aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree-into-ssa.c
blob: d8949de2b2aa8ce7313fcd435a2a84a97f368bab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
/* Rewrite a program in Normal form into SSA.
   Copyright (C) 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
   Contributed by Diego Novillo <dnovillo@redhat.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "flags.h"
#include "rtl.h"
#include "tm_p.h"
#include "langhooks.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "output.h"
#include "errors.h"
#include "expr.h"
#include "function.h"
#include "diagnostic.h"
#include "bitmap.h"
#include "tree-flow.h"
#include "tree-simple.h"
#include "tree-inline.h"
#include "varray.h"
#include "timevar.h"
#include "tree-alias-common.h"
#include "hashtab.h"
#include "tree-dump.h"
#include "tree-pass.h"
#include "cfgloop.h"
#include "domwalk.h"

/* This file builds the SSA form for a function as described in:
   R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
   Computing Static Single Assignment Form and the Control Dependence
   Graph. ACM Transactions on Programming Languages and Systems,
   13(4):451-490, October 1991.  */


/* Structure to map a variable VAR to the set of blocks that contain
   definitions for VAR.  */
struct def_blocks_d
{
  /* The variable.  */
  tree var;

  /* Blocks that contain definitions of VAR.  Bit I will be set if the
     Ith block contains a definition of VAR.  */
  bitmap def_blocks;

  /* Blocks where VAR is live-on-entry.  Similar semantics as
     DEF_BLOCKS.  */
  bitmap livein_blocks;
};

/* Each entry in DEF_BLOCKS contains an element of type STRUCT
   DEF_BLOCKS_D, mapping a variable VAR to a bitmap describing all the
   basic blocks where VAR is defined (assigned a new value).  It also
   contains a bitmap of all the blocks where VAR is live-on-entry
   (i.e., there is a use of VAR in block B without a preceding
   definition in B).  The live-on-entry information is used when
   computing PHI pruning heuristics.  */
static htab_t def_blocks;

/* Global data to attach to the main dominator walk structure.  */
struct mark_def_sites_global_data
{
  /* This sbitmap contains the variables which are set before they
     are used in a basic block.  We keep it as a global variable
     solely to avoid the overhead of allocating and deallocating
     the bitmap.  */
  sbitmap kills;
};

/* Table to store the current reaching definition for every variable in
   the function.  Given a variable V, its entry will be its immediately
   reaching SSA_NAME node.  */
static varray_type currdefs;

struct rewrite_block_data
{
  varray_type block_defs;
};


/* Local functions.  */
static void rewrite_finalize_block (struct dom_walk_data *, basic_block);
static void rewrite_initialize_block_local_data (struct dom_walk_data *,
						 basic_block, bool);
static void rewrite_initialize_block (struct dom_walk_data *, basic_block);
static void rewrite_add_phi_arguments (struct dom_walk_data *, basic_block);
static void mark_def_sites (struct dom_walk_data *walk_data,
			    basic_block bb, block_stmt_iterator);
static void mark_def_sites_initialize_block (struct dom_walk_data *walk_data,
					     basic_block bb);
static void compute_global_livein (bitmap, bitmap);
static void set_def_block (tree, basic_block);
static void set_livein_block (tree, basic_block);
static bool prepare_operand_for_rename (tree *op_p, size_t *uid_p);
static void insert_phi_nodes (bitmap *);
static void rewrite_stmt (struct dom_walk_data *, basic_block,
			  block_stmt_iterator);
static inline void rewrite_operand (tree *);
static void insert_phi_nodes_for (tree, bitmap *);
static tree get_reaching_def (tree);
static tree get_value_for (tree, varray_type);
static void set_value_for (tree, tree, varray_type);
static hashval_t def_blocks_hash (const void *);
static int def_blocks_eq (const void *, const void *);
static void def_blocks_free (void *);
static int debug_def_blocks_r (void **, void *);
static inline struct def_blocks_d *get_def_blocks_for (tree);
static inline struct def_blocks_d *find_def_blocks_for (tree);
static void htab_statistics (FILE *, htab_t);

/* Return the value associated with variable VAR in TABLE.  */

static inline tree
get_value_for (tree var, varray_type table)
{
  return VARRAY_TREE (table, var_ann (var)->uid);
}


/* Associate VALUE to variable VAR in TABLE.  */

static inline void
set_value_for (tree var, tree value, varray_type table)
{
  VARRAY_TREE (table, var_ann (var)->uid) = value;
}


/* Compute global livein information given the set of blockx where
   an object is locally live at the start of the block (LIVEIN)
   and the set of blocks where the object is defined (DEF_BLOCKS).

   Note: This routine augments the existing local livein information
   to include global livein (i.e., it modifies the underlying bitmap
   for LIVEIN).  */

static void
compute_global_livein (bitmap livein, bitmap def_blocks)
{
  basic_block bb, *worklist, *tos;

  tos = worklist
    = (basic_block *) xmalloc (sizeof (basic_block) * (last_basic_block + 1));

  /* Initialize the worklist.  */
  FOR_EACH_BB (bb)
    {
      if (bitmap_bit_p (livein, bb->index))
	*tos++ = bb;
    }

  /* Iterate until the worklist is empty.  */
  while (tos != worklist)
    {
      edge e;

      /* Pull a block off the worklist.  */
      bb = *--tos;

      /* For each predecessor block.  */
      for (e = bb->pred; e; e = e->pred_next)
	{
	  basic_block pred = e->src;
	  int pred_index = pred->index;

	  /* None of this is necessary for the entry block.  */
	  if (pred != ENTRY_BLOCK_PTR
	      && ! bitmap_bit_p (livein, pred_index)
	      && ! bitmap_bit_p (def_blocks, pred_index))
	    {
	      *tos++ = pred;
	      bitmap_set_bit (livein, pred_index);
	    }
	}
    }

  free (worklist);
}


/* Block initialization routine for mark_def_sites.  Clear the 
   KILLS bitmap at the start of each block.  */

static void
mark_def_sites_initialize_block (struct dom_walk_data *walk_data,
				 basic_block bb ATTRIBUTE_UNUSED)
{
  struct mark_def_sites_global_data *gd = walk_data->global_data;
  sbitmap kills = gd->kills;

  sbitmap_zero (kills);
}


/* Call back for walk_dominator_tree used to collect definition sites
   for every variable in the function.  For every statement S in block
   BB:

   1- Variables defined by S in DEF_OPS(S) are marked in the bitmap
      WALK_DATA->GLOBAL_DATA->KILLS.

   2- If S uses a variable VAR and there is no preceding kill of VAR,
      then it is marked in marked in the LIVEIN_BLOCKS bitmap
      associated with VAR.

   This information is used to determine which variables are live
   across block boundaries to reduce the number of PHI nodes
   we create.  */

static void
mark_def_sites (struct dom_walk_data *walk_data,
		basic_block bb,
		block_stmt_iterator bsi)
{
  struct mark_def_sites_global_data *gd = walk_data->global_data;
  sbitmap kills = gd->kills;
  vdef_optype vdefs;
  vuse_optype vuses;
  def_optype defs;
  use_optype uses;
  size_t i, uid;
  tree stmt;
  stmt_ann_t ann;

  /* Mark all the blocks that have definitions for each variable in the
     VARS_TO_RENAME bitmap.  */
  stmt = bsi_stmt (bsi);
  get_stmt_operands (stmt);
  ann = stmt_ann (stmt);

  /* If a variable is used before being set, then the variable is live
     across a block boundary, so mark it live-on-entry to BB.  */
  uses = USE_OPS (ann);
  for (i = 0; i < NUM_USES (uses); i++)
    {
      tree *use_p = USE_OP_PTR (uses, i);

      if (prepare_operand_for_rename (use_p, &uid)
	  && !TEST_BIT (kills, uid))
	set_livein_block (*use_p, bb);
    }
	  
  /* Similarly for virtual uses.  */
  vuses = VUSE_OPS (ann);
  for (i = 0; i < NUM_VUSES (vuses); i++)
    {
      tree *use_p = VUSE_OP_PTR (vuses, i);

      if (prepare_operand_for_rename (use_p, &uid)
	  && !TEST_BIT (kills, uid))
	set_livein_block (*use_p, bb);
    }

  /* Note that virtual definitions are irrelevant for computing KILLS
     because a VDEF does not constitute a killing definition of the
     variable.  However, the operand of a virtual definitions is a use
     of the variable, so it may cause the variable to be considered
     live-on-entry.  */
  vdefs = VDEF_OPS (ann);
  for (i = 0; i < NUM_VDEFS (vdefs); i++)
    {
      size_t dummy;

      if (prepare_operand_for_rename (VDEF_OP_PTR (vdefs, i), &uid)
	  && prepare_operand_for_rename (VDEF_RESULT_PTR (vdefs, i), &dummy))
	{
	  VDEF_RESULT (vdefs, i) = VDEF_OP (vdefs, i);

	  if (!TEST_BIT (kills, uid))
	    set_livein_block (VDEF_OP (vdefs, i), bb);
	  set_def_block (VDEF_RESULT (vdefs, i), bb);
	}
    }

  /* Now process the definition made by this statement.  Mark the
     variables in KILLS.  */
  defs = DEF_OPS (ann);
  for (i = 0; i < NUM_DEFS (defs); i++)
    {
      tree *def_p = DEF_OP_PTR (defs, i);

      if (prepare_operand_for_rename (def_p, &uid))
	{
	  set_def_block (*def_p, bb);
	  SET_BIT (kills, uid);
	}
    }
}


/* Mark block BB as the definition site for variable VAR.  */

static void
set_def_block (tree var, basic_block bb)
{
  struct def_blocks_d *db_p;
  enum need_phi_state state = var_ann (var)->need_phi_state;

  db_p = get_def_blocks_for (var);

  /* Set the bit corresponding to the block where VAR is defined.  */
  bitmap_set_bit (db_p->def_blocks, bb->index);

  /* Keep track of whether or not we may need to insert phi nodes.

     If we are in the UNKNOWN state, then this is the first definition
     of VAR.  Additionally, we have not seen any uses of VAR yet, so
     we do not need a phi node for this variable at this time (i.e.,
     transition to NEED_PHI_STATE_NO).

     If we are in any other state, then we either have multiple definitions
     of this variable occurring in different blocks or we saw a use of the
     variable which was not dominated by the block containing the
     definition(s).  In this case we may need a PHI node, so enter
     state NEED_PHI_STATE_MAYBE.  */
  if (state == NEED_PHI_STATE_UNKNOWN)
    var_ann (var)->need_phi_state = NEED_PHI_STATE_NO;
  else
    var_ann (var)->need_phi_state = NEED_PHI_STATE_MAYBE;
}


/* Mark block BB as having VAR live at the entry to BB.  */

static void
set_livein_block (tree var, basic_block bb)
{
  struct def_blocks_d *db_p;
  enum need_phi_state state = var_ann (var)->need_phi_state;

  db_p = get_def_blocks_for (var);

  /* Set the bit corresponding to the block where VAR is live in.  */
  bitmap_set_bit (db_p->livein_blocks, bb->index);

  /* Keep track of whether or not we may need to insert phi nodes.

     If we reach here in NEED_PHI_STATE_NO, see if this use is dominated
     by the single block containing the definition(s) of this variable.  If
     it is, then we remain in NEED_PHI_STATE_NO, otherwise we transition to
     NEED_PHI_STATE_MAYBE.  */
  if (state == NEED_PHI_STATE_NO)
    {
      int def_block_index = bitmap_first_set_bit (db_p->def_blocks);

      if (def_block_index == -1
	  || ! dominated_by_p (CDI_DOMINATORS, bb,
	                       BASIC_BLOCK (def_block_index)))
	var_ann (var)->need_phi_state = NEED_PHI_STATE_MAYBE;
    }
  else
    var_ann (var)->need_phi_state = NEED_PHI_STATE_MAYBE;
}


/* If the operand pointed by OP_P needs to be renamed, strip away SSA_NAME
   wrappers (if needed) and return true.  The unique ID for the operand's
   variable will be stored in *UID_P.  */

static bool
prepare_operand_for_rename (tree *op_p, size_t *uid_p)
{
  tree var = (TREE_CODE (*op_p) != SSA_NAME) ? *op_p : SSA_NAME_VAR (*op_p);
  *uid_p = var_ann (var)->uid;

  /* Ignore variables that don't need to be renamed.  */
  if (vars_to_rename && !bitmap_bit_p (vars_to_rename, *uid_p))
    return false;

  /* The variable needs to be renamed.  If it already had an
     SSA_NAME, strip it off.  This way, the SSA rename pass
     doesn't need to deal with existing SSA names.  */
  if (TREE_CODE (*op_p) == SSA_NAME)
    {
      if (default_def (SSA_NAME_VAR (*op_p)) != *op_p)
	release_ssa_name (*op_p);
      *op_p = var;
    }

  return true;
}


/* Helper for insert_phi_nodes.  If VAR needs PHI nodes, insert them
   at the dominance frontier (DFS) of blocks defining VAR.  */

static inline
void insert_phi_nodes_1 (tree var, bitmap *dfs)
{
  var_ann_t ann = var_ann (var);
  if (ann->need_phi_state != NEED_PHI_STATE_NO)
    insert_phi_nodes_for (var, dfs);
}


/* Insert PHI nodes at the dominance frontier of blocks with variable
   definitions.  DFS contains the dominance frontier information for
   the flowgraph.  PHI nodes will only be inserted at the dominance
   frontier of definition blocks for variables whose NEED_PHI_STATE
   annotation is marked as ``maybe'' or ``unknown'' (computed by
   mark_def_sites).  */

static void
insert_phi_nodes (bitmap *dfs)
{
  size_t i;

  timevar_push (TV_TREE_INSERT_PHI_NODES);

  /* Iterate over all variables in VARS_TO_RENAME.  For each variable, add
     to the work list all the blocks that have a definition for the
     variable.  PHI nodes will be added to the dominance frontier blocks of
     each definition block.  */
  if (vars_to_rename)
    EXECUTE_IF_SET_IN_BITMAP (vars_to_rename, 0, i,
	insert_phi_nodes_1 (referenced_var (i), dfs));
  else
    for (i = 0; i < num_referenced_vars; i++)
      insert_phi_nodes_1 (referenced_var (i), dfs);

  timevar_pop (TV_TREE_INSERT_PHI_NODES);
}


/* Perform a depth-first traversal of the dominator tree looking for
   variables to rename.  BB is the block where to start searching.
   Renaming is a five step process:

   1- Every definition made by PHI nodes at the start of the blocks is
      registered as the current definition for the corresponding variable.

   2- Every statement in BB is rewritten.  USE and VUSE operands are
      rewritten with their corresponding reaching definition.  DEF and
      VDEF targets are registered as new definitions.
      
   3- All the PHI nodes in successor blocks of BB are visited.  The
      argument corresponding to BB is replaced with its current reaching
      definition.

   4- Recursively rewrite every dominator child block of BB.

   5- Restore (in reverse order) the current reaching definition for every
      new definition introduced in this block.  This is done so that when
      we return from the recursive call, all the current reaching
      definitions are restored to the names that were valid in the
      dominator parent of BB.  */

/* Initialize the local stacks.
     
   BLOCK_DEFS is used to save all the existing reaching definitions for
   the new SSA names introduced in this block.  Before registering a
   new definition for a variable, the existing reaching definition is
   pushed into this stack so that we can restore it in Step 5.  */

static void
rewrite_initialize_block_local_data (struct dom_walk_data *walk_data,
				     basic_block bb ATTRIBUTE_UNUSED,
				     bool recycled)
{
  struct rewrite_block_data *bd
    = (struct rewrite_block_data *)VARRAY_TOP_GENERIC_PTR (walk_data->block_data_stack);
                                                                                
  /* We get cleared memory from the allocator, so if the memory is
     not cleared, then we are re-using a previously allocated entry.  In
     that case, we can also re-use the underlying virtal arrays.  Just
     make sure we clear them before using them!  */
  if (recycled && bd->block_defs)
    VARRAY_CLEAR (bd->block_defs);
}


/* SSA Rewriting Step 1.  Initialization, create a block local stack
   of reaching definitions for new SSA names produced in this block
   (BLOCK_DEFS).  Register new definitions for every PHI node in the
   block.  */

static void
rewrite_initialize_block (struct dom_walk_data *walk_data, basic_block bb)
{
  tree phi;
  struct rewrite_block_data *bd
    = (struct rewrite_block_data *)VARRAY_TOP_GENERIC_PTR (walk_data->block_data_stack);

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "\n\nRenaming block #%d\n\n", bb->index);

  /* Step 1.  Register new definitions for every PHI node in the block.
     Conceptually, all the PHI nodes are executed in parallel and each PHI
     node introduces a new version for the associated variable.  */
  for (phi = phi_nodes (bb); phi; phi = TREE_CHAIN (phi))
    {
      tree result = PHI_RESULT (phi);

      register_new_def (SSA_NAME_VAR (result), result,
			&bd->block_defs, currdefs);
    }
}


/* SSA Rewriting Step 3.  Visit all the successor blocks of BB looking for
   PHI nodes.  For every PHI node found, add a new argument containing the
   current reaching definition for the variable and the edge through which
   that definition is reaching the PHI node.   */

static void
rewrite_add_phi_arguments (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
			   basic_block bb)
{
  edge e;

  for (e = bb->succ; e; e = e->succ_next)
    {
      tree phi;

      for (phi = phi_nodes (e->dest); phi; phi = TREE_CHAIN (phi))
	{
	  tree currdef;

	  /* If this PHI node has already been rewritten, then there is
	     nothing to do for this PHI or any following PHIs since we
	     always add new PHI nodes at the start of the PHI chain.  */
	  if (PHI_REWRITTEN (phi))
	    break;

	  currdef = get_reaching_def (SSA_NAME_VAR (PHI_RESULT (phi)));
	  add_phi_arg (&phi, currdef, e);
	}
    }
}

/* SSA Rewriting Step 5.  Restore the current reaching definition for each
   variable referenced in the block (in reverse order).  */

static void
rewrite_finalize_block (struct dom_walk_data *walk_data,
			basic_block bb ATTRIBUTE_UNUSED)
{
  struct rewrite_block_data *bd
    = (struct rewrite_block_data *)VARRAY_TOP_GENERIC_PTR (walk_data->block_data_stack);

  /* Step 5.  Restore the current reaching definition for each variable
     referenced in the block (in reverse order).  */
  while (bd->block_defs && VARRAY_ACTIVE_SIZE (bd->block_defs) > 0)
    {
      tree var;
      tree saved_def = VARRAY_TOP_TREE (bd->block_defs);
      VARRAY_POP (bd->block_defs);
      
      /* If SAVED_DEF is NULL, then the next slot in the stack contains the
	 variable associated with SAVED_DEF.  */
      if (saved_def == NULL_TREE)
	{
	  var = VARRAY_TOP_TREE (bd->block_defs);
	  VARRAY_POP (bd->block_defs);
	}
      else
	var = SSA_NAME_VAR (saved_def);

      set_value_for (var, saved_def, currdefs);
    }
}


/* Dump SSA information to FILE.  */

void
dump_tree_ssa (FILE *file)
{
  basic_block bb;
  const char *funcname
    = (*lang_hooks.decl_printable_name) (current_function_decl, 2);

  fprintf (file, "SSA information for %s\n\n", funcname);

  FOR_EACH_BB (bb)
    {
      dump_bb (bb, file, 0);
      fputs ("    ", file);
      print_generic_stmt (file, phi_nodes (bb), dump_flags);
      fputs ("\n\n", file);
    }
}


/* Dump SSA information to stderr.  */

void
debug_tree_ssa (void)
{
  dump_tree_ssa (stderr);
}


/* Dump SSA statistics on FILE.  */

void
dump_tree_ssa_stats (FILE *file)
{
  fprintf (file, "\nHash table statistics:\n");

  fprintf (file, "    def_blocks: ");
  htab_statistics (file, def_blocks);

  fprintf (file, "\n");
}


/* Dump SSA statistics on stderr.  */

void
debug_tree_ssa_stats (void)
{
  dump_tree_ssa_stats (stderr);
}


/* Dump statistics for the hash table HTAB.  */

static void
htab_statistics (FILE *file, htab_t htab)
{
  fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
	   (long) htab_size (htab),
	   (long) htab_elements (htab),
	   htab_collisions (htab));
}


/* Insert PHI nodes for variable VAR using the dominance frontier
   information given in DFS.  */

static void
insert_phi_nodes_for (tree var, bitmap *dfs)
{
  struct def_blocks_d *def_map;
  bitmap phi_insertion_points;
  int bb_index;
  varray_type work_stack;

  def_map = find_def_blocks_for (var);
  if (def_map == NULL)
    return;

  /* Array WORK_STACK is a stack of CFG blocks.  Each block that contains
     an assignment or PHI node will be pushed to this stack.  */
  VARRAY_BB_INIT (work_stack, last_basic_block, "work_stack");

  phi_insertion_points = BITMAP_XMALLOC ();

  EXECUTE_IF_SET_IN_BITMAP (def_map->def_blocks, 0, bb_index,
    {
      VARRAY_PUSH_BB (work_stack, BASIC_BLOCK (bb_index));
    });

  /* Pop a block off the worklist, add every block that appears in
     the original block's dfs that we have not already processed to
     the worklist.  Iterate until the worklist is empty.   Blocks
     which are added to the worklist are potential sites for
     PHI nodes. 

     The iteration step could be done during PHI insertion just as
     easily.  We do it here for historical reasons -- we used to have
     a heuristic which used the potential PHI insertion points to
     determine if fully pruned or semi pruned SSA form was appropriate.

     We now always use fully pruned SSA form.  */
  while (VARRAY_ACTIVE_SIZE (work_stack) > 0)
    {
      basic_block bb = VARRAY_TOP_BB (work_stack);
      int bb_index = bb->index;
      int dfs_index;

      VARRAY_POP (work_stack);
      
      EXECUTE_IF_AND_COMPL_IN_BITMAP (dfs[bb_index],
				      phi_insertion_points,
				      0, dfs_index,
	{
	  basic_block bb = BASIC_BLOCK (dfs_index);

	  VARRAY_PUSH_BB (work_stack, bb);
	  bitmap_set_bit (phi_insertion_points, dfs_index);
	});
    }

  /* Now compute global livein for this variable.  Note this modifies
     def_map->livein_blocks.  */
  compute_global_livein (def_map->livein_blocks, def_map->def_blocks);

  /* And insert the PHI nodes.  */
  EXECUTE_IF_AND_IN_BITMAP (phi_insertion_points, def_map->livein_blocks,
			    0, bb_index,
    {
      create_phi_node (var, BASIC_BLOCK (bb_index));
    });

  BITMAP_FREE (phi_insertion_points);
}

/* SSA Rewriting Step 2.  Rewrite every variable used in each statement in
   the block with its immediate reaching definitions.  Update the current
   definition of a variable when a new real or virtual definition is found.  */

static void
rewrite_stmt (struct dom_walk_data *walk_data,
	      basic_block bb ATTRIBUTE_UNUSED,
	      block_stmt_iterator si)
{
  size_t i;
  stmt_ann_t ann;
  tree stmt;
  vuse_optype vuses;
  vdef_optype vdefs;
  def_optype defs;
  use_optype uses;
  struct rewrite_block_data *bd;

  bd = VARRAY_TOP_GENERIC_PTR (walk_data->block_data_stack);

  stmt = bsi_stmt (si);
  ann = stmt_ann (stmt);

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Renaming statement ");
      print_generic_stmt (dump_file, stmt, TDF_SLIM);
      fprintf (dump_file, "\n");
    }

#if defined ENABLE_CHECKING
  /* We have just scanned the code for operands.  No statement should
     be modified.  */
  if (ann->modified)
    abort ();
#endif

  defs = DEF_OPS (ann);
  uses = USE_OPS (ann);
  vuses = VUSE_OPS (ann);
  vdefs = VDEF_OPS (ann);

  /* Step 1.  Rewrite USES and VUSES in the statement.  */
  for (i = 0; i < NUM_USES (uses); i++)
    rewrite_operand (USE_OP_PTR (uses, i));

  /* Rewrite virtual uses in the statement.  */
  for (i = 0; i < NUM_VUSES (vuses); i++)
    rewrite_operand (VUSE_OP_PTR (vuses, i));

  /* Step 2.  Register the statement's DEF and VDEF operands.  */
  for (i = 0; i < NUM_DEFS (defs); i++)
    {
      tree *def_p = DEF_OP_PTR (defs, i);

      if (TREE_CODE (*def_p) != SSA_NAME)
	*def_p = make_ssa_name (*def_p, stmt);

      /* FIXME: We shouldn't be registering new defs if the variable
	 doesn't need to be renamed.  */
      register_new_def (SSA_NAME_VAR (*def_p), *def_p,
			&bd->block_defs, currdefs);
    }

  /* Register new virtual definitions made by the statement.  */
  for (i = 0; i < NUM_VDEFS (vdefs); i++)
    {
      rewrite_operand (VDEF_OP_PTR (vdefs, i));

      if (TREE_CODE (VDEF_RESULT (vdefs, i)) != SSA_NAME)
	*VDEF_RESULT_PTR (vdefs, i)
	  = make_ssa_name (VDEF_RESULT (vdefs, i), stmt);

      /* FIXME: We shouldn't be registering new defs if the variable
	 doesn't need to be renamed.  */
      register_new_def (SSA_NAME_VAR (VDEF_RESULT (vdefs, i)), 
			VDEF_RESULT (vdefs, i), &bd->block_defs, currdefs);
    }
}


/* Replace the operand pointed by OP_P with its immediate reaching
   definition.  */

static inline void
rewrite_operand (tree *op_p)
{
  if (TREE_CODE (*op_p) != SSA_NAME)
    *op_p = get_reaching_def (*op_p);
}


/* Register DEF to be a new definition for variable VAR and push VAR's
   current reaching definition into the stack pointed by BLOCK_DEFS_P.
   IS_REAL_OPERAND is true when DEF is a real definition.  */

void
register_new_def (tree var, tree def,
		  varray_type *block_defs_p, varray_type table)
{
  tree currdef = get_value_for (var, table);

  if (! *block_defs_p)
    VARRAY_TREE_INIT (*block_defs_p, 20, "block_defs");

  /* If the current reaching definition is NULL, push the variable itself
     so that the dominator tree callbacks know what variable is associated
     with this NULL reaching def when unwinding the *BLOCK_DEFS_P stack.  */
  if (currdef == NULL_TREE)
    VARRAY_PUSH_TREE (*block_defs_p, var);

  /* Push the current reaching definition into *BLOCK_DEFS_P.  This stack is
     later used by the dominator tree callbacks to restore the reaching
     definitions for all the variables defined in the block after a recursive
     visit to all its immediately dominated blocks.  */
  VARRAY_PUSH_TREE (*block_defs_p, currdef);

  /* Set the current reaching definition for VAR to be DEF.  */
  set_value_for (var, def, table);
}


/* Return the current definition for variable VAR.  If none is found,
   create a new SSA name to act as the zeroth definition for VAR.  If VAR
   is call clobbered and there exists a more recent definition of
   GLOBAL_VAR, return the definition for GLOBAL_VAR.  This means that VAR
   has been clobbered by a function call since its last assignment.  */

static tree
get_reaching_def (tree var)
{
  tree default_d, currdef_var;
  
  /* Lookup the current reaching definition for VAR.  */
  default_d = NULL_TREE;
  currdef_var = get_value_for (var, currdefs);

  /* If there is no reaching definition for VAR, create and register a
     default definition for it (if needed).  */
  if (currdef_var == NULL_TREE)
    {
      default_d = default_def (var);
      if (default_d == NULL_TREE)
	{
	  default_d = make_ssa_name (var, build_empty_stmt ());
	  set_default_def (var, default_d);
	}
      set_value_for (var, default_d, currdefs);
    }

  /* Return the current reaching definition for VAR, or the default
     definition, if we had to create one.  */
  return (currdef_var) ? currdef_var : default_d;
}


/* Hashing and equality functions for DEF_BLOCKS.  */

static hashval_t
def_blocks_hash (const void *p)
{
  return htab_hash_pointer
	((const void *)((const struct def_blocks_d *)p)->var);
}

static int
def_blocks_eq (const void *p1, const void *p2)
{
  return ((const struct def_blocks_d *)p1)->var
	 == ((const struct def_blocks_d *)p2)->var;
}

/* Free memory allocated by one entry in DEF_BLOCKS.  */

static void
def_blocks_free (void *p)
{
  struct def_blocks_d *entry = p;
  BITMAP_FREE (entry->def_blocks);
  BITMAP_FREE (entry->livein_blocks);
  free (entry);
}


/* Dump the DEF_BLOCKS hash table on stderr.  */

void
debug_def_blocks (void)
{
  htab_traverse (def_blocks, debug_def_blocks_r, NULL);
}

/* Callback for htab_traverse to dump the DEF_BLOCKS hash table.  */

static int
debug_def_blocks_r (void **slot, void *data ATTRIBUTE_UNUSED)
{
  unsigned long i;
  struct def_blocks_d *db_p = (struct def_blocks_d *) *slot;
  
  fprintf (stderr, "VAR: ");
  print_generic_expr (stderr, db_p->var, dump_flags);
  fprintf (stderr, ", DEF_BLOCKS: { ");
  EXECUTE_IF_SET_IN_BITMAP (db_p->def_blocks, 0, i,
			    fprintf (stderr, "%ld ", i));
  fprintf (stderr, "}");
  fprintf (stderr, ", LIVEIN_BLOCKS: { ");
  EXECUTE_IF_SET_IN_BITMAP (db_p->livein_blocks, 0, i,
			    fprintf (stderr, "%ld ", i));
  fprintf (stderr, "}\n");

  return 1;
}


/* Return the set of blocks where variable VAR is defined and the blocks
   where VAR is live on entry (livein).  Return NULL, if no entry is
   found in DEF_BLOCKS.  */

static inline struct def_blocks_d *
find_def_blocks_for (tree var)
{
  struct def_blocks_d dm;
  dm.var = var;
  return (struct def_blocks_d *) htab_find (def_blocks, &dm);
}


/* Return the set of blocks where variable VAR is defined and the blocks
   where VAR is live on entry (livein).  If no entry is found in
   DEF_BLOCKS, a new one is created and returned.  */

static inline struct def_blocks_d *
get_def_blocks_for (tree var)
{
  struct def_blocks_d db, *db_p;
  void **slot;

  db.var = var;
  slot = htab_find_slot (def_blocks, (void *) &db, INSERT);
  if (*slot == NULL)
    {
      db_p = xmalloc (sizeof (*db_p));
      db_p->var = var;
      db_p->def_blocks = BITMAP_XMALLOC ();
      db_p->livein_blocks = BITMAP_XMALLOC ();
      *slot = (void *) db_p;
    }
  else
    db_p = (struct def_blocks_d *) *slot;

  return db_p;
}


/* Main entry point into the SSA builder.  The renaming process
   proceeds in five main phases:

   1- If VARS_TO_RENAME has any entries, any existing PHI nodes for
      those variables are removed from the flow graph so that they can
      be computed again.

   2- Compute dominance frontier and immediate dominators, needed to
      insert PHI nodes and rename the function in dominator tree
      order.

   3- Find and mark all the blocks that define variables
      (mark_def_sites).

   4- Insert PHI nodes at dominance frontiers (insert_phi_nodes).

   5- Rename all the blocks (rewrite_initialize_block,
      rewrite_add_phi_arguments) and statements in the program
      (rewrite_stmt).

   Steps 3 and 5 are done using the dominator tree walker
   (walk_dominator_tree).  */

void
rewrite_into_ssa (void)
{
  bitmap *dfs;
  basic_block bb;
  struct dom_walk_data walk_data;
  struct mark_def_sites_global_data mark_def_sites_global_data;
  
  timevar_push (TV_TREE_SSA_OTHER);

  /* Initialize the array of variables to rename.  */
  if (vars_to_rename != NULL)
    {
      size_t i;
      bool rename_name_tags_p;

      /* If any of the variables in VARS_TO_RENAME is a pointer, we need to
	 invalidate all the name memory tags associated with the variables
	 that we are about to rename.  FIXME: Currently we just invalidate
	 *all* the NMTs.  Make this more selective.  */
      rename_name_tags_p = false;
      EXECUTE_IF_SET_IN_BITMAP (vars_to_rename, 0, i,
	  if (POINTER_TYPE_P (TREE_TYPE (referenced_var (i))))
	    {
	      rename_name_tags_p = true;
	      break;
	    });

      if (rename_name_tags_p)
	for (i = 0; i < num_referenced_vars; i++)
	  {
	    var_ann_t ann = var_ann (referenced_var (i));

	    if (ann->mem_tag_kind == NAME_TAG)
	      bitmap_set_bit (vars_to_rename, ann->uid);
	  }

      /* Now remove all the existing PHI nodes (if any) for the variables
	 that we are about to rename into SSA.  */
      remove_all_phi_nodes_for (vars_to_rename);
    }

  /* Allocate memory for the DEF_BLOCKS hash table.  */
  def_blocks = htab_create (VARRAY_ACTIVE_SIZE (referenced_vars),
			    def_blocks_hash, def_blocks_eq, def_blocks_free);

  VARRAY_TREE_INIT (currdefs, num_referenced_vars, "currdefs");

  /* Initialize dominance frontier and immediate dominator bitmaps. 
     Also count the number of predecessors for each block.  Doing so
     can save significant time during PHI insertion for large graphs.  */
  dfs = (bitmap *) xmalloc (last_basic_block * sizeof (bitmap *));
  FOR_EACH_BB (bb)
    {
      edge e;
      int count = 0;

      for (e = bb->pred; e; e = e->pred_next)
	count++;

      bb_ann (bb)->num_preds = count;
      dfs[bb->index] = BITMAP_XMALLOC ();
    }

  /* Ensure that the dominance information is OK.  */
  calculate_dominance_info (CDI_DOMINATORS);

  /* Compute dominance frontiers.  */
  compute_dominance_frontiers (dfs);

  /* Setup callbacks for the generic dominator tree walker to find and
     mark definition sites.  */
  walk_data.walk_stmts_backward = false;
  walk_data.dom_direction = CDI_DOMINATORS;
  walk_data.initialize_block_local_data = NULL;
  walk_data.before_dom_children_before_stmts = mark_def_sites_initialize_block;
  walk_data.before_dom_children_walk_stmts = mark_def_sites;
  walk_data.before_dom_children_after_stmts = NULL; 
  walk_data.after_dom_children_before_stmts =  NULL;
  walk_data.after_dom_children_walk_stmts =  NULL;
  walk_data.after_dom_children_after_stmts =  NULL;

  /* Notice that this bitmap is indexed using variable UIDs, so it must be
     large enough to accommodate all the variables referenced in the
     function, not just the ones we are renaming.  */
  mark_def_sites_global_data.kills = sbitmap_alloc (num_referenced_vars);
  walk_data.global_data = &mark_def_sites_global_data;

  /* We do not have any local data.  */
  walk_data.block_local_data_size = 0;

  /* Initialize the dominator walker.  */
  init_walk_dominator_tree (&walk_data);

  /* Recursively walk the dominator tree.  */
  walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);

  /* Finalize the dominator walker.  */
  fini_walk_dominator_tree (&walk_data);

  /* We no longer need this bitmap, clear and free it.  */
  sbitmap_free (mark_def_sites_global_data.kills);

  /* Insert PHI nodes at dominance frontiers of definition blocks.  */
  insert_phi_nodes (dfs);

  /* Rewrite all the basic blocks in the program.  */
  timevar_push (TV_TREE_SSA_REWRITE_BLOCKS);

  /* Setup callbacks for the generic dominator tree walker.  */
  walk_data.walk_stmts_backward = false;
  walk_data.dom_direction = CDI_DOMINATORS;
  walk_data.initialize_block_local_data = rewrite_initialize_block_local_data;
  walk_data.before_dom_children_before_stmts = rewrite_initialize_block;
  walk_data.before_dom_children_walk_stmts = rewrite_stmt;
  walk_data.before_dom_children_after_stmts = rewrite_add_phi_arguments; 
  walk_data.after_dom_children_before_stmts =  NULL;
  walk_data.after_dom_children_walk_stmts =  NULL;
  walk_data.after_dom_children_after_stmts =  rewrite_finalize_block;
  walk_data.global_data = NULL;
  walk_data.block_local_data_size = sizeof (struct rewrite_block_data);

  /* Initialize the dominator walker.  */
  init_walk_dominator_tree (&walk_data);

  /* Recursively walk the dominator tree rewriting each statement in
     each basic block.  */
  walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);

  /* Finalize the dominator walker.  */
  fini_walk_dominator_tree (&walk_data);

  timevar_pop (TV_TREE_SSA_REWRITE_BLOCKS);

  /* Debugging dumps.  */
  if (dump_file && (dump_flags & TDF_STATS))
    {
      dump_dfa_stats (dump_file);
      dump_tree_ssa_stats (dump_file);
    }

  /* Free allocated memory.  */
  FOR_EACH_BB (bb)
    BITMAP_XFREE (dfs[bb->index]);
  free (dfs);

  htab_delete (def_blocks);
  VARRAY_CLEAR (currdefs);

  timevar_pop (TV_TREE_SSA_OTHER);
}

struct tree_opt_pass pass_build_ssa = 
{
  "ssa",				/* name */
  NULL,					/* gate */
  rewrite_into_ssa,			/* execute */
  NULL,					/* sub */
  NULL,					/* next */
  0,					/* static_pass_number */
  0,					/* tv_id */
  PROP_cfg | PROP_referenced_vars,	/* properties_required */
  PROP_ssa,				/* properties_provided */
  0,					/* properties_destroyed */
  0,					/* todo_flags_start */
  TODO_dump_func | TODO_verify_ssa	/* todo_flags_finish */
};