aboutsummaryrefslogtreecommitdiff
path: root/libgo/runtime/mcentral.c
blob: b98a8d322046eb63b61588d6d4fd2e2d80e7acf8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Central free lists.
//
// See malloc.h for an overview.
//
// The MCentral doesn't actually contain the list of free objects; the MSpan does.
// Each MCentral is two lists of MSpans: those with free objects (c->nonempty)
// and those that are completely allocated (c->empty).
//
// TODO(rsc): tcmalloc uses a "transfer cache" to split the list
// into sections of class_to_transfercount[sizeclass] objects
// so that it is faster to move those lists between MCaches and MCentrals.

#include "runtime.h"
#include "arch.h"
#include "malloc.h"

static bool MCentral_Grow(MCentral *c);
static void* MCentral_Alloc(MCentral *c);
static void MCentral_Free(MCentral *c, void *v);

// Initialize a single central free list.
void
runtime_MCentral_Init(MCentral *c, int32 sizeclass)
{
	runtime_initlock(c);
	c->sizeclass = sizeclass;
	runtime_MSpanList_Init(&c->nonempty);
	runtime_MSpanList_Init(&c->empty);
}

// Allocate up to n objects from the central free list.
// Return the number of objects allocated.
// The objects are linked together by their first words.
// On return, *pstart points at the first object and *pend at the last.
int32
runtime_MCentral_AllocList(MCentral *c, int32 n, MLink **pfirst)
{
	MLink *first, *last, *v;
	int32 i;

	runtime_lock(c);
	// Replenish central list if empty.
	if(runtime_MSpanList_IsEmpty(&c->nonempty)) {
		if(!MCentral_Grow(c)) {
			runtime_unlock(c);
			*pfirst = nil;
			return 0;
		}
	}

	// Copy from list, up to n.
	// First one is guaranteed to work, because we just grew the list.
	first = MCentral_Alloc(c);
	last = first;
	for(i=1; i<n && (v = MCentral_Alloc(c)) != nil; i++) {
		last->next = v;
		last = v;
	}
	last->next = nil;
	c->nfree -= i;

	runtime_unlock(c);
	*pfirst = first;
	return i;
}

// Helper: allocate one object from the central free list.
static void*
MCentral_Alloc(MCentral *c)
{
	MSpan *s;
	MLink *v;

	if(runtime_MSpanList_IsEmpty(&c->nonempty))
		return nil;
	s = c->nonempty.next;
	s->ref++;
	v = s->freelist;
	s->freelist = v->next;
	if(s->freelist == nil) {
		runtime_MSpanList_Remove(s);
		runtime_MSpanList_Insert(&c->empty, s);
	}
	return v;
}

// Free n objects back into the central free list.
// Return the number of objects allocated.
// The objects are linked together by their first words.
// On return, *pstart points at the first object and *pend at the last.
void
runtime_MCentral_FreeList(MCentral *c, int32 n, MLink *start)
{
	MLink *v, *next;

	// Assume next == nil marks end of list.
	// n and end would be useful if we implemented
	// the transfer cache optimization in the TODO above.
	USED(n);

	runtime_lock(c);
	for(v=start; v; v=next) {
		next = v->next;
		MCentral_Free(c, v);
	}
	runtime_unlock(c);
}

// Helper: free one object back into the central free list.
static void
MCentral_Free(MCentral *c, void *v)
{
	MSpan *s;
	MLink *p;
	int32 size;

	// Find span for v.
	s = runtime_MHeap_Lookup(&runtime_mheap, v);
	if(s == nil || s->ref == 0)
		runtime_throw("invalid free");

	// Move to nonempty if necessary.
	if(s->freelist == nil) {
		runtime_MSpanList_Remove(s);
		runtime_MSpanList_Insert(&c->nonempty, s);
	}

	// Add v back to s's free list.
	p = v;
	p->next = s->freelist;
	s->freelist = p;
	c->nfree++;

	// If s is completely freed, return it to the heap.
	if(--s->ref == 0) {
		size = runtime_class_to_size[c->sizeclass];
		runtime_MSpanList_Remove(s);
		runtime_unmarkspan((byte*)(s->start<<PageShift), s->npages<<PageShift);
		*(uintptr*)(s->start<<PageShift) = 1;  // needs zeroing
		s->freelist = nil;
		c->nfree -= (s->npages << PageShift) / size;
		runtime_unlock(c);
		runtime_MHeap_Free(&runtime_mheap, s, 0);
		runtime_lock(c);
	}
}

void
runtime_MGetSizeClassInfo(int32 sizeclass, uintptr *sizep, int32 *npagesp, int32 *nobj)
{
	int32 size;
	int32 npages;

	npages = runtime_class_to_allocnpages[sizeclass];
	size = runtime_class_to_size[sizeclass];
	*npagesp = npages;
	*sizep = size;
	*nobj = (npages << PageShift) / size;
}

// Fetch a new span from the heap and
// carve into objects for the free list.
static bool
MCentral_Grow(MCentral *c)
{
	int32 i, n, npages;
	uintptr size;
	MLink **tailp, *v;
	byte *p;
	MSpan *s;

	runtime_unlock(c);
	runtime_MGetSizeClassInfo(c->sizeclass, &size, &npages, &n);
	s = runtime_MHeap_Alloc(&runtime_mheap, npages, c->sizeclass, 0);
	if(s == nil) {
		// TODO(rsc): Log out of memory
		runtime_lock(c);
		return false;
	}

	// Carve span into sequence of blocks.
	tailp = &s->freelist;
	p = (byte*)(s->start << PageShift);
	s->limit = p + size*n;
	for(i=0; i<n; i++) {
		v = (MLink*)p;
		*tailp = v;
		tailp = &v->next;
		p += size;
	}
	*tailp = nil;
	runtime_markspan((byte*)(s->start<<PageShift), size, n, size*n < (s->npages<<PageShift));

	runtime_lock(c);
	c->nfree += n;
	runtime_MSpanList_Insert(&c->nonempty, s);
	return true;
}