aboutsummaryrefslogtreecommitdiff
path: root/libgo/go/image/jpeg/reader.go
blob: a915e96a4cf4f4a61db27025a91079076fdac8f3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package jpeg implements a JPEG image decoder and encoder.
//
// JPEG is defined in ITU-T T.81: http://www.w3.org/Graphics/JPEG/itu-t81.pdf.
package jpeg

import (
	"image"
	"image/color"
	"image/internal/imageutil"
	"io"
)

// TODO(nigeltao): fix up the doc comment style so that sentences start with
// the name of the type or function that they annotate.

// A FormatError reports that the input is not a valid JPEG.
type FormatError string

func (e FormatError) Error() string { return "invalid JPEG format: " + string(e) }

// An UnsupportedError reports that the input uses a valid but unimplemented JPEG feature.
type UnsupportedError string

func (e UnsupportedError) Error() string { return "unsupported JPEG feature: " + string(e) }

var errUnsupportedSubsamplingRatio = UnsupportedError("luma/chroma subsampling ratio")

// Component specification, specified in section B.2.2.
type component struct {
	h  int   // Horizontal sampling factor.
	v  int   // Vertical sampling factor.
	c  uint8 // Component identifier.
	tq uint8 // Quantization table destination selector.
}

const (
	dcTable = 0
	acTable = 1
	maxTc   = 1
	maxTh   = 3
	maxTq   = 3

	maxComponents = 4
)

const (
	sof0Marker = 0xc0 // Start Of Frame (Baseline Sequential).
	sof1Marker = 0xc1 // Start Of Frame (Extended Sequential).
	sof2Marker = 0xc2 // Start Of Frame (Progressive).
	dhtMarker  = 0xc4 // Define Huffman Table.
	rst0Marker = 0xd0 // ReSTart (0).
	rst7Marker = 0xd7 // ReSTart (7).
	soiMarker  = 0xd8 // Start Of Image.
	eoiMarker  = 0xd9 // End Of Image.
	sosMarker  = 0xda // Start Of Scan.
	dqtMarker  = 0xdb // Define Quantization Table.
	driMarker  = 0xdd // Define Restart Interval.
	comMarker  = 0xfe // COMment.
	// "APPlication specific" markers aren't part of the JPEG spec per se,
	// but in practice, their use is described at
	// http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html
	app0Marker  = 0xe0
	app14Marker = 0xee
	app15Marker = 0xef
)

// See http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
const (
	adobeTransformUnknown = 0
	adobeTransformYCbCr   = 1
	adobeTransformYCbCrK  = 2
)

// unzig maps from the zig-zag ordering to the natural ordering. For example,
// unzig[3] is the column and row of the fourth element in zig-zag order. The
// value is 16, which means first column (16%8 == 0) and third row (16/8 == 2).
var unzig = [blockSize]int{
	0, 1, 8, 16, 9, 2, 3, 10,
	17, 24, 32, 25, 18, 11, 4, 5,
	12, 19, 26, 33, 40, 48, 41, 34,
	27, 20, 13, 6, 7, 14, 21, 28,
	35, 42, 49, 56, 57, 50, 43, 36,
	29, 22, 15, 23, 30, 37, 44, 51,
	58, 59, 52, 45, 38, 31, 39, 46,
	53, 60, 61, 54, 47, 55, 62, 63,
}

// Deprecated: Reader is deprecated.
type Reader interface {
	io.ByteReader
	io.Reader
}

// bits holds the unprocessed bits that have been taken from the byte-stream.
// The n least significant bits of a form the unread bits, to be read in MSB to
// LSB order.
type bits struct {
	a uint32 // accumulator.
	m uint32 // mask. m==1<<(n-1) when n>0, with m==0 when n==0.
	n int32  // the number of unread bits in a.
}

type decoder struct {
	r    io.Reader
	bits bits
	// bytes is a byte buffer, similar to a bufio.Reader, except that it
	// has to be able to unread more than 1 byte, due to byte stuffing.
	// Byte stuffing is specified in section F.1.2.3.
	bytes struct {
		// buf[i:j] are the buffered bytes read from the underlying
		// io.Reader that haven't yet been passed further on.
		buf  [4096]byte
		i, j int
		// nUnreadable is the number of bytes to back up i after
		// overshooting. It can be 0, 1 or 2.
		nUnreadable int
	}
	width, height int

	img1        *image.Gray
	img3        *image.YCbCr
	blackPix    []byte
	blackStride int

	ri    int // Restart Interval.
	nComp int

	// As per section 4.5, there are four modes of operation (selected by the
	// SOF? markers): sequential DCT, progressive DCT, lossless and
	// hierarchical, although this implementation does not support the latter
	// two non-DCT modes. Sequential DCT is further split into baseline and
	// extended, as per section 4.11.
	baseline    bool
	progressive bool

	jfif                bool
	adobeTransformValid bool
	adobeTransform      uint8
	eobRun              uint16 // End-of-Band run, specified in section G.1.2.2.

	comp       [maxComponents]component
	progCoeffs [maxComponents][]block // Saved state between progressive-mode scans.
	huff       [maxTc + 1][maxTh + 1]huffman
	quant      [maxTq + 1]block // Quantization tables, in zig-zag order.
	tmp        [2 * blockSize]byte
}

// fill fills up the d.bytes.buf buffer from the underlying io.Reader. It
// should only be called when there are no unread bytes in d.bytes.
func (d *decoder) fill() error {
	if d.bytes.i != d.bytes.j {
		panic("jpeg: fill called when unread bytes exist")
	}
	// Move the last 2 bytes to the start of the buffer, in case we need
	// to call unreadByteStuffedByte.
	if d.bytes.j > 2 {
		d.bytes.buf[0] = d.bytes.buf[d.bytes.j-2]
		d.bytes.buf[1] = d.bytes.buf[d.bytes.j-1]
		d.bytes.i, d.bytes.j = 2, 2
	}
	// Fill in the rest of the buffer.
	n, err := d.r.Read(d.bytes.buf[d.bytes.j:])
	d.bytes.j += n
	if n > 0 {
		err = nil
	}
	return err
}

// unreadByteStuffedByte undoes the most recent readByteStuffedByte call,
// giving a byte of data back from d.bits to d.bytes. The Huffman look-up table
// requires at least 8 bits for look-up, which means that Huffman decoding can
// sometimes overshoot and read one or two too many bytes. Two-byte overshoot
// can happen when expecting to read a 0xff 0x00 byte-stuffed byte.
func (d *decoder) unreadByteStuffedByte() {
	d.bytes.i -= d.bytes.nUnreadable
	d.bytes.nUnreadable = 0
	if d.bits.n >= 8 {
		d.bits.a >>= 8
		d.bits.n -= 8
		d.bits.m >>= 8
	}
}

// readByte returns the next byte, whether buffered or not buffered. It does
// not care about byte stuffing.
func (d *decoder) readByte() (x byte, err error) {
	for d.bytes.i == d.bytes.j {
		if err = d.fill(); err != nil {
			return 0, err
		}
	}
	x = d.bytes.buf[d.bytes.i]
	d.bytes.i++
	d.bytes.nUnreadable = 0
	return x, nil
}

// errMissingFF00 means that readByteStuffedByte encountered an 0xff byte (a
// marker byte) that wasn't the expected byte-stuffed sequence 0xff, 0x00.
var errMissingFF00 = FormatError("missing 0xff00 sequence")

// readByteStuffedByte is like readByte but is for byte-stuffed Huffman data.
func (d *decoder) readByteStuffedByte() (x byte, err error) {
	// Take the fast path if d.bytes.buf contains at least two bytes.
	if d.bytes.i+2 <= d.bytes.j {
		x = d.bytes.buf[d.bytes.i]
		d.bytes.i++
		d.bytes.nUnreadable = 1
		if x != 0xff {
			return x, err
		}
		if d.bytes.buf[d.bytes.i] != 0x00 {
			return 0, errMissingFF00
		}
		d.bytes.i++
		d.bytes.nUnreadable = 2
		return 0xff, nil
	}

	d.bytes.nUnreadable = 0

	x, err = d.readByte()
	if err != nil {
		return 0, err
	}
	d.bytes.nUnreadable = 1
	if x != 0xff {
		return x, nil
	}

	x, err = d.readByte()
	if err != nil {
		return 0, err
	}
	d.bytes.nUnreadable = 2
	if x != 0x00 {
		return 0, errMissingFF00
	}
	return 0xff, nil
}

// readFull reads exactly len(p) bytes into p. It does not care about byte
// stuffing.
func (d *decoder) readFull(p []byte) error {
	// Unread the overshot bytes, if any.
	if d.bytes.nUnreadable != 0 {
		if d.bits.n >= 8 {
			d.unreadByteStuffedByte()
		}
		d.bytes.nUnreadable = 0
	}

	for {
		n := copy(p, d.bytes.buf[d.bytes.i:d.bytes.j])
		p = p[n:]
		d.bytes.i += n
		if len(p) == 0 {
			break
		}
		if err := d.fill(); err != nil {
			if err == io.EOF {
				err = io.ErrUnexpectedEOF
			}
			return err
		}
	}
	return nil
}

// ignore ignores the next n bytes.
func (d *decoder) ignore(n int) error {
	// Unread the overshot bytes, if any.
	if d.bytes.nUnreadable != 0 {
		if d.bits.n >= 8 {
			d.unreadByteStuffedByte()
		}
		d.bytes.nUnreadable = 0
	}

	for {
		m := d.bytes.j - d.bytes.i
		if m > n {
			m = n
		}
		d.bytes.i += m
		n -= m
		if n == 0 {
			break
		}
		if err := d.fill(); err != nil {
			if err == io.EOF {
				err = io.ErrUnexpectedEOF
			}
			return err
		}
	}
	return nil
}

// Specified in section B.2.2.
func (d *decoder) processSOF(n int) error {
	if d.nComp != 0 {
		return FormatError("multiple SOF markers")
	}
	switch n {
	case 6 + 3*1: // Grayscale image.
		d.nComp = 1
	case 6 + 3*3: // YCbCr or RGB image.
		d.nComp = 3
	case 6 + 3*4: // YCbCrK or CMYK image.
		d.nComp = 4
	default:
		return UnsupportedError("number of components")
	}
	if err := d.readFull(d.tmp[:n]); err != nil {
		return err
	}
	// We only support 8-bit precision.
	if d.tmp[0] != 8 {
		return UnsupportedError("precision")
	}
	d.height = int(d.tmp[1])<<8 + int(d.tmp[2])
	d.width = int(d.tmp[3])<<8 + int(d.tmp[4])
	if int(d.tmp[5]) != d.nComp {
		return FormatError("SOF has wrong length")
	}

	for i := 0; i < d.nComp; i++ {
		d.comp[i].c = d.tmp[6+3*i]
		// Section B.2.2 states that "the value of C_i shall be different from
		// the values of C_1 through C_(i-1)".
		for j := 0; j < i; j++ {
			if d.comp[i].c == d.comp[j].c {
				return FormatError("repeated component identifier")
			}
		}

		d.comp[i].tq = d.tmp[8+3*i]
		if d.comp[i].tq > maxTq {
			return FormatError("bad Tq value")
		}

		hv := d.tmp[7+3*i]
		h, v := int(hv>>4), int(hv&0x0f)
		if h < 1 || 4 < h || v < 1 || 4 < v {
			return FormatError("luma/chroma subsampling ratio")
		}
		if h == 3 || v == 3 {
			return errUnsupportedSubsamplingRatio
		}
		switch d.nComp {
		case 1:
			// If a JPEG image has only one component, section A.2 says "this data
			// is non-interleaved by definition" and section A.2.2 says "[in this
			// case...] the order of data units within a scan shall be left-to-right
			// and top-to-bottom... regardless of the values of H_1 and V_1". Section
			// 4.8.2 also says "[for non-interleaved data], the MCU is defined to be
			// one data unit". Similarly, section A.1.1 explains that it is the ratio
			// of H_i to max_j(H_j) that matters, and similarly for V. For grayscale
			// images, H_1 is the maximum H_j for all components j, so that ratio is
			// always 1. The component's (h, v) is effectively always (1, 1): even if
			// the nominal (h, v) is (2, 1), a 20x5 image is encoded in three 8x8
			// MCUs, not two 16x8 MCUs.
			h, v = 1, 1

		case 3:
			// For YCbCr images, we only support 4:4:4, 4:4:0, 4:2:2, 4:2:0,
			// 4:1:1 or 4:1:0 chroma subsampling ratios. This implies that the
			// (h, v) values for the Y component are either (1, 1), (1, 2),
			// (2, 1), (2, 2), (4, 1) or (4, 2), and the Y component's values
			// must be a multiple of the Cb and Cr component's values. We also
			// assume that the two chroma components have the same subsampling
			// ratio.
			switch i {
			case 0: // Y.
				// We have already verified, above, that h and v are both
				// either 1, 2 or 4, so invalid (h, v) combinations are those
				// with v == 4.
				if v == 4 {
					return errUnsupportedSubsamplingRatio
				}
			case 1: // Cb.
				if d.comp[0].h%h != 0 || d.comp[0].v%v != 0 {
					return errUnsupportedSubsamplingRatio
				}
			case 2: // Cr.
				if d.comp[1].h != h || d.comp[1].v != v {
					return errUnsupportedSubsamplingRatio
				}
			}

		case 4:
			// For 4-component images (either CMYK or YCbCrK), we only support two
			// hv vectors: [0x11 0x11 0x11 0x11] and [0x22 0x11 0x11 0x22].
			// Theoretically, 4-component JPEG images could mix and match hv values
			// but in practice, those two combinations are the only ones in use,
			// and it simplifies the applyBlack code below if we can assume that:
			//	- for CMYK, the C and K channels have full samples, and if the M
			//	  and Y channels subsample, they subsample both horizontally and
			//	  vertically.
			//	- for YCbCrK, the Y and K channels have full samples.
			switch i {
			case 0:
				if hv != 0x11 && hv != 0x22 {
					return errUnsupportedSubsamplingRatio
				}
			case 1, 2:
				if hv != 0x11 {
					return errUnsupportedSubsamplingRatio
				}
			case 3:
				if d.comp[0].h != h || d.comp[0].v != v {
					return errUnsupportedSubsamplingRatio
				}
			}
		}

		d.comp[i].h = h
		d.comp[i].v = v
	}
	return nil
}

// Specified in section B.2.4.1.
func (d *decoder) processDQT(n int) error {
loop:
	for n > 0 {
		n--
		x, err := d.readByte()
		if err != nil {
			return err
		}
		tq := x & 0x0f
		if tq > maxTq {
			return FormatError("bad Tq value")
		}
		switch x >> 4 {
		default:
			return FormatError("bad Pq value")
		case 0:
			if n < blockSize {
				break loop
			}
			n -= blockSize
			if err := d.readFull(d.tmp[:blockSize]); err != nil {
				return err
			}
			for i := range d.quant[tq] {
				d.quant[tq][i] = int32(d.tmp[i])
			}
		case 1:
			if n < 2*blockSize {
				break loop
			}
			n -= 2 * blockSize
			if err := d.readFull(d.tmp[:2*blockSize]); err != nil {
				return err
			}
			for i := range d.quant[tq] {
				d.quant[tq][i] = int32(d.tmp[2*i])<<8 | int32(d.tmp[2*i+1])
			}
		}
	}
	if n != 0 {
		return FormatError("DQT has wrong length")
	}
	return nil
}

// Specified in section B.2.4.4.
func (d *decoder) processDRI(n int) error {
	if n != 2 {
		return FormatError("DRI has wrong length")
	}
	if err := d.readFull(d.tmp[:2]); err != nil {
		return err
	}
	d.ri = int(d.tmp[0])<<8 + int(d.tmp[1])
	return nil
}

func (d *decoder) processApp0Marker(n int) error {
	if n < 5 {
		return d.ignore(n)
	}
	if err := d.readFull(d.tmp[:5]); err != nil {
		return err
	}
	n -= 5

	d.jfif = d.tmp[0] == 'J' && d.tmp[1] == 'F' && d.tmp[2] == 'I' && d.tmp[3] == 'F' && d.tmp[4] == '\x00'

	if n > 0 {
		return d.ignore(n)
	}
	return nil
}

func (d *decoder) processApp14Marker(n int) error {
	if n < 12 {
		return d.ignore(n)
	}
	if err := d.readFull(d.tmp[:12]); err != nil {
		return err
	}
	n -= 12

	if d.tmp[0] == 'A' && d.tmp[1] == 'd' && d.tmp[2] == 'o' && d.tmp[3] == 'b' && d.tmp[4] == 'e' {
		d.adobeTransformValid = true
		d.adobeTransform = d.tmp[11]
	}

	if n > 0 {
		return d.ignore(n)
	}
	return nil
}

// decode reads a JPEG image from r and returns it as an image.Image.
func (d *decoder) decode(r io.Reader, configOnly bool) (image.Image, error) {
	d.r = r

	// Check for the Start Of Image marker.
	if err := d.readFull(d.tmp[:2]); err != nil {
		return nil, err
	}
	if d.tmp[0] != 0xff || d.tmp[1] != soiMarker {
		return nil, FormatError("missing SOI marker")
	}

	// Process the remaining segments until the End Of Image marker.
	for {
		err := d.readFull(d.tmp[:2])
		if err != nil {
			return nil, err
		}
		for d.tmp[0] != 0xff {
			// Strictly speaking, this is a format error. However, libjpeg is
			// liberal in what it accepts. As of version 9, next_marker in
			// jdmarker.c treats this as a warning (JWRN_EXTRANEOUS_DATA) and
			// continues to decode the stream. Even before next_marker sees
			// extraneous data, jpeg_fill_bit_buffer in jdhuff.c reads as many
			// bytes as it can, possibly past the end of a scan's data. It
			// effectively puts back any markers that it overscanned (e.g. an
			// "\xff\xd9" EOI marker), but it does not put back non-marker data,
			// and thus it can silently ignore a small number of extraneous
			// non-marker bytes before next_marker has a chance to see them (and
			// print a warning).
			//
			// We are therefore also liberal in what we accept. Extraneous data
			// is silently ignored.
			//
			// This is similar to, but not exactly the same as, the restart
			// mechanism within a scan (the RST[0-7] markers).
			//
			// Note that extraneous 0xff bytes in e.g. SOS data are escaped as
			// "\xff\x00", and so are detected a little further down below.
			d.tmp[0] = d.tmp[1]
			d.tmp[1], err = d.readByte()
			if err != nil {
				return nil, err
			}
		}
		marker := d.tmp[1]
		if marker == 0 {
			// Treat "\xff\x00" as extraneous data.
			continue
		}
		for marker == 0xff {
			// Section B.1.1.2 says, "Any marker may optionally be preceded by any
			// number of fill bytes, which are bytes assigned code X'FF'".
			marker, err = d.readByte()
			if err != nil {
				return nil, err
			}
		}
		if marker == eoiMarker { // End Of Image.
			break
		}
		if rst0Marker <= marker && marker <= rst7Marker {
			// Figures B.2 and B.16 of the specification suggest that restart markers should
			// only occur between Entropy Coded Segments and not after the final ECS.
			// However, some encoders may generate incorrect JPEGs with a final restart
			// marker. That restart marker will be seen here instead of inside the processSOS
			// method, and is ignored as a harmless error. Restart markers have no extra data,
			// so we check for this before we read the 16-bit length of the segment.
			continue
		}

		// Read the 16-bit length of the segment. The value includes the 2 bytes for the
		// length itself, so we subtract 2 to get the number of remaining bytes.
		if err = d.readFull(d.tmp[:2]); err != nil {
			return nil, err
		}
		n := int(d.tmp[0])<<8 + int(d.tmp[1]) - 2
		if n < 0 {
			return nil, FormatError("short segment length")
		}

		switch marker {
		case sof0Marker, sof1Marker, sof2Marker:
			d.baseline = marker == sof0Marker
			d.progressive = marker == sof2Marker
			err = d.processSOF(n)
			if configOnly && d.jfif {
				return nil, err
			}
		case dhtMarker:
			if configOnly {
				err = d.ignore(n)
			} else {
				err = d.processDHT(n)
			}
		case dqtMarker:
			if configOnly {
				err = d.ignore(n)
			} else {
				err = d.processDQT(n)
			}
		case sosMarker:
			if configOnly {
				return nil, nil
			}
			err = d.processSOS(n)
		case driMarker:
			if configOnly {
				err = d.ignore(n)
			} else {
				err = d.processDRI(n)
			}
		case app0Marker:
			err = d.processApp0Marker(n)
		case app14Marker:
			err = d.processApp14Marker(n)
		default:
			if app0Marker <= marker && marker <= app15Marker || marker == comMarker {
				err = d.ignore(n)
			} else if marker < 0xc0 { // See Table B.1 "Marker code assignments".
				err = FormatError("unknown marker")
			} else {
				err = UnsupportedError("unknown marker")
			}
		}
		if err != nil {
			return nil, err
		}
	}

	if d.progressive {
		if err := d.reconstructProgressiveImage(); err != nil {
			return nil, err
		}
	}
	if d.img1 != nil {
		return d.img1, nil
	}
	if d.img3 != nil {
		if d.blackPix != nil {
			return d.applyBlack()
		} else if d.isRGB() {
			return d.convertToRGB()
		}
		return d.img3, nil
	}
	return nil, FormatError("missing SOS marker")
}

// applyBlack combines d.img3 and d.blackPix into a CMYK image. The formula
// used depends on whether the JPEG image is stored as CMYK or YCbCrK,
// indicated by the APP14 (Adobe) metadata.
//
// Adobe CMYK JPEG images are inverted, where 255 means no ink instead of full
// ink, so we apply "v = 255 - v" at various points. Note that a double
// inversion is a no-op, so inversions might be implicit in the code below.
func (d *decoder) applyBlack() (image.Image, error) {
	if !d.adobeTransformValid {
		return nil, UnsupportedError("unknown color model: 4-component JPEG doesn't have Adobe APP14 metadata")
	}

	// If the 4-component JPEG image isn't explicitly marked as "Unknown (RGB
	// or CMYK)" as per
	// http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
	// we assume that it is YCbCrK. This matches libjpeg's jdapimin.c.
	if d.adobeTransform != adobeTransformUnknown {
		// Convert the YCbCr part of the YCbCrK to RGB, invert the RGB to get
		// CMY, and patch in the original K. The RGB to CMY inversion cancels
		// out the 'Adobe inversion' described in the applyBlack doc comment
		// above, so in practice, only the fourth channel (black) is inverted.
		bounds := d.img3.Bounds()
		img := image.NewRGBA(bounds)
		imageutil.DrawYCbCr(img, bounds, d.img3, bounds.Min)
		for iBase, y := 0, bounds.Min.Y; y < bounds.Max.Y; iBase, y = iBase+img.Stride, y+1 {
			for i, x := iBase+3, bounds.Min.X; x < bounds.Max.X; i, x = i+4, x+1 {
				img.Pix[i] = 255 - d.blackPix[(y-bounds.Min.Y)*d.blackStride+(x-bounds.Min.X)]
			}
		}
		return &image.CMYK{
			Pix:    img.Pix,
			Stride: img.Stride,
			Rect:   img.Rect,
		}, nil
	}

	// The first three channels (cyan, magenta, yellow) of the CMYK
	// were decoded into d.img3, but each channel was decoded into a separate
	// []byte slice, and some channels may be subsampled. We interleave the
	// separate channels into an image.CMYK's single []byte slice containing 4
	// contiguous bytes per pixel.
	bounds := d.img3.Bounds()
	img := image.NewCMYK(bounds)

	translations := [4]struct {
		src    []byte
		stride int
	}{
		{d.img3.Y, d.img3.YStride},
		{d.img3.Cb, d.img3.CStride},
		{d.img3.Cr, d.img3.CStride},
		{d.blackPix, d.blackStride},
	}
	for t, translation := range translations {
		subsample := d.comp[t].h != d.comp[0].h || d.comp[t].v != d.comp[0].v
		for iBase, y := 0, bounds.Min.Y; y < bounds.Max.Y; iBase, y = iBase+img.Stride, y+1 {
			sy := y - bounds.Min.Y
			if subsample {
				sy /= 2
			}
			for i, x := iBase+t, bounds.Min.X; x < bounds.Max.X; i, x = i+4, x+1 {
				sx := x - bounds.Min.X
				if subsample {
					sx /= 2
				}
				img.Pix[i] = 255 - translation.src[sy*translation.stride+sx]
			}
		}
	}
	return img, nil
}

func (d *decoder) isRGB() bool {
	if d.jfif {
		return false
	}
	if d.adobeTransformValid && d.adobeTransform == adobeTransformUnknown {
		// http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
		// says that 0 means Unknown (and in practice RGB) and 1 means YCbCr.
		return true
	}
	return d.comp[0].c == 'R' && d.comp[1].c == 'G' && d.comp[2].c == 'B'
}

func (d *decoder) convertToRGB() (image.Image, error) {
	cScale := d.comp[0].h / d.comp[1].h
	bounds := d.img3.Bounds()
	img := image.NewRGBA(bounds)
	for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
		po := img.PixOffset(bounds.Min.X, y)
		yo := d.img3.YOffset(bounds.Min.X, y)
		co := d.img3.COffset(bounds.Min.X, y)
		for i, iMax := 0, bounds.Max.X-bounds.Min.X; i < iMax; i++ {
			img.Pix[po+4*i+0] = d.img3.Y[yo+i]
			img.Pix[po+4*i+1] = d.img3.Cb[co+i/cScale]
			img.Pix[po+4*i+2] = d.img3.Cr[co+i/cScale]
			img.Pix[po+4*i+3] = 255
		}
	}
	return img, nil
}

// Decode reads a JPEG image from r and returns it as an image.Image.
func Decode(r io.Reader) (image.Image, error) {
	var d decoder
	return d.decode(r, false)
}

// DecodeConfig returns the color model and dimensions of a JPEG image without
// decoding the entire image.
func DecodeConfig(r io.Reader) (image.Config, error) {
	var d decoder
	if _, err := d.decode(r, true); err != nil {
		return image.Config{}, err
	}
	switch d.nComp {
	case 1:
		return image.Config{
			ColorModel: color.GrayModel,
			Width:      d.width,
			Height:     d.height,
		}, nil
	case 3:
		cm := color.YCbCrModel
		if d.isRGB() {
			cm = color.RGBAModel
		}
		return image.Config{
			ColorModel: cm,
			Width:      d.width,
			Height:     d.height,
		}, nil
	case 4:
		return image.Config{
			ColorModel: color.CMYKModel,
			Width:      d.width,
			Height:     d.height,
		}, nil
	}
	return image.Config{}, FormatError("missing SOF marker")
}

func init() {
	image.RegisterFormat("jpeg", "\xff\xd8", Decode, DecodeConfig)
}