aboutsummaryrefslogtreecommitdiff
path: root/libstdc++-v3/testsuite/20_util/tuple/cons/allocators.cc
blob: eb444f76cbeb7b3be91b4c9bba8e90f7d2a24bd9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
// { dg-do run { target c++11 } }

// Copyright (C) 2011-2018 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING3.  If not see
// <http://www.gnu.org/licenses/>.

// 20.4.2.1 [tuple.cnstr] Allocator-extended constructors

#include <memory>
#include <tuple>
#include <testsuite_hooks.h>

struct MyAlloc { };

// type that can't be constructed with an allocator
struct CannotUse
{
  CannotUse(int = 0, int = 0) : ok(true) { }

  bool ok;
};

// type that can be constructed with an allocator
// but which has uses_allocator == false
struct DoesNotUse
{
  typedef MyAlloc allocator_type;

  DoesNotUse(int = 0) : ok(true) { }
  DoesNotUse(std::allocator_arg_t, MyAlloc, int = 0) : ok(false) { }
  DoesNotUse(MyAlloc) : ok(false) { }
  DoesNotUse(int, MyAlloc) : ok(false) { }

  DoesNotUse(const DoesNotUse&) : ok(true) { }
  DoesNotUse(std::allocator_arg_t, MyAlloc, const DoesNotUse&) : ok(false) { }
  DoesNotUse(const DoesNotUse&, MyAlloc) : ok(false) { }

  DoesNotUse(DoesNotUse&&) : ok(true) { }
  DoesNotUse(std::allocator_arg_t, MyAlloc, DoesNotUse&&) : ok(false) { }
  DoesNotUse(DoesNotUse&&, MyAlloc) : ok(false) { }

  bool ok;
};

namespace std
{
  template<typename A> 
    struct uses_allocator<DoesNotUse, A> : false_type { };
}

// type that can be constructed with an allocator as second argument
struct UsesWithTag
{
  typedef MyAlloc allocator_type;

  UsesWithTag(int = 0) : ok(false) { }
  UsesWithTag(std::allocator_arg_t, MyAlloc, int = 0) : ok(true) { }
  UsesWithTag(MyAlloc) : ok(false) {  }
  UsesWithTag(int, MyAlloc) : ok(false) {  }

  UsesWithTag(const UsesWithTag&) : ok(false) { }
  UsesWithTag(std::allocator_arg_t, MyAlloc, const UsesWithTag&) : ok(true) { }
  UsesWithTag(const UsesWithTag&, MyAlloc) : ok(false) {  }

  UsesWithTag(UsesWithTag&&) : ok(false) { }
  UsesWithTag(std::allocator_arg_t, MyAlloc, UsesWithTag&&) : ok(true) { }
  UsesWithTag(UsesWithTag&&, MyAlloc) : ok(false) {  }

  bool ok;
};

// type that can be constructed with an allocator as last argument
struct UsesWithoutTag
{
  typedef MyAlloc allocator_type;

  UsesWithoutTag(int = 0) : ok(false) { }
  UsesWithoutTag(MyAlloc) : ok(true) { }
  UsesWithoutTag(int, MyAlloc) : ok(true) { }

  UsesWithoutTag(const UsesWithoutTag&) : ok(false) { }
  UsesWithoutTag(const UsesWithoutTag&, MyAlloc) : ok(true) { }

  UsesWithoutTag(UsesWithoutTag&&) : ok(false) { }
  UsesWithoutTag(UsesWithoutTag&&, MyAlloc) : ok(true) { }

  bool ok;
};

void test01()
{
  using std::allocator_arg;
  using std::tuple;
  using std::make_tuple;
  using std::get;

  typedef CannotUse T1;
  typedef DoesNotUse T2;
  typedef UsesWithTag T3;
  typedef UsesWithoutTag T4;
  typedef tuple<T1, T2, T3, T4> test_type;

  MyAlloc a;

  // default construction
  test_type t1(allocator_arg, a);
  VERIFY( get<0>(t1).ok );
  VERIFY( get<1>(t1).ok );
  VERIFY( get<2>(t1).ok );
  VERIFY( get<3>(t1).ok );

  // copy construction
  test_type t2(allocator_arg, a, t1);
  VERIFY( get<0>(t2).ok );
  VERIFY( get<1>(t2).ok );
  VERIFY( get<2>(t2).ok );
  VERIFY( get<3>(t2).ok );

  // move construction
  test_type t3(allocator_arg, a, std::move(t1));
  VERIFY( get<0>(t3).ok );
  VERIFY( get<1>(t3).ok );
  VERIFY( get<2>(t3).ok );
  VERIFY( get<3>(t3).ok );

  // construction from int
  test_type t4(allocator_arg, a, 1, 2, 3, 4);
  VERIFY( get<0>(t4).ok );
  VERIFY( get<1>(t4).ok );
  VERIFY( get<2>(t4).ok );
  VERIFY( get<3>(t4).ok );

  auto ints = make_tuple(1, 2, 3, 4);

  // construction from lvalue tuple of ints
  test_type t5(allocator_arg, a, ints);
  VERIFY( get<0>(t5).ok );
  VERIFY( get<1>(t5).ok );
  VERIFY( get<2>(t5).ok );
  VERIFY( get<3>(t2).ok );

  // construction from rvalue tuple of ints
  test_type t6(allocator_arg, a, std::move(ints));
  VERIFY( get<0>(t6).ok );
  VERIFY( get<1>(t6).ok );
  VERIFY( get<2>(t6).ok );
  VERIFY( get<3>(t6).ok );

}

void test02()
{
  using std::allocator_arg;
  using std::tuple;
  using std::make_tuple;

  typedef tuple<> test_type;

  MyAlloc a;

  // default construction
  test_type t1(allocator_arg, a);
  // copy construction
  test_type t2(allocator_arg, a, t1);
  // move construction
  test_type t3(allocator_arg, a, std::move(t1));
  // make_tuple
  test_type empty = make_tuple();
}

int main()
{
  test01();
  test02();
  return 0;
}