aboutsummaryrefslogtreecommitdiff
path: root/libstdc++-v3/doc/xml/manual/policy_data_structures.xml
blob: 11fad5e018df488760ed605e31549fdaf521be82 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
<chapter xmlns="http://docbook.org/ns/docbook" version="5.0"
	 xml:id="manual.ext.containers.pbds" xreflabel="pbds">
  <info>
    <title>Policy-Based Data Structures</title>
    <keywordset>
      <keyword>
	ISO C++
      </keyword>
      <keyword>
	policy
      </keyword>
      <keyword>
	container
      </keyword>
      <keyword>
	data
      </keyword>
      <keyword>
	structure
      </keyword>
      <keyword>
	associated
      </keyword>
      <keyword>
	tree
      </keyword>
      <keyword>
	trie
      </keyword>
      <keyword>
	hash
      </keyword>
      <keyword>
	metaprogramming
      </keyword>
    </keywordset>
  </info>
  <?dbhtml filename="policy_data_structures.html"?>

  <!-- 2006-04-01 Ami Tavory -->
  <!-- 2011-05-25 Benjamin Kosnik -->

  <!-- S01: intro -->
  <section xml:id="pbds.intro">
    <info><title>Intro</title></info>

    <para>
      This is a library of policy-based elementary data structures:
      associative containers and priority queues. It is designed for
      high-performance, flexibility, semantic safety, and conformance to
      the corresponding containers in <literal>std</literal> and
      <literal>std::tr1</literal> (except for some points where it differs
      by design).
    </para>
    <para>
    </para>

    <section xml:id="pbds.intro.issues">
      <info><title>Performance Issues</title></info>
      <para>
      </para>

      <para>
	An attempt is made to categorize the wide variety of possible
	container designs in terms of performance-impacting factors. These
	performance factors are translated into design policies and
	incorporated into container design.
      </para>

      <para>
	There is tension between unravelling factors into a coherent set of
	policies. Every attempt is made to make a minimal set of
	factors. However, in many cases multiple factors make for long
	template names. Every attempt is made to alias and use typedefs in
	the source files, but the generated names for external symbols can
	be large for binary files or debuggers.
      </para>

      <para>
	In many cases, the longer names allow capabilities and behaviours
	controlled by macros to also be unamibiguously emitted as distinct
	generated names.
      </para>

      <para>
	Specific issues found while unraveling performance factors in the
	design of associative containers and priority queues follow.
      </para>

      <section xml:id="pbds.intro.issues.associative">
	<info><title>Associative</title></info>

	<para>
	  Associative containers depend on their composite policies to a very
	  large extent. Implicitly hard-wiring policies can hamper their
	  performance and limit their functionality. An efficient hash-based
	  container, for example, requires policies for testing key
	  equivalence, hashing keys, translating hash values into positions
	  within the hash table, and determining when and how to resize the
	  table internally. A tree-based container can efficiently support
	  order statistics, i.e. the ability to query what is the order of
	  each key within the sequence of keys in the container, but only if
	  the container is supplied with a policy to internally update
	  meta-data. There are many other such examples.
	</para>

	<para>
	  Ideally, all associative containers would share the same
	  interface. Unfortunately, underlying data structures and mapping
	  semantics differentiate between different containers. For example,
	  suppose one writes a generic function manipulating an associative
	  container.
	</para>

	<programlisting>
	  template&lt;typename Cntnr&gt;
	  void
	  some_op_sequence(Cntnr&amp; r_cnt)
	  {
	  ...
	  }
	</programlisting>

	<para>
	  Given this, then what can one assume about the instantiating
	  container? The answer varies according to its underlying data
	  structure. If the underlying data structure of
	  <literal>Cntnr</literal> is based on a tree or trie, then the order
	  of elements is well defined; otherwise, it is not, in general. If
	  the underlying data structure of <literal>Cntnr</literal> is based
	  on a collision-chaining hash table, then modifying
	  r_<literal>Cntnr</literal> will not invalidate its iterators' order;
	  if the underlying data structure is a probing hash table, then this
	  is not the case. If the underlying data structure is based on a tree
	  or trie, then a reference to the container can efficiently be split;
	  otherwise, it cannot, in general. If the underlying data structure
	  is a red-black tree, then splitting a reference to the container is
	  exception-free; if it is an ordered-vector tree, exceptions can be
	  thrown.
	</para>

      </section>

      <section xml:id="pbds.intro.issues.priority_queue">
	<info><title>Priority Que</title></info>

	<para>
	  Priority queues are useful when one needs to efficiently access a
	  minimum (or maximum) value as the set of values changes.
	</para>

	<para>
	  Most useful data structures for priority queues have a relatively
	  simple structure, as they are geared toward relatively simple
	  requirements. Unfortunately, these structures do not support access
	  to an arbitrary value, which turns out to be necessary in many
	  algorithms. Say, decreasing an arbitrary value in a graph
	  algorithm. Therefore, some extra mechanism is necessary and must be
	  invented for accessing arbitrary values. There are at least two
	  alternatives: embedding an associative container in a priority
	  queue, or allowing cross-referencing through iterators. The first
	  solution adds significant overhead; the second solution requires a
	  precise definition of iterator invalidation. Which is the next
	  point...
	</para>

	<para>
	  Priority queues, like hash-based containers, store values in an
	  order that is meaningless and undefined externally. For example, a
	  <code>push</code> operation can internally reorganize the
	  values. Because of this characteristic, describing a priority
	  queues' iterator is difficult: on one hand, the values to which
	  iterators point can remain valid, but on the other, the logical
	  order of iterators can change unpredictably.
	</para>

	<para>
	  Roughly speaking, any element that is both inserted to a priority
	  queue (e.g. through <code>push</code>) and removed
	  from it (e.g., through <code>pop</code>), incurs a
	  logarithmic overhead (in the amortized sense). Different underlying
	  data structures place the actual cost differently: some are
	  optimized for amortized complexity, whereas others guarantee that
	  specific operations only have a constant cost. One underlying data
	  structure might be chosen if modifying a value is frequent
	  (Dijkstra's shortest-path algorithm), whereas a different one might
	  be chosen otherwise. Unfortunately, an array-based binary heap - an
	  underlying data structure that optimizes (in the amortized sense)
	  <code>push</code> and <code>pop</code> operations, differs from the
	  others in terms of its invalidation guarantees. Other design
	  decisions also impact the cost and placement of the overhead, at the
	  expense of more difference in the the kinds of operations that the
	  underlying data structure can support. These differences pose a
	  challenge when creating a uniform interface for priority queues.
	</para>
      </section>
    </section>

    <section xml:id="pbds.intro.motivation">
      <info><title>Goals</title></info>

      <para>
	Many fine associative-container libraries were already written,
	most notably, the C++ standard's associative containers. Why
	then write another library? This section shows some possible
	advantages of this library, when considering the challenges in
	the introduction. Many of these points stem from the fact that
	the ISO C++ process introduced associative-containers in a
	two-step process (first standardizing tree-based containers,
	only then adding hash-based containers, which are fundamentally
	different), did not standardize priority queues as containers,
	and (in our opinion) overloads the iterator concept.
      </para>

      <section xml:id="pbds.intro.motivation.associative">
	<info><title>Associative</title></info>
	<para>
	</para>

	<section xml:id="motivation.associative.policy">
	  <info><title>Policy Choices</title></info>
	  <para>
	    Associative containers require a relatively large number of
	    policies to function efficiently in various settings. In some
	    cases this is needed for making their common operations more
	    efficient, and in other cases this allows them to support a
	    larger set of operations
	  </para>

	  <orderedlist>
	    <listitem>
	      <para>
		Hash-based containers, for example, support look-up and
		insertion methods (<function>find</function> and
		<function>insert</function>). In order to locate elements
		quickly, they are supplied a hash functor, which instruct
		how to transform a key object into some size type; a hash
		functor might transform <constant>"hello"</constant>
		into <constant>1123002298</constant>. A hash table, though,
		requires transforming each key object into some size-type
		type in some specific domain; a hash table with a 128-long
		table might transform <constant>"hello"</constant> into
		position <constant>63</constant>. The policy by which the
		hash value is transformed into a position within the table
		can dramatically affect performance.  Hash-based containers
		also do not resize naturally (as opposed to tree-based
		containers, for example). The appropriate resize policy is
		unfortunately intertwined with the policy that transforms
		hash value into a position within the table.
	      </para>
	    </listitem>

	    <listitem>
	      <para>
		Tree-based containers, for example, also support look-up and
		insertion methods, and are primarily useful when maintaining
		order between elements is important. In some cases, though,
		one can utilize their balancing algorithms for completely
		different purposes.
	      </para>

	      <para>
		Figure A shows a tree whose each node contains two entries:
		a floating-point key, and some size-type
		<emphasis>metadata</emphasis> (in bold beneath it) that is
		the number of nodes in the sub-tree. (The root has key 0.99,
		and has 5 nodes (including itself) in its sub-tree.) A
		container based on this data structure can obviously answer
		efficiently whether 0.3 is in the container object, but it
		can also answer what is the order of 0.3 among all those in
		the container object: see <xref linkend="biblio.clrs2001"/>.

	      </para>

	      <para>
		As another example, Figure B shows a tree whose each node
		contains two entries: a half-open geometric line interval,
		and a number <emphasis>metadata</emphasis> (in bold beneath
		it) that is the largest endpoint of all intervals in its
		sub-tree.  (The root describes the interval <constant>[20,
		36)</constant>, and the largest endpoint in its sub-tree is
		99.) A container based on this data structure can obviously
		answer efficiently whether <constant>[3, 41)</constant> is
		in the container object, but it can also answer efficiently
		whether the container object has intervals that intersect
		<constant>[3, 41)</constant>. These types of queries are
		very useful in geometric algorithms and lease-management
		algorithms.
	      </para>

	      <para>
		It is important to note, however, that as the trees are
		modified, their internal structure changes. To maintain
		these invariants, one must supply some policy that is aware
		of these changes.  Without this, it would be better to use a
		linked list (in itself very efficient for these purposes).
	      </para>

	    </listitem>
	  </orderedlist>

	  <figure>
	    <title>Node Invariants</title>
	    <mediaobject>
	      <imageobject>
		<imagedata align="center" format="PNG" scale="100"
			   fileref="../images/pbds_node_invariants.png"/>
	      </imageobject>
	      <textobject>
		<phrase>Node Invariants</phrase>
	      </textobject>
	    </mediaobject>
	  </figure>

	</section>

	<section xml:id="motivation.associative.underlying">
	  <info><title>Underlying Data Structures</title></info>
	  <para>
	    The standard C++ library contains associative containers based on
	    red-black trees and collision-chaining hash tables. These are
	    very useful, but they are not ideal for all types of
	    settings.
	  </para>

	  <para>
	    The figure below shows the different underlying data structures
	    currently supported in this library.
	  </para>

	  <figure>
	    <title>Underlying Associative Data Structures</title>
	    <mediaobject>
	      <imageobject>
		<imagedata align="center" format="PNG" scale="100"
			   fileref="../images/pbds_different_underlying_dss_1.png"/>
	      </imageobject>
	      <textobject>
		<phrase>Underlying Associative Data Structures</phrase>
	      </textobject>
	    </mediaobject>
	  </figure>

	  <para>
	    A shows a collision-chaining hash-table, B shows a probing
	    hash-table, C shows a red-black tree, D shows a splay tree, E shows
	    a tree based on an ordered vector(implicit in the order of the
	    elements), F shows a PATRICIA trie, and G shows a list-based
	    container with update policies.
	  </para>

	  <para>
	    Each of these data structures has some performance benefits, in
	    terms of speed, size or both. For now, note that vector-based trees
	    and probing hash tables manipulate memory more efficiently than
	    red-black trees and collision-chaining hash tables, and that
	    list-based associative containers are very useful for constructing
	    "multimaps".
	  </para>

	  <para>
	    Now consider a function manipulating a generic associative
	    container,
	  </para>
	  <programlisting>
	    template&lt;class Cntnr&gt;
	    int
	    some_op_sequence(Cntnr &amp;r_cnt)
	    {
	    ...
	    }
	  </programlisting>

	  <para>
	    Ideally, the underlying data structure
	    of <classname>Cntnr</classname> would not affect what can be
	    done with <varname>r_cnt</varname>.  Unfortunately, this is not
	    the case.
	  </para>

	  <para>
	    For example, if <classname>Cntnr</classname>
	    is <classname>std::map</classname>, then the function can
	    use
	  </para>
	  <programlisting>
	    std::for_each(r_cnt.find(foo), r_cnt.find(bar), foobar)
	  </programlisting>
	  <para>
	    in order to apply <classname>foobar</classname> to all
	    elements between <classname>foo</classname> and
	    <classname>bar</classname>. If
	    <classname>Cntnr</classname> is a hash-based container,
	    then this call's results are undefined.
	  </para>

	  <para>
	    Also, if <classname>Cntnr</classname> is tree-based, the type
	    and object of the comparison functor can be
	    accessed. If <classname>Cntnr</classname> is hash based, these
	    queries are nonsensical.
	  </para>

	  <para>
	    There are various other differences based on the container's
	    underlying data structure. For one, they can be constructed by,
	    and queried for, different policies. Furthermore:
	  </para>

	  <orderedlist>
	    <listitem>
	      <para>
		Containers based on C, D, E and F store elements in a
		meaningful order; the others store elements in a meaningless
		(and probably time-varying) order. By implication, only
		containers based on C, D, E and F can
		support <function>erase</function> operations taking an
		iterator and returning an iterator to the following element
		without performance loss.
	      </para>
	    </listitem>

	    <listitem>
	      <para>
		Containers based on C, D, E, and F can be split and joined
		efficiently, while the others cannot. Containers based on C
		and D, furthermore, can guarantee that this is exception-free;
		containers based on E cannot guarantee this.
	      </para>
	    </listitem>

	    <listitem>
	      <para>
		Containers based on all but E can guarantee that
		erasing an element is exception free; containers based on E
		cannot guarantee this. Containers based on all but B and E
		can guarantee that modifying an object of their type does
		not invalidate iterators or references to their elements,
		while containers based on B and E cannot. Containers based
		on C, D, and E can furthermore make a stronger guarantee,
		namely that modifying an object of their type does not
		affect the order of iterators.
	      </para>
	    </listitem>
	  </orderedlist>

	  <para>
	    A unified tag and traits system (as used for the C++ standard
	    library iterators, for example) can ease generic manipulation of
	    associative containers based on different underlying data
	    structures.
	  </para>

	</section>

	<section xml:id="motivation.associative.iterators">
	  <info><title>Iterators</title></info>
	  <para>
	    Iterators are centric to the design of the standard library
	    containers, because of the container/algorithm/iterator
	    decomposition that allows an algorithm to operate on a range
	    through iterators of some sequence.  Iterators, then, are useful
	    because they allow going over a
	    specific <emphasis>sequence</emphasis>.  The standard library
	    also uses iterators for accessing a
	    specific <emphasis>element</emphasis>: when an associative
	    container returns one through <function>find</function>. The
	    standard library consistently uses the same types of iterators
	    for both purposes: going over a range, and accessing a specific
	    found element. Before the introduction of hash-based containers
	    to the standard library, this made sense (with the exception of
	    priority queues, which are discussed later).
	  </para>

	  <para>
	    Using the standard associative containers together with
	    non-order-preserving associative containers (and also because of
	    priority-queues container), there is a possible need for
	    different types of iterators for self-organizing containers:
	    the iterator concept seems overloaded to mean two different
	    things (in some cases). <remark> XXX
	    "ds_gen.html#find_range">Design::Associative
	    Containers::Data-Structure Genericity::Point-Type and Range-Type
	    Methods</remark>.
	  </para>

	  <section xml:id="associative.iterators.using">
	    <info>
	      <title>Using Point Iterators for Range Operations</title>
	    </info>
	    <para>
	      Suppose <classname>cntnr</classname> is some associative
	      container, and say <varname>c</varname> is an object of
	      type <classname>cntnr</classname>. Then what will be the outcome
	      of
	    </para>

	    <programlisting>
	      std::for_each(c.find(1), c.find(5), foo);
	    </programlisting>

	    <para>
	      If <classname>cntnr</classname> is a tree-based container
	      object, then an in-order walk will
	      apply <classname>foo</classname> to the relevant elements,
	      as in the graphic below, label A. If <varname>c</varname> is
	      a hash-based container, then the order of elements between any
	      two elements is undefined (and probably time-varying); there is
	      no guarantee that the elements traversed will coincide with the
	      <emphasis>logical</emphasis> elements between 1 and 5, as in
	      label B.
	    </para>

	    <figure>
	      <title>Range Iteration in Different Data Structures</title>
	      <mediaobject>
		<imageobject>
		  <imagedata align="center" format="PNG" scale="100"
			     fileref="../images/pbds_point_iterators_range_ops_1.png"/>
		</imageobject>
		<textobject>
		  <phrase>Node Invariants</phrase>
		</textobject>
	      </mediaobject>
	    </figure>

	    <para>
	      In our opinion, this problem is not caused just because
	      red-black trees are order preserving while
	      collision-chaining hash tables are (generally) not - it
	      is more fundamental. Most of the standard's containers
	      order sequences in a well-defined manner that is
	      determined by their <emphasis>interface</emphasis>:
	      calling <function>insert</function> on a tree-based
	      container modifies its sequence in a predictable way, as
	      does calling <function>push_back</function> on a list or
	      a vector. Conversely, collision-chaining hash tables,
	      probing hash tables, priority queues, and list-based
	      containers (which are very useful for "multimaps") are
	      self-organizing data structures; the effect of each
	      operation modifies their sequences in a manner that is
	      (practically) determined by their
	      <emphasis>implementation</emphasis>.
	    </para>

	    <para>
	      Consequently, applying an algorithm to a sequence obtained from most
	      containers may or may not make sense, but applying it to a
	      sub-sequence of a self-organizing container does not.
	    </para>
	  </section>

	  <section xml:id="associative.iterators.cost">
	    <info>
	      <title>Cost to Point Iterators to Enable Range Operations</title>
	    </info>
	    <para>
	      Suppose <varname>c</varname> is some collision-chaining
	      hash-based container object, and one calls
	    </para>
	    <programlisting>c.find(3)</programlisting>
	    <para>
	      Then what composes the returned iterator?
	    </para>

	    <para>
	      In the graphic below, label A shows the simplest (and
	      most efficient) implementation of a collision-chaining
	      hash table.  The little box marked
	      <classname>point_iterator</classname> shows an object
	      that contains a pointer to the element's node. Note that
	      this "iterator" has no way to move to the next element (
	      it cannot support
	      <function>operator++</function>). Conversely, the little
	      box marked <classname>iterator</classname> stores both a
	      pointer to the element, as well as some other
	      information (the bucket number of the element). the
	      second iterator, then, is "heavier" than the first one-
	      it requires more time and space. If we were to use a
	      different container to cross-reference into this
	      hash-table using these iterators - it would take much
	      more space. As noted above, nothing much can be done by
	      incrementing these iterators, so why is this extra
	      information needed?
	    </para>

	    <para>
	      Alternatively, one might create a collision-chaining hash-table
	      where the lists might be linked, forming a monolithic total-element
	      list, as in the graphic below, label B.  Here the iterators are as
	      light as can be, but the hash-table's operations are more
	      complicated.
	    </para>

	    <figure>
	      <title>Point Iteration in Hash Data Structures</title>
	      <mediaobject>
		<imageobject>
		  <imagedata align="center" format="PNG" scale="100"
			     fileref="../images/pbds_point_iterators_range_ops_2.png"/>
		</imageobject>
		<textobject>
		  <phrase>Point Iteration in Hash Data Structures</phrase>
		</textobject>
	      </mediaobject>
	    </figure>

	    <para>
	      It should be noted that containers based on collision-chaining
	      hash-tables are not the only ones with this type of behavior;
	      many other self-organizing data structures display it as well.
	    </para>
	  </section>

	  <section xml:id="associative.iterators.invalidation">
	    <info><title>Invalidation Guarantees</title></info>
	    <para>Consider the following snippet:</para>
	    <programlisting>
	      it = c.find(3);
	      c.erase(5);
	    </programlisting>

	    <para>
	      Following the call to <classname>erase</classname>, what is the
	      validity of <classname>it</classname>: can it be de-referenced?
	      can it be incremented?
	    </para>

	    <para>
	      The answer depends on the underlying data structure of the
	      container. The graphic below shows three cases: A1 and A2 show
	      a red-black tree; B1 and B2 show a probing hash-table; C1 and C2
	      show a collision-chaining hash table.
	    </para>

	    <figure>
	      <title>Effect of erase in different underlying data structures</title>
	      <mediaobject>
		<imageobject>
		  <imagedata align="center" format="PNG" scale="100"
			     fileref="../images/pbds_invalidation_guarantee_erase.png"/>
		</imageobject>
		<textobject>
		  <phrase>Effect of erase in different underlying data structures</phrase>
		</textobject>
	      </mediaobject>
	    </figure>

	    <orderedlist>
	      <listitem>
		<para>
		  Erasing 5 from A1 yields A2. Clearly, an iterator to 3 can
		  be de-referenced and incremented. The sequence of iterators
		  changed, but in a way that is well-defined by the interface.
		</para>
	      </listitem>

	      <listitem>
		<para>
		  Erasing 5 from B1 yields B2. Clearly, an iterator to 3 is
		  not valid at all - it cannot be de-referenced or
		  incremented; the order of iterators changed in a way that is
		  (practically) determined by the implementation and not by
		  the interface.
		</para>
	      </listitem>

	      <listitem>
		<para>
		  Erasing 5 from C1 yields C2. Here the situation is more
		  complicated. On the one hand, there is no problem in
		  de-referencing <classname>it</classname>. On the other hand,
		  the order of iterators changed in a way that is
		  (practically) determined by the implementation and not by
		  the interface.
		</para>
	      </listitem>
	    </orderedlist>

	    <para>
	      So in the standard library containers, it is not always possible
	      to express whether <varname>it</varname> is valid or not. This
	      is true also for <function>insert</function>. Again, the
	      iterator concept seems overloaded.
	    </para>
	  </section>
	</section> <!--iterators-->


	<section xml:id="motivation.associative.functions">
	  <info><title>Functional</title></info>
	  <para>
	  </para>

	  <para>
	    The design of the functional overlay to the underlying data
	    structures differs slightly from some of the conventions used in
	    the C++ standard.  A strict public interface of methods that
	    comprise only operations which depend on the class's internal
	    structure; other operations are best designed as external
	    functions. (See <xref linkend="biblio.meyers02both"/>).With this
	    rubric, the standard associative containers lack some useful
	    methods, and provide other methods which would be better
	    removed.
	  </para>

	  <section xml:id="motivation.associative.functions.erase">
	    <info><title><function>erase</function></title></info>

	    <orderedlist>
	      <listitem>
		<para>
		  Order-preserving standard associative containers provide the
		  method
		</para>
		<programlisting>
		  iterator
		  erase(iterator it)
		</programlisting>

		<para>
		  which takes an iterator, erases the corresponding
		  element, and returns an iterator to the following
		  element. Also standardd hash-based associative
		  containers provide this method. This seemingly
		  increasesgenericity between associative containers,
		  since it is possible to use
		</para>
		<programlisting>
		  typename C::iterator it = c.begin();
		  typename C::iterator e_it = c.end();

		  while(it != e_it)
		  it = pred(*it)? c.erase(it) : ++it;
		</programlisting>

		<para>
		  in order to erase from a container object <varname>
		  c</varname> all element which match a
		  predicate <classname>pred</classname>. However, in a
		  different sense this actually decreases genericity: an
		  integral implication of this method is that tree-based
		  associative containers' memory use is linear in the total
		  number of elements they store, while hash-based
		  containers' memory use is unbounded in the total number of
		  elements they store. Assume a hash-based container is
		  allowed to decrease its size when an element is
		  erased. Then the elements might be rehashed, which means
		  that there is no "next" element - it is simply
		  undefined. Consequently, it is possible to infer from the
		  fact that the standard library's hash-based containers
		  provide this method that they cannot downsize when
		  elements are erased. As a consequence, different code is
		  needed to manipulate different containers, assuming that
		  memory should be conserved. Therefor, this library's
		  non-order preserving associative containers omit this
		  method.
		</para>
	      </listitem>

	      <listitem>
		<para>
		  All associative containers include a conditional-erase method
		</para>
		<programlisting>
		  template&lt;
		  class Pred&gt;
		  size_type
		  erase_if
		  (Pred pred)
		</programlisting>
		<para>
		  which erases all elements matching a predicate. This is probably the
		  only way to ensure linear-time multiple-item erase which can
		  actually downsize a container.
		</para>
	      </listitem>

	      <listitem>
		<para>
		  The standard associative containers provide methods for
		  multiple-item erase of the form
		</para>
		<programlisting>
		  size_type
		  erase(It b, It e)
		</programlisting>
		<para>
		  erasing a range of elements given by a pair of
		  iterators. For tree-based or trie-based containers, this can
		  implemented more efficiently as a (small) sequence of split
		  and join operations. For other, unordered, containers, this
		  method isn't much better than an external loop. Moreover,
		  if <varname>c</varname> is a hash-based container,
		  then
		</para>
		<programlisting>
		  c.erase(c.find(2), c.find(5))
		</programlisting>
		<para>
		  is almost certain to do something
		  different than erasing all elements whose keys are between 2
		  and 5, and is likely to produce other undefined behavior.
		</para>
	      </listitem>
	    </orderedlist>
	  </section> <!-- erase -->

	  <section xml:id="motivation.associative.functions.split">
	    <info>
	      <title>
		<function>split</function> and <function>join</function>
	      </title>
	    </info>
	    <para>
	      It is well-known that tree-based and trie-based container
	      objects can be efficiently split or joined (See
	      <xref linkend="biblio.clrs2001"/>). Externally splitting or
	      joining trees is super-linear, and, furthermore, can throw
	      exceptions. Split and join methods, consequently, seem good
	      choices for tree-based container methods, especially, since as
	      noted just before, they are efficient replacements for erasing
	      sub-sequences.
	    </para>

	  </section> <!-- split -->

	  <section xml:id="motivation.associative.functions.insert">
	    <info>
	      <title>
		<function>insert</function>
	      </title>
	    </info>
	    <para>
	      The standard associative containers provide methods of the form
	    </para>
	    <programlisting>
	      template&lt;class It&gt;
	      size_type
	      insert(It b, It e);
	    </programlisting>

	    <para>
	      for inserting a range of elements given by a pair of
	      iterators. At best, this can be implemented as an external loop,
	      or, even more efficiently, as a join operation (for the case of
	      tree-based or trie-based containers). Moreover, these methods seem
	      similar to constructors taking a range given by a pair of
	      iterators; the constructors, however, are transactional, whereas
	      the insert methods are not; this is possibly confusing.
	    </para>

	  </section> <!-- insert -->

	  <section xml:id="motivation.associative.functions.compare">
	    <info>
	      <title>
		<function>operator==</function> and <function>operator&lt;=</function>
	      </title>
	    </info>

	    <para>
	      Associative containers are parametrized by policies allowing to
	      test key equivalence: a hash-based container can do this through
	      its equivalence functor, and a tree-based container can do this
	      through its comparison functor. In addition, some standard
	      associative containers have global function operators, like
	      <function>operator==</function> and <function>operator&lt;=</function>,
	      that allow comparing entire associative containers.
	    </para>

	    <para>
	      In our opinion, these functions are better left out. To begin
	      with, they do not significantly improve over an external
	      loop. More importantly, however, they are possibly misleading -
	      <function>operator==</function>, for example, usually checks for
	      equivalence, or interchangeability, but the associative
	      container cannot check for values' equivalence, only keys'
	      equivalence; also, are two containers considered equivalent if
	      they store the same values in different order? this is an
	      arbitrary decision.
	    </para>
	  </section> <!-- compare -->

	</section>  <!-- functional -->

      </section> <!--associative-->

      <section xml:id="pbds.intro.motivation.priority_queue">
	<info><title>Priority Queues</title></info>

	<section xml:id="motivation.priority_queue.policy">
	  <info><title>Policy Choices</title></info>

	  <para>
	    Priority queues are containers that allow efficiently inserting
	    values and accessing the maximal value (in the sense of the
	    container's comparison functor). Their interface
	    supports <function>push</function>
	    and <function>pop</function>. The standard
	    container <classname>std::priorityqueue</classname> indeed support
	    these methods, but little else. For algorithmic and
	    software-engineering purposes, other methods are needed:
	  </para>

	  <orderedlist>
	    <listitem>
	      <para>
		Many graph algorithms (see
		<xref linkend="biblio.clrs2001"/>) require increasing a
		value in a priority queue (again, in the sense of the
		container's comparison functor), or joining two
		priority-queue objects.
	      </para>
	    </listitem>

	    <listitem>
	      <para>The return type of <classname>priority_queue</classname>'s
	      <function>push</function> method is a point-type iterator, which can
	      be used for modifying or erasing arbitrary values. For
	      example:</para>
	      <programlisting>
		priority_queue&lt;int&gt; p;
		priority_queue&lt;int&gt;::point_iterator it = p.push(3);
		p.modify(it, 4);
	      </programlisting>

	      <para>These types of cross-referencing operations are necessary
	      for making priority queues useful for different applications,
	      especially graph applications.</para>

	    </listitem>
	    <listitem>
	      <para>
		It is sometimes necessary to erase an arbitrary value in a
		priority queue. For example, consider
		the <function>select</function> function for monitoring
		file descriptors:
	      </para>

	      <programlisting>
		int
		select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *errorfds,
		struct timeval *timeout);
	      </programlisting>
	      <para>
		then, as the select documentation states:
	      </para>
	      <para>
		<quote>
		  The nfds argument specifies the range of file
		  descriptors to be tested. The select() function tests file
		descriptors in the range of 0 to nfds-1.</quote>
	      </para>

	      <para>
		It stands to reason, therefore, that we might wish to
		maintain a minimal value for <varname>nfds</varname>, and
		priority queues immediately come to mind. Note, though, that
		when a socket is closed, the minimal file description might
		change; in the absence of an efficient means to erase an
		arbitrary value from a priority queue, we might as well
		avoid its use altogether.
	      </para>

	      <para>
		The standard containers typically support iterators. It is
		somewhat unusual
		for <classname>std::priority_queue</classname> to omit them
		(See <xref linkend="biblio.meyers01stl"/>). One might
		ask why do priority queues need to support iterators, since
		they are self-organizing containers with a different purpose
		than abstracting sequences. There are several reasons:
	      </para>
	      <orderedlist>
		<listitem>
		  <para>
		    Iterators (even in self-organizing containers) are
		    useful for many purposes: cross-referencing
		    containers, serialization, and debugging code that uses
		    these containers.
		  </para>
		</listitem>

		<listitem>
		  <para>
		    The standard library's hash-based containers support
		    iterators, even though they too are self-organizing
		    containers with a different purpose than abstracting
		    sequences.
		  </para>
		</listitem>

		<listitem>
		  <para>
		    In standard-library-like containers, it is natural to specify the
		    interface of operations for modifying a value or erasing
		    a value (discussed previously) in terms of a iterators.
		    It should be noted that the standard
		    containers also use iterators for accessing and
		    manipulating a specific value. In hash-based
		    containers, one checks the existence of a key by
		    comparing the iterator returned by <function>find</function> to the
		    iterator returned by <function>end</function>, and not by comparing a
		    pointer returned by <function>find</function> to <type>NULL</type>.
		  </para>
		</listitem>
	      </orderedlist>
	    </listitem>
	  </orderedlist>

	</section>

	<section xml:id="motivation.priority_queue.underlying">
	  <info><title>Underlying Data Structures</title></info>

	  <para>
	    There are three main implementations of priority queues: the
	    first employs a binary heap, typically one which uses a
	    sequence; the second uses a tree (or forest of trees), which is
	    typically less structured than an associative container's tree;
	    the third simply uses an associative container. These are
	    shown in the figure below with labels A1 and A2, B, and C.
	  </para>

	  <figure>
	    <title>Underlying Priority Queue Data Structures</title>
	    <mediaobject>
	      <imageobject>
		<imagedata align="center" format="PNG" scale="100"
			   fileref="../images/pbds_different_underlying_dss_2.png"/>
	      </imageobject>
	      <textobject>
		<phrase>Underlying Priority Queue Data Structures</phrase>
	      </textobject>
	    </mediaobject>
	  </figure>

	  <para>
	    No single implementation can completely replace any of the
	    others. Some have better <function>push</function>
	    and <function>pop</function> amortized performance, some have
	    better bounded (worst case) response time than others, some
	    optimize a single method at the expense of others, etc. In
	    general the "best" implementation is dictated by the specific
	    problem.
	  </para>

	  <para>
	    As with associative containers, the more implementations
	    co-exist, the more necessary a traits mechanism is for handling
	    generic containers safely and efficiently. This is especially
	    important for priority queues, since the invalidation guarantees
	    of one of the most useful data structures - binary heaps - is
	    markedly different than those of most of the others.
	  </para>

	</section>

	<section xml:id="motivation.priority_queue.binary_heap">
	  <info><title>Binary Heaps</title></info>


	  <para>
	    Binary heaps are one of the most useful underlying
	    data structures for priority queues. They are very efficient in
	    terms of memory (since they don't require per-value structure
	    metadata), and have the best amortized <function>push</function> and
	    <function>pop</function> performance for primitive types like
	    <type>int</type>.
	  </para>

	  <para>
	    The standard library's <classname>priority_queue</classname>
	    implements this data structure as an adapter over a sequence,
	    typically
	    <classname>std::vector</classname>
	    or <classname>std::deque</classname>, which correspond to labels
	    A1 and A2 respectively in the graphic above.
	  </para>

	  <para>
	    This is indeed an elegant example of the adapter concept and
	    the algorithm/container/iterator decomposition. (See <xref linkend="biblio.nelson96stlpq"/>). There are
	    several reasons why a binary-heap priority queue
	    may be better implemented as a container instead of a
	    sequence adapter:
	  </para>

	  <orderedlist>
	    <listitem>
	      <para>
		<classname>std::priority_queue</classname> cannot erase values
		from its adapted sequence (irrespective of the sequence
		type). This means that the memory use of
		an <classname>std::priority_queue</classname> object is always
		proportional to the maximal number of values it ever contained,
		and not to the number of values that it currently
		contains. (See <filename>performance/priority_queue_text_pop_mem_usage.cc</filename>.)
		This implementation of binary heaps acts very differently than
		other underlying data structures (See also pairing heaps).
	      </para>
	    </listitem>

	    <listitem>
	      <para>
		Some combinations of adapted sequences and value types
		are very inefficient or just don't make sense. If one uses
		<classname>std::priority_queue&lt;std::vector&lt;std::string&gt;
		&gt; &gt;</classname>, for example, then not only will each
		operation perform a logarithmic number of
		<classname>std::string</classname> assignments, but, furthermore, any
		operation (including <function>pop</function>) can render the container
		useless due to exceptions. Conversely, if one uses
		<classname>std::priority_queue&lt;std::deque&lt;int&gt; &gt;
		&gt;</classname>, then each operation uses incurs a logarithmic
		number of indirect accesses (through pointers) unnecessarily.
		It might be better to let the container make a conservative
		deduction whether to use the structure in the graphic above, labels A1 or A2.
	      </para>
	    </listitem>

	    <listitem>
	      <para>
		There does not seem to be a systematic way to determine
		what exactly can be done with the priority queue.
	      </para>
	      <orderedlist>
		<listitem>
		  <para>
		    If <classname>p</classname> is a priority queue adapting an
		    <classname>std::vector</classname>, then it is possible to iterate over
		    all values by using <function>&amp;p.top()</function> and
		    <function>&amp;p.top() + p.size()</function>, but this will not work
		    if <varname>p</varname> is adapting an <classname>std::deque</classname>; in any
		    case, one cannot use <classname>p.begin()</classname> and
		    <classname>p.end()</classname>. If a different sequence is adapted, it
		    is even more difficult to determine what can be
		    done.
		  </para>
		</listitem>

		<listitem>
		  <para>
		    If <varname>p</varname> is a priority queue adapting an
		    <classname>std::deque</classname>, then the reference return by
		  </para>
		  <programlisting>
		    p.top()
		  </programlisting>
		  <para>
		    will remain valid until it is popped,
		    but if <varname>p</varname> adapts an <classname>std::vector</classname>, the
		    next <function>push</function> will invalidate it. If a different
		    sequence is adapted, it is even more difficult to
		    determine what can be done.
		  </para>
		</listitem>
	      </orderedlist>
	    </listitem>

	    <listitem>
	      <para>
		Sequence-based binary heaps can still implement
		linear-time <function>erase</function> and <function>modify</function> operations.
		This means that if one needs to erase a small
		(say logarithmic) number of values, then one might still
		choose this underlying data structure. Using
		<classname>std::priority_queue</classname>, however, this will generally
		change the order of growth of the entire sequence of
		operations.
	      </para>
	    </listitem>
	  </orderedlist>

	</section>
      </section>
    </section> <!-- goals/motivation -->
  </section> <!-- intro -->

  <!-- S02: Using -->
  <section xml:id="containers.pbds.using">
    <info><title>Using</title></info>
    <?dbhtml filename="policy_data_structures_using.html"?>

    <section xml:id="pbds.using.prereq">
      <info><title>Prerequisites</title></info>

      <para>The library contains only header files, and does not require any
      other libraries except the standard C++ library . All classes are
      defined in namespace <code>__gnu_pbds</code>. The library internally
      uses macros beginning with <code>PB_DS</code>, but
      <code>#undef</code>s anything it <code>#define</code>s (except for
      header guards). Compiling the library in an environment where macros
      beginning in <code>PB_DS</code> are defined, may yield unpredictable
      results in compilation, execution, or both.</para>

      <para>
	Further dependencies are necessary to create the visual output
	for the performance tests. To create these graphs, an
	additional package is needed: <command>pychart</command>.
      </para>
    </section>

    <section xml:id="pbds.using.organization">
      <info><title>Organization</title></info>

      <para>
	The various data structures are organized as follows.
      </para>

      <itemizedlist>
	<listitem>
	  <para>
	    Branch-Based
	  </para>

	  <itemizedlist>
	    <listitem>
	      <para>
		<classname>basic_branch</classname>
		is an abstract base class for branched-based
		associative-containers
	      </para>
	    </listitem>

	    <listitem>
	      <para>
		<classname>tree</classname>
		is a concrete base class for tree-based
		associative-containers
	      </para>
	    </listitem>

	    <listitem>
	      <para>
		<classname>trie</classname>
		is a concrete base class trie-based
		associative-containers
	      </para>
	    </listitem>
	  </itemizedlist>
	</listitem>

	<listitem>
	  <para>
	    Hash-Based
	  </para>
	  <itemizedlist>
	    <listitem>
	      <para>
		<classname>basic_hash_table</classname>
		is an abstract base class for hash-based
		associative-containers
	      </para>
	    </listitem>

	    <listitem>
	      <para>
		<classname>cc_hash_table</classname>
		is a concrete collision-chaining hash-based
		associative-containers
	      </para>
	    </listitem>

	    <listitem>
	      <para>
		<classname>gp_hash_table</classname>
		is a concrete (general) probing hash-based
		associative-containers
	      </para>
	    </listitem>
	  </itemizedlist>
	</listitem>

	<listitem>
	  <para>
	    List-Based
	  </para>
	  <itemizedlist>
	    <listitem>
	      <para>
		<classname>list_update</classname>
		list-based update-policy associative container
	      </para>
	    </listitem>
	  </itemizedlist>
	</listitem>
	<listitem>
	  <para>
	    Heap-Based
	  </para>
	  <itemizedlist>
	    <listitem>
	      <para>
		<classname>priority_queue</classname>
		A priority queue.
	      </para>
	    </listitem>
	  </itemizedlist>
	</listitem>
      </itemizedlist>

      <para>
	The hierarchy is composed naturally so that commonality is
	captured by base classes. Thus <function>operator[]</function>
	is defined at the base of any hierarchy, since all derived
	containers support it. Conversely <function>split</function> is
	defined in <classname>basic_branch</classname>, since only
	tree-like containers support it.
      </para>

      <para>
	In addition, there are the following diagnostics classes,
	used to report errors specific to this library's data
	structures.
      </para>

      <figure>
	<title>Exception Hierarchy</title>
	<mediaobject>
	  <imageobject>
	    <imagedata align="center" format="PDF" scale="75"
		       fileref="../images/pbds_exception_hierarchy.pdf"/>
	  </imageobject>
	  <imageobject>
	    <imagedata align="center" format="PNG" scale="100"
		       fileref="../images/pbds_exception_hierarchy.png"/>
	  </imageobject>
	  <textobject>
	    <phrase>Exception Hierarchy</phrase>
	  </textobject>
	</mediaobject>
      </figure>

    </section>

    <section xml:id="pbds.using.tutorial">
      <info><title>Tutorial</title></info>

      <section xml:id="pbds.using.tutorial.basic">
	<info><title>Basic Use</title></info>

	<para>
	  For the most part, the policy-based containers containers in
	  namespace <literal>__gnu_pbds</literal> have the same interface as
	  the equivalent containers in the standard C++ library, except for
	  the names used for the container classes themselves. For example,
	  this shows basic operations on a collision-chaining hash-based
	  container:
	</para>
	<programlisting>
	  #include &lt;ext/pb_ds/assoc_container.h&gt;

	  int main()
	  {
	  __gnu_pbds::cc_hash_table&lt;int, char&gt; c;
	  c[2] = 'b';
	  assert(c.find(1) == c.end());
	  };
	</programlisting>

	<para>
	  The container is called
	  <classname>__gnu_pbds::cc_hash_table</classname> instead of
	  <classname>std::unordered_map</classname>, since <quote>unordered
	  map</quote> does not necessarily mean a hash-based map as implied by
	  the C++ library (C++11 or TR1). For example, list-based associative
	  containers, which are very useful for the construction of
	  "multimaps," are also unordered.
	</para>

	<para>This snippet shows a red-black tree based container:</para>

	<programlisting>
	  #include &lt;ext/pb_ds/assoc_container.h&gt;

	  int main()
	  {
	  __gnu_pbds::tree&lt;int, char&gt; c;
	  c[2] = 'b';
	  assert(c.find(2) != c.end());
	  };
	</programlisting>

	<para>The container is called <classname>tree</classname> instead of
	<classname>map</classname> since the underlying data structures are
	being named with specificity.
	</para>

	<para>
	  The member function naming convention is to strive to be the same as
	  the equivalent member functions in other C++ standard library
	  containers. The familiar methods are unchanged:
	  <function>begin</function>, <function>end</function>,
	  <function>size</function>, <function>empty</function>, and
	  <function>clear</function>.
	</para>

	<para>
	  This isn't to say that things are exactly as one would expect, given
	  the container requirments and interfaces in the C++ standard.
	</para>

	<para>
	  The names of containers' policies and policy accessors are
	  different then the usual. For example, if <type>hash_type</type> is
	some type of hash-based container, then</para>

	<programlisting>
	  hash_type::hash_fn
	</programlisting>

	<para>
	  gives the type of its hash functor, and if <varname>obj</varname> is
	  some hash-based container object, then
	</para>

	<programlisting>
	  obj.get_hash_fn()
	</programlisting>

	<para>will return a reference to its hash-functor object.</para>


	<para>
	  Similarly, if <type>tree_type</type> is some type of tree-based
	  container, then
	</para>

	<programlisting>
	  tree_type::cmp_fn
	</programlisting>

	<para>
	  gives the type of its comparison functor, and if
	  <varname>obj</varname> is some tree-based container object,
	  then
	</para>

	<programlisting>
	  obj.get_cmp_fn()
	</programlisting>

	<para>will return a reference to its comparison-functor object.</para>

	<para>
	  It would be nice to give names consistent with those in the existing
	  C++ standard (inclusive of TR1). Unfortunately, these standard
	  containers don't consistently name types and methods. For example,
	  <classname>std::tr1::unordered_map</classname> uses
	  <type>hasher</type> for the hash functor, but
	  <classname>std::map</classname> uses <type>key_compare</type> for
	  the comparison functor. Also, we could not find an accessor for
	  <classname>std::tr1::unordered_map</classname>'s hash functor, but
	  <classname>std::map</classname> uses <classname>compare</classname>
	  for accessing the comparison functor.
	</para>

	<para>
	  Instead, <literal>__gnu_pbds</literal> attempts to be internally
	  consistent, and uses standard-derived terminology if possible.
	</para>

	<para>
	  Another source of difference is in scope:
	  <literal>__gnu_pbds</literal> contains more types of associative
	  containers than the standard C++ library, and more opportunities
	  to configure these new containers, since different types of
	  associative containers are useful in different settings.
	</para>

	<para>
	  Namespace <literal>__gnu_pbds</literal> contains different classes for
	  hash-based containers, tree-based containers, trie-based containers,
	  and list-based containers.
	</para>

	<para>
	  Since associative containers share parts of their interface, they
	  are organized as a class hierarchy.
	</para>

	<para>Each type or method is defined in the most-common ancestor
	in which it makes sense.
	</para>

	<para>For example, all associative containers support iteration
	expressed in the following form:
	</para>

	<programlisting>
	  const_iterator
	  begin() const;

	  iterator
	  begin();

	  const_iterator
	  end() const;

	  iterator
	  end();
	</programlisting>

	<para>
	  But not all containers contain or use hash functors. Yet, both
	  collision-chaining and (general) probing hash-based associative
	  containers have a hash functor, so
	  <classname>basic_hash_table</classname> contains the interface:
	</para>

	<programlisting>
	  const hash_fn&amp;
	  get_hash_fn() const;

	  hash_fn&amp;
	  get_hash_fn();
	</programlisting>

	<para>
	  so all hash-based associative containers inherit the same
	  hash-functor accessor methods.
	</para>

      </section> <!--basic use -->

      <section xml:id="pbds.using.tutorial.configuring">
	<info>
	  <title>
	    Configuring via Template Parameters
	  </title>
	</info>

	<para>
	  In general, each of this library's containers is
	  parametrized by more policies than those of the standard library. For
	  example, the standard hash-based container is parametrized as
	  follows:
	</para>
	<programlisting>
	  template&lt;typename Key, typename Mapped, typename Hash,
	  typename Pred, typename Allocator, bool Cache_Hashe_Code&gt;
	  class unordered_map;
	</programlisting>

	<para>
	  and so can be configured by key type, mapped type, a functor
	  that translates keys to unsigned integral types, an equivalence
	  predicate, an allocator, and an indicator whether to store hash
	  values with each entry. this library's collision-chaining
	  hash-based container is parametrized as
	</para>
	<programlisting>
	  template&lt;typename Key, typename Mapped, typename Hash_Fn,
	  typename Eq_Fn, typename Comb_Hash_Fn,
	  typename Resize_Policy, bool Store_Hash
	  typename Allocator&gt;
	  class cc_hash_table;
	</programlisting>

	<para>
	  and so can be configured by the first four types of
	  <classname>std::tr1::unordered_map</classname>, then a
	  policy for translating the key-hash result into a position
	  within the table, then a policy by which the table resizes,
	  an indicator whether to store hash values with each entry,
	  and an allocator (which is typically the last template
	  parameter in standard containers).
	</para>

	<para>
	  Nearly all policy parameters have default values, so this
	  need not be considered for casual use. It is important to
	  note, however, that hash-based containers' policies can
	  dramatically alter their performance in different settings,
	  and that tree-based containers' policies can make them
	  useful for other purposes than just look-up.
	</para>


	<para>As opposed to associative containers, priority queues have
	relatively few configuration options. The priority queue is
	parametrized as follows:</para>
	<programlisting>
	  template&lt;typename Value_Type, typename Cmp_Fn,typename Tag,
	  typename Allocator&gt;
	  class priority_queue;
	</programlisting>

	<para>The <classname>Value_Type</classname>, <classname>Cmp_Fn</classname>, and
	<classname>Allocator</classname> parameters are the container's value type,
	comparison-functor type, and allocator type, respectively;
	these are very similar to the standard's priority queue. The
	<classname>Tag</classname> parameter is different: there are a number of
	pre-defined tag types corresponding to binary heaps, binomial
	heaps, etc., and <classname>Tag</classname> should be instantiated
	by one of them.</para>

	<para>Note that as opposed to the
	<classname>std::priority_queue</classname>,
	<classname>__gnu_pbds::priority_queue</classname> is not a
	sequence-adapter; it is a regular container.</para>

      </section>

      <section xml:id="pbds.using.tutorial.traits">
	<info>
	  <title>
	    Querying Container Attributes
	  </title>
	</info>
	<para></para>

	<para>A containers underlying data structure
	affect their performance; Unfortunately, they can also affect
	their interface. When manipulating generically associative
	containers, it is often useful to be able to statically
	determine what they can support and what the cannot.
	</para>

	<para>Happily, the standard provides a good solution to a similar
	problem - that of the different behavior of iterators. If
	<classname>It</classname> is an iterator, then
	</para>
	<programlisting>
	  typename std::iterator_traits&lt;It&gt;::iterator_category
	</programlisting>

	<para>is one of a small number of pre-defined tag classes, and
	</para>
	<programlisting>
	  typename std::iterator_traits&lt;It&gt;::value_type
	</programlisting>

	<para>is the value type to which the iterator "points".</para>

	<para>
	  Similarly, in this library, if <type>C</type> is a
	  container, then <classname>container_traits</classname> is a
	  trait class that stores information about the kind of
	  container that is implemented.
	</para>
	<programlisting>
	  typename container_traits&lt;C&gt;::container_category
	</programlisting>
	<para>
	  is one of a small number of predefined tag structures that
	  uniquely identifies the type of underlying data structure.
	</para>

	<para>In most cases, however, the exact underlying data
	structure is not really important, but what is important is
	one of its other attributes: whether it guarantees storing
	elements by key order, for example. For this one can
	use</para>
	<programlisting>
	  typename container_traits&lt;C&gt;::order_preserving
	</programlisting>
	<para>
	  Also,
	</para>
	<programlisting>
	  typename container_traits&lt;C&gt;::invalidation_guarantee
	</programlisting>

	<para>is the container's invalidation guarantee. Invalidation
	guarantees are especially important regarding priority queues,
	since in this library's design, iterators are practically the
	only way to manipulate them.</para>
      </section>

      <section xml:id="pbds.using.tutorial.point_range_iteration">
	<info>
	  <title>
	    Point and Range Iteration
	  </title>
	</info>
	<para></para>

	<para>This library differentiates between two types of methods
	and iterators: point-type, and range-type. For example,
	<function>find</function> and <function>insert</function> are point-type methods, since
	they each deal with a specific element; their returned
	iterators are point-type iterators. <function>begin</function> and
	<function>end</function> are range-type methods, since they are not used to
	find a specific element, but rather to go over all elements in
	a container object; their returned iterators are range-type
	iterators.
	</para>

	<para>Most containers store elements in an order that is
	determined by their interface. Correspondingly, it is fine that
	their point-type iterators are synonymous with their range-type
	iterators. For example, in the following snippet
	</para>
	<programlisting>
	  std::for_each(c.find(1), c.find(5), foo);
	</programlisting>
	<para>
	  two point-type iterators (returned by <function>find</function>) are used
	  for a range-type purpose - going over all elements whose key is
	  between 1 and 5.
	</para>

	<para>
	  Conversely, the above snippet makes no sense for
	  self-organizing containers - ones that order (and reorder)
	  their elements by implementation. It would be nice to have a
	  uniform iterator system that would allow the above snippet to
	  compile only if it made sense.
	</para>

	<para>
	  This could trivially be done by specializing
	  <function>std::for_each</function> for the case of iterators returned by
	  <classname>std::tr1::unordered_map</classname>, but this would only solve the
	  problem for one algorithm and one container. Fundamentally, the
	  problem is that one can loop using a self-organizing
	  container's point-type iterators.
	</para>

	<para>
	  This library's containers define two families of
	  iterators: <type>point_const_iterator</type> and
	  <type>point_iterator</type> are the iterator types returned by
	  point-type methods; <type>const_iterator</type> and
	  <type>iterator</type> are the iterator types returned by range-type
	  methods.
	</para>
	<programlisting>
	  class &lt;- some container -&gt;
	  {
	  public:
	  ...

	  typedef &lt;- something -&gt; const_iterator;

	  typedef &lt;- something -&gt; iterator;

	  typedef &lt;- something -&gt; point_const_iterator;

	  typedef &lt;- something -&gt; point_iterator;

	  ...

	  public:
	  ...

	  const_iterator begin () const;

	  iterator begin();

	  point_const_iterator find(...) const;

	  point_iterator find(...);
	  };
	</programlisting>

	<para>For
	containers whose interface defines sequence order , it
	is very simple: point-type and range-type iterators are exactly
	the same, which means that the above snippet will compile if it
	is used for an order-preserving associative container.
	</para>

	<para>
	  For self-organizing containers, however, (hash-based
	  containers as a special example), the preceding snippet will
	  not compile, because their point-type iterators do not support
	  <function>operator++</function>.
	</para>

	<para>In any case, both for order-preserving and self-organizing
	containers, the following snippet will compile:
	</para>
	<programlisting>
	  typename Cntnr::point_iterator it = c.find(2);
	</programlisting>

	<para>
	  because a range-type iterator can always be converted to a
	  point-type iterator.
	</para>

	<para>Distingushing between iterator types also
	raises the point that a container's iterators might have
	different invalidation rules concerning their de-referencing
	abilities and movement abilities. This now corresponds exactly
	to the question of whether point-type and range-type iterators
	are valid. As explained above, <classname>container_traits</classname> allows
	querying a container for its data structure attributes. The
	iterator-invalidation guarantees are certainly a property of
	the underlying data structure, and so
	</para>
	<programlisting>
	  container_traits&lt;C&gt;::invalidation_guarantee
	</programlisting>

	<para>
	  gives one of three pre-determined types that answer this
	  query.
	</para>

      </section>
    </section> <!-- tutorial -->

    <section xml:id="pbds.using.examples">
      <info><title>Examples</title></info>
      <para>
	Additional code examples are provided in the source
	distribution, as part of the regression and performance
	testsuite.
      </para>

      <section xml:id="pbds.using.examples.basic">
	<info><title>Intermediate Use</title></info>

	<itemizedlist>
	  <listitem>
	    <para>
	      Basic use of maps:
	      <filename>basic_map.cc</filename>
	    </para>
	  </listitem>

	  <listitem>
	    <para>
	      Basic use of sets:
	      <filename>basic_set.cc</filename>
	    </para>
	  </listitem>

	  <listitem>
	    <para>
	      Conditionally erasing values from an associative container object:
	      <filename>erase_if.cc</filename>
	    </para>
	  </listitem>

	  <listitem>
	    <para>
	      Basic use of multimaps:
	      <filename>basic_multimap.cc</filename>
	    </para>
	  </listitem>

	  <listitem>
	    <para>
	      Basic use of multisets:
	      <filename>basic_multiset.cc</filename>
	    </para>
	  </listitem>

	  <listitem>
	    <para>
	      Basic use of priority queues:
	      <filename>basic_priority_queue.cc</filename>
	    </para>
	  </listitem>

	  <listitem>
	    <para>
	      Splitting and joining priority queues:
	      <filename>priority_queue_split_join.cc</filename>
	    </para>
	  </listitem>

	  <listitem>
	    <para>
	      Conditionally erasing values from a priority queue:
	      <filename>priority_queue_erase_if.cc</filename>
	    </para>
	  </listitem>
	</itemizedlist>

      </section>

      <section xml:id="pbds.using.examples.query">
	<info><title>Querying with <classname>container_traits</classname> </title></info>
	<itemizedlist>
	  <listitem>
	    <para>
	      Using <classname>container_traits</classname> to query
	      about underlying data structure behavior:
	      <filename>assoc_container_traits.cc</filename>
	    </para>
	  </listitem>

	  <listitem>
	    <para>
	      A non-compiling example showing wrong use of finding keys in
	      hash-based containers: <filename>hash_find_neg.cc</filename>
	    </para>
	  </listitem>
	  <listitem>
	    <para>
	      Using <classname>container_traits</classname>
	      to query about underlying data structure behavior:
	      <filename>priority_queue_container_traits.cc</filename>
	    </para>
	  </listitem>

	</itemizedlist>

      </section>

      <section xml:id="pbds.using.examples.container">
	<info><title>By Container Method</title></info>
	<para></para>

	<section xml:id="pbds.using.examples.container.hash">
	  <info><title>Hash-Based</title></info>

	  <section xml:id="pbds.using.examples.container.hash.resize">
	    <info><title>size Related</title></info>

	    <itemizedlist>
	      <listitem>
		<para>
		  Setting the initial size of a hash-based container
		  object:
		  <filename>hash_initial_size.cc</filename>
		</para>
	      </listitem>

	      <listitem>
		<para>
		  A non-compiling example showing how not to resize a
		  hash-based container object:
		  <filename>hash_resize_neg.cc</filename>
		</para>
	      </listitem>

	      <listitem>
		<para>
		  Resizing the size of a hash-based container object:
		  <filename>hash_resize.cc</filename>
		</para>
	      </listitem>

	      <listitem>
		<para>
		  Showing an illegal resize of a hash-based container
		  object:
		  <filename>hash_illegal_resize.cc</filename>
		</para>
	      </listitem>

	      <listitem>
		<para>
		  Changing the load factors of a hash-based container
		  object: <filename>hash_load_set_change.cc</filename>
		</para>
	      </listitem>
	    </itemizedlist>
	  </section>

	  <section xml:id="pbds.using.examples.container.hash.hashor">
	    <info><title>Hashing Function Related</title></info>
	    <para></para>

	    <itemizedlist>
	      <listitem>
		<para>
		  Using a modulo range-hashing function for the case of an
		  unknown skewed key distribution:
		  <filename>hash_mod.cc</filename>
		</para>
	      </listitem>

	      <listitem>
		<para>
		  Writing a range-hashing functor for the case of a known
		  skewed key distribution:
		  <filename>shift_mask.cc</filename>
		</para>
	      </listitem>

	      <listitem>
		<para>
		  Storing the hash value along with each key:
		  <filename>store_hash.cc</filename>
		</para>
	      </listitem>

	      <listitem>
		<para>
		  Writing a ranged-hash functor:
		  <filename>ranged_hash.cc</filename>
		</para>
	      </listitem>
	    </itemizedlist>

	  </section>

	</section>

	<section xml:id="pbds.using.examples.container.branch">
	  <info><title>Branch-Based</title></info>


	  <section xml:id="pbds.using.examples.container.branch.split">
	    <info><title>split or join Related</title></info>

	    <itemizedlist>
	      <listitem>
		<para>
		  Joining two tree-based container objects:
		  <filename>tree_join.cc</filename>
		</para>
	      </listitem>

	      <listitem>
		<para>
		  Splitting a PATRICIA trie container object:
		  <filename>trie_split.cc</filename>
		</para>
	      </listitem>

	      <listitem>
		<para>
		  Order statistics while joining two tree-based container
		  objects:
		  <filename>tree_order_statistics_join.cc</filename>
		</para>
	      </listitem>
	    </itemizedlist>

	  </section>

	  <section xml:id="pbds.using.examples.container.branch.invariants">
	    <info><title>Node Invariants</title></info>

	    <itemizedlist>
	      <listitem>
		<para>
		  Using trees for order statistics:
		  <filename>tree_order_statistics.cc</filename>
		</para>
	      </listitem>

	      <listitem>
		<para>
		  Augmenting trees to support operations on line
		  intervals:
		  <filename>tree_intervals.cc</filename>
		</para>
	      </listitem>
	    </itemizedlist>

	  </section>

	  <section xml:id="pbds.using.examples.container.branch.trie">
	    <info><title>trie</title></info>
	    <itemizedlist>
	      <listitem>
		<para>
		  Using a PATRICIA trie for DNA strings:
		  <filename>trie_dna.cc</filename>
		</para>
	      </listitem>

	      <listitem>
		<para>
		  Using a PATRICIA
		  trie for finding all entries whose key matches a given prefix:
		  <filename>trie_prefix_search.cc</filename>
		</para>
	      </listitem>
	    </itemizedlist>

	  </section>

	</section>

	<section xml:id="pbds.using.examples.container.priority_queue">
	  <info><title>Priority Queues</title></info>
	  <itemizedlist>
	    <listitem>
	      <para>
		Cross referencing an associative container and a priority
		queue: <filename>priority_queue_xref.cc</filename>
	      </para>
	    </listitem>

	    <listitem>
	      <para>
		Cross referencing a vector and a priority queue using a
		very simple version of Dijkstra's shortest path
		algorithm:
		<filename>priority_queue_dijkstra.cc</filename>
	      </para>
	    </listitem>
	  </itemizedlist>

	</section>


      </section>

    </section>

  </section> <!-- using -->

  <!-- S03: Design -->


<section xml:id="containers.pbds.design">
  <info><title>Design</title></info>
  <?dbhtml filename="policy_data_structures_design.html"?>
  <para></para>

  <section xml:id="pbds.design.concepts">
    <info><title>Concepts</title></info>

    <section xml:id="pbds.design.concepts.null_type">
      <info><title>Null Policy Classes</title></info>

      <para>
	Associative containers are typically parametrized by various
	policies. For example, a hash-based associative container is
	parametrized by a hash-functor, transforming each key into an
	non-negative numerical type. Each such value is then further mapped
	into a position within the table. The mapping of a key into a
	position within the table is therefore a two-step process.
      </para>

      <para>
	In some cases, instantiations are redundant. For example, when the
	keys are integers, it is possible to use a redundant hash policy,
	which transforms each key into its value.
      </para>

      <para>
	In some other cases, these policies are irrelevant.  For example, a
	hash-based associative container might transform keys into positions
	within a table by a different method than the two-step method
	described above. In such a case, the hash functor is simply
	irrelevant.
      </para>

      <para>
	When a policy is either redundant or irrelevant, it can be replaced
	by <classname>null_type</classname>.
      </para>

      <para>
	For example, a <emphasis>set</emphasis> is an associative
	container with one of its template parameters (the one for the
	mapped type) replaced with <classname>null_type</classname>. Other
	places simplifications are made possible with this technique
	include node updates in tree and trie data structures, and hash
	and probe functions for hash data structures.
      </para>
    </section>

    <section xml:id="pbds.design.concepts.associative_semantics">
      <info><title>Map and Set Semantics</title></info>

      <section xml:id="concepts.associative_semantics.set_vs_map">
	<info>
	  <title>
	    Distinguishing Between Maps and Sets
	  </title>
	</info>

	<para>
	  Anyone familiar with the standard knows that there are four kinds
	  of associative containers: maps, sets, multimaps, and
	  multisets. The map datatype associates each key to
	  some data.
	</para>

	<para>
	  Sets are associative containers that simply store keys -
	  they do not map them to anything. In the standard, each map class
	  has a corresponding set class. E.g.,
	  <classname>std::map&lt;int, char&gt;</classname> maps each
	  <classname>int</classname> to a <classname>char</classname>, but
	  <classname>std::set&lt;int, char&gt;</classname> simply stores
	  <classname>int</classname>s. In this library, however, there are no
	  distinct classes for maps and sets. Instead, an associative
	  container's <classname>Mapped</classname> template parameter is a policy: if
	  it is instantiated by <classname>null_type</classname>, then it
	  is a "set"; otherwise, it is a "map". E.g.,
	</para>
	<programlisting>
	  cc_hash_table&lt;int, char&gt;
	</programlisting>
	<para>
	  is a "map" mapping each <type>int</type> value to a <type>
	  char</type>, but
	</para>
	<programlisting>
	  cc_hash_table&lt;int, null_type&gt;
	</programlisting>
	<para>
	  is a type that uniquely stores <type>int</type> values.
	</para>
	<para>Once the <classname>Mapped</classname> template parameter is instantiated
	by <classname>null_type</classname>, then
	the "set" acts very similarly to the standard's sets - it does not
	map each key to a distinct <classname>null_type</classname> object. Also,
	, the container's <type>value_type</type> is essentially
	its <type>key_type</type> - just as with the standard's sets
	.</para>

	<para>
	  The standard's multimaps and multisets allow, respectively,
	  non-uniquely mapping keys and non-uniquely storing keys. As
	  discussed, the
	  reasons why this might be necessary are 1) that a key might be
	  decomposed into a primary key and a secondary key, 2) that a
	  key might appear more than once, or 3) any arbitrary
	  combination of 1)s and 2)s. Correspondingly,
	  one should use 1) "maps" mapping primary keys to secondary
	  keys, 2) "maps" mapping keys to size types, or 3) any arbitrary
	  combination of 1)s and 2)s. Thus, for example, an
	  <classname>std::multiset&lt;int&gt;</classname> might be used to store
	  multiple instances of integers, but using this library's
	  containers, one might use
	</para>
	<programlisting>
	  tree&lt;int, size_t&gt;
	</programlisting>

	<para>
	  i.e., a <classname>map</classname> of <type>int</type>s to
	  <type>size_t</type>s.
	</para>
	<para>
	  These "multimaps" and "multisets" might be confusing to
	  anyone familiar with the standard's <classname>std::multimap</classname> and
	  <classname>std::multiset</classname>, because there is no clear
	  correspondence between the two. For example, in some cases
	  where one uses <classname>std::multiset</classname> in the standard, one might use
	  in this library a "multimap" of "multisets" - i.e., a
	  container that maps primary keys each to an associative
	  container that maps each secondary key to the number of times
	  it occurs.
	</para>

	<para>
	  When one uses a "multimap," one should choose with care the
	  type of container used for secondary keys.
	</para>
      </section> <!-- map vs set -->


      <section xml:id="concepts.associative_semantics.multi">
	<info><title>Alternatives to <classname>std::multiset</classname> and <classname>std::multimap</classname></title></info>

	<para>
	  Brace onself: this library does not contain containers like
	  <classname>std::multimap</classname> or
	  <classname>std::multiset</classname>. Instead, these data
	  structures can be synthesized via manipulation of the
	  <classname>Mapped</classname> template parameter.
	</para>
	<para>
	  One maps the unique part of a key - the primary key, into an
	  associative-container of the (originally) non-unique parts of
	  the key - the secondary key. A primary associative-container
	  is an associative container of primary keys; a secondary
	  associative-container is an associative container of
	  secondary keys.
	</para>

	<para>
	  Stepping back a bit, and starting in from the beginning.
	</para>


	<para>
	  Maps (or sets) allow mapping (or storing) unique-key values.
	  The standard library also supplies associative containers which
	  map (or store) multiple values with equivalent keys:
	  <classname>std::multimap</classname>, <classname>std::multiset</classname>,
	  <classname>std::tr1::unordered_multimap</classname>, and
	  <classname>unordered_multiset</classname>. We first discuss how these might
	  be used, then why we think it is best to avoid them.
	</para>

	<para>
	  Suppose one builds a simple bank-account application that
	  records for each client (identified by an <classname>std::string</classname>)
	  and account-id (marked by an <type>unsigned long</type>) -
	  the balance in the account (described by a
	  <type>float</type>). Suppose further that ordering this
	  information is not useful, so a hash-based container is
	  preferable to a tree based container. Then one can use
	</para>

	<programlisting>
	  std::tr1::unordered_map&lt;std::pair&lt;std::string, unsigned long&gt;, float, ...&gt;
	</programlisting>

	<para>
	  which hashes every combination of client and account-id. This
	  might work well, except for the fact that it is now impossible
	  to efficiently list all of the accounts of a specific client
	  (this would practically require iterating over all
	  entries). Instead, one can use
	</para>

	<programlisting>
	  std::tr1::unordered_multimap&lt;std::pair&lt;std::string, unsigned long&gt;, float, ...&gt;
	</programlisting>

	<para>
	  which hashes every client, and decides equivalence based on
	  client only. This will ensure that all accounts belonging to a
	  specific user are stored consecutively.
	</para>

	<para>
	  Also, suppose one wants an integers' priority queue
	  (a container that supports <function>push</function>,
	  <function>pop</function>, and <function>top</function> operations, the last of which
	  returns the largest <type>int</type>) that also supports
	  operations such as <function>find</function> and <function>lower_bound</function>. A
	  reasonable solution is to build an adapter over
	  <classname>std::set&lt;int&gt;</classname>. In this adapter,
	  <function>push</function> will just call the tree-based
	  associative container's <function>insert</function> method; <function>pop</function>
	  will call its <function>end</function> method, and use it to return the
	  preceding element (which must be the largest). Then this might
	  work well, except that the container object cannot hold
	  multiple instances of the same integer (<function>push(4)</function>,
	  will be a no-op if <constant>4</constant> is already in the
	  container object). If multiple keys are necessary, then one
	  might build the adapter over an
	  <classname>std::multiset&lt;int&gt;</classname>.
	</para>

	<para>
	  The standard library's non-unique-mapping containers are useful
	  when (1) a key can be decomposed in to a primary key and a
	  secondary key, (2) a key is needed multiple times, or (3) any
	  combination of (1) and (2).
	</para>

	<para>
	  The graphic below shows how the standard library's container
	  design works internally; in this figure nodes shaded equally
	  represent equivalent-key values. Equivalent keys are stored
	  consecutively using the properties of the underlying data
	  structure: binary search trees (label A) store equivalent-key
	  values consecutively (in the sense of an in-order walk)
	  naturally; collision-chaining hash tables (label B) store
	  equivalent-key values in the same bucket, the bucket can be
	  arranged so that equivalent-key values are consecutive.
	</para>

	<figure>
	  <title>Non-unique Mapping Standard Containers</title>
	  <mediaobject>
	    <imageobject>
	      <imagedata align="center" format="PNG" scale="100"
			 fileref="../images/pbds_embedded_lists_1.png"/>
	    </imageobject>
	    <textobject>
	      <phrase>Non-unique Mapping Standard Containers</phrase>
	    </textobject>
	  </mediaobject>
	</figure>

	<para>
	  Put differently, the standards' non-unique mapping
	  associative-containers are associative containers that map
	  primary keys to linked lists that are embedded into the
	  container. The graphic below shows again the two
	  containers from the first graphic above, this time with
	  the embedded linked lists of the grayed nodes marked
	  explicitly.
	</para>

	<figure xml:id="fig.pbds_embedded_lists_2">
	  <title>
	    Effect of embedded lists in
	    <classname>std::multimap</classname>
	  </title>
	  <mediaobject>
	    <imageobject>
	      <imagedata align="center" format="PNG" scale="100"
			 fileref="../images/pbds_embedded_lists_2.png"/>
	    </imageobject>
	    <textobject>
	      <phrase>
		Effect of embedded lists in
		<classname>std::multimap</classname>
	      </phrase>
	    </textobject>
	  </mediaobject>
	</figure>

	<para>
	  These embedded linked lists have several disadvantages.
	</para>

	<orderedlist>
	  <listitem>
	    <para>
	      The underlying data structure embeds the linked lists
	      according to its own consideration, which means that the
	      search path for a value might include several different
	      equivalent-key values. For example, the search path for the
	      the black node in either of the first graphic, labels A or B,
	      includes more than a single gray node.
	    </para>
	  </listitem>

	  <listitem>
	    <para>
	      The links of the linked lists are the underlying data
	      structures' nodes, which typically are quite structured.  In
	      the case of tree-based containers (the grapic above, label
	      B), each "link" is actually a node with three pointers (one
	      to a parent and two to children), and a
	      relatively-complicated iteration algorithm. The linked
	      lists, therefore, can take up quite a lot of memory, and
	      iterating over all values equal to a given key (through the
	      return value of the standard
	      library's <function>equal_range</function>) can be
	      expensive.
	    </para>
	  </listitem>

	  <listitem>
	    <para>
	      The primary key is stored multiply; this uses more memory.
	    </para>
	  </listitem>

	  <listitem>
	    <para>
	      Finally, the interface of this design excludes several
	      useful underlying data structures. Of all the unordered
	      self-organizing data structures, practically only
	      collision-chaining hash tables can (efficiently) guarantee
	      that equivalent-key values are stored consecutively.
	    </para>
	  </listitem>
	</orderedlist>

	<para>
	  The above reasons hold even when the ratio of secondary keys to
	  primary keys (or average number of identical keys) is small, but
	  when it is large, there are more severe problems:
	</para>

	<orderedlist>
	  <listitem>
	    <para>
	      The underlying data structures order the links inside each
	      embedded linked-lists according to their internal
	      considerations, which effectively means that each of the
	      links is unordered. Irrespective of the underlying data
	      structure, searching for a specific value can degrade to
	      linear complexity.
	    </para>
	  </listitem>

	  <listitem>
	    <para>
	      Similarly to the above point, it is impossible to apply
	      to the secondary keys considerations that apply to primary
	      keys. For example, it is not possible to maintain secondary
	      keys by sorted order.
	    </para>
	  </listitem>

	  <listitem>
	    <para>
	      While the interface "understands" that all equivalent-key
	      values constitute a distinct list (through
	      <function>equal_range</function>), the underlying data
	      structure typically does not. This means that operations such
	      as erasing from a tree-based container all values whose keys
	      are equivalent to a a given key can be super-linear in the
	      size of the tree; this is also true also for several other
	      operations that target a specific list.
	    </para>
	  </listitem>

	</orderedlist>

	<para>
	  In this library, all associative containers map
	  (or store) unique-key values. One can (1) map primary keys to
	  secondary associative-containers (containers of
	  secondary keys) or non-associative containers (2) map identical
	  keys to a size-type representing the number of times they
	  occur, or (3) any combination of (1) and (2). Instead of
	  allowing multiple equivalent-key values, this library
	  supplies associative containers based on underlying
	  data structures that are suitable as secondary
	  associative-containers.
	</para>

	<para>
	  In the figure below, labels A and B show the equivalent
	  underlying data structures in this library, as mapped to the
	  first graphic above. Labels A and B, respectively. Each shaded
	  box represents some size-type or secondary
	  associative-container.
	</para>

	<figure>
	  <title>Non-unique Mapping Containers</title>
	  <mediaobject>
	    <imageobject>
	      <imagedata align="center" format="PNG" scale="100"
			 fileref="../images/pbds_embedded_lists_3.png"/>
	    </imageobject>
	    <textobject>
	      <phrase>Non-unique Mapping Containers</phrase>
	    </textobject>
	  </mediaobject>
	</figure>

	<para>
	  In the first example above, then, one would use an associative
	  container mapping each user to an associative container which
	  maps each application id to a start time (see
	  <filename>example/basic_multimap.cc</filename>); in the second
	  example, one would use an associative container mapping
	  each <classname>int</classname> to some size-type indicating the
	  number of times it logically occurs
	  (see <filename>example/basic_multiset.cc</filename>.
	</para>

	<para>
	  See the discussion in list-based container types for containers
	  especially suited as secondary associative-containers.
	</para>
      </section>

    </section> <!-- map and set semantics -->

    <section xml:id="pbds.design.concepts.iterator_semantics">
      <info><title>Iterator Semantics</title></info>

      <section xml:id="concepts.iterator_semantics.point_and_range">
	<info><title>Point and Range Iterators</title></info>

	<para>
	  Iterator concepts are bifurcated in this design, and are
	  comprised of point-type and range-type iteration.
	</para>

	<para>
	  A point-type iterator is an iterator that refers to a specific
	  element as returned through an
	  associative-container's <function>find</function> method.
	</para>

	<para>
	  A range-type iterator is an iterator that is used to go over a
	  sequence of elements, as returned by a container's
	  <function>find</function> method.
	</para>

	<para>
	  A point-type method is a method that
	  returns a point-type iterator; a range-type method is a method
	  that returns a range-type iterator.
	</para>

	<para>For most containers, these types are synonymous; for
	self-organizing containers, such as hash-based containers or
	priority queues, these are inherently different (in any
	implementation, including that of C++ standard library
	components), but in this design, it is made explicit. They are
	distinct types.
	</para>
      </section>


      <section xml:id="concepts.iterator_semantics.both">
	<info><title>Distinguishing Point and Range Iterators</title></info>

	<para>When using this library, is necessary to differentiate
	between two types of methods and iterators: point-type methods and
	iterators, and range-type methods and iterators. Each associative
	container's interface includes the methods:</para>
	<programlisting>
	  point_const_iterator
	  find(const_key_reference r_key) const;

	  point_iterator
	  find(const_key_reference r_key);

	  std::pair&lt;point_iterator,bool&gt;
	  insert(const_reference r_val);
	</programlisting>

	<para>The relationship between these iterator types varies between
	container types. The figure below
	shows the most general invariant between point-type and
	range-type iterators: In <emphasis>A</emphasis> <literal>iterator</literal>, can
	always be converted to <literal>point_iterator</literal>. In <emphasis>B</emphasis>
	shows invariants for order-preserving containers: point-type
	iterators are synonymous with range-type iterators.
	Orthogonally,  <emphasis>C</emphasis>shows invariants for "set"
	containers: iterators are synonymous with const iterators.</para>

	<figure>
	  <title>Point Iterator Hierarchy</title>
	  <mediaobject>
	    <imageobject>
	      <imagedata align="center" format="PNG" scale="100"
			 fileref="../images/pbds_point_iterator_hierarchy.png"/>
	    </imageobject>
	    <textobject>
	      <phrase>Point Iterator Hierarchy</phrase>
	    </textobject>
	  </mediaobject>
	</figure>


	<para>Note that point-type iterators in self-organizing containers
	(hash-based associative containers) lack movement
	operators, such as <literal>operator++</literal> - in fact, this
	is the reason why this library differentiates from the standard C++ librarys
	design on this point.</para>

	<para>Typically, one can determine an iterator's movement
	capabilities using
	<literal>std::iterator_traits&lt;It&gt;iterator_category</literal>,
	which is a <literal>struct</literal> indicating the iterator's
	movement capabilities. Unfortunately, none of the standard predefined
	categories reflect a pointer's <emphasis>not</emphasis> having any
	movement capabilities whatsoever. Consequently,
	<literal>pb_ds</literal> adds a type
	<literal>trivial_iterator_tag</literal> (whose name is taken from
	a concept in C++ standardese, which is the category of iterators
	with no movement capabilities.) All other standard C++ library
	tags, such as <literal>forward_iterator_tag</literal> retain their
	common use.</para>

      </section>

      <section xml:id="pbds.design.concepts.invalidation">
	<info><title>Invalidation Guarantees</title></info>
	<para>
	  If one manipulates a container object, then iterators previously
	  obtained from it can be invalidated. In some cases a
	  previously-obtained iterator cannot be de-referenced; in other cases,
	  the iterator's next or previous element might have changed
	  unpredictably. This corresponds exactly to the question whether a
	  point-type or range-type iterator (see previous concept) is valid or
	  not. In this design, one can query a container (in compile time) about
	  its invalidation guarantees.
	</para>


	<para>
	  Given three different types of associative containers, a modifying
	  operation (in that example, <function>erase</function>) invalidated
	  iterators in three different ways: the iterator of one container
	  remained completely valid - it could be de-referenced and
	  incremented; the iterator of a different container could not even be
	  de-referenced; the iterator of the third container could be
	  de-referenced, but its "next" iterator changed unpredictably.
	</para>

	<para>
	  Distinguishing between find and range types allows fine-grained
	  invalidation guarantees, because these questions correspond exactly
	  to the question of whether point-type iterators and range-type
	  iterators are valid. The graphic below shows tags corresponding to
	  different types of invalidation guarantees.
	</para>

	<figure>
	  <title>Invalidation Guarantee Tags Hierarchy</title>
	  <mediaobject>
	    <imageobject>
	      <imagedata align="center" format="PDF" scale="75"
			 fileref="../images/pbds_invalidation_tag_hierarchy.pdf"/>
	    </imageobject>
	    <imageobject>
	      <imagedata align="center" format="PNG" scale="100"
			 fileref="../images/pbds_invalidation_tag_hierarchy.png"/>
	    </imageobject>
	    <textobject>
	      <phrase>Invalidation Guarantee Tags Hierarchy</phrase>
	    </textobject>
	  </mediaobject>
	</figure>

	<itemizedlist>
	  <listitem>
	    <para>
	      <classname>basic_invalidation_guarantee</classname>
	      corresponds to a basic guarantee that a point-type iterator,
	      a found pointer, or a found reference, remains valid as long
	      as the container object is not modified.
	    </para>
	  </listitem>

	  <listitem>
	    <para>
	      <classname>point_invalidation_guarantee</classname>
	      corresponds to a guarantee that a point-type iterator, a
	      found pointer, or a found reference, remains valid even if
	      the container object is modified.
	    </para>
	  </listitem>

	  <listitem>
	    <para>
	      <classname>range_invalidation_guarantee</classname>
	      corresponds to a guarantee that a range-type iterator remains
	      valid even if the container object is modified.
	    </para>
	  </listitem>
	</itemizedlist>

	<para>To find the invalidation guarantee of a
	container, one can use</para>
	<programlisting>
	  typename container_traits&lt;Cntnr&gt;::invalidation_guarantee
	</programlisting>

	<para>Note that this hierarchy corresponds to the logic it
	represents: if a container has range-invalidation guarantees,
	then it must also have find invalidation guarantees;
	correspondingly, its invalidation guarantee (in this case
	<classname>range_invalidation_guarantee</classname>)
	can be cast to its base class (in this case <classname>point_invalidation_guarantee</classname>).
	This means that this this hierarchy can be used easily using
	standard metaprogramming techniques, by specializing on the
	type of <literal>invalidation_guarantee</literal>.</para>

	<para>
	  These types of problems were addressed, in a more general
	  setting, in <xref linkend="biblio.meyers96more"/> - Item 2. In
	  our opinion, an invalidation-guarantee hierarchy would solve
	  these problems in all container types - not just associative
	  containers.
	</para>

      </section>
    </section> <!-- iterator semantics -->

    <section xml:id="pbds.design.concepts.genericity">
      <info><title>Genericity</title></info>

      <para>
	The design attempts to address the following problem of
	data-structure genericity. When writing a function manipulating
	a generic container object, what is the behavior of the object?
	Suppose one writes
      </para>
      <programlisting>
	template&lt;typename Cntnr&gt;
	void
	some_op_sequence(Cntnr &amp;r_container)
	{
	...
	}
      </programlisting>

      <para>
	then one needs to address the following questions in the body
	of <function>some_op_sequence</function>:
      </para>

      <itemizedlist>
	<listitem>
	  <para>
	    Which types and methods does <literal>Cntnr</literal> support?
	    Containers based on hash tables can be queries for the
	    hash-functor type and object; this is meaningless for tree-based
	    containers. Containers based on trees can be split, joined, or
	    can erase iterators and return the following iterator; this
	    cannot be done by hash-based containers.
	  </para>
	</listitem>

	<listitem>
	  <para>
	    What are the exception and invalidation guarantees
	    of <literal>Cntnr</literal>? A container based on a probing
	    hash-table invalidates all iterators when it is modified; this
	    is not the case for containers based on node-based
	    trees. Containers based on a node-based tree can be split or
	    joined without exceptions; this is not the case for containers
	    based on vector-based trees.
	  </para>
	</listitem>

	<listitem>
	  <para>
	    How does the container maintain its elements? Tree-based and
	    Trie-based containers store elements by key order; others,
	    typically, do not. A container based on a splay trees or lists
	    with update policies "cache" "frequently accessed" elements;
	    containers based on most other underlying data structures do
	    not.
	  </para>
	</listitem>
	<listitem>
	  <para>
	    How does one query a container about characteristics and
	    capabilities? What is the relationship between two different
	    data structures, if anything?
	  </para>
	</listitem>
      </itemizedlist>

      <para>The remainder of this section explains these issues in
      detail.</para>


      <section xml:id="concepts.genericity.tag">
	<info><title>Tag</title></info>
	<para>
	  Tags are very useful for manipulating generic types. For example, if
	  <literal>It</literal> is an iterator class, then <literal>typename
	  It::iterator_category</literal> or <literal>typename
	  std::iterator_traits&lt;It&gt;::iterator_category</literal> will
	  yield its category, and <literal>typename
	  std::iterator_traits&lt;It&gt;::value_type</literal> will yield its
	  value type.
	</para>

	<para>
	  This library contains a container tag hierarchy corresponding to the
	  diagram below.
	</para>

	<figure>
	  <title>Container Tag Hierarchy</title>
	  <mediaobject>
	    <imageobject>
	      <imagedata align="center" format="PDF" scale="75"
			 fileref="../images/pbds_container_tag_hierarchy.pdf"/>
	    </imageobject>
	    <imageobject>
	      <imagedata align="center" format="PNG" scale="100"
			 fileref="../images/pbds_container_tag_hierarchy.png"/>
	    </imageobject>
	    <textobject>
	      <phrase>Container Tag Hierarchy</phrase>
	    </textobject>
	  </mediaobject>
	</figure>

	<para>
	  Given any container <type>Cntnr</type>, the tag of
	  the underlying data structure can be found via <literal>typename
	  Cntnr::container_category</literal>.
	</para>

      </section> <!-- tag -->

      <section xml:id="concepts.genericity.traits">
	<info><title>Traits</title></info>
	<para></para>

	<para>Additionally, a traits mechanism can be used to query a
	container type for its attributes. Given any container
	<literal>Cntnr</literal>, then <literal>&lt;Cntnr&gt;</literal>
	is a traits class identifying the properties of the
	container.</para>

	<para>To find if a container can throw when a key is erased (which
	is true for vector-based trees, for example), one can
	use
	</para>
	<programlisting>container_traits&lt;Cntnr&gt;::erase_can_throw</programlisting>

	<para>
	  Some of the definitions in <classname>container_traits</classname>
	  are dependent on other
	  definitions. If <classname>container_traits&lt;Cntnr&gt;::order_preserving</classname>
	  is <constant>true</constant> (which is the case for containers
	  based on trees and tries), then the container can be split or
	  joined; in this
	  case, <classname>container_traits&lt;Cntnr&gt;::split_join_can_throw</classname>
	  indicates whether splits or joins can throw exceptions (which is
	  true for vector-based trees);
	  otherwise <classname>container_traits&lt;Cntnr&gt;::split_join_can_throw</classname>
	  will yield a compilation error. (This is somewhat similar to a
	  compile-time version of the COM model).
	</para>

      </section> <!-- traits -->

    </section> <!-- genericity -->
  </section> <!-- concepts -->

  <section xml:id="pbds.design.container">
    <info><title>By Container</title></info>

    <!-- hash -->
    <section xml:id="pbds.design.container.hash">
      <info><title>hash</title></info>

      <!--

// hash policies
/// general terms / background
/// range hashing policies
/// ranged-hash policies
/// implementation

// resize policies
/// general
/// size policies
/// trigger policies
/// implementation

// policy interactions
/// probe/size/trigger
/// hash/trigger
/// eq/hash/storing hash values
/// size/load-check trigger
      -->
      <section xml:id="container.hash.interface">
	<info><title>Interface</title></info>



	<para>
	  The collision-chaining hash-based container has the
	following declaration.</para>
	<programlisting>
	  template&lt;
	  typename Key,
	  typename Mapped,
	  typename Hash_Fn = std::hash&lt;Key&gt;,
	  typename Eq_Fn = std::equal_to&lt;Key&gt;,
	  typename Comb_Hash_Fn =  direct_mask_range_hashing&lt;&gt;
	  typename Resize_Policy = default explained below.
	  bool Store_Hash = false,
	  typename Allocator = std::allocator&lt;char&gt; &gt;
	  class cc_hash_table;
	</programlisting>

	<para>The parameters have the following meaning:</para>

	<orderedlist>
	  <listitem><para><classname>Key</classname> is the key type.</para></listitem>

	  <listitem><para><classname>Mapped</classname> is the mapped-policy.</para></listitem>

	  <listitem><para><classname>Hash_Fn</classname> is a key hashing functor.</para></listitem>

	  <listitem><para><classname>Eq_Fn</classname> is a key equivalence functor.</para></listitem>

	  <listitem><para><classname>Comb_Hash_Fn</classname> is a range-hashing_functor;
	  it describes how to translate hash values into positions
	  within the table. </para></listitem>

	  <listitem><para><classname>Resize_Policy</classname> describes how a container object
	  should change its internal size. </para></listitem>

	  <listitem><para><classname>Store_Hash</classname> indicates whether the hash value
	  should be stored with each entry. </para></listitem>

	  <listitem><para><classname>Allocator</classname> is an allocator
	  type.</para></listitem>
	</orderedlist>

	<para>The probing hash-based container has the following
	declaration.</para>
	<programlisting>
	  template&lt;
	  typename Key,
	  typename Mapped,
	  typename Hash_Fn = std::hash&lt;Key&gt;,
	  typename Eq_Fn = std::equal_to&lt;Key&gt;,
	  typename Comb_Probe_Fn = direct_mask_range_hashing&lt;&gt;
	  typename Probe_Fn = default explained below.
	  typename Resize_Policy = default explained below.
	  bool Store_Hash = false,
	  typename Allocator =  std::allocator&lt;char&gt; &gt;
	  class gp_hash_table;
	</programlisting>

	<para>The parameters are identical to those of the
	collision-chaining container, except for the following.</para>

	<orderedlist>
	  <listitem><para><classname>Comb_Probe_Fn</classname> describes how to transform a probe
	  sequence into a sequence of positions within the table.</para></listitem>

	  <listitem><para><classname>Probe_Fn</classname> describes a probe sequence policy.</para></listitem>
	</orderedlist>

	<para>Some of the default template values depend on the values of
	other parameters, and are explained below.</para>

      </section>
      <section xml:id="container.hash.details">
	<info><title>Details</title></info>

	<section xml:id="container.hash.details.hash_policies">
	  <info><title>Hash Policies</title></info>

	  <section xml:id="details.hash_policies.general">
	    <info><title>General</title></info>

	    <para>Following is an explanation of some functions which hashing
	    involves. The graphic below illustrates the discussion.</para>

	    <figure>
	      <title>Hash functions, ranged-hash functions, and
	      range-hashing functions</title>
	      <mediaobject>
		<imageobject>
		  <imagedata align="center" format="PNG" scale="100"
			     fileref="../images/pbds_hash_ranged_hash_range_hashing_fns.png"/>
		</imageobject>
		<textobject>
		  <phrase>Hash functions, ranged-hash functions, and
		  range-hashing functions</phrase>
		</textobject>
	      </mediaobject>
	    </figure>
	    
	    <para>Let U be a domain (e.g., the integers, or the
	    strings of 3 characters). A hash-table algorithm needs to map
	    elements of U "uniformly" into the range [0,..., m -
	    1] (where m is a non-negative integral value, and
	    is, in general, time varying). I.e., the algorithm needs
	    a ranged-hash function</para>

	    <para>
	      f : U × Z<subscript>+</subscript> → Z<subscript>+</subscript>
	    </para>

	    <para>such that for any u in U ,</para>

	    <para>0 ≤ f(u, m) ≤ m - 1</para>

	    <para>and which has "good uniformity" properties (say
	    <xref linkend="biblio.knuth98sorting"/>.)
	    One
	    common solution is to use the composition of the hash
	    function</para>

	    <para>h : U → Z<subscript>+</subscript> ,</para>

	    <para>which maps elements of U into the non-negative
	    integrals, and</para>

	    <para>g : Z<subscript>+</subscript> × Z<subscript>+</subscript> →
	    Z<subscript>+</subscript>,</para>

	    <para>which maps a non-negative hash value, and a non-negative
	    range upper-bound into a non-negative integral in the range
	    between 0 (inclusive) and the range upper bound (exclusive),
	    i.e., for any r in Z<subscript>+</subscript>,</para>

	    <para>0 ≤ g(r, m) ≤ m - 1</para>


	    <para>The resulting ranged-hash function, is</para>

	    <!-- ranged_hash_composed_of_hash_and_range_hashing -->
	    <equation>
	      <title>Ranged Hash Function</title>
	      <mathphrase>
		f(u , m) = g(h(u), m)
	      </mathphrase>
	    </equation>

	    <para>From the above, it is obvious that given g and
	    h, f can always be composed (however the converse
	    is not true). The standard's hash-based containers allow specifying
	    a hash function, and use a hard-wired range-hashing function;
	    the ranged-hash function is implicitly composed.</para>

	    <para>The above describes the case where a key is to be mapped
	    into a single position within a hash table, e.g.,
	    in a collision-chaining table. In other cases, a key is to be
	    mapped into a sequence of positions within a table,
	    e.g., in a probing table. Similar terms apply in this
	    case: the table requires a ranged probe function,
	    mapping a key into a sequence of positions withing the table.
	    This is typically achieved by composing a hash function
	    mapping the key into a non-negative integral type, a
	    probe function transforming the hash value into a
	    sequence of hash values, and a range-hashing function
	    transforming the sequence of hash values into a sequence of
	    positions.</para>

	  </section>

	  <section xml:id="details.hash_policies.range">
	    <info><title>Range Hashing</title></info>

	    <para>Some common choices for range-hashing functions are the
	    division, multiplication, and middle-square methods (<xref linkend="biblio.knuth98sorting"/>), defined
	    as</para>

	    <equation>
	      <title>Range-Hashing, Division Method</title>
	      <mathphrase>
		g(r, m) = r mod m
	      </mathphrase>
	    </equation>



	    <para>g(r, m) = ⌈ u/v ( a r mod v ) ⌉</para>

	    <para>and</para>

	    <para>g(r, m) = ⌈ u/v ( r<superscript>2</superscript> mod v ) ⌉</para>

	    <para>respectively, for some positive integrals u and
	    v (typically powers of 2), and some a. Each of
	    these range-hashing functions works best for some different
	    setting.</para>

	    <para>The division method (see above) is a
	    very common choice. However, even this single method can be
	    implemented in two very different ways. It is possible to
	    implement using the low
	    level % (modulo) operation (for any m), or the
	    low level &amp; (bit-mask) operation (for the case where
	    m is a power of 2), i.e.,</para>

	    <equation>
	      <title>Division via Prime Modulo</title>
	      <mathphrase>
		g(r, m) = r % m
	      </mathphrase>
	    </equation>

	    <para>and</para>

	    <equation>
	      <title>Division via Bit Mask</title>
	      <mathphrase>
		g(r, m) = r &amp; m - 1, (with m =
		2<superscript>k</superscript> for some k)
	      </mathphrase>
	    </equation>


	    <para>respectively.</para>

	    <para>The % (modulo) implementation has the advantage that for
	    m a prime far from a power of 2, g(r, m) is
	    affected by all the bits of r (minimizing the chance of
	    collision). It has the disadvantage of using the costly modulo
	    operation. This method is hard-wired into SGI's implementation
	    .</para>

	    <para>The &amp; (bit-mask) implementation has the advantage of
	    relying on the fast bit-wise and operation. It has the
	    disadvantage that for g(r, m) is affected only by the
	    low order bits of r. This method is hard-wired into
	    Dinkumware's implementation.</para>


	  </section>

	  <section xml:id="details.hash_policies.ranged">
	    <info><title>Ranged Hash</title></info>

	    <para>In cases it is beneficial to allow the
	    client to directly specify a ranged-hash hash function. It is
	    true, that the writer of the ranged-hash function cannot rely
	    on the values of m having specific numerical properties
	    suitable for hashing (in the sense used in <xref linkend="biblio.knuth98sorting"/>), since
	    the values of m are determined by a resize policy with
	    possibly orthogonal considerations.</para>

	    <para>There are two cases where a ranged-hash function can be
	    superior. The firs is when using perfect hashing: the
	    second is when the values of m can be used to estimate
	    the "general" number of distinct values required. This is
	    described in the following.</para>

	    <para>Let</para>

	    <para>
	      s = [ s<subscript>0</subscript>,..., s<subscript>t - 1</subscript>]
	    </para>

	    <para>be a string of t characters, each of which is from
	    domain S. Consider the following ranged-hash
	    function:</para>
	    <equation>
	      <title>
		A Standard String Hash Function
	      </title>
	      <mathphrase>
		f<subscript>1</subscript>(s, m) = ∑ <subscript>i =
		0</subscript><superscript>t - 1</superscript> s<subscript>i</subscript> a<superscript>i</superscript> mod m
	      </mathphrase>
	    </equation>
	    

	    <para>where a is some non-negative integral value. This is
	    the standard string-hashing function used in SGI's
	    implementation (with a = 5). Its advantage is that
	    it takes into account all of the characters of the string.</para>

	    <para>Now assume that s is the string representation of a
	    of a long DNA sequence (and so S = {'A', 'C', 'G',
	    'T'}). In this case, scanning the entire string might be
	    prohibitively expensive. A possible alternative might be to use
	    only the first k characters of the string, where</para>

	    <para>|S|<superscript>k</superscript> ≥ m ,</para>

	    <para>i.e., using the hash function</para>

	    <equation>
	      <title>
		Only k String DNA Hash
	      </title>
	      <mathphrase>
		f<subscript>2</subscript>(s, m) = ∑ <subscript>i
		= 0</subscript><superscript>k - 1</superscript> s<subscript>i</subscript> a<superscript>i</superscript> mod m 
	      </mathphrase>
	    </equation>

	    <para>requiring scanning over only</para>

	    <para>k = log<subscript>4</subscript>( m )</para>

	    <para>characters.</para>

	    <para>Other more elaborate hash-functions might scan k
	    characters starting at a random position (determined at each
	    resize), or scanning k random positions (determined at
	    each resize), i.e., using</para>

	    <para>f<subscript>3</subscript>(s, m) = ∑ <subscript>i =
	    r</subscript>0<superscript>r<subscript>0</subscript> + k - 1</superscript> s<subscript>i</subscript>
	    a<superscript>i</superscript> mod m ,</para>

	    <para>or</para>

	    <para>f<subscript>4</subscript>(s, m) = ∑ <subscript>i = 0</subscript><superscript>k -
	    1</superscript> s<subscript>r</subscript>i a<superscript>r<subscript>i</subscript></superscript> mod
	    m ,</para>

	    <para>respectively, for r<subscript>0</subscript>,..., r<subscript>k-1</subscript>
	    each in the (inclusive) range [0,...,t-1].</para>

	    <para>It should be noted that the above functions cannot be
	    decomposed as per a ranged hash composed of hash and range hashing.</para>


	  </section>

	  <section xml:id="details.hash_policies.implementation">
	    <info><title>Implementation</title></info>

	    <para>This sub-subsection describes the implementation of
	    the above in this library. It first explains range-hashing
	    functions in collision-chaining tables, then ranged-hash
	    functions in collision-chaining tables, then probing-based
	    tables, and finally lists the relevant classes in this
	    library.</para>

	    <section xml:id="hash_policies.implementation.collision-chaining">
	      <info><title>
		Range-Hashing and Ranged-Hashes in Collision-Chaining Tables
	      </title></info>


	      <para><classname>cc_hash_table</classname> is
	      parametrized by <classname>Hash_Fn</classname> and <classname>Comb_Hash_Fn</classname>, a
	      hash functor and a combining hash functor, respectively.</para>

	      <para>In general, <classname>Comb_Hash_Fn</classname> is considered a
	      range-hashing functor. <classname>cc_hash_table</classname>
	      synthesizes a ranged-hash function from <classname>Hash_Fn</classname> and
	      <classname>Comb_Hash_Fn</classname>. The figure below shows an <classname>insert</classname> sequence
	      diagram for this case. The user inserts an element (point A),
	      the container transforms the key into a non-negative integral
	      using the hash functor (points B and C), and transforms the
	      result into a position using the combining functor (points D
	      and E).</para>

	      <figure>
		<title>Insert hash sequence diagram</title>
		<mediaobject>
		  <imageobject>
		    <imagedata align="center" format="PNG" scale="100"
			       fileref="../images/pbds_hash_range_hashing_seq_diagram.png"/>
		  </imageobject>
		  <textobject>
		    <phrase>Insert hash sequence diagram</phrase>
		  </textobject>
		</mediaobject>
	      </figure>
	      
	      <para>If <classname>cc_hash_table</classname>'s
	      hash-functor, <classname>Hash_Fn</classname> is instantiated by <classname>null_type</classname> , then <classname>Comb_Hash_Fn</classname> is taken to be
	      a ranged-hash function. The graphic below shows an <function>insert</function> sequence
	      diagram. The user inserts an element (point A), the container
	      transforms the key into a position using the combining functor
	      (points B and C).</para>

	      <figure>
		<title>Insert hash sequence diagram with a null policy</title>
		<mediaobject>
		  <imageobject>
		    <imagedata align="center" format="PNG" scale="100"
			       fileref="../images/pbds_hash_range_hashing_seq_diagram2.png"/>
		  </imageobject>
		  <textobject>
		    <phrase>Insert hash sequence diagram with a null policy</phrase>
		  </textobject>
		</mediaobject>
	      </figure>
	      
	    </section>

	    <section xml:id="hash_policies.implementation.probe">
	      <info><title>
		Probing tables
	      </title></info>
	      <para><classname>gp_hash_table</classname> is parametrized by
	      <classname>Hash_Fn</classname>, <classname>Probe_Fn</classname>,
	      and <classname>Comb_Probe_Fn</classname>. As before, if
	      <classname>Hash_Fn</classname> and <classname>Probe_Fn</classname>
	      are both <classname>null_type</classname>, then
	      <classname>Comb_Probe_Fn</classname> is a ranged-probe
	      functor. Otherwise, <classname>Hash_Fn</classname> is a hash
	      functor, <classname>Probe_Fn</classname> is a functor for offsets
	      from a hash value, and <classname>Comb_Probe_Fn</classname>
	      transforms a probe sequence into a sequence of positions within
	      the table.</para>

	    </section>

	    <section xml:id="hash_policies.implementation.predefined">
	      <info><title>
		Pre-Defined Policies
	      </title></info>

	      <para>This library contains some pre-defined classes
	      implementing range-hashing and probing functions:</para>

	      <orderedlist>
		<listitem><para><classname>direct_mask_range_hashing</classname>
		and <classname>direct_mod_range_hashing</classname>
		are range-hashing functions based on a bit-mask and a modulo
		operation, respectively.</para></listitem>

		<listitem><para><classname>linear_probe_fn</classname>, and
		<classname>quadratic_probe_fn</classname> are
		a linear probe and a quadratic probe function,
		respectively.</para></listitem>
	      </orderedlist>

	      <para>
		The graphic below shows the relationships.
	      </para>
	      <figure>
		<title>Hash policy class diagram</title>
		<mediaobject>
		  <imageobject>
		    <imagedata align="center" format="PNG" scale="100"
			       fileref="../images/pbds_hash_policy_cd.png"/>
		  </imageobject>
		  <textobject>
		    <phrase>Hash policy class diagram</phrase>
		  </textobject>
		</mediaobject>
	      </figure>


	    </section>

	  </section> <!-- impl -->

	</section>

	<section xml:id="container.hash.details.resize_policies">
	  <info><title>Resize Policies</title></info>

	  <section xml:id="resize_policies.general">
	    <info><title>General</title></info>

	    <para>Hash-tables, as opposed to trees, do not naturally grow or
	    shrink. It is necessary to specify policies to determine how
	    and when a hash table should change its size. Usually, resize
	    policies can be decomposed into orthogonal policies:</para>

	    <orderedlist>
	      <listitem><para>A size policy indicating how a hash table
	      should grow (e.g., it should multiply by powers of
	      2).</para></listitem>

	      <listitem><para>A trigger policy indicating when a hash
	      table should grow (e.g., a load factor is
	      exceeded).</para></listitem>
	    </orderedlist>

	  </section>

	  <section xml:id="resize_policies.size">
	    <info><title>Size Policies</title></info>


	    <para>Size policies determine how a hash table changes size. These
	    policies are simple, and there are relatively few sensible
	    options. An exponential-size policy (with the initial size and
	    growth factors both powers of 2) works well with a mask-based
	    range-hashing function, and is the
	    hard-wired policy used by Dinkumware. A
	    prime-list based policy works well with a modulo-prime range
	    hashing function and is the hard-wired policy used by SGI's
	    implementation.</para>

	  </section>

	  <section xml:id="resize_policies.trigger">
	    <info><title>Trigger Policies</title></info>

	    <para>Trigger policies determine when a hash table changes size.
	    Following is a description of two policies: load-check
	    policies, and collision-check policies.</para>

	    <para>Load-check policies are straightforward. The user specifies
	    two factors, Α<subscript>min</subscript> and
	    Α<subscript>max</subscript>, and the hash table maintains the
	    invariant that</para>

	    <para>Α<subscript>min</subscript> ≤ (number of
	    stored elements) / (hash-table size) ≤
	    Α<subscript>max</subscript><remark>load factor min max</remark></para>

	    <para>Collision-check policies work in the opposite direction of
	    load-check policies. They focus on keeping the number of
	    collisions moderate and hoping that the size of the table will
	    not grow very large, instead of keeping a moderate load-factor
	    and hoping that the number of collisions will be small. A
	    maximal collision-check policy resizes when the longest
	    probe-sequence grows too large.</para>

	    <para>Consider the graphic below. Let the size of the hash table
	    be denoted by m, the length of a probe sequence be denoted by k,
	    and some load factor be denoted by Α. We would like to
	    calculate the minimal length of k, such that if there were Α
	    m elements in the hash table, a probe sequence of length k would
	    be found with probability at most 1/m.</para>

	    <figure>
	      <title>Balls and bins</title>
	      <mediaobject>
		<imageobject>
		  <imagedata align="center" format="PNG" scale="100"
			     fileref="../images/pbds_balls_and_bins.png"/>
		</imageobject>
		<textobject>
		  <phrase>Balls and bins</phrase>
		</textobject>
	      </mediaobject>
	    </figure>

	    <para>Denote the probability that a probe sequence of length
	    k appears in bin i by p<subscript>i</subscript>, the
	    length of the probe sequence of bin i by
	    l<subscript>i</subscript>, and assume uniform distribution. Then</para>



	    <equation>
	      <title>
		Probability of Probe Sequence of Length k
	      </title>
	      <mathphrase>
		p<subscript>1</subscript> = 
	      </mathphrase>
	    </equation>

	    <para>P(l<subscript>1</subscript> ≥ k) =</para>

	    <para>
	      P(l<subscript>1</subscript> ≥ α ( 1 + k / α - 1) ≤ (a)
	    </para>

	    <para>
	      e ^ ( - ( α ( k / α - 1 )<superscript>2</superscript> ) /2)
	    </para>

	    <para>where (a) follows from the Chernoff bound (<xref linkend="biblio.motwani95random"/>). To
	    calculate the probability that some bin contains a probe
	    sequence greater than k, we note that the
	    l<subscript>i</subscript> are negatively-dependent
	    (<xref linkend="biblio.dubhashi98neg"/>)
	    . Let
	    I(.) denote the indicator function. Then</para>

	    <equation>
	      <title>
		Probability Probe Sequence in Some Bin
	      </title>
	      <mathphrase>
		P( exists<subscript>i</subscript> l<subscript>i</subscript> ≥ k ) = 
	      </mathphrase>
	    </equation>

	    <para>P ( ∑ <subscript>i = 1</subscript><superscript>m</superscript>
	    I(l<subscript>i</subscript> ≥ k) ≥ 1 ) =</para>

	    <para>P ( ∑ <subscript>i = 1</subscript><superscript>m</superscript> I (
	    l<subscript>i</subscript> ≥ k ) ≥ m p<subscript>1</subscript> ( 1 + 1 / (m
	    p<subscript>1</subscript>) - 1 ) ) ≤ (a)</para>

	    <para>e ^ ( ( - m p<subscript>1</subscript> ( 1 / (m p<subscript>1</subscript>)
	    - 1 ) <superscript>2</superscript> ) / 2 ) ,</para>

	    <para>where (a) follows from the fact that the Chernoff bound can
	    be applied to negatively-dependent variables (<xref
	    linkend="biblio.dubhashi98neg"/>). Inserting the first probability
	    equation into the second one, and equating with 1/m, we
	    obtain</para>


	    <para>k ~ √ ( 2 α ln 2 m ln(m) )
	    ) .</para>

	  </section>

	  <section xml:id="resize_policies.impl">
	    <info><title>Implementation</title></info>

	    <para>This sub-subsection describes the implementation of the
	    above in this library. It first describes resize policies and
	    their decomposition into trigger and size policies, then
	    describes pre-defined classes, and finally discusses controlled
	    access the policies' internals.</para>

	    <section xml:id="resize_policies.impl.decomposition">
	      <info><title>Decomposition</title></info>


	      <para>Each hash-based container is parametrized by a
	      <classname>Resize_Policy</classname> parameter; the container derives
	      <classname>public</classname>ly from <classname>Resize_Policy</classname>. For
	      example:</para>
	      <programlisting>
		cc_hash_table&lt;typename Key,
		typename Mapped,
		...
		typename Resize_Policy
		...&gt; : public Resize_Policy
	      </programlisting>

	      <para>As a container object is modified, it continuously notifies
	      its <classname>Resize_Policy</classname> base of internal changes
	      (e.g., collisions encountered and elements being
	      inserted). It queries its <classname>Resize_Policy</classname> base whether
	      it needs to be resized, and if so, to what size.</para>

	      <para>The graphic below shows a (possible) sequence diagram
	      of an insert operation. The user inserts an element; the hash
	      table notifies its resize policy that a search has started
	      (point A); in this case, a single collision is encountered -
	      the table notifies its resize policy of this (point B); the
	      container finally notifies its resize policy that the search
	      has ended (point C); it then queries its resize policy whether
	      a resize is needed, and if so, what is the new size (points D
	      to G); following the resize, it notifies the policy that a
	      resize has completed (point H); finally, the element is
	      inserted, and the policy notified (point I).</para>

	      <figure>
		<title>Insert resize sequence diagram</title>
		<mediaobject>
		  <imageobject>
		    <imagedata align="center" format="PNG" scale="100"
			       fileref="../images/pbds_insert_resize_sequence_diagram1.png"/>
		  </imageobject>
		  <textobject>
		    <phrase>Insert resize sequence diagram</phrase>
		  </textobject>
		</mediaobject>
	      </figure>


	      <para>In practice, a resize policy can be usually orthogonally
	      decomposed to a size policy and a trigger policy. Consequently,
	      the library contains a single class for instantiating a resize
	      policy: <classname>hash_standard_resize_policy</classname>
	      is parametrized by <classname>Size_Policy</classname> and
	      <classname>Trigger_Policy</classname>, derives <classname>public</classname>ly from
	      both, and acts as a standard delegate (<xref linkend="biblio.gof"/>)
	      to these policies.</para>

	      <para>The two graphics immediately below show sequence diagrams
	      illustrating the interaction between the standard resize policy
	      and its trigger and size policies, respectively.</para>

	      <figure>
		<title>Standard resize policy trigger sequence
		diagram</title>
		<mediaobject>
		  <imageobject>
		    <imagedata align="center" format="PNG" scale="100"
			       fileref="../images/pbds_insert_resize_sequence_diagram2.png"/>
		  </imageobject>
		  <textobject>
		    <phrase>Standard resize policy trigger sequence
		    diagram</phrase>
		  </textobject>
		</mediaobject>
	      </figure>

	      <figure>
		<title>Standard resize policy size sequence
		diagram</title>
		<mediaobject>
		  <imageobject>
		    <imagedata align="center" format="PNG" scale="100"
			       fileref="../images/pbds_insert_resize_sequence_diagram3.png"/>
		  </imageobject>
		  <textobject>
		    <phrase>Standard resize policy size sequence
		    diagram</phrase>
		  </textobject>
		</mediaobject>
	      </figure>


	    </section>

	    <section xml:id="resize_policies.impl.predefined">
	      <info><title>Predefined Policies</title></info>
	      <para>The library includes the following
	      instantiations of size and trigger policies:</para>

	      <orderedlist>
		<listitem><para><classname>hash_load_check_resize_trigger</classname>
		implements a load check trigger policy.</para></listitem>

		<listitem><para><classname>cc_hash_max_collision_check_resize_trigger</classname>
		implements a collision check trigger policy.</para></listitem>

		<listitem><para><classname>hash_exponential_size_policy</classname>
		implements an exponential-size policy (which should be used
		with mask range hashing).</para></listitem>

		<listitem><para><classname>hash_prime_size_policy</classname>
		implementing a size policy based on a sequence of primes
		(which should
		be used with mod range hashing</para></listitem>
	      </orderedlist>

	      <para>The graphic below gives an overall picture of the resize-related
	      classes. <classname>basic_hash_table</classname>
	      is parametrized by <classname>Resize_Policy</classname>, which it subclasses
	      publicly. This class is currently instantiated only by <classname>hash_standard_resize_policy</classname>. 
	      <classname>hash_standard_resize_policy</classname>
	      itself is parametrized by <classname>Trigger_Policy</classname> and
	      <classname>Size_Policy</classname>. Currently, <classname>Trigger_Policy</classname> is
	      instantiated by <classname>hash_load_check_resize_trigger</classname>,
	      or <classname>cc_hash_max_collision_check_resize_trigger</classname>;
	      <classname>Size_Policy</classname> is instantiated by <classname>hash_exponential_size_policy</classname>,
	      or <classname>hash_prime_size_policy</classname>.</para>

	    </section>

	    <section xml:id="resize_policies.impl.internals">
	      <info><title>Controling Access to Internals</title></info>

	      <para>There are cases where (controlled) access to resize
	      policies' internals is beneficial. E.g., it is sometimes
	      useful to query a hash-table for the table's actual size (as
	      opposed to its <function>size()</function> - the number of values it
	      currently holds); it is sometimes useful to set a table's
	      initial size, externally resize it, or change load factors.</para>

	      <para>Clearly, supporting such methods both decreases the
	      encapsulation of hash-based containers, and increases the
	      diversity between different associative-containers' interfaces.
	      Conversely, omitting such methods can decrease containers'
	      flexibility.</para>

	      <para>In order to avoid, to the extent possible, the above
	      conflict, the hash-based containers themselves do not address
	      any of these questions; this is deferred to the resize policies,
	      which are easier to change or replace. Thus, for example,
	      neither <classname>cc_hash_table</classname> nor
	      <classname>gp_hash_table</classname>
	      contain methods for querying the actual size of the table; this
	      is deferred to <classname>hash_standard_resize_policy</classname>.</para>

	      <para>Furthermore, the policies themselves are parametrized by
	      template arguments that determine the methods they support
	      (
	      <xref linkend="biblio.alexandrescu01modern"/>
	      shows techniques for doing so). <classname>hash_standard_resize_policy</classname>
	      is parametrized by <classname>External_Size_Access</classname> that
	      determines whether it supports methods for querying the actual
	      size of the table or resizing it. <classname>hash_load_check_resize_trigger</classname>
	      is parametrized by <classname>External_Load_Access</classname> that
	      determines whether it supports methods for querying or
	      modifying the loads. <classname>cc_hash_max_collision_check_resize_trigger</classname>
	      is parametrized by <classname>External_Load_Access</classname> that
	      determines whether it supports methods for querying the
	      load.</para>

	      <para>Some operations, for example, resizing a container at
	      run time, or changing the load factors of a load-check trigger
	      policy, require the container itself to resize. As mentioned
	      above, the hash-based containers themselves do not contain
	      these types of methods, only their resize policies.
	      Consequently, there must be some mechanism for a resize policy
	      to manipulate the hash-based container. As the hash-based
	      container is a subclass of the resize policy, this is done
	      through virtual methods. Each hash-based container has a
	      <classname>private</classname> <classname>virtual</classname> method:</para>
	      <programlisting>
		virtual void
		do_resize
		(size_type new_size);
	      </programlisting>

	      <para>which resizes the container. Implementations of
	      <classname>Resize_Policy</classname> can export public methods for resizing
	      the container externally; these methods internally call
	      <classname>do_resize</classname> to resize the table.</para>


	    </section>

	  </section>


	</section> <!-- resize policies -->

	<section xml:id="container.hash.details.policy_interaction">
	  <info><title>Policy Interactions</title></info>
	  <para>
	  </para>
	  <para>Hash-tables are unfortunately especially susceptible to
	  choice of policies. One of the more complicated aspects of this
	  is that poor combinations of good policies can form a poor
	  container. Following are some considerations.</para>

	  <section xml:id="policy_interaction.probesizetrigger">
	    <info><title>probe/size/trigger</title></info>

	    <para>Some combinations do not work well for probing containers.
	    For example, combining a quadratic probe policy with an
	    exponential size policy can yield a poor container: when an
	    element is inserted, a trigger policy might decide that there
	    is no need to resize, as the table still contains unused
	    entries; the probe sequence, however, might never reach any of
	    the unused entries.</para>

	    <para>Unfortunately, this library cannot detect such problems at
	    compilation (they are halting reducible). It therefore defines
	    an exception class <classname>insert_error</classname> to throw an
	    exception in this case.</para>

	  </section>

	  <section xml:id="policy_interaction.hashtrigger">
	    <info><title>hash/trigger</title></info>

	    <para>Some trigger policies are especially susceptible to poor
	    hash functions. Suppose, as an extreme case, that the hash
	    function transforms each key to the same hash value. After some
	    inserts, a collision detecting policy will always indicate that
	    the container needs to grow.</para>

	    <para>The library, therefore, by design, limits each operation to
	    one resize. For each <classname>insert</classname>, for example, it queries
	    only once whether a resize is needed.</para>

	  </section>

	  <section xml:id="policy_interaction.eqstorehash">
	    <info><title>equivalence functors/storing hash values/hash</title></info>

	    <para><classname>cc_hash_table</classname> and
	    <classname>gp_hash_table</classname> are
	    parametrized by an equivalence functor and by a
	    <classname>Store_Hash</classname> parameter. If the latter parameter is
	    <classname>true</classname>, then the container stores with each entry
	    a hash value, and uses this value in case of collisions to
	    determine whether to apply a hash value. This can lower the
	    cost of collision for some types, but increase the cost of
	    collisions for other types.</para>

	    <para>If a ranged-hash function or ranged probe function is
	    directly supplied, however, then it makes no sense to store the
	    hash value with each entry. This library's container will
	    fail at compilation, by design, if this is attempted.</para>

	  </section>

	  <section xml:id="policy_interaction.sizeloadtrigger">
	    <info><title>size/load-check trigger</title></info>

	    <para>Assume a size policy issues an increasing sequence of sizes
	    a, a q, a q<superscript>1</superscript>, a q<superscript>2</superscript>, ... For
	    example, an exponential size policy might issue the sequence of
	    sizes 8, 16, 32, 64, ...</para>

	    <para>If a load-check trigger policy is used, with loads
	    α<subscript>min</subscript> and α<subscript>max</subscript>,
	    respectively, then it is a good idea to have:</para>

	    <orderedlist>
	      <listitem><para>α<subscript>max</subscript> ~ 1 / q</para></listitem>

	      <listitem><para>α<subscript>min</subscript> &lt; 1 / (2 q)</para></listitem>
	    </orderedlist>

	    <para>This will ensure that the amortized hash cost of each
	    modifying operation is at most approximately 3.</para>

	    <para>α<subscript>min</subscript> ~ α<subscript>max</subscript> is, in
	    any case, a bad choice, and α<subscript>min</subscript> &gt;
	    α <subscript>max</subscript> is horrendous.</para>

	  </section>

	</section>

      </section> <!-- details -->

    </section> <!-- hash -->

    <!-- tree -->
    <section xml:id="pbds.design.container.tree">
      <info><title>tree</title></info>

      <section xml:id="container.tree.interface">
	<info><title>Interface</title></info>

	<para>The tree-based container has the following declaration:</para>
	<programlisting>
	  template&lt;
	  typename Key,
	  typename Mapped,
	  typename Cmp_Fn = std::less&lt;Key&gt;,
	  typename Tag = rb_tree_tag,
	  template&lt;
	  typename Const_Node_Iterator,
	  typename Node_Iterator,
	  typename Cmp_Fn_,
	  typename Allocator_&gt;
	  class Node_Update = null_node_update,
	  typename Allocator = std::allocator&lt;char&gt; &gt;
	  class tree;
	</programlisting>

	<para>The parameters have the following meaning:</para>

	<orderedlist>
	  <listitem>
	  <para><classname>Key</classname> is the key type.</para></listitem>

	  <listitem>
	  <para><classname>Mapped</classname> is the mapped-policy.</para></listitem>

	  <listitem>
	  <para><classname>Cmp_Fn</classname> is a key comparison functor</para></listitem>

	  <listitem>
	    <para><classname>Tag</classname> specifies which underlying data structure
	  to use.</para></listitem>

	  <listitem>
	    <para><classname>Node_Update</classname> is a policy for updating node
	  invariants.</para></listitem>

	  <listitem>
	    <para><classname>Allocator</classname> is an allocator
	  type.</para></listitem>
	</orderedlist>

	<para>The <classname>Tag</classname> parameter specifies which underlying
	data structure to use. Instantiating it by <classname>rb_tree_tag</classname>, <classname>splay_tree_tag</classname>, or
	<classname>ov_tree_tag</classname>,
	specifies an underlying red-black tree, splay tree, or
	ordered-vector tree, respectively; any other tag is illegal.
	Note that containers based on the former two contain more types
	and methods than the latter (e.g.,
	<classname>reverse_iterator</classname> and <classname>rbegin</classname>), and different
	exception and invalidation guarantees.</para>

      </section>

      <section xml:id="container.tree.details">
	<info><title>Details</title></info>

	<section xml:id="container.tree.node">
	  <info><title>Node Invariants</title></info>


	  <para>Consider the two trees in the graphic below, labels A and B. The first
	  is a tree of floats; the second is a tree of pairs, each
	  signifying a geometric line interval. Each element in a tree is refered to as a node of the tree. Of course, each of
	  these trees can support the usual queries: the first can easily
	  search for <classname>0.4</classname>; the second can easily search for
	  <classname>std::make_pair(10, 41)</classname>.</para>

	  <para>Each of these trees can efficiently support other queries.
	  The first can efficiently determine that the 2rd key in the
	  tree is <constant>0.3</constant>; the second can efficiently determine
	  whether any of its intervals overlaps
	  <programlisting>std::make_pair(29,42)</programlisting> (useful in geometric
	  applications or distributed file systems with leases, for
	  example).  It should be noted that an <classname>std::set</classname> can
	  only solve these types of problems with linear complexity.</para>

	  <para>In order to do so, each tree stores some metadata in
	  each node, and maintains node invariants (see <xref linkend="biblio.clrs2001"/>.) The first stores in
	  each node the size of the sub-tree rooted at the node; the
	  second stores at each node the maximal endpoint of the
	  intervals at the sub-tree rooted at the node.</para>

	  <figure>
	    <title>Tree node invariants</title>
	    <mediaobject>
	      <imageobject>
		<imagedata align="center" format="PNG" scale="100"
			   fileref="../images/pbds_tree_node_invariants.png"/>
	      </imageobject>
	      <textobject>
		<phrase>Tree node invariants</phrase>
	      </textobject>
	    </mediaobject>
	  </figure>
	  
	  <para>Supporting such trees is difficult for a number of
	  reasons:</para>

	  <orderedlist>
	    <listitem><para>There must be a way to specify what a node's metadata
	    should be (if any).</para></listitem>

	    <listitem><para>Various operations can invalidate node
	    invariants.  The graphic below shows how a right rotation,
	    performed on A, results in B, with nodes x and y having
	    corrupted invariants (the grayed nodes in C). The graphic shows
	    how an insert, performed on D, results in E, with nodes x and y
	    having corrupted invariants (the grayed nodes in F). It is not
	    feasible to know outside the tree the effect of an operation on
	    the nodes of the tree.</para></listitem>

	    <listitem><para>The search paths of standard associative containers are
	    defined by comparisons between keys, and not through
	    metadata.</para></listitem>

	    <listitem><para>It is not feasible to know in advance which methods trees
	    can support. Besides the usual <classname>find</classname> method, the
	    first tree can support a <classname>find_by_order</classname> method, while
	    the second can support an <classname>overlaps</classname> method.</para></listitem>
	  </orderedlist>

	  <figure>
	    <title>Tree node invalidation</title>
	    <mediaobject>
	      <imageobject>
		<imagedata align="center" format="PNG" scale="100"
			   fileref="../images/pbds_tree_node_invalidations.png"/>
	      </imageobject>
	      <textobject>
		<phrase>Tree node invalidation</phrase>
	      </textobject>
	    </mediaobject>
	  </figure>

	  <para>These problems are solved by a combination of two means:
	  node iterators, and template-template node updater
	  parameters.</para>

	  <section xml:id="container.tree.node.iterators">
	    <info><title>Node Iterators</title></info>


	    <para>Each tree-based container defines two additional iterator
	    types, <classname>const_node_iterator</classname>
	    and <classname>node_iterator</classname>.
	    These iterators allow descending from a node to one of its
	    children. Node iterator allow search paths different than those
	    determined by the comparison functor. The <classname>tree</classname>
	    supports the methods:</para>
	    <programlisting>
	      const_node_iterator
	      node_begin() const;

	      node_iterator
	      node_begin();

	      const_node_iterator
	      node_end() const;

	      node_iterator
	      node_end(); 
	    </programlisting>

	    <para>The first pairs return node iterators corresponding to the
	    root node of the tree; the latter pair returns node iterators
	    corresponding to a just-after-leaf node.</para>
	  </section>

	  <section xml:id="container.tree.node.updator">
	    <info><title>Node Updator</title></info>

	    <para>The tree-based containers are parametrized by a
	    <classname>Node_Update</classname> template-template parameter. A
	    tree-based container instantiates
	    <classname>Node_Update</classname> to some
	    <classname>node_update</classname> class, and publicly subclasses
	    <classname>node_update</classname>. The graphic below shows this
	    scheme, as well as some predefined policies (which are explained
	    below).</para>

	    <figure>
	      <title>A tree and its update policy</title>
	      <mediaobject>
		<imageobject>
		  <imagedata align="center" format="PNG" scale="100"
			     fileref="../images/pbds_tree_node_updator_policy_cd.png"/>
		</imageobject>
		<textobject>
		  <phrase>A tree and its update policy</phrase>
		</textobject>
	      </mediaobject>
	    </figure>

	    <para><classname>node_update</classname> (an instantiation of
	    <classname>Node_Update</classname>) must define <classname>metadata_type</classname> as
	    the type of metadata it requires. For order statistics,
	    e.g., <classname>metadata_type</classname> might be <classname>size_t</classname>.
	    The tree defines within each node a <classname>metadata_type</classname>
	    object.</para>

	    <para><classname>node_update</classname> must also define the following method
	    for restoring node invariants:</para>
	    <programlisting>
	      void 
	      operator()(node_iterator nd_it, const_node_iterator end_nd_it)
	    </programlisting>

	    <para>In this method, <varname>nd_it</varname> is a
	    <classname>node_iterator</classname> corresponding to a node whose
	    A) all descendants have valid invariants, and B) its own
	    invariants might be violated; <classname>end_nd_it</classname> is
	    a <classname>const_node_iterator</classname> corresponding to a
	    just-after-leaf node. This method should correct the node
	    invariants of the node pointed to by
	    <classname>nd_it</classname>. For example, say node x in the
	    graphic below label A has an invalid invariant, but its' children,
	    y and z have valid invariants. After the invocation, all three
	    nodes should have valid invariants, as in label B.</para>


	    <figure>
	      <title>Restoring node invariants</title>
	      <mediaobject>
		<imageobject>
		  <imagedata align="center" format="PNG" scale="100"
			     fileref="../images/pbds_restoring_node_invariants.png"/>
		</imageobject>
		<textobject>
		  <phrase>Restoring node invariants</phrase>
		</textobject>
	      </mediaobject>
	    </figure>

	    <para>When a tree operation might invalidate some node invariant,
	    it invokes this method in its <classname>node_update</classname> base to
	    restore the invariant. For example, the graphic below shows
	    an <function>insert</function> operation (point A); the tree performs some
	    operations, and calls the update functor three times (points B,
	    C, and D). (It is well known that any <function>insert</function>,
	    <function>erase</function>, <function>split</function> or <function>join</function>, can restore
	    all node invariants by a small number of node invariant updates (<xref linkend="biblio.clrs2001"/>)
	    .</para>

	    <figure>
	      <title>Insert update sequence</title>
	      <mediaobject>
		<imageobject>
		  <imagedata align="center" format="PNG" scale="100"
			     fileref="../images/pbds_update_seq_diagram.png"/>
		</imageobject>
		<textobject>
		  <phrase>Insert update sequence</phrase>
		</textobject>
	      </mediaobject>
	    </figure>

	    <para>To complete the description of the scheme, three questions
	    need to be answered:</para>

	    <orderedlist>
	      <listitem><para>How can a tree which supports order statistics define a
	      method such as <classname>find_by_order</classname>?</para></listitem>

	      <listitem><para>How can the node updater base access methods of the
	      tree?</para></listitem>

	      <listitem><para>How can the following cyclic dependency be resolved?
	      <classname>node_update</classname> is a base class of the tree, yet it
	      uses node iterators defined in the tree (its child).</para></listitem>
	    </orderedlist>

	    <para>The first two questions are answered by the fact that
	    <classname>node_update</classname> (an instantiation of
	    <classname>Node_Update</classname>) is a <emphasis>public</emphasis> base class
	    of the tree. Consequently:</para>

	    <orderedlist>
	      <listitem><para>Any public methods of
	      <classname>node_update</classname> are automatically methods of
	      the tree (<xref linkend="biblio.alexandrescu01modern"/>).
	      Thus an order-statistics node updater,
	      <classname>tree_order_statistics_node_update</classname> defines
	      the <function>find_by_order</function> method; any tree
	      instantiated by this policy consequently supports this method as
	      well.</para></listitem>

	      <listitem><para>In C++, if a base class declares a method as
	      <literal>virtual</literal>, it is
	      <literal>virtual</literal> in its subclasses. If
	      <classname>node_update</classname> needs to access one of the
	      tree's methods, say the member function
	      <function>end</function>, it simply declares that method as
	      <literal>virtual</literal> abstract.</para></listitem>
	    </orderedlist>

	    <para>The cyclic dependency is solved through template-template
	    parameters. <classname>Node_Update</classname> is parametrized by
	    the tree's node iterators, its comparison functor, and its
	    allocator type. Thus, instantiations of
	    <classname>Node_Update</classname> have all information
	    required.</para>

	    <para>This library assumes that constructing a metadata object and
	    modifying it are exception free. Suppose that during some method,
	    say <classname>insert</classname>, a metadata-related operation
	    (e.g., changing the value of a metadata) throws an exception. Ack!
	    Rolling back the method is unusually complex.</para>

	    <para>Previously, a distinction was made between redundant
	    policies and null policies. Node invariants show a
	    case where null policies are required.</para>

	    <para>Assume a regular tree is required, one which need not
	    support order statistics or interval overlap queries.
	    Seemingly, in this case a redundant policy - a policy which
	    doesn't affect nodes' contents would suffice. This, would lead
	    to the following drawbacks:</para>

	    <orderedlist>
	      <listitem><para>Each node would carry a useless metadata object, wasting
	      space.</para></listitem>

	      <listitem><para>The tree cannot know if its
	      <classname>Node_Update</classname> policy actually modifies a
	      node's metadata (this is halting reducible). In the graphic
	      below, assume the shaded node is inserted. The tree would have
	      to traverse the useless path shown to the root, applying
	      redundant updates all the way.</para></listitem>
	    </orderedlist>
	    <figure>
	      <title>Useless update path</title>
	      <mediaobject>
		<imageobject>
		  <imagedata align="center" format="PNG" scale="100"
			     fileref="../images/pbds_rationale_null_node_updator.png"/>
		</imageobject>
		<textobject>
		  <phrase>Useless update path</phrase>
		</textobject>
	      </mediaobject>
	    </figure>


	    <para>A null policy class, <classname>null_node_update</classname>
	    solves both these problems. The tree detects that node
	    invariants are irrelevant, and defines all accordingly.</para>

	  </section>

	</section> 

	<section xml:id="container.tree.details.split">
	  <info><title>Split and Join</title></info>

	  <para>Tree-based containers support split and join methods.
	  It is possible to split a tree so that it passes
	  all nodes with keys larger than a given key to a different
	  tree. These methods have the following advantages over the
	  alternative of externally inserting to the destination
	  tree and erasing from the source tree:</para>

	  <orderedlist>
	    <listitem><para>These methods are efficient - red-black trees are split
	    and joined in poly-logarithmic complexity; ordered-vector
	    trees are split and joined at linear complexity. The
	    alternatives have super-linear complexity.</para></listitem>

	    <listitem><para>Aside from orders of growth, these operations perform
	    few allocations and de-allocations. For red-black trees, allocations are not performed,
	    and the methods are exception-free. </para></listitem>
	  </orderedlist>
	</section>

      </section> <!-- details -->

    </section> <!-- tree -->

    <!-- trie -->
    <section xml:id="pbds.design.container.trie">
      <info><title>Trie</title></info>

      <section xml:id="container.trie.interface">
	<info><title>Interface</title></info>

	<para>The trie-based container has the following declaration:</para>
	<programlisting>
	  template&lt;typename Key,
	  typename Mapped,
	  typename Cmp_Fn = std::less&lt;Key&gt;,
	  typename Tag = pat_trie_tag,
	  template&lt;typename Const_Node_Iterator,
	  typename Node_Iterator,
	  typename E_Access_Traits_,
	  typename Allocator_&gt;
	  class Node_Update = null_node_update,
	  typename Allocator = std::allocator&lt;char&gt; &gt;
	  class trie;
	</programlisting>

	<para>The parameters have the following meaning:</para>

	<orderedlist>
	  <listitem><para><classname>Key</classname> is the key type.</para></listitem>

	  <listitem><para><classname>Mapped</classname> is the mapped-policy.</para></listitem>

	  <listitem><para><classname>E_Access_Traits</classname> is described in below.</para></listitem>

	  <listitem><para><classname>Tag</classname> specifies which underlying data structure
	  to use, and is described shortly.</para></listitem>

	  <listitem><para><classname>Node_Update</classname> is a policy for updating node
	  invariants. This is described below.</para></listitem>

	  <listitem><para><classname>Allocator</classname> is an allocator
	  type.</para></listitem>
	</orderedlist>

	<para>The <classname>Tag</classname> parameter specifies which underlying
	data structure to use. Instantiating it by <classname>pat_trie_tag</classname>, specifies an
	underlying PATRICIA trie (explained shortly); any other tag is
	currently illegal.</para>

	<para>Following is a description of a (PATRICIA) trie
	(this implementation follows <xref linkend="biblio.okasaki98mereable"/> and 
	<xref linkend="biblio.filliatre2000ptset"/>). 
	</para>

	<para>A (PATRICIA) trie is similar to a tree, but with the
	following differences:</para>

	<orderedlist>
	  <listitem><para>It explicitly views keys as a sequence of elements.
	  E.g., a trie can view a string as a sequence of
	  characters; a trie can view a number as a sequence of
	  bits.</para></listitem>

	  <listitem><para>It is not (necessarily) binary. Each node has fan-out n
	  + 1, where n is the number of distinct
	  elements.</para></listitem>

	  <listitem><para>It stores values only at leaf nodes.</para></listitem>

	  <listitem><para>Internal nodes have the properties that A) each has at
	  least two children, and B) each shares the same prefix with
	  any of its descendant.</para></listitem>
	</orderedlist>

	<para>A (PATRICIA) trie has some useful properties:</para>

	<orderedlist>
	  <listitem><para>It can be configured to use large node fan-out, giving it
	  very efficient find performance (albeit at insertion
	  complexity and size).</para></listitem>

	  <listitem><para>It works well for common-prefix keys.</para></listitem>

	  <listitem><para>It can support efficiently queries such as which
	  keys match a certain prefix. This is sometimes useful in file
	  systems and routers, and for "type-ahead" aka predictive text matching
	  on mobile devices.</para></listitem>
	</orderedlist>


      </section>

      <section xml:id="container.trie.details">
	<info><title>Details</title></info>

	<section xml:id="container.trie.details.etraits">
	  <info><title>Element Access Traits</title></info>

	  <para>A trie inherently views its keys as sequences of elements.
	  For example, a trie can view a string as a sequence of
	  characters. A trie needs to map each of n elements to a
	  number in {0, n - 1}. For example, a trie can map a
	  character <varname>c</varname> to
	  <programlisting>static_cast&lt;size_t&gt;(c)</programlisting>.</para>

	  <para>Seemingly, then, a trie can assume that its keys support
	  (const) iterators, and that the <classname>value_type</classname> of this
	  iterator can be cast to a <classname>size_t</classname>. There are several
	  reasons, though, to decouple the mechanism by which the trie
	  accesses its keys' elements from the trie:</para>

	  <orderedlist>
	    <listitem><para>In some cases, the numerical value of an element is
	    inappropriate. Consider a trie storing DNA strings. It is
	    logical to use a trie with a fan-out of 5 = 1 + |{'A', 'C',
	    'G', 'T'}|. This requires mapping 'T' to 3, though.</para></listitem>

	    <listitem><para>In some cases the keys' iterators are different than what
	    is needed. For example, a trie can be used to search for
	    common suffixes, by using strings'
	    <classname>reverse_iterator</classname>. As another example, a trie mapping
	    UNICODE strings would have a huge fan-out if each node would
	    branch on a UNICODE character; instead, one can define an
	    iterator iterating over 8-bit (or less) groups.</para></listitem>
	  </orderedlist>

	  <para>trie is,
	  consequently, parametrized by <classname>E_Access_Traits</classname> -
	  traits which instruct how to access sequences' elements.
	  <classname>string_trie_e_access_traits</classname>
	  is a traits class for strings. Each such traits define some
	  types, like:</para>
	  <programlisting>
	    typename E_Access_Traits::const_iterator
	  </programlisting>

	  <para>is a const iterator iterating over a key's elements. The
	  traits class must also define methods for obtaining an iterator
	  to the first and last element of a key.</para>

	  <para>The graphic below shows a
	  (PATRICIA) trie resulting from inserting the words: "I wish
	  that I could ever see a poem lovely as a trie" (which,
	  unfortunately, does not rhyme).</para>

	  <para>The leaf nodes contain values; each internal node contains
	  two <classname>typename E_Access_Traits::const_iterator</classname>
	  objects, indicating the maximal common prefix of all keys in
	  the sub-tree. For example, the shaded internal node roots a
	  sub-tree with leafs "a" and "as". The maximal common prefix is
	  "a". The internal node contains, consequently, to const
	  iterators, one pointing to <varname>'a'</varname>, and the other to
	  <varname>'s'</varname>.</para>

	  <figure>
	    <title>A PATRICIA trie</title>
	    <mediaobject>
	      <imageobject>
		<imagedata align="center" format="PNG" scale="100"
			   fileref="../images/pbds_pat_trie.png"/>
	      </imageobject>
	      <textobject>
		<phrase>A PATRICIA trie</phrase>
	      </textobject>
	    </mediaobject>
	  </figure>

	</section>

	<section xml:id="container.trie.details.node">
	  <info><title>Node Invariants</title></info>

	  <para>Trie-based containers support node invariants, as do
	  tree-based containers. There are two minor
	  differences, though, which, unfortunately, thwart sharing them
	  sharing the same node-updating policies:</para>

	  <orderedlist>
	    <listitem>
	      <para>A trie's <classname>Node_Update</classname> template-template
	      parameter is parametrized by <classname>E_Access_Traits</classname>, while
	      a tree's <classname>Node_Update</classname> template-template parameter is
	    parametrized by <classname>Cmp_Fn</classname>.</para></listitem>

	    <listitem><para>Tree-based containers store values in all nodes, while
	    trie-based containers (at least in this implementation) store
	    values in leafs.</para></listitem>
	  </orderedlist>

	  <para>The graphic below shows the scheme, as well as some predefined
	  policies (which are explained below).</para>

	  <figure>
	    <title>A trie and its update policy</title>
	    <mediaobject>
	      <imageobject>
		<imagedata align="center" format="PNG" scale="100"
			   fileref="../images/pbds_trie_node_updator_policy_cd.png"/>
	      </imageobject>
	      <textobject>
		<phrase>A trie and its update policy</phrase>
	      </textobject>
	    </mediaobject>
	  </figure>


	  <para>This library offers the following pre-defined trie node
	  updating policies:</para>

	  <orderedlist>
	    <listitem>
	      <para>
		<classname>trie_order_statistics_node_update</classname>
		supports order statistics.
	      </para>
	    </listitem>

	    <listitem><para><classname>trie_prefix_search_node_update</classname>
	    supports searching for ranges that match a given prefix.</para></listitem>

	    <listitem><para><classname>null_node_update</classname>
	    is the null node updater.</para></listitem>
	  </orderedlist>

	</section>

	<section xml:id="container.trie.details.split">
	  <info><title>Split and Join</title></info>
	  <para>Trie-based containers support split and join methods; the
	  rationale is equal to that of tree-based containers supporting
	  these methods.</para>
	</section>

      </section> <!-- details -->

    </section> <!-- trie -->

    <!-- list_update -->
    <section xml:id="pbds.design.container.list">
      <info><title>List</title></info>

      <section xml:id="container.list.interface">
	<info><title>Interface</title></info>

	<para>The list-based container has the following declaration:</para>
	<programlisting>
	  template&lt;typename Key,
	  typename Mapped,
	  typename Eq_Fn = std::equal_to&lt;Key&gt;,
	  typename Update_Policy = move_to_front_lu_policy&lt;&gt;,
	  typename Allocator = std::allocator&lt;char&gt; &gt;
	  class list_update;
	</programlisting>

	<para>The parameters have the following meaning:</para>

	<orderedlist>
	  <listitem>
	    <para>
	      <classname>Key</classname> is the key type.
	    </para>
	  </listitem>

	  <listitem>
	    <para>
	      <classname>Mapped</classname> is the mapped-policy.
	    </para>
	  </listitem>

	  <listitem>
	    <para>
	      <classname>Eq_Fn</classname> is a key equivalence functor.
	    </para>
	  </listitem>

	  <listitem>
	    <para>
	      <classname>Update_Policy</classname> is a policy updating positions in
	      the list based on access patterns. It is described in the
	      following subsection.
	    </para>
	  </listitem>

	  <listitem>
	    <para>
	      <classname>Allocator</classname> is an allocator type.
	    </para>
	  </listitem>
	</orderedlist>

	<para>A list-based associative container is a container that
	stores elements in a linked-list. It does not order the elements
	by any particular order related to the keys.  List-based
	containers are primarily useful for creating "multimaps". In fact,
	list-based containers are designed in this library expressly for
	this purpose.</para>

	<para>List-based containers might also be useful for some rare
	cases, where a key is encapsulated to the extent that only
	key-equivalence can be tested. Hash-based containers need to know
	how to transform a key into a size type, and tree-based containers
	need to know if some key is larger than another.  List-based
	associative containers, conversely, only need to know if two keys
	are equivalent.</para>

	<para>Since a list-based associative container does not order
	elements by keys, is it possible to order the list in some
	useful manner? Remarkably, many on-line competitive
	algorithms exist for reordering lists to reflect access
	prediction. (See <xref linkend="biblio.motwani95random"/> and <xref linkend="biblio.andrew04mtf"/>).
	</para>

      </section>

      <section xml:id="container.list.details">
	<info><title>Details</title></info>
	<para>
	</para>
	<section xml:id="container.list.details.ds">
	  <info><title>Underlying Data Structure</title></info>

	  <para>The graphic below shows a
	  simple list of integer keys. If we search for the integer 6, we
	  are paying an overhead: the link with key 6 is only the fifth
	  link; if it were the first link, it could be accessed
	  faster.</para>

	  <figure>
	    <title>A simple list</title>
	    <mediaobject>
	      <imageobject>
		<imagedata align="center" format="PNG" scale="100"
			   fileref="../images/pbds_simple_list.png"/>
	      </imageobject>
	      <textobject>
		<phrase>A simple list</phrase>
	      </textobject>
	    </mediaobject>
	  </figure>

	  <para>List-update algorithms reorder lists as elements are
	  accessed. They try to determine, by the access history, which
	  keys to move to the front of the list. Some of these algorithms
	  require adding some metadata alongside each entry.</para>

	  <para>For example, in the graphic below label A shows the counter
	  algorithm. Each node contains both a key and a count metadata
	  (shown in bold). When an element is accessed (e.g. 6) its count is
	  incremented, as shown in label B. If the count reaches some
	  predetermined value, say 10, as shown in label C, the count is set
	  to 0 and the node is moved to the front of the list, as in label
	  D.
	  </para>

	  <figure>
	    <title>The counter algorithm</title>
	    <mediaobject>
	      <imageobject>
		<imagedata align="center" format="PNG" scale="100"
			   fileref="../images/pbds_list_update.png"/>
	      </imageobject>
	      <textobject>
		<phrase>The counter algorithm</phrase>
	      </textobject>
	    </mediaobject>
	  </figure>


	</section>

	<section xml:id="container.list.details.policies">
	  <info><title>Policies</title></info>

	  <para>this library allows instantiating lists with policies
	  implementing any algorithm moving nodes to the front of the
	  list (policies implementing algorithms interchanging nodes are
	  unsupported).</para>

	  <para>Associative containers based on lists are parametrized by a
	  <classname>Update_Policy</classname> parameter. This parameter defines the
	  type of metadata each node contains, how to create the
	  metadata, and how to decide, using this metadata, whether to
	  move a node to the front of the list. A list-based associative
	  container object derives (publicly) from its update policy.
	  </para>

	  <para>An instantiation of <classname>Update_Policy</classname> must define
	  internally <classname>update_metadata</classname> as the metadata it
	  requires. Internally, each node of the list contains, besides
	  the usual key and data, an instance of <classname>typename
	  Update_Policy::update_metadata</classname>.</para>

	  <para>An instantiation of <classname>Update_Policy</classname> must define
	  internally two operators:</para>
	  <programlisting>
	    update_metadata
	    operator()();

	    bool
	    operator()(update_metadata &amp;);
	  </programlisting>

	  <para>The first is called by the container object, when creating a
	  new node, to create the node's metadata. The second is called
	  by the container object, when a node is accessed (
	  when a find operation's key is equivalent to the key of the
	  node), to determine whether to move the node to the front of
	  the list.
	  </para>

	  <para>The library contains two predefined implementations of
	  list-update policies. The first
	  is <classname>lu_counter_policy</classname>, which implements the
	  counter algorithm described above. The second is
	  <classname>lu_move_to_front_policy</classname>,
	  which unconditionally move an accessed element to the front of
	  the list. The latter type is very useful in this library,
	  since there is no need to associate metadata with each element.
	  (See <xref linkend="biblio.andrew04mtf"/> 
	  </para>

	</section>

	<section xml:id="container.list.details.mapped">
	  <info><title>Use in Multimaps</title></info>

	  <para>In this library, there are no equivalents for the standard's
	  multimaps and multisets; instead one uses an associative
	  container mapping primary keys to secondary keys.</para>

	  <para>List-based containers are especially useful as associative
	  containers for secondary keys. In fact, they are implemented
	  here expressly for this purpose.</para>

	  <para>To begin with, these containers use very little per-entry
	  structure memory overhead, since they can be implemented as
	  singly-linked lists. (Arrays use even lower per-entry memory
	  overhead, but they are less flexible in moving around entries,
	  and have weaker invalidation guarantees).</para>

	  <para>More importantly, though, list-based containers use very
	  little per-container memory overhead. The memory overhead of an
	  empty list-based container is practically that of a pointer.
	  This is important for when they are used as secondary
	  associative-containers in situations where the average ratio of
	  secondary keys to primary keys is low (or even 1).</para>

	  <para>In order to reduce the per-container memory overhead as much
	  as possible, they are implemented as closely as possible to
	  singly-linked lists.</para>

	  <orderedlist>
	    <listitem>
	      <para>
		List-based containers do not store internally the number
		of values that they hold. This means that their <function>size</function>
		method has linear complexity (just like <classname>std::list</classname>).
		Note that finding the number of equivalent-key values in a
		standard multimap also has linear complexity (because it must be
		done,  via <function>std::distance</function> of the
		multimap's <function>equal_range</function> method), but usually with
		higher constants.
	      </para>
	    </listitem>

	    <listitem>
	      <para>
		Most associative-container objects each hold a policy
		object (a hash-based container object holds a
		hash functor). List-based containers, conversely, only have
		class-wide policy objects.
	      </para>
	    </listitem>
	  </orderedlist>


	</section>

      </section> <!-- details -->

    </section> <!-- list -->


    <!-- priority_queue -->
    <section xml:id="pbds.design.container.priority_queue">
      <info><title>Priority Queue</title></info>

      <section xml:id="container.priority_queue.interface">
	<info><title>Interface</title></info>

	<para>The priority queue container has the following
	declaration:
	</para>
	<programlisting>
	  template&lt;typename  Value_Type,
	  typename  Cmp_Fn = std::less&lt;Value_Type&gt;,
	  typename  Tag = pairing_heap_tag,
	  typename  Allocator = std::allocator&lt;char &gt; &gt;
	  class priority_queue;
	</programlisting>

	<para>The parameters have the following meaning:</para>

	<orderedlist>
	  <listitem><para><classname>Value_Type</classname> is the value type.</para></listitem>

	  <listitem><para><classname>Cmp_Fn</classname> is a value comparison functor</para></listitem>

	  <listitem><para><classname>Tag</classname> specifies which underlying data structure
	  to use.</para></listitem>

	  <listitem><para><classname>Allocator</classname> is an allocator
	  type.</para></listitem>
	</orderedlist>

	<para>The <classname>Tag</classname> parameter specifies which underlying
	data structure to use. Instantiating it by<classname>pairing_heap_tag</classname>,<classname>binary_heap_tag</classname>,
	<classname>binomial_heap_tag</classname>,
	<classname>rc_binomial_heap_tag</classname>,
	or <classname>thin_heap_tag</classname>,
	specifies, respectively, 
	an underlying pairing heap (<xref linkend="biblio.fredman86pairing"/>),
	binary heap (<xref linkend="biblio.clrs2001"/>),
	binomial heap (<xref linkend="biblio.clrs2001"/>),
	a binomial heap with a redundant binary counter (<xref linkend="biblio.maverik_lowerbounds"/>),
	or a thin heap (<xref linkend="biblio.kt99fat_heaps"/>).
	</para>

	<para>
	  As mentioned in the tutorial,
	  <classname>__gnu_pbds::priority_queue</classname> shares most of the
	  same interface with <classname>std::priority_queue</classname>.
	  E.g. if <varname>q</varname> is a priority queue of type
	  <classname>Q</classname>, then <function>q.top()</function> will
	  return the "largest" value in the container (according to
	  <classname>typename
	  Q::cmp_fn</classname>). <classname>__gnu_pbds::priority_queue</classname>
	  has a larger (and very slightly different) interface than
	  <classname>std::priority_queue</classname>, however, since typically
	  <classname>push</classname> and <classname>pop</classname> are deemed
	insufficient for manipulating priority-queues. </para>

	<para>Different settings require different priority-queue
	implementations which are described in later; see traits
	discusses ways to differentiate between the different traits of
	different implementations.</para>


      </section>

      <section xml:id="container.priority_queue.details">
	<info><title>Details</title></info>

	<section xml:id="container.priority_queue.details.iterators">
	  <info><title>Iterators</title></info>

	  <para>There are many different underlying-data structures for
	  implementing priority queues. Unfortunately, most such
	  structures are oriented towards making <function>push</function> and
	  <function>top</function> efficient, and consequently don't allow efficient
	  access of other elements: for instance, they cannot support an efficient
	  <function>find</function> method. In the use case where it
	  is important to both access and "do something with" an
	  arbitrary value, one would be out of luck. For example, many graph algorithms require
	  modifying a value (typically increasing it in the sense of the
	  priority queue's comparison functor).</para>

	  <para>In order to access and manipulate an arbitrary value in a
	  priority queue, one needs to reference the internals of the
	  priority queue from some form of an associative container -
	  this is unavoidable. Of course, in order to maintain the
	  encapsulation of the priority queue, this needs to be done in a
	  way that minimizes exposure to implementation internals.</para>

	  <para>In this library the priority queue's <function>insert</function>
	  method returns an iterator, which if valid can be used for subsequent <function>modify</function> and
	  <function>erase</function> operations. This both preserves the priority
	  queue's encapsulation, and allows accessing arbitrary values (since the
	  returned iterators from the <function>push</function> operation can be
	  stored in some form of associative container).</para>

	  <para>Priority queues' iterators present a problem regarding their
	  invalidation guarantees. One assumes that calling
	  <function>operator++</function> on an iterator will associate it
	  with the "next" value. Priority-queues are
	  self-organizing: each operation changes what the "next" value
	  means. Consequently, it does not make sense that <function>push</function>
	  will return an iterator that can be incremented - this can have
	  no possible use. Also, as in the case of hash-based containers,
	  it is awkward to define if a subsequent <function>push</function> operation
	  invalidates a prior returned iterator: it invalidates it in the
	  sense that its "next" value is not related to what it
	  previously considered to be its "next" value. However, it might not
	  invalidate it, in the sense that it can be
	  de-referenced and used for <function>modify</function> and <function>erase</function>
	  operations.</para>

	  <para>Similarly to the case of the other unordered associative
	  containers, this library uses a distinction between
	  point-type and range type iterators. A priority queue's <classname>iterator</classname> can always be
	  converted to a <classname>point_iterator</classname>, and a
	  <classname>const_iterator</classname> can always be converted to a
	  <classname>point_const_iterator</classname>.</para>

	  <para>The following snippet demonstrates manipulating an arbitrary
	  value:</para>
	  <programlisting>
	    // A priority queue of integers.
	    priority_queue&lt;int &gt; p;

	    // Insert some values into the priority queue.
	    priority_queue&lt;int &gt;::point_iterator it = p.push(0);

	    p.push(1);
	    p.push(2);

	    // Now modify a value.
	    p.modify(it, 3);

	    assert(p.top() == 3);
	  </programlisting>

	  
	  <para>It should be noted that an alternative design could embed an
	  associative container in a priority queue. Could, but most
	  probably should not. To begin with, it should be noted that one
	  could always encapsulate a priority queue and an associative
	  container mapping values to priority queue iterators with no
	  performance loss. One cannot, however, "un-encapsulate" a priority
	  queue embedding an associative container, which might lead to
	  performance loss. Assume, that one needs to associate each value
	  with some data unrelated to priority queues. Then using
	  this library's design, one could use an
	  associative container mapping each value to a pair consisting of
	  this data and a priority queue's iterator. Using the embedded
	  method would need to use two associative containers. Similar
	  problems might arise in cases where a value can reside
	  simultaneously in many priority queues.</para>

	</section>


	<section xml:id="container.priority_queue.details.d">
	  <info><title>Underlying Data Structure</title></info>

	  <para>There are three main implementations of priority queues: the
	  first employs a binary heap, typically one which uses a
	  sequence; the second uses a tree (or forest of trees), which is
	  typically less structured than an associative container's tree;
	  the third simply uses an associative container. These are
	  shown in the graphic below, in labels A1 and A2, label B, and label C.</para>

	  <figure>
	    <title>Underlying Priority-Queue Data-Structures.</title>
	    <mediaobject>
	      <imageobject>
		<imagedata align="center" format="PNG" scale="100"
			   fileref="../images/pbds_priority_queue_different_underlying_dss.png"/>
	      </imageobject>
	      <textobject>
		<phrase>Underlying Priority-Queue Data-Structures.</phrase>
	      </textobject>
	    </mediaobject>
	  </figure>

	  <para>Roughly speaking, any value that is both pushed and popped
	  from a priority queue must incur a logarithmic expense (in the
	  amortized sense). Any priority queue implementation that would
	  avoid this, would violate known bounds on comparison-based
	  sorting (see <xref linkend="biblio.clrs2001"/> and <xref linkend="biblio.brodal96priority"/>).
	  </para>

	  <para>Most implementations do
	  not differ in the asymptotic amortized complexity of
	  <function>push</function> and <function>pop</function> operations, but they differ in
	  the constants involved, in the complexity of other operations
	  (e.g., <function>modify</function>), and in the worst-case
	  complexity of single operations. In general, the more
	  "structured" an implementation (i.e., the more internal
	  invariants it possesses) - the higher its amortized complexity
	  of <function>push</function> and <function>pop</function> operations.</para>

	  <para>This library implements different algorithms using a
	  single class: <classname>priority_queue</classname>.
	  Instantiating the <classname>Tag</classname> template parameter, "selects"
	  the implementation:</para>

	  <orderedlist>
	    <listitem><para>
	      Instantiating <classname>Tag = binary_heap_tag</classname> creates
	      a binary heap of the form in represented in the graphic with labels A1 or A2. The former is internally
	      selected by priority_queue
	      if <classname>Value_Type</classname> is instantiated by a primitive type
	      (e.g., an <type>int</type>); the latter is
	      internally selected for all other types (e.g.,
	      <classname>std::string</classname>). This implementations is relatively
	      unstructured, and so has good <classname>push</classname> and <classname>pop</classname>
	      performance; it is the "best-in-kind" for primitive
	      types, e.g., <type>int</type>s. Conversely, it has
	      high worst-case performance, and can support only linear-time
	    <function>modify</function> and <function>erase</function> operations.</para></listitem>

	    <listitem><para>Instantiating <classname>Tag =
	    pairing_heap_tag</classname> creates a pairing heap of the form
	    in represented by label B in the graphic above. This
	    implementations too is relatively unstructured, and so has good
	    <function>push</function> and <function>pop</function>
	    performance; it is the "best-in-kind" for non-primitive types,
	    e.g., <classname>std:string</classname>s. It also has very good
	    worst-case <function>push</function> and
	    <function>join</function> performance (O(1)), but has high
	    worst-case <function>pop</function>
	    complexity.</para></listitem>

	    <listitem><para>Instantiating <classname>Tag =
	    binomial_heap_tag</classname> creates a binomial heap of the
	    form repsented by label B in the graphic above. This
	    implementations is more structured than a pairing heap, and so
	    has worse <function>push</function> and <function>pop</function>
	    performance. Conversely, it has sub-linear worst-case bounds for
	    <function>pop</function>, e.g., and so it might be preferred in
	    cases where responsiveness is important.</para></listitem>

	    <listitem><para>Instantiating <classname>Tag =
	    rc_binomial_heap_tag</classname> creates a binomial heap of the
	    form represented in label B above, accompanied by a redundant
	    counter which governs the trees. This implementations is
	    therefore more structured than a binomial heap, and so has worse
	    <function>push</function> and <function>pop</function>
	    performance. Conversely, it guarantees O(1)
	    <function>push</function> complexity, and so it might be
	    preferred in cases where the responsiveness of a binomial heap
	    is insufficient.</para></listitem>

	    <listitem><para>Instantiating <classname>Tag =
	    thin_heap_tag</classname> creates a thin heap of the form
	    represented by the label B in the graphic above. This
	    implementations too is more structured than a pairing heap, and
	    so has worse <function>push</function> and
	    <function>pop</function> performance. Conversely, it has better
	    worst-case and identical amortized complexities than a Fibonacci
	    heap, and so might be more appropriate for some graph
	    algorithms.</para></listitem>
	  </orderedlist>

	  <para>Of course, one can use any order-preserving associative
	  container as a priority queue, as in the graphic above label C, possibly by creating an adapter class
	  over the associative container (much as 
	  <classname>std::priority_queue</classname> can adapt <classname>std::vector</classname>).
	  This has the advantage that no cross-referencing is necessary
	  at all; the priority queue itself is an associative container.
	  Most associative containers are too structured to compete with
	  priority queues in terms of <function>push</function> and <function>pop</function>
	  performance.</para>



	</section>

	<section xml:id="container.priority_queue.details.traits">
	  <info><title>Traits</title></info>

	  <para>It would be nice if all priority queues could
	  share exactly the same behavior regardless of implementation. Sadly, this is not possible. Just one for instance is in join operations: joining
	  two binary heaps might throw an exception (not corrupt
	  any of the heaps on which it operates), but joining two pairing
	  heaps is exception free.</para>

	  <para>Tags and traits are very useful for manipulating generic
	  types. <classname>__gnu_pbds::priority_queue</classname>
	  publicly defines <classname>container_category</classname> as one of the tags. Given any
	  container <classname>Cntnr</classname>, the tag of the underlying
	  data structure can be found via <classname>typename 
	  Cntnr::container_category</classname>; this is one of the possible tags shown in the graphic below.
	  </para>

	  <figure>
	    <title>Priority-Queue Data-Structure Tags.</title>
	    <mediaobject>
	      <imageobject>
		<imagedata align="center" format="PNG" scale="100"
			   fileref="../images/pbds_priority_queue_tag_hierarchy.png"/>
	      </imageobject>
	      <textobject>
		<phrase>Priority-Queue Data-Structure Tags.</phrase>
	      </textobject>
	    </mediaobject>
	  </figure>


	  <para>Additionally, a traits mechanism can be used to query a
	  container type for its attributes. Given any container
	  <classname>Cntnr</classname>, then <programlisting>__gnu_pbds::container_traits&lt;Cntnr&gt;</programlisting>
	  is a traits class identifying the properties of the
	  container.</para>

	  <para>To find if a container might throw if two of its objects are
	  joined, one can use 
	  <programlisting>
	    container_traits&lt;Cntnr&gt;::split_join_can_throw
	  </programlisting>
	  </para>

	  <para>
	    Different priority-queue implementations have different invalidation guarantees. This is
	    especially important, since there is no way to access an arbitrary
	    value of priority queues except for iterators. Similarly to
	    associative containers, one can use
	    <programlisting>
	      container_traits&lt;Cntnr&gt;::invalidation_guarantee
	    </programlisting>
	  to get the invalidation guarantee type of a priority queue.</para>

	  <para>It is easy to understand from the graphic above, what <classname>container_traits&lt;Cntnr&gt;::invalidation_guarantee</classname>
	  will be for different implementations. All implementations of
	  type represented by label B have <classname>point_invalidation_guarantee</classname>:
	  the container can freely internally reorganize the nodes -
	  range-type iterators are invalidated, but point-type iterators
	  are always valid. Implementations of type represented by labels A1 and A2 have <classname>basic_invalidation_guarantee</classname>:
	  the container can freely internally reallocate the array - both
	  point-type and range-type iterators might be invalidated.</para>

	  <para>
	    This has major implications, and constitutes a good reason to avoid
	    using binary heaps. A binary heap can perform <function>modify</function>
	    or <function>erase</function> efficiently given a valid point-type
	    iterator. However, in order to supply it with a valid point-type
	    iterator, one needs to iterate (linearly) over all
	    values, then supply the relevant iterator (recall that a
	    range-type iterator can always be converted to a point-type
	    iterator). This means that if the number of <function>modify</function> or
	    <function>erase</function> operations is non-negligible (say
	    super-logarithmic in the total sequence of operations) - binary
	    heaps will perform badly.
	  </para>

	</section>

      </section> <!-- details -->

    </section> <!-- priority_queue -->



  </section> <!-- container -->

  </section> <!-- design -->



  <!-- S04: Test -->
  <xi:include xmlns:xi="http://www.w3.org/2001/XInclude" parse="xml"
	      href="test_policy_data_structures.xml">
  </xi:include>

  <!-- S05: Reference/Acknowledgments -->
  <section xml:id="pbds.ack">
    <info><title>Acknowledgments</title></info>
    <?dbhtml filename="policy_data_structures_biblio.html"?>

    <para>
      Written by Ami Tavory and Vladimir Dreizin (IBM Haifa Research
      Laboratories), and Benjamin Kosnik (Red Hat).
    </para>

    <para>
      This library was partially written at
      <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.haifa.il.ibm.com/">IBM's Haifa Research Labs</link>.
      It is based heavily on policy-based design and uses many useful
      techniques from Modern C++ Design: Generic Programming and Design
      Patterns Applied by Andrei Alexandrescu.
    </para>

    <para>
      Two ideas are borrowed from the SGI-STL implementation:
    </para>

    <orderedlist>
      <listitem>
	<para>
	  The prime-based resize policies use a list of primes taken from
	  the SGI-STL implementation.
	</para>
      </listitem>

      <listitem>
	<para>
	  The red-black trees contain both a root node and a header node
	  (containing metadata), connected in a way that forward and
	  reverse iteration can be performed efficiently.
	</para>
      </listitem>
    </orderedlist>

    <para>
      Some test utilities borrow ideas from
      <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.boost.org/doc/libs/release/libs/timer/index.html">boost::timer</link>.
    </para>

    <para>
      We would like to thank Scott Meyers for useful comments (without
      attributing to him any flaws in the design or implementation of the
      library).
    </para>
    <para>We would like to thank Matt Austern for the suggestion to
    include tries.</para>
  </section>

  <!-- S06: Biblio -->
  <bibliography xml:id="pbds.biblio">
    <info>
      <title>
	Bibliography
      </title>
    </info>
    <?dbhtml filename="policy_data_structures_biblio.html"?>

    <!-- 01 -->
    <biblioentry xml:id="biblio.abrahams97exception">
      <title>
	<link xmlns:xlink="http://www.w3.org/1999/xlink"
	      xlink:href="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/1997/N1075.pdf">
	  STL Exception Handling Contract
	</link>
      </title>
      <date>1997</date>

      <author>
	<personname>
	  <firstname>
	    Dave
	  </firstname>
	  <surname>
	    Abrahams
	  </surname>
	</personname>
      </author>

      <publisher>
	<publishername>
	  ISO SC22/WG21
	</publishername>
      </publisher>
    </biblioentry>


    <!-- 02 -->
    <biblioentry xml:id="biblio.alexandrescu01modern">
      <title>
	Modern C++ Design: Generic Programming and Design Patterns Applied
      </title>
      <date>
	2001
      </date>

      <author>
	<personname>
	  <firstname>
	    Andrei
	  </firstname>
	  <surname>
	    Alexandrescu
	  </surname>
	</personname>
      </author>

      <publisher>
	<publishername>
	  Addison-Wesley Publishing Company
	</publishername>
      </publisher>
    </biblioentry>


    <!-- 03 -->
    <biblioentry xml:id="biblio.andrew04mtf">
      <title>
	MTF, Bit, and COMB: A Guide to Deterministic and Randomized
	Algorithms for the List Update Problem
      </title>

      <authorgroup>
	<author>
	  <personname>
	    <firstname>
	      K.
	    </firstname>
	    <surname>
	      Andrew
	    </surname>
	  </personname>
	</author>

	<author>
	  <personname>
	    <firstname>
	      D.
	    </firstname>
	    <surname>
	      Gleich
	    </surname>
	  </personname>
	</author>
      </authorgroup>
    </biblioentry>

    <!-- 04 -->
    <biblioentry xml:id="biblio.austern00noset">
      <title>
	Why You Shouldn't Use set - and What You Should Use Instead
      </title>
      <date>
	April, 2000
      </date>

      <author>
	<personname>
	  <firstname>
	    Matthew
	  </firstname>
	  <surname>
	    Austern
	  </surname>
	</personname>
      </author>

      <publisher>
	<publishername>
	  C++ Report
	</publishername>
      </publisher>
    </biblioentry>

    <!-- 05 -->
    <biblioentry xml:id="biblio.austern01htprop">
      <title>
	<link xmlns:xlink="http://www.w3.org/1999/xlink"
	      xlink:href="http://www.open-std.org/JTC1/sc22/wg21/docs/papers/2001/n1326.html">
	  A Proposal to Add Hashtables to the Standard Library
	</link>
      </title>
      <date>
	2001
      </date>

      <author>
	<personname>
	  <firstname>
	    Matthew
	  </firstname>
	  <surname>
	    Austern
	  </surname>
	</personname>
      </author>

      <publisher>
	<publishername>
	  ISO SC22/WG21
	</publishername>
      </publisher>
    </biblioentry>

    <!-- 06 -->
    <biblioentry xml:id="biblio.austern98segmentedit">
      <title>
	Segmented iterators and hierarchical algorithms
      </title>
      <date>
	April, 1998
      </date>

      <author>
	<personname>
	  <firstname>
	    Matthew
	  </firstname>
	  <surname>
	    Austern
	  </surname>
	</personname>
      </author>

      <publisher>
	<publishername>
	  Generic Programming
	</publishername>
      </publisher>
    </biblioentry>

    <!-- 07 -->
    <biblioentry xml:id="biblio.dawestimer">
      <title>
	<link xmlns:xlink="http://www.w3.org/1999/xlink"
	      xlink:href="www.boost.org/doc/libs/release/libs/timer/">
	  Boost Timer Library
	</link>
      </title>

      <author>
	<personname>
	  <firstname>
	    Beeman
	  </firstname>
	  <surname>
	    Dawes
	  </surname>
	</personname>
      </author>

      <publisher>
	<publishername>
	  Boost
	</publishername>
      </publisher>
    </biblioentry>

    <!-- 08 -->
    <biblioentry xml:id="biblio.clearypool">
      <title>
	<link xmlns:xlink="http://www.w3.org/1999/xlink"
	      xlink:href="www.boost.org/doc/libs/release/libs/pool/">
	  Boost Pool Library
	</link>
      </title>

      <author>
	<personname>
	  <firstname>
	    Stephen
	  </firstname>
	  <surname>
	    Cleary
	  </surname>
	</personname>
      </author>

      <publisher>
	<publishername>
	  Boost
	</publishername>
      </publisher>
    </biblioentry>


    <!-- 09 -->
    <biblioentry xml:id="biblio.maddocktraits">
      <title>
	<link xmlns:xlink="http://www.w3.org/1999/xlink"
	      xlink:href="www.boost.org/doc/libs/release/libs/type_traits/">
	  Boost Type Traits Library
	</link>
      </title>
      <authorgroup>
	<author>
	  <personname>
	    <firstname>
	      Maddock
	    </firstname>
	    <surname>
	      John
	    </surname>
	  </personname>
	</author>
	<author>
	  <personname>
	    <firstname>
	      Stephen
	    </firstname>
	    <surname>
	      Cleary
	    </surname>
	  </personname>
	</author>
      </authorgroup>
      <publisher>
	<publishername>
	  Boost
	</publishername>
      </publisher>
    </biblioentry>

    <!-- 10 -->
    <biblioentry xml:id="biblio.brodal96priority">
      <title>
	<link xmlns:xlink="http://www.w3.org/1999/xlink"
	      xlink:href="http://portal.acm.org/citation.cfm?id=313883">
	  Worst-case efficient priority queues
	</link>
      </title>

      <author>
	<personname>
	  <firstname>
	    Gerth
	  </firstname>
	  <surname>
	    Stolting Brodal
	  </surname>
	</personname>
      </author>

    </biblioentry>

    <!-- 11 -->
    <biblioentry xml:id="biblio.bulkamayheweff">
      <title>
	Efficient C++ Programming Techniques
      </title>
      <date>
	1997
      </date>

      <authorgroup>
	<author>
	  <personname>
	    <firstname>
	      D.
	    </firstname>
	    <surname>
	      Bulka
	    </surname>
	  </personname>
	</author>
	<author>
	  <personname>
	    <firstname>
	      D.
	    </firstname>
	    <surname>
	      Mayhew
	    </surname>
	  </personname>
	</author>
      </authorgroup>

      <publisher>
	<publishername>
	  Addison-Wesley Publishing Company
	</publishername>
      </publisher>
    </biblioentry>

    <!-- 12 -->
    <biblioentry xml:id="biblio.clrs2001">
      <title>
	Introduction to Algorithms, 2nd edition
      </title>
      <date>
	2001
      </date>
      <authorgroup>
	<author>
	  <personname>
	    <firstname>
	      T. H.
	    </firstname>
	    <surname>
	      Cormen
	    </surname>
	  </personname>
	</author>

	<author>
	  <personname>
	    <firstname>
	      C. E.
	    </firstname>
	    <surname>
	      Leiserson
	    </surname>
	  </personname>
	</author>

	<author>
	  <personname>
	    <firstname>
	      R. L.
	    </firstname>
	    <surname>
	      Rivest
	    </surname>
	  </personname>
	</author>

	<author>
	  <personname>
	    <firstname>
	      C.
	    </firstname>
	    <surname>
	      Stein
	    </surname>
	  </personname>
	</author>
      </authorgroup>
      <publisher>
	<publishername>
	  MIT Press
	</publishername>
      </publisher>
    </biblioentry>

    <!-- 13 -->
    <biblioentry xml:id="biblio.dubhashi98neg">
      <title>
	Balls and bins: A study in negative dependence
      </title>
      <date>
	1998
      </date>
      <authorgroup>
	<author>
	  <personname>
	    <firstname>
	      D.
	    </firstname>
	    <surname>
	      Dubashi
	    </surname>
	  </personname>
	</author>
	<author>
	  <personname>
	    <firstname>
	      D.
	    </firstname>
	    <surname>
	      Ranjan
	    </surname>
	  </personname>
	</author>
      </authorgroup>

      <publisher>
	<publishername>
	  Random Structures and Algorithms 13
	</publishername>
      </publisher>
    </biblioentry>


    <!-- 14 -->
    <biblioentry xml:id="biblio.fagin79extendible">
      <title>
	Extendible hashing - a fast access method for dynamic files
      </title>
      <date>
	1979
      </date>

      <authorgroup>
	<author>
	  <personname>
	    <firstname>
	      R.
	    </firstname>
	    <surname>
	      Fagin
	    </surname>
	  </personname>
	</author>
	<author>
	  <personname>
	    <firstname>
	      J.
	    </firstname>
	    <surname>
	      Nievergelt
	    </surname>
	  </personname>
	</author>
	<author>
	  <personname>
	    <firstname>
	      N.
	    </firstname>
	    <surname>
	      Pippenger
	    </surname>
	  </personname>
	</author>
	<author>
	  <personname>
	    <firstname>
	      H. R.
	    </firstname>
	    <surname>
	      Strong
	    </surname>
	  </personname>
	</author>
      </authorgroup>

      <publisher>
	<publishername>
	  ACM Trans. Database Syst. 4
	</publishername>
      </publisher>
    </biblioentry>



    <!-- 15 -->
    <biblioentry xml:id="biblio.filliatre2000ptset">
      <title>
	<link xmlns:xlink="http://www.w3.org/1999/xlink"
	      xlink:href="http://cristal.inria.fr/~frisch/icfp06_contest/advtr/applyOmatic/ptset.ml">
	  Ptset: Sets of integers implemented as Patricia trees
	</link>
      </title>

      <date>
	2000
      </date>

      <author>
	<personname>
	  <firstname>
	    Jean-Christophe
	  </firstname>
	  <surname>
	    Filliatre
	  </surname>
	</personname>
      </author>
    </biblioentry>



    <!-- 16 -->
    <biblioentry xml:id="biblio.fredman86pairing">
      <title>
	<link xmlns:xlink="http://www.w3.org/1999/xlink"
	      xlink:href="http://www.cs.cmu.edu/~sleator/papers/pairing-heaps.pdf">
	  The pairing heap: a new form of self-adjusting heap
	</link>
      </title>
      <date>
	1986
      </date>
      <authorgroup>
	<author>
	  <personname>
	    <firstname>
	      M. L.
	    </firstname>
	    <surname>
	      Fredman
	    </surname>
	  </personname>
	</author>
	<author>
	  <personname>
	    <firstname>
	      R.
	    </firstname>
	    <surname>
	      Sedgewick
	    </surname>
	  </personname>
	</author>
	<author>
	  <personname>
	    <firstname>
	      D. D.
	    </firstname>
	    <surname>
	      Sleator
	    </surname>
	  </personname>
	</author>
	<author>
	  <personname>
	    <firstname>
	      R. E.
	    </firstname>
	    <surname>
	      Tarjan
	    </surname>
	  </personname>
	</author>
      </authorgroup>
    </biblioentry>


    <!-- 17 -->
    <biblioentry xml:id="biblio.gof">
      <title>
	Design Patterns - Elements of Reusable Object-Oriented Software
      </title>
      <date>
	1995
      </date>
      <authorgroup>
	<author>
	  <personname>
	    <firstname>
	      E.
	    </firstname>
	    <surname>
	      Gamma
	    </surname>
	  </personname>
	</author>
	<author>
	  <personname>
	    <firstname>
	      R.
	    </firstname>
	    <surname>
	      Helm
	    </surname>
	  </personname>
	</author>
	<author>
	  <personname>
	    <firstname>
	      R.
	    </firstname>
	    <surname>
	      Johnson
	    </surname>
	  </personname>
	</author>
	<author>
	  <personname>
	    <firstname>
	      J.
	    </firstname>
	    <surname>
	      Vlissides
	    </surname>
	  </personname>
	</author>
      </authorgroup>
      <publisher>
	<publishername>
	  Addison-Wesley Publishing Company
	</publishername>
      </publisher>
    </biblioentry>


    <!-- 18 -->
    <biblioentry xml:id="biblio.garg86order">
      <title>
	Order-preserving key transformations
      </title>
      <date>
	1986
      </date>
      <authorgroup>
	<author>
	  <personname>
	    <firstname>
	      A. K.
	    </firstname>
	    <surname>
	      Garg
	    </surname>
	  </personname>
	</author>
	<author>
	  <personname>
	    <firstname>
	      C. C.
	    </firstname>
	    <surname>
	      Gotlieb
	    </surname>
	  </personname>
	</author>
      </authorgroup>

      <publisher>
	<publishername>
	  Trans. Database Syst. 11
	</publishername>
      </publisher>
    </biblioentry>

    <!-- 19 -->
    <biblioentry xml:id="biblio.hyslop02making">
      <title>
	Making a real hash of things
      </title>
      <date>
	May 2002
      </date>
      <authorgroup>
	<author>
	  <personname>
	    <firstname>
	      J.
	    </firstname>
	    <surname>
	      Hyslop
	    </surname>
	  </personname>
	</author>
	<author>
	  <personname>
	    <firstname>
	      Herb
	    </firstname>
	    <surname>
	      Sutter
	    </surname>
	  </personname>
	</author>
      </authorgroup>

      <publisher>
	<publishername>
	  C++ Report
	</publishername>
      </publisher>
    </biblioentry>


    <!-- 20 -->
    <biblioentry xml:id="biblio.jossutis01stl">
      <title>
	The C++ Standard Library - A Tutorial and Reference
      </title>
      <date>
	2001
      </date>

      <author>
	<personname>
	  <firstname>
	    N. M.
	  </firstname>
	  <surname>
	    Jossutis
	  </surname>
	</personname>
      </author>
      <publisher>
	<publishername>
	  Addison-Wesley Publishing Company
	</publishername>
      </publisher>
    </biblioentry>

    <!-- 21 -->
    <biblioentry xml:id="biblio.kt99fat_heaps">
      <title>
	<link xmlns:xlink="http://www.w3.org/1999/xlink"
	      xlink:href="http://www.cs.princeton.edu/research/techreps/TR-597-99">
	  New Heap Data Structures
	</link>
      </title>
      <date>
	1999
      </date>

      <authorgroup>
	<author>
	  <personname>
	    <firstname>
	      Haim
	    </firstname>
	    <surname>
	      Kaplan
	    </surname>
	  </personname>
	</author>
	<author>
	  <personname>
	    <firstname>
	      Robert E.
	    </firstname>
	    <surname>
	      Tarjan
	    </surname>
	  </personname>
	</author>
      </authorgroup>
    </biblioentry>


    <!-- 22 -->
    <biblioentry xml:id="biblio.kleft00sets">
      <title>
	Are Set Iterators Mutable or Immutable?
      </title>
      <date>
	October 2000
      </date>
      <authorgroup>
	<author>
	  <personname>
	    <firstname>
	      Angelika
	    </firstname>
	    <surname>
	      Langer
	    </surname>
	  </personname>
	</author>

	<author>
	  <personname>
	    <firstname>
	      Klaus
	    </firstname>
	    <surname>
	      Kleft
	    </surname>
	  </personname>
	</author>
      </authorgroup>

      <publisher>
	<publishername>
	  C/C++ Users Jornal
	</publishername>
      </publisher>
    </biblioentry>

    <!-- 23 -->
    <biblioentry xml:id="biblio.knuth98sorting">
      <title>
	The Art of Computer Programming - Sorting and Searching
      </title>
      <date>
	1998
      </date>

      <author>
	<personname>
	  <firstname>
	    D. E.
	  </firstname>
	  <surname>
	    Knuth
	  </surname>
	</personname>
      </author>

      <publisher>
	<publishername>
	  Addison-Wesley Publishing Company
	</publishername>
      </publisher>
    </biblioentry>

    <!-- 24 -->
    <biblioentry xml:id="biblio.liskov98data">
      <title>
	Data abstraction and hierarchy
      </title>
      <date>
	May 1998
      </date>

      <author>
	<personname>
	  <firstname>
	    B.
	  </firstname>
	  <surname>
	    Liskov
	  </surname>
	</personname>
      </author>

      <publisher>
	<publishername>
	  SIGPLAN Notices 23
	</publishername>
      </publisher>
    </biblioentry>

    <!-- 25 -->
    <biblioentry xml:id="biblio.litwin80lh">
      <title>
	Linear hashing: A new tool for file and table addressing
      </title>
      <date>
	June 1980
      </date>

      <author>
	<personname>
	  <firstname>
	    W.
	  </firstname>
	  <surname>
	    Litwin
	  </surname>
	</personname>
      </author>

      <publisher>
	<publishername>
	  Proceedings of International Conference on Very Large Data Bases
	</publishername>
      </publisher>
    </biblioentry>

    <!-- 26 -->
    <biblioentry xml:id="biblio.maverik_lowerbounds">
      <title>
	<link xmlns:xlink="http://www.w3.org/1999/xlink"
	      xlink:href="http://magic.aladdin.cs.cmu.edu/2005/08/01/deamortization-part-2-binomial-heaps">
	  Deamortization - Part 2: Binomial Heaps
	</link>
      </title>
      <date>
	2005
      </date>

      <author>
	<personname>
	  <firstname>
	    Maverik
	  </firstname>
	  <surname>
	    Woo
	  </surname>
	</personname>
      </author>
    </biblioentry>

    <!-- 27 -->
    <biblioentry xml:id="biblio.meyers96more">
      <title>
	More Effective C++: 35 New Ways to Improve Your Programs and Designs
      </title>
      <date>
	1996
      </date>

      <author>
	<personname>
	  <firstname>
	    Scott
	  </firstname>
	  <surname>
	    Meyers
	  </surname>
	</personname>
      </author>

      <publisher>
	<publishername>
	  Addison-Wesley Publishing Company
	</publishername>
      </publisher>
    </biblioentry>

    <!-- 28 -->
    <biblioentry xml:id="biblio.meyers00nonmember">
      <title>
	How Non-Member Functions Improve Encapsulation
      </title>
      <date>
	2000
      </date>

      <author>
	<personname>
	  <firstname>
	    Scott
	  </firstname>
	  <surname>
	    Meyers
	  </surname>
	</personname>
      </author>

      <publisher>
	<publishername>
	  C/C++ Users Journal
	</publishername>
      </publisher>
    </biblioentry>

    <!-- 29 -->
    <biblioentry xml:id="biblio.meyers01stl">
      <title>
	Effective STL: 50 Specific Ways to Improve Your Use of the Standard Template Library
      </title>
      <date>
	2001
      </date>

      <author>
	<personname>
	  <firstname>
	    Scott
	  </firstname>
	  <surname>
	    Meyers
	  </surname>
	</personname>
      </author>

      <publisher>
	<publishername>
	  Addison-Wesley Publishing Company
	</publishername>
      </publisher>
    </biblioentry>

    <!-- 30 -->
    <biblioentry xml:id="biblio.meyers02both">
      <title>
	Class Template, Member Template - or Both?
      </title>
      <date>
	2003
      </date>

      <author>
	<personname>
	  <firstname>
	    Scott
	  </firstname>
	  <surname>
	    Meyers
	  </surname>
	</personname>
      </author>

      <publisher>
	<publishername>
	  C/C++ Users Journal
	</publishername>
      </publisher>
    </biblioentry>

    <!-- 31 -->
    <biblioentry xml:id="biblio.motwani95random">
      <title>
	Randomized Algorithms
      </title>
      <date>
	2003
      </date>
      <authorgroup>
	<author>
	  <personname>
	    <firstname>
	      R.
	    </firstname>
	    <surname>
	      Motwani
	    </surname>
	  </personname>
	</author>
	<author>
	  <personname>
	    <firstname>
	      P.
	    </firstname>
	    <surname>
	      Raghavan
	    </surname>
	  </personname>
	</author>
      </authorgroup>
      <publisher>
	<publishername>
	  Cambridge University Press
	</publishername>
      </publisher>
    </biblioentry>


    <!-- 32 -->
    <biblioentry xml:id="biblio.mscom">
      <title>
	<link xmlns:xlink="http://www.w3.org/1999/xlink"
	      xlink:href="http://www.microsoft.com/com">
	  COM: Component Model Object Technologies
	</link>
      </title>
      <publisher>
	<publishername>
	  Microsoft
	</publishername>
      </publisher>
    </biblioentry>

    <!-- 33 -->
    <biblioentry xml:id="biblio.musser95rationale">
      <title>
	Rationale for Adding Hash Tables to the C++ Standard Template Library
      </title>
      <date>
	1995
      </date>

      <author>
	<personname>
	  <firstname>
	    David R.
	  </firstname>
	  <surname>
	    Musser
	  </surname>
	</personname>
      </author>

    </biblioentry>

    <!-- 35 -->
    <biblioentry xml:id="biblio.musser96stltutorial">
      <title>
	STL Tutorial and Reference Guide
      </title>
      <date>
	1996
      </date>

      <authorgroup>
	<author>
	  <personname>
	    <firstname>
	      David R.
	    </firstname>
	    <surname>
	      Musser
	    </surname>
	  </personname>
	</author>
	<author>
	  <personname>
	    <firstname>
	      A.
	    </firstname>
	    <surname>
	      Saini
	    </surname>
	  </personname>
	</author>
      </authorgroup>
      <publisher>
	<publishername>
	  Addison-Wesley Publishing Company
	</publishername>
      </publisher>

    </biblioentry>


    <!-- 36 -->
    <biblioentry xml:id="biblio.nelson96stlpq">
      <title>
	<link xmlns:xlink="http://www.w3.org/1999/xlink"
	      xlink:href="http://www.dogma.net/markn/articles/pq_stl/priority.htm">Priority Queues and the STL
	</link>
      </title>
      <date>
	January 1996
      </date>

      <author>
	<personname>
	  <firstname>
	    Mark
	  </firstname>
	  <surname>
	    Nelson
	  </surname>
	</personname>
      </author>

      <publisher>
	<publishername>
	  Dr. Dobbs Journal
	</publishername>
      </publisher>
    </biblioentry>


    <!-- 37 -->
    <biblioentry xml:id="biblio.okasaki98mereable">
      <title>
	Fast mergeable integer maps
      </title>
      <date>
	September 1998
      </date>
      <authorgroup>
	<author>
	  <personname>
	    <firstname>
	      C.
	    </firstname>
	    <surname>
	      Okasaki
	    </surname>
	  </personname>
	</author>
	<author>
	  <personname>
	    <firstname>
	      A.
	    </firstname>
	    <surname>
	      Gill
	    </surname>
	  </personname>
	</author>
      </authorgroup>
      <publisher>
	<publishername>
	  In Workshop on ML
	</publishername>
      </publisher>
    </biblioentry>

    <!-- 38 -->
    <biblioentry xml:id="biblio.sgi_stl">
      <title>
	<link xmlns:xlink="http://www.w3.org/1999/xlink"
	      xlink:href="http://www.sgi.com/tech/stl">
	  Standard Template Library Programmer's Guide
	</link>
      </title>
      <author>
	<personname>
	  <firstname>
	    Matt
	  </firstname>
	  <surname>
	    Austern
	  </surname>
	</personname>
      </author>

      <publisher>
	<publishername>
	  SGI
	</publishername>
      </publisher>
    </biblioentry>

    <!-- 39 -->
    <biblioentry xml:id="biblio.select_man">
      <title>
	<link xmlns:xlink="http://www.w3.org/1999/xlink"
	      xlink:href="http://www.scit.wlv.ac.uk/cgi-bin/mansec?3C+select">
	  select
	</link>
      </title>
    </biblioentry>


    <!-- 40 -->
    <biblioentry xml:id="biblio.sleator84amortized">
      <title>
	Amortized Efficiency of List Update Problems
      </title>
      <date>
	1984
      </date>
      <authorgroup>
	<author>
	  <personname>
	    <firstname>
	      D. D.
	    </firstname>
	    <surname>
	      Sleator
	    </surname>
	  </personname>
	</author>

	<author>
	  <personname>
	    <firstname>
	      R. E.
	    </firstname>
	    <surname>
	      Tarjan
	    </surname>
	  </personname>
	</author>
      </authorgroup>

      <publisher>
	<publishername>
	  ACM Symposium on Theory of Computing
	</publishername>
      </publisher>
    </biblioentry>

    <!-- 41 -->
    <biblioentry xml:id="biblio.sleator85self">
      <title>
	Self-Adjusting Binary Search Trees
      </title>
      <date>
	1985
      </date>

      <authorgroup>
	<author>
	  <personname>
	    <firstname>
	      D. D.
	    </firstname>
	    <surname>
	      Sleator
	    </surname>
	  </personname>
	</author>

	<author>
	  <personname>
	    <firstname>
	      R. E.
	    </firstname>
	    <surname>
	      Tarjan
	    </surname>
	  </personname>
	</author>
      </authorgroup>

      <publisher>
	<publishername>
	  ACM Symposium on Theory of Computing
	</publishername>
      </publisher>
    </biblioentry>

    <!-- 42 -->
    <biblioentry xml:id="biblio.stepanov94standard">
      <title>
	The Standard Template Library
      </title>
      <date>
	1984
      </date>
      <authorgroup>
	<author>
	  <personname>
	    <firstname>
	      A. A.
	    </firstname>
	    <surname>
	      Stepanov
	    </surname>
	  </personname>
	</author>
	<author>
	  <personname>
	    <firstname>
	      M.
	    </firstname>
	    <surname>
	      Lee
	    </surname>
	  </personname>
	</author>
      </authorgroup>
    </biblioentry>

    <!-- 43 -->
    <biblioentry xml:id="biblio.stroustrup97cpp">
      <title>
	The C++ Programming Langugage
      </title>
      <date>
	1997
      </date>

      <author>
	<personname>
	  <firstname>
	    Bjarne
	  </firstname>
	  <surname>
	    Stroustrup
	  </surname>
	</personname>
      </author>

      <publisher>
	<publishername>
	  Addison-Wesley Publishing Company
	</publishername>
      </publisher>
    </biblioentry>

    <!-- 44 -->
    <biblioentry xml:id="biblio.vandevoorde2002cpptemplates">
      <title>
	C++ Templates: The Complete Guide
      </title>
      <date>
	2002
      </date>
      <authorgroup>
	<author>
	  <personname>
	    <firstname>
	      D.
	    </firstname>
	    <surname>
	      Vandevoorde
	    </surname>
	  </personname>
	</author>

	<author>
	  <personname>
	    <firstname>
	      N. M.
	    </firstname>
	    <surname>
	      Josuttis
	    </surname>
	  </personname>
	</author>
      </authorgroup>
      <publisher>
	<publishername>
	  Addison-Wesley Publishing Company
	</publishername>
      </publisher>
    </biblioentry>


    <!-- 45 -->
    <biblioentry xml:id="biblio.wickland96thirty">
      <title>
	<link xmlns:xlink="http://www.w3.org/1999/xlink"
	      xlink:href="http://myweb.wvnet.edu/~gsa00121/books/amongdead30.zip">
	  Thirty Years Among the Dead
	</link>
      </title>
      <date>
	1996
      </date>

      <author>
	<personname>
	  <firstname>
	    C. A.
	  </firstname>
	  <surname>
	    Wickland
	  </surname>
	</personname>
      </author>

      <publisher>
	<publishername>
	  National Psychological Institute
	</publishername>
      </publisher>
    </biblioentry>


  </bibliography>

</chapter>