   0.0);

            Check ((X*X) ** 1.5, X**3,  X*X, 1.5,
                   "Small range" & Integer'Image (I) & ": " &
                   Real'Image (X*X) & " ** 1.5",
                   1.25);

            Check (X ** 13.5, 1.0 / (X ** (-13.5)),  X, 13.5,
                   "Small range" & Integer'Image (I) & ": " &
                   Real'Image (X) & " ** 13.5",
                   2.0);   -- 2 ** computations

            Check ((X*X) ** 1.25, X**(2.5),  X*X, 1.25,
                   "Small range" & Integer'Image (I) & ": " &
                   Real'Image (X*X) & " ** 1.25",
                   2.0);   -- 2 ** computations

            if Accuracy_Error_Reported then
              -- only report the first error in this test in order to keep
              -- lots of failures from producing a huge error log
              return;
            end if;

         end loop;

      exception
         when Constraint_Error =>
            Report.Failed
               ("Constraint_Error raised in Small Range Test");
         when others =>
            Report.Failed ("exception in Small Range Test");
      end Small_Range_Test;


      procedure Large_Range_Test is
      -- Check over the range A to B where A is 1.0 and
      -- B is a large value.
         A : constant Real := 1.0;
         B : Real;
         X : Real;
         Iteration : Integer := 0;
         Subtest : Character := 'X';
      begin
         -- upper bound of range should be as large as possible where
         -- B**3 is still valid.
         B := Real'Safe_Last ** 0.333;
         Accuracy_Error_Reported := False;  -- reset
         for I in 0..Max_Samples loop
            Iteration := I;
            Subtest := 'X';
            X :=  Real'Machine((B - A) * (Real (I) / Real (Max_Samples)) + A);

            Subtest := 'A';
            Check (X ** 1.0, X,  -- exact result required
                   "Large range" & Integer'Image (I) & ": " &
                   Real'Image (X) & " ** 1.0",
                   0.0);

            Subtest := 'B';
            Check ((X*X) ** 1.5, X**3,  X*X, 1.5,
                   "Large range" & Integer'Image (I) & ": " &
                   Real'Image (X*X) & " ** 1.5",
                   1.25);   -- inexact expected result

            Subtest := 'C';
            Check ((X*X) ** 1.25, X**(2.5),  X*X, 1.25,
                   "Large range" & Integer'Image (I) & ": " &
                   Real'Image (X*X) & " ** 1.25",
                   2.0);   -- two ** operators

            if Accuracy_Error_Reported then
              -- only report the first error in this test in order to keep
              -- lots of failures from producing a huge error log
              return;
            end if;

         end loop;
      exception
         when Constraint_Error =>
            Report.Failed
               ("Constraint_Error raised in Large Range Test" &
                Integer'Image (Iteration) & Subtest);
         when others =>
            Report.Failed ("exception in Large Range Test" &
                Integer'Image (Iteration) & Subtest);
      end Large_Range_Test;


      procedure Exception_Test is
         X1, X2, X3, X4 : Real;
      begin
         begin
            X1 := 0.0 ** (-1.0);
            Report.Failed ("exception not raised for 0**-1");
         exception
            when Ada.Numerics.Argument_Error =>
               Report.Failed ("argument_error raised instead of" &
                              " constraint_error for 0**-1");
            when Constraint_Error => null;   -- ok
            when others =>
               Report.Failed ("wrong exception raised for 0**-1");
         end;

         begin
            X2 := 0.0 ** 0.0;
            Report.Failed ("exception not raised for 0**0");
         exception
            when Ada.Numerics.Argument_Error =>  null;  -- ok
            when Constraint_Error =>
               Report.Failed ("constraint_error raised instead of" &
                              " argument_error for 0**0");
            when others =>
               Report.Failed ("wrong exception raised for 0**0");
         end;

         begin
            X3 := (-1.0) ** 1.0;
            Report.Failed ("exception not raised for -1**1");
         exception
            when Ada.Numerics.Argument_Error =>  null;  -- ok
            when Constraint_Error =>
               Report.Failed ("constraint_error raised instead of" &
                              " argument_error for -1**1");
            when others =>
               Report.Failed ("wrong exception raised for -1**1");
         end;

         begin
            X4 := (-2.0) ** 2.0;
            Report.Failed ("exception not raised for -2**2");
         exception
            when Ada.Numerics.Argument_Error =>  null;  -- ok
            when Constraint_Error =>
               Report.Failed ("constraint_error raised instead of" &
                              " argument_error for -2**2");
            when others =>
               Report.Failed ("wrong exception raised for -2**2");
         end;

         -- optimizer thwarting
         if Report.Ident_Bool (False) then
            Report.Comment (Real'Image (X1+X2+X3+X4));
         end if;
      end Exception_Test;


      procedure Do_Test is
      begin
         Real_To_Integer_Test;
         Special_Value_Test;
         Small_Range_Test;
         Large_Range_Test;
         Exception_Test;
      end Do_Test;
   end Generic_Check;

   -----------------------------------------------------------------------
   -----------------------------------------------------------------------
   package Float_Check is new Generic_Check (Float);

   -- check the floating point type with the most digits
   type A_Long_Float is digits System.Max_Digits;
   package A_Long_Float_Check is new Generic_Check (A_Long_Float);

   -----------------------------------------------------------------------
   -----------------------------------------------------------------------


begin
   Report.Test ("CXG2012",
                "Check the accuracy of the ** operator");

   if Verbose then
      Report.Comment ("checking Standard.Float");
   end if;

   Float_Check.Do_Test;

   if Verbose then
      Report.Comment ("checking a digits" &
                      Integer'Image (System.Max_Digits) &
                      " floating point type");
   end if;

   A_Long_Float_Check.Do_Test;


   Report.Result;
end CXG2012;