#!/usr/bin/env python2 # coding=utf-8 import mako.template import mako.runtime import math import numpy as np import optparse import os import sys from collections import namedtuple from mako.template import Template from math import copysign, fabs, fmod, frexp, isinf, isnan, modf from numpy import int8, int16, int32, uint8, uint16, uint32, float32 from textwrap import dedent # ---------------------------------------------------------------------------- # Overview # ---------------------------------------------------------------------------- # # This scripts generates tests for the GLSL packing functions, such as # packSnorm2x16. # # In the test templates below, observe that the GLSL function's actual output # is compared against multiple expected outputs. Given an input and # a pack/unpackfunction, there exist multiple valid outputs because the GLSL # specs permit variation in the implementation of the function. The actual # output is dependent on the GLSL compiler's and hardware's choice of rounding # mode (for example, to even or to nearest) and handling of subnormal (also # called denormalized) floating point numbers. # ---------------------------------------------------------------------------- # Templates for test files # ---------------------------------------------------------------------------- # Test evaluation of constant pack2x16 expressions. const_pack_template = Template(dedent("""\ [require] ${func.requirements} [vertex shader] #ifndef GL_ES #extension GL_ARB_shading_language_packing : require #endif const vec4 red = vec4(1, 0, 0, 1); const vec4 green = vec4(0, 1, 0, 1); in vec4 vertex; out vec4 vert_color; void main() { ${func.result_precision} uint actual; gl_Position = vertex; vert_color = green; % for io in func.inout_seq: actual = ${func.name}(${func.vector_type}(${', '.join(io.input)})); if (true % for u in sorted(set(io.valid_outputs)): && actual != ${u} % endfor ) { vert_color = red; } % endfor } [fragment shader] in vec4 vert_color; out vec4 frag_color; void main() { frag_color = vert_color; } [vertex data] vertex/float/2 -1.0 -1.0 1.0 -1.0 1.0 1.0 -1.0 1.0 [test] draw arrays GL_TRIANGLE_FAN 0 4 probe all rgba 0.0 1.0 0.0 1.0 """)) # Test evaluation of constant unpack2x16 expressions. const_unpack_template = Template(dedent("""\ [require] ${func.requirements} [vertex shader] #ifndef GL_ES #extension GL_ARB_shading_language_packing : require #endif const vec4 red = vec4(1, 0, 0, 1); const vec4 green = vec4(0, 1, 0, 1); in vec4 vertex; out vec4 vert_color; void main() { ${func.result_precision} ${func.vector_type} actual; gl_Position = vertex; vert_color = green; % for io in func.inout_seq: actual = ${func.name}(${io.input}); if (true % for v in io.valid_outputs: && actual != ${func.vector_type}(${', '.join(v)}) % endfor ) { vert_color = red; } % endfor } [fragment shader] in vec4 vert_color; out vec4 frag_color; void main() { frag_color = vert_color; } [vertex data] vertex/float/2 -1.0 -1.0 1.0 -1.0 1.0 1.0 -1.0 1.0 [test] draw arrays GL_TRIANGLE_FAN 0 4 probe all rgba 0.0 1.0 0.0 1.0 """)) # Test execution of pack2x16 functions in the vertex shader. vs_pack_template = Template(dedent("""\ [require] ${func.requirements} [vertex shader] #ifndef GL_ES #extension GL_ARB_shading_language_packing : require #endif const vec4 red = vec4(1, 0, 0, 1); const vec4 green = vec4(0, 1, 0, 1); uniform ${func.vector_type} func_input; % for j in range(func.num_valid_outputs): uniform ${func.result_precision} uint expect${j}; % endfor in vec4 vertex; out vec4 vert_color; void main() { gl_Position = vertex; ${func.result_precision} uint actual = ${func.name}(func_input); if (false % for j in range(func.num_valid_outputs): || actual == expect${j} % endfor ) { vert_color = green; } else { vert_color = red; } } [fragment shader] in vec4 vert_color; out vec4 frag_color; void main() { frag_color = vert_color; } [vertex data] vertex/float/2 -1.0 -1.0 1.0 -1.0 1.0 1.0 -1.0 1.0 [test] % for io in func.inout_seq: uniform ${func.vector_type} func_input ${" ".join(io.input)} % for j in range(func.num_valid_outputs): uniform uint expect${j} ${io.valid_outputs[j]} % endfor draw arrays GL_TRIANGLE_FAN 0 4 probe all rgba 0.0 1.0 0.0 1.0 % endfor """)) # Test execution of unpack2x16 functions in the vertex shader. vs_unpack_template = Template(dedent("""\ [require] ${func.requirements} [vertex shader] #ifndef GL_ES #extension GL_ARB_shading_language_packing : require #endif const vec4 red = vec4(1, 0, 0, 1); const vec4 green = vec4(0, 1, 0, 1); uniform highp uint func_input; uniform bool exact; % for j in range(func.num_valid_outputs): uniform ${func.result_precision} ${func.vector_type} expect${j}; % endfor in vec4 vertex; out vec4 vert_color; void main() { gl_Position = vertex; ${func.result_precision} ${func.vector_type} actual = ${func.name}(func_input); if (false % for i in range(func.num_valid_outputs): || (exact ? actual == expect${i} : distance(actual, expect${i}) < 0.00001) % endfor ) { vert_color = green; } else { vert_color = red; } } [fragment shader] in vec4 vert_color; out vec4 frag_color; void main() { frag_color = vert_color; } [vertex data] vertex/float/2 -1.0 -1.0 1.0 -1.0 1.0 1.0 -1.0 1.0 [test] % for io in func.inout_seq: uniform uint func_input ${io.input} % if func.exact: uniform int exact 1 % else: uniform int exact ${int(int(io.input[:-1]) in (0x0, 0xffffffff, 0x80808080, 0x81818181))} % endif % for j in range(func.num_valid_outputs): uniform ${func.vector_type} expect${j} ${" ".join(io.valid_outputs[j])} % endfor draw arrays GL_TRIANGLE_FAN 0 4 probe all rgba 0.0 1.0 0.0 1.0 % endfor """)) # Test execution of pack2x16 functions in the fragment shader. fs_pack_template = Template(dedent("""\ [require] ${func.requirements} [vertex shader] in vec4 vertex; void main() { gl_Position = vertex; } [fragment shader] #ifndef GL_ES #extension GL_ARB_shading_language_packing : require #endif const vec4 red = vec4(1, 0, 0, 1); const vec4 green = vec4(0, 1, 0, 1); uniform ${func.vector_type} func_input; % for i in range(func.num_valid_outputs): uniform ${func.result_precision} uint expect${i}; % endfor out vec4 frag_color; void main() { ${func.result_precision} uint actual = ${func.name}(func_input); if (false % for i in range(func.num_valid_outputs): || actual == expect${i} % endfor ) { frag_color = green; } else { frag_color = red; } } [vertex data] vertex/float/2 -1.0 -1.0 1.0 -1.0 1.0 1.0 -1.0 1.0 [test] % for io in func.inout_seq: uniform ${func.vector_type} func_input ${" ".join(io.input)} % for i in range(func.num_valid_outputs): uniform uint expect${i} ${io.valid_outputs[i]} % endfor draw arrays GL_TRIANGLE_FAN 0 4 probe all rgba 0.0 1.0 0.0 1.0 % endfor """)) # Test execution of unpack2x16 functions in the fragment shader. fs_unpack_template = Template(dedent("""\ [require] ${func.requirements} [vertex shader] in vec4 vertex; void main() { gl_Position = vertex; } [fragment shader] #ifndef GL_ES #extension GL_ARB_shading_language_packing : require #endif const vec4 red = vec4(1, 0, 0, 1); const vec4 green = vec4(0, 1, 0, 1); uniform highp uint func_input; uniform bool exact; % for i in range(func.num_valid_outputs): uniform ${func.result_precision} ${func.vector_type} expect${i}; % endfor out vec4 frag_color; void main() { ${func.result_precision} ${func.vector_type} actual = ${func.name}(func_input); if (false % for i in range(func.num_valid_outputs): || (exact ? actual == expect${i} : distance(actual, expect${i}) < 0.00001) % endfor ) { frag_color = green; } else { frag_color = red; } } [vertex data] vertex/float/2 -1.0 -1.0 1.0 -1.0 1.0 1.0 -1.0 1.0 [test] % for io in func.inout_seq: uniform uint func_input ${io.input} % if func.exact: uniform int exact 1 % else: uniform int exact ${int(int(io.input[:-1]) in (0x0, 0xffffffff, 0x80808080, 0x81818181))} % endif % for i in range(func.num_valid_outputs): uniform ${func.vector_type} expect${i} ${" ".join(io.valid_outputs[i])} % endfor draw arrays GL_TRIANGLE_FAN 0 4 probe all rgba 0.0 1.0 0.0 1.0 % endfor """)) template_table = { ("const", "p", "2x16") : const_pack_template, ("const", "p", "4x8") : const_pack_template, ("const", "u", "2x16") : const_unpack_template, ("const", "u", "4x8") : const_unpack_template, ("vs", "p", "2x16") : vs_pack_template, ("vs", "p", "4x8") : vs_pack_template, ("vs", "u", "2x16") : vs_unpack_template, ("vs", "u", "4x8") : vs_unpack_template, ("fs", "p", "2x16") : fs_pack_template, ("fs", "p", "4x8") : fs_pack_template, ("fs", "u", "2x16") : fs_unpack_template, ("fs", "u", "4x8") : fs_unpack_template, } # ---------------------------------------------------------------------------- # Math for pack/unpack functions # ---------------------------------------------------------------------------- class FuncOpts: """Options that modify the evaluation of the GLSL pack/unpack functions. Given an input and a pack/unpack function, there exist multiple valid outputs because the GLSL specs permit variation in the implementation of the function. The actual output is dependent on the GLSL compiler's and hardware's choice of rounding mode (for example, to even or to nearest). This class attempts to capture the permitted variation in rounding behavior. To select a particular behavior, pass the appropriate enum to the constructor, as described below. Rounding mode ------------- For some packing functions, the GLSL ES 3.00 specification's definition of the function's behavior involves round(), whose behavior at 0.5 is an implementation detail. From section 8.3 of the spec: The fraction 0.5 will round in a direction chosen by the implementation, presumably the direction that is fastest. The constructor parameter 'round_mode' selects the rounding behavior. Valid values are: - ROUND_TO_EVEN - ROUND_TO_NEAREST """ ROUND_TO_EVEN = 0 ROUND_TO_NEAREST = 1 def __init__(self, round_mode=ROUND_TO_EVEN): if round_mode == FuncOpts.ROUND_TO_EVEN: self.__round_func = round_to_even elif round_mode == FuncOpts.ROUND_TO_NEAREST: self.__round_func = round_to_nearest else: assert(False) def round(self, x): """Round a float according to the requested rounding mode.""" assert(any(isinstance(x, T) for T in [float, float32])) # Drop the floating-point precision from 64 to 32 bits before # rounding. The loss of precision may shift the float's fractional # value to 0.5, which will affect the rounding. x = float32(x) return self.__round_func(x) def clamp(x, min, max): if x < min: return min elif x > max: return max else: return x def round_to_nearest(x): # Get fractional and integral parts. (f, i) = modf(x) if fabs(f) < 0.5: return i else: return i + copysign(1.0, x) def round_to_even(x): # Get fractional and integral parts. (f, i) = modf(x) if fabs(f) < 0.5: return i elif fabs(f) == 0.5: return i + fmod(i, 2.0) else: return i + copysign(1.0, x) def pack_2x16(pack_1x16_func, x, y, func_opts): """Evaluate a GLSL pack2x16 function. :param pack_1x16_func: the component-wise function of the GLSL pack2x16 function :param x,y: each a float32 :return: a uint32 """ assert(isinstance(x, float32)) assert(isinstance(y, float32)) ux = pack_1x16_func(x, func_opts) uy = pack_1x16_func(y, func_opts) assert(isinstance(ux, uint16)) assert(isinstance(uy, uint16)) return uint32((uy << 16) | ux) def pack_4x8(pack_1x8_func, x, y, z, w, func_opts): """Evaluate a GLSL pack4x8 function. :param pack_1x8_func: the component-wise function of the GLSL pack4x8 function :param x,y,z,w: each a float32 :return: a uint32 """ assert(isinstance(x, float32)) assert(isinstance(y, float32)) assert(isinstance(z, float32)) assert(isinstance(w, float32)) ux = pack_1x8_func(x, func_opts) uy = pack_1x8_func(y, func_opts) uz = pack_1x8_func(z, func_opts) uw = pack_1x8_func(w, func_opts) assert(isinstance(ux, uint8)) assert(isinstance(uy, uint8)) assert(isinstance(uz, uint8)) assert(isinstance(uw, uint8)) return uint32((uw << 24) | (uz << 16) | (uy << 8) | ux) def unpack_2x16(unpack_1x16_func, u, func_opts): """Evaluate a GLSL unpack2x16 function. :param unpack_1x16_func: the component-wise function of the GLSL unpack2x16 function :param u: a uint32 :return: a 2-tuple of float32 """ assert(isinstance(u, uint32)) ux = uint16(u & 0xffff) uy = uint16(u >> 16) x = unpack_1x16_func(ux) y = unpack_1x16_func(uy) assert(isinstance(x, float32)) assert(isinstance(y, float32)) return (x, y) def unpack_4x8(unpack_1x8_func, u, func_opts): """Evaluate a GLSL unpack4x8 function. :param unpack_1x8_func: the component-wise function of the GLSL unpack4x8 function :param u: a uint32 :return: a 4-tuple of float32 """ assert(isinstance(u, uint32)) ux = uint8(u & 0xff) uy = uint8((u >> 8) & 0xff) uz = uint8((u >> 16) & 0xff) uw = uint8((u >> 24) & 0xff) x = unpack_1x8_func(ux) y = unpack_1x8_func(uy) z = unpack_1x8_func(uz) w = unpack_1x8_func(uw) assert(isinstance(x, float32)) assert(isinstance(y, float32)) assert(isinstance(z, float32)) assert(isinstance(w, float32)) return (x, y, z, w) def pack_snorm_1x8(f32, func_opts): """Component-wise function of packSnorm4x8.""" assert(isinstance(f32, float32)) return uint8(int8(func_opts.round(clamp(f32, -1.0, +1.0) * 127.0))) def pack_snorm_1x16(f32, func_opts): """Component-wise function of packSnorm2x16.""" assert(isinstance(f32, float32)) return uint16(int16(func_opts.round(clamp(f32, -1.0, +1.0) * 32767.0))) def unpack_snorm_1x8(u8): """Component-wise function of unpackSnorm4x8.""" assert(isinstance(u8, uint8)) return float32(clamp(int8(u8) / 127.0, -1.0, +1.0)) def unpack_snorm_1x16(u16): """Component-wise function of unpackSnorm2x16.""" assert(isinstance(u16, uint16)) return float32(clamp(int16(u16) / 32767.0, -1.0, +1.0)) def pack_unorm_1x8(f32, func_opts): """Component-wise function of packUnorm4x8.""" assert(isinstance(f32, float32)) return uint8(func_opts.round(clamp(f32, 0.0, 1.0) * 255.0)) def pack_unorm_1x16(f32, func_opts): """Component-wise function of packUnorm2x16.""" assert(isinstance(f32, float32)) return uint16(func_opts.round(clamp(f32, 0.0, 1.0) * 65535.0)) def unpack_unorm_1x8(u8): """Component-wise function of unpackUnorm4x8.""" assert(isinstance(u8, uint8)) return float32(u8 / 255.0) def unpack_unorm_1x16(u16): """Component-wise function of unpackUnorm2x16.""" assert(isinstance(u16, uint16)) return float32(u16 / 65535.0) def pack_half_1x16(f32, func_opts): """Component-wise function of packHalf2x16.""" assert(isinstance(f32, float32)) # The bit layout of a float16 is: # # sign: 15 # exponent: 10:14 # mantissa: 0:9 # # The sign, exponent, and mantissa determine its value by: # # if e = 0 and m = 0, then zero: (-1)^s * 0 # if e = 0 and m != 0, then subnormal: (-1)^s * 2^(e - 14) * m / 2^10 # if 0 < e < 31, then normal: (-1)^s * 2^(e - 15) * (1 + m / 2^10) # if e = 31 and m = 0, then inf: (-1)^s * inf # if e = 31 and m != 0, then nan # # where 0 <= m < 2^10. # # Some key boundary values of float16 are: # # min_normal16 = 2^(1 - 15) * (1 + 0 / 2^10) # max_normal16 = 2^(30 - 15) * (1 + 1023 / 2^10) # # The maximum float16 step value is: # # max_step16 = 2^5 # # Observe that each of the above boundary values lies in the range of # normal float32 values. If we represent each of the above boundary values # in the form returned by frexpf() for normal float32 values, 2^E # * F where 0.5 <= F < 1, then: # # min_normal16 = 2^(-13) * 0.5 # max_normal16 = 2^16 * 0.99951171875 # The resultant float16's sign, exponent, and mantissa bits. s = 0 e = 0 m = 0 # Calculate sign bit. # Use copysign() to handle the case where x is -0.0. if copysign(1.0, f32) < 0.0: s = 1 # To reduce the number of cases in the if-tree below, decompose `abs(f32)` # rather than `f32`. (F, E) = frexp(fabs(f32)) # The output of frexp falls into three classes: # - If f32 is NaN, then F is NaN . # - If f32 is ±inf, then F is ±inf . # - If f32 is ±0.0, then F is ±0.0 . # - Otherwise, f32 = 2^E * F where 0.5 <= F < 1.0 . # # Since we decomposed `abs(f32)`, we only need be concerned with the # postive cases. if isnan(F): # The resultant float16 is NaN. e = 31 m = 1 elif isinf(F): # The resultant float16 is infinite. e = 31 m = 0 elif F == 0: # f32 is zero, therefore the resultant float16 is zero. e = 0 m = 0 elif E < -13: # f32 lies in the range (0.0, min_normal16). Round f32 to a nearby # float16 value. The resultant float16 will be either zero, subnormal, # or normal. e = 0 m = int(func_opts.round(2**(E + 24) * F)) elif E <= 16: # f32 lies in the range [min_normal16, max_normal16 + max_step16). # Round f32 to a nearby float16 value. The resultant float16 will be # either normal or infinite. e = int(E + 14) m = int(func_opts.round(2**11 * F - 2**10)) else: # f32 lies in the range [max_normal16 + max_step16, inf), which is # outside the range of finite float16 values. The resultant float16 is # infinite. e = 31 m = 0 if (m == 1024): # f32 was rounded upwards into the range of the next exponent. This # correctly handles the case where f32 should be rounded up to float16 # infinity. e += 1 m = 0 assert(s == 0 or s == 1) assert(0 <= e and e <= 31) assert(0 <= m and m <= 1023) return uint16((s << 15) | (e << 10) | m) def unpack_half_1x16(u16): """Component-wise function of unpackHalf2x16.""" assert(isinstance(u16, uint16)) # The bit layout of a float16 is: # # sign: 15 # exponent: 10:14 # mantissa: 0:9 # # The sign, exponent, and mantissa determine its value by: # # if e = 0 and m = 0, then zero: (-1)^s * 0 # if e = 0 and m != 0, then subnormal: (-1)^s * 2^(e - 14) * m / 2^10 # if 0 < e < 31, then normal: (-1)^s * 2^(e - 15) * (1 + m / 2^10) # if e = 31 and m = 0, then inf: (-1)^s * inf # if e = 31 and m != 0, then nan # # where 0 <= m < 2^10. s = (u16 >> 15) & 0x1 e = (u16 >> 10) & 0x1f m = u16 & 0x3ff if s == 0: sign = 1.0 else: sign = -1.0 if e == 0: return float32(sign * 2.0**(-14) * (m / 2.0**10)) elif 1 <= e and e <= 30: return float32(sign * 2.0**(e - 15.0) * (1.0 + m / 2.0**10)) elif e == 31 and m == 0: return float32(sign * float32("inf")) elif e == 31 and m != 0: return float32("NaN") else: assert(False) # ---------------------------------------------------------------------------- # Inputs for GLSL functions # ---------------------------------------------------------------------------- # This table maps GLSL pack/unpack function names to a sequence of inputs to # the respective component-wise function. It contains four types of mappings: # - name of a pack2x16 function to a sequence of float32 # - name of a pack4x8 function to a sequence of float32 # - name of a unpack2x16 function to a sequence of uint16 # - name of a unpack4x8 function to a sequence of uint8 full_input_table = dict() # This table maps each GLSL pack/unpack function name to a subset of # ``full_input_table[name]``. # # To sufficiently test some functions, we must test a fairly large set of # component-wise inputs, so large that its cartesian product explodes. The # test such functions, we test over the cartesian product of full_input_table # and reduced_input_table. See make_inouts_for_pack_2x16. # reduced_input_table = dict() def make_inputs_for_pack_snorm_2x16(): # The domain of packSnorm2x16 is [-inf, +inf]^2. The function clamps # its input into the range [-1, +1]^2. pos = ( 0.0, # zero 0.1, # near zero 0.9, # slightly below the clamp boundary 1.0, # the clamp boundary 1.1, # slightly above the clamp boundary float("+inf"), ) neg = tuple(reversed(tuple(-x for x in pos))) return tuple(float32(x) for x in pos + neg) full_input_table["packSnorm2x16"] = make_inputs_for_pack_snorm_2x16() reduced_input_table["packSnorm2x16"] = None full_input_table["packSnorm4x8"] = full_input_table["packSnorm2x16"] # XXX: Perhaps there is a better choice of test inputs? full_input_table["unpackSnorm2x16"] = tuple(uint16(u) for u in ( 0, 1, 2, 3, 2**15 - 1, 2**15, 2**15 + 1, 2**16 - 1, # max uint16 )) # XXX: Perhaps there is a better choice of test inputs? full_input_table["unpackSnorm4x8"] = tuple(uint8(u) for u in ( 0, 1, 2, 3, 2**7 - 1, 2**7, 2**7 + 1, 2**8 - 1, # max uint8 )) full_input_table["packUnorm2x16"] = tuple(float32(x) for x in ( # The domain of packUnorm2x16 is [-inf, +inf]^2. The function clamps its # input into the range [0, 1]^2. "-inf", -0.1, # slightly below the inner clamp boundary -0.0, # infintesimally below the inner clamp boundary +0.0, # the inner clamp boundary +0.1, # slightly above the inner clamp boundary +0.9, # slightly below the outer clamp boundary +1.0, # the outer clamp boundary +1.1, # slightly above the outer clamp boundary "+inf", )) reduced_input_table["packUnorm2x16"] = None full_input_table["packUnorm4x8"] = full_input_table["packUnorm2x16"] # XXX: Perhaps there is a better choice of test inputs? full_input_table["unpackUnorm2x16"] = full_input_table["unpackSnorm2x16"] full_input_table["unpackUnorm4x8"] = full_input_table["unpackSnorm4x8"] def make_inputs_for_pack_half_2x16(): # The domain of packHalf2x16 is ([-inf, +inf] + {NaN})^2. The function # does not clamp its input. # # We test both -0.0 and +0.0 in order to stress the implementation's # handling of zero. subnormal_min = 2.0**(-14) * (1.0 / 2.0**10) subnormal_max = 2.0**(-14) * (1023.0 / 2.0**10) normal_min = 2.0**(-14) * (1.0 + 0.0 / 2.0**10) normal_max = 2.0**15 * (1.0 + 1023.0 / 2.0**10) min_step = 2.0**(-24) max_step = 2.0**5 pos = tuple(float32(x) for x in ( # Inputs that result in 0.0 . # 0.0, 0.0 + 0.25 * min_step, # A thorny input... # # if round_to_even: # f16 := 0.0 # elif round_to_nearest: # f16 := subnormal_min # 0.0 + 0.50 * min_step, # Inputs that result in a subnormal float16. # 0.0 + 0.75 * min_step, subnormal_min + 0.00 * min_step, subnormal_min + 0.25 * min_step, subnormal_min + 0.50 * min_step, subnormal_min + 0.75 * min_step, subnormal_min + 1.00 * min_step, subnormal_min + 1.25 * min_step, subnormal_min + 1.50 * min_step, subnormal_min + 1.75 * min_step, subnormal_min + 2.00 * min_step, normal_min - 2.00 * min_step, normal_min - 1.75 * min_step, normal_min - 1.50 * min_step, normal_min - 1.25 * min_step, normal_min - 1.00 * min_step, normal_min - 0.75 * min_step, # Inputs that result in a normal float16. # normal_min - 0.50 * min_step, normal_min - 0.25 * min_step, normal_min + 0.00 * min_step, normal_min + 0.25 * min_step, normal_min + 0.50 * min_step, normal_min + 0.75 * min_step, normal_min + 1.00 * min_step, normal_min + 1.25 * min_step, normal_min + 1.50 * min_step, normal_min + 1.75 * min_step, normal_min + 2.00 * min_step, 2.0 * normal_min + 0.50 * min_step, 2.0 * normal_min + 0.75 * min_step, 2.0 * normal_min + 1.00 * min_step, 0.5, 1.0, 1.5, normal_max - 2.00 * max_step, normal_max - 1.75 * max_step, normal_max - 1.50 * max_step, normal_max - 1.25 * max_step, normal_max - 1.00 * max_step, normal_max - 0.75 * max_step, normal_max - 0.50 * max_step, normal_max - 0.25 * max_step, normal_max + 0.00 * max_step, normal_max + 0.25 * max_step, # Inputs that result in infinity. # normal_max + 0.50 * max_step, normal_max + 0.75 * max_step, normal_max + 1.00 * max_step, normal_max + 2.00 * max_step, "+inf", )) neg = tuple(reversed([-x for x in pos])) return neg + pos full_input_table["packHalf2x16"] = make_inputs_for_pack_half_2x16() reduced_input_table["packHalf2x16"] = tuple(float32(x) for x in ( "-inf", -2.0, -1.0, -0.0, +0.0, +1.0, +2.0, "+inf", )) def make_inputs_for_unpack_half_2x16(): # For each of the two classes of float16 values, subnormal and normalized, # below are listed the exponent and mantissa of the class's boundary # values and some values slightly inside the bounds. bounds = ( ( 0, 0), # zero ( 0, 1), # subnormal_min ( 0, 2), # subnormal_min + min_step ( 0, 1022), # subnormal_max - min_step ( 0, 1023), # subnormal_max ( 1, 0), # normal_min ( 1, 1), # normal_min + min_step (30, 1022), # normal_max - max_step (30, 1023), # normal_max (31, 0), # inf ) def make_uint16(s, e, m): return uint16((s << 15) | (e << 10) | m) pos = tuple(make_uint16(0, e, m) for (e, m) in bounds) neg = tuple(make_uint16(1, e, m) for (e, m) in reversed(bounds)) return neg + pos full_input_table["unpackHalf2x16"] = make_inputs_for_unpack_half_2x16() # ---------------------------------------------------------------------------- # Expected outputs for GLSL functions # ---------------------------------------------------------------------------- # For a given input to a GLSL function, InOutTuple lists all valid outputs. # # There are multiple types of InOutTuple, described below. In each # description, the numerical types actually refer to strings that represent # a GLSL literal of that type. # # - That for a pack2x16 function: the input is a 2-tuple of float32 and each # output is a uint32. For example, ``InOutTuple(input=("0.0", "0.0"), # valid_outputs=("0u", "0u", "0u"))``. # # - That for a unpack2x16 function: the input is a uint32 and each output is # a 2-tuple of float32. For example, ``InOutTuple(input="0x80000000u", # valid_outputs=(("0.0", "-0.0"),))``. # InOutTuple = namedtuple("InOutTuple", ("input", "valid_outputs")) def glsl_literal(x): """Convert the given number to a string that represents a GLSL literal. :param x: a uint32 or float32 """ if isinstance(x, uint32): return "{0}u".format(uint32(x)) elif isinstance(x, float32): if math.isnan(x): # GLSL ES 3.00 and GLSL 4.10 do not require implementations to # support NaN, so we do not test it. assert(False) elif math.isinf(x): # GLSL ES 3.00 lacks a literal for infinity. However, ±1.0e256 # suffices because it lies sufficientlyoutside the range of finite # float32 values. # # From page 31 of the GLSL ES 3.00 spec: # # If the value of the floating point number is too large (small) # to be stored as a single precision value, it is converted to # positive (negative) infinity. # return repr(copysign(1.0e256, x)) elif x == 0 and copysign(1.0, x) == -1.0: # Workaround for numpy-1.7.0, in which repr(float32(-0.0)) does # not return a float literal. # See https://github.com/numpy/numpy/issues/2935 . return "-0.0" else: return repr(x) else: assert(False) def make_inouts_for_pack_2x16(pack_1x16_func, all_float32_inputs, reduced_inputs=None): """Determine valid outputs for a given GLSL pack2x16 function. If the reduced_float32_inputs parameter is None, then it is assumed to be the same as all_float32_inputs. The set of vec2 inputs constructed by this function is the union of cartesian products: (all_float32_inputs x reduced_inputs) + (reduced_inputs x all_float32_inputs) :param pack_1x16_func: the component-wise function of the pack2x16 function :param float32_inputs: a sequence of inputs to pack_1x16_func :return: a sequence of InOutTuple """ inout_seq = [] func_opt_seq = (FuncOpts(FuncOpts.ROUND_TO_EVEN), FuncOpts(FuncOpts.ROUND_TO_NEAREST)) if reduced_inputs is None: reduced_inputs = all_float32_inputs def add_vec2_input(x, y): assert(isinstance(x, float32)) assert(isinstance(y, float32)) valid_outputs = [] for func_opts in func_opt_seq: u32 = pack_2x16(pack_1x16_func, x, y, func_opts) assert(isinstance(u32, uint32)) valid_outputs.append(glsl_literal(u32)) inout_seq.append( InOutTuple(input=(glsl_literal(x), glsl_literal(y)), valid_outputs=valid_outputs)) for y in reduced_inputs: for x in all_float32_inputs: add_vec2_input(x, y) add_vec2_input(y, x) return inout_seq def make_inouts_for_pack_4x8(pack_1x8_func, float32_inputs): """Determine valid outputs for a given GLSL pack4x8 function. :param pack_1x8_func: the component-wise function of the pack4x8 function :param float32_inputs: a sequence of inputs to pack_1x8_func :return: a sequence of InOutTuple """ inout_seq = [] func_opt_seq = (FuncOpts(FuncOpts.ROUND_TO_EVEN), FuncOpts(FuncOpts.ROUND_TO_NEAREST)) for y in float32_inputs: for x in float32_inputs: assert(isinstance(x, float32)) valid_outputs_0 = [] valid_outputs_1 = [] for func_opts in func_opt_seq: u32_0 = pack_4x8(pack_1x8_func, x, y, x, y, func_opts) u32_1 = pack_4x8(pack_1x8_func, x, x, y, y, func_opts) assert(isinstance(u32_0, uint32)) assert(isinstance(u32_1, uint32)) valid_outputs_0.append(glsl_literal(u32_0)) valid_outputs_1.append(glsl_literal(u32_1)) inout_seq.append( InOutTuple(input=(glsl_literal(x), glsl_literal(y), glsl_literal(x), glsl_literal(y)), valid_outputs=valid_outputs_0)) inout_seq.append( InOutTuple(input=(glsl_literal(x), glsl_literal(x), glsl_literal(y), glsl_literal(y)), valid_outputs=valid_outputs_1)) return inout_seq def make_inouts_for_unpack_2x16(unpack_1x16_func, uint16_inputs): """Determine expected outputs of a given GLSL unpack2x16 function. :param unpack_1x16_func: the component-wise function of the unpack2x16 function :param uint16_inputs: a sequence of inputs to unpack_1x16_func :return: a sequence of InOutTuple """ inout_seq = [] func_opts = FuncOpts() for y in uint16_inputs: for x in uint16_inputs: assert(isinstance(x, uint16)) u32 = uint32((y << 16) | x) vec2 = unpack_2x16(unpack_1x16_func, u32, func_opts) assert(isinstance(vec2[0], float32)) assert(isinstance(vec2[1], float32)) inout_seq.append( InOutTuple(input=glsl_literal(u32), valid_outputs=[(glsl_literal(vec2[0]), glsl_literal(vec2[1]))])) return inout_seq def make_inouts_for_unpack_4x8(unpack_1x8_func, uint8_inputs): """Determine expected outputs of a given GLSL unpack4x8 function. :param unpack_1x8_func: the component-wise function of the unpack4x8 function :param uint8_inputs: a sequence of inputs to unpack_1x8_func :return: a sequence of InOutTuple """ inout_seq = [] func_opts = FuncOpts() for y in uint8_inputs: for x in uint8_inputs: assert(isinstance(x, uint8)) u32_0 = uint32((y << 24) | (x << 16) | (y << 8) | x) u32_1 = uint32((y << 24) | (y << 16) | (x << 8) | x) valid_outputs_0 = [] valid_outputs_1 = [] vec4_0 = unpack_4x8(unpack_1x8_func, u32_0, func_opts) vec4_1 = unpack_4x8(unpack_1x8_func, u32_1, func_opts) assert(isinstance(vec4_0[0], float32)) assert(isinstance(vec4_0[1], float32)) assert(isinstance(vec4_0[2], float32)) assert(isinstance(vec4_0[3], float32)) assert(isinstance(vec4_1[0], float32)) assert(isinstance(vec4_1[1], float32)) assert(isinstance(vec4_1[2], float32)) assert(isinstance(vec4_1[3], float32)) valid_outputs_0.append((glsl_literal(vec4_0[0]), glsl_literal(vec4_0[1]), glsl_literal(vec4_0[2]), glsl_literal(vec4_0[3]))) valid_outputs_1.append((glsl_literal(vec4_1[0]), glsl_literal(vec4_1[1]), glsl_literal(vec4_1[2]), glsl_literal(vec4_1[3]))) inout_seq.append( InOutTuple(input=glsl_literal(u32_0), valid_outputs=valid_outputs_0)) inout_seq.append( InOutTuple(input=glsl_literal(u32_1), valid_outputs=valid_outputs_1)) return inout_seq # This table maps GLSL pack/unpack function names to the precision of their # return type. result_precision_table = { "packSnorm2x16": "highp", "packSnorm4x8": "highp", "packUnorm2x16": "highp", "packUnorm4x8": "highp", "packHalf2x16": "highp", "unpackSnorm2x16": "highp", "unpackSnorm4x8": "highp", "unpackUnorm2x16": "highp", "unpackUnorm4x8": "highp", "unpackHalf2x16": "mediump", } # This table maps GLSL pack/unpack function names to a sequence of InOutTuple. inout_table = { "packSnorm2x16": make_inouts_for_pack_2x16(pack_snorm_1x16, full_input_table["packSnorm2x16"], reduced_input_table["packSnorm2x16"]), "packSnorm4x8": make_inouts_for_pack_4x8(pack_snorm_1x8, full_input_table["packSnorm4x8"]), "packUnorm2x16": make_inouts_for_pack_2x16(pack_unorm_1x16, full_input_table["packUnorm2x16"], reduced_input_table["packUnorm2x16"]), "packUnorm4x8": make_inouts_for_pack_4x8(pack_unorm_1x8, full_input_table["packUnorm4x8"]), "packHalf2x16": make_inouts_for_pack_2x16(pack_half_1x16, full_input_table["packHalf2x16"], reduced_input_table["packHalf2x16"]), "unpackSnorm2x16": make_inouts_for_unpack_2x16(unpack_snorm_1x16, full_input_table["unpackSnorm2x16"]), "unpackSnorm4x8": make_inouts_for_unpack_4x8(unpack_snorm_1x8, full_input_table["unpackSnorm4x8"]), "unpackUnorm2x16": make_inouts_for_unpack_2x16(unpack_unorm_1x16, full_input_table["unpackUnorm2x16"]), "unpackUnorm4x8": make_inouts_for_unpack_4x8(unpack_unorm_1x8, full_input_table["unpackUnorm4x8"]), "unpackHalf2x16": make_inouts_for_unpack_2x16(unpack_half_1x16, full_input_table["unpackHalf2x16"]), } # ---------------------------------------------------------------------------- # Generate test files # ---------------------------------------------------------------------------- class FuncInfo: """Information for a GLSL pack/unpack function. Properties ---------- - name: Name of the GLSL function, such as "packSnorm2x16". - dimension: Dimension of the GLSL function, such as "2x16". - result_precision: Precision of the GLSL function's return type, such as "highp". - inout_seq: A sequence of InOutTuple. The generated test file will test all inputs listed in the sequence. - num_valid_outputs: The number of valid outputs for each input of self.inout_seq. (We assume that each input has the same number of valid outputs). - vector_type: The type of the GLSL function's parameter or return value. E.g., vec4 for a 4x8 function and vec2 for a 2x16 function. - requirements: A set of API/extension requirments to be listed in the .shader_test's [requires] section. - exact: Whether the generated results must be exact (e.g., 0.0 and 1.0 should always be converted exactly). """ def __init__(self, name, requirements): self.name = name self.result_precision = result_precision_table[name] self.inout_seq = inout_table[name] self.num_valid_outputs = len(self.inout_seq[0].valid_outputs) self.requirements = requirements self.exact = name.endswith("unpackHalf2x16") if name.endswith("2x16"): self.dimension = "2x16" self.vector_type = "vec2" elif name.endswith("4x8"): self.dimension = "4x8" self.vector_type = "vec4" else: assert(False) class ShaderTest: """A .shader_test file.""" @staticmethod def all_tests(): requirements = "GLSL >= 1.30\nGL_ARB_shading_language_packing" ARB_shading_language_packing_funcs = ( FuncInfo("packSnorm2x16", requirements), FuncInfo("packSnorm4x8", requirements), FuncInfo("packUnorm2x16", requirements), FuncInfo("packUnorm4x8", requirements), FuncInfo("packHalf2x16", requirements), FuncInfo("unpackSnorm2x16", requirements), FuncInfo("unpackSnorm4x8", requirements), FuncInfo("unpackUnorm2x16", requirements), FuncInfo("unpackUnorm4x8", requirements), FuncInfo("unpackHalf2x16", requirements), ) requirements = "GL ES >= 3.0\nGLSL ES >= 3.00" glsl_es_300_funcs = ( FuncInfo("packSnorm2x16", requirements), FuncInfo("packUnorm2x16", requirements), FuncInfo("packHalf2x16", requirements), FuncInfo("unpackSnorm2x16", requirements), FuncInfo("unpackUnorm2x16", requirements), FuncInfo("unpackHalf2x16", requirements), ) execution_stages = ( "const", "vs", "fs", ) for s in execution_stages: for f in glsl_es_300_funcs: yield ShaderTest(f, s, "glsl-es-3.00") for f in ARB_shading_language_packing_funcs: yield ShaderTest(f, s, "ARB_shading_language_packing") def __init__(self, func_info, execution_stage, api): assert(isinstance(func_info, FuncInfo)) assert(execution_stage in ("const", "vs", "fs")) assert(api in ("glsl-es-3.00", "ARB_shading_language_packing")) self.__template = template_table[(execution_stage, func_info.name[0], func_info.dimension)] self.__func_info = func_info self.__filename = os.path.join( "spec", api, "execution", "built-in-functions", "{0}-{1}.shader_test"\ .format(execution_stage, func_info.name)) @property def filename(self): return self.__filename def write_file(self): dirname = os.path.dirname(self.filename) if not os.path.exists(dirname): os.makedirs(dirname) with open(self.filename, "w") as buffer: ctx = mako.runtime.Context(buffer, func=self.__func_info) self.__template.render_context(ctx) def main(): parser = optparse.OptionParser( description="Generate shader tests that test the built-in " + \ "packing functions", usage="usage: %prog [-h] [--names-only]") parser.add_option( '--names-only', dest='names_only', action='store_true', help="Don't output files, just generate a list of filenames to stdout") (options, args) = parser.parse_args() if len(args) != 0: # User gave extra args. parser.print_help() sys.exit(1) for test in ShaderTest.all_tests(): print(test.filename) # Some test files take a long time to generate, so provide status # updates to the user immediately. sys.stdout.flush() if not options.names_only: test.write_file() if __name__ == '__main__': main()