aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree-vect-slp.c
blob: fe01a76beea621e4069dda94c00a59dbddec44fc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
/* SLP - Basic Block Vectorization
   Copyright (C) 2007, 2008, 2009 Free Software Foundation, Inc.
   Foundation, Inc.
   Contributed by Dorit Naishlos <dorit@il.ibm.com> 
   and Ira Rosen <irar@il.ibm.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#include "tree.h"
#include "target.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "cfgloop.h"
#include "cfglayout.h"
#include "expr.h"
#include "recog.h"
#include "optabs.h"
#include "tree-vectorizer.h"

/* Recursively free the memory allocated for the SLP tree rooted at NODE.  */

static void
vect_free_slp_tree (slp_tree node)
{
  if (!node)
    return;

  if (SLP_TREE_LEFT (node))
    vect_free_slp_tree (SLP_TREE_LEFT (node));
   
  if (SLP_TREE_RIGHT (node))
    vect_free_slp_tree (SLP_TREE_RIGHT (node));
   
  VEC_free (gimple, heap, SLP_TREE_SCALAR_STMTS (node));
  
  if (SLP_TREE_VEC_STMTS (node))
    VEC_free (gimple, heap, SLP_TREE_VEC_STMTS (node));

  free (node);
}


/* Free the memory allocated for the SLP instance.  */

void
vect_free_slp_instance (slp_instance instance)
{
  vect_free_slp_tree (SLP_INSTANCE_TREE (instance));
  VEC_free (int, heap, SLP_INSTANCE_LOAD_PERMUTATION (instance));
  VEC_free (slp_tree, heap, SLP_INSTANCE_LOADS (instance));
}


/* Get the defs for the rhs of STMT (collect them in DEF_STMTS0/1), check that
   they are of a legal type and that they match the defs of the first stmt of
   the SLP group (stored in FIRST_STMT_...).  */

static bool
vect_get_and_check_slp_defs (loop_vec_info loop_vinfo, slp_tree slp_node,
			     gimple stmt, VEC (gimple, heap) **def_stmts0,
			     VEC (gimple, heap) **def_stmts1,
			     enum vect_def_type *first_stmt_dt0,
			     enum vect_def_type *first_stmt_dt1,
			     tree *first_stmt_def0_type, 
			     tree *first_stmt_def1_type,
			     tree *first_stmt_const_oprnd,
			     int ncopies_for_cost,
                             bool *pattern0, bool *pattern1)
{
  tree oprnd;
  unsigned int i, number_of_oprnds;
  tree def;
  gimple def_stmt;
  enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
  stmt_vec_info stmt_info = 
    vinfo_for_stmt (VEC_index (gimple, SLP_TREE_SCALAR_STMTS (slp_node), 0));
  enum gimple_rhs_class rhs_class;
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);

  rhs_class = get_gimple_rhs_class (gimple_assign_rhs_code (stmt));
  number_of_oprnds = gimple_num_ops (stmt) - 1;	/* RHS only */

  for (i = 0; i < number_of_oprnds; i++)
    {
      oprnd = gimple_op (stmt, i + 1);

      if (!vect_is_simple_use (oprnd, loop_vinfo, &def_stmt, &def, &dt[i])
	  || (!def_stmt && dt[i] != vect_constant_def))
	{
	  if (vect_print_dump_info (REPORT_SLP)) 
	    {
	      fprintf (vect_dump, "Build SLP failed: can't find def for ");
	      print_generic_expr (vect_dump, oprnd, TDF_SLIM);
	    }

	  return false;
	}

      /* Check if DEF_STMT is a part of a pattern and get the def stmt from
         the pattern. Check that all the stmts of the node are in the
         pattern.  */
      if (def_stmt && gimple_bb (def_stmt)
          && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
          && vinfo_for_stmt (def_stmt)
          && STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (def_stmt)))
        {
          if (!*first_stmt_dt0)
            *pattern0 = true;
          else
            {
              if (i == 1 && !*first_stmt_dt1)
                *pattern1 = true;
              else if ((i == 0 && !*pattern0) || (i == 1 && !*pattern1))
                {
                  if (vect_print_dump_info (REPORT_DETAILS))
                    {
                      fprintf (vect_dump, "Build SLP failed: some of the stmts"
                                     " are in a pattern, and others are not ");
                      print_generic_expr (vect_dump, oprnd, TDF_SLIM);
                    }

                  return false;
                }
            }

          def_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (def_stmt));
          dt[i] = STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt));

          if (*dt == vect_unknown_def_type)
            {
              if (vect_print_dump_info (REPORT_DETAILS))
                fprintf (vect_dump, "Unsupported pattern.");
              return false;
            }

          switch (gimple_code (def_stmt))
            {
              case GIMPLE_PHI:
                def = gimple_phi_result (def_stmt);
                break;

              case GIMPLE_ASSIGN:
                def = gimple_assign_lhs (def_stmt);
                break;

              default:
                if (vect_print_dump_info (REPORT_DETAILS))
                  fprintf (vect_dump, "unsupported defining stmt: ");
                return false;
            }
        }

      if (!*first_stmt_dt0)
	{
	  /* op0 of the first stmt of the group - store its info.  */
	  *first_stmt_dt0 = dt[i];
	  if (def)
	    *first_stmt_def0_type = TREE_TYPE (def);
	  else
	    *first_stmt_const_oprnd = oprnd;

	  /* Analyze costs (for the first stmt of the group only).  */
	  if (rhs_class != GIMPLE_SINGLE_RHS)
	    /* Not memory operation (we don't call this functions for loads).  */
	    vect_model_simple_cost (stmt_info, ncopies_for_cost, dt, slp_node);
	  else
	    /* Store.  */
	    vect_model_store_cost (stmt_info, ncopies_for_cost, dt[0], slp_node);
	}
      
      else
	{
	  if (!*first_stmt_dt1 && i == 1)
	    {
	      /* op1 of the first stmt of the group - store its info.  */
	      *first_stmt_dt1 = dt[i];
	      if (def)
		*first_stmt_def1_type = TREE_TYPE (def);
	      else
		{
		  /* We assume that the stmt contains only one constant 
		     operand. We fail otherwise, to be on the safe side.  */
		  if (*first_stmt_const_oprnd)
		    {
		      if (vect_print_dump_info (REPORT_SLP)) 
			fprintf (vect_dump, "Build SLP failed: two constant "
				 "oprnds in stmt");		    
		      return false;
		    }
		  *first_stmt_const_oprnd = oprnd;
		}
	    }
	  else
	    {
	      /* Not first stmt of the group, check that the def-stmt/s match 
		 the def-stmt/s of the first stmt.  */
	      if ((i == 0 
		   && (*first_stmt_dt0 != dt[i]
		       || (*first_stmt_def0_type && def
			   && *first_stmt_def0_type != TREE_TYPE (def))))
		  || (i == 1 
		      && (*first_stmt_dt1 != dt[i]
			  || (*first_stmt_def1_type && def
			      && *first_stmt_def1_type != TREE_TYPE (def))))		  
		  || (!def 
		      && TREE_TYPE (*first_stmt_const_oprnd) 
		      != TREE_TYPE (oprnd)))
		{ 
		  if (vect_print_dump_info (REPORT_SLP)) 
		    fprintf (vect_dump, "Build SLP failed: different types ");
		  
		  return false;
		}
	    }
	}

      /* Check the types of the definitions.  */
      switch (dt[i])
	{
	case vect_constant_def:
	case vect_invariant_def:
	  break;
	  
	case vect_loop_def:
	  if (i == 0)
	    VEC_safe_push (gimple, heap, *def_stmts0, def_stmt);
	  else
	    VEC_safe_push (gimple, heap, *def_stmts1, def_stmt);
	  break;

	default:
	  /* FORNOW: Not supported.  */
	  if (vect_print_dump_info (REPORT_SLP)) 
	    {
	      fprintf (vect_dump, "Build SLP failed: illegal type of def ");
	      print_generic_expr (vect_dump, def, TDF_SLIM);
	    }

	  return false;
	}
    }

  return true;
}


/* Recursively build an SLP tree starting from NODE.
   Fail (and return FALSE) if def-stmts are not isomorphic, require data 
   permutation or are of unsupported types of operation. Otherwise, return 
   TRUE.  */

static bool
vect_build_slp_tree (loop_vec_info loop_vinfo, slp_tree *node, 
		     unsigned int group_size, 
		     int *inside_cost, int *outside_cost,
		     int ncopies_for_cost, unsigned int *max_nunits,
                     VEC (int, heap) **load_permutation,
                     VEC (slp_tree, heap) **loads)
{
  VEC (gimple, heap) *def_stmts0 = VEC_alloc (gimple, heap, group_size);
  VEC (gimple, heap) *def_stmts1 =  VEC_alloc (gimple, heap, group_size);
  unsigned int i;
  VEC (gimple, heap) *stmts = SLP_TREE_SCALAR_STMTS (*node);
  gimple stmt = VEC_index (gimple, stmts, 0);
  enum vect_def_type first_stmt_dt0 = 0, first_stmt_dt1 = 0;
  enum tree_code first_stmt_code = 0, rhs_code;
  tree first_stmt_def1_type = NULL_TREE, first_stmt_def0_type = NULL_TREE;
  tree lhs;
  bool stop_recursion = false, need_same_oprnds = false;
  tree vectype, scalar_type, first_op1 = NULL_TREE;
  unsigned int vectorization_factor = 0, ncopies;
  optab optab;
  int icode;
  enum machine_mode optab_op2_mode;
  enum machine_mode vec_mode;
  tree first_stmt_const_oprnd = NULL_TREE;
  struct data_reference *first_dr;
  bool pattern0 = false, pattern1 = false;
  HOST_WIDE_INT dummy;
  bool permutation = false;
  unsigned int load_place;
  gimple first_load;

  /* For every stmt in NODE find its def stmt/s.  */
  for (i = 0; VEC_iterate (gimple, stmts, i, stmt); i++)
    {
      if (vect_print_dump_info (REPORT_SLP)) 
	{
	  fprintf (vect_dump, "Build SLP for ");
	  print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
	}

      lhs = gimple_get_lhs (stmt);
      if (lhs == NULL_TREE)
	{
	  if (vect_print_dump_info (REPORT_SLP)) 
	    {
	      fprintf (vect_dump,
		       "Build SLP failed: not GIMPLE_ASSIGN nor GIMPLE_CALL");
	      print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
	    }
	  
	  return false;
	}

      scalar_type = vect_get_smallest_scalar_type (stmt, &dummy, &dummy); 
      vectype = get_vectype_for_scalar_type (scalar_type);
      if (!vectype)
        {
          if (vect_print_dump_info (REPORT_SLP))
            {
              fprintf (vect_dump, "Build SLP failed: unsupported data-type ");
              print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
            }
          return false;
        }

      gcc_assert (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
      vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
      ncopies = vectorization_factor / TYPE_VECTOR_SUBPARTS (vectype);
      if (ncopies > 1 && vect_print_dump_info (REPORT_SLP))
        fprintf (vect_dump, "SLP with multiple types ");

      /* In case of multiple types we need to detect the smallest type.  */
      if (*max_nunits < TYPE_VECTOR_SUBPARTS (vectype))
        *max_nunits = TYPE_VECTOR_SUBPARTS (vectype);
	  
      if (is_gimple_call (stmt))
	rhs_code = CALL_EXPR;
      else
	rhs_code = gimple_assign_rhs_code (stmt);

      /* Check the operation.  */
      if (i == 0)
	{
	  first_stmt_code = rhs_code;

	  /* Shift arguments should be equal in all the packed stmts for a 
	     vector shift with scalar shift operand.  */
	  if (rhs_code == LSHIFT_EXPR || rhs_code == RSHIFT_EXPR
	      || rhs_code == LROTATE_EXPR
	      || rhs_code == RROTATE_EXPR)
	    {
	      vec_mode = TYPE_MODE (vectype);

	      /* First see if we have a vector/vector shift.  */
	      optab = optab_for_tree_code (rhs_code, vectype,
					   optab_vector);

	      if (!optab
		  || (optab->handlers[(int) vec_mode].insn_code
		      == CODE_FOR_nothing))
		{
		  /* No vector/vector shift, try for a vector/scalar shift.  */
		  optab = optab_for_tree_code (rhs_code, vectype,
					       optab_scalar);

		  if (!optab)
		    {
		      if (vect_print_dump_info (REPORT_SLP))
			fprintf (vect_dump, "Build SLP failed: no optab.");
		      return false;
		    }
		  icode = (int) optab->handlers[(int) vec_mode].insn_code;
		  if (icode == CODE_FOR_nothing)
		    {
		      if (vect_print_dump_info (REPORT_SLP))
			fprintf (vect_dump, "Build SLP failed: "
				            "op not supported by target.");
		      return false;
		    }
		  optab_op2_mode = insn_data[icode].operand[2].mode;
		  if (!VECTOR_MODE_P (optab_op2_mode))
		    {
		      need_same_oprnds = true;
		      first_op1 = gimple_assign_rhs2 (stmt);
		    }
		}
	    }
	}
      else
	{
	  if (first_stmt_code != rhs_code
	      && (first_stmt_code != IMAGPART_EXPR
		  || rhs_code != REALPART_EXPR)
	      && (first_stmt_code != REALPART_EXPR
		  || rhs_code != IMAGPART_EXPR))
	    {
	      if (vect_print_dump_info (REPORT_SLP)) 
		{
		  fprintf (vect_dump, 
			   "Build SLP failed: different operation in stmt ");
		  print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
		}
	      
	      return false;
	    }
	  
	  if (need_same_oprnds 
	      && !operand_equal_p (first_op1, gimple_assign_rhs2 (stmt), 0))
	    {
	      if (vect_print_dump_info (REPORT_SLP)) 
		{
		  fprintf (vect_dump, 
			   "Build SLP failed: different shift arguments in ");
		  print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
		}
	      
	      return false;
	    }
	}

      /* Strided store or load.  */
      if (STMT_VINFO_STRIDED_ACCESS (vinfo_for_stmt (stmt)))
	{
	  if (REFERENCE_CLASS_P (lhs))
	    {
	      /* Store.  */
	      if (!vect_get_and_check_slp_defs (loop_vinfo, *node, stmt,
						&def_stmts0, &def_stmts1, 
						&first_stmt_dt0, 
						&first_stmt_dt1, 
						&first_stmt_def0_type, 
						&first_stmt_def1_type,
						&first_stmt_const_oprnd,
						ncopies_for_cost,
                                                &pattern0, &pattern1))
		return false;
	    }
	    else
	      {
		/* Load.  */
                /* FORNOW: Check that there is no gap between the loads.  */
                if ((DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt)) == stmt
                     && DR_GROUP_GAP (vinfo_for_stmt (stmt)) != 0)
                    || (DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt)) != stmt
                        && DR_GROUP_GAP (vinfo_for_stmt (stmt)) != 1))
                  {
                    if (vect_print_dump_info (REPORT_SLP))
                      {
                        fprintf (vect_dump, "Build SLP failed: strided "
                                            "loads have gaps ");
                        print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
                      }
 
                    return false;
                  }
 
                first_load = DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt));
 
              if (first_load == stmt)
                {
                  first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt));
                  if (vect_supportable_dr_alignment (first_dr)
                      == dr_unaligned_unsupported)
                    {
                      if (vect_print_dump_info (REPORT_SLP))
                        {
                          fprintf (vect_dump, "Build SLP failed: unsupported "
                                              "unaligned load ");
                          print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
                        }
  
                      return false;
                    }
 
                  /* Analyze costs (for the first stmt in the group).  */
                  vect_model_load_cost (vinfo_for_stmt (stmt),
                                        ncopies_for_cost, *node);
                }
  
              /* Store the place of this load in the interleaving chain. In
                 case that permutation is needed we later decide if a specific
                 permutation is supported.  */
              load_place = vect_get_place_in_interleaving_chain (stmt,
                                                                 first_load);
              if (load_place != i)
                permutation = true;
 
              VEC_safe_push (int, heap, *load_permutation, load_place);
 
              /* We stop the tree when we reach a group of loads.  */
              stop_recursion = true;
             continue;
           }
        } /* Strided access.  */
      else
	{
	  if (TREE_CODE_CLASS (rhs_code) == tcc_reference)
	    {
	      /* Not strided load. */
	      if (vect_print_dump_info (REPORT_SLP)) 
		{
		  fprintf (vect_dump, "Build SLP failed: not strided load ");
		  print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
		}

	      /* FORNOW: Not strided loads are not supported.  */
	      return false;
	    }

	  /* Not memory operation.  */
	  if (TREE_CODE_CLASS (rhs_code) != tcc_binary
	      && TREE_CODE_CLASS (rhs_code) != tcc_unary)
	    {
	      if (vect_print_dump_info (REPORT_SLP)) 
		{
		  fprintf (vect_dump, "Build SLP failed: operation");
		  fprintf (vect_dump, " unsupported ");
		  print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
		}

	      return false;
	    }

	  /* Find the def-stmts.  */ 
	  if (!vect_get_and_check_slp_defs (loop_vinfo, *node, stmt,
					    &def_stmts0, &def_stmts1,
					    &first_stmt_dt0, &first_stmt_dt1, 
					    &first_stmt_def0_type, 
					    &first_stmt_def1_type,
					    &first_stmt_const_oprnd,
					    ncopies_for_cost,
                                            &pattern0, &pattern1))
	    return false;
	}
    }

  /* Add the costs of the node to the overall instance costs.  */
  *inside_cost += SLP_TREE_INSIDE_OF_LOOP_COST (*node); 
  *outside_cost += SLP_TREE_OUTSIDE_OF_LOOP_COST (*node);

  /* Strided loads were reached - stop the recursion.  */
  if (stop_recursion)
    {
      if (permutation)
        {
          VEC_safe_push (slp_tree, heap, *loads, *node); 
          *inside_cost += TARG_VEC_PERMUTE_COST * group_size;  
        }

      return true;
    }

  /* Create SLP_TREE nodes for the definition node/s.  */ 
  if (first_stmt_dt0 == vect_loop_def)
    {
      slp_tree left_node = XNEW (struct _slp_tree);
      SLP_TREE_SCALAR_STMTS (left_node) = def_stmts0;
      SLP_TREE_VEC_STMTS (left_node) = NULL;
      SLP_TREE_LEFT (left_node) = NULL;
      SLP_TREE_RIGHT (left_node) = NULL;
      SLP_TREE_OUTSIDE_OF_LOOP_COST (left_node) = 0;
      SLP_TREE_INSIDE_OF_LOOP_COST (left_node) = 0;
      if (!vect_build_slp_tree (loop_vinfo, &left_node, group_size, 
				inside_cost, outside_cost, ncopies_for_cost, 
				max_nunits, load_permutation, loads))
	return false;
      
      SLP_TREE_LEFT (*node) = left_node;
    }

  if (first_stmt_dt1 == vect_loop_def)
    {
      slp_tree right_node = XNEW (struct _slp_tree);
      SLP_TREE_SCALAR_STMTS (right_node) = def_stmts1;
      SLP_TREE_VEC_STMTS (right_node) = NULL;
      SLP_TREE_LEFT (right_node) = NULL;
      SLP_TREE_RIGHT (right_node) = NULL;
      SLP_TREE_OUTSIDE_OF_LOOP_COST (right_node) = 0;
      SLP_TREE_INSIDE_OF_LOOP_COST (right_node) = 0;
      if (!vect_build_slp_tree (loop_vinfo, &right_node, group_size,
				inside_cost, outside_cost, ncopies_for_cost,
				max_nunits, load_permutation, loads))
	return false;
      
      SLP_TREE_RIGHT (*node) = right_node;
    }

  return true;
}


static void
vect_print_slp_tree (slp_tree node)
{
  int i;
  gimple stmt;

  if (!node)
    return;

  fprintf (vect_dump, "node ");
  for (i = 0; VEC_iterate (gimple, SLP_TREE_SCALAR_STMTS (node), i, stmt); i++)
    {
      fprintf (vect_dump, "\n\tstmt %d ", i);
      print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);  
    }
  fprintf (vect_dump, "\n");

  vect_print_slp_tree (SLP_TREE_LEFT (node));
  vect_print_slp_tree (SLP_TREE_RIGHT (node));
}


/* Mark the tree rooted at NODE with MARK (PURE_SLP or HYBRID). 
   If MARK is HYBRID, it refers to a specific stmt in NODE (the stmt at index 
   J). Otherwise, MARK is PURE_SLP and J is -1, which indicates that all the 
   stmts in NODE are to be marked.  */

static void
vect_mark_slp_stmts (slp_tree node, enum slp_vect_type mark, int j)
{
  int i;
  gimple stmt;

  if (!node)
    return;

  for (i = 0; VEC_iterate (gimple, SLP_TREE_SCALAR_STMTS (node), i, stmt); i++)
    if (j < 0 || i == j)
      STMT_SLP_TYPE (vinfo_for_stmt (stmt)) = mark;

  vect_mark_slp_stmts (SLP_TREE_LEFT (node), mark, j);
  vect_mark_slp_stmts (SLP_TREE_RIGHT (node), mark, j);
}


/* Check if the permutation required by the SLP INSTANCE is supported.  
   Reorganize the SLP nodes stored in SLP_INSTANCE_LOADS if needed.  */

static bool
vect_supported_slp_permutation_p (slp_instance instance)
{
  slp_tree node = VEC_index (slp_tree, SLP_INSTANCE_LOADS (instance), 0);
  gimple stmt = VEC_index (gimple, SLP_TREE_SCALAR_STMTS (node), 0);
  gimple first_load = DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt));
  VEC (slp_tree, heap) *sorted_loads = NULL;
  int index;
  slp_tree *tmp_loads = NULL;
  int group_size = SLP_INSTANCE_GROUP_SIZE (instance), i, j; 
  slp_tree load;
 
  /* FORNOW: The only supported loads permutation is loads from the same 
     location in all the loads in the node, when the data-refs in
     nodes of LOADS constitute an interleaving chain.  
     Sort the nodes according to the order of accesses in the chain.  */
  tmp_loads = (slp_tree *) xmalloc (sizeof (slp_tree) * group_size);
  for (i = 0, j = 0; 
       VEC_iterate (int, SLP_INSTANCE_LOAD_PERMUTATION (instance), i, index) 
       && VEC_iterate (slp_tree, SLP_INSTANCE_LOADS (instance), j, load); 
       i += group_size, j++)
    {
      gimple scalar_stmt = VEC_index (gimple, SLP_TREE_SCALAR_STMTS (load), 0);
      /* Check that the loads are all in the same interleaving chain.  */
      if (DR_GROUP_FIRST_DR (vinfo_for_stmt (scalar_stmt)) != first_load)
        {
          if (vect_print_dump_info (REPORT_DETAILS))
            {
              fprintf (vect_dump, "Build SLP failed: unsupported data "
                                   "permutation ");
              print_gimple_stmt (vect_dump, scalar_stmt, 0, TDF_SLIM);
            }
             
          free (tmp_loads);
          return false; 
        }

      tmp_loads[index] = load;
    }
  
  sorted_loads = VEC_alloc (slp_tree, heap, group_size);
  for (i = 0; i < group_size; i++)
     VEC_safe_push (slp_tree, heap, sorted_loads, tmp_loads[i]);

  VEC_free (slp_tree, heap, SLP_INSTANCE_LOADS (instance));
  SLP_INSTANCE_LOADS (instance) = sorted_loads;
  free (tmp_loads);

  if (!vect_transform_slp_perm_load (stmt, NULL, NULL,
                                     SLP_INSTANCE_UNROLLING_FACTOR (instance),
                                     instance, true))
    return false;

  return true;
}


/* Check if the required load permutation is supported.
   LOAD_PERMUTATION contains a list of indices of the loads.
   In SLP this permutation is relative to the order of strided stores that are
   the base of the SLP instance.  */

static bool
vect_supported_load_permutation_p (slp_instance slp_instn, int group_size,
                                   VEC (int, heap) *load_permutation)
{
  int i = 0, j, prev = -1, next, k;
  bool supported;

  /* FORNOW: permutations are only supported for loop-aware SLP.  */
  if (!slp_instn)
    return false;

  if (vect_print_dump_info (REPORT_SLP))
    {
      fprintf (vect_dump, "Load permutation ");
      for (i = 0; VEC_iterate (int, load_permutation, i, next); i++)
        fprintf (vect_dump, "%d ", next);
    }

  /* FORNOW: the only supported permutation is 0..01..1.. of length equal to 
     GROUP_SIZE and where each sequence of same drs is of GROUP_SIZE length as 
     well.  */
  if (VEC_length (int, load_permutation)
      != (unsigned int) (group_size * group_size))
    return false;

  supported = true;
  for (j = 0; j < group_size; j++)
    {
      for (i = j * group_size, k = 0;
           VEC_iterate (int, load_permutation, i, next) && k < group_size;
           i++, k++)
       {
         if (i != j * group_size && next != prev)
          {
            supported = false;
            break;
          }

         prev = next;
       }  
    }

  if (supported && i == group_size * group_size
      && vect_supported_slp_permutation_p (slp_instn))
    return true;

  return false; 
}


/* Find the first load in the loop that belongs to INSTANCE. 
   When loads are in several SLP nodes, there can be a case in which the first
   load does not appear in the first SLP node to be transformed, causing 
   incorrect order of statements. Since we generate all the loads together,
   they must be inserted before the first load of the SLP instance and not
   before the first load of the first node of the instance.  */
static gimple 
vect_find_first_load_in_slp_instance (slp_instance instance) 
{
  int i, j;
  slp_tree load_node;
  gimple first_load = NULL, load;

  for (i = 0; 
       VEC_iterate (slp_tree, SLP_INSTANCE_LOADS (instance), i, load_node); 
       i++)
    for (j = 0; 
         VEC_iterate (gimple, SLP_TREE_SCALAR_STMTS (load_node), j, load);
         j++)
      first_load = get_earlier_stmt (load, first_load);
  
  return first_load;
}


/* Analyze an SLP instance starting from a group of strided stores. Call
   vect_build_slp_tree to build a tree of packed stmts if possible.  
   Return FALSE if it's impossible to SLP any stmt in the loop.  */

static bool
vect_analyze_slp_instance (loop_vec_info loop_vinfo, gimple stmt)
{
  slp_instance new_instance;
  slp_tree node = XNEW (struct _slp_tree);
  unsigned int group_size = DR_GROUP_SIZE (vinfo_for_stmt (stmt));
  unsigned int unrolling_factor = 1, nunits;
  tree vectype, scalar_type;
  gimple next;
  unsigned int vectorization_factor = 0, ncopies;
  bool slp_impossible = false; 
  int inside_cost = 0, outside_cost = 0, ncopies_for_cost;
  unsigned int max_nunits = 0;
  VEC (int, heap) *load_permutation;
  VEC (slp_tree, heap) *loads;
 
  scalar_type = TREE_TYPE (DR_REF (STMT_VINFO_DATA_REF (
                                             vinfo_for_stmt (stmt))));
  vectype = get_vectype_for_scalar_type (scalar_type);
  if (!vectype)
    {
      if (vect_print_dump_info (REPORT_SLP))
        {
          fprintf (vect_dump, "Build SLP failed: unsupported data-type ");
          print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
        }
      return false;
    }

  nunits = TYPE_VECTOR_SUBPARTS (vectype);
  vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
  ncopies = vectorization_factor / nunits;

  /* Create a node (a root of the SLP tree) for the packed strided stores.  */ 
  SLP_TREE_SCALAR_STMTS (node) = VEC_alloc (gimple, heap, group_size);
  next = stmt;
  /* Collect the stores and store them in SLP_TREE_SCALAR_STMTS.  */
  while (next)
    {
      VEC_safe_push (gimple, heap, SLP_TREE_SCALAR_STMTS (node), next);
      next = DR_GROUP_NEXT_DR (vinfo_for_stmt (next));
    }

  SLP_TREE_VEC_STMTS (node) = NULL;
  SLP_TREE_NUMBER_OF_VEC_STMTS (node) = 0;
  SLP_TREE_LEFT (node) = NULL;
  SLP_TREE_RIGHT (node) = NULL;
  SLP_TREE_OUTSIDE_OF_LOOP_COST (node) = 0;
  SLP_TREE_INSIDE_OF_LOOP_COST (node) = 0;

  /* Calculate the unrolling factor.  */
  unrolling_factor = least_common_multiple (nunits, group_size) / group_size;
	
  /* Calculate the number of vector stmts to create based on the unrolling
     factor (number of vectors is 1 if NUNITS >= GROUP_SIZE, and is
     GROUP_SIZE / NUNITS otherwise.  */
  ncopies_for_cost = unrolling_factor * group_size / nunits;
  
  load_permutation = VEC_alloc (int, heap, group_size * group_size); 
  loads = VEC_alloc (slp_tree, heap, group_size); 

  /* Build the tree for the SLP instance.  */
  if (vect_build_slp_tree (loop_vinfo, &node, group_size, &inside_cost,  
			   &outside_cost, ncopies_for_cost, &max_nunits,
                           &load_permutation, &loads))
    {
      /* Create a new SLP instance.  */  
      new_instance = XNEW (struct _slp_instance);
      SLP_INSTANCE_TREE (new_instance) = node;
      SLP_INSTANCE_GROUP_SIZE (new_instance) = group_size;
      /* Calculate the unrolling factor based on the smallest type in the
         loop.  */
      if (max_nunits > nunits)
        unrolling_factor = least_common_multiple (max_nunits, group_size)
                           / group_size;

      SLP_INSTANCE_UNROLLING_FACTOR (new_instance) = unrolling_factor;
      SLP_INSTANCE_OUTSIDE_OF_LOOP_COST (new_instance) = outside_cost;
      SLP_INSTANCE_INSIDE_OF_LOOP_COST (new_instance) = inside_cost;
      SLP_INSTANCE_LOADS (new_instance) = loads;
      SLP_INSTANCE_FIRST_LOAD_STMT (new_instance) = NULL;
      SLP_INSTANCE_LOAD_PERMUTATION (new_instance) = load_permutation;
      if (VEC_length (slp_tree, loads))
        {
          if (!vect_supported_load_permutation_p (new_instance, group_size,
                                                  load_permutation)) 
            {
              if (vect_print_dump_info (REPORT_SLP))
                {
                  fprintf (vect_dump, "Build SLP failed: unsupported load "
                                      "permutation ");
                  print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
                }

              vect_free_slp_instance (new_instance);
              return false;
            }

          SLP_INSTANCE_FIRST_LOAD_STMT (new_instance)
             = vect_find_first_load_in_slp_instance (new_instance);
        }
      else
        VEC_free (int, heap, SLP_INSTANCE_LOAD_PERMUTATION (new_instance));

      VEC_safe_push (slp_instance, heap, LOOP_VINFO_SLP_INSTANCES (loop_vinfo), 
		     new_instance);
      if (vect_print_dump_info (REPORT_SLP))
	vect_print_slp_tree (node);

      return true;
    }

  /* Failed to SLP.  */
  /* Free the allocated memory.  */
  vect_free_slp_tree (node);
  VEC_free (int, heap, load_permutation);
  VEC_free (slp_tree, heap, loads);
   
  if (slp_impossible)
    return false;

  /* SLP failed for this instance, but it is still possible to SLP other stmts 
     in the loop.  */
  return true;
}


/* Check if there are stmts in the loop can be vectorized using SLP. Build SLP
   trees of packed scalar stmts if SLP is possible.  */

bool
vect_analyze_slp (loop_vec_info loop_vinfo)
{
  unsigned int i;
  VEC (gimple, heap) *strided_stores = LOOP_VINFO_STRIDED_STORES (loop_vinfo);
  gimple store;

  if (vect_print_dump_info (REPORT_SLP))
    fprintf (vect_dump, "=== vect_analyze_slp ===");

  for (i = 0; VEC_iterate (gimple, strided_stores, i, store); i++)
    if (!vect_analyze_slp_instance (loop_vinfo, store))
      {
	/* SLP failed. No instance can be SLPed in the loop.  */
	if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))	
	  fprintf (vect_dump, "SLP failed.");

	return false;
      }

  return true;
}


/* For each possible SLP instance decide whether to SLP it and calculate overall
   unrolling factor needed to SLP the loop.  */

void
vect_make_slp_decision (loop_vec_info loop_vinfo)
{
  unsigned int i, unrolling_factor = 1;
  VEC (slp_instance, heap) *slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
  slp_instance instance;
  int decided_to_slp = 0;

  if (vect_print_dump_info (REPORT_SLP))
    fprintf (vect_dump, "=== vect_make_slp_decision ===");

  for (i = 0; VEC_iterate (slp_instance, slp_instances, i, instance); i++)
    {
      /* FORNOW: SLP if you can.  */
      if (unrolling_factor < SLP_INSTANCE_UNROLLING_FACTOR (instance))
	unrolling_factor = SLP_INSTANCE_UNROLLING_FACTOR (instance);

      /* Mark all the stmts that belong to INSTANCE as PURE_SLP stmts. Later we 
	 call vect_detect_hybrid_slp () to find stmts that need hybrid SLP and 
	 loop-based vectorization. Such stmts will be marked as HYBRID.  */
      vect_mark_slp_stmts (SLP_INSTANCE_TREE (instance), pure_slp, -1);
      decided_to_slp++;
    }

  LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo) = unrolling_factor;

  if (decided_to_slp && vect_print_dump_info (REPORT_SLP)) 
    fprintf (vect_dump, "Decided to SLP %d instances. Unrolling factor %d", 
	     decided_to_slp, unrolling_factor);
}


/* Find stmts that must be both vectorized and SLPed (since they feed stmts that
   can't be SLPed) in the tree rooted at NODE. Mark such stmts as HYBRID.  */

static void
vect_detect_hybrid_slp_stmts (slp_tree node)
{
  int i;
  gimple stmt;
  imm_use_iterator imm_iter;
  gimple use_stmt;

  if (!node)
    return;

  for (i = 0; VEC_iterate (gimple, SLP_TREE_SCALAR_STMTS (node), i, stmt); i++)
    if (PURE_SLP_STMT (vinfo_for_stmt (stmt))
	&& TREE_CODE (gimple_op (stmt, 0)) == SSA_NAME)
      FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, gimple_op (stmt, 0))
	if (vinfo_for_stmt (use_stmt)
	    && !STMT_SLP_TYPE (vinfo_for_stmt (use_stmt))
            && STMT_VINFO_RELEVANT (vinfo_for_stmt (use_stmt)))
	  vect_mark_slp_stmts (node, hybrid, i);

  vect_detect_hybrid_slp_stmts (SLP_TREE_LEFT (node));
  vect_detect_hybrid_slp_stmts (SLP_TREE_RIGHT (node));
}


/* Find stmts that must be both vectorized and SLPed.  */

void
vect_detect_hybrid_slp (loop_vec_info loop_vinfo)
{
  unsigned int i;
  VEC (slp_instance, heap) *slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
  slp_instance instance;

  if (vect_print_dump_info (REPORT_SLP))
    fprintf (vect_dump, "=== vect_detect_hybrid_slp ===");

  for (i = 0; VEC_iterate (slp_instance, slp_instances, i, instance); i++)
    vect_detect_hybrid_slp_stmts (SLP_INSTANCE_TREE (instance));
}

/* SLP costs are calculated according to SLP instance unrolling factor (i.e., 
   the number of created vector stmts depends on the unrolling factor). However,
   the actual number of vector stmts for every SLP node depends on VF which is
   set later in vect_analyze_operations(). Hence, SLP costs should be updated.
   In this function we assume that the inside costs calculated in 
   vect_model_xxx_cost are linear in ncopies.  */

void
vect_update_slp_costs_according_to_vf (loop_vec_info loop_vinfo)
{
  unsigned int i, vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
  VEC (slp_instance, heap) *slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
  slp_instance instance;

  if (vect_print_dump_info (REPORT_SLP))
    fprintf (vect_dump, "=== vect_update_slp_costs_according_to_vf ===");

  for (i = 0; VEC_iterate (slp_instance, slp_instances, i, instance); i++)
    /* We assume that costs are linear in ncopies.  */
    SLP_INSTANCE_INSIDE_OF_LOOP_COST (instance) *= vf 
      / SLP_INSTANCE_UNROLLING_FACTOR (instance);	  
}

/* For constant and loop invariant defs of SLP_NODE this function returns 
   (vector) defs (VEC_OPRNDS) that will be used in the vectorized stmts.  
   OP_NUM determines if we gather defs for operand 0 or operand 1 of the scalar
   stmts. NUMBER_OF_VECTORS is the number of vector defs to create.  */

static void
vect_get_constant_vectors (slp_tree slp_node, VEC(tree,heap) **vec_oprnds,
			   unsigned int op_num, unsigned int number_of_vectors)
{
  VEC (gimple, heap) *stmts = SLP_TREE_SCALAR_STMTS (slp_node);
  gimple stmt = VEC_index (gimple, stmts, 0);
  stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
  tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
  int nunits;
  tree vec_cst;
  tree t = NULL_TREE;
  int j, number_of_places_left_in_vector;
  tree vector_type;
  tree op, vop;
  int group_size = VEC_length (gimple, stmts);
  unsigned int vec_num, i;
  int number_of_copies = 1;
  VEC (tree, heap) *voprnds = VEC_alloc (tree, heap, number_of_vectors);
  bool constant_p, is_store;

  if (STMT_VINFO_DATA_REF (stmt_vinfo))
    {
      is_store = true;
      op = gimple_assign_rhs1 (stmt);
    }
  else
    {
      is_store = false;
      op = gimple_op (stmt, op_num + 1);
    }

  if (CONSTANT_CLASS_P (op))
    {
      vector_type = vectype;
      constant_p = true;
    }
  else
    {
      vector_type = get_vectype_for_scalar_type (TREE_TYPE (op)); 
      gcc_assert (vector_type);
      constant_p = false;
    }

  nunits = TYPE_VECTOR_SUBPARTS (vector_type);

  /* NUMBER_OF_COPIES is the number of times we need to use the same values in
     created vectors. It is greater than 1 if unrolling is performed. 

     For example, we have two scalar operands, s1 and s2 (e.g., group of
     strided accesses of size two), while NUNITS is four (i.e., four scalars
     of this type can be packed in a vector). The output vector will contain
     two copies of each scalar operand: {s1, s2, s1, s2}. (NUMBER_OF_COPIES
     will be 2).

     If GROUP_SIZE > NUNITS, the scalars will be split into several vectors 
     containing the operands.

     For example, NUNITS is four as before, and the group size is 8
     (s1, s2, ..., s8). We will create two vectors {s1, s2, s3, s4} and
     {s5, s6, s7, s8}.  */
    
  number_of_copies = least_common_multiple (nunits, group_size) / group_size;

  number_of_places_left_in_vector = nunits;
  for (j = 0; j < number_of_copies; j++)
    {
      for (i = group_size - 1; VEC_iterate (gimple, stmts, i, stmt); i--)
        {
          if (is_store)
            op = gimple_assign_rhs1 (stmt);
          else
            op = gimple_op (stmt, op_num + 1);
    
          /* Create 'vect_ = {op0,op1,...,opn}'.  */
          t = tree_cons (NULL_TREE, op, t);

          number_of_places_left_in_vector--;

          if (number_of_places_left_in_vector == 0)
            {
              number_of_places_left_in_vector = nunits;

	      if (constant_p)
		vec_cst = build_vector (vector_type, t);
	      else
		vec_cst = build_constructor_from_list (vector_type, t);
              VEC_quick_push (tree, voprnds,
                              vect_init_vector (stmt, vec_cst, vector_type, NULL));
              t = NULL_TREE;
            }
        }
    }

  /* Since the vectors are created in the reverse order, we should invert 
     them.  */
  vec_num = VEC_length (tree, voprnds);
  for (j = vec_num - 1; j >= 0; j--)
    {
      vop = VEC_index (tree, voprnds, j);
      VEC_quick_push (tree, *vec_oprnds, vop);
    }

  VEC_free (tree, heap, voprnds);

  /* In case that VF is greater than the unrolling factor needed for the SLP
     group of stmts, NUMBER_OF_VECTORS to be created is greater than 
     NUMBER_OF_SCALARS/NUNITS or NUNITS/NUMBER_OF_SCALARS, and hence we have 
     to replicate the vectors.  */
  while (number_of_vectors > VEC_length (tree, *vec_oprnds))
    {
      for (i = 0; VEC_iterate (tree, *vec_oprnds, i, vop) && i < vec_num; i++)
        VEC_quick_push (tree, *vec_oprnds, vop);
    }
}


/* Get vectorized definitions from SLP_NODE that contains corresponding
   vectorized def-stmts.  */

static void
vect_get_slp_vect_defs (slp_tree slp_node, VEC (tree,heap) **vec_oprnds)
{
  tree vec_oprnd;
  gimple vec_def_stmt;
  unsigned int i;

  gcc_assert (SLP_TREE_VEC_STMTS (slp_node));

  for (i = 0;
       VEC_iterate (gimple, SLP_TREE_VEC_STMTS (slp_node), i, vec_def_stmt);
       i++)
    {
      gcc_assert (vec_def_stmt);
      vec_oprnd = gimple_get_lhs (vec_def_stmt);
      VEC_quick_push (tree, *vec_oprnds, vec_oprnd);
    }
}


/* Get vectorized definitions for SLP_NODE. 
   If the scalar definitions are loop invariants or constants, collect them and 
   call vect_get_constant_vectors() to create vector stmts.
   Otherwise, the def-stmts must be already vectorized and the vectorized stmts
   must be stored in the LEFT/RIGHT node of SLP_NODE, and we call
   vect_get_slp_vect_defs() to retrieve them.  
   If VEC_OPRNDS1 is NULL, don't get vector defs for the second operand (from
   the right node. This is used when the second operand must remain scalar.  */ 
 
void
vect_get_slp_defs (slp_tree slp_node, VEC (tree,heap) **vec_oprnds0,
                   VEC (tree,heap) **vec_oprnds1)
{
  gimple first_stmt;
  enum tree_code code;
  int number_of_vects;
  HOST_WIDE_INT lhs_size_unit, rhs_size_unit; 

  first_stmt = VEC_index (gimple, SLP_TREE_SCALAR_STMTS (slp_node), 0);
  /* The number of vector defs is determined by the number of vector statements
     in the node from which we get those statements.  */
  if (SLP_TREE_LEFT (slp_node)) 
    number_of_vects = SLP_TREE_NUMBER_OF_VEC_STMTS (SLP_TREE_LEFT (slp_node));
  else
    {
      number_of_vects = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
      /* Number of vector stmts was calculated according to LHS in
         vect_schedule_slp_instance(), fix it by replacing LHS with RHS, if
         necessary. See vect_get_smallest_scalar_type() for details.  */
      vect_get_smallest_scalar_type (first_stmt, &lhs_size_unit,
                                     &rhs_size_unit);
      if (rhs_size_unit != lhs_size_unit)
        {
          number_of_vects *= rhs_size_unit;
          number_of_vects /= lhs_size_unit;
        }
    }

  /* Allocate memory for vectorized defs.  */
  *vec_oprnds0 = VEC_alloc (tree, heap, number_of_vects);

  /* SLP_NODE corresponds either to a group of stores or to a group of
     unary/binary operations. We don't call this function for loads.  */
  if (SLP_TREE_LEFT (slp_node))
    /* The defs are already vectorized.  */
    vect_get_slp_vect_defs (SLP_TREE_LEFT (slp_node), vec_oprnds0);
  else
    /* Build vectors from scalar defs.  */
    vect_get_constant_vectors (slp_node, vec_oprnds0, 0, number_of_vects);

  if (STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt)))
    /* Since we don't call this function with loads, this is a group of
       stores.  */
    return;

  code = gimple_assign_rhs_code (first_stmt);
  if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS || !vec_oprnds1)
    return;

  /* The number of vector defs is determined by the number of vector statements
     in the node from which we get those statements.  */
  if (SLP_TREE_RIGHT (slp_node))
    number_of_vects = SLP_TREE_NUMBER_OF_VEC_STMTS (SLP_TREE_RIGHT (slp_node));
  else
    number_of_vects = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);

  *vec_oprnds1 = VEC_alloc (tree, heap, number_of_vects);

  if (SLP_TREE_RIGHT (slp_node))
    /* The defs are already vectorized.  */
    vect_get_slp_vect_defs (SLP_TREE_RIGHT (slp_node), vec_oprnds1);
  else
    /* Build vectors from scalar defs.  */
    vect_get_constant_vectors (slp_node, vec_oprnds1, 1, number_of_vects);
}

/* Create NCOPIES permutation statements using the mask MASK_BYTES (by 
   building a vector of type MASK_TYPE from it) and two input vectors placed in
   DR_CHAIN at FIRST_VEC_INDX and SECOND_VEC_INDX for the first copy and
   shifting by STRIDE elements of DR_CHAIN for every copy.
   (STRIDE is the number of vectorized stmts for NODE divided by the number of
   copies).  
   VECT_STMTS_COUNTER specifies the index in the vectorized stmts of NODE, where
   the created stmts must be inserted.  */

static inline void
vect_create_mask_and_perm (gimple stmt, gimple next_scalar_stmt, 
                           int *mask_array, int mask_nunits, 
                           tree mask_element_type, tree mask_type,
                           int first_vec_indx, int second_vec_indx, 
                           gimple_stmt_iterator *gsi, slp_tree node, 
                           tree builtin_decl, tree vectype, 
                           VEC(tree,heap) *dr_chain,
                           int ncopies, int vect_stmts_counter)
{
  tree t = NULL_TREE, mask_vec, mask, perm_dest;
  gimple perm_stmt = NULL;
  stmt_vec_info next_stmt_info;
  int i, group_size, stride, dr_chain_size;
  tree first_vec, second_vec, data_ref;
  tree sym;
  ssa_op_iter iter;
  VEC (tree, heap) *params = NULL;

  /* Create a vector mask.  */
  for (i = mask_nunits - 1; i >= 0; --i)
    t = tree_cons (NULL_TREE, build_int_cst (mask_element_type, mask_array[i]),
                   t);
  mask_vec = build_vector (mask_type, t);
  mask = vect_init_vector (stmt, mask_vec, mask_type, NULL);

  group_size = VEC_length (gimple, SLP_TREE_SCALAR_STMTS (node));
  stride = SLP_TREE_NUMBER_OF_VEC_STMTS (node) / ncopies;
  dr_chain_size = VEC_length (tree, dr_chain); 

  /* Initialize the vect stmts of NODE to properly insert the generated 
     stmts later.  */
  for (i = VEC_length (gimple, SLP_TREE_VEC_STMTS (node)); 
       i < (int) SLP_TREE_NUMBER_OF_VEC_STMTS (node); i++)
    VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (node), NULL);

  perm_dest = vect_create_destination_var (gimple_assign_lhs (stmt), vectype);
  for (i = 0; i < ncopies; i++)
    {
      first_vec = VEC_index (tree, dr_chain, first_vec_indx);
      second_vec = VEC_index (tree, dr_chain, second_vec_indx);

      /* Build argument list for the vectorized call.  */
      VEC_free (tree, heap, params);
      params = VEC_alloc (tree, heap, 3);
      VEC_quick_push (tree, params, first_vec);
      VEC_quick_push (tree, params, second_vec);
      VEC_quick_push (tree, params, mask);

      /* Generate the permute statement.  */
      perm_stmt = gimple_build_call_vec (builtin_decl, params);
      data_ref = make_ssa_name (perm_dest, perm_stmt);
      gimple_call_set_lhs (perm_stmt, data_ref);
      vect_finish_stmt_generation (stmt, perm_stmt, gsi);
      FOR_EACH_SSA_TREE_OPERAND (sym, perm_stmt, iter, SSA_OP_ALL_VIRTUALS)
        {
          if (TREE_CODE (sym) == SSA_NAME)
            sym = SSA_NAME_VAR (sym);
          mark_sym_for_renaming (sym);
        }

      /* Store the vector statement in NODE.  */ 
      VEC_replace (gimple, SLP_TREE_VEC_STMTS (node), 
                   stride * i + vect_stmts_counter, perm_stmt);

      first_vec_indx += stride;
      second_vec_indx += stride;
    }

  /* Mark the scalar stmt as vectorized.  */
  next_stmt_info = vinfo_for_stmt (next_scalar_stmt);
  STMT_VINFO_VEC_STMT (next_stmt_info) = perm_stmt;
}


/* Given FIRST_MASK_ELEMENT - the mask element in element representation, 
   return in CURRENT_MASK_ELEMENT its equivalent in target specific
   representation. Check that the mask is valid and return FALSE if not. 
   Return TRUE in NEED_NEXT_VECTOR if the permutation requires to move to
   the next vector, i.e., the current first vector is not needed.  */
   
static bool
vect_get_mask_element (gimple stmt, int first_mask_element, int m, 
                       int mask_nunits, bool only_one_vec, int index,
                       int *mask, int *current_mask_element, 
                       bool *need_next_vector)
{
  int i;
  static int number_of_mask_fixes = 1;
  static bool mask_fixed = false;
  static bool needs_first_vector = false;

  /* Convert to target specific representation.  */
  *current_mask_element = first_mask_element + m;
  /* Adjust the value in case it's a mask for second and third vectors.  */
  *current_mask_element -= mask_nunits * (number_of_mask_fixes - 1);

  if (*current_mask_element < mask_nunits)
    needs_first_vector = true;

  /* We have only one input vector to permute but the mask accesses values in
     the next vector as well.  */
  if (only_one_vec && *current_mask_element >= mask_nunits)
    {
      if (vect_print_dump_info (REPORT_DETAILS))
        {
          fprintf (vect_dump, "permutation requires at least two vectors ");
          print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
        }

      return false;
    }

  /* The mask requires the next vector.  */
  if (*current_mask_element >= mask_nunits * 2)
    {
      if (needs_first_vector || mask_fixed)
        {
          /* We either need the first vector too or have already moved to the
             next vector. In both cases, this permutation needs three   
             vectors.  */
          if (vect_print_dump_info (REPORT_DETAILS))
            {
              fprintf (vect_dump, "permutation requires at "
                                  "least three vectors ");
              print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
            }

          return false;
        }

      /* We move to the next vector, dropping the first one and working with
         the second and the third - we need to adjust the values of the mask
         accordingly.  */
      *current_mask_element -= mask_nunits * number_of_mask_fixes;

      for (i = 0; i < index; i++)
        mask[i] -= mask_nunits * number_of_mask_fixes;

      (number_of_mask_fixes)++;
      mask_fixed = true;
    }

  *need_next_vector = mask_fixed;

  /* This was the last element of this mask. Start a new one.  */
  if (index == mask_nunits - 1)
    {
      number_of_mask_fixes = 1;
      mask_fixed = false;
      needs_first_vector = false;
    }

  return true;
}


/* Generate vector permute statements from a list of loads in DR_CHAIN.
   If ANALYZE_ONLY is TRUE, only check that it is possible to create valid
   permute statements for SLP_NODE_INSTANCE.  */
bool
vect_transform_slp_perm_load (gimple stmt, VEC (tree, heap) *dr_chain,
                              gimple_stmt_iterator *gsi, int vf,
                              slp_instance slp_node_instance, bool analyze_only)
{
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  tree mask_element_type = NULL_TREE, mask_type;
  int i, j, k, m, scale, mask_nunits, nunits, vec_index = 0, scalar_index;
  slp_tree node;
  tree vectype = STMT_VINFO_VECTYPE (stmt_info), builtin_decl;
  gimple next_scalar_stmt;
  int group_size = SLP_INSTANCE_GROUP_SIZE (slp_node_instance);
  int first_mask_element;
  int index, unroll_factor, *mask, current_mask_element, ncopies;
  bool only_one_vec = false, need_next_vector = false;
  int first_vec_index, second_vec_index, orig_vec_stmts_num, vect_stmts_counter;

  if (!targetm.vectorize.builtin_vec_perm)
    {
      if (vect_print_dump_info (REPORT_DETAILS))
        {
          fprintf (vect_dump, "no builtin for vect permute for ");
          print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
        }

       return false;
    }

  builtin_decl = targetm.vectorize.builtin_vec_perm (vectype,
                                                     &mask_element_type);
  if (!builtin_decl || !mask_element_type)
    {
      if (vect_print_dump_info (REPORT_DETAILS))
        {
          fprintf (vect_dump, "no builtin for vect permute for ");
          print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
        }

       return false;
    }

  mask_type = get_vectype_for_scalar_type (mask_element_type);
  mask_nunits = TYPE_VECTOR_SUBPARTS (mask_type);
  mask = (int *) xmalloc (sizeof (int) * mask_nunits);
  nunits = TYPE_VECTOR_SUBPARTS (vectype);
  scale = mask_nunits / nunits;
  unroll_factor = SLP_INSTANCE_UNROLLING_FACTOR (slp_node_instance);

  /* The number of vector stmts to generate based only on SLP_NODE_INSTANCE
     unrolling factor.  */
  orig_vec_stmts_num = group_size * 
                SLP_INSTANCE_UNROLLING_FACTOR (slp_node_instance) / nunits;
  if (orig_vec_stmts_num == 1)
    only_one_vec = true;

  /* Number of copies is determined by the final vectorization factor 
     relatively to SLP_NODE_INSTANCE unrolling factor.  */
  ncopies = vf / SLP_INSTANCE_UNROLLING_FACTOR (slp_node_instance); 

  /* Generate permutation masks for every NODE. Number of masks for each NODE 
     is equal to GROUP_SIZE.  
     E.g., we have a group of three nodes with three loads from the same 
     location in each node, and the vector size is 4. I.e., we have a 
     a0b0c0a1b1c1... sequence and we need to create the following vectors: 
     for a's: a0a0a0a1 a1a1a2a2 a2a3a3a3
     for b's: b0b0b0b1 b1b1b2b2 b2b3b3b3
     ...

     The masks for a's should be: {0,0,0,3} {3,3,6,6} {6,9,9,9} (in target
     scpecific type, e.g., in bytes for Altivec.
     The last mask is illegal since we assume two operands for permute 
     operation, and the mask element values can't be outside that range. Hence,
     the last mask must be converted into {2,5,5,5}.
     For the first two permutations we need the first and the second input 
     vectors: {a0,b0,c0,a1} and {b1,c1,a2,b2}, and for the last permutation
     we need the second and the third vectors: {b1,c1,a2,b2} and 
     {c2,a3,b3,c3}.  */

  for (i = 0;
       VEC_iterate (slp_tree, SLP_INSTANCE_LOADS (slp_node_instance),
                    i, node);
       i++)
    {
      scalar_index = 0;
      index = 0;
      vect_stmts_counter = 0;
      vec_index = 0;
      first_vec_index = vec_index++;
      if (only_one_vec)
        second_vec_index = first_vec_index;
      else
        second_vec_index =  vec_index++;

      for (j = 0; j < unroll_factor; j++)
        {
          for (k = 0; k < group_size; k++)
            {
              first_mask_element = (i + j * group_size) * scale;
              for (m = 0; m < scale; m++)
                {
                  if (!vect_get_mask_element (stmt, first_mask_element, m, 
                                   mask_nunits, only_one_vec, index, mask,
                                   &current_mask_element, &need_next_vector))
                    return false;

                  mask[index++] = current_mask_element;
                } 

              if (index == mask_nunits)
                {
                  index = 0;
                  if (!analyze_only)
                    {
                      if (need_next_vector)
                        {
                          first_vec_index = second_vec_index;
                          second_vec_index = vec_index;
                        }

                      next_scalar_stmt = VEC_index (gimple,
                                SLP_TREE_SCALAR_STMTS (node), scalar_index++);

                      vect_create_mask_and_perm (stmt, next_scalar_stmt,
                               mask, mask_nunits, mask_element_type, mask_type, 
                               first_vec_index, second_vec_index, gsi, node, 
                               builtin_decl, vectype, dr_chain, ncopies, 
                               vect_stmts_counter++);
                    }
                } 
            } 
        } 
    } 

  free (mask);
  return true;
}



/* Vectorize SLP instance tree in postorder.  */

static bool
vect_schedule_slp_instance (slp_tree node, slp_instance instance,
                            unsigned int vectorization_factor) 
{
  gimple stmt;
  bool strided_store, is_store;
  gimple_stmt_iterator si;
  stmt_vec_info stmt_info;
  unsigned int vec_stmts_size, nunits, group_size;
  tree vectype;
  int i;
  slp_tree loads_node;

  if (!node)
    return false;

  vect_schedule_slp_instance (SLP_TREE_LEFT (node), instance,
                              vectorization_factor);
  vect_schedule_slp_instance (SLP_TREE_RIGHT (node), instance,
                              vectorization_factor);
  
  stmt = VEC_index (gimple, SLP_TREE_SCALAR_STMTS (node), 0);
  stmt_info = vinfo_for_stmt (stmt);

  /* VECTYPE is the type of the destination.  */
  vectype = get_vectype_for_scalar_type (TREE_TYPE (gimple_assign_lhs (stmt)));
  nunits = (unsigned int) TYPE_VECTOR_SUBPARTS (vectype);
  group_size = SLP_INSTANCE_GROUP_SIZE (instance);

  /* For each SLP instance calculate number of vector stmts to be created
     for the scalar stmts in each node of the SLP tree. Number of vector
     elements in one vector iteration is the number of scalar elements in
     one scalar iteration (GROUP_SIZE) multiplied by VF divided by vector
     size.  */
  vec_stmts_size = (vectorization_factor * group_size) / nunits;

  /* In case of load permutation we have to allocate vectorized statements for
     all the nodes that participate in that permutation.  */
  if (SLP_INSTANCE_LOAD_PERMUTATION (instance))
    {
      for (i = 0;
           VEC_iterate (slp_tree, SLP_INSTANCE_LOADS (instance), i, loads_node);
           i++)
        {
          if (!SLP_TREE_VEC_STMTS (loads_node))
            {
              SLP_TREE_VEC_STMTS (loads_node) = VEC_alloc (gimple, heap,
                                                           vec_stmts_size);
              SLP_TREE_NUMBER_OF_VEC_STMTS (loads_node) = vec_stmts_size;
            }
        }
    }

  if (!SLP_TREE_VEC_STMTS (node))
    {
      SLP_TREE_VEC_STMTS (node) = VEC_alloc (gimple, heap, vec_stmts_size);
      SLP_TREE_NUMBER_OF_VEC_STMTS (node) = vec_stmts_size;
    }

  if (vect_print_dump_info (REPORT_DETAILS))
    {
      fprintf (vect_dump, "------>vectorizing SLP node starting from: ");
      print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
    }	

  /* Loads should be inserted before the first load.  */
  if (SLP_INSTANCE_FIRST_LOAD_STMT (instance)
      && STMT_VINFO_STRIDED_ACCESS (stmt_info)
      && !REFERENCE_CLASS_P (gimple_get_lhs (stmt)))
    si = gsi_for_stmt (SLP_INSTANCE_FIRST_LOAD_STMT (instance));
  else
    si = gsi_for_stmt (stmt);

  is_store = vect_transform_stmt (stmt, &si, &strided_store, node, instance);
  if (is_store)
    {
      if (DR_GROUP_FIRST_DR (stmt_info))
	/* If IS_STORE is TRUE, the vectorization of the
	   interleaving chain was completed - free all the stores in
	   the chain.  */
	vect_remove_stores (DR_GROUP_FIRST_DR (stmt_info));
      else
	/* FORNOW: SLP originates only from strided stores.  */
	gcc_unreachable ();

      return true;
    }

  /* FORNOW: SLP originates only from strided stores.  */
  return false;
}


bool
vect_schedule_slp (loop_vec_info loop_vinfo)
{
  VEC (slp_instance, heap) *slp_instances = 
    LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
  slp_instance instance;
  unsigned int i;
  bool is_store = false;

  for (i = 0; VEC_iterate (slp_instance, slp_instances, i, instance); i++)
    {
      /* Schedule the tree of INSTANCE.  */
      is_store = vect_schedule_slp_instance (SLP_INSTANCE_TREE (instance),
                            instance, LOOP_VINFO_VECT_FACTOR (loop_vinfo));
			  
      if (vect_print_dump_info (REPORT_VECTORIZED_LOOPS)
	  || vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
	fprintf (vect_dump, "vectorizing stmts using SLP.");
    }

  return is_store;
}