aboutsummaryrefslogtreecommitdiff
path: root/libcilkrts/include/cilk/holder.h
blob: 8620c052f53e7940bd59f49a36e991c52d3a1f79 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
 *  @copyright
 *  Copyright (C) 2011-2013, Intel Corporation
 *  All rights reserved.
 *  
 *  @copyright
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *  
 *    * Redistributions of source code must retain the above copyright
 *      notice, this list of conditions and the following disclaimer.
 *    * Redistributions in binary form must reproduce the above copyright
 *      notice, this list of conditions and the following disclaimer in
 *      the documentation and/or other materials provided with the
 *      distribution.
 *    * Neither the name of Intel Corporation nor the names of its
 *      contributors may be used to endorse or promote products derived
 *      from this software without specific prior written permission.
 *  
 *  @copyright
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 *  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 *  HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 *  AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
 *  WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *  POSSIBILITY OF SUCH DAMAGE.
 *
 */

/*
 * holder.h
 *
 * Purpose: hyperobject to provide different views of an object to each
 * parallel strand.
 */

#ifndef HOLDER_H_INCLUDED
#define HOLDER_H_INCLUDED

#include <cilk/reducer.h>
#include <memory>
#include <utility>

#ifdef __cplusplus

/* C++ Interface
 *
 * Classes: holder<Type>
 *
 * Description:
 * ============
 * This component provides a hyperobject that isolates a parallel uses of a
 * common variable where it is not necessary to preserve changes from
 * different parallel strands.  In effect, a holder acts a bit like
 * thread-local storage, but has qualities that work better with the
 * fork-join structure of Cilk.  In particular, a holder has the following
 * qualities:
 *
 * - The view of a holder before the first spawn within a function is the same
 *   as the view after each sync (as in the case of a reducer).
 * - The view of a holder within the first spawned child of a function (or the
 *   first child spawned after a sync) is the same as the view on entry to the
 *   function.
 * - The view of a holder before entering a _Cilk_for loop is the same as the
 *   view during the first iteration of the loop and the view at the end of
 *   the loop.
 * - The view of a holder in the continuation of a spawn or in an arbitrary
 *   iteration of a _Cilk_for loop is *non-deterministic*.  It is generally
 *   recommended that the holder be explicitly put into a known state in these
 *   situations.
 *
 * A holder can be used as an alternative to parameter-passing.  They are most
 * useful for replacing non-local variables without massive refactoring.  A
 * holder takes advantage of the fact that, most of the time, a holder view
 * does not change after a spawn or from one iteration of a parallel for loop
 * to the next (i.e., stealing is the exception, not the rule).  When the
 * holder view is a large object that is expensive to construct, this
 * optimization can save significant time versus creating a separate local
 * object for each view.  In addition, a holder using the "keep last" policy
 * will have the same value after a sync as the serialization of the same
 * program.  The last quality will often allow the program to avoid
 * recomputing a value.
 *
 * Usage Example:
 * ==============
 * Function 'compute()' is a complex function that computes a value using a
 * memoized algorithm, storing intermediate results in a hash table.  Compute
 * calls several other functions, each of which calls several other functions,
 * all of which share a global hash table.  In all, there are over a dozen
 * functions with a total of about 60 references to the hash table.  
 *..
 *  hash_table<int, X> memos;
 *
 *  void h(const X& x);  // Uses memos
 *
 *  double compute(const X& x)
 *  {
 *     memos.clear();
 *     // ...
 *     memos[i] = x;
 *     ...
 *     g(i);  // Uses memos
 *     // ...
 *     std::for_each(c.begin(), c.end(), h);  // Call h for each element of c
 *  }
 *
 *  int main()
 *  {
 *      const std::size_t ARRAY_SIZE = 1000000;
 *      extern X myArray[ARRAY_SIZE];
 *
 *      for (std::size_t i = 0; i < ARRAY_SIZE; ++i)
 *      {
 *          compute(myArray[i]);
 *      }
 *  }
 *..
 * We would like to replace the 'for' loop in 'main' with a 'cilk_for'.
 * Although the hash table is cleared on entry to each call to 'compute()',
 * and although the values stored in the hash table are no longer used after
 * 'compute()' returns, the use of the hash table as a global variable
 * prevents 'compute()' from being called safely in parallel.  One way to do
 * this would be to make 'memos' a private variable within the cilk_for loop
 * and pass it down to the actual computation, so that each loop iteration has
 * its own private copy:
 *..
 *      cilk_for (std::size_t i = 0; i < ARRAY_SIZE; ++i)
 *      {
 *          hash_table<int, X> memos;
 *          compute(myArray[i], memos);
 *      }
 *..
 * The problem with this approach is that it requires changing the signature
 * of 'compute', 'h', 'g', and every one of the dozen or so functions that
 * reference 'memos' as well as any function that calls those functions.  This
 * may break the abstraction of 'compute' and other functions, exposing an
 * implementation detail that was not part of the interface.  In addition, the
 * function 'h' is called through a templated algorithm, 'for_each', which
 * requires a fixed interface.  Finally, there is constructor and destructor
 * overhead for 'hash_table' each time through the loop.
 *
 * The alternative approach is to replace 'memos' with a holder.  The holder
 * would be available to all of the functions involved, but would not cause a
 * race between parallel loop iterations.  In order to make this work, each
 * use of the 'memos' variable must be (mechanically) replaced by a use of the
 * holder:
 *..
 *  cilk::holder<hash_table<int, X> > memos_h;
 *
 *  void h(const X& x);  // Uses memos_h
 *
 *  double compute(const X& x)
 *  {
 *     memos_h().clear();  // operator() used to "dereference" the holder
 *     // ...
 *     memos_h()[i] = x;   // operator() used to "dereference" the holder
 *     ...
 *     g(i);  // Uses memos_h
 *     // ...
 *     std::for_each(c.begin(), c.end(), h);  // Call h for each element of c
 *  }
 *..
 * Note that each reference to the holder must be modified with an empty pair
 * of parenthesis.  This syntax is needed because there is no facility in C++
 * for a "smart reference" that would allow 'memos_h' to be a perfect
 * replacement for 'memos'.  One way that a user can avoid this syntax change
 * is to wrap the holder in a class that has the same inteface as
 * 'hash_table' but redirects all calls to the holder:
 *..
 *  template <typename K, typename V>
 *  class hash_table_holder
 *  {
 *    private:
 *      cilk::holder<hash_table<K, V> > m_holder;
 *    public:
 *      void clear() { m_holder().clear(); }
 *      V& operator[](const K& x) { return m_holder()[x]; }
 *      std::size_t size() const { return m_holder().size(); }
 *      // etc. ...
 *  };
 *..
 * Using the above wrapper, the original code can be left unchanged except for
 * replacing 'hash_table' with 'hash_table_holder' and replacing 'for' with
 * 'cilk_for':
 *..
 *  hash_table_holder<int, X> memos;
 *
 *  void h(const X& x);  // Uses memos
 *
 *  double compute(const X& x)
 *  {
 *     memos.clear();  // Calls hash_table_holder::clear().
 *     // ...
 *  }
 *..
 * The above changes have no benefit over the use of thread-local storage.
 * What if one of the functions has a 'cilk_spawn', however?
 *..
 *  void h(const X& x)
 *  {
 *      Y y = x.nested();
 *      double d, w;
 *      if (y)
 *      {
 *          w = cilk_spawn compute_width(y); // May use 'memos'
 *          d = compute_depth(y);            // Does not use 'memos'
 *          cilk_sync;
 *          compute(y);  // recursive call.  Uses 'memos'.
 *      }
 *  }
 *..
 * In the above example, the view of the holder within 'compute_width' is the
 * same as the view on entry to 'h'.  More importantly, the view of the holder
 * within the recursive call to 'compute' is the same as the view on entry to
 * 'h', even if a different worker is executing the recursive call.  Thus, the
 * holder view within a Cilk program has useful qualities not found in
 * thread-local storage.
 */

namespace cilk {
    
    /**
     * After a sync, the value stored in a holder matches the most recent
     * value stored into the holder by one of the starnds entering the sync.
     * The holder policy used to instantiate the holder determines which of
     * the entering strands determines the final value of the holder. A policy
     * of 'holder_keep_indeterminate' (the default) is the most efficient, and
     * results in an indeterminate value depending on the runtime schedule
     * (see below for more specifics).  An indeterminate value after a sync is
     * often acceptable, especially if the value of the holder is not reused
     * after the sync.  All of the remaining policies retain the value of the
     * last strand that would be executed in the serialization of the program.
     * They differ in the mechanism used to move the value from one view to
     * another.  A policy of 'holder_keep_last_copy' moves values by
     * copy-assignment.  A policy of 'holder_keep_last_swap' moves values by
     * calling 'swap'.  A policy of 'holder_keep_last_move' is available only
     * for compilers that support C++0x rvalue references and moves values by
     * move-assignment.  A policy of 'holder_keep_last' attempts to choose the
     * most efficient mechanism: member-function 'swap' if the view type
     * supports it, otherwise move-assignment if supported, otherwise
     * copy-assignment.  (The swap member function for a class that provides
     * one is almost always as fast or faster than move-assignment or
     * copy-assignment.)
     *
     * The behavior of 'holder_keep_indeterminate', while indeterminate, is
     * not random and can be used for advanced programming or debugging.  With
     * a policy of 'holder_keep_intermediate', values are never copied or
     * moved between views.  The value of the view after a sync is the same as
     * the value set in the last spawned child before a steal occurs or the
     * last value set in the continuation if no steal occurs.  Using this
     * knowledge, a programmer can use a holder to detect the earliest steal
     * in a piece of code.  An indeterminate holder is also useful for keeping
     * cached data similar to the way some applications might use thread-local
     * storage.
     */
    enum holder_policy {
        holder_keep_indeterminate,
        holder_keep_last,
        holder_keep_last_copy,
        holder_keep_last_swap,
#ifdef __CILKRTS_RVALUE_REFERENCES
        holder_keep_last_move
#endif
    };

    namespace internal {

        // Private special-case holder policy using the swap member-function
        const holder_policy holder_keep_last_member_swap =
            (holder_policy) (holder_keep_last_swap | 0x10);

        /* The constant, 'has_member_swap<T>::value', will be 'true' if 'T'
         * has a non-static member function with prototype 'void swap(T&)'.
         * The mechanism used to detect 'swap' is the most portable among
         * present-day compilers, but is not the most robust.  Specifically,
         * the prototype for 'swap' must exactly match 'void swap(T&)'.
         * Near-matches like a 'swap' function that returns 'int' instead of
         * 'void' will not be detected.  Detection will also fail if 'T'
         * inherits 'swap' from a base class.
         */
        template <typename T>
        class has_member_swap
        {
            // This technique for detecting member functions was described by
            // Rani Sharoni in comp.lang.c++.moderated:
            // http://groups.google.com/group/comp.lang.c++.moderated/msg/2b06b2432fddfb60

            // sizeof(notchar) is guaranteed larger than 1
            struct notchar { char x[2]; };

            // Instantiationg Q<U, &U::swap> will fail unless U contains a
            // non-static member with prototype 'void swap(U&)'.
            template <class U, void (U::*)(U&)> struct Q { };

            // First 'test' is preferred overload if U::swap exists with the
            // correct prototype.  Second 'test' is preferred overload
            // otherwise.
            template <typename U> static char test(Q<U,&U::swap>*);
            template <typename U> static notchar test(...);

        public:
            /// 'value' will be true if T has a non-static member function
            /// with prototype 'void swap(T&)'.
            static const bool value = (1 == sizeof(test<T>(0)));
        };

        template <typename T> const bool has_member_swap<T>::value;

        /**
         * @brief Utility class for exception safety.
         *
         * The constuctor for this class takes a pointer and an allocator and
         * holds on to them.  The destructor deallocates the pointed-to
         * object, without calling its destructor, typically to recover memory
         * in case an exception is thrown. The release member clears the
         * pointer so that the deallocation is prevented, i.e., when the
         * exception danger has passed.  The behavior of this class is similar
         * to auto_ptr and unique_ptr.
         */
        template <typename Type, typename Allocator = std::allocator<Type> >
        class auto_deallocator
        {
            Allocator m_alloc;
            Type*     m_ptr;

            // Non-copiable
            auto_deallocator(const auto_deallocator&);
            auto_deallocator& operator=(const auto_deallocator&);

        public:
            /// Constructor
            explicit auto_deallocator(Type* p, const Allocator& a = Allocator())
                : m_alloc(a), m_ptr(p) { }

            /// Destructor - free allocated resources
            ~auto_deallocator() { if (m_ptr) m_alloc.deallocate(m_ptr, 1); }

            /// Remove reference to resource
            void release() { m_ptr = 0; }
        };

        /**
         * Pure-abstract base class to initialize holder views
         */
        template <typename Type, typename Allocator>
        class init_base
        {
        public:
            virtual ~init_base() { }
            virtual init_base* clone_self(Allocator& a) const = 0;
            virtual void delete_self(Allocator& a) = 0;
            virtual void construct_view(Type* p, Allocator& a) const = 0;
        };

        /**
         * Class to default-initialize a holder view
         */
        template <typename Type, typename Allocator>
        class default_init : public init_base<Type, Allocator>
        {
            typedef init_base<Type, Allocator> base;

            /// Private constructor (called from static make() function).
            default_init() { }

            // Non-copiable
            default_init(const default_init&);
            default_init& operator=(const default_init&);

        public:
            // Static factory function
            static default_init* make(Allocator& a);

            // Virtual function overrides
            virtual ~default_init();
            virtual base* clone_self(Allocator& a) const;
            virtual void delete_self(Allocator& a);
            virtual void construct_view(Type* p, Allocator& a) const;
        };

        template <typename Type, typename Allocator>
        default_init<Type, Allocator>*
        default_init<Type, Allocator>::make(Allocator&)
        {
            // Return a pointer to a singleton.  All instances of this class
            // are identical, so we need only one.
            static default_init self;
            return &self;
        }

        template <typename Type, typename Allocator>
        default_init<Type, Allocator>::~default_init()
        {
        }

        template <typename Type, typename Allocator>
        init_base<Type, Allocator>*
        default_init<Type, Allocator>::clone_self(Allocator& a) const
        {
            return make(a);
        }

        template <typename Type, typename Allocator>
        void default_init<Type, Allocator>::delete_self(Allocator&)
        {
            // Since make() returned a shared singleton, there is nothing to
            // delete here.
        }

        template <typename Type, typename Allocator>
        void
        default_init<Type, Allocator>::construct_view(Type* p,
                                                      Allocator&) const
        {
            ::new((void*) p) Type();
            // TBD: In a C++0x library, this should be rewritten
            // std::allocator_traits<Allocator>::construct(a, p);
        }

        /**
         * Class to copy-construct a view from a stored exemplar.
         */
        template <typename Type, typename Allocator>
        class exemplar_init : public init_base<Type, Allocator>
        {
            typedef init_base<Type, Allocator> base;

            Type* m_exemplar;

            // Private constructors (called from make() functions).
            exemplar_init(const Type& val, Allocator& a);
#ifdef __CILKRTS_RVALUE_REFERENCES
            exemplar_init(Type&& val,      Allocator& a);
#endif

            // Non-copyiable
            exemplar_init(const exemplar_init&);
            exemplar_init& operator=(const exemplar_init&);

        public:
            // Static factory functions
            static exemplar_init* make(const Type& val,
                                       Allocator& a = Allocator());
#ifdef __CILKRTS_RVALUE_REFERENCES
            static exemplar_init* make(Type&& val,
                                       Allocator& a = Allocator());
#endif

            // Virtual function overrides
            virtual ~exemplar_init();
            virtual base* clone_self(Allocator& a) const;
            virtual void delete_self(Allocator& a);
            virtual void construct_view(Type* p, Allocator& a) const;
        };

        template <typename Type, typename Allocator>
        exemplar_init<Type, Allocator>::exemplar_init(const Type& val,
                                                      Allocator&  a)
        {
            m_exemplar = a.allocate(1);
            auto_deallocator<Type, Allocator> guard(m_exemplar, a);
            a.construct(m_exemplar, val);
            guard.release();
        }

#ifdef __CILKRTS_RVALUE_REFERENCES
        template <typename Type, typename Allocator>
        exemplar_init<Type, Allocator>::exemplar_init(Type&&     val,
                                                      Allocator& a)
        {
            m_exemplar = a.allocate(1);
            auto_deallocator<Type, Allocator> guard(m_exemplar, a);
            a.construct(m_exemplar, std::forward<Type>(val));
            guard.release();
        }
#endif

        template <typename Type, typename Allocator>
        exemplar_init<Type, Allocator>*
        exemplar_init<Type, Allocator>::make(const Type& val,
                                             Allocator&  a)
        {
            typedef typename Allocator::template rebind<exemplar_init>::other
                self_alloc_t;
            self_alloc_t alloc(a);

            exemplar_init *self = alloc.allocate(1);
            auto_deallocator<exemplar_init, self_alloc_t> guard(self, alloc);

            // Don't use allocator to construct self.  Allocator should be
            // used only on elements of type 'Type'.
            ::new((void*) self) exemplar_init(val, a);

            guard.release();

            return self;
        }

#ifdef __CILKRTS_RVALUE_REFERENCES
        template <typename Type, typename Allocator>
        exemplar_init<Type, Allocator>*
        exemplar_init<Type, Allocator>::make(Type&&           val,
                                             Allocator& a)
        {
            typedef typename Allocator::template rebind<exemplar_init>::other
                self_alloc_t;
            self_alloc_t alloc(a);

            exemplar_init *self = alloc.allocate(1);
            auto_deallocator<exemplar_init, self_alloc_t> guard(self, alloc);

            // Don't use allocator to construct self.  Allocator should be
            // used only on elements of type 'Type'.
            ::new((void*) self) exemplar_init(std::forward<Type>(val), a);

            guard.release();

            return self;
        }
#endif

        template <typename Type, typename Allocator>
        exemplar_init<Type, Allocator>::~exemplar_init()
        {
            // Called only by delete_self, which deleted the exemplar using an
            // allocator.
            __CILKRTS_ASSERT(0 == m_exemplar);
        }

        template <typename Type, typename Allocator>
        init_base<Type, Allocator>*
        exemplar_init<Type, Allocator>::clone_self(Allocator& a) const
        {
            return make(*m_exemplar, a);
        }

        template <typename Type, typename Allocator>
        void exemplar_init<Type, Allocator>::delete_self(Allocator& a)
        {
            typename Allocator::template rebind<exemplar_init>::other alloc(a);

            a.destroy(m_exemplar);
            a.deallocate(m_exemplar, 1);
            m_exemplar = 0;

            this->~exemplar_init();
            alloc.deallocate(this, 1);
        }

        template <typename Type, typename Allocator>
        void
        exemplar_init<Type, Allocator>::construct_view(Type*            p,
                                                       Allocator& a) const
        {
            a.construct(p, *m_exemplar);
            // TBD: In a C++0x library, this should be rewritten
            // std::allocator_traits<Allocator>::construct(a, p, *m_exemplar);
        }

        /**
         * Class to construct a view using a stored functor.  The functor,
         * 'f', must be be invokable using the expression 'Type x = f()'.
         */
        template <typename Func, typename Allocator>
        class functor_init :
            public init_base<typename Allocator::value_type, Allocator>
        {
            typedef typename Allocator::value_type            value_type;
            typedef init_base<value_type, Allocator>          base;
            typedef typename Allocator::template rebind<Func>::other f_alloc;

            Func *m_functor;

            /// Private constructors (called from make() functions
            functor_init(const Func& f, Allocator& a);
#ifdef __CILKRTS_RVALUE_REFERENCES
            functor_init(Func&& f, Allocator& a);
#endif

            // Non-copiable
            functor_init(const functor_init&);
            functor_init& operator=(const functor_init&);

        public:
            // Static factory functions
            static functor_init* make(const Func& val,
                                      Allocator& a = Allocator());
#ifdef __CILKRTS_RVALUE_REFERENCES
            static functor_init* make(Func&& val,
                                      Allocator& a = Allocator());
#endif

            // Virtual function overrides
            virtual ~functor_init();
            virtual base* clone_self(Allocator& a) const;
            virtual void delete_self(Allocator& a);
            virtual void
                construct_view(value_type* p, Allocator& a) const;
        };

        /// Specialization to strip off reference from 'Func&'.
        template <typename Func, typename Allocator>
        struct functor_init<Func&, Allocator>
            : functor_init<Func, Allocator> { };

        /// Specialization to strip off reference and cvq from 'const Func&'.
        template <typename Func, typename Allocator>
        struct functor_init<const Func&, Allocator>
            : functor_init<Func, Allocator> { };

        template <typename Func, typename Allocator>
        functor_init<Func, Allocator>::functor_init(const Func& f,
                                                    Allocator&  a)
        {
            f_alloc alloc(a);

            m_functor = alloc.allocate(1);
            auto_deallocator<Func, f_alloc> guard(m_functor, alloc);
            alloc.construct(m_functor, f);
            guard.release();
        }

#ifdef __CILKRTS_RVALUE_REFERENCES
        template <typename Func, typename Allocator>
        functor_init<Func, Allocator>::functor_init(Func&&     f,
                                                    Allocator& a)
        {
            f_alloc alloc(a);

            m_functor = alloc.allocate(1);
            auto_deallocator<Func, f_alloc> guard(m_functor, alloc);
            alloc.construct(m_functor, std::forward<Func>(f));
            guard.release();
        }
#endif

        template <typename Func, typename Allocator>
        functor_init<Func, Allocator>*
        functor_init<Func, Allocator>::make(const Func& f, Allocator& a)
        {
            typedef typename Allocator::template rebind<functor_init>::other
                self_alloc_t;
            self_alloc_t alloc(a);

            functor_init *self = alloc.allocate(1);
            auto_deallocator<functor_init, self_alloc_t> guard(self, alloc);

            // Don't use allocator to construct self.  Allocator should be
            // used only on elements of type 'Func'.
            ::new((void*) self) functor_init(f, a);

            guard.release();

            return self;
        }

#ifdef __CILKRTS_RVALUE_REFERENCES
        template <typename Func, typename Allocator>
        functor_init<Func, Allocator>*
        functor_init<Func, Allocator>::make(Func&& f, Allocator& a)
        {
            typedef typename Allocator::template rebind<functor_init>::other
                self_alloc_t;
            self_alloc_t alloc(a);

            functor_init *self = alloc.allocate(1);
            auto_deallocator<functor_init, self_alloc_t> guard(self, alloc);

            // Don't use allocator to construct self.  Allocator should be
            // used only on elements of type 'Func'.
            ::new((void*) self) functor_init(std::forward<Func>(f), a);

            guard.release();

            return self;
        }
#endif

        template <typename Func, typename Allocator>
        functor_init<Func, Allocator>::~functor_init()
        {
            // Called only by delete_self, which deleted the functor using an
            // allocator.
            __CILKRTS_ASSERT(0 == m_functor);
        }

        template <typename Func, typename Allocator>
        init_base<typename Allocator::value_type, Allocator>*
        functor_init<Func, Allocator>::clone_self(Allocator& a) const
        {
            return make(*m_functor, a);
        }

        template <typename Func, typename Allocator>
        inline
        void functor_init<Func, Allocator>::delete_self(Allocator& a)
        {
            typename Allocator::template rebind<functor_init>::other alloc(a);
            f_alloc fa(a);

            fa.destroy(m_functor);
            fa.deallocate(m_functor, 1);
            m_functor = 0;

            this->~functor_init();
            alloc.deallocate(this, 1);
        }

        template <typename Func, typename Allocator>
        void functor_init<Func, Allocator>::construct_view(value_type* p,
                                                           Allocator& a) const
        {
            a.construct(p, (*m_functor)());
            // In C++0x, the above should be written
            // std::allocator_traits<Allocator>::construct(a, p, m_functor());
        }

        /**
         * Functor called to reduce a holder
         */
        template <typename Type, holder_policy Policy>
        struct holder_reduce_functor;

        /**
         * Specialization to keep the left (first) value.
         */
        template <typename Type>
        struct holder_reduce_functor<Type, holder_keep_indeterminate>
        {
            void operator()(Type* left, Type* right) const { }
        };

        /**
         * Specialization to copy-assign from the right (last) value.
         */
        template <typename Type>
        struct holder_reduce_functor<Type, holder_keep_last_copy>
        {
            void operator()(Type* left, Type* right) const {
                *left = *right;
            }
        };

        /*
         * Specialization to keep the right (last) value via swap.
         */
        template <typename Type>
        struct holder_reduce_functor<Type, holder_keep_last_swap>
        {
            void operator()(Type* left, Type* right) const {
                using std::swap;
                swap(*left, *right);
            }
        };

#ifdef __CILKRTS_RVALUE_REFERENCES
        /*
         * Specialization to move-assign from the right (last) value.
         */
        template <typename Type>
        struct holder_reduce_functor<Type, holder_keep_last_move>
        {
            void operator()(Type* left, Type* right) const {
                *left = std::move(*right);
            }
        };
#endif

        /*
         * Specialization to keep the right (last) value via the swap member
         * function.
         */
        template <typename Type>
        struct holder_reduce_functor<Type, holder_keep_last_member_swap>
        {
            void operator()(Type* left, Type* right) const {
                left->swap(*right);
            }
        };

        /*
         * Specialization to keep the right (last) value by the most efficient
         * means detectable.
         */
        template <typename Type>
        struct holder_reduce_functor<Type, holder_keep_last> :
            holder_reduce_functor<Type,
                                  (holder_policy)
                                  (has_member_swap<Type>::value ?
                                  holder_keep_last_member_swap :
#ifdef __CILKRTS_RVALUE_REFERENCES
                                  holder_keep_last_move
#else
                                  holder_keep_last_copy
#endif
                                  )>
        {
        };
    } // end namespace internal

    /**
     * Monoid for holders.
     * Allocator type is required to be thread-safe.
     */
    template <typename Type,
              holder_policy Policy = holder_keep_indeterminate,
              typename Allocator = std::allocator<Type> >
    class holder_monoid : public monoid_base<Type>
    {
        // Allocator is mutable because the copy of the monoid inside the
        // reducer is const (to avoid races on the shared state).  However,
        // the allocator is required to be thread-safe, so it is ok (and
        // necessary) to modify.
        mutable Allocator                     m_allocator;
        internal::init_base<Type, Allocator> *m_initializer;

    public:
        /// This constructor uses default-initialization for both the leftmost
        /// view and each identity view.
        holder_monoid(const Allocator& a = Allocator())
            : m_allocator(a)
            , m_initializer(
                internal::default_init<Type, Allocator>::make(m_allocator))
            { }

        /// These constructors use 'val' as an exemplar to copy-construct both
        /// the leftmost view and each identity view.
        holder_monoid(const Type& val, const Allocator& a = Allocator())
            : m_allocator(a)
            , m_initializer(internal::exemplar_init<Type, Allocator>::make(
                                val, m_allocator)) { }
        /// This constructor uses 'f' as a functor to construct both
        /// the leftmost view and each identity view.
        template <typename Func>
        holder_monoid(const Func& f, const Allocator& a = Allocator())
            : m_allocator(a)
            , m_initializer(
                internal::functor_init<Func, Allocator>::make(f,m_allocator))
            { }

        /// Copy constructor
        holder_monoid(const holder_monoid& rhs)
            : m_allocator(rhs.m_allocator)
            , m_initializer(rhs.m_initializer->clone_self(m_allocator)) { }

        /// "Extended" copy constructor with allocator
        holder_monoid(const holder_monoid& rhs, const Allocator& a)
            : m_allocator(a)
            , m_initializer(rhs.m_initializer->clone_self(m_allocator)) { }

#ifdef __CILKRTS_RVALUE_REFERENCES
        /// Move constructor
        holder_monoid(holder_monoid&& rhs)
            : m_allocator(rhs.m_allocator)
            , m_initializer(rhs.m_initializer) {
            rhs.m_initializer =
                internal::default_init<Type, Allocator>::make(m_allocator);
        }

        /// "Extended" move constructor with allocator
        holder_monoid(holder_monoid&& rhs, const Allocator& a)
            : m_allocator(a)
            , m_initializer(0) {
            if (a != rhs.m_allocator)
                m_initializer = rhs.m_initializer->clone_self(a);
            else {
                m_initializer = rhs.m_initializer;
                rhs.m_initializer =
                    internal::default_init<Type, Allocator>::make(m_allocator);
            }
        }
#endif
        /// Destructor
        ~holder_monoid() { m_initializer->delete_self(m_allocator); }

        holder_monoid& operator=(const holder_monoid& rhs) {
            if (this == &rhs) return *this;
            m_initializer->delete_self(m_allocator);
            m_initializer = rhs.m_initializer->clone_self(m_allocator);
        }

#ifdef __CILKRTS_RVALUE_REFERENCES
        holder_monoid& operator=(holder_monoid&& rhs) {
            if (m_allocator != rhs.m_allocator)
                // Delegate to copy-assignment on unequal allocators
                return operator=(static_cast<const holder_monoid&>(rhs));
            std::swap(m_initializer, rhs.m_initializer);
            return *this;
        }
#endif

        /// Constructs IDENTITY value into the uninitilized '*p'
        void identity(Type* p) const
            { m_initializer->construct_view(p, m_allocator); }

        /// Calls the destructor on the object pointed-to by 'p'
        void destroy(Type* p) const
            { m_allocator.destroy(p); }

        /// Return a pointer to size bytes of raw memory
        void* allocate(std::size_t s) const {
            __CILKRTS_ASSERT(sizeof(Type) == s);
            return m_allocator.allocate(1);
        }

        /// Deallocate the raw memory at p
        void deallocate(void* p) const {
            m_allocator.deallocate(static_cast<Type*>(p), sizeof(Type));
        }

        void reduce(Type* left, Type* right) const {
            internal::holder_reduce_functor<Type, Policy>()(left, right);
        }

        void swap(holder_monoid& other) {
            __CILKRTS_ASSERT(m_allocator == other.m_allocator);
            std::swap(m_initializer, other.m_initializer);
        }

        Allocator get_allocator() const {
            return m_allocator;
        }
    };

    // Namespace-scope swap
    template <typename Type, holder_policy Policy, typename Allocator>
    inline void swap(holder_monoid<Type, Policy, Allocator>& a,
                     holder_monoid<Type, Policy, Allocator>& b)
    {
        a.swap(b);
    }

   /**
    * Hyperobject to provide different views of an object to each
    * parallel strand.
    */
    template <typename Type,
              holder_policy Policy = holder_keep_indeterminate,
              typename Allocator = std::allocator<Type> >
    class holder : public reducer<holder_monoid<Type, Policy, Allocator> >
    {
        typedef holder_monoid<Type, Policy, Allocator> monoid_type;
        typedef reducer<monoid_type> imp;

        // Return a value of Type constructed using the functor Func.
        template <typename Func>
        Type make_value(const Func& f) const {
            struct obj {
                union {
                    char buf[sizeof(Type)];
                    void* align1;
                    double align2;
                };

                obj(const Func& f) { f(static_cast<Type*>(buf)); }
                ~obj() { static_cast<Type*>(buf)->~Type(); }

                operator Type&() { return *static_cast<Type*>(buf); }
            };

            return obj(f);
        }

    public:
        /// Default constructor uses default-initialization for both the
        /// leftmost view and each identity view.
        holder(const Allocator& alloc = Allocator())
            : imp(monoid_type(alloc)) { }

        /// Construct from an exemplar that is used to initialize both the
        /// leftmost view and each identity view.
        holder(const Type& v, const Allocator& alloc = Allocator())
            // Alas, cannot use an rvalue reference for 'v' because it is used
            // twice in the same expression for initializing imp.
            : imp(monoid_type(v, alloc), v) { }

        /// Construct from a functor that is used to initialize both the
        /// leftmost view and each identity view.  The functor, 'f', must be be
        /// invokable using the expression 'Type x = f()'.
        template <typename Func>
        holder(const Func& f, const Allocator& alloc = Allocator())
            // Alas, cannot use an rvalue for 'f' because it is used twice in
            // the same expression for initializing imp.
            : imp(monoid_type(f, alloc), make_value(f)) { }
    };

} // end namespace cilk

#else /* C */
# error Holders are currently available only for C++
#endif /* __cplusplus */

#endif /* HOLDER_H_INCLUDED */