aboutsummaryrefslogtreecommitdiff
path: root/libstdc++/stl/pthread_alloc
blob: 1852908095b0a26765a8564b108e0ed09811d21f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
/*
 * Copyright (c) 1996
 * Silicon Graphics Computer Systems, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Silicon Graphics makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 */

#ifndef __SGI_STL_PTHREAD_ALLOC
#define __SGI_STL_PTHREAD_ALLOC

// Pthread-specific node allocator.
// This is similar to the default allocator, except that free-list
// information is kept separately for each thread, avoiding locking.
// This should be reasonably fast even in the presence of threads.
// The down side is that storage may not be well-utilized.
// It is not an error to allocate memory in thread A and deallocate
// it in thread B.  But this effectively transfers ownership of the memory,
// so that it can only be reallocated by thread B.  Thus this can effectively
// result in a storage leak if it's done on a regular basis.
// It can also result in frequent sharing of
// cache lines among processors, with potentially serious performance
// consequences.

#include <stl_config.h>
#include <stl_alloc.h>
#ifndef __RESTRICT
#  define __RESTRICT
#endif

__STL_BEGIN_NAMESPACE

#define __STL_DATA_ALIGNMENT 8

union _Pthread_alloc_obj {
    union _Pthread_alloc_obj * __free_list_link;
    char __client_data[__STL_DATA_ALIGNMENT];    /* The client sees this.    */
};

// Pthread allocators don't appear to the client to have meaningful
// instances.  We do in fact need to associate some state with each
// thread.  That state is represented by
// _Pthread_alloc_per_thread_state<_Max_size>.

template<size_t _Max_size>
struct _Pthread_alloc_per_thread_state {
  typedef _Pthread_alloc_obj __obj;
  enum { _S_NFREELISTS = _Max_size/__STL_DATA_ALIGNMENT };
  _Pthread_alloc_obj* volatile __free_list[_S_NFREELISTS]; 
  _Pthread_alloc_per_thread_state<_Max_size> * __next; 
	// Free list link for list of available per thread structures.
  	// When one of these becomes available for reuse due to thread
	// termination, any objects in its free list remain associated
	// with it.  The whole structure may then be used by a newly
	// created thread.
  _Pthread_alloc_per_thread_state() : __next(0)
  {
    memset((void *)__free_list, 0, _S_NFREELISTS * sizeof(__obj *));
  }
  // Returns an object of size __n, and possibly adds to size n free list.
  void *_M_refill(size_t __n);
};

// Pthread-specific allocator.
// The argument specifies the largest object size allocated from per-thread
// free lists.  Larger objects are allocated using malloc_alloc.
// Max_size must be a power of 2.
template <size_t _Max_size = 128>
class _Pthread_alloc_template {

public: // but only for internal use:

  typedef _Pthread_alloc_obj __obj;

  // Allocates a chunk for nobjs of size "size".  nobjs may be reduced
  // if it is inconvenient to allocate the requested number.
  static char *_S_chunk_alloc(size_t __size, int &__nobjs);

  enum {_S_ALIGN = __STL_DATA_ALIGNMENT};

  static size_t _S_round_up(size_t __bytes) {
        return (((__bytes) + _S_ALIGN-1) & ~(_S_ALIGN - 1));
  }
  static size_t _S_freelist_index(size_t __bytes) {
        return (((__bytes) + _S_ALIGN-1)/_S_ALIGN - 1);
  }

private:
  // Chunk allocation state. And other shared state.
  // Protected by _S_chunk_allocator_lock.
  static pthread_mutex_t _S_chunk_allocator_lock;
  static char *_S_start_free;
  static char *_S_end_free;
  static size_t _S_heap_size;
  static _Pthread_alloc_per_thread_state<_Max_size>* _S_free_per_thread_states;
  static pthread_key_t _S_key;
  static bool _S_key_initialized;
        // Pthread key under which per thread state is stored. 
        // Allocator instances that are currently unclaimed by any thread.
  static void _S_destructor(void *instance);
        // Function to be called on thread exit to reclaim per thread
        // state.
  static _Pthread_alloc_per_thread_state<_Max_size> *_S_new_per_thread_state();
        // Return a recycled or new per thread state.
  static _Pthread_alloc_per_thread_state<_Max_size> *_S_get_per_thread_state();
        // ensure that the current thread has an associated
        // per thread state.
  friend class _M_lock;
  class _M_lock {
      public:
        _M_lock () { pthread_mutex_lock(&_S_chunk_allocator_lock); }
        ~_M_lock () { pthread_mutex_unlock(&_S_chunk_allocator_lock); }
  };

public:

  /* n must be > 0      */
  static void * allocate(size_t __n)
  {
    __obj * volatile * __my_free_list;
    __obj * __RESTRICT __result;
    _Pthread_alloc_per_thread_state<_Max_size>* __a;

    if (__n > _Max_size) {
        return(malloc_alloc::allocate(__n));
    }
    if (!_S_key_initialized ||
        !(__a = (_Pthread_alloc_per_thread_state<_Max_size>*)
                                 pthread_getspecific(_S_key))) {
        __a = _S_get_per_thread_state();
    }
    __my_free_list = __a -> __free_list + _S_freelist_index(__n);
    __result = *__my_free_list;
    if (__result == 0) {
        void *__r = __a -> _M_refill(_S_round_up(__n));
        return __r;
    }
    *__my_free_list = __result -> __free_list_link;
    return (__result);
  };

  /* p may not be 0 */
  static void deallocate(void *__p, size_t __n)
  {
    __obj *__q = (__obj *)__p;
    __obj * volatile * __my_free_list;
    _Pthread_alloc_per_thread_state<_Max_size>* __a;

    if (__n > _Max_size) {
        malloc_alloc::deallocate(__p, __n);
        return;
    }
    if (!_S_key_initialized ||
        !(__a = (_Pthread_alloc_per_thread_state<_Max_size> *)
                pthread_getspecific(_S_key))) {
        __a = _S_get_per_thread_state();
    }
    __my_free_list = __a->__free_list + _S_freelist_index(__n);
    __q -> __free_list_link = *__my_free_list;
    *__my_free_list = __q;
  }

  static void * reallocate(void *__p, size_t __old_sz, size_t __new_sz);

} ;

typedef _Pthread_alloc_template<> pthread_alloc;


template <size_t _Max_size>
void _Pthread_alloc_template<_Max_size>::_S_destructor(void * __instance)
{
    _M_lock __lock_instance;	// Need to acquire lock here.
    _Pthread_alloc_per_thread_state<_Max_size>* __s =
        (_Pthread_alloc_per_thread_state<_Max_size> *)__instance;
    __s -> __next = _S_free_per_thread_states;
    _S_free_per_thread_states = __s;
}

template <size_t _Max_size>
_Pthread_alloc_per_thread_state<_Max_size> *
_Pthread_alloc_template<_Max_size>::_S_new_per_thread_state()
{    
    /* lock already held here.	*/
    if (0 != _S_free_per_thread_states) {
        _Pthread_alloc_per_thread_state<_Max_size> *__result =
					_S_free_per_thread_states;
        _S_free_per_thread_states = _S_free_per_thread_states -> __next;
        return __result;
    } else {
        return new _Pthread_alloc_per_thread_state<_Max_size>;
    }
}

template <size_t _Max_size>
_Pthread_alloc_per_thread_state<_Max_size> *
_Pthread_alloc_template<_Max_size>::_S_get_per_thread_state()
{
    /*REFERENCED*/
    _M_lock __lock_instance;	// Need to acquire lock here.
    _Pthread_alloc_per_thread_state<_Max_size> * __result;
    if (!_S_key_initialized) {
        if (pthread_key_create(&_S_key, _S_destructor)) {
            abort();  // failed
        }
        _S_key_initialized = true;
    }
    __result = _S_new_per_thread_state();
    if (pthread_setspecific(_S_key, __result)) abort();
    return __result;
}

/* We allocate memory in large chunks in order to avoid fragmenting     */
/* the malloc heap too much.                                            */
/* We assume that size is properly aligned.                             */
template <size_t _Max_size>
char *_Pthread_alloc_template<_Max_size>
::_S_chunk_alloc(size_t __size, int &__nobjs)
{
  {
    char * __result;
    size_t __total_bytes;
    size_t __bytes_left;
    /*REFERENCED*/
    _M_lock __lock_instance;         // Acquire lock for this routine

    __total_bytes = __size * __nobjs;
    __bytes_left = _S_end_free - _S_start_free;
    if (__bytes_left >= __total_bytes) {
        __result = _S_start_free;
        _S_start_free += __total_bytes;
        return(__result);
    } else if (__bytes_left >= __size) {
        __nobjs = __bytes_left/__size;
        __total_bytes = __size * __nobjs;
        __result = _S_start_free;
        _S_start_free += __total_bytes;
        return(__result);
    } else {
        size_t __bytes_to_get =
		2 * __total_bytes + _S_round_up(_S_heap_size >> 4);
        // Try to make use of the left-over piece.
        if (__bytes_left > 0) {
            _Pthread_alloc_per_thread_state<_Max_size>* __a = 
                (_Pthread_alloc_per_thread_state<_Max_size>*)
			pthread_getspecific(_S_key);
            __obj * volatile * __my_free_list =
                        __a->__free_list + _S_freelist_index(__bytes_left);

            ((__obj *)_S_start_free) -> __free_list_link = *__my_free_list;
            *__my_free_list = (__obj *)_S_start_free;
        }
#       ifdef _SGI_SOURCE
          // Try to get memory that's aligned on something like a
          // cache line boundary, so as to avoid parceling out
          // parts of the same line to different threads and thus
          // possibly different processors.
          {
            const int __cache_line_size = 128;  // probable upper bound
            __bytes_to_get &= ~(__cache_line_size-1);
            _S_start_free = (char *)memalign(__cache_line_size, __bytes_to_get); 
            if (0 == _S_start_free) {
              _S_start_free = (char *)malloc_alloc::allocate(__bytes_to_get);
            }
          }
#       else  /* !SGI_SOURCE */
          _S_start_free = (char *)malloc_alloc::allocate(__bytes_to_get);
#       endif
        _S_heap_size += __bytes_to_get;
        _S_end_free = _S_start_free + __bytes_to_get;
    }
  }
  // lock is released here
  return(_S_chunk_alloc(__size, __nobjs));
}


/* Returns an object of size n, and optionally adds to size n free list.*/
/* We assume that n is properly aligned.                                */
/* We hold the allocation lock.                                         */
template <size_t _Max_size>
void *_Pthread_alloc_per_thread_state<_Max_size>
::_M_refill(size_t __n)
{
    int __nobjs = 128;
    char * __chunk =
	_Pthread_alloc_template<_Max_size>::_S_chunk_alloc(__n, __nobjs);
    __obj * volatile * __my_free_list;
    __obj * __result;
    __obj * __current_obj, * __next_obj;
    int __i;

    if (1 == __nobjs)  {
        return(__chunk);
    }
    __my_free_list = __free_list
		 + _Pthread_alloc_template<_Max_size>::_S_freelist_index(__n);

    /* Build free list in chunk */
      __result = (__obj *)__chunk;
      *__my_free_list = __next_obj = (__obj *)(__chunk + __n);
      for (__i = 1; ; __i++) {
        __current_obj = __next_obj;
        __next_obj = (__obj *)((char *)__next_obj + __n);
        if (__nobjs - 1 == __i) {
            __current_obj -> __free_list_link = 0;
            break;
        } else {
            __current_obj -> __free_list_link = __next_obj;
        }
      }
    return(__result);
}

template <size_t _Max_size>
void *_Pthread_alloc_template<_Max_size>
::reallocate(void *__p, size_t __old_sz, size_t __new_sz)
{
    void * __result;
    size_t __copy_sz;

    if (__old_sz > _Max_size
	&& __new_sz > _Max_size) {
        return(realloc(__p, __new_sz));
    }
    if (_S_round_up(__old_sz) == _S_round_up(__new_sz)) return(__p);
    __result = allocate(__new_sz);
    __copy_sz = __new_sz > __old_sz? __old_sz : __new_sz;
    memcpy(__result, __p, __copy_sz);
    deallocate(__p, __old_sz);
    return(__result);
}

template <size_t _Max_size>
_Pthread_alloc_per_thread_state<_Max_size> *
_Pthread_alloc_template<_Max_size>::_S_free_per_thread_states = 0;

template <size_t _Max_size>
pthread_key_t _Pthread_alloc_template<_Max_size>::_S_key;

template <size_t _Max_size>
bool _Pthread_alloc_template<_Max_size>::_S_key_initialized = false;

template <size_t _Max_size>
pthread_mutex_t _Pthread_alloc_template<_Max_size>::_S_chunk_allocator_lock
= PTHREAD_MUTEX_INITIALIZER;

template <size_t _Max_size>
char *_Pthread_alloc_template<_Max_size>
::_S_start_free = 0;

template <size_t _Max_size>
char *_Pthread_alloc_template<_Max_size>
::_S_end_free = 0;

template <size_t _Max_size>
size_t _Pthread_alloc_template<_Max_size>
::_S_heap_size = 0;

#ifdef __STL_USE_STD_ALLOCATORS

template <class _Tp>
class pthread_allocator {
  typedef pthread_alloc _S_Alloc;          // The underlying allocator.
public:
  typedef size_t     size_type;
  typedef ptrdiff_t  difference_type;
  typedef _Tp*       pointer;
  typedef const _Tp* const_pointer;
  typedef _Tp&       reference;
  typedef const _Tp& const_reference;
  typedef _Tp        value_type;

  template <class _Up> struct rebind {
    typedef pthread_allocator<_Up> other;
  };

  pthread_allocator() __STL_NOTHROW {}
  pthread_allocator(const pthread_allocator& a) __STL_NOTHROW {}
  template <class _Up> pthread_allocator(const pthread_allocator<_Up>&)
		__STL_NOTHROW {}
  ~pthread_allocator() __STL_NOTHROW {}

  pointer address(reference __x) const { return &__x; }
  const_pointer address(const_reference __x) const { return &__x; }

  // __n is permitted to be 0.  The C++ standard says nothing about what
  // the return value is when __n == 0.
  _Tp* allocate(size_type __n, const void* = 0) {
    return __n != 0 ? static_cast<_Tp*>(_S_Alloc::allocate(__n * sizeof(_Tp)))
                    : 0;
  }

  // p is not permitted to be a null pointer.
  void deallocate(pointer __p, size_type __n)
    { _S_Alloc::deallocate(__p, __n * sizeof(_Tp)); }

  size_type max_size() const __STL_NOTHROW 
    { return size_t(-1) / sizeof(_Tp); }

  void construct(pointer __p, const _Tp& __val) { new(__p) _Tp(__val); }
  void destroy(pointer _p) { _p->~_Tp(); }
};

template<>
class pthread_allocator<void> {
public:
  typedef size_t      size_type;
  typedef ptrdiff_t   difference_type;
  typedef void*       pointer;
  typedef const void* const_pointer;
  typedef void        value_type;

  template <class _Up> struct rebind {
    typedef pthread_allocator<_Up> other;
  };
};

template <size_t _Max_size>
inline bool operator==(const _Pthread_alloc_template<_Max_size>&,
                       const _Pthread_alloc_template<_Max_size>&)
{
  return true;
}

template <class _T1, class _T2>
inline bool operator==(const pthread_allocator<_T1>&,
                       const pthread_allocator<_T2>& a2) 
{
  return true;
}

template <class _T1, class _T2>
inline bool operator!=(const pthread_allocator<_T1>&,
                       const pthread_allocator<_T2>&)
{
  return false;
}

template <class _Tp, size_t _Max_size>
struct _Alloc_traits<_Tp, _Pthread_alloc_template<_Max_size> >
{
  static const bool _S_instanceless = true;
  typedef simple_alloc<_Tp, _Pthread_alloc_template<_Max_size> > _Alloc_type;
  typedef __allocator<_Tp, _Pthread_alloc_template<_Max_size> > 
          allocator_type;
};

template <class _Tp, class _Up, size_t _Max>
struct _Alloc_traits<_Tp, __allocator<_Up, _Pthread_alloc_template<_Max> > >
{
  static const bool _S_instanceless = true;
  typedef simple_alloc<_Tp, _Pthread_alloc_template<_Max> > _Alloc_type;
  typedef __allocator<_Tp, _Pthread_alloc_template<_Max> > allocator_type;
};

template <class _Tp, class _Up>
struct _Alloc_traits<_Tp, pthread_allocator<_Up> >
{
  static const bool _S_instanceless = true;
  typedef simple_alloc<_Tp, _Pthread_alloc_template<> > _Alloc_type;
  typedef pthread_allocator<_Tp> allocator_type;
};


#endif /* __STL_USE_STD_ALLOCATORS */

__STL_END_NAMESPACE

#endif /* __SGI_STL_PTHREAD_ALLOC */

// Local Variables:
// mode:C++
// End: