aboutsummaryrefslogtreecommitdiff
path: root/libgo/go/testing/quick/quick.go
blob: 0457fc7571b9cec554b7ae6c9e84d96d1b38c709 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package quick implements utility functions to help with black box testing.
//
// The testing/quick package is frozen and is not accepting new features.
package quick

import (
	"flag"
	"fmt"
	"math"
	"math/rand"
	"reflect"
	"strings"
	"time"
)

var defaultMaxCount *int = flag.Int("quickchecks", 100, "The default number of iterations for each check")

// A Generator can generate random values of its own type.
type Generator interface {
	// Generate returns a random instance of the type on which it is a
	// method using the size as a size hint.
	Generate(rand *rand.Rand, size int) reflect.Value
}

// randFloat32 generates a random float taking the full range of a float32.
func randFloat32(rand *rand.Rand) float32 {
	f := rand.Float64() * math.MaxFloat32
	if rand.Int()&1 == 1 {
		f = -f
	}
	return float32(f)
}

// randFloat64 generates a random float taking the full range of a float64.
func randFloat64(rand *rand.Rand) float64 {
	f := rand.Float64() * math.MaxFloat64
	if rand.Int()&1 == 1 {
		f = -f
	}
	return f
}

// randInt64 returns a random int64.
func randInt64(rand *rand.Rand) int64 {
	return int64(rand.Uint64())
}

// complexSize is the maximum length of arbitrary values that contain other
// values.
const complexSize = 50

// Value returns an arbitrary value of the given type.
// If the type implements the Generator interface, that will be used.
// Note: To create arbitrary values for structs, all the fields must be exported.
func Value(t reflect.Type, rand *rand.Rand) (value reflect.Value, ok bool) {
	return sizedValue(t, rand, complexSize)
}

// sizedValue returns an arbitrary value of the given type. The size
// hint is used for shrinking as a function of indirection level so
// that recursive data structures will terminate.
func sizedValue(t reflect.Type, rand *rand.Rand, size int) (value reflect.Value, ok bool) {
	if m, ok := reflect.Zero(t).Interface().(Generator); ok {
		return m.Generate(rand, size), true
	}

	v := reflect.New(t).Elem()
	switch concrete := t; concrete.Kind() {
	case reflect.Bool:
		v.SetBool(rand.Int()&1 == 0)
	case reflect.Float32:
		v.SetFloat(float64(randFloat32(rand)))
	case reflect.Float64:
		v.SetFloat(randFloat64(rand))
	case reflect.Complex64:
		v.SetComplex(complex(float64(randFloat32(rand)), float64(randFloat32(rand))))
	case reflect.Complex128:
		v.SetComplex(complex(randFloat64(rand), randFloat64(rand)))
	case reflect.Int16:
		v.SetInt(randInt64(rand))
	case reflect.Int32:
		v.SetInt(randInt64(rand))
	case reflect.Int64:
		v.SetInt(randInt64(rand))
	case reflect.Int8:
		v.SetInt(randInt64(rand))
	case reflect.Int:
		v.SetInt(randInt64(rand))
	case reflect.Uint16:
		v.SetUint(uint64(randInt64(rand)))
	case reflect.Uint32:
		v.SetUint(uint64(randInt64(rand)))
	case reflect.Uint64:
		v.SetUint(uint64(randInt64(rand)))
	case reflect.Uint8:
		v.SetUint(uint64(randInt64(rand)))
	case reflect.Uint:
		v.SetUint(uint64(randInt64(rand)))
	case reflect.Uintptr:
		v.SetUint(uint64(randInt64(rand)))
	case reflect.Map:
		numElems := rand.Intn(size)
		v.Set(reflect.MakeMap(concrete))
		for i := 0; i < numElems; i++ {
			key, ok1 := sizedValue(concrete.Key(), rand, size)
			value, ok2 := sizedValue(concrete.Elem(), rand, size)
			if !ok1 || !ok2 {
				return reflect.Value{}, false
			}
			v.SetMapIndex(key, value)
		}
	case reflect.Ptr:
		if rand.Intn(size) == 0 {
			v.Set(reflect.Zero(concrete)) // Generate nil pointer.
		} else {
			elem, ok := sizedValue(concrete.Elem(), rand, size)
			if !ok {
				return reflect.Value{}, false
			}
			v.Set(reflect.New(concrete.Elem()))
			v.Elem().Set(elem)
		}
	case reflect.Slice:
		numElems := rand.Intn(size)
		sizeLeft := size - numElems
		v.Set(reflect.MakeSlice(concrete, numElems, numElems))
		for i := 0; i < numElems; i++ {
			elem, ok := sizedValue(concrete.Elem(), rand, sizeLeft)
			if !ok {
				return reflect.Value{}, false
			}
			v.Index(i).Set(elem)
		}
	case reflect.Array:
		for i := 0; i < v.Len(); i++ {
			elem, ok := sizedValue(concrete.Elem(), rand, size)
			if !ok {
				return reflect.Value{}, false
			}
			v.Index(i).Set(elem)
		}
	case reflect.String:
		numChars := rand.Intn(complexSize)
		codePoints := make([]rune, numChars)
		for i := 0; i < numChars; i++ {
			codePoints[i] = rune(rand.Intn(0x10ffff))
		}
		v.SetString(string(codePoints))
	case reflect.Struct:
		n := v.NumField()
		// Divide sizeLeft evenly among the struct fields.
		sizeLeft := size
		if n > sizeLeft {
			sizeLeft = 1
		} else if n > 0 {
			sizeLeft /= n
		}
		for i := 0; i < n; i++ {
			elem, ok := sizedValue(concrete.Field(i).Type, rand, sizeLeft)
			if !ok {
				return reflect.Value{}, false
			}
			v.Field(i).Set(elem)
		}
	default:
		return reflect.Value{}, false
	}

	return v, true
}

// A Config structure contains options for running a test.
type Config struct {
	// MaxCount sets the maximum number of iterations.
	// If zero, MaxCountScale is used.
	MaxCount int
	// MaxCountScale is a non-negative scale factor applied to the
	// default maximum.
	// If zero, the default is unchanged.
	MaxCountScale float64
	// Rand specifies a source of random numbers.
	// If nil, a default pseudo-random source will be used.
	Rand *rand.Rand
	// Values specifies a function to generate a slice of
	// arbitrary reflect.Values that are congruent with the
	// arguments to the function being tested.
	// If nil, the top-level Value function is used to generate them.
	Values func([]reflect.Value, *rand.Rand)
}

var defaultConfig Config

// getRand returns the *rand.Rand to use for a given Config.
func (c *Config) getRand() *rand.Rand {
	if c.Rand == nil {
		return rand.New(rand.NewSource(time.Now().UnixNano()))
	}
	return c.Rand
}

// getMaxCount returns the maximum number of iterations to run for a given
// Config.
func (c *Config) getMaxCount() (maxCount int) {
	maxCount = c.MaxCount
	if maxCount == 0 {
		if c.MaxCountScale != 0 {
			maxCount = int(c.MaxCountScale * float64(*defaultMaxCount))
		} else {
			maxCount = *defaultMaxCount
		}
	}

	return
}

// A SetupError is the result of an error in the way that check is being
// used, independent of the functions being tested.
type SetupError string

func (s SetupError) Error() string { return string(s) }

// A CheckError is the result of Check finding an error.
type CheckError struct {
	Count int
	In    []interface{}
}

func (s *CheckError) Error() string {
	return fmt.Sprintf("#%d: failed on input %s", s.Count, toString(s.In))
}

// A CheckEqualError is the result CheckEqual finding an error.
type CheckEqualError struct {
	CheckError
	Out1 []interface{}
	Out2 []interface{}
}

func (s *CheckEqualError) Error() string {
	return fmt.Sprintf("#%d: failed on input %s. Output 1: %s. Output 2: %s", s.Count, toString(s.In), toString(s.Out1), toString(s.Out2))
}

// Check looks for an input to f, any function that returns bool,
// such that f returns false. It calls f repeatedly, with arbitrary
// values for each argument. If f returns false on a given input,
// Check returns that input as a *CheckError.
// For example:
//
// 	func TestOddMultipleOfThree(t *testing.T) {
// 		f := func(x int) bool {
// 			y := OddMultipleOfThree(x)
// 			return y%2 == 1 && y%3 == 0
// 		}
// 		if err := quick.Check(f, nil); err != nil {
// 			t.Error(err)
// 		}
// 	}
func Check(f interface{}, config *Config) error {
	if config == nil {
		config = &defaultConfig
	}

	fVal, fType, ok := functionAndType(f)
	if !ok {
		return SetupError("argument is not a function")
	}

	if fType.NumOut() != 1 {
		return SetupError("function does not return one value")
	}
	if fType.Out(0).Kind() != reflect.Bool {
		return SetupError("function does not return a bool")
	}

	arguments := make([]reflect.Value, fType.NumIn())
	rand := config.getRand()
	maxCount := config.getMaxCount()

	for i := 0; i < maxCount; i++ {
		err := arbitraryValues(arguments, fType, config, rand)
		if err != nil {
			return err
		}

		if !fVal.Call(arguments)[0].Bool() {
			return &CheckError{i + 1, toInterfaces(arguments)}
		}
	}

	return nil
}

// CheckEqual looks for an input on which f and g return different results.
// It calls f and g repeatedly with arbitrary values for each argument.
// If f and g return different answers, CheckEqual returns a *CheckEqualError
// describing the input and the outputs.
func CheckEqual(f, g interface{}, config *Config) error {
	if config == nil {
		config = &defaultConfig
	}

	x, xType, ok := functionAndType(f)
	if !ok {
		return SetupError("f is not a function")
	}
	y, yType, ok := functionAndType(g)
	if !ok {
		return SetupError("g is not a function")
	}

	if xType != yType {
		return SetupError("functions have different types")
	}

	arguments := make([]reflect.Value, xType.NumIn())
	rand := config.getRand()
	maxCount := config.getMaxCount()

	for i := 0; i < maxCount; i++ {
		err := arbitraryValues(arguments, xType, config, rand)
		if err != nil {
			return err
		}

		xOut := toInterfaces(x.Call(arguments))
		yOut := toInterfaces(y.Call(arguments))

		if !reflect.DeepEqual(xOut, yOut) {
			return &CheckEqualError{CheckError{i + 1, toInterfaces(arguments)}, xOut, yOut}
		}
	}

	return nil
}

// arbitraryValues writes Values to args such that args contains Values
// suitable for calling f.
func arbitraryValues(args []reflect.Value, f reflect.Type, config *Config, rand *rand.Rand) (err error) {
	if config.Values != nil {
		config.Values(args, rand)
		return
	}

	for j := 0; j < len(args); j++ {
		var ok bool
		args[j], ok = Value(f.In(j), rand)
		if !ok {
			err = SetupError(fmt.Sprintf("cannot create arbitrary value of type %s for argument %d", f.In(j), j))
			return
		}
	}

	return
}

func functionAndType(f interface{}) (v reflect.Value, t reflect.Type, ok bool) {
	v = reflect.ValueOf(f)
	ok = v.Kind() == reflect.Func
	if !ok {
		return
	}
	t = v.Type()
	return
}

func toInterfaces(values []reflect.Value) []interface{} {
	ret := make([]interface{}, len(values))
	for i, v := range values {
		ret[i] = v.Interface()
	}
	return ret
}

func toString(interfaces []interface{}) string {
	s := make([]string, len(interfaces))
	for i, v := range interfaces {
		s[i] = fmt.Sprintf("%#v", v)
	}
	return strings.Join(s, ", ")
}